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ABSTRACT

Pion condensation has not previously been investigated in a theory

that accounts for the known bulk properties of nuclear matter, its

saturation energy and density and compressibility. We have formulated

and solved self-consistently, in the mean field approximation, a

relativistic field theory that possesses a condensate solution and

reproduces the correct bulk properties of nuclear matter, The theory

is solved in its relativistically covariant form for a general class

of space-time dependent pion condensates. Self-consistency and

compatibility with bulk properties of nuclear matter turn out to be

very stringent conditions on the existence and energy of the condensate,

but they do allow a weak condensate energy to develop. The spin-isospin

density oscillations, on the other hand, can be large. It is encouraging,

as concerns the possible existence of new phases of nuclear matter, that

this is so, unlike the Lee-Wick density isomer, that appears to be

incompatible with nuclear matter properties.

*This work was supported by the Division of Nuclear Physics of the
U.S. Department of Energy under contract no. W-7405-ENG-48.
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I. INTRODUCTION

Interest in the theory of matter at densities above that of nuclei

has been stimulated in the last few years by developments in both astro-

physics and nuclear physics. In astrophysics, the equation of state of

matter over a very wide range is needed to calculate supernova explosions

and neutron star properties. In nuclear physics, collisions between

nuclei at relativistic energies may create dense nuclear matter for the

first time in the laboratory. At high density, new states of matter

become possible, involving additional particles or field configurations

than are present in the ground state. Several such states have been

discussed in the literature, the pion condensate, and the density isomer. l

At sufficiently high energy density, excitations of the internal structure

2of the nucleons become possible, leading perhaps ultimately to a quark

3
matter phase.

The pion condensate has been studied in two approaches. Each has

some advantages and disadvantages compared to the other. In one of these,

the pion propagator in the nuclear medium is studied. l The singularities

of the propagator occur at the energies of excitation of the medium

with the quantum numbers of the pion. At the density for which the lowest

excitation becomes degenerate with the ground state, a symmetry of the

original ground state is lost. In this case it is parity. This density

is the critical density, above which the ground state has a finite

amp+itude for the condensate. In this approach, which is equivalent

to the small-amplitude random phase approximation, one can incorporate

a number of physical effects on the particle-hole amplitudes describing
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the condensed state at threshold. Short-range correlations between

nucleons, the excitation of the A-resonance, and finite-size form factors

are the most important effects.

The other approach constructs a relativistic field theory of the

constituents of matter, and solves for the self-consistent fields in the

mean field approximation. The advantage here is that one can calculate
. '. , '

the equation of state of matter through the critical density into the

fully developed condensate region. The disadvantage is that the effect

of short-range correlations and finite-size form factors for the particles

of the medium would require a major additional calculation using the

spectrum provided by the solution of the mean field equations as a starting

point. Fortunately, as we shall discuss fully at a later point, at the

critical density the two approaches can be related. This permits the

advantages of the propagator approach to be carried into the field

theoretical approach through a renormalization of the pion-nucleon

coupling constant. It turns out that the renormalization is almost

independent of density.

It is the second of these approaches, a field theory of matter,

that we explore here. Our study differs from earlier research along this

line in the choice of the interacting fields. The choice in earlier work

was: 'motivated by a desire to preserve a certain elementary particle

property, chiral symmetry, which is explictly realized in the chiral

cr-model.4 ,S One drawback in these calculations, which however is not inherent

in the model, is that they were carried out in a non-relativistic approx-

imation. One expects that at higher densities and for finite pion

momeiltum,this will lead to significant error. We find in fact that·
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already at normal density, the non-relativistic approximation is serious.

However, the most disturbing aspect of the earlier work is that while

purporting to discuss new states of nuclear matter, the chiral lagrangians

employed are not able to describe the normal nuclear state, as Kerman and

Miller showed.
6

The motivation behind our choice of interacting fields is first to

account for the known bulk properties of nuclei, and thus constrained,

to extrapolate to moderately higher density, to learn what the theory

implies about the existence of a pion condensate. We make four contribu

tions to the theory of abnormal states in hadronic matter. 7

l) We have formulated and solved self-consistently in the mean

field approximation a field theory of nuclear matter that

possesses a pion condensate;

2) The theory is constrained to reproduce the known bulk properties

of nuclear matter, namely, its satruation energy, density and

compressibility;

3) It is solved in its relativistically covariant form;

4) A continuous class of space-time dependent pion condensate

solutions is exhibited.

In the next sections we formulate the theory, derive the connection

with the propagator approach that allows us to determine renormalized

coupling constants, calculate the source currents, and finally present

and discuss the numerical results. We will emphasize the implications

of self-consistency for the existence of condensate solutions, the

dependence of the condensate energy on the nuclear equations of state

within acceptable uncertainties and we will test the non-relativistic

approximation which has been used in previous work.
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II. RELATIVISTIC FIELD THEORY OF NUCLEAR MATTER

A. Discussion of the Relevant Fields

Field theory is the appropriate mathematical scheme in which to

discuss matter under conditions where new particles can spontaneously

appear. Since we are interested here in matter near the density of normal

nuclei, then the nucleons enjoy a special role. The state of such matter

is determined by expectation values of the various nucleon current

operators.

-
Jr(x) = <W(x)rW(x»

(1)

The normal state of symmetric matter has a very uncomplicated structure

in which only r = 1 and Yo are non-vanishing currents. The second is the

nucleon density, and the first reduces to the same in the non-relativistic

limit. Other states of matter are characterized by non-vanishing expecta-

tion values of additional currents. The pion condensate has non-vanishing

current

J =
-11 5

<Wy y tW>11 5-
or

Our problem is to determine whether and under what conditions the field

equations will give rise to such non-vanishing currents.

If quarks and gluons are the fundamental fields, then the interaction

between the nucleons would be described by such diagrams as

N

\. -1-1 _
)

N

N
x
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This is intended to indicate not only the exchange of quarks but a space-

time structure to the exchange and some involvement of more than two

nucleons at a time. This theory of matter (QeD) is incomplete, especially

as concerns the large distance behavior, and so does not provide a means

of calculating the nucleon currents, Eq. (1), at the present. However,

nature provides a partial (asymptotic) representation of the exchange

quanta through the physical mesons and resonances. This is the historic

approach to nuclear forces. By introducing a set of meson fields of

various spins and isospins with Yukawa coupling to the nucleons, one

should be able to represent the interaction between nucleons as long as

the intrinsic quark structure can be ignored. The internal structure

can be ignored presumably at densities such that the nucleon bags do not

3 -1 8
overlap, i.e., for densities P< Pc - (4/3 TI RB) • Estimates for the

bag radius vary between 1/3 to 1 fm, corresponding to pc/po between 30 and

1 respectively.
-3 9

Here Po = 0.145 fm is the normal nuclear matter density,

corresponding to a radius parameter r = 1.18 fm. If the bag radius wereo

really as large as 1 fm. then a description of ordinary nuclei in terms

of nucleons would be a poor one. Since, however, this would contradict

our experience with the shell model and direct nuclear reactions, we

assume here that up to moderately high densities, say 4po' the nuclear

forces can be adequately represented by the exchange of mesons .. For

higher densities (or temperature), the internal structure of the nucleon

would need to be considered, at least in the approximation of introduc~ng

2
the resonances as new fields.

In accord with the above discussion, a set of meson fields in the

various spin-isospin channels is introduced to represent the interaction
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of nucleons in a medium up to intermediate density.

are

These meson fields

+
cr(J =°, I = 0) ,

and they are Yukawa coupled to the nucleon field ~:

=

(2)

.+
The scalar interaction (0 ,0) is represented by a broad resonance believed.

to represent two-pion exchange. In the static approximation, it contributes

an attractive Yukawa potential. The vector meson w~ on the other hand

contributes a repulsive interaction. These two meson exchanges can

account for the saturation of nuclear matter. A model based on the first

two chargeless mesons, the cr and w~, was introduced many years ago by

10 11Johnson and Teller and by Duerr. It has been revived and extensively

investigated by Walecka and collaborators;2,13 who also examine the properties

14
of finite nuclei. We shall refer to a lagrangian that includes the cr and

w~ as the standard Walecka model.

The lagrangian densities for the fields are

(3a)

b)

c)
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= (3d)

15where we use the standard notation for Bjorken and Dre11, and

e)

= (4)

The Euler-Lagrange equations based on the above lagrangian yield

the following coupled field equations

:,,

(i~ - m + g crs 2
= o (Sa)

'j

(0 + m~)cr = dU
dcr b)

(0 + m
2

)1T g1T c\/,jjys yll :: W) + 2g pll x all~1T ~ p~

(0 + m~)wll v
gw WYll Walla Wv =

(0 + m
2
)p - V g { ~ ijjy T W+ 1T x a 1T}alla £v =

p ~ll P 11 ~ ~ ll~

In the cr equation we have included a potential term U, which will be

discussed later.

The above equations are intractib1e in their present form.

c)

d)

e)

However, they clearly show the connection between a finite ground state

expectation value for a nucleon current, Eq. (1), with the existence of

a finite amplitude for the corresponding field. For example, <ijjW> ~ 0

implies <cr> ~ O. In the normal state of symmetric nuclear matter, the

cr and Wo have finite expectations values <cr> ~ 0, <Wo> ~ 0, and all
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other field expectations vanish. The other point of displaying the

field equations (S) is to emphasize the highly non-linear character of

the equations. The source currents are implicit functions of all the

fields through the coupling of the nucleons to these fields, Eq. (Sa).

Thus it is quite possible that the field equations can be satisfied by

several distinct sets of field configurations: {<O'>i' <W>i' <'IT>i' ... }

i=I,2, ...

The study of a fully developed pion condensate involves finding

the conditions, if any, under which a finite <'IT(x» is a solution to

Eqs. (S).

B. Critique of Mean Field Approximation

We will solve the system of equations (S) by the mean field

approximation. This is equivalent to the Hartree approximation. The

meson field operators replaced by their ground state expectation values,

composed of quasi-particle wavefunctions that satisfy Eq. (Sa), with all

(6)

(7)

etc.W +
11

0' + <0'>

-
ljJfljJ + <ljJfljJ>

ground state wavefunction is assumed to be a single Slater determinant ~o'

equations in the unknown mean field configurations <0'>, <W
11

>, etc.

These expectation values are computed in turn from Eqs. (Sb-Se) by

calculating the nucleon current operators appearing on the right-hand

sides as the ground state expectations

The system of equations (S) thus reduce to a set of transcendental
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This approximation has already been used extensively in the

1iterature~ both for the normal state of matter based on a lagrangian

similar to ours, and for the pion condensed phase based on a chira1

. 1,4,5,16
1agrang1an. Nevertheless, a justification £or its use is in order.

The use of the mean field approximation to discuss the pion

condensed state, a possible phase of matter lying in energy near the

normal state, is analogous to the use of the shell model to calculate the

nuclear spectrum near the Fermi level. Neither attempts to calculate the

absolute energy using the fundamental coupling constants. To do so would

require a theory with an accuracy on the order of 1 MeV on the scale of

the total energy, on the order of GeV. Instead~ our lagrangian, Eqs.

(2)-(3), when used in the mean field approximation; is an effective theory

with coupling constants adjusted to the ground state properties. The

theory is then used to make moderate extrapolations from this point.

Having thus determined the coupling constants it does not make sense to

sum higher order diagrams since their contributions are implicitly built

into the normalized coupling constants. Moreover, Chin has shown that

while the coupling constants which lead to the correct saturation

of nuclear matter are sensitive to the particular class of diagrams

incorporated into the effective theory, the density dependence of the

. f . 13equat10n 0 state 1S not.

only slowly with density.

The higher order diagrams are found to vary

Thus the variation of the ground state energy

with density is mainly determined by the mean fie1d~ and only the absolute

scale is sensitive to all the diagrams. The corollary of this is that the

effective coupling constants for the mean field theory are essentially

density independent~ over a moderate range of density.
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The pion condensate phase corresponds to a long-range correlation

(in the spin-isospin density) and so is susceptible to description .by a

mean field theory. However, the effective coupling constant g~ cannot be

determined from the ground state properties, since the pion field <~>

17
is either very small or vanishes in the ground state. Other investigations,

using the propagator approach, show that there is a considerable renorma1

18
ization of g~ due to short-range correlations. In addition, the renorma1-·

ization will depend on whether the ~ resonance and finite-size form factors

are incorporated explicitly into the mean field equations or not. In

Section III we show how these effects can be incorporated as an effective

g~ in our theory.

A description in the mean field approximation of the equation of

state and any pion condensate phase that may develop as a function of

density can be contrasted with the traditional approach to the many-body

problem through the Schrodinger equation solved in the Breuckner or eS

theory. Here one uses potentials, sometimes of a form suggested by the

field theory of nuclear forces, with constants adjusted to describe free-

space scattering. These approaches then relate the ground state energy

to the basic forces. They are powerful in the class of diagrams that they

sum, and lead to valuable insights. However, they do represent an extreme

extrapolation from the free-space interaction to the total energy of a

nucleus. Since the spectrum of a nucleus or the pion condensate energy,

which is sensitive to the spectrum, is a small fraction of the total

energy, then these energy differences will likely lie within the error

of the method and of the accuracy with which the potentials can be

determined from scattering data. This situation is further aggravated



-12-

by the fact that the non-relativistic approximation is inherent to any

approach based on the Schrodinger equation. In addition, they are very

cumbersome formalisms. The mean field approximation therefore has an

advantage in providing essentially analytic insight into the physics of

high (p,T) nuclear matter.

C. Self-Consistent Equations for the Mean Fields

The mean field approximation to the equations of motion, Eqs. (5),

was described above. All meson fields and source currents are replaced

by their ground state expectation values. In infinite homogeneous matter

<~(x)1jJ(x» and <~(x)Yll1jJ(x» are independent of x. The scalar and

vector fields 0 and w
ll

are therefore constants, and their mean values,

(j == <0> and W
ll

== <Wll> , can be read from the equations of motion,

Eqs. (5b,c). The rho meson plays no role in symmetric nuclear matter

and so is not considered further. The equations for the mean fields

corresponding to (5) are therefore

= g <1jJ1jJ> _ < dU >
o do

b)

c)

(D + m~) < 'J!(x) > = g all<~(x)y YllT1jJ(X) >
'IT 5 ... -

d)

Non-linear scalar field interactions are incorporated as Boguta and

14
Bodmer, through the potential density
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u(a) = (9)

The field configuration corresponding to the normal phase of

symmetric nuclear matter is {a # 0, WlJ = olJO Wo ' <7f> = 0, PlJ = o}.

12 . 13This is the configuration investigated by Walecka, Chln, Boguta and

14
Bodmer. Since, however, the equations (8) are a non-linear system of

transcendental equations in the mean fields, the system may have another

(abnormal) solution. As we stated earlier, our goal is to investigate

whether a phase having a finite pion amplitude is also a solution, when

the constants of the theory are chosen to represent correctly the bulk

properties of nuclear matter.

The pion field must be allowed to have a space-time dependence

because of the importance of the p-wave interaction. The pseudo-vector

coupling (YlJYs ) between pions and nucleons is chosen to avoid the

unphysical s-wave interaction of the pseudo-scalar couplings (Ys )'

We investigate the class of solutions

<7f(x) > =

kx

:rr(~ cos kx + v x u sin kx) ,

k x - k 0 xo 0 ~ ~

(vou = 0)

(10)

where ~ and ~ are orthonormal vectors in isospin space. The particular

choice u = (1,0,0), v = (0,0,1) corresponds to the charged running

wave case

=
1

vi
±ikx

7f e <7f > =°o
(11)

that has been investigated in the a-model. S In symmetric nuclear matter,

the orientation of u and v is immaterial since there is no preferred

direction in isospin space. All such solutions (10) are therefore
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degenerate in energy for symmetric matter.

The Dirac equation (8a) as it stands depends explicitly on space-

time through the pion field. However this dependence can be transformed

into a trivial phase factor, which is what reduces the system to a

tractable one. Consider the space-time dependent rotation in isospin

space
- ~ i(kx)I·~

R (kx) = ev

One can then show that (10) can be rewritten

(12)

T • <1T(X) > = - +
1T R (kX)T • u R (kx)v ~ ~ v (13)

and that the pion term in the Dirac equation is

T • ~ <1T (x) > = TI l£. R (kx)T· v x u R+(kx)v #OJ __ V (14)

Thus by making the local isospin gauge transformation on the Dirac field

(15)

the Dirac equation ( 8a) reduces to a space-time independent equation

for ljJ (x),
v

Now we verify that the space-time dependence assumed for the pion

field is a self-consistent solution of Eq. (8d). Since the Dirac

equation for the transformed field, (16), has no x-dependent terms in it,

and we are concerned with homogeneous nuclear matter, then momentum

eigenstates are solutions of Eq. (16). In this case, d~~ and a~ljJ are
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proportional to ±ip. Therefore the source current in (8d) is
]J

Since

all R+ T R = k v x (T cos kx - T x v sin kx)
I'" v;,; v ]1-

(17)

(18)

we deduce from (8d) and (10) that ~ must be orthogonal to both ~ and the

-
expectation value of ljJyl{ T 1jJ. In that case,

5 -

= • v x u IjJ > •
- v

(19)

Thus the pion field (10) is a solution of (8d) if its amplitude TI

is a solution of (19), where the right side is an implicit function

of all the meson fields. One can infer from a general theorem given

in Ref. 16, and as we show explicitly in appendix A, the space-like

part of W]1 vanish in the ground state. On the other hand, the

time-like component of the vector field is fixed by the nuclear

density from (8c),

D. Eigenvalues of the Dirac Equation and the Fermion Propagator

(20)

Since the transformed nucleon fields IjJ satisfy an equation which
v

is independent of x, momentum eigenstates are. solutions of (16),

(21)
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where U(p) is an eight-component spinor for protons and neutrons which

satisfies

[p - g ~ - (m - g 0) + l! T • (~v + g y v xu)] U(p) = 0 (22)w s _ 7T 5 __

The notation can be simplified by writing

= (23a)

= m* b)

Then,

[1 - m* + itT· (~v + g 7r y vxu)]U(p) = 0...., ,..., 'IT 5_ ...., (24)

-As noted, w~ shifts the origin of four-momentum. The scalar field gives

the nucleons an effective mass m*. This is the source of binding in the

12Wa1ecka model.

components.

The last term in (24) couples the neutron and proton

The eigenvalues can be found in the usual way by rationalizing the

Dirac operator. Whereas multiplication of the usual Dirac equation

(p - m)u = 0 by (p +m) accomplishes this, yielding Po = V£2 + m2

the operator needed to rationalize the operator in Eq. (24) is more

complicated. The inverse of this operator is the propagator in momentum

space. We find it to be

=

= _1_ {(PP) _e: 2
_ (Pk)T. v - 2g 7r[(Pk) + m*it] y T • v xu}

D(p) - - 7T 5_ - -

where

x {-; + m* + l! T • [~Y - g 7r y v xu] }
'V N 1T 5_ ...., (25)
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D(p) (
2 )2 2 2 -2[ 2 2 ](PP) -e:) - (Pk) - 4g 7T (Pk) - m* (kk)7T

(26)

and

(27)

(Pk) = Pk -P·ko 0 _ _ (28)

where recall that P11 = Pll - gw W
ll

· The numerator of Sv is the operator

that rationalizes the Dirac equation, yielding

D(p) U(p) = 0 (29)

The quasiparticle spectrum p = w(p) is therefore given by solutions ofo

(30)

It is a fourth order equation in P~, p 2 P. However, we show latero 0' 0

that for symmetric nuclear matter we must choose,

k = 0 ~ PN = Pz0

In this case we readily find the positive zeros of (30) to be

+Jp 2 +Po = E± = 2 + t,2e: _

(31)

(32)

and corresponding negative solutions. Here

(33)
kk = Ilsi

t,2 = k{ (1+4g~i?)PI~ + (2g7TTIm*)2}~

P • k- -

whence the Fermion spectrum is
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W(p) = = (34)

This result is analogous to the Walecka theory, where the Fermion

- . I 2 2spectrum is given by gw Wo + v P + m* , which is spherically symmetric

in momentum. However the situation here is more complicated. Due to the

pion nucleon interaction, the Fermi surface is distorted. The spherical

symmetry is destroyed, the new symmetry being cylindrical about the pion

momentum k. Momentum P ~ ±k/2 has lower energy compared to the case with

no pions.

Two cases can be distinguished depending on the relative magnitude

of k. In Fig. 1 the two positive energy solutions E± are plotted in

the PII plane. Depending on where the Fermi energy falls in this figure,

only E_ or both E and E+ will be occupied, and the region of momentum

space occupied may be either connected or disconnected regions.

E. Evaluation of the Source Currents

In Section C the equations for the mean meson fields were derived.

In this section we will derive explicit expressions for the source

currents required, namely,

-
J = <ljJ f'" >f v 't'v

(35)

and thus complete the mathematical description of the problem.

The Dirac matrix equation (8a) which depends on space-time was

transformed to a constant matrix equation of dimension 8, given by Eq.(22).
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Therefore, the problem of evaluating the currents is an algebraic one.

In principle the eigenspinors could be explicitly constructed. However,

unlike the four-component free Dirac equation, this would be non-trivial.

Instead we use the very powerful propagator technique to evaluate the

sources. The spinors themselves are of no particular interest.

In general, the ground state expectation value of an operator r

is given by19

<ljJ rljJ >v v = -i lim
X'+x
~. ......

lim tr r S (x - x' )
t' + t+ v

(36)

where S (x - x') is the coordinate space representation of the propagator
v

of Eq. (16) or (25). In Appendix A the proof is sketched and we show

how to reduce this to an explicit integral over momentum states.

<ljJ rljJ >v v
= (37)

The poles of the momentum representation of S (p ,p) and the eigenvalue. v 0 _ .

spectrum w(p) were given in Section D. The integration is carried out

up to the Fermi surface specified by those momenta satisfying

= (38)

where E± was given by Eq. (32) .and PII and PI are the momentum components

parallel and perpendicular to k.

In Eq. (25) we have an explicit expression for our propagator.

Denoting the numerator as N(p), we write it

S (p) =
v

N(Po'£)

D(p ,p)
o -

(39)
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The denominator is given by Eq. (26) which for sYmmetric nuclear matter,

Eq. (31), can be written in terms of the eigenvalues E± of Eq. (32), as

= (40)

(Recall that Po = Po - gw Wo ), from which we see that the denominators

of the residues at Po = E± are ±4~2E±. Hence,

1
4~2

(tr r N(p»p =E
o +

where 8 (x) is unity for positive x and zero otherwise.

(41)

The trace is a

double trace over spinor and isospin space having dimensionality 4 and 2

respectively. The results of the trace evaluations are listed in the

Appendix A.

The resulting evaluation of the source currents yields the following

explicit equations, valid for symmetric matter (k :: 0) :o

= 18E_-· .(1 - 2 (m*2 + p2 »)
~2 II .

(42a)

(42b)
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...
wk - 0 k = 1,2,3

Wo
gw

= -p
m2

W

<lj/ljJ> f d
3

p (8 + 8+)p = =
2 (27T)3

+(1+1'3)
~pq = <ljJ 2 ljJ>

We use the notation

(42c)

d)

e)

f)

g)

= (43)

The first two of these equations define the self-consistency

conditions on TI and cr. We also find that the space-like part of the

vector field vanishes. The nucleon density is denoted by p, and the

charge density by q, which as asserted earlier, is ~ p for ko = o.

The energy density is denoted by E. All the integrals can be reduced

to one-dimensional over PI!' as shown in Appendix A.

These equations, together with the definitions of the quantities

appearing in them, define our entire problem for symmetric nuclear matter.

The numerical procedure is to fix EF, to solve Eq. (42a,b) for

simultaneous solutions TI and 0, and then to calculate the corresponding

density and energy density.
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III. CONNECTION BETWEEN PION PROPAGATOR AND MEAN FIELD APPROACHES

As discussed in the introduction, the mean field approach allows

us to investigate the fully developed pion condensate, whereas the

propagator approach permits a calculation of only the critical density

at which the new phase appears. However the effect of short-range

correlations, the ~-resonancet and finite-size form factors are easier

to incorporate in the pion propagator (RPA) approach. Fortunately in the

TI + 0 limit of the mean field theory the two approaches can be related.

The pion nucleon coupling constant g~ of the mean field approach can then

be evaluated as an effective coupling which incorporates the above

mentioned effects. This connection we now establish.

The pion propagator approach t proposed by Migdal and refined by

Weise and Brown searches for the critical density for pion condensation

- 1by looking for the Goldstone modes in the spin-isospin (0 tl) channel.

This amounts to finding the density and pion wave number k at which

the pion propagator ~(W(~) t~) has a singularity for W(~) = 0 (Goldstone

mode).

The pion propagator in the nuclear medium has the form

MW,k)- = (44)

Without IT this would be :the free pion propagator. IT(wtk) is the proper

self-energy or polarization operator and is the object that we can relate

in the two approaches. The pion-like excitation is degenerate with the

ground state when

(45)
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In actual calculations using this approach, IT is approximated by the

pion self-energy due to the strong p-wave ~NN and ~N~ vertices, together

with an effective short-range interaction g' between particle-hole pairs.

1
This leads to the following structure of IT in symmetric nuclear matter

IT • (46)

where ~ is the nucleon particle-hole propagator (Lindhard function)

(47)

with f w~ l/mw' m* is the effective nucleon mass, PF is the Fermi momentum,

and FWN is the wNN form factor.

nl1 is given by

The l1 particle-nucleon hole propagator

(48)

2 2
fl1 ~ 5/~, and FWl1 is the wNl1 form factor.

Estimation for the value of g' varies between 0.5 ± 0.2 and is the' subject

of considerable theoretical controversy.l7

The functional forms of TIN and IT l1 are easily understood as follows:

Both TIN and TIl1 describe the amplitude for the pion to create a virtual

particle and hole excitation in the medium. Therefore, the structure of

both self energies is the familiar perturbation form

(49)
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where Wh(~) is the energy of the initial nucleon (hole) of momentum q

that absorbs the pion with four momentum (w,k) and w (q + k) is the
- p - ,..,

energy of the" intermediate particle with momentum q + k. For TIN the

intermediate particle is a nucleon so that w - w = -q • k/m*.h p __ For TI6.

the intermediate particle is a Ll33 resonance, so that w
h

- wp ~ w6. ~ 2.4 m7T ,

almost independent of k and s. Thus, the energy denominators for w= 0

are very different for TIN and TIll.

Because both 7TNN and 7TN6. interactions are p-wave, the numerator

I<~. >1 2 ~ k 2
• However, for the nuclear intermediate states, the Paulilnt

principle blocks occupied states and 1<7TI:JCint INN>1 2
« k 2 n(~)(l-n(~+~»),

while no Pauli blocking occurs for Ll and I<1T I:JC. t I~> 12 « k 2 n (q) •1n _

Here n(q) is the Fermi distribution of occupied states. Because TI6. does

not involve Pauli blocking and the energy denominator is insensitive to q,

we can simply sum over q giving as in Eq. (48). On the

other hand, Pauli blocking severely limits the sum over ~ for TIN. As

k -+ 0 only those momenta q inside the Fermi sphere that lie within a

half shell of radius PF and thickness k and oriented such that q • k > 0

satisfy n(q)(l-n(q+k») :f O. The number of states in that shell is

The particle-hole energy denominator is then ~ PFk/m*, so

form for TIN holds because then

finally we obtain
2

TIN ~ k m*PF as in Eq. (47).

2
W - W ~.p /m*

p k F '

Even for k - PF' this

while the sum over q-
gives p; in the numerator. Therefore, we see that the forms of TIN and TI6.

in Eqs. (47) and (48) are easily understood.

To get a feeling for the magnitude of the self energies involved

in Eqs. (46)-(48), consider TIN' TI6. and TI for P=Po' PF ~ 1.8 m7T , g' =0.5,

m*=~, and for pion momentum k ~ 2m7T • Setting F7TN = F7TLl = 1, we find
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2 2
~(0,2m~) ~ -10 ron and n~ ~ -2mn . Thus, the numerator of Eq. (46) is

~ -12 m;, while the denominator is ~2.5, so that n(0,2m~) ~ -5

we see that n is large and cancels the kinetic energy k
2 + m~ =

about normal densities.

Now consider the effect of finite form factors. Conventionally,

monopole form factor with A~ 1 GeV. Note, however, that this large value

of A does not require an assumption that the quark bags are small. In

Ref. 20, the form factor for the intermediate quark bag of radius R
B

= 0.72

fm was computed as F~N(k) = F~L\ (k) = 3j l(kRB) /k~ ~ 1- (k~)2/10. For

k = 2m~, this in fact yields the same result as the monopole form factor

with the

,~ffect is

density.

large A = ..J1.2:5 / R
B

= 970 MeV, giving FnN = FnL\ ~ 0.9. The net

2
to reduce nN+nL\ by about 20% to a value ~ -10 mn at normal

For m* <~, this value is further reduced by a factor m*/~.

We can conveniently summarize the combined influence of nL\' g',

and F
nN

on the self energy, n, in Eq. (46) by defining an effective nNN

coupling constant via

n (
f effYn 0: 2 2 * 2

- f
1T

'/ N -feff k 2m PF/n (50)

Comparing it with Eqs. (46)-(48), this effective coupling constant is

given approximately by

= f 2
~

1 + 'IF (k) 12 f2 2m* [1 + 1-g ~N 1T 1T 2 PF 6

(51)



-26-

Although the form of this "constant" certainly does not look constant

. 2
as a function of PF' Table 1 shows that f eff is actually very insensitive

to m* and P = 2p;/3~2. The remarkable property of Eq. (51) is that in

the density range Po to 3po' where we expect m* to vary between

2
(1.0-0.7)m, f eff varies by only -10%.

In the Appendix we show that the relativistic mean field equations

reduce to the relativistic RPA equations when the pion field strength

vanishes. In particular, Eq. (8d) reduces, in the limit <~(x» +0, to

(_k
2

+ m~ + TI1(k»)~ = 0
- " re

where TI 1 is the relativistic Lindhard functionre

(52)

=

The contour of integration for Po is specified in Appendix A.

Here So is the nucleon propagator given by Eq. (25) when ~ = k = O. When

PF « m*, TIre1 reduces to the non-relativistic Lindhard function above

(with F~N = 1). Recoil and relativistic kinematics lead to corrections

TABLE 1. Effective ~NN coupling f eff in units of fm for k=2m~, g'=0.5,

IF N(k)1 2 = 0.81 incorporating correlations, ~ production and
~.

form factors as a function of m* and density from Eq. (51) .

Compare feff to f~ = 1.41 fm in free space.

m*/~ P = Po 2po 3po

1.0 f eff = 0.93 0.89 0.86

0.75 1.01 0.98 0.96

0.50 1.14 1.12 1.11
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of the orders of (p Im*)2 and (k/m*)2 ~ 10-20% to the non-relativistic
F

self-energy. In any case, Eq. (50) and (53) provide the link between

gTI and f eff with uncertainties as quoted of 10-20% in the link as well

as uncertainties in f eff due to the imprecision with which g' and form

factors are known.

We note that the idea of using an effective coupling to incorporate

t. and correlation effects was first pointed out in Ref. 18 in connection

with neutron matter.

A last point we stress in connection with the pion self energy is

the near proportionality of 11 to the effective nucleon mass, m*(PF).

This means that the driving force for condensation depends sensitively

on the details of the single particle-hole excitation spectrum and hence

on nuclear structure physics.
21

Therefore, pion condensation calculations

should only be carried out with models consistent with known nuclear

properties. An example of a model not consistent with nuclear properties

is the chira1 mode1
4

,5 where m* = m. Since the effective mass, m* = m- g aa
is less than the nucleon mass, the chira1 model can be expected to

overestimate the condensate energy. We note at this point that the

chira1 a-model has not been solved in a fully self-consistent manner.

It is self-consistent in the "chira1 angle" but not in the "chira1

radius."
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IV. RESULTS

A. Determination of the Parameters

The equation of state of nuclear matter, E(p), is obtained in the

theory by finding the self-consistent iT and cr fields which are simultaneous

solutions of Eqs. (42a-b), for a chosen Fermi energy, EF, and then calcu

lating the corresponding density and energy density, Eq. (42e,g). The

pion wave number k is then varied to achieve a minimum energy. We note

that 1T :: O,the normal state, is always a self-consistent solution. For

given coupling constants the equations do not necessarily have a solution

with finite pion amplitude. In particular, as we have discussed, our

goal is to find whether such an abnormal state is compatible with the

known bulk properties of nuclear matter. These properties are the

saturation binding,9 density,9 and compressibility of symmetric nuclear

matter.

E!A = E!p -m = -15.96 MeV (54a)

Po = 0.145 fm- a b)

K 9p2 a2

(E!A) 200-300 MeV c)= =0 ap2

In addition to these constants, based in part on the results of Breuckner

calculations, is the prejudice that the binding should reduce to zero

somewhere in the range 2po - 3po ' These four properties of the normal

state determine for us the four parameters,

b c . (55)
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(It can be verified that Eq. (42) depends on the ratios shown and not

separately on coupling constants and masses of the scalar and vector

meson.)

The normal state (TI =0) does not depend on the fifth parameter of

the theory, gTI. The free space TIN coupling gTI = 1.41 fm gives the

correct p-wave scattering length. However, as discussed in Section III,

we can incorporate in our mean field theory the effects of short-range

correlations, ~ resonance, and finite-size form factors by renorma1izing

gTI in the specific way described. These effects yield an effective

coupling that is remarkably density independent. Within the many

uncertainties discussed, they reduce gTI from the free-space value to

about 1 fm, depending on the effective mass m* (see Table 1).

B. The Normal State

In Figs. 2 and 3 we show the calculated equation of state for the

normal ground state ~ =,0 corresponding respectively to two sets of

parameters, Eq. (55), that have the three bulk properties, Eq. (54), and

differ in the density at which the binding vanishes. We shall call these

the stiffer and softer equations of state, referring to their high

density behavior, though we stress that at the saturation point they

have the same curvature, described by K= 280 MeV.

The difference between the equations of state in Figs. 2 and 3

*is due mainly to the difference between effective mass, m (p), for

*In Fig. 4 we show m (p) corresponding to each case.
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In our theory, the m*(p) is controlled indirectly by the nonlinear

o interactions in Eq. (9). For b = c = 0, corresponding to the Walecka

model, m*(p) is strongly density dependent and has a rather small value,

...... 0.6 m. Associated with this small m* is a rather high compressibility

K - 500 MeV, which follows from the large values go/mo and gv/mv needed

to reproduce the binding and saturation density. By introducing the

nonlinear interactions of Eq. (9), which are equivalent to three and

four body forces, we can lower go/mo and gv/mv' Since gv/mv controls

the magnitude of m*14 while go/mo controls the density dependence of m*,

by lowering go/mo and gv/my we increase the magnitude of m* and reduce

its density dependence. This is what we find in Fig. 3. The larger the

values of band c, the smaller are the values of go/mo and gv/mv needed

to reproduce the saturation properties, and consequently m*(p) is larger

and less density dependent. Also, by lowering go/mo and gv/mv' we see

from Figs. 2 and 3 that the equation of state becomes softer. Therefore,

there is a correlation between larger three and four-body forces, a larger

and less density dependent m*(p), a softer equation of state, a lower

critical density, and greater condensation energy.

C. The Pion Condensate State

Turning now to abnormal states, for sufficiently large gTI' there

is a second solution to the self-consistent equations (42), the pion

condensate, that lowers the ground state energy. We show such solutions

for several values of gTI in both the stiffer and softer case. As gTI is

lowered from the vacuum value of 1.41 fm, simulating the correlations,
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~ and form factors, the critical density increases and the gain in

The dependence on g is quite
7f

different in the two cases shown in Figs. 2 and 3. At corresponding

values of g7f' the condensate is much stronger for the softer (at high

density) equation of state. Indeed, for Fig. 2, with the smaller

non-linear cr potential (b,c), condensate solution exists only for g >7f

1.18 fm. Since, according to our discussion of Section III, we believe

that the renormalized coupling constant should be g7f ~ 1 fm, we conclude

that for the stiffer equation of state, no pion condensate can exist.

In the other case with larger non-linear terms leading to a softer

equation of state, the critical density is merely shifted to higher

values as g is reduced, and at the effective value of 1 fm lies at
7f

about 2Po.

We conclude that pion condensation in symmetric nuclear matter can

be made consistent with the bulk properties of nuclei if the effective

mass is large (m* ~ 0.9), which in our theory occurs when sufficiently

large three and four-body forces exist. To gauge how large these forces

are in the case of Fig. 3, we can compute from Eq. (9) the net contri-

bution of these many body forces to the energy per nucleon at normal

density. For these parameters of Fig. 3 this is

(~)3,4 body .,
= -46 MeV (56)

which is quite large. However, slight variations of b,c yielding nearly

identical results to Fig. 3 can result in a factor of 10 smaller value.

Next, we contrast our results to calculations using the chiral
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mode15 where m* is fixed to be m.. In Fig. 5 we compare the condensation

energy, the difference in energy between the normal and condensed states,

calculated in Ref. 5, to those obtained from Figs. 2 and 3 for gn chosen

to give approximately the same critical density. As expected, the chiral

model with the much larger driving force tends to give a much higher

condensation energy that increases rapidly with density. We conclude

that self-consistency and compatibility with the bulk nuclear properties

are very strong constraints on the existence and persistence of the

condensate phase.

Finally, 'we want to know the expected magnitude of the pion field

for various gn.Typically, TI in Eq. (10) turns out to be on the order of

0.1 m
n

• In order to get a feeling for this number, we should compare the

amplitude of spin-isospin oscillations to the normal baryon density.

From Eq. (19), we can convert TI into a magnitude of <~y y (-r-u) 1JJ>5 3 __

.'

(57)

For n = O.l~, gn = limn' the right-hand side is 0.25 ~ which is about

one-half the normal baryon density, Po ~ 0.5 m~. Thus, sizeable oscilla

tions of the spin-isospin density are possible. It is important to note,

however, that unlike the neutral condensate, the class of condensate

solutions considered in Eq. (10) do not lead to density oscillations.

The baryon density is uniform; only the spin-isospin density oscillates.

In Fig. 6 we plot the ratio of the spin-isospin density <1JJ Y Y L 1JJ> to
5 3 3

the baryon density < 1JJ Yo 1JJ > for a case with gn = 1 fm in Fig. 3. Note
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that non-relativistically <iVYs Ys 1's 1/J> ~ p(pt) + p(n..j..) - pCp..j..) - pent)

is the spin-isospin density, where p(pt) is the density of protons with

spin pointed along the z axis, etc. On the other hand, p = <1/Jy 1/J> ~o

p(pt) + p(n..j..) + p(p..j..) + pent) is independent of x. The ratio

RS3 = <~y y T ljJ>/<~y ljJ> in Fig. 6a measures the magnitude of the
5 3 3 0

spin-isospin density oscillations in the condensed state. We see

that RS3 ~ 0.5 for p ~ 2Po. The corresponding oscillations of the

densities p(pt) + p(n..j..) and p(p+) + pent) are illustrated in Fig. 6b.

It is remarkable to note in Fig.6a that although the condensate

energy is very small, $ 3 MeV, the spin-isospin oscillations are about

as large as they can possibly get. In fact, RS3 only increases to 0.85

when gTI = 1.41, even though condensate energy is about 10 times larger.

This has important consequences when considering dynamical effects of

pionic instabilities. Clearly, the very slight softening of the equation

of state, E/A(p), due to condensation would have very little effect on the

hydrodynamics of nuclear collisions. However, the large spin-·isospin fluc

tuations can lead to critical scattering phenomena which we could hope to observe~2

D. The Non-Relativistic Approximation

We have solved a relativistic theory of nuclear matter in which

Lorentz invariance was retained throughout. This offers the rare opportunity

of assessing the importance of relativistic kinematics in a many-body theory.

Therefore we have also solved the mean field equations in their non-re1a-

tivistic limit. This limit is obtained when the effective mass m* is

regarded as much larger than typical kinetic energies ,p;/2m*,k
2

/2m*,

etc. In that case the" quasi-particle spectrum, Eq. (32), can be approxi-
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mated by

(58)

where ~2 is still given by Eq. (33). The source currents are otherwise

calculated as before in Eq. (42).

The numerical results are shown in Fig. 7, corresponding to the

coupling constants of Fig. 3 (where the effective mass is the largest

and therefore the relativistic kinematics least important). Comparing

the normal state, calculated relativistically, and the non-relativistic

approximation, we see that the binding is underestimated by about 5 MeV

and the saturation point is shifted to slightly smaller density. The

approximation is even worse for the condensate state. Of course, on the

scale of the total energy density of -940 MeV per nucleon at normal

density, this is a small error. But that is precisely the point:

A small error in the calculation of the total energy can be a large error

in the binding energy. This might be a significant warning concerning

the attempt to calculate nuclear binding energies in theories based on

the Schrodinger equation.
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V. SUMMARY

We have studied the pion condensate phase of symmetric nuclear

matter, in the mean field approximation of a relativistic field theory,

which is constrained to possess the known bulk properties of nuclear

matter. It was shown how to incorporate the effects of short-range

correlations, the ~-resonance, and finite-size form factors into an

effective coupling constant. It is essentially independent of density

over the range considered. The relativistically covariant theory was

solved self-consistently for the field configurations. Two cases were

studied,corresponding to parameters of the lagrangian which in both

cases yielded identical saturation properties, and differed only in their

softness at higher density. This latitude was introduced to represent

our ignorance of the equation of state away from the saturation point.

Only one of these possessed a condensate solution for pion-nucleon

coupling constant in the range of the expected effective coupling. This

was the case where the equation of state was softer at higher density.

Even in this case the condensate energy was very small, not exceeding

3 MeV for density up to 3Po. This is in sharp contrast with other studies

based on the chiral a-model. Since the normal state of the a-model does

not possess the saturation properties of nuclear matter, we believe that

our estimate is more reliable. Thus self-consistency and compatibility

with bulk nuclear properties are strong constraints on the existance,

persistance and magnitude of the condensate phase. Despite the small

condensate energy in our theory, the corresponding amplitude of the

s.pin-isospin density was very significant, being about p/2... We conclude

that a pion condensate is compatible with the known bulk properties of
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nuclear matter, at least within our theory.

Of broader interest to the many-body theory of the nucleus, we

also evaluated the non-relativistic approximation of this covariant

theory to assess the importance of relativistic kinematics. At normal

nuclear density, this approximation introduces an error in the binding

per nucleon, on the order of the binding itself. This might be regarded

as an estimate of the error that is inherent in many-body theories that

are based on the Schrodinger equation.
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APPENDIX A:

PROPAGATOR METHOD OF EVALUATING EXPECTATION VALUES

We need ground state expectation values of various operators

<r> = f d
3
x <ljJ(x) r(x) ljJ(x»

Examine

<~(x) r(x) ljJ(x» = L: <ljJfj(x) rfja(x) ljJa(x) >
a, fj

(A1)

= (A2)

where a,fj are the spinor component labels. Now the Feynman propagator

is defined by

<ljJa(x) ljJfj(x') 8(t-t') - ~fj(x') ljJa(x) 8(t'-t) >

(A3)

where T denotes the time-ordered product. Therefore,

<ljJ(x) r(~) ljJ(x» = -i lim
x'+x

lim r Q (x) S Q (x-x' )
t'+t+ lJa alJ

= -i lim lim Trace r (x) S(x-x' )
x'+x t'+t+

(A4)

19This is a result derived in Fetter and Wa1ecka.

To learn the structure of S, expand the field operators

ljJ(x) "'1 -ipx + ipxLd3p(U(p,s) b(p,s) e + V(p,s) d (p,s) e )

s

(AS)
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+where band d are destruction and creation operators respectively.

The ground state of our system is schematically

Because

> +b ••••
PI

(A6)
..

then

(A7)

The infinite contribution from the filled negative energy sea has been

subtracted away in (AS). Since we wish to avoid the explicit calculation

of the eight-component spinors, U, we turn instead to the differential

equation that is satisfied by S(x-x'), using (A8) to specify the boundary

conditions. From Eq. (16), the propagator satisfies

[i~ - g w- m* + lh· (~v+g iTy vxu)] S(x-x')w _ _ 7T 5 __

Write the Fourier transform of S as

4
= 0 (x-x')

(A9)

S(x- x')
ip (x' -x)

e S(p) (AlO)

where it follows from (A9) that S(p) is given by Eq. (25). The contour

of integration for the Po integration, which yields the form (A8) is

closed in the upper half plane and encloses only those singularities

that correspond to occupied states.

These singularities are located at
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as found in Eq. (34). For fixed ~ the Po integral yields

. (All)

i Y. [e ip
w(p)

(Xl -x) ]
. Res S(p ) . e (EF- w(p) ) •

p = w(p) '"
o -

(A12)

Finally, if r(x) is not a differential operator, the limits in (A4) can

be taken immediately with the result

f d3
<~rljJ> = tr r' P3 I e(EF-W(p)) [Res S(p)lp =w(p)

(2'IT) w(p) '" 0_

'"

(Al3)

If r is a differential operator, for example, the energy, Yoi ddt' it

must be allowed to act before the limits are taken:

< ljJ Y i .:j.- ljJ> = f d 3
p

3 L 6(E--w(p)) tr Yo [p Res
o at (2'IT) w(,t) ~ '" 0

S(£) lp =W(p) .o _

(A14)

Using the above techniques, we obtain the expressions for all

needed source currents in Eqs. (42a,b,e,g). These involve a three

momentum integration, which may be reduced to a one-dimensional integral

over the component of p parallel to k as follows: Observe that

of the form

For the 'IT and a source we need integrals

=

00

e (EF - E~ (P\l' 0) -P:)

JE~ (P\l ,0) +pt

=

_00

(AlS)
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Because of the theta function this is simply a one-dimensional integral

over a finite interval, possibly two disconnected segments. To evaluate

Eq. (AI5) numerically it is convenient to remove a singular piece of

the integrand. This singularity arises from the II/:,.2 behavior of f(PII)

(54) A 2 - A 2 ( 2 -2 ) ~in Eqs. a,b. Since Ll -+ kPIi as 7T -+ ° and Ll -+ kPIi I + 4g
7T

7T

as m* -+ 0, we see that in either limit the integration in Eq. (AI5)

diverges logarithmically if PII = ° is allowed (EF > E± (0,0)). Thus, in

particular for finite n, the source integral behaves as log~ near n-+ 0.

To extract this logarithmic behavior it is convenient to add and subtract

E±(O,O) in Eq. (AI5). Then the piece proportional to EF-E±(O,O) can

be evaluated in closed form and the remainder proportional to

E±(O,O) - E±(PII ,0) is free from singular behavior and can readily be

evaluated with a few point Gaussian quadrature. To illustrate this

procedure we evaluate the a-piece of the pion integral in Eq. (54a)

I
7T

X 2

+ JdPU (E_ (0,0) - E_ (PU' 0» (1 -;. (m*'+ PI!»)! •

Xl

The end points xl and x2 are taken from the positive roots of the

(AI6)

equation E_ (PII ,0) = EF • If only one positive root exists then xl = °
and x

2
is that root. The function J(x) is
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(AI?)

2 -2 ~ -with a = (1 + 4g'IT 'IT ) , S = 2g'IT 'IT m*. Equation (AI?) contains all the

singular parts of the integral and shows explicitly that J(O) + ~nTI

as TI + 0. The remaining integral in Eq. (A16) is done by Gaussian

quadrature. The 8+ part of the pion integral and the cr integrals in

Eqs. (54a~b) are performed similarly.

For the density integral in Eq. (54e) we need

= (A18)

where X
I

,x
2

are determined from the positive roots of EF = E±(x,O).

Although Eq. (A18) can be analytically done, a few point quadrature was

used in practice. For the energy integral in Eq. (55)~ we need

Xl

= 4~2 JdplI· ~ (E; - E~ (PII ,0»

x2

As a final note, we show the trace results that are needed,

according to Eqs. (35)~ (37), (39)~ (42f).

(A19)

tr(N) (A20)

(A21)

tr(Y5l< '[OvxuN) [
*2 ]= 8g TI 2(Pk)2 - 2m (kk) - (P2

- s2)(kk)
'IT

(A22)
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where is the diagonal metric tensor (1, -1, -1, -1) and va

(A23)

is

the component of v along the 3-axis. These results are obtained

using the trace theorems in Ref. 15.

From the last of these we can prove that ko = 0 corresponds to

symmetric nuclear matter Eqs. (31), (42f). The ~ = 0 component of

(A23) is required for the evaluation of the charge density, Eq. (42f).

<~. Yo T a t/J) ,for ko = 0 (A24)

In Sec. II.D we proved that when ko = 0, the eigenvalue spectrum w(p)

is symmetric about the P
II

= 0 plane (Fig. 1). Therefore making the

change of integration variable to ~, by Eq. (23a), we see that any'

integral such as (A24) containing odd powers of P must vanish. Thus

Eq. (42f) follows. Turning to Eq. (A21) we see that when ko = 0, the

space-like components, ~ = 1,2,3, are linear in ~ and so the source,

Eq. (Sc) of the w. field vanishes also.
l.

We have proven Eq. (42c).
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APPENDIX B:

Here we want to derive the connection between the propagator and

MFA approaches. 16Such a connection was discussed by Baym

We present an alternate and more explicit derivation here.

We start from the pion mean field equation, Eq. (8d) ,

where

.. ~1T(X) (Bl)

(B2)

which depends implicitly on <1T(X) >. In terms of the full propagator

S1T(x,y), which satisfies Eq. (16) with o~(x-y) replacing 0 on the

right-hand side, we can write as in Eq. (A4)

where

~1T(X)

+x = (x,t+O).

= -ig
1T

all Tr {y y l'S (x,x+)}
5 ll- 1T

We now expand J 1T (x) to first order

(B3)

II

in <1T(y) > :

Defining
(B4)

n
ij

(x,y) .. - lim
<1T(Y»~O-

i

{
o.J 1T (x) }

O<'IT.(y)>
J

(BS)

and noting that the divergence of the axial current is zero when
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<IT> :: 0 (J :: 0), we can rewrite Eq. (A.I) to first order in <IT(x)> as
- _0

(B6)

In symmetric homogeneous nuclear matter nij(x,y) = 0ij n(x-y), and

(B7)

Expanding <lTi(x» in Fourier components, we get finally

(B8)

Taking. however, the Fourier transform of Eq. (Bl) shows that the

right-hand side is just J i (k). Therefore,

n(k) = 1
Ji (k)

IT i (k)
(B9)

In order to compute nij (x,y) or n(k) explicitly from Eq. (A.5),

we can start from the integral equation for Sn(x,y):

(BIO)

where S (x,y) is the nucleon propagator when <IT>:: O. First integrateo

by parts to transfer the. a/az~ away from the IT field. Then recall that

Thus,

o<1T
i

(x) >

o<1T.(y) >
J

=
Ii

0ij 0 (x-y)



lim
<1T. (y) >.. 0

J

IS S1T (x, z)

IS <1T
j

(y) >
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(BI2)

Using Eqs. (A.3) and (A.S), we obtain finally,

n
ij

(x,y)
2

• -ig1T
a a Trey ylJ Li S (x,y) Y yV Lj S (y ,x»

axlJ ayv S 0 S 0

(B13)

and therefore in symmetric homogeneous nuclear matter,

n(k) Tr (Yslts (p) y Its (p+k»o s 0
(BI4)

In the non-relativistic limit (PF « m*),

S (p) .. (2m*)-l(p -g V _p2/ 2m* +. ie: e(PF-p»-l, Trace" _Slk_1 2
and

o 0 v 0

nCk) reduces to the familiar Lindhard function (see, e.g., Ref. 7).
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Fig. 1. Eigenvalues of the Dirac equation in the P
I1

plane, depending

on the magnitude of k as shown. There is syrrnnetry P
I1

+-+ -PI' .

If E2 is less than £2 - 2g IT m*k for case a, then the rangeF rr

of P
I1

is two segments which do not include zero.
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977" = 1.28 fm

BIA =15.96 MeV

fl, =0.\45 frJ
K= 280 MeV
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-15
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Q)
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-25 L--- ..l..-. -L..- ---L..,_----'

023
p~

XBL 7912-5246

Fig. 2. Binding energy per nucleon as a function of density. The IT = 0c

solution is the normal (non-condensed) state. Self-consistent

condensate solutions exist for gIT > 1.18 fm. Two examples are

shown. Parameters are go/rna = 15/m, gw/mw = ll/m, b = 0.004,

-1
c =0.008, where the nucleon mass is m = 4.77 fm . Pion

-1
momentum k that minimizes energy is k = 1.5 fm . Effective

mass at saturation is indicated on the figure.
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Fig. 5. The condensation energy 'from Fig. 3 for g = 1 fm compared to the
7T

prediction of the chiral a-model (Ref. 5).
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Fig. 6. In (a) the amplitude R53 of the spin-isospin density oscillations

in units of the baryon density for the gn = 1 fm case of Fig. 3.

Also indicated are values of the condensate field TI and

the condensate energy. Part (b) illustrates magnitude

of the spin-isospin oscillations for R
S3

= 0.5 as a

function of coordinate parallel to condensate momentum k. pi

means proton with spin up.
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Fig. 7. Self-consistent solutions of the theory for the non-relativistic

approximation are compared with the relativistic results of

Fig. 3 for the normal and condensed state.
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