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Abstract

We identify a class of Euclidean configurations which appear
to be dominant in the functional integral of the CPNEI models.
These configurations are point-like topological excitatioms, and
they may be viewed as constituents of instantons, although they
are defined independently of instantons through a continuum duality
transformation. We show not only that these configurations survive
as N *°, but that in the plasma phase they are responsible for the
effects encountered within the 1/N expansion — ééﬁfinementgn
6-dependence, and dynamical mass generation. We also discuss the
possible types of plasma phase for a statistical mechanical model
of the interacting excitations. Possible generalization to QCD is

briefly discussed.



I. INTRODUCTION

The usefulness and importance of semiclassical methods in the
study of quantum field theory have been ampiy demonstrated over
the past few years[;}HoweverS the role of semiclassical approxima-
tions in the Euclidean functional integral of a scale-invariant
quantum field theorgZIhas become a matter of some disagreement of
late. The disagreement centers around two related gquestions. The
first is that of adequately identifying those field configurations
which are statistically important in the partition function or
functional integral so that a sensible calculation can, at least
in principle, be carried out. The second question concerns another
approximation scheme for quantum field theory, the 1/N expansion[3’4],
and its relation to the semiclassical approximation. It has recently
been argue§596]that the 1/N expansion is the much preferred method
of attack, as suggested in two-dimensional theories, and that the
effects calculated by semiclassical approximations, at least around
the best known classical field configurations, instantons, are
negligible. In this paper we shall study these questions with a view
to resolving them by exhibiting field configurations which appear to
be important in the functional integral, and furthermore survive in
the large N-limit to the extent that they may even be viewed as
driving the results obtained there. Our study here will be concerned
with certain two-dimensional models, the recently discovered CPN‘_l
models, where the issues are more clearly drawn and the complexities,
though sufficiently difficult as often to preclude exact computation,

nevertheless do not obscure the essentials of the physics. The

situation for four~dimensional quantumchromodynamics (QCD} is much



- b -

more problematical, from both the 1/N point of view as well as
the semiclassical, so we shall have to limit ourselves in this
paper to some more general comments and plans of attack.

Let us begin by defining the models, albeit briefly since

a fairly extensive literature[5s17]on them already exists. The

-1
CPN model is the theory of minimally coupled complex rays in

N-dimensional complex space. The action may be written as

5= ;15 [ 20" (B2,

with the constraint
z z_ =1, o =1, c0oN

where (1.1)

and

by its equations of motion. Hence, besides a global SU(N) symmetry,
the model possesses a local U(l) gauge invariance. This and the
constraint results in the fields z taking values in N-1 dimensional
complex projective space CPN“l: the space of equivalence classes of

complex N-vectors under complex scalar multiplication. For N = 2 the



model is equivalent to the familiar 0(3) non-linear sigma model.l18-251.
In two dimensions the models are asymptotically free, conformally
invariant, and topologically non-trivial —features which they share
with QCD, thus making them preéumably good laboratories for exploring
the possible consequences of these features for QCD. (It may be of
interest to note that asymptotic freedom follows simply because the
theory is one of minimally coupled fields which take values in a
compact, homogeneous manifold[26]).The model is also 1/N expandable
since the theory may be easily rewritten in terms of SU(N)flavor=

[S,IO]Of the 1/N expansion is

invariant quantities. The major result
that the model may be viewed as describing N charged particles, with
a dynamically generated mass, which interact at large distances
through Coulomb forces. This leads to the disappearance of charged
particles from the spectrum and to the physical significance of the

8 -parameter. Furthermore, after the introduction of fermions into
the model, the chiral U(l)A problem is resolved. Fortunately, the
spectrum, indeed the whole S-matrix, of the model for N = 2 is exactly
known[ZSL(Presumably a set of eigenstates could now be built.) So the
results of the 1/N expansion have been shown to be qualitatively
correct. Some author£10’11’12’27]have emphasized the.importance of
topologically non-trivial field configurations in obtaining these
results even in the 1/N expansion. Others[596}however, have chosen
to stress the view of the 1/N expansion as a summation of perturbation
theory Feynman diagrams.

Topologically non-trivial configurations are known to exist in

the CPNml models since they have a local U(l) gauge symmetry, while

on the classical level they exhibit spontaneous bresking of the



SU(N) global symmetry. It follows that they have instanton solutions
to the Fuclidean equations of motion for all N. Such configurations
are able, in principle, to produce dramatic effects in two dimensions
(e.g. confinement in spite of the Higgs mechanisg27})of exactly the
same type as does the 1/N expansion.

Most calculations with instantons have, until recently, been done
in the dilute gas approximation, which is infrared divergent in scale-

N-1

invariant theories like QCD or CP" ~, and so requires a cut-off.

J129139239299301have appeared using

Lately, a number of calculation
multi-instanton solutions instead. Leaving aside the results for QCD,
which are still incomplete, the results in CPNﬁl appear to indicate
that the gas of instantons is dense and infrared finite, and hence

that the dilute gas configurations are statistically negligible.
However, it should be noted that the exact multi-instanton solutions
are a very restrictive set of configurations, and so almost certainly
they also are irrelevant statistically. Furthermore, incoherently
summing the contributions from pure instantons and pure anti-instantons
does not appear to satisfy the cluster decomposition theorem 124,30] .
Physically, the problems with cluster decomposition arise because
multi-instanton configurations are very strongly correlated. Making

a specific choice for the field at some point dictates the choice to
be made at all other points, so long as one wants an exact solution

to the equations of motion. The apparent way to overcome the cluster
decomposition problem is to include instanton = anti-instanton
configurations somehow. This would also give a statistically more
significant set. Indirectly this is what we propose to do here. These
difficulties,; however, do not render useless the impressive calcula-
tions done by saturating the functional integral with only multi-

instanton (multi-anti=-instanton) solutions and the small fluctuations



around them. Besides the significant information these calcula-
tions provide about what happens to the instanton gas, they also

]

give quite reasonable resultéZS’ZA for some Green's functions, where
the cluster decomposition problem does not occur.

But in general'one must sum coherently both instantons and
anti-instantons ﬁogether, and this is what the dilute gas
approximation does. So long, then, as one considers only small scales,
the dilute gas is relevant. Furthermore, and perhaps more compelling,
in QCD it is the only known tractable approximation, One can only
hope that in trying to extend the dilute gas approximation as far
as possible, one may be able to obtain some signals about what
happens beyond its range of validity. There are some indications [31]
that this may be the situation in QCD.

However, as already noted, the whole instanton approach has
recently been questioned in the context of the 1/N expansion. The

é5’15’17’32’33]is that whatever the instanton

principal argumen
effects may be, they become irrelevant as N * * since they vanish
like emCNe Since the 1/N expansion is smooth and reliable, this

' argument says that instanton effects may be negligible even for

N = 2. There are strong indication£4}that the N + e limit of QCD
exhibits many of the rough features of hadronic physics, and thus
the leading terms in the 1/N expansion may be a good approximation
for N = 3. Thus, the argument continues, as in CP]’9 the instanton
contribution to such effects as confinement and the resolution of
the U(l)A problem may be irrelevant. These considerations are
especially directed against the dilute gas approximation. But even

there it could still turn out that, due to higher order effects

(including, perhaps, interactions), the large-N behavior is not



that given by the one-=loop calculation.

Other, and in our opinion, weaker objections to instantons
have been advanced[5].The exact instanton (or multi-instanton)
solutions are obtained by imposing boundary conditions at infinity
which ensure finite action. The boundary conditions at infinity
should be those which are obeyed by the most important vacuum
configurations (we use Fuclidean language). In two dimensions
because of kinematics, and in four dimensions because of confine-
ment viewed as an experimental fact, these are certainly not
finite action boundary conditions. But it is almost certain that,
as opposed to real time, in imaginary time exact solutioms of the
equations of motion, or other finite action configurations are not
important. This is so even in. the dilute gas case. But what goes
against the dilute gas is that from both the 1/N picture, as well
as the multi-instanton calculations, it appears that omne should
envisage the appearance of a nonzero density of topological charge
as a result of the contribution not of small lumps of concentrated
topological charge density, but rather of a quite smooth distribution.

Another argumengssé]against instantons is that the effective
action derived to pe;form the 1/N expansion does not possess any
instanton-like solutions. Hence, given the reliability of the 1/N
expansion, instantons cannot be of consequence to the quantum theory.
However, it appears that this argument may be too facile, since it
has since been show&27]that instantons do appear in a different form,
namely as poles of the effective 1/N integrand, and hence their
contribution may be evaluated by closing the contour in a way

different from the 1/N expansion. So not only do instantons survive



but they may, and at least in some modelg27]do, give the same

results as the 1/N expansion.
It seems to us that for the present it is far from obvious
which approach to long-distance QCD is potentially more rewarding

~the 1/N expansion or the quasiclassical approximation. The

gqualitative success of 1/N should not have a destructive influence
__on the quasiclassical approach. Our purpose in the present paper is
to set up a framework for the quésiclaSSical;approaéh to the CPNEI
models. We require our configurations to contain the dilute gas
case as a subset, which presumably is insignificant. We also will
present arguments to show that our configurations do not disappear
in the large N-limit, nor do they predict a distribution of dilute
vlumps of topological charge density. Furthermore, the configurations
are intimately related to instantons, yet, in the plasma phase, they
produce effects quite similar to those obtained in the 1/N expansion,
that is, confinement and the related 8-dependence, as well as
dynamical mass generation. Hence our work supports the point of view
of those who stressed the importance of topologically non-trivial
configurations even in obtaining the results of the 1/N expansion.

The plan of the rest of the paper is as follows. In section II
we treat only the case N=2 (essentially the 0(3) non-linear sigma
model). We present the configurations, which we will call interchange-
ably topological excitations, vortices, instanton quarks, or merons,
and which are essentially equivalent to the merons of refe[ZéIQHere
we also set up a field theoretical framework, via what is known as
the duality transformatio%Bé]or functional Fourier transformation [35],
to take their contribution into account. In section III the deriva-

tions for arbitrary N are presented. We argue, in section IV, in
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favor of the importance of the configurations for confinement and
the 1/N expansion. Section V presents a model for the treatment of
the interactions, especially the spin-spin part, of the vortices.
Section VI concludes the paper with a summary and a brief discussion
of probable implications for QCD. In an appendix, some technical

analysis related to section V is presented.
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II. TOPOLOGICAL EXCITATIONS IN CPl

The dilute gas picture rests on configurations made cut of
single, well separated instantons and anti-instantons. This implies
a parametrization naturally attached to the one instanton solutions.
Such a parametrization views an instanton as an elementary excitation
having a variable size, a center, and some angular parameters which
determine its orientation in the space of a compact group. Such a
parametrization is not suited for the description of a larger set
of configurations than the dilute set. The first step in finding a
larger set of configurations is, therefore, to find a new parametri-
zation of the dilute gas, the relevance of which is not dependent on
diluteness. A good hint of what that parametrization might be is
given by the multi-instanton solutions. Although these configurations
are extremely correlated and, therefore, presumably mnot statistically
important, they do point out the existence of an easily generalizable
parametrization.

The one instanton solution may be written in two equivalent ways:

in the standard parametrization,

[¢] o [s]
aog o+ [y = %)) = 2, - %)) v,

1
Zé - 2 on21 % > (2.1)
[2»5 4+ (x~-x)"17
a=1,2
. % %
with u U, =V v, = 1, u v, = O

and in a different one,
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Z
W =_1 _ c 8- 2

> 8 = X, - ixz , a,b,c e €. (2.2)

The relation between the two parametrizations is nonlinear for
¢ ¥ 1, Thus they are genuinely different. Eq.(2.2) has mixed some
of the space and group degrees of freedom of Eq. (2.1). It is Eq.

(2.2) which immediately generalizes to the exact n-instanton solutions:

7
n (s -ay)

i=1

w( = ¢ . ' (2.3)

n)

¢

n (s =Db,)
12

1

Thus we are led to the conclusion that we should think in terms
of some local point-like excitations which come in pairs to méke
instantons. The parameters would be the locations of these point-like
objects. That this parametrization of the exact solutions 1is adequate
is shown by the computation of small fluctuations around them. It has
been shown in two calculations [12,23] that the contribution to the
partition function of the Gaussian fluctuations around an n-instanton

solution is given hy

2
2 2 2 2 d e
d“a. e.. d“a db e, db ———m X
1 n 1 n (1+ [clz)z

Z 1n {a.«b.[z -

. . i i

1]

2 2

z . = a, + Injb,-b, . 2.4
i (ln!a1 aj] nl i jl )} ( )

We see that the contribution of ¢ factorizes and that the a's and b's
play the role of the locations of positive and negative charges

interacting through Coulomb forces in two-dimensional space.
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The interpretation of the a's and b's as locations of charged
particles is supported by the classical dynamics of the system. Indeed,
as shown in refs. [20,22] , an instanton interacts classically with
a far away anti-instanton (both scales are small compared to the
distance between the centers) by a dipole-dipole type interactiom.

It turns out that each (anti)instanton may be associated with an electric
dipole having its constituent charges situated precisely at a and b.

We should be cautious, however; instantons do not interact with them-
selves classically [20,22]5 Thus it appears necessary to think about

an additional parameter, some kind'of discrete spin which takes care

of this fact [22].

We want now to loock for a characterization of the positions a
and b which frees them from the direct relation to exact solutions
of the equations of motion. (At this point we differ conceptually
somewhat from ref. [20].) Eq.(2.2) suggests that a gauge invariant
characterization of a and b is given by defining points in Euclidean
space around which the phase of w rotates. This characterization is
very suggestive because it is essentially the-definition of vortex
configurations in two dimensions, and it is known that in any
reasonable theory [36] vortices will tend to interact logarithmically,
that is by Coulomb forces. A vortex has an ultraviolet-divergent
self-energy and therefore one expects the dynamics to smear out the
singularity. This is achieved by making w either vanish or blow up
at the locations of the vortices. The existence of these two possi-
bilities is a reflection of a trivial discrete symmetry of Eq. (1.1)
for N= 2, that is z **23 , or, in terms of the gauge invariant

1

s , 1 : . . .
unconstrained field w, w 9’;% . This discrete symmetry leaves invariant
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the nature of the vortex, and it leads us to the following para-

metrization of the z and w fields:

i(9+ + %¢)
z, = £f(p,) e 1= £20
1 1
T T
J@ij i(6+-=§§q3) ®2<9+<2
z, =Vl - £7°(p.,) e (2.5)
2 2
- <o <m

f being an undetermined function. In these new variables the partition

function of the CPl model is given by

-»-%s[z]

jn [a%2,d%,) e 8 s ([z)? - )l
b4 p:4

Z

[

1]

j@( I [doy do, d6, dol T [s% fé] m[8¢p 0,01 X
X X

- L
2 S(ols¢)
e 8 . (2.6)

2
2 (5 p)
2 2 2 df U
( [f (1 - £7) (8u¢) + (—55-) —=-——-=--=—-=-=l ) fz } . 2.7)

with

it

S(p, ¢)

or equivalently
{2 2 2 AR L
S(p,9) = [[f (1 - £ )(8u¢) + é? au 1 -f . (2.8)

We see that the dependence on © + has disappeared and this may be an
alarming sign: didn't we throw away singular gauge configurations which
are important and have nonvanishing action? The answer is that we did

not, and this point deserves some further comments.
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Since there is no classical kinetic energy term for the gauge
field in the action, singular gauge transformations do not cost a
finite action. This means that, in the (2.1) parametrization,zero
size instantons have zero action. In the picture of vortices this
is obvious: opposite vortices annihilate when located at the same
point. But this contradicts the standard derivation of self-duality
equations, which proceeds by obtaining lower bounds for the action
in each topologicai sector. Indeed, a carefui examination of the deriva-
tion shows that it goes wrong, as it should, for zero size instantons.

One uses the identity

2
~ %
(Opzu) @uzcx =1 §[Qzai ie szd!
+ ie 3 *8 zZ . . (2.9)

2z
W u o voa

?

This identity holds for regular or singulaf Au s. The next step is to

write

% % ,
e 9 2z 9 =z =¢ 3 (2z3z)=1de I A . (2.10)
BV W oV g pvu oy oal TAVASTRRY)
This is wrong for a zero size instanton since at the point where the
singularity sits.euvauavzaﬁﬁo. This point indicates that the definition
s . 1 .
of topological charge by the line integral §}§ Audxu is not always
appropriate, whereas the local definition via vorticity avoids this
problem. We should remark here that the fact that the action of an
Y, 87

n-instanton configuration undergoes a discontinuous jump when an "a

touches a"B',is important in the interpretation of the result in Eq.



- 16 -

(2.4) obtained in refs. [12, 23]. In general one would expect that
entropy will be an important enough criterion to make the configurations
which have some "a" sitting on top of a "b" irrelevant statistically.
Unfortunately, at the specific point of Eq. (2.4) the interaction just
takes over, and for a Coulomb gas of point-like objects we are at a

phase transition, from‘a plasma phase to a collapsing dipole phase.

In ref.[ 23] the additional ultraviolet divergences which appear have

been treated by the introduction of a cut-off, in which case the system
is above the phase transition and in the plasma phase. When an "a" hits a
"b", the classical action changes discontinuously. This supports the

introduction of an additional cut-off since the limit a> b need not be

%
reliable.

The possible presence of vortices in Eq. (2.8) is signaled by the

* Eq. (2.4) is not free of ultraviolet divergences, despite standard
one-loop renormalization which generated the mass M. In the field
theoretical context this additional divergence has been observed by
Lehmann and Stehr [37] and by Schroer and Truong [38] who showed that
when the sine-Gordon system approaches the point where solitons unbind
from their parent mesons (in the fermion, massive Thirring model this

is where the current-current coupling goes to zero),; the normal ordering
employed in the boson theory no longer takes care of all the u.v.
divergences. Eq. (2.4) represents the perturbation theory in the cosine
term of the sinemGordén Lagrangean with only normal-ordering regulariza-

tion [391] .
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fact that ¢ as an angular variable need not satisfy the equation
Euv8u8v¢ = (0 everywhere. The reason is that % dxu8u¢ does not have
to be zero arocund every point in space; it may be an integer multiple

of 27 . Let us denote for convenience
O =e 3 ¢ . (2.11)

One may now consider fz(l—fz) as being related to an effective dielectric

constant, €:

Egmﬁﬁg e>1 . (2.12)
LET(1-£7)
The second term in the action (2.8) defines a distribution for the
dielectric constant of the medium. @u is somewhat similar to the 'D"
field, the electric field produced by the "external" charges only. But

@u should not be considered only an electric field. This is so because

curl E = curl %-3 must not vanish. So the system also contains a current
distribution (perpendicular to our 2-dimensional world) which is
equivalent to a smooth background of magnetic charge. It will turn out
that this smooth background can be formally integrated out. The divergence

of @U can have contributions only from isolated quantized singularities,
30 =21 2, a; 8Gex) 3 qjsz} (2.13)

By inspection it is clear that in order to avoid ultraviolet
singularities one must have £ = 0 or 1 at each Xje Assuming that f is

not 0 or ! uniformly at infinity we find that, in order to avoid an

infrared divergence, the following neutrality condition must be met,
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m
> qy = 0 (2.14)
=1

The topological charge Q is given by

~ 1 2 2
Q o {d x@uau(f )

]

1 2 2. 2
o {a x3 (6 £°) quf () (2.15)

]

. . . 2, .
The first term is zero since f° is bounded and the system is neutral.

Thus
Q=- % q., (2.16)

where the prime means exclusion of those terms for which fz(xj) = 0.
Clearly, with a given distribution of singularities one achieves the
maximum of [a{ by requiring fz(xj) = +1 at all positive electric
charges and fz(xj) = 0 at all negative electric charges (or vice versa).
Since the action satisfies

2%

S=[d2x {(%—a (1 - £%)

+ £ 1-£2)% 0 12] %240
. f(lf)@u] 27Q

~ls| > (3] 2.17)

a solution to the equations of motion may be achieved by looking for

functions which satisfy the self-duality conditions:
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1 2% _ - 2.5
[, 1.sf = + Py
¢ au( ) F(1-F7) eu

1 9 1 m (2.18)
=>-§:V log {—5 = =+ 27 q, 8(x - %)
£ j=1 J

= log %= 1 QZq. log (x~x.)2+A
£ T3 3

with VZA = 0 o

Now demanding f2 —»t—3 1 or O forces A = const. Thus we obtain

-+
%[> =

log %» 1 ~+F q, log (x-==-=xj,)2

f KPK J

3

1 qj<0 for upper sign

9 0 q.” 0 (instantons)
= £7(x,) = J (2.19)
3 . >

qj 0 for lower sign

0 qj<0 (anti-instantons)

We see that self-duality forced {a} to be maximal. Were this a result

of self-duality alone, we might hope that enforcing a different
distribution of the values O and 1 of f at the locations of the
electrical charges, would lead to a well-defined instanton-anti-instanton
configuration. Unfortunately there are no non-self-dual, finite action,

regular solutions to the equations of motion of the 0(3) sigma model [z0].
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In principle, a possible ap?roach to the problem of finding
the statistically relevant contributions within a given set of con-
figurations has been given in ref. [41]. In practice, however, one
is faced with a difficult technical problem since one needs to find
a set of constraints, which depend on arbitrary continuous parameters,
such that by varying the parameters one spans the set of configuratioms.
0f course, the classical constraint equations must be exactly soluble
for any value of the parameters. It is hard to see héw this method may
1lead to tractable calculations for the case of instantons and anti-
instantons since one needs to invent a constraint which, when a
continuous parameter is varied, turns instantons into anti-instantons.
Thus we shall resort to a different, more formal and less powerful
method.

In order to single out the contributions of the vortex configura-
tions to the partition function we should constrain the functional
integration to a well-defined configuration of vortices and sum over
all the possible configurations. Stating a well-defined constraint is
physically more meaningful than stating what the complete field
configuration is. This point has been explained and emphasized in
ref. [41]. Furthermore, we should point out that our constraint is
point=like, and so allows for the possibility of deriving a local field
theory for the new excitations. This can be done by formal manipulations
in the continuum [ 34, 351, or very explicitly on the lattice [34, 42].
The lattice formulation, which has the nice feature of being an
explicitly cut-off theory, has the disadvantage of giving a simple
theory in the dual variables only in the Villain approximation. The

usual arguments (i.e. universality) employed to support the claim
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that the Villain approximation becomes exact in the continuum limit,

do not go through so easily in the CP1

case. Furthermore, we could see
no practical advantage in using the lattice formulation here. Hence
we shall discuss only the much simpler, though somewhat formal,

continuum approach.

Let us denote by J(x) the external charge density:
2
J(x) =2 qjé (x - Xj) . (2.20)
We also introduce a 6-parameter in the usual way by the replacement

L os—L s+100 . | (2.21)
g g

The integration over ¢ is replaced by an integration over @u which is

constrained locally by Bueu = 213 (2.13). This change of variables

involves only a linear transformation, and therefore the associated

Jacobian has no field dependence and is just a number. The summation

over all possible charge densities will be formally denoted by Zﬁ.
J

The comstraint au@u = 21J is imposed by a Lagrange multiplier

s
B(x). The partition function becomes:

: 2
af
% =ij I 1 [dB] H[d@u] nlde]l @ [&E‘]X

X x X X
2
) exp { -5 J [£2(1-£2) o + (_g_g —-—L——) ¢ o)+
g o o “’lafz H
ig 2 af '
+ iB(3 © =~ 2 + =21 d°x0 £ =~ 3 pl. (2.22)
B( "y 7J)] o I %0 F 45 uO!

Now the smooth magnetic background may be eliminated by integrating @u :
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- JBJ o (2.23)

Eq. (2.23) contains a field theory of charges (vortices) immersed in a
dielectric medium. The dielectric constant has a quite complicated
distribution law.
If one wishes to get rid of the Jacobian in Eq. (2.23), the function
f may be specified by demanding
daf

2
- cfa-£. (2.24)

A possible solution (with C = 1) is given by:
I - @< p<w , (2.25)
which yvields the following action,

(3 o) 2 \2
=—-—-—j + costhaB%’%&—aa 12 )
écosh o v S S P

a??%— IBJ‘ . (2.26)
24

For © = 0 we observe that the discrete symmetry of Eq. (1.1) (for N=2),
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g

z; @z, , NOW appears as p © = p. The range of integration of p is

now infinite.
Assuming that the only relevant contributions have q, = £ 1

[(see Eq. (2.20)], one may replace % by a summation on (% ) charges

J
and integration over positions. The summations are restricted by

neutrality, but this should be a result of dynamics and so does not

need to be imposed. One finds,

% = JH [dB] T [dp] x
X

x

A J cos <f%§ ) . C(2.27)
g .

The parameter A is the fugacity of the gas; it has dimensions of [massz}
and must be present on dimensional grounds. Hence, there is a sponta-
neously generated mass in the theory.

But ) requires regularization, and this may be done in a variety
of ways. As usual, we assume that different methods of regularization
'give the same final result. A quite similar problem occurs in the
Abelian Higgs model, and we refer the interested reader to ref. [ 34]
for a detailed discussion which can be tramslated in an obvious way to
our model. Heré we shall merely mention some of the alternatives.
Perhaps the most stralghtforward approach is to §ut the theory on a
lattice and perform the duality transformation in the Villain approxima-
tion, as already discussed. Then ) is given by i§~ with a as the lattice

a

2
spacing. In a continuum theory, a reasonable guess would be X ~ A,

where A is the ultraviolet cut=off needed to define the theory in any case.
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Although this is a good zeroth-order approximation, SU(2)-invariance
[or in general SU(N)] requires a more complicated, field-dependent A.
This can be handled by the standard Faddeev-Popov trick [ 341, whereby
"smeared out" field configurations are introduced instead of the
singular configurations we have dealt with so far, and the smearing
distance is related to the universal cut-off A . A third method of
regularization, somewhere between the lattice and continuum approaches,
is to define the theory on two-dimensional space considered as an array
of cells. The fields take an average value within each cell. In this
case A is proportional to the size of a cell. T@us by any of these
methods, we see that it is possible to define X in a precise manner.
The same problem will arise in the next séction for the case of general

N; our discussion here applies with obvious generalization.
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ITI, TOPOLOGICAL EXCITATIONS IN CPNWl
N 2
For N = 2 the explicit solution of the constraint 2: }za{ = 1
Os=1

leads to quite complicated expressions [16]. Fortunately, topological
singularities may be introduced without explicitly solving the
constraint. We may, therefore, quite easily generalize from the N = 2

case. Introducing the parametrization

N
z, =g p_o3 2: pi =1 {(3.1)
a=]1

we rewrite the action (1l.1) in the new variables:

- 2 2 2 22 (3.2)
5 = % J (30" + § J<3p6@> oG - ;Zé f%%%es%pe :

The topological singularities are now introduced via the following
constraints:
el = 2T 2 qp Ok - x) = 3,00, af 2. (3.3)
i

Since we did not, as vet, explicitly eliminate the gauge degree of
freedom las we did in the CP1 case (2.7)] , it is clear that not all
""charges", represented by the integers qz , are physical. In order to
get a feeling for the interaction between the singularities let us,
for the moment, freeze the "dielectric medium” by looking at configura-
tions with G 7%” 4 o, By doing this we have introduced some infinities
resulting from the ultraviolet divergent self-energies, but we shall not
worry about these. We are interested only in the mutual interactions, and

singular self-energies could be taken care of by the local behavior of

the medium. Thus we find the following effective action,
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X = SaB -4 . (3.4)

N

- L
Seff = X { aueaxa88u689 aB

The numerical matrix X is easily diagonalized: it has one zero

eigenvalue and N-1 eigenvalues equal to ome. let the eigenvectors be

_}
denoted by x(y) s ¥y =1, 00 Ny

-+ -+ 3

X X1y = 0;: X X(Y) = X(y)” y>1,
- -+ N 5
X5y * Xy = Sop * ' (3.5)

It is easy to see that

o . L -
X(l) = F{e o= 1, oo N, (3.6)
and that X is diagonalized by the matrix gldefined by
-+ > 0
. TR=1,RExr= 1 (3.7)
R (x(l)9 oo X(N)) , RR= 1, W XR . . .

The appearance of the zero eigenvalue is a result of gauge invariance.

Defining
8 =R, 0 (3.8)

one gets

N
> { <aue'y>"29 (3.9)
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1
and 8 = Z 6, has disappeared as it should. Topological singula-
1~ +/N 8 B

i

rvities which appear only in 8, are physically irrelevant in exactly

1
the same way as in the N = 2 case. Thus singular instantons have zero
action here also.

To understand better the interaction of the original charges
[only those we know how to quantize (3.3)], let us find the criterion
for neutrality. A system of charges will be defined to be neutral if
its total action is not infrared divergent. This means that for y 22

we must have usual neutrality in each Béeé(369)g By (3.8), (3.7), and

(3.3) this forces

x*2 q%=0, y=2, .. N

e M1 1
»-:2; q§= kx‘("l)=k?§¥_a. ' . (3.10)

Eq. (3.10) has of course many solutions, among which we find "N-pole"
configurations where k' = 1 and there is exactly one singularity per
component. Instantons and anti-instantons are of this latter type. The
existence of other configurations with infrared-finite action suggests
the possibility of having finite-action solutions to the Euclidean
equations of motion other than instantons or anti-instantons. Examples
of such solutions, obtained, for example, by embedding real 0(3)
instantons into CPNEI’9 are indeed known to exist, but they are unstable
[12, 43]. The pure instanton solutions are very simple when para-
metrized by the locations of the charges, a, e Using notations similar
to (2.2) we have for onme instanton,

inst :
z&ns () =c (s-a), a=1, ... N, (3.11)
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Of course, one can also trivially generalize (2.1), but our whole
point is that this is not very useful; it may even be misleading
since it is strongly tied to the dilute gas approach.

In passing, we would like to observe the amusing fact that
the quantization condition for the singularities in the ef{~=variables9
q;, may be expressed in the following way. Let A(Y), v = li.eoN=1,
be the subset of diagonal matrices of the standard representation
of the SU(N)Lie algebra, with the slightly unusual normalization,
@), (B) _ ;AR (3.12)

e

Tr A

Then the quantization condition reads

N (y-1) N
exp {2vi E: Ay q; = E_ . (3.13)

y=2

¥

¥
y = ( generates

N
In other words, the Lie algebra element 27y (-1 q
- Y:Z

a matrix in the center of the group, Z(N). Two sets of singularities
¥ . )
defined by Q; and Q2 will interact (3.9) with a coefficient proportional

to tr(Q;Qi)e

Exactly as in the case N = 2, the relevance of the positions of the

topological singularities is sustained by the form of the long-range
part of the instanton - anti-instanton interaction. To see this we shall

use the method of refs. [20,22], and the reader is referred there for

details. As a first step we rewrite the action in terms of unconstrained

and gauge-invariant variables. We use the inhomogeneous coordinates for

CPle introduced in ref. [13]:
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z
[
u = e

Y T o=1, o NI, 2 70 . (3.14)

N

The action of (1.1) is given by [13],

% 2 2
S= 3 fﬁ du o u, dx =:fz:d X
o8 af wo uB

*
s u Ug
aB” 2
1+ Z‘u ]
Y v

H oz ° (3915)
af 1+ 2 |u lz
v Y

The instanton configuration is given by

g = a(l)
)

1) _ .o (D) _ .
u,’o=c, ay ay " s 2, € C,0=1, ooy N=1, (3.16)
s = ay

and the anti-instanton by

s - a(22\*
(2) _ o . (2 ()
u, = 0 say T, a e €,
s - a
N
o = 19 e e g N“"l e (3e17)

The constants ¢, must be the same in order to allow smooth matching at
infinity. For convenience we choose the instanton to be located at s = 0.

With the assumption that there exists a distance R such that,

N
1 1 2
!aé )l << R << N !32% ai )‘5!82‘9

2)

fa<2) - aév | << |5yl s BsB'=1 5 coey Ny (3.18)

B

one can show [20, 22] that the interaction is given by
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- 2 L (2) _
&S § dXﬁ YR W (u@ Ca) + c. Co (3.19)
B oo u = u
lx' = R [¢3 o
Defining
‘béA) - aéA) —a® , ee1, w1, A=12, (3.20
we get

I T —— x
SZ N-1 2
2 1+ E: [ch
Y=1
N-1 N-1
2 1 2 1 2 1
2 !C@l bé ) bé ) ) ; £§% le,] bé )«
=1 1 + E: leyl = .
Y=1

N-1
;: ]caqlz bé%) + ¢, Co (3.21)
o=l

In order to compare with the naive prediction one gets from (3.4), we
must make sure that the "vacuun' is given by pi 2~%, a=1l, +o0 N&
This amounts to the demand CY =1y y=1, ... N1, Eq. (3.21) then

gives
N-1 N-1 N-1
2 1 1 2 1 1 2
8§ = % -5 Z b;)bé)_ﬁ(z bof )>(Z hbfa-i-
Sz a=1 a=1 o=l
+ c.c. ' (3.22)

In order to make contact with (3.9) we need the expression for the

electrostatic dipole-dipole interaction between two neutral systems in
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two dimensions. Let one of the systems generate a potential (complex

variables are used throughout)
. o N
¢(s =57 z: q, 1in ls - au! . E: q,=0 - (3.23)
o=1 =1

The other system has charges qa situated at ba s @ =1,,..N, §3qa = 0,

The interaction is

o 1
88 5 PP+ c.co, (3.24)
27s

where s is the distance between the systems, and the dipole moments

are given by
ﬁ q %
P = q.a_, P = qb_ .
a =1 oo b =1 oo

From Eqs. (3.3, 3.4, 3.7-3.9) one can obtaln expressions for Pa b
$
appropriate to the system of vortices representing an instanton and

anti-instanton. We thus find that the interaction is

8§ = zigiz ;gé EZARaYaéI) ggi Rsyaéz) + c.co . (3.25)
Since

X 1

éz Ry Rey = S5 = F (3.26)
we get

N
83 = _.gs% {:Z aél) aéz) - %(Z aé”)(Z aé2)>]+ c.co o (3.27)

Ne =1 a=1 B=1
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Tt is now trivial to show that this result completely agrees with
(3.22).

Therefore the classical interaction between an instanton and
an anti-instanton may be viewed as resulting from the vorticity
structure. Since the interaction between two instantons 1s zero we
know that, exactly as in CPI9 the medium may not always be neglected.
Nevertheless, since instanton-anti-instanton configurations have more
entropy it may ultimately turn out that the medium is not very important
for the most probable configurations.

We now go on to derive a field theory for the vortices introduced
by the constraints in (3.3). With these constraints incorporated the

partition function of the system is given by:

Z - [[ﬂpadpa] [5(2p§ - l)j[wdci] f[msa]
| J

o
2
o1 2 o) 2 a8 2 2
5fp ow e Bl 2g o
e 2
1 &3 ‘
‘;‘f%[%(%%'%) |
e . (3.28)

where we introduced the Lagrange multipliers Ba and denoted Buaa by

c® . The diagonalization of the quadratic form in Cﬁ is made easier

[
MV U

by rescaling
a ol o
c’ =pC . 3.29
Cum—a P " ( )

The effective action is now
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_ 2 10 B
S—§{(3upa) + aEqu Xag(p)cu +

, 1 ‘o
+ i }:[ BJ, +i ZI = 9,BC" (3.30)
o g/ "a
X (P) = SQB'Q@DBE(E“ Plyg - (3.31)

The constraint on Py makes P a projection operator properly normalized
; 2 . . o

(i.e. P° = P). The matrix X again has exactly one zero eigenvalue, all

the other eigenvalues being equal to one. The zero eigenvector Xoa is

given by
X =p a =1, ..M . (3.32)

Let R be the orthogonal matrix which diagonalizes X :

RR=71, ®R®m={ 1], ' (3.33)

Transforming variables again to

"o L Bo 18
c = Y RTCT, a=1, ...N (3.34)
u g=1 u

A1
and performing the integration over Cu(lt (which eliminates the "smooth

magnetic background”) we arrive at



o
exp s-ﬁi [.g (aupa)z + %-E f iz-(auga)Z
o
- i § f BQJQ} o | (3.35)
If we restrict . in a convenient manner, we arrive at the
s}

analogue of (2.27):

dp
Z - J[ —-79—(’1] [s (gozol)] [na | [6Z BT x

o
o]
1 2 1< (1 2
exp | =73 [Ef (®0,) +z§f"7<%%>:l+
g o,
+2 2] cos 2% B (3.36)
a gz ol °© °

One can -also introduce a 6O-parameter in the same manner as was

done for CPle The action is changed by the addition of 656 s

- };9_ 2 = é.;e_ 2 wl
88y = 5o [q(x)d x == ;Ze[d %9, 0 RoaCl s (3.37)
9

>
where q(x) is the topological charge denslty, and R and Cs have
been defined in (3.33) and (3.34). The extra term 656 generates the

following change in (3.35):

2 .
g8 2
auBa — 8]4 (Ba + 2“’ pa) ° (3038)

Eq. (3.36) now becomes (after a shift in B&)9
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IV. TOPOLOGICAL EXCITATIONS AND THE 1/N EXPANSION.

There are two arguments that support the belief that topo-
logical excitations are unimportant in the CI"'NWl models. The first
argument runs as follows. Cluster decomposition is violated by a
pure instanton (or anti-instanton) gas, and therefore one must have
a mixed gas with fluctuating "dielectric medium", So far, onme has been
able to mix up instantons and anti-instantons only in the dilute gas
approximation. However, Fateev, Frolov,and Schwarz [13, 23], and Berg
and Luscher [12] have performed the lowest order quantum expansion
around exact solutions to the classical equations and have shown
that the instanton quarks (merons) are liberated from their bound
state, the instanton. As a result, a quark (meron) plasma is formed,
which is.very different from the dilute gas mentioned above. As wé
shall see, this section also suppoits the idea of a quark plasma.

It is necessary, however, to go beyond an expansion around exact
classical solutions in order to avoid violating cluster decomposition.
We shall investigate this question in the next section and preseﬁt
several models of an acceptable quark plasma.

In this séctions we will confront the second argument, which
relies on the large N limit. If the large N limit is a good approxima-

tion for all N = 2, as it seems to be, and if the contribution of an

instanton is suppressed by a barrier penetration factor of the form

2

exp (T 522§Ei> = exp (- comst. N) , (4.1)
g

then instantons disappear as N * o and they cannot be important for
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finite N [4,32,33] . The exponent that appears in the barrier
penetration factor is the classical action of the instanton, which
goes like ‘35 & N, This argument may be valid for a dilute instanton
gas, in whiih the N guarks that make up one instanton are tightly bound.
If, however, these quarks are liberated to form a plasma, it is then
plausible that the expression analogous to (4.1) per each quark will
have an exponent reduced by a factor of N, so their contribution will -
not disappear in the large N limit. Indeed, in what follows, we shall
argue in favor of a quark plasma as opposed to a dilute instanton gas.
We shall also show that iﬁ the plasma phase the model confines charge
and that the confinement is entirely due to the plasma of topological

excitations (quarks), which do not disappear in the large N limit.

We start with the criterion for confinement [11],

z E L o

This criterion follows by notiecing that there must be a non-vanishing
derivative of the expectation value of the topological demsity in
order for the photon propagator (in general the propagator of the
topological gauge field) to have a pole at pz = (O, This criterion is
essentially equivalent to that for the Wilsonm loop [l1]. The expression
for Sf; is given by Eq. (3.39), but prio% to taking the large N-limit

it is necessary to scale several of the variables there as follows:
2 - - 2{x 8
gN=x, 6= N, p =gp , B =g <§ + §;>a (4.3)

It is also convenient to exponentiate the delta function constraints

of (3.39) by means of two Lagrange multipliers u and v. As a result,
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we have

dp
% - [ [dul [av] jn —> [Hdgo% exp“ a*x gE- (BL1 o )2

6 5, o
1 = 2 = - -2
-l - -
Y 5 (BUB@) + A cos [ana 6 (« o, 1l
p(!
=+=:i.1.1'5Z-i-i'v'}'g]—1".—1\1?;-J&2x1.1]e (4.4)
s ] [+ 3 (4

" This expression can be rewritten as

g@ = [[du] [dv]l exp { N [log I(u,v,8) - i{-fdzx u}} , (4.5a)

where,

{
| a®x {— o, 52 - a;_—%w B)

+ X cos [27B - B(x Bzml)] +iu52 +iv§]}. {(4.5b)

The large N limit is now given by the standard saddle point method,

that is, the integrand in (4.5) becomes as N > oo
e N [logI (u, v °§)=;i~ zxu} (4.6a)
xp g o Voo p ot e .
where the saddle points U, and v, are determined by the equations

oo 2 mIS el = On (éoéb)
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Egqs. (4.5) and (4.6a) can be combined into the following expression

for the left-hand side of (4.2):

-1 %E 2
. I A i § R |
0 5 X =3 (V og I u°> . 4.7)
de de
d 3 %%
where V = volume (area) of space, and — = — + —— P +
s 28 38 Yo
v 5
e 3o~ » since the saddle points implicitly depend on 6. A
28 o

disconnected contribution to (4.7) vanishes since 32; is an even
function of 6 [see (4.4)] . For the sake of definiteness, we exhibit

the first term in (4.7),

2

L log I = - JL=‘EdEd§ a2x(<5% - 1Y% cos(218)

7 es? 8=0 v
2 =2 (BUE)Z = -2
exp (d x | = (Bup) - Y ) + A cos(27B) + iuop
p
, = — -2 2 =
+ 1voB ZE A {(( ke -1} ecos[27B (OO . (4.8)

So we conclude that in the large N limit the topological excita-
tions do not go away; the term A cos(27B) which sums up these
excitations survives in (4.5b). Indeed, it is easy to see that the
topological charge density (and so the Wilson loop) 1s proportional
to A [see (4.8)). Therefore, if topological excitations are projected
out of the functional integral by setting A = 0, the Wilson loop would
vanish and there would be no ©8-dependence. It is natural to suppose

that A determines the mass scale of the spectrum of the model. In that
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case, the N-dependence given by (4.7) is in agreement with the
result of the direct %'calculation {10,111 .

It is still not clear that there is a non-vanishing
p-dependence since matrix elements of the type given by (4.8) could
vanish. Barring an unlikely accidental cancellation, in two
dimensions this can happen because of a long-range correlation and
the resulting infrared singularity in correlation functions. In

fact, as has been shown by Coleman [39], in two dimensions a matrix

element of the form
{ exp [Zﬁicl¢(0)]) (4.9a)

vanishes if the correlation function of ¢ is that of a free massless

field:
{60 (x) = <, log (xz) . (4.9D)

Such a long-range contribution in the spectrum of the field 52
would imply the existence of a massless particle. Since it is known
that a mass term propertional to pz is generated, we instead focus
our attention on the field B. One then has to distinguish between
two possible phases of the gas formed out of topological excitations
(quarks). In the first phase, N quarks are bound together in a neutral
system and these clusters make up a dilute gas. For N = 2, this is
the well-known [36] dipole phase, where oppositely charged quarks

pair up. There is clearly long-range correlation in this phase due
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to the Coulomb force, and the matrix element of Eq. (4.8) vanishes

since

{cos (21B) = 0, ) (4.10)

__A similar argument applies to the other terms in Eq. (4.7), and we _
get no 6O-dependence and no charge confinement in this phase.

On the other hand, if the quark gas is in & plasma phase, the
long-range force is screened and there is no singularity of the form
(4.9b) in the matrix elements; the expectation value of cos (27B)
does not vanish and consequently there is confinement. Since the
topological charge density has alrveady been calculated [10] and
found to be non-zero in the large N limit, we can reverse our argument
and consider it as very strong evidence in favor of the plasma phase

for the quarks.

To sum up, we conclude that topological excitations suivive in
the large N limit, they are entirely responsible for confinement,
and they form a gas in its plasma phase. Finally, we stress that our
purpose in this section was not to do explicit large N calculations,
which can be done much more easily without first carrying out the
duality transformation. Rather, we exploited the duality transforma-
tion and the well-known large N results to learn about topological

excitations in the large N limit.
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V.TWO COMPONENT PLASMA MODEL

In the previous sections we have argued that topological
excitations or vortices are important and must be taken into account
in the functional integral of the CPNﬂl models. An advantage of the
field theories derived from the dual transformations is tﬁat they
allowed us to assess the importance of the vortices without knowing
too much about the dielectric medium. However, we do know that the
statistically important configurations, which satisfy cluster
decomposition, are those with a medium which fluctuates between the
charges. We may describe this by allocating a spin variable to each
vortex (meron), and then having the spins distributed essentially
randomly., But now we have to know something about the spin-spin
interaction in order to study the statistical mechanics of this
plasma of charges (vortices) which carry a spin label. In particular,
we are interested in tﬁé possible phases of this plasma. Since, so
far, we have been unable to isolate the spin-spin interaction directly
from the field theory, we present in this section a simplified ﬁodel
(somewhat along the lines of ref.[22]) of the vortex plasma, which
will provide some guidance about the phases. For simplicity we
discuss only the CPl model.

We wish to consider a two~dimensional gas of particles of two
types, q and p. Each type of particle carries a positive or negative
charge which interacts via a Coulomb potential. In addition, there is
a repulsive short-range Yukawa interaction between p and g-type
particles. Hence, the model describes the gas of instanton quarks or
vortices — type q particles, and anti~-instanton quarks .. type p

particles, with their known Coulomb interactions. We should note that
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these Coulomb interactions have different sources. The Coulomb
interaction between instanton (or anti-instanton) quarks by
themselves is a quantum effect [12, 23] : the instanton-—anti-
instanton Coulomb (dipolar) interaction (and the absence of an
instanton-instanton interaction) is a classical result [20,221.
In our model we shall take this distinction into account only by
assigning a different strength for the p-q interaction than for
the q-q (p-p) interaction. In addition to the different strength
for the p-q Coulomb interaction (which partially takes into account
the spin-spin interactions), we have also approximated the spin-spin
interactions by the Yukawa repulsion (which is techﬁically convenient)
only between an instanton quark and an anti-instanton quark. This can
be justified on the grounds that it overcomes the double-counting
problem [ 441 .

So we are led to consider the following grand partition function

ng oo oo %m >%? n 0 o u
= —r 9 .
DD Jv T da, jv T db, [v I deg Jv Ndd;,

w0 n=0 (@) (an)?

exp‘ B qz [g;% (1n laiﬂajl + 1n Ibi“bjl )
-2 E} 1n tai»bj!] +
+ 8p” [1;1 (inle,~c, |+ 1nfd-a,] ) -

-2 Y 1n Ick~dll] +
k,l

Bepq 2: (In a;-¢, + 1n bimdk -
i,k



- bl =
= 1n Iai - dkl = 1in [bi - ckf)} X

exp {-BY zk [Ko(m by - ck{) + Ko(mlaiudk[) +
i,

+ K (mlb-c, ) + Ko(mlbiadk!)] . (5.1)

In (5.1) the temperature is é', and we expect that in genmeral it will
be different from that found for the pure instanton-quark plasma
[12,23] since there are now both kinds of quarks present with inter-
actions between them. The fugacity, A, is related to the chemical poten-
tial u by A =e”, and it has the dimensions of V"), where V is the
volume (area) of integration in r(il)e The charge of the instanton
quarks is g, and for anti-instanton quarks it is p. Eventually we
shall set p % q and Xp = Aq in agreement w%;h the discrete symmetry
w* é* already mentioned in Sec. II, but for bookkeeping purposes it
is convenient to keep them different for a while. We have imposed
neutrality within each component of the Coulomb gas as usual in two
dimensions [45]. The strength of the Coulomb interaction between p— and
g-type particles is measured by €pq. The Yukawa potential in two
dimensions is given by Ko(mlrie-rj{)3 which is the modified Bessel
function of zeroth order, and v in (5.1) measures its strength, while
m determines the range.

In order to study this system we shall use the well-known Gaussian
representation [22, 44-47] to express it as a field theory. To this end

we rewrite (5.1) as follows:



Z_ s oy Mot 3
= —~ ~ e2 Yz rrd e e e et e o
m=0 n=0 (@!)" (al) q,=*q q =tq p;=p
%? 2m
>
p=*p

2n Zn
exp {B]| D a3, lnlxinxj[ts E: q% 1n(0) +
i

i,]
2m 2m
+ g PPy 10 |yp-vy | - ; pf 1n(0) +

$

n,m
te 3 apy In fxydl -
ik

2

2n 2m
my;Z ; K (@ %=y, ) . (5.2)
In (5.2) we have explicitly subtracted the infinite Coulomb self-
energy terms. Without subtracting these self-energy terms, the

exponential in (5.2) can be expressed as a field theoretic functiomal

integral,

5 [0 Dx. Doe Do exo

—%U(m)z a%x +
+ f(vxg)z ax o+ [(vm)z ax o+ j(’vq;_)z dzx] -
3

ri V1-E { oS d%x + 4 \/2yf¢+p+d2x +

+ Jz?h_p“ dzle } , (5.3)
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with the densities

m
2
oS = Vo |3 a60G - %) £ Zp st G- ‘Tyfk)}

20 m
o, = V2u |T 2 (%-%) % = §* G - Sr’k{] , (5.4)

and.é@:is the functional integral with only terms quadratic in the

fields in the exponent.

Since non-neutral plasmas do not contribute to the functional
integral, because they are suppressed by infrared divergence, we can
relax the neutrality conditions and then the result of doing the

summations in (5.2) is

Z . 5 Jﬁx+ On. LDy L.

exp

-4 U(vx,,>2 + f(vx_)z + [(vmz +ulel
+-{(VQ#)2 + m2¢i] + 82 szx cosEVZwS 1+-%- qx+(xﬂ

cos[\,lz-n-s vl »% q x_ (x)] exp [1v2n8 \/Z:lcb*‘(x)]

cosh [JZWS J@;ﬂ o_ (x)] % . (5.5)

where we have set p = ¢, and Aq = Ap = A, So the grand partition
function of our model system has been expressed as a functional
integral of four scalar fields. With this representation one can more

easily study the possible ground states of the system, and so discover
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in which phases the two-component plasma can be. We should remark
that not all the fields in (5.5) are to be integrated along the
real axis, otherwise the integral diverges (and, as we shall see,
all the fields being real is unphysical anyway). One can check that
a contour exists where the functional integral makes sense at least
formally.

The ground states of the field theory described by (5.5) can

be found by searching for extrema of the potential
mz 2 2
? = 5 (¢% + ¢°) = 8rcos (ay ) cos (b x_)

‘exp (dic¢, ) cosh (c¢_),

with

o
i
&3
=3
>
Pt
+
[yl
N

O
i
[a]
Z}
w
™o
3
®

(5.6)

The variations with respect to x, and x_give y,= 0, nm as the extrema.
Using this, the result of variations with respect to ¢, and ¢_ may be

written as the following coupled equations for the extrema of ﬁ/z

¢y = % 18X ¢%= eic¢+ cosh (c¢_)s : (5.7a)
®
o_ =+t 8X é%’ eic¢+ sinh (cd_). (5.7b)
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Define

(4
]

c(igy + 0_) (5.8a)

L=
f

c(idy = ¢) - (5.8b)

Then (5.7) can be rewritten as

0 = * k P (5.9a)
0, =tk 2 (5.9b)
with
2
k= 825 >0 (5.9¢)
m

We shall not analyze in complete gemerality the coupled system of
transcendental equations (5.9), nevertheless our study will be
sufficient to identify what we believe to be physically relevant
solutions.

To find out what kinds of solutions we should consider, we look

at the average number of particles, ﬁg and Eé . N is as usual calcu=-

lated by

W = x%— 1 Z. (5.10)

In order to determine Nq and ﬁé individually, we need §§ in terms of Xq

and AP . The A and ¢-dependent part of Z tor Aq #:AP is
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2q %p
exp (A J e +x_Je . (5.11)
q P .

Hence

— éq ,

Nq = A(fe ™ (5.12a)

— @P

Np = A{fe ™) (5.12b)
where we have again set kq = AP = A, If @p' is a purely imaginary

solution to (5.9), we find N is not realsrwhgch is4hardlyrw
respectable. The same type of objection would appear to apply to
complex sclutions. Hence we consider only purely real solutions to
(5.9). The analysis is given in the appendix; the results are as

follows:
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0<k<e, 1 solution = s <0
o =
q

0<k < eals 2 solutions: S1s Sy > 0
g =

k = esl, 1 solution: s >0

-1

k > e ~, no solution

0 <k <e, no solution

k >e , 2 solutions: d; #:dz

o F0 a) ¢ =4 o =d

+ 0 <k < ¢ no solution

(5.13)

So we have found two general kinds of real solutions, @q = ¢
and @q 7+ @p 5 ﬁhich are classical, constant fields at which the
potential v (5.6) of our system of instanton and anti-instanton

quarks is at an extremum, which in general will be a saddle point.
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One can usually deform the contour of integration of the fields
in such a way that one moves through the saddle in the optimum
direction. Hence these solutions represent true ground states
about which one can calculate quantum fluctuatiomns.

To see what these solutions imply about the physics of our
system, we again look at the average number of particles,‘ﬁé and
§§ (5.12) . ©Not surprisingly, for @q = ¢ =g,

P

¥ =N = Ave® . (5.14)

So this solution is the symmetric ground state with on the average
equal numbers of both kinds of particles.

For ¢ #* & , we have
q P

_ 4 dy
Nq = AVe ~ and NP = AVe &, (5.15)

or d1 © dz . Thus this is the asymmetric ground state. In the limit
that say dl = ( which implies dz = - o and k = oo |, there are only
instanton quarks in this ground state. This is an extreme condition
classically, namely k =oo implies v = o or m = 0, which we do not
believe is realistic.

Thus two pictures of the instanton-anti-instanton quark plasma
emerge. In one ﬁype of plasma phase, there is a symmetric mixture of
both kinds of particles throughout space; The other type of phase is
a droplet picture in which in séme regions there are more instanton
quarks, while in other regions there are more anti-instanton quarks.
In this type of plasma phase, there may also be regions in which a

symmetric mixture exists, since we found all three solutions exist
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when the asymmetric ones do, However, the asymmetric and symmetric
solutions in general will not have the same energy. So one oT the other

will be the true ground state. The droplet phase‘can only exist for

k= 32 Aw E%— > e . Unfortunately, we do not have independent
m

information about these parameters, so the question of which of these
pictures is correct cannot be decided.

It should be noted that there is also the well~-known Coulomb
dipole~plasma tramsition in our system, but from arguments given in

section IV, we believe that the system is in the plasma phase.
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VI. SUMMARY AND‘DISCUSSION

We have identified a class of Euclidean configurations which
appear to be dominant in the functional integral of the CPle
models. Unlike the very restrictive set of exact classical solutions,
they have sufficient entropy to be statistically important, and
they also satisfy cluster decomposition. This class of topological
excitations, which we have defined in a point-like manner, are
closely related to the merons of the 0(3) model, and they may be
viewed as constituents of instantons. However, they are defined
independently of instantons and exist even in theories which do not
possess stable classical instantons (e.g. the 0(N) non-linear sigma
models). We have also discussed for CP1 two different possibilities
for a concrete statistical mechanical plasma of excitations. This
rreatment can be generalized to arbitrary N.

We have been able to check whether these topological excitations
are trﬁly important since the CPNGI models have been solved in the
-% expansion. We have shown not only that these configurations survive
as N * e _ but that in the plasma phase they are responsible for the
effects en;ountered within the §=expansion<¥ confinement, @-dependence,
and dynamical mass generation. Since these objects carry fractional
topological charge, our work here answers affirmatively the question
whether field configurations with fractional topological charge
contribute to the functional integral.

The (31?‘Nm1 models are interesting because they seem to provide a
laboratory for techniques applicable, at least in principle, to QCD.

Given the success of the quasi-classical approach here; we are

encouraged that similar configurations may be important for the
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long~distance features of QCD. Of course, in C}?Nﬂ'1 we had the

happy situation that the %-expansion could be effectively employed.
Since this does not yet seem to be true for QCD, it is all the more
important that an alternative method, the quasi-classical, can be
tractable and effective. Nevertheless, if we take seriously the
situation of CEN“I as a prototype for that of QCD, then we will want
to satisfy the criterion that field configurations, which we hope to
be dominant for QM, survive in the large N (color now) limit.

The idea of viewing QCD instantons as built out of elementary
point-like constituents has been presented in ref. [ 48] . There this
idea was used for the treatment of quantum fluctuations around exact
multi-instanton configurations. Instead, we hope to generalize the
approach we have taken in CPNQI, where point-like topological
excitations are not directly tied to exact classical solutions. Of
course, it may also turn out that the system of interacting point-liike
excitations, even though it can survive as N> * , is not the direct
agent for confinement. It may assume only the role of providing the
necessary background for other, no longer point-like, excitationms,

like the Z(N) fluxon surfaces [49]. In any case we feel that the

extension of our work to QCD would prove valuable.
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APPENDIX

We consider purely real solutions to (5.9). If we multiply

(5.9a) by (5.9b) we obtain

sed =0 P, (A.1)

q P
and
b) » Fo_ .
( q
Note that for real &, one cannot have @q = =®p since e* # - ¥ ,
Case (a) @q = @p . We wish to determine for what values of the

parameter k a solution can exist to the equation

(A.2)

b

For the minus sign, it is easily seen that only one solution exists

for any k, and that x is negative.

For the plus sign, it is also easy to show that for k.>'e°1, no

solution exists; for k = egl, the only solution is x = 1; and for

k< ewl, two solutions exist and they are positive.

Case (b) @q #* @p . For this to be true, the function in (A.1),

xexS must have the same value for two different values of x. This
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can only happen for negative x, so both @q and @p must be negative.

By substituting (5.9b) in (5.9a) we see that @q nust satisfy,
= - ke . : (A.3)

and only the minus sign is allowed since both functions must be

=ke® -k
negative. Let f(x) = -ke . As x> =9, f> -k, Also £(0) = -ke "~ .
Hence, there is always one negative solution for any k > 0. However,
since (A.3) must be satisfied for any solution, and we already know
that there exists a solution for the minus sign case, namely
@q = @p = g5 and s <0 for all k, the question is whether at least two

other solutions exist for some k, namely @q = dl . @p = d2 , and

o =4

@q = d2 > 0 1

for d, ¢=d2 and both negative.

To answer this question, consider (A.3) as the function

F=x+ ke“y {(A.4)
with

(A.5)

e
0
w
)
»
A%
o

It is clear that
F=0=2x<0=y<k,. (A.6)

Furthermore, since F(-9) < 0 and F(0) > 0, the number of zeros of F
is odd. If we assume that F has two additional solutions besides the
known one, then F' has at least two different zeros, and therefore

F" has a zero. Let
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F" (x*) = 0, (A.7a)
then

F' (x*) <0, (A.7b)
Since

Fl= 1 - kyemy s (A.8)

F" = kyemy (y - 1) , (A.9)
we have

F'" = 0= y* = 1= x% = =ln k. (A.10)
But then

k

F'o(xk) = 1 -2<0, (A.11)

the inequality coming from (A.7). Hence we conclude that for k <e ,
since this does not satisfy (4.11), there is only one zero for F.
Note that from (A.9) F” has only one zéro9 S0 thé choice is only
between one or three solutions.

For k = e , it is easy to check that F has a threefold zero at
gk = =1 (y* = 1) eiindeeed FeTF'=F"=0, and F"" = 1 ,

In the case k > e, we give a perturbative anaiysis around
k = e (1 +£) which shows that three different solutions exist at
least for small €. Explicit calculation has convinced us that this
is actvally true for all k > e .

We want to show that F defined in (A.4) and (A.5) has tﬁree
zeros for k = e(l + €), € € 1. Note that for k¥ = e, y* = 1, We
will use expansions of F, F', and F" to first order in & to make our

argument. So we need
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Lab=e? -y, (A.12)
For y* = 1

F (y*) =0 (A.13)
Then

P eyeV (y-2) 5 B (y%) = ~‘é , (8.14)

Fleye (4y - y2 ~2) 3 B (y%) =-% . (A.15)

]

So we obtain the following expansions for k¥ = e, y* = 1, and x* = -1:

R

F(x* k) =~ F(k*) + F(k#) (k - k*) + 0(62)

#

0 + ce F(y*) + O(EZ)

]

0+ 0(e?) , . (A.16)
F(xk,k) =0 + ge F'(y*) + O(e?)
2
=g + 0") , (A.17)
B (xk k) M0 + ce FU(g*) + O (e2)
2
=¢c+ 0(7) . (A.18)

Hence for k = e(l +€), two of the zeros of F have moved to different
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points from the triple zero point x* = - 1 for k* = e, since now ¥

changes sign at x* as follows (all x < 0):
xl=§+5>x>x23§?e6,
F(xy) <0, F(x,) >0 . (4.19)
So at least for k which is e bigger than e, there are exactly three

solutions to (5.9). There are only three, since as noted from (A.9) F"

is zero only once.
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