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SPONTANEOUS AND STIMULATED RAMAN STUDIES OF 
VIBRATIONAL DEPHASING IN CONDENSED PHASES 

Paul Arthur Cornelius 

ABSTRACT 

Vibrational dephasing in condensed phases is studied here from both 

a theoretical and experimental standpoint. A theory is presented which 

describes the dynamics of motional or exchange processes in weakly 

perturbed systems. This general formalism, which has been previously 

used to describe motional narrowing in magnetic resonance, is here 

applied to vibrational spectroscopy. The model treats the case of a 

high frequency vibration anharmonically coupled to a low-frequency 

vibration. Intermolecular exchange of low frequency vibrational quanta 

results in a temperature dependent broadening and frequency shift of the 

high frequency vibration. Analysis of experimental data by this model 

yields both the exchange rates and the anharmonic couplings. 

The Raman spectra of 1,2,4,5 - tetramethyl benzene (h1,-durene) and 

the deuterated analog (d.,-durene) exhibit the predicted broadenings and 

frequency shifts. The C-H and C-D stretch spectra of these molecules 

have been taken as a function of temperature and analyzed using the 

exchange model. This analysis, combined with other spectral evidence, 

has confirmed the applicability of the model and resulted in a detailed 

understanding of the dephasing mechanisms which operate in this molecule. 

Evidence has been obtained pertaining both to the physical origins of 

the anharmonic couplings, and to the nature of the energy transfer in 

the low-fri4UMicy modes. 
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CHAPTER I 

INTRODUCTION 

One of the most fundamental processes in nature is the transfer 

and redistribution of energy. Everyday life provides countless examples 

of this, and manifestations of energy transfer on the molecular level 

present an equally challenging diversity, involving all molecular 

degrees of freedom and ambient radiation fields. In quantum systems, 

energy transfer is typically studied by applying a perturbation and 

observing the subsequent relaxation of the system back to equilibrium. 

The characteristic time constant for the relaxation, T.., reveals infor

mation about the microscopic dynamics which bring about the relaxation. 

In addition to energy transfer, there is another process which is 

of equal importance, namely, the transfer of quantum-mechanical phase 

information. Phase transfer is illustrated most clearly in terms of an 

ensemble of two-level systems, in which each two-level system is repre

sented as a harmonic oscillator. A phase-transfer event is one in which 

the phase of a particular oscillator is changed, but its amplitude is 

not affected. When such an ensemble is prepared in an initial state in 

which all of the oscillators are in phase, the statistical occurrence of 

phase-transfer events at individual sites gradually brings about random

ization of the initially veil-defined state, i.e., the ensemble "dephases." 

The combined effects of relaxation and dephasing can be described 

in terms of a time-dependent autocorrelation function, which is usually 

an exponentially decaying function with a time constant defined as T„. 

In a spectroscopic experiment, the observed lineshape is the Fourier 

transform of the autocorrelation function, and therefore contains contri

butions from both dephasing and relaxation processes. The detection and 
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explanation of dephasing and relaxation processes is naturally an 

important area of research, not merely because of its intrinsic signi

ficance, but because the study of energy dynamics necessarily involves 

the study of those factors which influence it: molecular collisions, 

molecular structure, the periodicity of crystal lattices, interactions 

between neighboring molecules in a liquid, and so on. 

In a gas, the molecules spend much of their time far apart from one 

another. It is generally useful to consider that in the gas phase, 

energy and phase transfer can take place only during those isolated 

instants when two (or more) molecules collide. The relevant time scale 

is then in some way related to the collision rate. In solids and liquids, 

however, a different situation exists. Every molecule is continually 

in close contact with its environment, and the motions of that environ

ment may exert a significant influence on any process that is being 

studied. It is not clear a priori to what extent the concept of a dis

crete, "gaslike" interaction event may be retained when modelling such 

a system, nor what concepts will be useful for an elementary description 

of energy and phase transfer processes in condensed phases. This thesis 

describes an approach to one part of this question - vibrational de-

phasing in solids and liquids. This study has involved the development 

of a theoretical model, based on intermolecular energy exchange, and the 

carrying out of two types of experiments: spontaneous Raman spectros

copy and picosecond laser scattering experiments. 

Since vibrational dephasing times in condensed phases are typically 

on the order of 1-10 picoseconds, the number of experimental techniques 

available is limited. Recent advances in laser technology have made 

possible the generation of coherent light pulses that are a few pico

seconds in length, and this has opened the possibility of studying 
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vibrational dephasing and relaxation directly, in the time domain. The 

experimental application of these pulses, which was pioneered by the 
1-9 

Kaiser group in Munich and subsequently employed in this laboratory, 

allows the determination of both T. and T.. Each experiment 

occurs in two steps: an excitation of some vibrational mode, and the 

subsequent probing of the excited ensemble. Although it is possible to 

perform the excitation step using direct infrared absorption, the most 

common technique, and the one used exclusively in this laboratory, is 

stimulated Raman scattering. The probing can be done in one of two ways, 

either coherently in order to measure T_, or incoherently in order to 

measure T-. 

An experiment consists of measuring the scattered signal generated 

in the probe process, while varying the time of arrival of the probe 

pulse relative to the exciting pulse. A plot of the probe scattering as 

a function of this time delay generates a curve which is a convolution 

of the probe pulse shape with the vibrational correlation function. In 

the case of coherent probe scattering, an important feature of the 

experiment is the phase-matching condition. This allows the measurement 

of the homogeneous dephasing time, T-*, removing the effects of any in-

homogeneous distribution of frequencies which may be present. Comparing 

the dephasing time measured in this way with the linewidth of the cor

responding spontaneous Raman spectrum determines the contribution of 

inhomogeneities to the Raman lineshape. 

From the theoretical standpoint, these picosecond experiments depend 

critically on an understanding of the transient stimulated Raman excita

tion process, and also on the phase-matching conditions which govern the 

probing process. Computer calculations, based on the theory of transient 



stimulated Raman scattering, ' * have been used to deconvolute the 

probe pulse shape from the experimental curves. In this way, correla

tion functions representing T- times of <1 psec can be measured with 

reasonable accuracy. 

In the process of performing these experiments, it was found that 

the stimulated Raman spectra of some organic liquids are strongly 

influenced by self-phase modulation. A theory has been developed to 

explain these spectra, and has shown that phase-modulation is parti

cularly important for molecules which exhibit stimulated gain in more 

than one mode. A particularly clear example of this has been found in 

the transient stimulated Raman spectrum of methanol, in which gain 
14 appears in both the symmetric and asymmetric C-H stretch modes. 

Spontaneous Raman spectroscopy also affords a means of obtaining 

vibrational autocorrelation functions. In comparison with coherent-

probing picosecond techniques, it offers both advantages and disadvan

tages. Its chief drawback is the possible presence of inhomogeneous 

broadening, since it provides no means of removing or accounting for 

this contribution to the lineshape. On the other hand, while the pico

second experiments are limited in their application to those modes which 

have stimulated Raman gain, any Raman-active transition can be studied 

by the spontaneous technique. The ease of obtaining a Raman spectrum 

makes possible extensive temperature dependent studies over large regions 

of the spectrum, which can lead to important generalizations concerning 

the dynamics of the systems studied. 

A large body of theoretical work currently exists which bears on the 

problem of interpreting spectral llneshapes. The approaches most closely 
T- ,. , * w n- .. 6,7,10,12,15-29,39-59 .. 

related to the theory presented in this thesis all 
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involve the use of a stochastic description of the physical processes 
which influence the lineshape. Whereas much of this work has addressed 
questions specifically related to the problem of vibrational dynamics in 
condensed phases, other treatments of energy transfer and dephasing 

27-28,39-41,52-54,56 1 , , - , t ,. processes are also useful for understanding vibra
tional spectra. In particular, theories originally developed for 

27.28,39,40 J t J J k , t . _ 41 magnetic resonance and extended to electronic spectroscopy 
have served as a g-iide for the theory to be discussed here. 

The application of some of these ideas to the interpretation of 
the temperature dependence of spontaneous Raman spectra has been the 
subject of extensive theoretical study in this laboratory ' ' ' 
and has generated considerable interest elsewhere. We have developed 
a model to describe the dephasing of high frequency (3000 cm ) 
Raman transitions, which involves the presence of energy exchange in 
low-frequency (100-500 cm ) modes. These low frequency modes are an-
harmonically coupled to the high frequency notions, and both the coupling 
mechanisms and the exchange rates can be understood using this model. 
The theory has been successfully applied to the C-H stretch Raman bands 
in 1,2,4,5-tetramethyl benzene (durene), and to the C-D stretch 

25 bands in the deuterated form of this molecule. Several other models 
18—22 

have been advanced which account for the line broadening and fre
quency shift with increasing temperature that is observed in hj.-durene, 
but the more recent analysis of the d.,-durene spectrum, combined with 
infrared data on both molecules, tends to support the validity of the 
exchange analysis. 

The usefulness and attractiveness of exchange theory stem from its 
readily visualized physical basis. The parameters which result from an 
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exchange analysis of experimental data have a clearly defined physical 

meaning. These parameters are interesting in themselves, but more far-

reaching conclusions ' can be drawn by studying several modes in 

the same molecule, and interpreting the results in terms of a general 
25 

picture of energy transfer and dephasing. Our studies on durene 

recently demonstrated that exchange analysis can be combined with other 

kinds of spectral evidence to build up a quite detailed picture of the 

vibrational dynamics. 

The organization of this thesis is as follows: in Chapter II, 

the exchange theory is derived, and Chapter III presents the results of 

our studies on the durene system. Chapter IV describes the methods of 

picosecond spectroscopy, and Chapter V presents the analysis of the 

effect of self-phase modulation on stimulated Raman spectra. In 

Chapter VI, the important conclusions of the work are summarized. 
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CHAPTER II 

EXCHANGE THEORY 

This chapter presents a detailed discussion of the exchange model 
developed for the interpretation of temperature-dependent Raman spec-

17 21 troscopy. Several different derivations of the theory are possible, ' ' 
' each with some advantages of presentation over the others. For 

historical reasons, and for clarity in the discussion of several 
important assumptions, the derivation based on the NMR exchange theory 

27 28 
of Anderson will be presented here. ' An important alternative deri
vation, based on reservoir theory, is discussed in detail in References 
12 and 17. It should be mentioned that these approaches differ in formal 
procedures only; all incorporate the same physical assumptions and approxi
mations, and the final equations describing the Raman lineshape are the 
same in each case. 

1. General Model of Anderson 
He will begin by considering an isolated two-level system, whose 

Hamiltonian will be denoted X , and whose energy splitting is £<»_. 
When this system is placed 'into matter and is allowed to interact with 
neighboring molecules, the energy levels will shift according to the 
effect of a "perturbation" Hamiltonian, X . As the environment of the 
two-level system fluctuates, the strength of the interactions comprising 
X will vary in time. These motions of the environment can be represen
ted by the "motional" Hamiltonian, X . The full Hamiltonian now consists 

of three parts (see Fig. 1); 

X = Xn + X + X (1) 
0 m p 
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Figure 1. An illustration of the three-part Hamiltonian described in 
the text. JC is the Hamiltc-«ian of the isolated two-level o 
system shown in (a). K represents the perturbation caused 
by placing the two-level system into condensed matter and 
allowing it to interact with its surroundings. This inter
action causes a frequency shift Aco but does not broaden the 
line (b). The motional Hamiltonian K causes the interaction 

m 
between the molecule and its surroundings to depend on time. 
The frequency change Aw(t) is therefore time-dependent, and 
the resulting spectrum broadens. The center frequency of 
the spectral line will be u + Au , where Au represents 

o avg' avg r 

an average of Au(t). 
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where X describes the initial splitting, ft alters that splitting, and 

ft modifies the effect of ft as a function of time, m p 
The Hamiltonian (1) is a general description of a molecule in a 

condensed phase, where ft- + ft determines the spectrum of the molecule 

in its static environment, and X+ ft + X represents the spectrum when 

the motions of that environment are included. From the Heisenberg 

equation of motion for an operator A: 

-ih |f =[K, A] (2) 

we can represent the commutation conditions which must be applied to 

the terms of (1) in order to describe the desired physical situation: 

[X, ftJ t o (3a) 
m p 

[ft ft ] = 0 (3b) 
m u 

[ftQ, ftp] # 0 (3c) 

Equation (3a) means that the motions of the environment cause the per
turbation ft to be time-dependent, whereas (3b) indicates that those 

P 

motions do not directly affect the zero-order levels. 

In order to calculate the spectrum, 1(a)), of the system represented 

by (1), i t i s necessary to calculate the autocorrelation function of the 

appropriate operator - the polarizability, a, in the case of a Raman 

transition: 

I("> = ik dt<a(t)ct*(0)>exp(iiDt) (4) 

The equation of motion of a in the interaction representation will be 

simply 

ihi = tftp, a] (5) 
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since it is assumed that the motional Hamiltonian does not influence the 

spectrum directly, i.e., [JC , a] = 0. To compute the quantity <0|a(t)|l>, 

where |0> and |l> are the ground and excited states (see Fig. 1), matrix 

elements of (5) are taken to obtain 

i h a o i " *Pooaoi " °oiKpir (6) 

We now define a quantity AID-., which is the shift in resonance frequency 

caused by X : 

%i = h ~ 1 ( V r H p o i ) - (7) 

Inserting (7) into (6) gives: 

aoi = i A u o i a o r (8) 

Integration of (8) and substitution into (4) gives 

Ku>) = dt exp(iut) dx exp[ i 
T+t 

A<D01dt'] (9) 

The correlation function «j>(t) • <a(t)ct*(0)> can be written as 

$(t) - <exp[i 
t+T 

Ao)01dt']> (10) 

where the brackets represent an average over all time. The time depen

dence of A u m arises from the motional Hamiltonian, X' . Equation (10) 

is solved by choosing a particular form for 50 and 3C , thereby deter

mining A(i)01 (t). 

In order to make contact with the model for vibrational dephasing, 

we will solve (10) for the case of a two-level system exchanging between 
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two environments, illustrated in Figure 2. In environment 1, we will 

set Aug. = 0; in environment 2 we will set Aw.. = 6co. The motional 

Hamiltonian will not be represented explicitly in this treatment, but 

will be assumed to cause transitions back and forth from environment 

1 and 2. 

At this point, two crucial assumptions need to be introduced. The 

first is that the transitions between environments 1 and 2 occur 

adiabatically; in other words, 3C is diagonal in the base states of 3C„. m U 
The secular perturbation represented by X therefore can alter the energy 

spacing between |0> and |l>, but cannot induce transitions between them. 

When the two-level system changes environments, the populations of the 

ground and excited states will not mix, and therefore the phase of a 

linear combination of |0> and |l> will not be affected. The dephasing 

which arises from the exchange process depicted in Figure 2 results from 

the presence of the frequency difference 6u in environment 2, and not 

from any phase disruption in the transition from environment 1 to 2. 

The second assumption is that the exchange process described by 3C 
m 

is "Markoffian." In this context, the Markoffian approximation is 

equivalent to saying that transitions between the two environments of 

Figure 2 can be completely described by a time-independent transition 

probability, indicated by W and W in the figure. A molecule will have 

a particular probability per unit time of undergoing a transition, re

gardless of how long it has been in its present environment or how it 

got there. This corresponds to the usual definition of a Markoffian 

process as one which depends only on the instantaneous state of the 

system, and not on its past history. 

Under the assumptions of adiabaticity and Markoffian dynamics, 

Equation (10) can be solved for the situation depicted in Figure 2. 
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Figure 2. A two-level system |0> and |l> can be placed in one of two 
environments. Transitions back and forth between these two 
environments can occur, modulating the resonance frequency 
of the transition. If the rates W. and W are slow, the 

T — 
spectrum of an ensemble of these systems will show two 
discrete lines at u and u + 6m. If W, and W are fast, o o + -
the two lines coalesce into one, which is located in 
between u and u + 6u>. This is the phenomenon known as o o 
exchange averaging or motional narrowing. 
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The solution, which is worked out in detail in Appendix 1, consists of 

dividing the time interval from t to t+r into n equal subintervals, and 

requiring that Aw remain constant within a single subinterval. The n 

subintervals then represent a set of n values for Au>(t), where the 

probability of a given set of Aw values is determined by the transition 

probabilities W, and W . It is assumed that ergodic behavior applies 

and that a statistically weighted averaging over all sets of Aw values 

is equivalent to the time averaging denoted by the brackets in (10). 

The derivation is completed by allowing n-+™, and yields (Appendix 1): 

$(t) = W1-exp[t(iAu4i!)]'l, (11) 

where W.. is a row matrix whose elements are the equilibrium populations 

in environments 1 and 2; Au is a diagonal matrix whose elements are the 

values of Aw in the two environments, and TT is a matrix given by 

I = W - 1 (12) 

where W is a matrix of the transition rates. 

A convenient interpretation of this formalism results from consider

ing the two-level system |0> and |l> to be a classical harmonic oscil

lator. A transition from environment 1 to 2 has the effect of altering 

the resonance frequency of the oscillator by an amount 6w. If the 

oscillator vibrates at this shifted frequency for a length of time x 

and then returns to environment 1, it will be out of phase by an amount 

SWT with respect to an oscillator which has remained in environment 1 

throughout. In an ensemble of such oscillators undergoing random tran

sitions between environments, dephasing occurs according to the values of 

the parameters W , W and 6w. In the case where either 6w or T is very 

large, i.e., SCOT » 1, a transition from environment 1 to 2 and back 
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again represents a complete loss of phase information, and the dephasing 

lifetime of the system is simply the inverse of the transition rate, W ~ . 

If either 6u or T is very small, i.e., 6ux « 1, the transition and 

return results in only a very slight phase shift. In this case, the 

dephasing lifetime will be much longer that W ~ , and the corresponding 

spectral lineshape will exhibit "exchange narrowing." In the intermediate 

regime, 6<iix « 1, the dephasing lifetime will depend sensitively on all 

of the parameters W , W and x. This is the regime of greatest interest 

to vibrational spectroscopy, which is the subject of the next section. 

2. Application to Vibrational Llneshapes 

Consider a pair of vibrational levels, the ground and first excited 

state of a mode whose Raman spectrum is being studied. In the harmonic 

oscillator approximation, and in the absence of intermolecular inter

actions, the Hamiltonian of this sitaple system can be written in terms 

of its vibrational normal coordinate, Q-: 

JC-Q^. (13) 

If anharmonicities are not included, higher order terms must be inserted 

in JC. These terms will include higher powers of Q. and also the co

ordinates of other modes: 

x - ^ + 1 ViVk + k cuu<ww- • • (14) 

The effect of a given term in the anharmonic part of (14) can be calcu

lated, to within the value of the coupling constants, using second-order 

perturbation theory. If the discussion is restricted to two modes, and 

it is further assumed that only the ground and first excited state of 

each are significant, the situation is illustrated in Figure 3. The 
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Figure 3. In the exchange model for vibrational dephasing, two 
vibrational modes - one of high frequency (A), the other of 
low frequency (B), couple anharmonically. The resulting 
level scheme is shown on the left. The resonance frequency 
of mode A depends on the state of mode B; as a consequence, 
transitions in mode B modulate the resonance frequency of A. 
This situation is completely analogous to that shown in 
Figure 2, where the rate W can now be interpreted as the 
lifetime of the excited state of mode B. The energy of a 
quantum of mode B is effectively an "activation energy" for 
the exchange process. 



18 

VIBRATIONAL ENERGY EXCHANGE 
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anharmonic coupling terms shift each of the vibrational levels, but the 

shift of the combination level' 11, 1> does not equal the sum of the shifts 

of |0,1> and |l,0>. Thus mode 1, the mode whose spectrum is to be studied, 

has a resonance frequency which depends on the state of mode 2. Transi

tions in mode 2 will cause the frequency of mode 1 to jump between u and 

(D+6u, in analogy with the case of two environments depicted in Figure 2. 

Table 1 illustrates the results of a perturbation calculation for 

typical low-order terms in the expansion of (14). The lowest-order diag-
2 2 onal term is of the form 0. Q_ , and it can be expected that this term 

will be the dominant contribution to 6w. Since no symmetry restrictions 

apply to this term (it is always totally symmetric, regardless of the 

symmetries of Q. and Q_), any two modes could couple by this means. 

In practice, the important case to consider is when the energy of a 

quantum of mode 2 is on the order of kT. In this case, thermal fluctua

tions will cause the excitation and de-excitation of mode 2. In the sub

sequent discussion, it will be assumed that mode 2 is a low-energy mode 

(100-400 cm ) and that mode 1, whose spectrum is to be calculated, is 

high enough in energy that its excited state is not significantly popu

lated. A straightforward application of the Anderson formalism to this 

situation necessitates solving (11) for the appropriate forms of the 

matrices V., Au, and ir. W, contains the equilibrium populations of the 

ground and first excited states of the low-frequency mode: 

(population of population of \ 
15) 

ground state excited state/ 

By detailed balance, these can be expressed in terms of the rates W 

and W : 



Table 1. Contributions to 6<D from Various Terms in the Anharmonic P o t e n t i a l 

X a R e l a t i v e , e . „ ou) ,. . . , b Sign Magnitude _ Term Symmetry 
Rule 

Q J Q 2 
r 2 = a 8 

V»i r i = a 8 

3 2 
q;+Q 1Q 2 r i ' a

8 

3 2 
Q2+QiQ2 

r 2 " a g 

V^ F l V 2 - \ 

Q?Q 2 F l r 2 = a g 

~2„2 
Q 1^2 none 

2(^+0)2 2^-0*2 I ' 112' 1.3 x 10~ 3 

A 4 1 i 12 -4 
' | C 1 9 J 4-7 x 10 q 

24C,„„C. 

I D ^ U U UJ.-2U2 I ' 1 2 2 

|Wj+2u>2 w,-2(0, j ' 122' a). 

4 . 4 1 , „ ,2 2 4 C 112 C 222 „ , l n - 2 . , 
o—X— + ~n C , . , 9 .3 x 10 + / -
2a>1+a>2 2a)-ui 2 I ' 112' u-

[ 18 18 , 5 4 54 ] < c ,2 6 5 x 1 0 

J 18 + 18 + _ 5 4 _ + _ 5 4 _ | | c 

l3w-+(o 2 3(0..-u>2

 a , i + u 2 u i ~ u , o I *** 2 

2 4.0 x 10~ 2 

«1122 " l ^ + ̂  + 4 ^ 1 | C112 2| 2 3'9 +'" 
Calculated using second order perturbation theory. 

These quantities represent 6u> in era for a situation where all C-coefficients are equal to 
1 cm - 1, u- =• 3027 cm - 1 and w 2 = 263 cm - 1. 

o 
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/ W + W - 1 \ 

\" \WjT Tw^TJ < 1 6 ) 

Since a t equilibrium these populations are re la ted by a Boltzmann 

factor , we can w r i t e : 

W+ = W_ expC-E^/kT) (17) 

where E is the energy of one quantum of the low-frequency mode. 

The matrix W from Equation (12) is a matrix of transition rates: 

/1-W W_ \ 
H = i w + ^ J ( 1 8 ) 

while the matrix Au has diagonal elements only, which give the transition 

frequencies: 

to- u u . (19) f° ° ) 
\ 0 (i)n+6(u/ 

Combining (12), (18), and (19) gives: 

I W + i(u0+6u)-W_ / 
iAbH-TT-[ " T |. (20) 

Using the fact that *<t) = <o(t)a*(0)>, Equations (11) and (4) can be 

combined to yield: 

1 
I ( U ) - ^ 

exp(i(ot)W1'exp[t(iAoH-7r)]-lp dt (21) 

= Re[W.A_1-l] (21a) 
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where A=i(Auj-u•!)+£• We introduce a time parameter 

-1 = W (22) 

which is the lifetime of mode 2, and combine (18)-(22) to give 

W (6W)2/(1-W T) 
I (a) a = 7 , - j- (23) 

CM' -(6u>/2)^H-CT"J-(u'+6u/2)+W^(a)'-5io/2)r 

where ai' = (o-u>0-5<<)/2. 

This lineshape equation is plotted at three different temperatures 

in Figure 4. The parameters are chosen to correspond to the intermediate 

exchange regime 6UT ~ 1, which is the case of interest for vibrational 

spectroscopy (see Chapter 3). As can be seen, the exchange process re

sults in a frequency shift and a line broadening with increasing tempera

ture. Several points should be noted concerning this figure: 1) for the 

particular values of the parameters chosen, the hotband |0,1> •+ |l,l> 

transition is visible as a small shoulder on the main peak at the lowest 

temperature; however, it would not be visible at all if T had been chosen 

to be significantly shorter. 2) The curves in Figure 4 were calculated 

on the assumption that T is a temperature-independent constant. This 

assumption is expected to break, down at higher temperatures. 3) The 

influence of higher harmonics of mode 2 is expected to become increasingly 

important as kT approaches E.. However, throughout the temperature region 

of experimental interest, Equation (23) is an accurate description of the 

exchange contribution to the lineshape. 

When the frequency shift is small (T->-0oK), an approximate expres

sion can be obtained from (23) by setting ID SS u • 

1(e)) = Ci-Kc-Ueff^Teff2}"1 ( 2 4 ) 



Figure 4. The temperature dependence of the exchange llneshape I (to) 
given by Equation (23). The values of the parameters are: 
6w = 10.0 cm" , T = 1.25 psec, E. = 150 cm" . The 
temperatures shown are (1) 100°K, (2) 250°K, (3) 1000°K. 
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where 

6wW T 
"eff - "0 +

 w , ,2 2 < 2 5> 
1+(OID) T 

. W ( 6 W ) 2 T 2 

Teff = - — n ( 2 6 > 
1+(6(D) T 

Equation (24) is a Lorentzian lineshape with peak position u ,. and 
width T , . . The width and peak position of this lineshape both vary 
as a function of temperature owing to the relationships (22) and (17). 
Substitution of these into (25) and (26) yields; 

l+(6u) T 
2 

T " 1 = ( g a ) ) I - (exp[-E,/kT]). (28) 
e f f 1+(6O») 2T 2 

These equations describe the exchange contribution to the lineshape in 
the low-temperature limit. It is useful to represent the presence of 
other broadening mechanisms, which are assumed to be temperature-inde
pendent, by including an additional linewidth factor, T_ , in (28): 

2 2 
T ~ 1 « T " 1 + ( 6 u ) 1 , (expL-E./kTU) (29) 

e f f 2 l+(6u>)V i 

Equations (27) and (29) allow graphical analysis of temperature 
dependent linewidths and shifts, in order to obtain the parameters 6u, 
T, E., U-, and T ~ . The important features of Equations (27) and (29) 
are as follows: 1) The peak position and width show an Arrhenius temper
ature dependence, exp(-E /kT), with the same "activation energy", E , 
for both the broadening and the shift. 2) In the energy level diagram 
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of Figure 3, this activation energy is the energy of a quantum of the low 

frequency mode. 3) The second term in (29), which represents the line 

broadening, divided by the second term in (27), which represents the line 

shift, is a dimensionless constant 6U>T. This constant can be used to 

characterize the "regime" of exchange - whether slow (6WT << 1), medium 

(fiiit « 1), or fast (6UIT » 1) - and can be used to verify the assumption 

that T is a constant over the temperature region of interest. 

3. Interpretation by Exchange Theory of Experimental Observations 

The hallmark of the exchange theory developed in the previous 

section is a broadening and frequency shifting of a vibrational lineshape 

with increasing temperature. In the simple scheme thus far discussed, 

where the mode under observation is coupled to only one other mode, the 

broadening and shift display an Arrhenius temperature dependence, that 

is, there is an apparent activation energy for the exchange process. 

The activation energy for the broadening and the shift are both the same, 

and furthermore correspond to the energy of the fundamental of the 

coupled mode. Finally, the dimensionless quantity 6DT should indicate 

the presence of intermediate exchange in order for this model to be 

applicable. If all of these conditions are met, the exchange model as 

discussed is a valid means of attempting to interpret the data. In this 

section, two points will be discussed in this connection: 1) the most 

reliable means of data analysis, and 2) under what conditions deviations 

from the behavior described by Equations (23), (27), and (29) may be 

expected. 

The simplest means of data analysis is to plot the log of the line 

broadening and the frequency shift versus 1/T. Such a plot will have a 

slope of -E./k according to Equations (27) and (29), and the intercepts 
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will be given by the prefactors in these same equations. The two inter

cepts, one for the broadening and one for the shift, allow the determina

tion of 6m and T. There are two difficulties with this procedure: the 

values of T. and u., which must be subtracted off from each point, are 

determined entirely from the lineshape at the lowest observed temperature, 

and hence are subject to experimental errors which may significantly 

affect the values of the parameters; also, the Equations (27) and (29) 

are low-temperature approximations to the exact Equation (23), and may 

not be valid throughout the experimental range (typically 10 K to room 

temperature). 

A more satisfactory means of data analysis is to use the full line-

shape expression (23), and computer programs have been developed for 

this purpose. Two different methods have been tried: in the first, the 

experimentally observed lineshapes at each temperature are digitized, 

and this data is then least-squares fit throughout the temperature range 

using Equation (23) convoluted with a temperature-independent Lorentzian 

line. This results in a fit of the observed temperature dependence as a 

function of five parameters: 6a>,T,E. .ID- and T- . Difficulties arise 

with this method when the residual low-temperature lineshape is not 

Lorentzian, or when two lines are close enough that they begin to overlap 

at high temperatures. One attempted solution to this problem, involving 

convolution of (23) with the observed low-temperature lineshape, proved 

unreliable and time-consuming. A more satisfactory approach is to use 

the observed widths and shifts to calculate numerically a Lorentzian 

lineshape, which could be subsequently run through the least squares pro

gram. This somewhat artificial procedure nevertheless has the advantage 

over the graphical method that the exact expression (23) is used as the 

basis for the temperature dependence. 
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The method which was finally used as the. means of analyzing the 

data presented in the next chapter is as follows: a program (titled 

LSTEMP) was developed which uses (23) to calculata the broadening and 

shift which result from the exchange process. This is used to perform 

a least-squares fit to experimental widths and shifts, using the same 

five adjustable parameters as above. In this case, however, only widths 

and peak frequencies are input into the program, which proved to be more 

reliable than the full lineshape procedure as well as less time-consuming. 

As a final check on the data, the values of u. and T. obtained from 

this program are used to perform the graphical analysis based on (27) 

and (29). If the activation energies for the broadening and the fhift 

are the same, and agree with the value for E. from the least-squares 

analysis within experimental error, then it can reasonably be assumed 

the data analysis procedure is valid, and that the values of the para

meters can be discussed in terms of the exchange model. 

An important question concerns the interpretation of deviations from 

the predictions of Equations (23), (27), and (29). In developing the 

formalism which led to (23), the crucial assumption was made that only 

two modes need to be considered: the mode under observation, and one 

coupled mode. In principle, a larger number of coupled modes could be 

accounted for by enlarging the size of the matrices in (11) and includ

ing the appropriate 6U,T and E. for each additional mode. Although the 

problem rapidly becomes prohibitively complicated, it is illustrative to 

consider the effect of having two coupled modes present. A computer 

program developed for this purpose (named TEMDEP) has led to the follow

ing conclusions: 1) For certain choices of parameters, the presence of 

two-mode coupling may result in an activation energy which does not match 

up with the energy of either coupled mode. 2) It is also possible that 
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two-mode coupling causes the activation energies for the broadening and 

the shift to differ considerably. 3) The ratio of the broadening to the 

shift is no longer expected to be temperature independent, but should 

still be approximately unity throughout the temperature range of 

practical interest. 

In addition to the question of coupling to multiple modes, it is 
-1 21 22 

known that the quantity T« can be temperature-dependent. ' The 

presence of a non-exchange, temperature-dependent contribution to the 

linewidth would affect the observed activation energy for the broadening, 

and hence the fitted values of the exchange parameters. The importance 

of this effect can be evaluated experimentally in specific cases; as 

will be seen in the next chapter, it appears to be negligible for the 

cases we have studied. 

In view of these considerations, it is clear that the presence of 

different activation energies for the broadening and the shift, a lack of 

correspondence between observed activation energies and known energies of 

the molecular modes, and a temperature dependence for the ratio of the 

broadening to the shift do not constitute proof of the absence of exchange. 

Exchange theory can readily account for such observations, although in

voking a coupling to more than one mode introduces additional parameters 

into the fitting process and may make the evaluation of these parameters 

difficult. Nevertheless, this is possible in principle. 

In those cases where analysis in terms of one coupled mode is pos

sible, the parameters obtained yield valuable information about the an-

harmonic couplings and energy dynamics operating in the system under 

investigation. In the next chapter, this analysis is carried out in de

tail for 1,2,4,5-tetramethyl benzene (durene), and a thorough under

standing of the vibrational dynamics of this molecule results. It is 
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the possibility of this type of study which gives exchange theory its 

usefulness and importance. 
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CHAPTER III 

EXCHANGE ANALYSIS OF SPONTANEOUS RAMAN SPECTRA 

In the previous chapter, a lineshape theory applicable to spontane

ous Raman spectroscopy was developed. Several models for vibrational 

dephasing have been proposed by other workers as well; and in the first 

section of this chapter, two of those models will be discussed briefly, 

with a view to demonstrating how they can be tested experimentally versus 

the exchange theory of Chapter II. 

The second section of this chapter presents experimental results of 

three types: the temperature dependence of the Raman spectrum of pure 

h.,- and pure d.,-durene; the concentration dependence of the d.,-durene 

spectrum as it is successively diluted in h-.-durene; and the infrared 

spectrum of both molecules in the region where exchange theory predicts 

the presence of combination levels. These results are discussed in terms 

of exchange theory and the two models introduced in Section 1. 

In Section 3, we use the parameters obtained from the exchange 

analysis of the data given in Section 2 to understand the vibrational 

interactions and dynamics of the system studied. A detailed picture 

results of the importance of inter- and intramolecular couplings, 

resonant and nonresonant energy transfer, and derealization of vibra

tional modes. 

1. Other Theories of Vibrational Dephasing 

The theory of Harris, Shelby, and Cornelius, presented in Chapter II 

and hereafter referred to as HSC exchange, will be used as a basis for 

comparing two recent models proposed by other workers: one by Abbott 
32 and Oxtoby based on interactions between pairs of vibrational 
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• fundamentals (AO), and the other by Wertheimer " based on the mechanism 
of dynamic coupling (DC). In this section, brief explanations of these 
two models will be given. In parallel to the discussion of HSC exchange, 
each will be discussed in its simplest form where two vibrational degrees 
of freedom are considered. 

The model of Abbott and Oxtoby (AO) is illustrated in Figure 5. The 
modes A and B are fundamentals lying close in energy, with an energy 
splitting of 6(0. As in HSC exchange theory above, it is assumed that 
the thermal activation of a low-frequency mode causes the dephasing, 
but here fluctuating anharmonic terms of the form: 

Vanh * f i i A B ( t ) C ^ B + f A B ( t ) V B ( 3 0 ) 

provide the coupling, where A and B are fundamentals and 1 denotes a 
low-frequency mode. 

29 The AO approach is similar to the formalism of Nitzen and Silbey 

where the equation of motion for the matrix elements of the vibrational 
"superoperator" is obtained to second order in a cumulant expansion. 
As in the HSC case, the Markov approximation is invoked. From this model, 
expressions for the frequency shifts and linewidths as a function of 
temperature are obtained which bear formal similarity to Equations (27) 

2 and (29) but have different physical interpretations. Assuming <Q. > 
4 "V k T 

and <Q > a e , the shift and broadening are given by: 

, -E /kT , , 
Shift = A5UT e 1 /[l + 6u> T ] (31) 

-E /kT , , 
Width = Are /Cl + Soi T ]. (32) 

Now T is the decay time of the fluctuating perturbation autocorrelation 

function of the form: 
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Figui "> 5. When two fundamentals differ in frequency by an amount 6u> 
energy exchange between them results in dephasing. The 
coupling Hamiltonian involves a low-frequency mode with 
an energy on the order of kT. 
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< FiiAB ( t ) FiiAB ( 0 ) > ° «*<"*/*> (33) 

where it is assumed that all the relevant decay times are the same in 

order to obtain the simple expressions Equations (31) and (32). Note 
2 

that all the time dependence is included in F and not in Q. . 

Thus this theory, like HSC exchange theory, predicts (in the 

simplest case where only two modes need be considered) an exponential 

temperature dependence for the broadening and shift with an activation 

energy equal to the energy of some low frequency mode. The following 

predictions also result: 1) In the specific example of Figure 5 the two 

isolated fundamentals A and B should shift toward each other and display 

the same E. as the temperature is increased. 2) T is the bath correla

tion time for the anharmonic force, and is typically 0.1-1.0 psec. It 

should also be mentioned in passing that the presence of the factor A in 

Equations (31) and (32) makes it impossible to extract the parameters of 

interest, namely 6u and x, as can be done in the HSC exchange model. 
18—21 

In a recent series of papers, Wertheimer has developed a gen
eral theory of vibrational dephasing in condensed media based on the 30 Zwanzig-Hori formalism. This theory illustrates the contributions of 

several mechanisms to the overall dephasing of a given transition, in

cluding the HSC and AO exchange processes. The effects of various energy 

relaxation and redistribution processes, as well as cross-correlation 

effects, are taken into account. As was pointed out in Reference 21, the 

HSC exchange model of Chapter II emerges as a restricted case of the 

dynamic coupling theory. In Appendix 2, we discuss the nature of the 

approximations necessary to reduce the more general theory to this special 

case, and suggest how the validity of these approximations can be tested 

experimentally. As Appendix 2 shows, the general form of the DC theory 
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introduces a dephasing mechanism based on the presence of a dispersive 

frequency shift x' , which results from the decay of the low-frequency 

modes into the bath. This dispersive shift effectively brings nearly 

into resonance a fundamental and its anharmonically shifted hotband. 

This results in the transfer of energy as well as phase information, 

and if this transfer occurs rapidly enough then one must consider the 
21 collective vibrational correlation function for all the modes. The 

importance of this contribution relative to the HSC exchange contribution 

depends sensitively upon the magnitudes of the various parameters, 

which are difficult to measure or estimate. Nevertheless, the line-

shift and broadening should exhibit approximately Arrhenius temperature 

dependence, and coupling of a high frequency mode to a specific low 

frequency mode will often be observed, but the presence of additional 

unknown parameters makes the extraction of information from experimental 

data difficult. 

A careful consideration of the three theoretical models suggests 

what experimental procedures may be employed to assess their relative 

applicability. In their simplest cases, the theories all predict an 

(approximately) exponential temperature dependence, a strong coupling to 

a single low-frequency mode, and an equal "activation energy" for the 

broadening and the frequency shift. They differ, however, in explaining 

the observed coupling of high and low frequency modes, and in the mean

ings of the frequency shift and time parameters. In Table 2 we have 

summarized briefly the various predictions of each model. In this 

section, we discuss how the differences between the theories can be re

lated to the experiments we have performed. 

In the HSC model, coupling between high-frequency and low-frequency 

modes is thought to result from steric interactions (vide infra). 



Table 2. 

HSC 
Temperature Width a exp(-0hu)> Shift 
Dependence a exp(-Bhu)). u> is fre

quency of the coupled 
low-frequency mode. 

Coupling Results from anharmonlc 
shift; dominant term Is 
of the general form 
2 2 Q. Q R ; suggests sterlc 

Interaction. 

Frequency <5u Is anharmonlc shift 
Shift of combination level; 
6(i> may be of either sign. 

Time 
Parameter, 
T 

x is resident lifetime 
of vibrational exciton. 

Vibrational Dephasing Models 

AO DC 
Same as HSC Very complicated, but 

approximately exponential 
as in HSC. 

Results from enharmonic 
term of form Qi^Q AQ BJ n o 

specific interpretation. 
Results from accidental 
equality of dispersive 
shift and anharmonic shift. 

fibi is spacing between 
two adjacent fundamentals; 
they must shift together 
with increasing tempera
ture. 

Results from difference 
between dispersive and 
anharmonic shifts; may have 
either sign. 

T is bath correlation 
time for anharmonic force 
constant r ± i M . 

Decay rates for exciton 
transfer processes of all 
types are specifically 
included.' 
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Therefore, we would predict that isotopic substitution should not change 

the mode coupling scheme, i.e., a high-frequency mode should couple to 

the same low-frequency mode in both the protonated and deuterated mole

cules. The quantity T, which can be regarded as a resident lifetime for 

the low-frequency vibration, should show a concentration dependence that 

can be interpreted on the basis of resonant energy transfer models. The 

four-level exchange scheme predicts the presence of a combination level 

at (i). + u- + 6(d (see Figure 6). Since 6m is extracted from the analysis 

of the temperature-dependent lineshape, it is possible to compare experi

mental combination band frequencies with exchange theory calculated 

frequencies. Finally, the ratio of the width to the shift at a given 

temperature, for all modes studied, should yield a temperature-independent 

quantity approximately equal to one. 

In the AO model, two fundamentals will interact if they lie close 

together in frequency. Since the frequency spacing of the C-H stretches 

in hj.-durene is considerably different than the C-D stretches in d.,-

durene, the coupling scheme may differ between the two molecules if the 

AO theory is correct. In either molecule, however, two isolated funda

mentals are predicted to shift toward each other with increasing tempera

ture. Also, since the quantity T in the AO theory is a bath correlation 

time, it would be expected to show at most a weak concentration dependence. 

In the DC model, couplings between modes result from a near resonance 

between the dispersive and the anharmonic frequency shift. Since such a 

resonance effect is strongly affected by small changes in either parameter, 

the coupling schemes in the protonated and deuterated molecules may be 

considerably different. The direction of shift of a given fundamental 

may be different in the two isotopic forms, and the ratio of the broadening 
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Figure 6. Information about coupling of vibrational modes and 
vibrational dephasing of a given mode can be obtained from 
three different spectral regions: the fundamental region, 
where the mode A transition and possibly its hot band can 
be observed; the low frequency region, where the coupled 
low-frequency mode B appears; and the combination band, 
where the peak positions can be used to confirm the 
presence of a coupling of mode A to mode B. 
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SPECTROSCOPY OF ANHARMONICALLY COUPLED 
VIBRATIONAL OSCILLATORS 

Eo+Sw< 

EBT 

J <A = I, B=ll 

<A=I, B=Ol 

E A+Sw 
"Hot Band" 

E A + E B + Su, 
"Combination Band" 

Ground State 
<A=0,B=I| 
<A=0,B=Ol 

V) 
c 
a> 

Low 
frequency 
region 

-B 

Fundamental 
region Combination 

region 
region h ' 

A L A 
E A E A+ 8 u) 

Energy 

EA+ EB+ 8 a) 

XBL79I2-5467 

Figure 6 



41 

to the shift is not expected to be independent of temperature (see 

Appendix 2). The time parameter here is essentially the same as in the 

HSC model, but the anharmonic shifts are expected to be small and 

positive (5-10 cm ). This latter prediction can be tested by observing 

the combination band spectrum. 

Five samples of polycrystalline durene were prepared with various 

isotopic compositions: pure h.,, pure d.,, and three mixed samples with 

50% d.,, 25% d.,, and 10% d., in h.,. The samples were placed in an Air 

Products portable helium dewar, which could be varied in temperature 

from approximately 10 K to room temperature. The temperature was meas

ured by a Chromel versus Gold thermocouple referenced to ice water, which 

allowed temperature determination to within +1°K over most of the temper

ature range studied (slightly larger errors occur at the lowest 

temperatures). 

The isotropic Raman spectra of the above samples were obtained in 

the region of interest using a Coherent CR2 Argon laser in conjunction 

with a Jobin-Yvon Ramanor H625 Raman spectrophotometer. The resolution 

of 1.0 cm - was adequate for these studies. Experimental spectra from 

a chart recorder were subsequently digitized using a Tektronics 4662 

Digital Plotter, and computer lineshape analysis was performed in those 

cases where overlapping occurred between neighboring bands. In this way, 

accurate values for the linewidths and peak frequencies as a function of 

temperature were obtained, and were then used to extract the exchange 

theory parameters using a least-squares fitting procedure as discussed 

in Chapter II. 
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2. Results and Discussion 

The Raman spectrum of h.. ,-durene was studied as a function of 

temperature in the C-H stretch region from 2850-3100 cm" . In Figure 7, 

the spectra at the two extreme temperatures are shown, exhibiting five 

lines which strikingly manifest the broadening and shift which makes 

them amenable to analysis in terms of the three theories discussed. 

The spectrum of d.. ,-durene in the corresponding C-D stretch region also 

shows the same type of behavior, as can be seen in Figure 8. 

Extensive computer analysis of this data, as described in Chapter 

II, yields the exchange parameters in Tables 3 and 4. Some of these 

parameters are meaningful only if exchange theory is valid; however, 

an important piece of evidence for the applicability of any of the three 

models is the match between the "activation energies" listed in the 

tables and the known energies of the low-frequency modes of the molecule. 

As the tables indicate, in 9 out of 12 cases the observed energy cor

responds to the energy of a low-frequency fundamental. In two other 

cases in Table 4, the activation energy corresponds to the energy 

expected for a Raman-inactive combination band (116 cm torsion plus 

83.5 cm"1 libration31). 

Evidence in support of HSC exchange is obtained from the dimension-

less' quantity 6UT, which is plotted in Figure 9a and 9b for the transi

tions studied. In both molecules, SUIT is approximately unity (inter

mediate exchange) and is independent of temperature within experimental 

error. The dynamic coupling model does not, in general, predict tempera

ture independence for this parameter, while the HSC exchange model does 

assume that both 6<D and x are constant over the temperature region of 

interest. 
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Figure 7. The Raman spectrum of 1,2,4,5-tetramethylbenzene at 300°K 
(top) and 11.5°K (bottom). The arrows indicate the direction 
and magnitude of the frequency shift for each line. 

Figure 8. The d.,-durene Raman spectrum clearly shows broadenings and 
shiftings characteristic of exchange. This behavior is 
similar to what is observed in h.,-durene. 
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SPONTANEOUS RAMAN SPECTRUM: C-H STRETCHING REGION 
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Table 3. Parameters Obtained from Least-squares Analysis of Temperature-
dependent Llneshape Data 

Raman Active L ( ) w F r e q u e i l c y D e phasing Channels 
0-H stretch 

(i) (cm ) Mode Dephasing Mode e. (cm ) 6ui(cm ) t(ps) 

a 2929.0 A , B, B_ - Torsion 194 ± 10 +13.6 0.36 g lg 3g 

b 2957.7 229 ± 21 +10.5 0.86 

c 2970.3 g X & B , A - Methyl 265 ± 6 -24.2 0.19 
i g e Rock 

d 2987.3 B, , B, B, , B, Out-of- 341 ± 13 -20.6 0.25 
/ g J 8 J g ** plane 

Methyl Bend 

e 3027.5 A B. , A - Methyl 263 ± 19 -21.2 0.36 
8 J-8 g R o c k 



Table 4. Exchange Parameters in d.,-durene 

-1 -1 e -1 a 
ID (cm ) E.(cm ) Coupled low-frequency mode 6<o(cm ) t(psec) t - <n> 

2035.A 252 ± 10 1^ methyl rock -12.0 ± .5 .66 ± .03 2.65 4.02 

2049.9 190 ± 12 Inactive combination band 8.8 ± .4 .77 ± .06 c c 

2191.1 240 ±20 A methyl rock 19.5 ± 1.0 .30 ± .06 2.65 8.83 
g 

2211.6 200 ± 10 Inactive combination band -11.4 ± .6 .45 ± .05 c c 

2225.9 240 ±15 A methyl rock -16.1 ± .7 .36 ± .07 2.65 7.36 

2250.ld 105 ±10 - 4.9 ± .3 3.1 ± .3 4.42 1.43 
2238.9d 90 ± 15 - 5.6 + .2 4.3 ± .2 2.52 0.59 

a Calculated from the observed FWHM of the low-frequency Raman spectrum, using T « 1/ire(FWHM). 

A frequency of approximately 200 cm is expected from a combination of the torsional mode 
at 116 cm - 1 and a libration at 83.5 cm" 1. 3 6 

c The linewidth for the coupled, Raman-inactive combination band is not available. 

An additional source of error ie present in these modes since the lineshapes overlap at 
higher temperatures. 

e The low-frequency vibrational spectrum of dj^-durene consists of a methyl rock at 240 c m , 
torsions at 116 cm and 140 cm" , and libratJons at 83.5 cm" and 105 cm" . 
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Figure 9. The quantity 5UT is plotted as a function of temperature. 
The plots indicate the presence of intermediate exchange 
and confirm that T is a constant over the temperature 
range of the experiments. Figure 9a gives the data for 
h-.-durene; Figure 9b for d-.-durene. 
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RATIO OF THE TEMPERATURE DEPENDENT PORTION OF THE LINEWIDTH AND FREQUENCY 
SHIFT IN THE RAMAN TRANSITIONS OF TETRAMETHYLBENZENE (DURENE) 
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RATIO OF LINEBROADENING TO FREQUENCY SHIFT 
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The foregoing results could also be explained on the basis of the 

AG exchange model. However, the data presented in Figure 10 contradict 

the prediction of A0 exchange that two well-separated fundamentals must 

shift together with increasing temperature. The figure shows two bands 

from the spectrum of d.,-durene; there are no Raman peaks within 100 cm -

on the high-frequency side nor within several 100 cm on the low-

frequency side. Yet the figure shows that these two peaks shift apart 

with increasing temperature. This could be explained by the A0 model 

only if coupling occurs between the observed Raman peaks and some Raman-

14 inactive transitions nearby. We have examined the 1R spectrum of d 

durene in this region and found only a single peak at 2060 cm , and no 

others for at least 60 cm- in either direction, which indicates that the 

A0 model cannot account for the observed frequency shifts in Figure 10. 

A further experimental test has been carried out based on a major 

point of distinction between HSC exchange and the DC theory, namely, 

the energy-level schemes used to explain the dephasing. The HSC theory 

predicts the presence of combination levels which are anharmonically 

shifted by 6o>, whereas the DC theory predicts that the anharmonic shifts 

should be small and positive (~5 cm ). The observation of these combin

ation bands spectroscopically therefore constitutes a crucial test of 

these two models. Using Fourier Transform Infrared Spectroscopy, we have 

successfully observed these weak bands with adequate (1 cm ) resolution, 

and these spectra for a thin crystal of h-.-durene and for d.,-durene in 

KBr are plotted in Figures 11 and 12 respectively. The arrows on the 

graph indicate the peak positions predicted on the basis of exchange 

theory. No predictions are made for the following modes: the 2957.7 cm 

mode in h.,-durene, which has an activation energy that does not match 
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Figure 10. A portion of the Raman spectrum of d-,-durene at several 
temperatures. These peaks, which are clearly separated 
from other modes of the molecule, shift away from each 
other with increasing temperature, in contradiction to 
the AO exchange model. 

Figure 11. Room temperature IR spectrum of neat h.,-durene in the 
region where HSC theory predicts the presence of combina
tion bands. Numbers in parenthesis are the positions of 
peaks predicted on the basis of the theory. 

Figure 12. Room temperature IR spectrum of d.,-durene in KBr, plotted 
as in Figure 11. In both figures, an observed peak is 
located within 10 cm of a predicted peak. 
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with a low-frequency mode; the modes at 2250.1 cm and 2238.9 cm in 

d^,-durene, which are overlapping and for which it was therefore diffi

cult to get accurate data; and the 2191.1 cm mode in d.,-durene, 

which appears to be a special case and will be discussed below in detail. 

Several points should be borne in mind concerning the combination 

band spectra. First, the combination levels will themselves be expected 

to show a temperature dependence, and since the spectra were obtained 

at room temperature, the peaks are shifted in frequency from their zero-

temperature positions by an unknown amount. Second, the spectrum of 

d. ,-durene was measured in KBr, which contributes a matrix shift to the 

observed peak positions. Third, the spectrum of h.,-durene in the region 

of interest contains a number of overlapping bands, which make accurate 

peak position determination difficult in some cases. We estimate that 

these combined effects introduce an error of 10 cm or less in the peak 

positions. In view of this, the fact that every predicted peak falls 

with 10 cm of an observed peak is strong evidence in favor of our model. 

The data is particularly convincing in the d., case, since the spectrum 

is not complicated by extra bands, and the correspondence between the 

predicted and observed spectra shows up clearly. We believe that this 

result constitutes a major piece of corroborative evidence for the exchange 

model. 

On the- basis of the evidence presented in this section, we feel 

justified in retaining the simple HSC model for the purpose of analyzing 

the dynamics of the durene system. We recognize that the AO exchange 

mechanism and the dynamic coupling mechanism must be included in any 

complete description of dephasing, however, our aim has been to attempt 

to determine the most important dephasing pathways operating in durene. 

All the data available can be sufficiently explained using the HSC model. 
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The chief advantage of the HSC model is that it allows the ready 

determination of physically meaningful molecular parameters. These para

meters are of interest in their own right, but in addition, they can be 

used to gain insight into those energy transfer and relaxation processes 

which give rise to the dephasing. In the remainder of this chapter, we 

assume the validity of the HSC exchange model in order to use the infor

mation which it yields to gain a deeper understanding of the mechanisms 

responsible for the dephasing in this system. 

3. Interpretations of Exchange Theory Parameters 

This section is divided into two parts: in the first, we discuss 

possible mechanisms for the coupling of high-frequency to low-frequency 

modes; in the second, we focus on how information from the low-frequency 

spectrum and from isotopic dilution experiments can be used to character

ize the vibrational dynamics. Of particular interest in this connection 

is the discussion of an exciton model for energy transfer in these low 

frequency modes. 

As discussed in the previous chapter, the fact that terms of the 
2 2 

form C... .Q. Q. make the most significant contribution to 6ui implies 
two things: 6u may be either positive or negative; and Q. and Q. may 

2 2 have any symmetry (Q. Q. is always totally symmetric). Any intra- or 

intermolecular interaction consistent with the foregoing may, in general, 

cause vibrational modes to couple and to exhibit a 6u. He would like to 

suggest two such mechanisms which could be invoked to explain the 

couplings and frequency shifts which we observe. 

The most obvio is mechanism which would couple two vibrations is a 

steric interaction. An illustration of this possibility in durene is 

shown in Figure 13. As the adjacent methyl groups torsion about the C-C 
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Figure 13. These pictures Illustrate the sterlc Interaction resulting 
from the torsional motion of the two adjacent methyl groups. 
We have postulated that this steric interaction couples the 
torsional motion to the 2932 cm" methyl C-H stretch. 
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bond, the neighboring protons closely approach one another, and would be 

expected to interact strongly. This would evidently affect the frequency 

of the methyl C-H stretching modes, thus providing the type of two-mode 

coupling we have outlined. An energy diagram for the torsional motion 

is shown in Figure 14 the first excited torsional state being 197 cm" 

above the ground state. This value of 197 cm" should, according to 

exchange theory, manifest itself as an activation energy for the broaden

ing and shift seen in the spectrum of the methyl C-H stretch. Our data 

for the C-H stretch mode at 2932 cm~ is shown in Figures 15 and 16, 

and analysis of this data yields an activation energy of 194 cm , which 

agrees closely with the torsional frequency (197 cm" , Reference 31.) 

The fact that 5u is positive indicates that a torsional excitation 

increases the energy of the C-H stretch mode. 

Isotopic dilution experiments carried out on d.,-durene have pro

vided a striking piece of evidence in favor of the assumption that steric 

effects can be responsible for the observed couplings. Figure 17 pre

sents the exchange parameters as a function of concentration for the 

2191.1 cm C-D stretch of d|,-durene, which is coupled to the methyl 

rock at 240 cm . Both E, and x change significantly with concentration, 

which is not the case with any other mode studied. At the highest dilu

tion (10% d.,), E takes on the value of the methyl rock in h..-durene 

(282 cm ), and T takes on the value measured for the methyl rock by the 

analysis of the 2970.3 cm" mode in h.,-durene (see Table 3). This sug

gests that this high-frequency C-D mode is coupled anharmonically to the 

methyl rocking mode on an adjacent molecule so that the exchange parameters 

measured characterize the molecule adjacent to the one being observed. 

In a highly dilute sample of d.,, the adjacent molecules are primarily 
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Figure 14. Energy diagram for methyl torsion in durene. The function 
exhibits three-fold symmetry, and the splitting between 
ground and excited states is 197 cm (see text). 
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Figure 15. Linewidth vs T data for the 2932 cm" C-H stretch in durene. 
On the left is the raw data; to obtain the straight line on 
the right we have subtracted a temperature independent 
linewidth. 

Figure 16. Frequency shift vs T data for the same mode as Figure 15. 
Again, the raw data is on the left, and the points on the 
right result when the zero-temperature peak position is 
subtracted off. 
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Figure 17. The crystal structure of durene, showing how steric 
interactions between adjacent molecules can occur. The 
data tabulated is explained in the text by assuming that 
the 2191 cm" C-D stretch is coupled to the methyl rock 
on the adjacent molecule. 
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h.,, so E and T approach their values for hj,-durene as dilution 

increases. Figure 17 shows the crystal structure of durene, and illus

trates how this proposed intermolecular steric interaction takes place. 

It can reasonably be assumed that the 2970.3 cm" mode in h.,-durene is 

coupled by a similar mechanism, and that a general understanding of the 

nature of the steric couplings in a given molecule may require knowledge 

of the crystal structure as well as the geometry of the isolated molecule. 

In a substituted benzene molecule, the electronegativity of the 

substituents strongly affects the electron density in the ring. The 

vibrational frequency of a proton attached to a substituted benzene ring 

depends on the distribution of electron density within the ring, and 

hence on the nature and location of the substituents. This fact suggests 

a second mechanism which may be responsible for coupling the vib~a _ ".onal 

modes in durene; however, owing to the difficulty of calculating electron 

densities in vibrationally excited molecules, the following discussion 

is necessarily speculative. It is reasonable that the excitation of a 

vibrational mode in a molecule such as durene would significantly perturb 

the electron distribution in the ring. This would then affect the fre

quencies of other modes, and, it should be noted, could shift them to 

either lower or higher energies, depending on the specifics of the situa

tion. In durene, one would expect this mechanism to manifest itself 

most strongly in the case of the aromatic proton stretch, since these 

protons are in close contact with the ring. 

In Figures 18-19 we show our data for the aromatic C-H stretch mode 

in durene (3025 cm ). Again, the temperature dependence exhibits the 

qualitative behavior suggestive of exchange, and a careful analysis 

yields a 6<o of -21.2 cm and an activation energy of 263 cm +19-
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Figure 18. Linewidth vs T for the 3025 cm" C-H stretch in h.,-durene. 
The plot is arrived at in the same way as Figures 15 and 
16, where the points on the right were obtained from the 
raw data on the left by subtracting off a temperature-
independent linewidth. 

Figure 19. Frequency shift vs T for the same 3025 cm mode. The 
zero-temperature peak position was subtracted from the raw 
data on the left to give the straight line on the right. 
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This activation energy does indeed match the energy of another molecular 

mode, namely, the methyl rock at 282 cm" . Thus we would suggest that 

an excitation of the methyl rock at 282 cm - causes some change in the 

electron distribution in the ring, which in turn causes a shift af 

-21.2 cm in the frequency of the aromatic proton stretch. 

4. Low-Frequency Spectra and the Exciton Model 

In carrying out an exchange analysis, it is obviously necessary to 

know the energies of the low-frequency modes of the molecule. In some 

cases, additional information can be obtained from a careful spectral 

study of this frequency region as a function of temperature and concen

tration. 

The first example is shown in Figure 20 which shows the spectrum of 

a mixed crystal in the region of the CH, and CD_ in plane methyl rocks. 

In h.,-durene, there are two modes coupled to the methyl rock, and in 

d.,-durene, there are three modes coupled to this motion. However, in 

each molecule two different values of T are observed for this mode. This 
22 

apparent contradiction is resolved by the data, since in both mole
cules the methyl rock transition is clearly split into two components at 

32 33 the lowest temperature. Previous work in h.,-durene ' has treated 

the peaks around 281 cm" as one band. The possibility that the two 

peaks represent a Davydov splitting of a single transition can be ruled 

out, since the splitting is independent of isotopic dilution, and the 

higher-energy peak does not "borrow" intensity from the lower-energy one 

with increasing temperature. It is safe to conclude that Figure 20 

illustrates two symmetry modes for the methyl rock, and that the two 

modes have different T'S. This conclusion is summaried in Figure 21. 
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Figure 20. Durene exhibits two Raman-active methyl rocking modes, which 
are resolved spectroscopically at low temperature, but 
coalesce by 90°K. In addition, it should be noted that 
these transitions broaden and shift with increasing 
temperature, in agreement with the proposed vibrational 
exciton model. 
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Figure 21. An illustration of the two methyl rocking motions observed 
in Figure 20. The different values of T allow the 
assignment of the coupling scheme between the methyl rocks 
and the high-frequency modes. 
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A more important question concerns the dynamics of the energy trans

fer in the low-frequency modes. On the basis of t^e observed Raman line-

widths of these modes, their dephasing times can be calculated. These 

dephasing times are tabulated in column 6 of Table 4 and are, in several 
22 cases, longer than the measured value of T by up to a factor of ten. 

This implies that some process which contributes to T does not contribute 

to the linewidth; we postulate that this process is coherent, resonant 

energy transfer of low-frequency vibrational quanta. In a manner 

analogous to that of Reference 21, we separate the two contributions to 

T into a resonant and a relaxation term: 

1/T = 1/T + 1/T ,. (34) 
res rel 

Using the measured values for T from the exchange analysis, and approxi

mating T . by the dephasing time obtained from the appropriate low-

frequency mode linewidth, we can obtain an estimate for T , the 

resonant energy transfer rate. If this transfer rate exceeds the 

relaxation rate, a given excitation can traverse more than one molecule 

in its lifetime, and can properly be described as being partially de-

localized or "excitonic" in character. Exciton models developed pre

viously for electronic triplet state excitons in molecular crystals 

can be used as a context for the discussion and analysis of these 
37 38 "vibrational excitons." ' We present here only a simple outline of a 

vibrational exciton model, in order to illustrate the possibilities 

inherent in such a concept. It is not to be expected that complete 

understanding of vibrational excitonic properties will be realized here, 

but it will be demonstrated that a useful and interesting semiquantitative 

picture can be obtained from the data in a straightforward way. 
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An examination of the low-frequency linewidths, in conjunction with 

the values of T obtained from the exchange analysis, can yield an indi

cation of the degree of derealization present in each low-frequency mode. 

We define a quantity <n>, the average number of coherent jumps for a 

given mode: 

r e l re\ 
<n> = . (6) 

This quantity is tabulated in column 7 of Table 4, and it can be seen 

that the largest values of <n> occur for the modes at 2191.1 cm and 

2225.9 cm , which are both coupled to the A methyl rock motion at 

240 cm . In agreement with Reference 31, we advance the assumption 

that this methyl rock exhibits significant excitonic character, and 

present the results of an investigation of this hypothesis. This in

vestigation has relied upon direct observation of the Raman spectrum of 

the methyl rock as a function of temperature and concentration, and also 

indirect observation through exchange analysis of the coupled high-

frequency mode at 2225.9 cm . 

The concentration dependence of the low-temperature spectrum of the 

methyl rock in both d.,-durene and h.,-durene is given in Table 5. The 

important point to note is that as each pure species is substituted with 

its isotopic analog, the methyl rock peak shifts to lower frequency by 

approximately 3 cm . This can be explained readily within the framework 

of the vibrational exciton picture; in which the exciton fe states are a 

band of linear combinations of isolated molecular states. In a pure 

crystal, the location of the spectroscopically allowed (fe = 0) transition 

within this band of states determines the observed peak frequency. The 

observed frequency in a dilute species, on the other hand, is simply the 

transition frequency of the isolated molecule, dince resonant energy 



Table 5. Concentration Dependence of A Methyl Rock Lineshapes in h.,- and d.,-durene 

Environment 

d,,-durene 14 
peak position 
(cm ) 

FWHM (cm - 1) 

h, ,-durene 14 
peak position 

FWHM (cm - 1) 

100% d,,-durene 
50% d,,-durene 25% d^-durene 10% d^-durene 
50% h, .-durene 75% h^-durene 90% h^-durene 

249.2 

4 .0 

248.4 

5.2 

278.4 

4.4 

247.6 

5 .0 

280.4 

3 .6 

246.6 

4 .0 

280.8 

3 .6 
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transfer is forbidden and the exciton picture is invalid. The data of 

Table 5 therefore implies that, in the pure crystal, the transition 

frequency of K = 0 is raised approximately 3 cm above the transition 

frequency of the isolated molecule, and hence the full width of the 

exciton band is approximately 6 cm . It should be mentioned that the 

data cannot be accounted for by assuming that the frequency shift results 

from a change in intermolecular potential upon isotopic substitution, 

since both peaks shift in the same direction with dilution. 

Further evidence for the validity of the exciton picture, emerges 

from a consideration of the temperature dependence of the linewifth of 

the d-.-durene methyl rock, shown in Table 6. It is known from studies 
34 of electronic exciton spectra that, at elevated temperatures, phonon 

scattering serves to localize the excitations. In effect, this results 

in the redistribution of oscillator strength into exciton states other 

than R = 0, and consequently as the temperature is increased, the line-

width broadens to reflect the entire range of fe states comprising the 
34 35 exciton band. ' This explains the behavior observed in d.,-durene, 

where the methyl rock broadens from 4.0 cm at low temperature to 6.2 

cm at 275°K, in agreement with our estimate of 6 cm for the exciton 

bandwidth. 

Although this evidence is consistently in support of the proposed 

exciton picture, a more crucial test of this hypothesis lies in its 

ability to explain the observed behavior of T as a function of concen

tration. To model the concentration dependence, we assume that the 

relaxation time for decay of low-frequency modes into lattice modes 

(T . in Equation 5) is independent of concentration. This assumption 

is equivalent to asserting that for lattice modes, the difference in 

frequency between a given d.,-durene mode and the corresponding 



Table 6. Temperature Dependent Linewidth of A Methyl 
Rock in d.,-durene (FWHM in cm - 1) g 

10°K 90° 130" 170" 225° 250° 275° 

4.0 4.6 4.8 6.0 6.1 6.1 6.2 
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h,.-durene mode is less than the linewidths of those modes, or in other 

words, the trap depth for lattice modes is less than their bandwidth 

(the amalgamation limit). * Conversely, the resonant energy transfer 

time (T in Equation (34) may be concentration dependent, since from 

Figure 20 the lineshapes of the methyl rock in the two isotopic species 

are well separated. If the molecule under observation is present in a 

concentration c, its effective T will be a function of the concen-
res 

tration and the pure crvstal resonant transfer time, T : 
res,pure 

1/T = O(C)1/T . (35) 
res res,pure 

Substitution of (7) into Equation (5) now gives: 

1 / >> 1 . 1 — = o(c) [- J + 
res,pure rel 

The function a(c) characterizes the type of energy transfer: in a local

ized, non-excitonic picture, where nearest neighbor interactions are 

important, a(c) decreases smoothly from c(c) • 1 at c = 1 to a(c) = 0 

at c = 0; in a delocalized, excitonic picture, where resonant inter

actions extend over several lattice sites, a(z) remains constant from 

c •= 1 down to some critical concentration (typically 10%), below which 
36 Anderson localization takes place. Thus, if T increases with dilution, 

it indicates non-excitonic behavior, while a constant x is indicative 

of exciton behavior. 

Examples of both were observed in our series of mixed crystal 

studies, and the data for one of each type is given in Table 7. In 

agreement with our expectations concerning the A methyl rock, T for the 
S 

coupled high-frequency mode at 2225 cm remains constant as a function 

of dilution. This behavior, taken with the other available evidence, 
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Table 7. Concentration Dependence of Exchange Parameters 
o f C-D Stretch Modes i n d , . -durene 

14 

2225 cm" Stretch 

Environment 6to(cm ) E. (cm ) r (psac) 

100% d 1 A - d u r e n e - 1 6 . 1 ± .7 240 ± 10 .36 + .07 
" (240) 

50% d , 4 - d u r e n e 

50% h . . - d u r e n e 14 

250 ± 10 
-15.0 ± 1 (240) .35 ± .07 

25% d . , -durene 

75% h , , - d u r e n e 14 

-14.1 ± 1 
250 ± 10 

(240) .34 + .07 

2035 cm" Stretch 

100% d..-durene 14 -12.0 ± .5 252 + 15 
(240) 

i 

.66 ± .05 

50% d,,-durene 14 -10.5 ± 1 
211 ± 15 
(240) .90 ± .05 

50% h,.-durene 14 

25% dj,-durene 
-11.0 ± 1 

230 ± 15 
(240) 1.1 ± .08 

75% h,,-durene 14 

10% dj.-durene 
-12.0 ± 1 

235 ± 15 
(240) 1.2 ± .1 

90% h , . - d u r e n e 14 
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provides justification for the use of the exciton model in describing 

the dynamics of this mode. 

A different trend appears in the data from the 2035 cm - mode, which 

is coupled to the B^ methyl rock. In this case, T lengthens by a factor 

of two over the concentration range studied, as given in Table 7 and 

shown graphically in Figure 22. By a simple linear extrapolation of the 

datas we estimate T , the relaxation time into lattice modes for the 

B, methyl rock, to be 1.4 + .1 psec, and the energy transfer time, T , 

to be 1.2 + .1 psec. The value of x 1 obtained in this way differs by 

less than a factor of two from the inverse linewidth of this mode. Based 

on these values, we conclude that the exchange mechanism for this mode 

consists of excitations and de-excitations of isolated molecules. 

The results of the foregoing analysis lend new insight into the 

detailed nature of the exchange process. They illustrate how spectral 

evidence of various kinds may be used to characterize the exchange 

mechanism in terms of its localized or delocalized nature, and how the 

linewidth of a low frequency mode, together with exchange analysis of 

the coupled high-frequency modes, can be used to provide a direct measure 

of the degree of excitonic character present in tr.it low-frequency mode. 

The data suggests that, in this molecule, different degrees of dereali

zation occur for different low-frequency modes, but that the concept of 

a delocalized vibrational exciton must not be neglected in modeling the 

dynamical behavior of vibrations in molecular solids. 

5. Conclusion 

The results presented here provide strong evidence for the utility 

of the simple exchange model. The presence of intermediate exchange and 

the excellent correspondence between calculated activation energies and 

http://tr.it
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Figure 22. The data is for the 2035 cm mode, which is coupled to the 
B. methyl rock. The slope of the line gives an estimate 
for T of 1.2 ± .1 psec; the intercept gives T . as 
1.4 ± .1 psec. These values suggest that the B. methyl 
rock does not exhibit significant excitonic properties. 
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known energies of low-frequency modes constitute important support for 

the exchange model. Of particular interest is the successful observation 

by infrared spectroscopy of the combination bands predicted by exchange 

theory. This latter result, along with qualitative observations of the 

temperature dependent frequency shifts in these molecules, tends to 

corroborate exchange theory in preference to other proposed models. 

The results of the exchange theory analysis applied to high-

frequency modes, plus measurements of the linewidths of the coupled 

low-frequency modes, have led to the conclusion that the low frequency 

methyl group modes of these molecules exhibit significant delocalized 

or "excitonic" character. The assumption of exciton behavior not only 

explains the observed low-frequency mode linewidths, but also enables a 

series of mixed crystal studies to yield insight into the relative 

importance of resonant and non-resonant energy transfer processes in 

the exchange mechanism. 

The use of exchange theory to interpret this simple series of 

experiments has resulted in a detailed understanding of the dynamics 

of this system. Further applications of this theory to other such 

systems and, in particular, to the problem of vibrational dephasing in 

liquids is currently in progress. 
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CHAPTER IV 

PICOSECOND SPECTROSCOPY 

While the results of the previous three chapters represent a means 

by which detailed dynamical information can be obtained, the method of 

Raman spectroscopy suffers from two inherent shortcomings: the observed 

lineshape is a composite of dynamic and static effects, the latter giving 

rise to inhomogeneous broadening; and the processes of population relaxa

tion and dephasing both contribute to the lineshape and cannot be separa

ted. Although exchange theory will remain applicable as long as the 

contributions from inhomogeneous broadening and population relaxation 

remain small or are independent of temperature, it is nevertheless 

desirable to have a method for measuring T and T. separately. Raman 

scattering of picosecond pulses offers a means by which this can be 

accomplished, provided that the vibrational mode of interest has stimu

lated Raman gain. In this type of experiment, an intense, coherent pico

second pulse prepares the sample in a well-defined state of excitation. 

This state decays and is subsequently probed by a weaker pulse, whose 

scattering characterizes the amount of excitation remaining in the 

ensemble. Owing to the coherent nature of the excitation, wave-vector 

matching conditions apply to this probing process. By choosing the ap

propriate experimental geometry, the probe scattering can be either co

herent or incoherent, thereby measuring either T- ot T.. In the case 

where the coherent decay is observed, the wave-vector matching conditions 

can be used to restrict the probe scattering to a selectively chosen 

subgroup of the inhomogeneous distribution, thus determining the homo

geneous dephasing time, T„.. These capabilities make this technique a 
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compliment to the type of spontaneous Raman studies described in the 

first three chapters. 
2 12 Both the experimental apparatus ' and the theory of transient 

stimulated Raman scattering ' ' ' have been described in detail else

where, and will only be summarized here along with some early unpublished 

results. This chapter will focus on the methods used for fitting and 

understanding experimental data, and some of the conclusions based on 

these calculations will be examined. 

1. Summary of Design and Execution of Picosecond Scattering Experiments 

The laser used in these experiments and its operation has been dis-
1-9 12 cussed at great length, * expecially in Reference 12. Figure 23 

illustrates the apparatus schematically and explains briefly its opera

tion. A pulse train is generated by a passively mode-locked Nd*glass 

oscillator, and a spark gap and Pockels cell is used to select a single 

pulse from the early part of this train (see Fig. 24). This pulse 

passes through three stages of amplification, attaining an energy of 

50-100 mJ. It is then passed through a saturable absorber to compress 

the wings of the pulse, and to attenuate that fraction of the background 

pulse train .ch was not rejected by the pulse selector. A r-. 1 of 

KDP provides second harmonic generation, resulting in a 5300 A pulse of 

approximately 10 mJ and 6-8 picoseconds FWHM. The spectral width of the 

pulses is generally within a factor of 2 of the uncertainty principle 

limit, although there is some shot-to-shot variation in the pulse 

spectrum. 

The experimental set up is illustrated in Figure 25. The pulse 

emerging from the doubling crystal is split into two parts, an exciting 

and a probing pulse. The latter is passed through an optical delay line 
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Figure 23. Diagram of Nd:glass laser. The laser oscillator is formed 
by mirrors Ml and M2, the latter being partly transmitting. 
A contacted dye cell D holds the flowing saturable dye 
which provides mode locking. The cavity also includes the 
Brewster-angled Nd:glass rod L, and an aperture A which 
selects for TEM_n.mode. The pulse train emerging from M2 
passes through a half-wave rotator X/2 and two crossed 
Glan-Thompson polarizers GF. A portion of the pulse train 
is reflected by the beam splitter BS into a spark gap SG; 
when a light pulse of sufficient intensity enters the spark 
gap, it breaks down and releases a high-voltage pulse to 
the Fockels cell PC. The polarization of the next pulse 
in the laser pulse train is rotated, causing it to pass 
through the second GF undeflected. It is then passed twice 
through amplifier A. and once through A,, and finally 
through a KDF doubling crystal and on to the experiment. 
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Figure 24. These are five typical pulse trains created by the laser 
system of Figure 23. In A, all three trains are cleanly 
mode-locked and are suitable for doing an experiment. In 
B, the traces show the presence of extraneous pulses. Such 
shots must be rejected in an experimental situation. The 
bottom trace in B shows a missing pulse, which has been 
selected by the Fockels cell and sent through the ampli
fiers to the experiment. For best pulse quality, pulse 
selection should occur as shown, just before the peak of 
the pulse train envelope. 
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EXAMPLES OF MODE-LOCKED 
PICOSECOND PULSE TRAINS 
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Figure 24 
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Figure 25. This figure describes the setup for performing a T. 
measurement. A T. measurement would use the 1.06 
fundamental pulse for the exciting pulse, but the setup 
is otherwise similar to what is shown here. A beam 
splitter BS splits the pulse into two parts: the exciting 
beam is focussed by telescope T. into the cell. The probe 
beam passes through an optical delay line DL, is filtered 
by F. to remove unwanted background light (generated by 
nonlinear processes in the KDP doubling crystal), is 
passed through a A/2 plate to rotate its polarization, 
and is focussed into the cell by telescope T-. Photo-
multiplier tube PMT2 and filter F, detect the Stokes 
radiation generated by the exciting pulse. An aperture 
A, filter F„, and the spectrometer SP allow the photo-
multiplier tube PMT3 to read the probe scattered anti-
Stokes radiation. In some applications, PMT3 is replaced 
by an optical multichannel analyzer. 
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which allows the temporal overlap of the pulses to be adjusted, while 

the beams are crossed spatially inside the sample cell at a position 

just before the exit window. Photomultipliers monitor the incoming 

intensity of the probe beam and the scattered radiation from the exci

tation and probing processes. A half-wave plate inserted into the probe 

beam causes the pulses tn have orthogonal polarizations, which facili

tates the discrimination of the weak probe scattering from unwanted 

background generated by the excitation pulse. 

The experimental method is described by Figure 26, and discussed 

in more detail in the next section. The exciting pulse pumps population 

into the v=l vibrational state by stimulated Raman scattering, in which 

a laser photon of wavevector iL is annihilated and a Stokes photon k 

and an excited vibration fe .. are created: 

K ~h + *vib- ( 3 7 ) 

Since the high-frequency vibrational modes typically studied in these 

experiments are nearly dispersionless, t ,, may be of any length necessary 

to satisfy (37) for a given choice of k . In other words, fe„ may point 

in any direction and the relationship (37) will be automatically satis-
1° 60 fied. Since backward stimulated Raman scattering*"'' is negligible 

in ultrashort pulses, the Stokes radiation is emitted in a cone around 

the direction of fe,. 

The probing pulse interacts with the excited population to produce 

anti-Stokes scattering, in which fe .. and a photon fep from the probe 
- » • 

pulse are annihilated to produce an anti-Stokes photon k A C. : 
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Figure 26. (a) An energy level diagram for the exciting and probing 
processes. In the excitation step, a laser photon uT 

Li 

creates a virtual state; emission from this virtual state 
of a Stokes photon u leaves an excited vibration. In 
the probing process, a probe pulse photon m is absorbed 
by the v=l population to produce a virtual state, which 
can then emit an anti-Stokes photon w to de-excite tae 
vibration, (b) Indicates the wavevector geometry governing 
the overall excitation and probing event, as discussed at 
length in the text. 
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Wavevector matching for the overall exciting plus probing process is 

achieved only when 

\ + K - Ks+ ls < 3 9 > 
which is obtained by adding (37) and (38). In a dispersionless medium, 

Equation (39) would be satisfied when fc. = k_, i.e., when the exciting 

and probing pulses are collinear and of equal frequency. Since the 

wavevectors depend on the index of refraction through the relationship 
- » • 

fe = n/X, in the presence of dispersion Equation (39) can only be satis-
•*• -»-

fled when L and fep are noncollinear by an angle B (see Figure 26b). 

The consequences of this wavevector matching condition are what give 

this type of experiment its versatility, since by varying the probing 

interaction the experimenter can vary the information contained in the 

probe scattering signal. The wavevector mismatch, Ak, is defined as: 

^ - *AS + ŝ - K ~ V ( 4 0 ) 

The intensity of the coherently scattered probe signal depends on Afe 
9,12 as 

c o h 1+21 Afe 1 2L 2 

where the stimulated gain of the medium is described by L, the character

istic length required for the stipulated Stokes excitation field to grow 

by one factor of e. When |Afe| ss 0, phase matching is achieved in the 

probing process, and the anti-Stokes signal propogates coherently through 

the sample. In this case, the observed anti-Stokes signal represents the 

overlap of the probing pulse shape with the coherent ensemble left behind 

by the exciting pulse; varying the time delay between the two pulses 



100 

allows the coherent decay time (T2) of the vibrators to be monitored. 

When |Afe| is large, on the other hand, I . -•• 0 and only spontaneous 

anti-Stokes scattering is possible. The resulting incoherent signal, 

measured as a function of time delay, monitors the decay of the population 

(T.) of the excited state. By performing these two experiments on the 

same vibration, one can determine both T- and T_, which is not possible 

with spontaneous Raman scattering. 

A second consequence of (40) appears when the vibrational ensemble 

is inhomogeneously broadened. The inhomogeneous distribution can be 

described by assigning different resonance frequencies to different 

oscillators in the ensemble. Each individual oscillator is assumed to 

have the same Lorentzian spectrum, so the spectrum of the whole ensemble 

is a convolution of that Lorentzian with the inhomogeneous distribution. 

The stimulated Raman emission from such an ensemble can be described 

theoretically, ' ' ' ' but applying the theory requires laborious 

numerical calculations. An effort to reduce the calculational complex

ity through an approximation appears quantitatively inadequate, 

although some important qualitative features are correctly described. 

The important point is that during the excitation process, the vibrations 

are driven at u , the frequency of maximum Stokes gain. Following the 

excitation, the relaxing vibrators oscillate at their individual reson

ance frequencies. This means that the excitation process occurs pre

dominantly at a single frequency, whereas the probing process occurs over 

a range of frequencies encompassing the whole inhomogeneous lineshape. 

The probe scattering can be calculated in the following way: the 

Stokes frequency w , the exciting, probing, and Stokes wavevectors II 

fep, and k„, the angle £ between the exciting and probing beams, and the 



101 

dispersion of the medium are fixed. Based on these parameters, the 
Stokes angle a can be calculated as fc"!.ows for a given choice of anti-

-•• 

Stokes frequency and wavevector u.„ and fe _: 

„„„,. _ xz+/(xz) +(y +x ) (y -z ) ... 
coso = i « — vA2) 

x +y 
where 

2 " I^AsI2 " I M 2 " l^>|2 " l^sl2 " 2i^ll^pl c o s S < 4 3> 
x = -2<fepfes cosB + ^feg) (44) 

y = 2(fepfes sinB). (45) 

Once a has been determined, the anti-Stokes scattering angle y can be 
calculated by elementary geometry (see Fig. 26b). The important point of 
this calculation is that as the anti-Stokes frequency is varied across 
the inhomogeneous lineshape, the scattering angle y will change This 
is illustrated in Figure 27, which is a calculation performed by the 
computer program KMATCH using Equations (42)-(45). Since Y varies as a 
function of frequency, the scattering from different isochromats can be 
spatially resolved. By placing an aperture in the anti-Stokes beam, it 
is possible to selectively probe only a small part of the inhomogeneous 
distribution. The difference between selective and non-selective probing 
methods is illustrated in Figure 28. Using the selective probing method, 
a T_ time approaching the dephasing time of a single isochromat can be 
measured. Comparison of thj.s time with the corresponding spontaneous 
Raman linewidth determines the presence or absence of inhomogeneous 
broadening. 
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Figure 27. An illustration of the wavevector matching calculation 
described by the text. The calculation is for the 2835 cm 
line in methanol, and the angle 8 is chosen to minimize y 

at the center of the line. The graph shows how y varies 
with frequency, and can be used to determine how much of 
the inhomogeneous ensemble is being probed when an 
aperture is placed in the anti-stokes beam. 
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Figure 28. "Selective" refers to the case of selective k-vector 
matching, where only a single component of the in-
homogeneous ensemble generates the probe signal. 
"Non-selective" refers to the case where all components 
contribute to the observed scattering. A comparison of 
these two curves, or a comparison between the "selective" 
curve and the spontaneous Raman linewidth, allows the 
estimation of the importance of inhomogeneous broadening 
in the mode being observed. 
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Despite the possibilities of this method, the practical difficulties 

involved have thus far limited the value of this line of investigation. 

The measurement of homogeneous dephasing times by restricted wavevector 

matching is experimentally feasible only when the dispersion of the 

medium is large enough to cause y to vary rapidly as a function of w._. 

Nevertheless, even in the case where unrestricted wavevector matching is 

employed - in other words, no aperture is placed in the anti-Stokes beam -

some selectivity is still attained because of the stimulated nature of 

the excitation process. Figure 29 shows that individual oscillators 

within the inhomogeneous ensemble are excited with unequal amplitudes, 

depending on their distance from the line center. An oscillator close 

to the center of the line receives relatively more excitation than those 

on the wings of the profile by orders of magnitude; because of this, the 

probe scattering signal that is ultimately measured in this experiment 

is weighted in favor of those isochromats near the center. Unfortunately, 

the exact amount of selectivity achieved In this way is difficult to 

estimate- in specific cases. 

In spite of these theoretical reservations, we have performed sev

eral experiments using this unrestricted probing technique. Figures 30 

and 31 show our data for liquid para-dimethyl benzene (xylene) and solid 

durene at room temperature. In addition, we have measured dephasing 

times for liquid durene at 353 K (T 2=0.5 psec), ethanol at room tempera

ture (T 2=0.5 psec), and 1,1,1-trichloroethane at room temperature (T2= 

3.5 psec). In each case, the vibrational mode studied was a symmetric 

C-H stretch; the results in ethanol and trichloroethane were repeats of 
1 3 7-9 measurements originally made by the Kaiser group. ' ' 

These results are pr.sented here only for the purpose of illustrating 

the possibilities of this method, since other workers in this group have 
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Figure 29. The relative excitation of the components of an inhomo-
geneous line. Within fifteen wavenumbers of the peak, 
the degree of excitation of an individual oscillator has 
dropped by over two orders of magnitude, indicating that 
the stimulated excitation process selectively excites 
components that are near the center of the inhomogeneous 
distribution. 
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Figure 30. Coherent anti-Stokes scattering as a function of delay for 
the 2912 cm" vibration of p-xylene. The value of T„ 
determined by the fitting process described in the next 
section is 2.2 psec. 

Figure 31. Coherent anti-Stokes scattering for the 2914 cm 
vibration of solid durene. The fitting process gives 
the best T„ as 0.75 psec. 
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recently demonstrated a superior method of measuring homogeneous de-

phasing times using a different experimental geometry. In these experi

ments, the exciting and probing beam traverse the sample collinearly, and 
7 9 the Stokes scattered probe signal is detected. ' The requirements of 

restrictive wavevector matching are automatically satisfied, enabling a 

more reliable interpretation of the experimental curves. For a discus

sion of the results of these experiments, see Reference 11. 

For measuring T- by incoherent anti-Stokes probing, the chief dif

ficulty is the detection of the relatively small number of spontaneously 

emitted photons. In contrast to the T- experiments, the interpretation 

of the curves is relatively straightforward since T. times are longer 
4 5 than T_. ' We have performed one such measurement, in 1,1,1-trichloro-

ethane (T.. = 6.6 psec); this was a repeat of an experiment originally 

reported in Reference 4. An attempt was made to measure T. in solid 

durene, but did not meet with success and was finally abandoned. To 

digress a moment, one possible explanation for the failure of this experi

ment is the recent observation of the importance of self-phase modulation 

in the stimulated Raman excitation process, particularly for moderately 

sized molecules such as durene and xylene. As will be discussed in de

tail in Chapter V, the stimulated Stokes excitation spectra of these 

molecules show enormous broadening and a lack of shot-to-shot reproduci

bility. The unreliable nature of the excitation process could not only 

account for the problems encountered attempting to measure T- in durene, 

but also calls into question the validity of the T_ times measured in 

xylene and in both liquid and solid durene. 

For small molecules which do not have the problem of phase-modulation, 

these picosecond techniques represent a unique source of experimental in

formation. Despite the obstacles, these methods should prove to be useful 
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tools in the future study of vibrational dynamics. 

2. Calculation of Anti-Stokes Scattering Curves 

A theoretical descr: tion of transient Stimulated Raman scattering 
13 was first carried out by Carman, and other workers subsequently 

developed this theory, to include the anti-Stokes probing processes 
3 6—10 12 described in the previous section. ' ' Numerical calculations based 

on this theory can be used to show how the experimentally observed probe 

signal varies with delay time between the pulses. The parameters which 

enter the calculation include the exciting and probe pulse shapes, the 

intensities of the pulses, the steady-state stimulated Raman gain factor, 

and the dephasing time (or relaxation time for a 1. experiment) of the 

vibration. If the gain factor and the properties of the laser pulse are 

known, then the calculations can be used to extract the dephasing time 

from the experimental data. This method allows the measurement of de-

phasing times considerably shorter than the pulse width. 

The theory has been extensively discussed in References 6 and 12. 

The problem is treated completely classically, using the nonlinear wave 

equation to describe the propagation of the light fields, and describing 

the vibrational medium as an ensemble of harmonic oscillators. The 

buildup of the vibrational amplitude is described by the integro-
12 differential equation: 

rt1 

3z 1 2 dt" exp[-r(t'-t , ,)]|E T(t')| 2Q(z,t') (46) 

where Q(z,t') is the vibrational amplitude at position z and time t"; 

T = 1/T_; K. = (8(0 ...m) - (3a/8q), where tu is the vibrational frequency 
2 and 3<x/3q is the differential polarizability; K, = (y QN/4)(3a/3q)(w /< ) , 

where N Is the molecular number dently; and |E_(t)| is the laser pulse 
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Intensity envelope. The Initial conditions are derived by assuming a 

constant input Stokes field, E_ , which represents the spontaneous 

emission background that becomes amplified through the stimulated gain 

process: 
ft* 

dt" expC-r(t,-t,,)]EL(t") (47) Q(0,t*) = i K ^ 0 

J 

The quantity that is observed experimentally is the integrated anti-

Stokes signal as a function of delay tn, which is given by: 

Ktp) = 4K-2L2[l+2|Afe|2L2] dt ,|B p(t'-t | ))| 2|Q(t ,)| 2 (48) 

where tc~ = (y.N/4)(W3q), Ep(t) is the probe pulse envelope, and Q(t') 

is the vibrational amplitude at the end of the cell. The integral in 

Equation (48) is a convolution integral involving the probe pulse shape 

and the time-dependent vibrational amplitude. The calculation of 1 ( 0 

is performed in two steps: first Equation (46) is integrated numerically 

to obtain Q(t') at the end of the cell, and then this function is squared 

and convoluted with the probe pulse shape to give finally I(t_). 

Several details of this procedure should be pointed out: 1) In a 

coherent scattering experiment, the probe pulse and the exciting pulse 
o 

have the same shape, since they are derived from the same 5300 A laser 
pulse by a beam s p l i t t e r . 2) I t has been found empirically that these 

12 pulses are described by a function of the form 

!

sech(t 

Exp(-t 

/C2) t > 0 
E(t) = < - (49) 

-t/cir t < o 

The parameters C. and C„ are all that is needed to define the pulse 

shape. 3) The factor K K« is related to the steady-state stimulated 

Raman gain factor G bv 
ss ' 
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GSS " K 1 K 2 / T 2 < 5 0> 

4) It is necessary to calculate only a normalized probe signal; thus the 

factor preceding the integral sign in (48) can be dropped. 

A set of computer programs has been developed which carry out the 

numerical integration of (46), perform the convolution in (48), compute 

the statistical error between this calculated curve and a given set of 

experimental data, and produce a plot showing the calculated curve and 

the experimental points. For convenience, the programs have been written 

to run on the LSI-11 microcomputer dedicated to the picosecond experiment. 

FORTRAN listings of all of these programs and instructions for their use 

are provided in Appendix 3. 

The method used for the numerical integration is based on standard 

Runge-Kutta techniques. The Runge-Kutta formula for a general function 

y" = f(x,y) is 

y(x+h) = j h(K1+2ic2+2K3+K4) + y(x) (51) 

where K^ - f (x,y), ie2 = f(x + -j h, y t ^ ^ ) , s, = f(x + -j h, y+^itj), 

and ie, • f (x+h,y+ie,). This requires four values of f to be computed in 

order to calculate y(x+h). Since (46) requires a numerical integration 
12 in two dimensions, the following procedure is used: an array ->f 

numbers is set up which represents the vibrational amplitude Q as a 

function of time at some distance z into the cell. The stimulated Raman 
o 

cell is then divided into discrete steps along z, and the entire array Q 

is stepped from one distance to the next using (51) element by element. 

This is done by first calculating an array representing 3Q/3z as a func

tion of time by numerically performing the integral on the right-hand 
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side of (46). This array is analogous to the first term on the right-

hand side of (51), except that it is a whole array and not just the value 

of a one-dimensional function. Performing three more integrations of 

(46) as indicated by (51) provides all of the information needed to step 

by one increment along z. This is done by applying (51) to each element 

of Q as if that element contained the value of a one-dimensional function. 

Ultimately this procedure results in the function Q(£,t), where i. is the 

total cell length. In practice, it was necessary to take 100-300 steps 
12 along z in order to get the function Q to within a few percent. 

The function Q(&,t) is squared and then convoluted with the probe 

intensity profile as indicated by (48). The convolution is performed by 

simple brute force time-shifting and multiplication. It was found that 

a smooth curve could be obtained by taking only every fifth point in 
2 2 the calculated Q and E_ , resulting in a considerable savings in 

computer time. 

These programs can be used in a systematic way to analyze experi

mental data. The first step is to evaluate the pulse shape parameters 

C. and C, in Equation (49). Two methods are available for doing this. 

The first is based on the fact that, when T~ is very short, Q(t') in 

the convolution integral (48) is a very sharply peaked function. It acts 

somewhat like a delta function, causing the function Kt-) to closely 

approximate the laser pulse shape. In other words, when the vibrational 

depbasing time is short, the probe scattered signal looks like a "picture" 

of the laser pulse, and the pulse shape is obtained directly. The second 

method assumes that the correct value of T„ is known for one molecule 

out of several that have been studied. The computer programs are used 

to calculate probe scattering curves based on the known value of T„ and 

regarding the quantities C. and C- as variable parameters. By trial and 



error, one can then find the values of C. and C„ which best reproduce 

the experimental curves. These values of C. and C. can then be used to 

fit the data on other molecules. 

Once the pulse shape is known, the next step is to calculate a set 

of curves using a range of different T„ values. These curves are stored 

in the computer, and are compared statistically with a set -of experi

mental points. The value of T_ is then taken from that calculated curve 

which gives the best fit. This procedure somewhat compensates for the 

fact that no analytical expression exists for the probe scattered signal 

and that the standard type of least-square data analysis is not possible. 

This whole process is rendered considerably less laborious than it 

appears through the use of the RT-11 BATCH processor, which is part of 

the software available for the LST-11. BATCH is able to manipulate 

sequentially numbered files and execute a series of programs without 

intervention from the user. This makes it possible to calculate a set 

of 20-30 curves and perform a statistical comparison of each with 10-15 

experimental data files overnight. An example of a BATCH listing which 

does this is also provided in Appendix 3. 

A set of curves with different T. times calculated in this way is 

shown in Figure 32. Note that for values of T_ comparable to or greater 

than the pulse width, the decaying wing of the curve is dominated by the 

decay of the vibrations and not the laser pulse. The fitting procedure 

just discussed is only necessary to estimate dephasing times that are 

shorter than the pulse width, in which case the wing of the curve repre

sents the combined effects of the decaying pulse shape and the decaying 

vibrations. A set of experimental data, showing the best-fitting calcu-
62 lated curve, is given in Figure 33. 
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Figure 32. Calculated anti-Stokes signal for different dephasing times. 
The pulse shape was described by CI * 8.0 and C2 « 5.0. 

Figure 33. Experimental data for the symmetric C-H stretch in dimethyl 
62 sulfide fit using the pulse shape used to calculate the 

curves in Figure 32. The best fit gives T_ « 4.5. The 
insert shows how the standard deviation of the data varies 
as a function of the value of T_ input into the programs. 
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CALCULATED PROBE SIGNAL VERSUS DELAY TIME 

Delay Time, T (psec) 

Figure 32 

XBL 805-5124 
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PROBE SCATTERING VERSUS DELAY TIME 
IN DIMETHYL SULFIDE 

5 20 
Delay Time, T* (psec) 

XBL 805- 5123 

Figure 33 



It should be mentioned that this procedure can be readily adapted 

to the case of inhomogeneous lines. The main difference occurs in 

Equation (46), which must be changed to 

3z = K1 K2 

t" 
dt" expc-r (t'-t"):!^^") ftxo^/Hx^cz.t)} 

(52) 

where Q is the vibrational amplitude of a single component of the in-

homogeneous line, N. is the number density of the oscillators of that 

component, N is the total number of oscillators, and T. = 1/T_ + lAu 

where Aw. is the difference in frequency between the oscillators of 

component j and the peak of the inhomogeneous profile. Equation (48) 

for the probe scattering is changed by replacing Q with a sum over those 

components Q. that are being probed (if selective wavevector matching 

is being used, not all components will contribute to the probe scattering). 

The problem with this calculation is that the number of integrals required 

goes up with the number of components in the inhomogeneous distribution, 

and as a result of computer time limitations this calculation is Imprac

tical to do on a day-to-day basis. Figures 28 and 29 were calculated 

using the method just described, but for routine data analysis the calcu

lation based on a single-component homogeneous line seems the best choice. 

One suggestion can be made to reduce the computational magnitude of 

the inhomogeneous scattering calculation, although this has never been 

implemented. The first step is to perform the numerical integration of 

(46) using a value of T„ which corresponds to the width of the total 

InhomoKeneous distribution; i.e., the line is temporarily assumed to be 

homogeneous. The function Q resulting from this calculation is taken as 

a first approximation to the quantity J(N /N)Q in (52). Each individual 
m 
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component Q. can be calculated from (52) by an integration along z only, 

since the time integral on the right hand side has already been done in 

the first step. Once the individual components Q. have been calculated, 

they can be summed to compute a new £(N /N)Q_, and the process repeated 
m 

until convergence is achieved. 



CHAPTER V 

SELF-PHASE MODULATION IN STIMULATED RAMAN SCATTERING 

In the theory of stimulated Raman scattering described in the pre

vious chapter, it was assumed that only one distinct mode of the mole

cule exhibits gain, and that the presence of the other vibrational modes 

may be neglected. For small molecules, this assumption is frequently 

justified. For moderate sized molecules, such as xylene and durene, 
14 and for the exceptional case of methanol, this assumption breaks down. 

In xylene, we have observed Stokes emission from the C-H stretch region 

that was extremely broad and irreproducible from shot to shot; often 

radiation appeared 100 cm or more from any Raman-active mode of the 

molecule. In methanol, both the symmetric and asymmetric C-H stretch 
14 modes have stimulated gain, and both peaks appear in the stimulated 

Stokes spectrum with roughly equal intensities. The stimulated spectrum 

of both xylene and methanol commonly exhibit a periodic progression of 

extra peaks, which is strongly suggestive that self-phase modulation is 
63—67 present. Existing theoretical descriptions of stimulated Raman 

6—10 12 13 excitation by picosecond pulses ' ' do not treat the effect of 

self-phase modulation in the presence of Stokes scattering from more 

than one mode. In this chapter, a theory is presented which describes 

the important features of phase-modulated, multiple mode Stokes 

scattering. 

The inclusion of self-phase modulation directly into the theory of 

stimulated Raman scattering, while possible in principle, would lead to 

a problem of enormous computational complexity. A more practical ap-
68 proach was therefore employed, which consists of treating the phase 

modulation process separately. A general theory of phase-modulation was 
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developed to describe the propagation of a light field consisting of any 
desired number of pulse shapes and frequencies. This phase-modulation 
theory could then be applied to a situation analogous to that encountered 
in transient stimulated Raman scattering, by choosing a light field which 
consists of a laser pulse and any number of Stokes pulses. The pulse 
shapes are calculated by the method discussed in the previous chapter. 
While this does not represent a rigorous description of stimulated gain 
in the presence of phase-modulation, the theory successfully explains the 
qualitative features of the spectra that we obse, u addition, the 
separate theory of phase-modulation is of general interest and may find 
applications in problems not related to stimulated Raman scattering. 

The propagation of a light field through matter is described by the 
Maxwell wave equation: 

2-*- 2-> „2+ 1 3 E 1 3 1 , „ , V E =• — r - -5- —5- (53) 
c 3t c 8t Z 

The properties of the material determine the polarization F by the 
relationship 

p" = x ' t (54) 

where the susceptibility x is a complex, frequency-dependent second-rank 
tensor. ~ The susceptibility completely describes, in classical 
terms, the optical properties of the medium. "Linear" optics, including 
the effects of absorption, reflection, refraction, and so on, is 
described by a susceptibility x-i which is independent of the applied 
field. Nonlinear optics is described by expanding the susceptibility in 
powers of the applied field, namely: 
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X = X± + X 2 • E + x 3 ' E • E +... (55) 

where each of the terms in the expansion is a successively higher rank 
tensor. From symmetry arguments, Xj vanishes in liquids and solids pos
sessing a center of inversion symmetry, ' so for the purposes of this 
discussion X-i Is the lowest order nonlinearity of importance. For 
simplicity, it will be assumed that Xo * s a real scalar and that all 
fields are plane waves traveling in the z-direction. The susceptibility 
now assumes the form 

X = X 1 + X 3 | E | 2 (56) 

if higher powers of E are neglected. The index of refraction is defined 
by 

n = U+x)1* (57) 

and n can be expanded in powers of E from (56) to give 

n = n Q + n 2|E| 2. (58) 

Equation (58) describes a situation in which the index of refraction 
depends on the intensity of the light field. The effect of this can be 
understood by considering two waves, one propagating through a linear 
medium and the other through the nonlinear medium described by (58). The 
phase velocity is c/n; when the linear wave has traveled a distance z its 
phase has changed by 

W a r - z n^ <»> 
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whereas the nonlinear wave has undergone a phase change of 

Nonlinear = , " , 2 • ( 6 0> 

n 0+n 2|E| 

The relative phase shift, <j>, of the nonlinear wave is then ' 

* = zcn2|E|2 = a|E|2. (61) 

If the time dependence of the linear field is represented by a pulse 

envelope E_(t) and a frequency factor exp(iwt): 
E.. (t) = E0(t)exp(ia>0t) + complex conjugate (c.c.) (62) 

then the nonlinear field must include the additional phase factor $ from 

(61): 

Enonlinear ( t ) ' V t > w t p ( 1 V ) e x p ( i * ^ + c ' c > ( 6 3 ) 

Note that cf> is time dependent because |E| in Equation (61) is time 

dependent. 

The spectrum of the nonlinear field is the square modulus of the 

Fourier transform of (63): 

KB) exp(iu,t) E n o n l i n e a r ( t ) 2 (64a) 

exp(i(Dt)exp(iu)0t+i4.(t))E0(t)dt (64b) 

This equation has been used previously to describe the effect of 
63—67 self-phase modulation in a variety of systems. Additional pulses 

of arbitrary shape and frequency can be formally incorporated into the 

spectrum by changing (62) to read: 



E 1 ± n e a r ( t ) = I E i (t)exp(i(D i t) + c .c . (65) 

and making (63) read: 

Nonlinear <« = " u ^ M - P ^ C O ) • < 6 6> 

From (65) 

| E | 2 = 1 1 E (t)E (t)exp(i[u> + u ]t) + c.c 
i j ] J 

+ 11 E (t)E *(t)exp(i[u - u . ] t ) + c, 
i j J J 

(67) 

For the purposes of illustration, consider one term in this expression 

for |E| , say E.,(t)E2 (t)exp(i[<i> -<i),]t). Using (61) to substitute for 

<Kt) in (66) gives 

Enonlinear ( t ) = E ^ ^ O e x p C i a E ^ O E ^ O e x p U i : ^ - o^t)] 

= Elinear(t)exp[A(t)exp(iCii)1-u2lt)]. (68) 

Expanding the exponential: 

N o n l i n e a r ( t ) = E l i n e a r ( t ' ' ^ ( O e x p a D ^ t ) + } A 2 ( t ) e x p ( 2 i C V U 2 ] t ) 

+ . . . } . ( 6 9 ) 

When this is inserted into (64) and the Fourier transform computed, the 

first term in the bracket will generate a peak at a frequency of u Q + 
ul ~ w 2 ( w n e r e wn i s t^ i e frequency of a peak in the spectrum of E«. ); 

the second term in brackets generates a peak at ID- + 2(ID--ID-) , and so on. 

In other words, the phase modulation of the field (65) generates a series 

of "satellite" peaks around the parent peak at coQ; the satellite peaks 

are separated from each other by the frequency difference between a pair 
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of peaks in the spectrum of E., 

It is useful to distinguish the two manifestations of phase-modulation 

which emerge from the foregoing discussion. The first is described by 

Equations (62) and (63), and is the only effect present in fields contain

ing initially one frequency component. This phase modulation produces 

frequency shifts A(t) which are proportional to the time derivative of 
64 the nonlinear phase factor $: 

A(t) -•^••(t) = a £ |E(t)|2 (70) 

From (61): 

|E(t)|2 = |E 0(t)| 2 + E0
2exp(2iul£)t) + c.c. (71) 

Near OJ = uin, only the first term in (71) is important, so that combining 

(70) and (71) gives 

A(t) - a £ |E 0(t)r. (72) 

This equation means that the nonlinear index produces an instantaneous 

frequency shift which is proportional to the derivative of the pulse 

intensity envelope. This effect, which is also present in fields of 

more than one component, will be termed "envelope modulation." 

The second type of phase-modulation is described by (65) and (66). 

As already discussed, the appearance of the frequency factors 

exp(i[u. - w.It) generates new satellite components separated by co.-oi.. 

This effect, which appears only in multiple component fields, is inde

pendent of the exact shape of the pulse envelope and will be termed 

"satellite modulation." 



To illustrate these ideas, a series of computer calculations was 

performed. In each case, an input pulse was chosen with the general 

form of E, . in Equation (65). Equation (61) could then be used to linear 
calculate 4>(t). E,. and $(t) were substituted into (66) to generate linear 
E ,. , whose Fourier transform (64) was taken using a standard Fast nonlinear 

72 Fourier Transform routine. The resulting spectrum was plotted over 

the desired frequency range. 

The calculation is begun by storing the input pulse in the computer 

as a one-dimensional array of complex numbers. To do this, the pulse 

shape E (t) is first calculated as an array of real numbers, which is 

then multiplied by a complex frequency factor exp(iu t). Multiple 

component input pulses are constructed by simply adding together the 

arrays representing the individual components, making it possible to vary 

the intensity and peak position of each component in any desired way. 

It should be noted that the product of the nonlinear constant a in 

Equation (61) and the pulse peak intensity form a single parameter in 

these calculations, which will be denoted <f . . Changes in the values 

of z and n, have the same effect as changes in the pulse intensity; the 

values of all of these quantities can thus be accounted for by this single 

parameter $ .. Throughout these calculations, the dispersion of n. 

was neglected. 

An additional feature of the computer programs can be used to delete 

one of the components of the input pulse just before taking the Fourier 

transform. The pulse will not appear in the spectrum, but is included 

in E(t) for the purpose of calculating the nonlinear phase factor $. 

This corresponds to the experimental situation when a stimulated Raman 

spectrum ip being taken, since the laser pulse may contrioute to the 



nonlinear index of refraction, but is not observed since it is thousands 

of wavenumbers from the Stokes wavelength. 

Using these methods, the effects of varying the pulse envelope, the 

number and distribution of frequency components, and the intensities of 

each was systematically investigated. Three different pulse envelopes 

were used: 1) gaussian, 2) a typical Nd:glass laser pulse shape of the 

type described by Equation (49), and 3) a Stokes pulse shape calculated 

numerically by the methods described in Chapter IV. The results of the 

calculations are illustrated by Figures 34 and 35, and show the two con

tributions to the modulation discussed above. Envelope modulation appears 

in every case, but does not become important until if . j> 10. Satellite 

modulation, on the other hand, generates the peaks which grow in Figure 

35(f)-(h), and visibly affects the appearance of the two-component spec

trum at $ v. values £0.1. The fact that satellite modulation appears 

at such low intensities indicates that multiple component Stokes spectra 

should more readily show the effects of phase modulation than single 

component spectra. 

The quantitative comparison of this theory with experiments is dif

ficult because the nonlinear index n„ and its dispersion are known for 
73 only a few simple liquids. In addition, it is difficult to know the 

intensities of the pump and Stokes fields inside the sample cell. But 

the qualitative predictions of the theory are testable, and were confirmed 

by a study of the stimulated Raman spectrum of methanol. Frequency 

doubled Nd:glass laser pulses of 10 mJ were focussed into a 15 cm cell 

of methanol, and the resulting Stokes spectra were displayed on an 

optical multichannel analyzer. By varying the pulse energy and focus, 

a range of phase-modulation effects could be produced. It is clear from 

the spectra presented in Figures 36 and 37 that the features which appear 
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Figure 34. Envelope modulation of single-component pulses. In (a)-(d), 
a gaussian pulse shape was used; in (e)-(h) a Nd:glass laser 
exciting pulse propagates with a Stokes pulse, and the Stokes 
spectrum as a function of laser pulse intensity is plotted. 
The nonlinear refractive index in (e)-(h) is generated by 
the laser pulse, and the Stokes spectrum displays the effects 
of the modulation. 6 , values are: (a) 0.0 (b) 0.9 (c) peak 
10.0 (d) 90.0 (e) 0.1 (f) 3.6 (g) 40.0 (h) 250.0. The 
asymmetry in (e)-(h) results from the asymmetry of the pulse 
shapes. 

Figure 35. These spectra are calculated for the case of a laser pulse 
and a two-component Stokes pulse. The Stokes spectrum in the 
absence of phase-modulation is shown in (e). Curves (e)-(h) 
represent a fixed laser intensity and increasing Stokes in
tensity; the values of 6 are (e) 0.0 (f) 0.1 (g) 0.4 
(h) 2.5. In (a)-(d) the Stokes field of (f), i.e., * e a f c = 
0.1, was held fixed as the laser intensity was increased. 
Values of * , for the laser field are (a) 0.1 (b) 10.0 Tpeak 
(c) 40.0 (d) 250.0. The calculation shows clearly that the 
sidebands which grow in curves (f)-(h) are related to the 
presence of two Stokes components. They appear at intensities 
too low to cause significant modulation of a single peak, and 
are separated in frequency by the splitting between the two 
parent Stokes peaks. 

Figure 36. Spectrum (a) is the transient stimulated Kaman spectrum of 
methanol in the absence of self-phase modulation, and shows 
the two peaks corresponding to the two Raman-active C-H 
stretch modes of this molecule. In (b) and (c) the sidebands 
resulting from phase-modulation are shown, as illustrated by 
the equally spaced arrows. These spectra resemble the cal
culated spectra Fig. 35(g) and 35(h). In (d) a large amount 
of broadening is also present, partially obscuring the parent 
peaks and the periodic sideband structure. 
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Figure 37. The spectrum on the right was obtained by tight focussing 
of the pump laser pulse. The arrows indicate the peak 
positions in the unmodulated methanol spectrum. The 
calculated spectrum on the left is almost identical to 
Fig. 34(g); its resemblance to the experimental spectrum 
indicates the presence of envelope modulation at high 
light field intensities. 
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CALCULATED SINGLE COMPONENT PHASE MODULATED SPECTRA 
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CALCULATED TWO-COMPONENT PHASE MODULATED SPECTRA 
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Figure 35 



135 

< 
o 
UJ 
Q. 
CO 

to 
o 
Id 

3 

s 

UJ 
2 
cr 
UJ a. x 
UJ 
Q 
z < 
o 
UJ 

3 
u 
4 
U 

e 

8 
CM O 
CD 
_ l 
m x 

PI 
V 
u 
3 
60 

cr 
< 
cr 

CD 
t£ 
4 

AHSN31NI aaznvwaoN 



136 

x 
i -
UJ 
2 
z 
< 
tr 
i -
o 
ui 
Q. 
<n 
en 
ui 

3 
2 

O 
- o 

in 
o 
ro 
«P 
CM 
O 
CD 
_ 1 
0 
X 

8 
03 
CM 

O 6 

Si 
N I-

u. 
I 
V) 

CO 
a) u 
3 
60 

A1ISN31NI Q3ZnVWaON 



137 

are explained quite well by the calculated spectra in Figures 34 and 35. 

The satellite peaks which appear in Figures 36(b) and (c), and the 

extremely modulated spectra in Figures 36(d) and 37 are characteristic. 

The fact that the onset of satellite modulation occurs at relatively 

low intensities suggests that molecules having spontaneous Raman spectra 

consisting of numerous close or overlapping bands should show very 

complex stimulated spectra. We have observed this in xylene and durene, 
74 and other workers have reported similar effects (without explanation). 

The theory developed here should make possible the interpretation of 

such complicated spectra, and even offers the possibility of studying 

those molecular properties known to be related to nonlinear optical 

constants. ' At the very least, this theory serves as a warning to 

the picosecond spectroscopist tha'- moderately sized molecules may often 

exhibit severe broadening of their stimulated Raman spectra. When 

stimulated scattering occurs from more than one mode, phase-modulation 

may be an intrinsic part of the excitation process. 
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CHAPTER VI 

CONCLUSIONS AND PROSPECTS 

It could be said that the study of vibrational energy transfer and 

dephasing in condensed phases Is in its infancy. Neither of the experi

mental techniques used in the present work is ideal, and the theoretical 

literature hardly shows anything like a consensus on how this problem 

can be modelled. 

But in spite of these facts, definite progress has been irade. The 

work on durene has shown that spontaneous Raman spectroscopy can be a 

powerful tool, especially when interesting temperature-dependent effects 

are present in the spectrum. The exchange model which we have developed 

explains the spectrum of durene quite well, and even reveals insights 

into the importance of derealization in vibrational modes in solids. 

Perhaps the most intriguing aspect of the application of exchange theory 

is that a great deal of information about the behavior of low frequency 

modes can be extracted from a study of the high frequency modes. It is 

because of the simplicity of the coupling scheme - one high frequency 

mode coupled to just one low-frequency mode - that the parameters which 

result from the exchange analysis can be interpreted in this way. The 

fact that the data establishes the validity of the simple coupling scheme 

in the vast majority of cases is one of the most important points in 

favor of the theory. The successful interpretation of the durene data 

does not establish the ubiquity of the exchange mechanism. But recent 
* ,_ ,_ ,_ * 41.51 

applications of the theory to other types of spectroscopy are 

encouraging, and suggest that further work along these lines may well 

prove fruitful. 
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The picosecond work has succeeded In demonstrating the possibili

ties and limitations of these kinds of experiments. Studying solids in 

this way is extremely difficult, and vibrational modes that have no 

stimulated Raman gain are inaccessible by this method. For some 

molecules, self-phase modulation may prove a roadblock. Nevertheless, 

a means of measuring homogeneous dephasing times is valuable, even if 

its range of application is limited. The recent measurement of a series 

of dephasing times in simple methyl liquids indicates the potential 

future directions open to this technique, and also shows that enough 

suitable molecules can be found to outline general trends. 

Since the picosecond methods are mainly applicable to liquids, and 

the exchange analysis requires a temperature range which is generally 

available only in the solid, the two techniques together may provide an 

interesting insight into how vibrational dynamics are different (or 

similar) in the two phases. Investigating the same molecule by both 

methods, perhaps including a picosecond T 1 measurement, offers the 

possibility of a further test of exchange theory. If it is found that 

the exchange mechanism is important in the liquid state as well, the 

combination of the two experimental techniques may lead to an even more 

thorough understanding of the vibrational dynamics than has been possible 

before. 

Chapter I raised the general question of what concepts could be used 

to describe energy and phase transfer in condensed matter. The continued 

development of experimental methods will enable the testing of the models 

constructed in answer to this question. Exchange theory represents one 

such model, and the development, testing, and application of that theory 

can be expected to lead to further generalizations about the nature of 

molecular dynamics. 



140 

APPENDIX 1 

INTERMEDIATE STEP IN EXCHANGE THEORY DERIVATION 

We wish to take the time average of the following function (text 

Equation (10)): 

Aa)01(t)dt)> (73) 
ft+T 

<f>CO = <exp(i 
Jt 

The interval t to t + T is broken up into n equal sublntervals. The 

integral is replaced by a summation, and the variables by discrete indices: 

n 
K T ) = <exp i I ^A(o(t+S T)>. (74) 

m=0 

We define a quantity Aw by 

Aw = Aw(t+- T) (75) 
m n 

which represents the value of Aw(t) at the end of each subinterval m. 

We now assume that Aw(t) can have only one value on a given subinterval, 

which can be either -6w/2 or 6u>/2 for the case of a two level system. 

As the index m is stepped from 0 to n, a set of Aw values results which 
m 

represents the "path" the system took to get from t tot+i. We now 

proceed by computing the probability that a particular set of Aw values 

occurs, and replace the time average in (75) by a probability-weighted 

average over all possible sets of Aw . We make the following definitions: 

W = probability that Am = -6w/2 and that 

Ato ... «= 6u)/2; i.e., an upward transition probability. 
1-W, = probability that Aw = -6w/2 and that + m 

Ao)., = -6u/2. nrri 
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W = probability that AID = 6u/2 and that 

Au - = -6io/2; i.e., a downward transition probability. 

1-W = probability that Aw = 6u>/2 and that Aw., = 6w/2. — m m+l 
W (-5w/2) = probability that Au_ = -6w/2. 

W1(6w/2) = probability that AwQ = W 2 . 

Consider the case where n=l. In this case, the summation in (74) will 

have only two terms 

I(.(T) = <exp it[Au(t) + Aw(t + T)]> (76) 

The function Aw(t) + Aw(t+T) has four possible values, whose probabilities 

can be computed from the W's defined above. The angle brackets in (76) 

will be replaced by these four terms, each multiplied by its probability: 

$(T) = W1(-fiw/2) exp(-iT6u/2)(l-W+) exp(-iT«w/2) 

+ W (-6w/2) exp(-it6w/2) W + exp(iT6ai/2) 

+ W1(5w/2) exp(ii<5w/2)(l-W_) exp(iT6u/2) 

+ W1(6w/2) exp(iT6w/2) W_ exp(-ir6w/2). (77) 

This can be rewritten in matrix form: 

(exp(-iT5w/2) 0 \ 
) (78) 

0 exp(iT6w/2)/ 

/1-W + W + \ /exp(-iTfiw/2)\ 

\ W_ 1-W_/\exp(iT6w/2) / 

For n=2, the first term in the expansion along the lines of (77) looks like: 
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W (-<W2)exp(-ix6w/4) (l-W+)exp(-iT6u/4) (l-W+)exp(-iTfieo/4) 

= W1(-6a)/2)exp(-iT6a)/4)2(l-w+)2exp(-iT5u/2). (79) 

In matrix form, this would square the two matrices in the middle of (78). 

For n=N (78) becomes 

/exp(-i £ 6(o/2) 0 \ N 

*(t) = (W.(-6w/2) UA6w/2))( w 

1 L \ 0 exp(i i 6o)/2)/ 

\ w _ 1 _ w _ / \exp(i J Soi/2) / 

Define the matrices W-, exp(i 77 Aa), W, and exp(i — Aw) by rewriting (80) 

<KT) = V^ • (exp(i ̂  Au) W ) N exp(i ̂  Aw) (81) 

Let e x p ( i ^ Aw) = 1 + i •£ Aw and W = 1 + IT £ ; l e t N + » N N N 

N 
1-V. V. \ / e x p ( - i £ 5 u / 2 ) \ 

+ + \ / N \ ( g 0 ) 

$(x) * W • expt( iAu+ir) • 1.. (82) 
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APPENDIX 2 

EXCHANGE THEORY FROM ZWANZIG-MORI FORMALISM 

In the Zwanzig-Mori formalism, the motion of a dynamical variable 
30 A is described by an equation of the form 

-r. ^•A(t) - ioj0A(t) = | <j.(i-s)A(s)ds + f(t) (83) 

where « is the frequency, f(t) is a random force acting upon A, and <J> 

is a damping function related to f(t) by the fluctuation-dissipation 

theorem: 

<f>(t) = <f(t)f*(0)>. (84) 

The brackets represent ensemble averages. In order to describe the 

motion of more than one dynamical variable, Equation (83) can be 

regarded as a matrix equation. The solution of (84) is 

f H(t-s 
Jn 

A(t) = H(t)A(0) + H(t-s)-f(s)d.s (85) 
'o 

where the correlation function H(t) is defined in terms of its Fourier 

transform: 

5 ( U ) = o»l-<o0-i$lZO ( % ) 

and 

*(u) = exp(-l(otH(t)dt. (87) 
J0 

The problem is reduced to the evaluation of <(I(IIJ) according to 

(84), i.e., finding the Fourier transforms of the force autocorrelation 
18—21 functions. This is the approach employed by Wertheimer in treating 

vibrational dephasing in condensed systems. 
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The form of (86) requires an approximation to be made in the case 

where the quantities A,(f>,f, and u. are matrices, namely, the matrix (J> 

must be diagonalized. This is accomplished using Rayleigh-Schroedinger 
i 

perturbation theory, which results in new matrix elements <|>. given by 

V = *±± + I A 1 -1 f ( 8 8 ) 

xi 1 = j ^ - ^ 

where ij>..(t) = <f. (t)f .*(0)> and f.(t) is the random force on dynamical 

variable A . 

In the Markoff approximation, it is assumed that <j>. .(t) = constant 

x6(t) and hence <J>..(<D) = constant. The exchange theory of Harris ' 

can be readily derived by considering two modes: A 1 with resonance 

frequency u_, and A_ with resonance frequency u_ + Aw. The quantity 

characterizes the linewidth in the absence of dephasing, z is the 

depopulation rate of mode 2, and the quantity o = exp(-E./kT) is intro

duced in the ensemble averaging process to satisfy detailed balance: 

<j> (io) = r + a x - 1 (89a) 

<f> 2 2(oO = r + T - 1 (89b) 

<t21((1j) = at" 1 (89c) 

<fr12(ti.) = T " 1 (89d) 

^ = a>0 (89e) 

w 22 = w 0 + A ( 0 ' ( 8 9 f ) 

Combination of (89) with (88) and (86) gives, in the low temperature 

limit o « 1: 

s w " 3 T i ( 9 0 ) 
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where the matrix L is diagonal. The lineshape of the transition A 1 can 

be described by calculating L 1: 

. -1 
L (exchange) = u>n + T - icr — f l M T - . (91) 

iAu+T 

Using the fact that Re(L) = frequency and Im(L) = damping, we obtain 

**a0=»eff = « 0 + 7 7 ^ (92) 
1+ (Aai) T 

1+ (All)) T 

which are the same as Equations (27) and (29). 

A more careful and comprehensive development along these lines sheds 

further light on the meaning of the parameters in (92) and (93), and 

allows the inclusion of additional dephasing and relaxation mechanisms. 

This more careful approach differs from the derivation above in three 

important respects: 1) The presence of more than one pair of exchanging 

modes can be readily represented. 2) Additional dephasing mechanisms 

are included by adding more terms to the force autocorrelation functions 

(84). Any physical process whose contribution is to be considered can 

be described by choosing an appropriate functional form for <p (t>- 3) 

The Markoffian approximation need not be invoked; instead, Wertheimer 
21 employs a "quasi-Markoffian" approximation in which <|>(<i0 is a complex 

constant <f> near a resonance of interest u = u . In other words, 4>Oo) a a 
is still considered to be a constant, as in the Markoffian case, but the 

value of the constant depends upon the frequency of a nearby resonance 

oi . 
a 

The treatment of Reference 21 includes the effects of exciton 

transfer processes in both the low-frequency and high-frequency modes, 
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the effects of dynamic coupling between a given high-frequency mode and 
neighboring modes (this is particularly important when Fermi resonances 
are present), the effects of cross-correlations, and the effects of re-

21 
laxation of the low-frequency modes. It is shown that when only one 
pair of modes is important, Equation (91) is still the correct functional 
form to describe the lineshape, but that the quantities Aw and T have 
Imaginary components. The presence of these components, denoted by Ao)' 
and T' respectively, produces a dephasing contribution which differs 
physically from exchange, and is described by 

L. (dynamic) ss w + ir - o [ ; ~ ^-s 7] 
1 ° (T' -Aur+(T -AM') 

x[T ," 1-Au)-i(T" 1-Au) ,)] (94) 

Two important conclusions can be drawn from this equation. The 
first stems from the consideration that T' is, according to the dis
cussion of References 17-21, temperature-dependent. Since the frequency 
shift from (94) is proportional to (T' - Aw), the possibility exists 
that the direction of the frequency shift could reverse with increasing 
temperature. We have never observed such behavior experimentally. In 
any case, the ratio of the broadening to the shift, which is temperature-
independent in the HSC model, is not expected to be temperature inde
pendent in the dynamic coupling treatment. The second conclusion con
cerns the coupling of high- to low-frequency modes. From (94) we would 

anticipate that a given high-frequency mode would be coupled most strongly 
-1 -1 2 to that low-frequency mode for which the prefactor T AW/[(T' - Aw) + 

-1 2 -1 
(T* -AUJ 1) ] is small, which would suggest that T - Aw. However, in 
the infrared combination band spectra shown in the body of the paper, 
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the positions of the observed peaks seem more consistent with the 

exchange predictions then with the scheme suggested by (94). 

The available evidence tends to indicate that the imaginary components 

of 610 and x are in fact small, in which case (91) retains its usefulness. 

It should be noted, however, that both of the mechanisms (91) and (94) 

will be present to a greater or lesser extent in any given situation, 

and a choice between them depends on a knowledge or estimate of the 

parameters involved. It seems desirable, therefore, to retain the 

exchange model (91) whenever possible, owing to the clear physical 

interpretation of the parameters 6ui and x. 
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APPENDIX 3 

LISTINGS OF COMPUTER PROGRAMS 

Two sets of programs are listed here: the first set performs the 

numerical integrations and convolutions for calculating the picosecond 

probe signal as a function of delay (see Chapter 4). The second set 

calculates self-phase modulated spectra using Fourier Transforms (see 

Chapter 5). 

Not listed in this appendix are the graphics programs which plot 

the calculated functions, since they are quite long and call a lot of 

library subroutines. The graphics routines were written to be generally 

useful without detailed knowledge of how they work. They are very 

interactive and the programming techniques require no subtleties that 

need to be explained. Some brief discussion of these programs will be 

given below in the proper places, but two general points should be men

tioned: 1) The plotting subroutines called by the main programs are 

contained in two diskette libraries, TCSLIB and PACLIB. Manuals 

describing the former, supplied by Tektronix, are available. PACLIB 

was written by this author, and documentation is available from me or 

from several members of the group. 2) When making any modifications to 

either the picosecond or self-phase modulation programs, be careful not 

to change the format of the files that are output to the disk, because 

this will give the graphics programs trouble when they try to read them. 

Except for this restriction, the graphics programs should be generally 

applicable to any kind of output data. Listing of the programs are 

available on disk files for anyone who needs them. 
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1. Picosecond Probe Signal Versus Delay Calculation 

Because of the length of the calculation and the restrictions 

imposed by the size of the LSI-11 memory, the calculation of the probe 

curves is broken down into 2 steps, each requiring a separate program. 

There is also a third program which calculates the standard deviation of 

a set of experimental points from a calculated curve, and a fourth pro

gram which plots everything. Also included in the listings is KMATCH, 

which was used to draw Figure 27. 

MAMA.: The "paTent" program of the set is titled "MAMA." This performs 

the numerical integration of Equation (46) as described in the 

text of Chapter 4. The program calculates an array Q which repre

sents the vibrational amplitude as a function of time. Q is 

numerically integrated along the z-axis, and can be output to the 

disk at the beginning and end of the cell, and at any desired 

number of intermediate steps. The calculated Q must be stored on 

the disk to be read subsequently by the convolution program. 

VARIABLE AMD ARRAY NAMES AND MEANINGS -

(all arrays represent functions of time) 

NZ - the number of steps along z at which data is to be output. 

If NZ is set to 1, data is output at the beginning (z=0) 

and end of the cell only. 

NOUT - the number of steps taken along z in between outputs. The 

total number of steps along z is 1SZ*N013T, usually 100. 

ZINC - the size of the increment along z in cm. The total cell 

length Is NZ*N0DT*ZINC. 

GSS - the steady-state stimulated Raman gain in cm/MW. 

GAMMA - 1/T 

T(400) - holds the values of the function exp(-rt) 
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NT - number of time intervals used (usually 300) 

TINM - the size of each time interval (usually 0.2 psec) 

TO - the starting point of the calculation in time (usually -25 

psec); in other words, the time integration runs from TO to 

TO+NT+TINC (usually from -25 to +35 psec) 

E(400) - initially holds the laser pulse shape E(t), later holds 
n 

|E(t)| exp(rt) (GO TO 201 in the source listing to see where 

the change occurs) 

G(400) - collects the calculated values of the new Q as the Runge-

Kutta procedure progresses. In other words, it is first 

used to hold k., then kj + 2k_ etc. (see Equation (51)). 

In the comment lines in the source listing, "FIRST POINT" 

means first term k.. in the Runge-Kutta formula (51). 

Q(400) - the vibrational amplitude -

AUX(400) - a work-space array used to hold various things. 

SUBROUTINES CALLED: 

INPUT - must be written by the user, and linked to the main program 

through COMMON. This is called at the very beginning, and must 

store data in the COMMON block arrays and variables NZ, ZINC, 

GSS, GAMMA, T, NT, TINC, TO, E, NOUT. At this point, E should 

contain the laser field E(t). This routine also must open a 

file for output. In the sample INPUT routing listed below, the 

values of all of the necessary parameters are read by INPUT 

from a data file. This version of INPUT calls a file opening 

routine OPENIT, a listing of which is also provided. 

OUTPUT - also linked through COMMON to the main program, this routine can 

be used to output any kind of data in any desired format. It is 

entered at the beginning of the numerical integration, and NZ 
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additional times during the progress of the calculation. 

QSF - numerical integration routine, used to perform the time integral 

in Equation (46). The version of this subroutine supplied in 

the DEC scientific subroutine package does not work. It has 

been modified to perform correctly; the modified source listing 

can be found in the disk file QSFWRK.FOR. This routine is not 

listed here. 

BRUTE. The convolution of the functions |Q| and |EL| is performed by 

brute force, using Equation (49) exactly as written. This program opens 

the file containing, at different steps along z, the function Q calcula

ted by MAMA. The use of BRUTE can choose from which step along z to take 

Q. MAMA's subroutine INPUT also had the foresight to write E(t) into this 

same file, so BRUTE can get both of the functions it needs from the same 

place. The convolution is done on every fifth point only, by shifting 

|Q| in time with respect to |E| , multiplying them together, and then 

doing the integration by calling QSF (see above under MAMA). The inte

grated values are stored in the array RESULT(400), which is written onto 

the disk (in a new file) at the end. All other variable definitions here 

are the same as MAMA. 

FITIT. Calculates the standard deviation from a set of calculated curves 

for a file of experimental data. This program requires a set of calcula

ted curves to be resident on a disk which is assigned the logical unit 

name ZZ: . (Use monitor ASSIGN statement, e.g., ASSIGN DX1: ZZ). The 

file names must consist of 3 letters and 2 numerals, and must be numbered 

sequentially, e.g., ABCOO.DAT, ABC01.DAT, ABC02.DAT, etc. There must also 

be available a file containing the experimental data, with error bars (see 

listing of example file to see format). FITIT takes the log of each 
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experimental point and subtracts from it the log of the calculated func

tion (obtained by interpolation), thus forming a set of N numbers, where 

N is the number of experimental observations. A (optionally) weighted 

least squares is performed on this set of numbers, and the result is 

output. The value of the experimental zero delay and the amount of 

information output can be changed interactively. This program does not 

call any subroutines. 

BUBBLE. Plots both experimental data files and the files output by BRUTE 

that contain the convoluted probe curves. To use this program, type R 

BUBBLE and the program responds with a "!". After the exclamation point, 

the user must type a sequence of one-letter codes which give instructions 

to the program. Up to 10 codes will be accepted at once, and after the 

execution of a string of commands the program again prompts with "I". 

The only way to exit this program is with a"C. The program will always 

request any information it needs, such as file names. The acceptable one 

letter commands are: 

X - reads and plots experimental data files, with error bars 

C - reads and plots a file containing a calculated curve 

E - erases the graphics screen 

S - shifts a calculated curve left or right (the program will ask by how 

much) 

N - normalizes a calculated curve (shifts it up or down) 

L - lists parameters that were initially input to MAMA 

R - replots experimental points (used to replot the same data after an 

erase) 

H - turns hard copy plotter on 

0 - turns hard copy plotter off. 
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2. Calculating Phase-Modulated Spectra by Fourier Transforms 

The main program here is a general Fourier transform program TRANS. 

The. source listing is liberally supplied with comment lines, so only 

some general remarks will be made here. There are tricks to handling 

the Fast Fourier Transform correctly, and a reading of Brigham's book 

(Reference 72) is almost a prerequisite for using this program cor

rectly. The program takes an input function, transforms it, and writes 

the transformed function into a disk file. This file can be subse

quently read and plotted by the program FFTPLT, which is completely 

interactive and self-explanatory. The user of TRANS must provide two 

subroutines: 

CURVE - must store the function to be transformed as a set of complex 

numbers; the real part goes in the array XR(2048), and the 

imaginary part goes in XI(2048). CURVE is linked to TRANS 

through COMMON. 

USER - can be entered if desired just before the transform is taken. 

This subroutine can perform any desired manipulations, for 

example, multiplying by the nonlinear phase factor <|>, as in the 

sample CURVE and USER below. 

The Fourier Transform subroutine FFT (which can be found in 

Brigham's book), and attendant other functions and subroutines are kept 

in a library file FFTLIB. To link the program, the user must type in 

the files containing CURVE and USER, along with TRANS and FFTLIB. To 

link the program whose listing is shown below, which was the program 

that calculated the curves show in Figure 32, type: 

R LINK 

DX1: ZINTH9 = DX1:TRANS, ZINTH9.FFTLIB 
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PROGRAM KMATCH 
C 
C COMPUTES ALPHA (STOKES DIVERGENCE) AND GAMMA (ANTI-STOKES 
C ANGLE) AS A FUNCTION OF PARAMETERS INPUT FROM KEYBOARD. 
C PLOTS ALPHA AND GAMMA AS A FUNCTION OF RAMAN SHIFT, DELTA OMEGA. 
C 

LOGICAL*l AA.G,CHOICE,PICK,XAXIS (lBKYAXIS (10) COMMON OMEGZ&,CMEG^,A,B,C,KX,KP,BETA,ALPHA,KS IMPLICIT REAL (K.L) EXTERNAL GAMMA,ZALPHA DIMENSION AALPHA(3),AGAMMA(3) DATA AA/'A'/ G / } G V CALL SETERR(13,255) CALL SCOPY ('(FS.Si'.XAXIS) CALL SCOPYr(F6.3r,YAXIS) C C FIRST SECTION—DATA INPUT C 901 WRITE (5,100) READ (5,101) A,B,C 902 WRITE(5,102) 
READ ( 5 . 1 0 3 ) LAMDAXjIAMDAP 
OMEGAX=1./LAMDAX*10.**8 
OMEGAP=l i/LAMDAP*10.**8 
KX=A*OMEGAX+B*OMEGAX**3+C*OMEGAX**5 
KP=A*OMEGAP+B*OMEGAP**34C*OMEGAP**5 

903 WRITE (5,297) READ (5,295) OMEGAS 297 FORMAT I'SENTER RAMAN SHIFT IN CM-1 ') 295 FORMAT(E16.6) OMEGAS=OMEGAX-OMEGAS 
KS=A*0MEGAS+B*C*3EGAS**3-K:*0MEGAS**5 WRITE (5.104) READ (5,105) BETA 904 WRITE (5.106) READ (5,103) DLOMGl,DLOMG2 C C COMPUTE AND TYPE ALPHA AND GAMMA FOR DELTA OMEGA EQUAL TO C DLOMG1, DLOMG2, AND (DLOMGl+DLOMG2)/2. C 
DIFF=(DLOMG2-DLOMG1)/2. 
DO 3 1 = 1 , 3 
OMG=DLOMGl+(1-1)*DIFF 
AGAMMA(I)=GAMMA(OMG) 
AALPHA(I)=ALPHA 

3 WRITE ( 5 , 1 1 0 ) OMG, AGAMMA(I), AALPHA(I) 
C 
C ENTER GRAPHICS SECTION OR RETURN FOR DATA ALTERATION 

WRITE ( 5 . 1 1 1 ) 
— (5.1l2)-§51 
READ (5.112) NCONT 
GO TO (905,912,901,902,903,904) NCONT 

905 CALL INnT(120) 
CALL PREP (8,6) 

912 WRITE (5,113) IE (5,113] 
READ (5,114) CHOICE 
~ (CHOICE .1 IF (CHOICE .EQ. AA) GO TO 910 
IF (CHOICE .NE. G) GO TO 912 

C 
C GAMMA VS. rjELTA OMEGA 
C 



CALL DWINDO (DLOMG1,DLOMG2.AMIN1(AGAMMA(1) ,AGAMMA(2) ,AGAMMA(3)) , 1AMAX1(AGAMMA(1) ,AGAMMA{2) ,AGAMMA{3))) CALL WINADJ(X1,X2,X3,X4) 801 CALL FCNELT(GAMMA,Xl,X2l CALL HICK(6,6,XAXIS,YAXIS,8,6) CALL HEADER CALL HARD (J) IF (J .EQ. 0) GO TO 801 GO TO 951 C C ALPHA VS. DELTA OMEGA C 910 CALL DWINDO(DLOMG1,DLOMG2,AMML(AALPHA(1) fAALPHA(2) ,AALPHA(3)} , 1AMAX1(AALPHA(l),AALPHA(2),AALPHA(3))) CALL WINADJ(X1.X2.X3,X4T 802 CALL FCNPLT(ZALPHA,X1,X2) CALL HICK(6,6,XAXIS,YAXIS,8,6) 
CALL HARDfJ) IF (J.EQ.0) GO TO 802 GO TO 951 100 FORMAT (' ENTER REFRACTIVE INDEX CONSTANTS A,B,C(ANGSTROM UNITS) 

101 FORMAT(3E16.8) 
102 FORMAT I 'SENTER EXCITING AND PROBE WAVELENGTHS (ANGSTROMS): ') 
103 FORMATI2E1678) 
104 FORMAT!'SENTER BETA: *) 105 FOKMATIE16.8) 106 FORMATi'$ENTER MIN. AND MAX. RAMAN SHIFTS: ') 110 FOFMATr DELTA OMEGA= ,,F9.3," GAMMA= \F8.6,' ALPHA= !,F8.6) 111 FORMAT (' ENTER CONTROL INTEGER:'/ 1' 1-PLCT WITH ERASE; 2-PIOT WITHOUT ERASE'/ 1' 3-6: REENTER DATA STARTING WITH: '/ 1' 3-A,B,C; 4-WAVELENGTHS; 5-BETA; 6-RAMAN SHIFT LIMITS.') 112 FORMAT YI3) 113 FOEMAT ('$DO YOU WANT ALPHA OR GAMMA PLOTTED(A OR G): ') 114 FOKMAT (1A) END 

PROGRAM MAMA 'STIMULATED RAMAN INTEGRATION 
COMMON NZ,ZINC,GSS,GAMMA,T,NT,TINC,T0,E,G,Q,IZ,AUX,NOUT DIMENSION E(400) ,T(400) ,6(400) ,Q(400) ,AUX(400) C C SUBROUTINE 'INPUT' SUPPLIES THE VALUES OF THE PARAMETERS C NZ,ZINC,GSS,GAMMA,T,NT,TINC,T0,E C CALL INPUT C 

C LOOP TO CALCULATE INITIAL CONDITIONS 
C 

DO 201 I=1,NT 
Q(I)=E(I)/T(I] 

201 E]l)=EjI)*E(I /T(I) 

301 T(I)=T(I)*GSS*ZINC 
IZ=0 

file:///F8.6,'
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CALL OUTPUT C C RUNGE-KUTTA LOOP C DO 202 IZ=1.NZ DO 299 IJZ=1,N0UT DO 302 1=1,NT 302 G(I)=Q(I)*E(I) CALL QSF(TINC,GrGrNT) DO 5021=1,NT 502 G(I)=G(I)*T(I) 
C FIRST POINT=G*ZINC; DEFINE INTEGRAND FOR SECOND POINT C 

DO 203 I=1,NT 
203 AUX(I) = (Q(I)+G(I))*E(I) 
C DO INTEGRAL AND MULTIPLY BY T(I)*GSS TO GET SECOND POINT C CALL QSF(TINC,AUX,AUX,NT) DO 303I=1,NT AUX(I)=AUX(I)*T(I) 303 G(I)=G(I)+2.*AUX(I) C C G(I) CONTAINS FIRST PT. + 2*SECOND POINT. DEFINE INTEGRAND C FOR THIRD POINT. C DO 204 I=1,NT 204 AUX(I)=(Q(I)+AUX(I))*E(I) C DO INTEGRAL CALL QSF(TINC,AUX,AUX,NT) DO 3041=1,NT AUX(ll=AUX(I)*T(I) 304 G(I)=G(I)+2.*AUX(I) C 
C G { I ) NOW CONTAINS FIRST+2*SECOHD+2*THTRD POINTS. 
C DEFINE INTEGRAND FOR FOURTH POINT. C DO 205 I=1,NT 205 AUX(I)={g?I)+AUX(I)*2.)*E(I)_ C DO INTEGRAL AND CALCULATE NEW VALUES FOR Q(I) CALL QSF(TINC,AUX,AUX,NT) DO 305 I=1,NT 
305 g i i ) ^ i ^ I ? ( I , 4 T ( I ) ) * - 3 3 3 3 3 3 3 3 3 

C OUTPUT VALUES C 299 CONTINUE CALL OUTPUT 202 CONTINUE STOP END SUBROUTINE INPUT IVERSION 3 

c ' / E 

C READS ALL INFORMATION FROM DATA FILE WITH USER-INPUT NAME. 
C SETS UP OUTPUT FILE STRUCTURE. 
C 
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WRITE (5,100) 
100 FORMAT If$ENTER NAME OF INPUT FILE... ') 

C 

CALL ASSIGN(6,BOZO,-l) READ CALL READ (6,101) NZ,ZINC,NOUr,GSS.PKI,T2,NT,TINC,T0,Cl,C2 CALL CLOSE(6) 101 FORMAT (I5,E16.6,I5/3E16.6/I5,2E16.6/2E16.6) CALL OPENIT(7,NZ+3,2*NT,IDUMB,0) WRITE (7'1) NZ,ZINC,NOUr,GSS,PKI,T2,NT,TINCfT0 GAMMA=1./T2 GSS=PKI*GSS*0.5*GAMMA DO 1 I=1,NT 
T(I)=EXP(-GAMMA*TE) , , IF (TE .LE. 0.)E(I)=EXP(-TE*TE/C1/C1*0.5) IF (TE .GT. 0.[ E(I)=SQRT(2./(EXP(TE/C2)+EXP(-TE/C2))) AUX_(I)=E(I)*E(I) 1 CONTINUE WRITE (7'2) (AUX(I),I=1,NT) RETURN END SUBROUTINE OUTPUT 1VERSION 3 COMMON NZ,ZINC,GSS,GAMMA,T,NrfTINC,T0,E,G,Q,IZ,AUX C C THIS VERSION WRITES Q**2 ONTO THE DISK AT EACH C STEP ALONG Z. 
COMMON /EXTRA/ IDUMB 
DIMENSION E{400),T(400),G(400),Q(400) ,AUX(400) 
J=IZ+3 
DO 8_I=1,NT 
WRITE (7~3) °G(I) ,I=1,NI) RETURN END 

PROGRAM BRUTE C C CONVOLUTES PROBE PULSE SHAPE WITH VIBRATIONAL AMPLITUDE. C INPUT DATA COMES FROM DATA FILE CREATED BY PROGRAM 'MAMA1 

C DIMENSION E(2000),Q(2000),X(2000),RESULT(400) 1999 DO 6 1=1,2000 
E(I)=0. 

6 Q(I)=0. 
CALL OPENIT(6,NTRAX,NRCRDS,IAV,l) 
READ (6'1) NZ,ZDJCrlDOTfGSS,PKIfT2fNTfTINClT0 N0=OT-INT (-T0/TDJC) READ (6'2) (E(N0+I),I=1,NT) !TIME=0 OCCURS AT PT. NT WRITE (5,100) NZ 100 FORMAT ('$FILE CONTAINS',14,' STEPS ALONG Z'/ l^CHCOSE DESIRED STEP NO... ') READ 75,102) IN 102 FORMAT(I6) IN=IN+2 
8£P J08U®< I>' I" 1'O T> 
CALL CLOSE(6) 
N0=OT*2-N0 
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5=NT/5 
C 
C CONVOLUTION LOOP 
C DO 1 IA=1,NT05 DO 2 1=1,N0 2 X(I)=Q(I *E(I) CALL QSFJTINC,X,X,N0) RESULT (NT05+1-IA)=X (N0) DO 3 I=N0,6,-1 3 QiD=Q(I-5) !SHIFT Q BY 5 POINTS EACH CYCLE. DO 4 1=1,5 
4 Qm=0. 
1 CONTINUE CALL OPENIT(6,2,NTO5*2,IAVf0) WRITE (6'2) (RESULT(I) .I=1,NT05) ZINC=ZINC*2.*FLQAT(IN-3)*NOUT WRITE^'l) ZINC,GSS,PKI,T2,TINC,T0 CALL CLOSE(6) GOTO 1999 END 

PROGRAM FITIT C C STEPS THROUGH CURVES OF PROBE SIGNAL VS.DELAY AND C PERFORMS LEAST SQUARES COMPARISON WITH A SET OF C CALCULATED CURVES. C DIMENSION TIME(50),SIGNAL(50),ERROR(50),CALCUL(200),STIME(50) DIMENSION TCALCl200),Z{r"" "" 50).X(50),IBAD(50)_ iPZ(2),NAME(16),PREF3 LOGICAL*l NINE,ZERO fSTOPZ(2) ,NAME(16) ,PREFIX(5) ,EXTEN(4) DATA NINE,ZERO7"9',(0'/ EQUIVALENCE (PREFIX(1),NAME(4)),(EXTEN(l),NAME(9)) 
CAlL SCOPY('ZZ:',NAME) 
WRITE(5,*) 'ZZ: MUST BE ASSIGNED' 1 WRITE 5.*) 'FILENAME WITH EXPERIMENTAL DATA' WRITE (5,*) '*r CALL ASSIGN (6,BOZOf-l) WRITE(5,*) 'ENTER OUTPUT CODE' READ 5,*) ISUP C C READ EXPERIMENTAL OBSERVATIONS C 1=1 12 READ (6,*.END=112) SIGNALJI) .STIMEJI) .ERRORfl) ERROR li=l./(AIOGl0(SIGt^(I)+ERK!R(I))-AIDG10(SIGNAL(I)))**2 SIGNAL (I) =AIO310 (SIGNAL (I)) 
GOTO 12 

1 1 2 NPTS=I-1 
WRITE(5,*) 'ENTER ZERO OF DELAY, NO. OF STEPS, STEP SIZE' 
READ ] 5 , * ) . ZERODI,NSTEPS,ZSTEP 
CALL CLOSE(6) 

C 
C SET UPTO READ CALCULATED FILES 
C 

WRITE(5,*) 'STARTING 3-LETTER FILENAME 2-DIGIT NO. 
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D (5,100) PREFIX FORMAT " " 100 FORMAT (5A) WRITE(5,*) 'ENTER FINAL FILE NO.' READ (5,102) STOPZ 102 FORMAT (2A) WRITE(5,*) 'ENTER 1 FOR UNIT WEIGHTS' READ (5,*). IWT 2 ZERDD=ZERODI CALL SCOPYC.DAS'.EXTEN) , , „ IF (ISUP .NE. 1)WRITE(5,104) (NAME(I) ,1=1,8) 104 FORMAT]' ACCESSING FILE ' ,8A) CALL ASSIGN(6,NAME,12T READ (6.106) NTRAX,NRCRDS 106 FORMAT(218) CALL CLOSE(6) NAME(12)=NAME(12)+1 C C FOR FILE OPENING PROCEDURE, SEE LISTING OF 'OPENrT' C CALL ASSIGN(6,NAME,12) DEFINE FILE 6 (NTRAX,NRCRDS,U,IAV) READ (6'1) ZINC,GSS,PKI,T2,TINC,T0 NT=NRCRDS/2 TINC=TINC*5 READ (6'2) *(CALCUL(I) ,I=1,NT) ICALCULATED CURVE CALL CLOSE(6) DO 212 I=1,NT CALCUL(I)=ALOG10(CALCUL(I)) 212 TCALC(I)=T0+TINC*FLOAT(I) C C INTERPOLATE BEIWEEN NEAREST CALCULATED POINTS FOR EACH C DATA POINT C SIGMAM=l.E+32 DO 9000 IRS=1,NSTEPS DO 16 I=1,NPTS ICONVERT FROM MM. TO PSEC. DELAY 
16 TMEm=6.6666666*(ZEROD-STIME(I)) 

DO 312 I=1,NPTS 
IBAD(I)=0 
10=0 
DO 412 IX=2,NT 

412 IF (TCALC(IX) .GT. TIME (I) .AND. IQ .EQ. 0) IQ=IX 
IFJIQ .EQ. 0) GOTO 201 FJIQ .EQ. 0) < 

^TIO=(TIME(Ii-, I1 

RATIO= (TIME (I)-TCALC (IQ-1))/(TCALC (IQ)-TCALC (IQ-1)) 
Z^KaLCUL(l6-l)+RATIO*(C»tCQI.(IQ)-CA^UL(IQ-l)) 

2012 IBAD(I)=1 
IBADS=IBADS+1 z7lT=SIGNAL(I) 312 Z(I)=Z(I)-SIGNAL(I) 

C DO WEIGHTED LEAST SQUARES 
IF(IWT .NE. 1) GOTO 66 DO 76 I=1,NPTS 76 ERROR(I)=I. 66 SUM=0. SUMX=0. SIGMA=0. DO 512 I=1,NFTS 
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IF (IBAD(I) .EQ. 1) GOTO 512 
SUM=SUM+ERROR(I) 512 SrjMX=SUMX+ERROR(I)*Z(I) 
XMEAN=SUMX/SUM 
DO 612 I=1.NPTS 

612 SIGMA=SIGMA+(Z(I)-XMEAN)**2 
SIGMA=^OT(SIGMA/FLOAT(NPTS-l-IBADS)) 
IF (SIGMA .LT. SIGMAM) SIGMAM=SIGMA 
IF (SIGMAM .EQ. SIGMA) ZERODM=ZEROD 
IF JISUP .EQ. l.OR. ISUP .EQ. 2) GOTO 9000 
WRITE(5,*) ÂVERAGE NORMALIZATION*.XMEAN,'STD.DEV.',SIGMA 
WRITE (5 ,*) 'Z=',ZINC,' T2= ' ,T2 , ' ZERO DELAY', ZEROD 
IF (ISUP .NE. 0) GOTO 9000 
WRITE (5 ,*) ' RATIO TIME DIFF WEIGHT' 
DO 712 I=1,NPTS 
DIFF=Z(I)-XMEAN 
IF(IBAD(I) .EQ. 1) DIFF=0. 
WRTIE(5,*)Z(I),TIME(I),DIFF,ERROR(I) 

712 CONTINUE 
9000 ZEROD=ZEROD+ZSTEP 
8000 WRITE(5,*) 'T2= VT2,'STD.DEV. ' .SIGMAM,'ZERO DELAY '.ZERODM 

IF (NAME (7) .EQ. STOPZ(l) .AND. NAME (8) .EQ. STOPZ(2))GOT01 
IF (NAME (8) .EQ. NINE) GOTO 1001 NAME(8)=NAME(8)+1 
GOTO 2 1001 NAME(7)=NAME(7)+1 NAME(8)=ZERO 
GOTO 2 
END 

SAMPLE BATCH COMMAND FILE LISTING: 
SJOB ?RT11 

TTYIO 
LET A="0 LET B="0 LOOP: .R MAMA *B:SHAP,A"B' *B:ITCH .R BRUTE *B:ITCH *2 *B:SHP ,A"B' 
IF (B-"9) NEXT,CARFY,CARRY NEXT* 
"IF (A-"9) NXT,STOP,STOP NXT: 
%B 
GOTO -LOOP 

CARRY: 
%A 
££T B s s* ,0 
IF (A-"3) -LOQP,HALT,HALT 

STOP: 
IF ( B - n l ) -NXT,HALT,HALT 

$EOJ 
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SAMPLE DATA FILE FOR INPUT INTO 'MAMA': 
1 0.100000E+00 50 0.787000E-02 0.100000E+04 0.900000E400 300 0.200000E400 -0.250000E+02 0.700000E+01 0.300000E-W1 

PROGRAM TRANS C C THIS PROGRAM PROVIDES A FLEXIBLE FOURIER TRANSFORM ROUTINE C WITH SEVERAL INPUT AND OUTPUT OPTIONS. THE TRANSFORM IS C ACCOMPLISHED BY THE SUBROUTINE 'FET', WHICH IS TAKEN FROM C 'THE FAST FOURIER TRANSFORM',E.O. BRIGHAM (PRENTICE-HALL, 1974) C PAGE 164. C INPUT DATA TO BE TRANSFORMED IS SUPPLIED EITHER THROUGH C THE USER-WRITTEN SUBROUTINE 'CURVE', OR FROM A DISK FILE. C THE DATA FILE MUST BE UNFORMATTED (SEE APPROPRIATE POINT IN SOURCE C LISTING). THIS DATA MAY BE FURTHER MANIPULATED C BEFORE TRANSFORMING BY TWO ADDITIONAL SUBROUTINES: C 1) 'USER' IS A USER-WRITTEN ROUTINE OPTIONALLY C ENTERED BEFORE TRANSFORM IS TAKEN, WHICH CAN BE USED C TO PERFORM ANY DESIRED OPERATIONS. C 2) 'HANING' IS A SUPPLIED ROUTINE WHICH TREATS C THE DATA USING THE 'HANNING TRUNCATION FUNCTION' METHOD C AS DISCUSSED IN BRIGHAM, CHAPTER 9. C AFTER TRANSFORM IS COMPLETE, THE USER SELECTS C THE FORM IN WHICH THE OUTPUT DATA IS DISPLAYED. C 1) DATA CAN BE STORED AS REAL AND IMAGINARY C PART OF TRANSFORMED FUNCTION, OVER THE INTERVAL C (0,2PI). C 2} DATA CAN, BE. STORED AS AMPLITUDE AND PHASE FACTOR C OVER THE INTERVAL (-PI,PI). AGAIN, SEE BRIGHAM C CHAPTERS 2 AND 6. C THIS PROGRAM IS DESIGNED TO WORK ON ARRAYS C OF 2048 POINTS. SMALLER ARRAYS ARE POSSIBLE, BUT THE ONLY C ALLOWABLE NUMBER OF DATA POINTS IS 2**K. THE TRANSFORMED SPECTRUM C WILL HAVE AS MANY POINTS AS THE INPUT FUNCTION. C £LL SUBROUTINE LINKAGE IS THROUGH COMMON. C C XR—ARRAY CONTAINING THE REAL VALUES OF THE FUNCTION C XI-TARRAY CONTAINING THE IMAGINARY VALUES OF THE FUNCTION. C M—INDICATES TOTAL NUMBER OF POINTS BEING USED BY TH C RELATION N=2**M. C THE RETURNED TRANSFORMED FUNCTION IS STORED IN THE SAME C ARRAYS, XR AND XI; HENCE, INPUT DATA IS DESTROYED IN THE C TRANSFORM PROCESS. C C THE COMPANION PROGRAM, FFTPLT, CAN BE USED TO PLOT THE OUTPUT. 
COMMON XR(2048),XI(2048) ,M C C DATA INPUT SECTION C 

1 M=ll 'DEFAULT NUMBER OF DATA POINTS IS 2048, UNLESS CHANGED C BY 'CURVE' OR 'USER'. WRITE (5,100) 100 FORMATJ'SrNPUr METHOD: 1 SUBROUTINE, 0 DISK FILE ') READ (5,102) ICONT 102 FORMAT (16) 
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IF (ICONT)201,203,201 
201 CALL CURVE 

GOTO 2 
203 CALL ASSIGN(6,BOZO.-l) 

DEFINE FILE 6 (1,8192,U,IAV) READ l6'l) XR.XI "NOTE INPUT FILE FORMAT!!! 
CALL CLOSE (6) 

C 
C DATA PREPARATION SECTION 
C 
2 WRITE (5 .104) 
104 FOFMAT ( 'S0 FOR TRANSFORM; 1 FOR USER ROUTINE; 2 FOR TRUNCATION ' ) 

READ j5,102) ICONT 
IF (ICONT-1) 300,220,300 220 CALL USER GOTO 2 
CALL ASSIGN (6,BOZO.-l) DEFINE FILE 6 (2,8192,U,IAV) WRITE (6'1) XR,XI IF (ICONT .EQ. 2) CALL HANING C 

C DO TRANSFORM C 
CALL FFT 
WRITE (5,106) 106 FORMAT ('STYPE 1 FOR AMPLITUDE/PHASE; 0 FOR COMPLEX FORMAT ') 
READ l5,102TlCONT IF (ICONT .EQ. 0) GO TO 1234 CALL SWAP 
WRITE (6*2) XR,XI 
READ (6'1) XR,XI CALL SWAP2 
WRITE (6'1) XR,XI GO TO 1235 1234 WRITE (6'2) XR,XI 

1235 CALL CLOSE(6) GOTO 1 
END 

SUBROUTINE CURVE !SUPERIMPOSES ARBITRARY NUMBER OF 
C STOKES PULSES. 

DATA PI / 3 . 1 4 1 5 9 2 6 / 
REAL XBUr'F 
COMMON XR(2048),XI(2048) 
COMMON/BUFF/ RBUFF 300),IBUFF(300),IZERO,NT 
DO 7 1=1,2048 
XR(I)=0. 

7 Xljli=0-
203 WRITE(5,1233) 
1233 FORMAT r$TYPE FILENAME CONTAINING STOKES PULSE') 

CALL ASSIGN (4,BOZO.-l) 
DEFINE FILE 4 (54,1200,U,IAV) 
READ (4 ' 1 ) NZ,ZINC,NOUT,GSS,PKI,T2,Nr,TINC,T0 
IZERO=INT(-T0/nNCl 
READ (4'NZ+3) (RBUFF(I).IBUFF(I), I=1,NT) 
READ ] 4 ' 2 ) ( iBUFF(I) ,I=l ,NT) 
CALL CLOSE(4) 
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DO 9 I=1,NT D IF (MOD(I,5) .EQ. 0) WRITE (5,1010) RBUFF(I),IBUFF(I) D1010 FORMAT 2(1PE16.6)) 9 RBUFF(I)=RBUFF(I)*IBUFF(I) WRITE(5,1234) 1234 FORMAT?1 ENTER PERIOD IN POINTS (REAL NO.), INT. FACTOR; 11 NEW FILE.-l EXIT') 202 READ (5,100) PER,FINT,ICOP 100 FORMAT (2E16.6,I6) IF (PER .EQ. 0.) PER=l.E+30 PER=2.*PI/PER DO 1 I=1,NT PHASE=FLOAT(I)*PER INDEX=1025-IZERO+I XR(INDEX)=FINT*RBUFF(I) *COS (PHASE)+XR (INDEX) 1 XI DJDEXJ=FINT*RBUFF]I *SIN(PHASE +XI INDEX) IF (LOOP) 201,202,203 201 WRITE (5,1235) rj'li 1235 FORMAT]'SENTER LASER INTENSITY FACTOR') READ (5.100) PINT DO 2 I=1,NT 2 IBUFF(I)=IBUFF(I)*FINT END SUBROUTINE USER ! ADDS PHASE FACTOR TO ACCOUNT FOR NON-C LINEAR INDEX OF REFRACTION. SEE C ZINTH, LAUBEREAU. AND KAISER, C OPT. COMM. 22,161 (1977) COMPLEX C1,C2 REAL IBUFF «• 
COMMON XRJ2048),XI(2048),M 
COMMON/BUFF/RBUFF(300),IBUFF(300),IZERO,NT 

1 WRITE (5.100) 
100 FORMATl'SENTER CONSTANT (CM**4/MK**2): ') 

READ 15,102) CONST 
102 FORMAT (E16.6) 

CONST=C01BT*l .E-18 
DO 7 1=1,2048 
ICHECK=I+IZERO-1025 
TEST=OVER(XI(I)) 
TEar=TEST40VER(XR (I ) ) 
IF (ICHECK .GP. 0 .AND. ICHECK .LT. 301) TEST=TEST+ 

lOVERdBUFF (ICHECK)) 
TEST=CONST*TEST 
IF (TEST .LT. .001) GO TO 999 
C2=CMPLX ( C 0 S ] T E S T ) ,SIN (TEST)) 998 C1=€MPLX(XR(I) ,XI (I)) C1=C1*C2 D IF (MOD(I,10) .EQ. 0) WRITE (5,110) C1,C2,I,TEST D110 FORMAT i4E14.6,I5,E14.6) XR(I)=REAL(C1) 
ffip5MMflG(C1) 

999 C2=CMPLX(1.,TEST) GOTO 998 
END 
FUNCTION OVER(A) !SQUARES A WITHOUT DANGER OF OVER C UNDERFLOW OVER=0. IF (ABS(A).LT.1.E-4)RETURN IF (ABS A).GT.1.E+14)RETURN OVER=A*A RETURN 

7 
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END 

SUBROUTINE SWAP C C REARRANGES DATA AS DESCRIBED IN MAIN PROGRAM C COMMON XR(2048),XI(2048},M 
N=2**(M-l) 
DO 7 I=1,N 
NPI=N+I 
EXR=SQRT (SQUARE (XR (I) )+SQUARE (XI (I) ) ) 
EXI=SATAN (XI (I) ,XR I ) ) 
XR(I)=SQmSQUARE(XR(p>I))+SffJARE(XI (NPI))) 
XI i l =SATAN (XI (NPI) ,XR(NPI)) 
XR(NPI)=EXR 

7 x f | p i ) = E X I 

END 
SUBROUTINE HANING 

C 
C MULTIPLIES THE FUNCTION TO BE TRANSFORMED BY THE 
C 'HANNING TRUNCATION FUNCTION' 
C COMMON XR(2048),XI(2048) ,M EN=FLOAT(2**M) DO 7 I=1,2**M H=0.5+0.5*COS(6.283185307*FLOAT(I)/EN) XR(I)=H*XR(I) 
7 XI(li=H*XI(I) 

RETURN END SUBROUTINE FFT C C SEE BRIGHAM, 'THE FAST FOURIER TRANSFORM', PAGE 164. C COMMON XREAL(2048),XIMAG(2048),NU N=2**NU N2=N/2 NUl4lU-l K=0 DO 100 L=1,NU 102 DO 101 I=1,N2 P=IBITRiK/2**NUl,NU) ARG=6.283185*P/FLQAT (N) OCOS(ARG) S=SINJARG) K1=K+I K1N2=K1+N2 TREAL=XREAL (K1N2) *C+XIMAG (K1N2) *S TIMAG=XIMAG (K1N2 j *C-XREAL (K1N2) *S XREAL XIMAG XREAL XIMAG 101 K=K+1 

K1N2) =XREAL(Kl)-TREAL K0N2) =XIMAG JKlj-TIKAG Kl =XREAL(KI)+TREAL Kl)=XIMAG Kl +TIMAG 
K=K+N2 
IF (K .LT. N) GOTO 102 
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K=0 
NU1=NU1-1 

100 N2=N2/2 
DO 103 K=1,N 
I=IBITR(K-I,NU)+1 
IF ( I . I E . K T Q O T O 103 

XREAL(K)=XREALm XIMAGfK =XIMAG(I) XREAL I)=TREAL XIMAG(I)=TIMAG 103 CONTINUE RETURN END FUNCTION IBITR(J,NU) J1=J IBITR=0 DO 200 1=1,NU J2=Jl/2 IBITR=IBITR*2+(J1-2*J2) 200 J1=J2 RETURN END 
SUBROUTINE SWAP2 
COMMON XR(2048),XI(2048) ,M 
N=2**M 
DO 7 1=1,N 1AJ / X—J. f Vi 
EXTRA=SQRT(SQUARE(XR(I) )+SQUARE(XI ( I ) ) ) XI(I)=SATAN(XI(I),XR I XR(I)=EXTRA RETURN END FUNCTION SQUARE(B) !SQUARES A WITHOUT UNDERFLOW OR OVERFLOW A=ABS(B) 
IF fA IiT 
IF (A IGT". I.E+I5) A=i.E+15 
IF (A .Iff. l.E-15) A=0. 
SQUARE=A*A RETURN END FUNCTION SATAN(X,Y) 

(x ; - - " " ^ * L _ 
IF (X.EQ. 0) SATAN=0 
SATAN=ATAN2(X,Y) 
IF (X .Iff. 0. .XOR. Y .Iff. 0) SATAN=-SATAN 
RETURN END FUNCTION TAN (A) TAN=SDJ(A)/COS(A) RETURN END 



SUBROUTINE OPENIT(LUN,NTRAX,NRCRDS,IAV,NIO) C C OPENS A DATA FILE FOR I/O OPERATIONS (UNFORMATTED). C ON OUTPUT, A DATA FILE WITH A USER-INPUT NAME AND C EXTENSION .DAS IS CREATED WHICH CONTAINS THE NUMBER C OF TRACKS AND THE NUMBER OF RECORDS IN EACH. C A FILE OF THE SAME NAME ftfJD THE STANDARD EXTENSION C .DAT HOLDS THE DATA ITSELF. C 
C LUN — LOGICAL UNIT NUMBER FOR FILE TO BE OPENED. C NTRAX — NUMBER OF TRACKS IN DATA FILE C NRCRDS-HSIUMBER OF RECORDS IN EACH TRACK C IAV — 'ASSOCIATED VARIABLE' OF THE FILE C NIO — MUST BE 0 FOR A FILE TO BE CREATED C — MUST BE 1 TO READ AN EXISTING FILE C 
C TO READ AN EXISTING FILE, THE FILE WITH EXTENSION .DAS C IS SCANNED FIRST, AND THE INFORMATION THERE IS USED C TO SET UP THE DATA FILE TO BE READ PROPERLY. C THUS TO READ A DATA C FILE'WITH THIS ROUTINE, THE COMPANION '.DAS' FILE MUST C BE RESIDENT ON THE SAME DISK. LOGICAL*l NAME(40), BLANK DATA BLANK /' */ IF (NIO .EQ. 0) WRITE (5,100) IF (NIO .EQ. 1) WRITE (5,200) 100 FORMAT ('SFILE TO BE WRITTEN... ') 200 FORMAT ('9FILE TO BE READ... ') READ 75,102) NAME 102 FORMAT (40A) 1=0 7 1=1+1 IF (NAME(I) .NE. BLANK) GO TO 7 CALL INSERT?'.DAS',NAME,I) CALL ASSIGN LUN,NAME,0) IF (NIO .EQ. 0) WRITE (LUN. 104) NTRAX,NRCRDS IF (NIO .EQ. 1 READ (LUN,l04) NTRAX,NRCRDS 104 FORMAT (218) CALL CLOSE (LUN) NAME(I+3)=NAME(I+3)+l CALL ASSIGN (LUN,NAME,0) DEFINE FILE LUN (NTRAX,NRCRDS,U,IAV) RETURN END 
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