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CONSISTENT WITH BULK PROPERTIES OF NUCLEAR MATTER*
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ABSTRACT

Pion condensation has not previously been investigated in a theory
that éccounts for the known bulk properties of nuclear matter, its
satﬁration energy and density and compressibility. We have formulated
and solved self—consistentiy, in the mean field approximation, a
relativistic field theory that possesses a condensate solution and
reproduces the correct bulk properties of nuclear matter, The theory
is solved in its relativistically covariant form for a general class
of space-time dependent;ﬁion condensates. Self-consistency and’
compatibility with bulk properties of nuclé;r matter turn out to be
very Stringent conditions on the existence and energy of the condensate,
but they do allow a weak condensate energy to develop. The spin—isospin
density oscillations, on the other hand, can be large. It.is encouraging,
as coﬁcerns the possible existence of new phases of nuclear matter, that
this is so, unlike the Lee-Wick density isomer, that appears to be

incompatible with nuclear matter properties.

*This work was supported by the Division of Nuclear Physics of the
U.S. Department of Energy under contract no. W-7405-ENG-48.
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I. INTRODUCTION

Interest in the theory of matter at densities above that of nuclei
has been stimulated in the last few years by developments in both astro-
physics and nuclear physics. In astrophysics, the equation of state of
matter over a very wide range is needed to calculate supernova explosions
and neutron star properties. In nuclear physics, collisions between
nuclei at relativistic energies may create dense nuclear matter for the
first time in the laboratory. At high density, new states of matter
become possible, involviﬁg additional particles or field configurations
than are present in the ground state. Several such states have been
discussed in the literature, the pion copdensate, and the density isomer.
At sufficiently high energy density, éxcitations of the internal structure
of the nucleons become possible,zleading perhaps ultimately to a quark
mattér phase; |

The pion cohdensaée has been studied in two approaches. Each has
some advantéges and disadvantages compared to the other. In one of.these,
the pion propagator in the nuclear medium is studied.l The singularities
of the propagator occur at the energies of excitation of the medium
with the quantum numbers of the pioﬁ. At the density for which the lowest
excitation becomes degenerate with the ground state, a symmetry of the
original ground state is 1bst. Iq this case it is parify. This density
is the critical density, above‘which the ground state has a finite
amplitude for the condensate. 1In this approach, which is equivalent
to the small-amplitude random phase appfoximation, one can incorporate

a number of physical effects on the particle-hole amplitudes describing
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bphe condensed state at threshold. Short-range correlations between -
nucleons, the excitation of the A-resonance, and finite-size form factors
are the most important effects.

The other approach constructs a relativistic field theory of the
constituents of matter, and solves for the self-consistent fields in the
mean field approximation. The advantage here is that one can calculate
the equation of state of matter through the critical density into the
fully developed condensate region. The disadvantage is that the effect
of short-range correlations and finite-size form factors for the particles
of the medium would require a major additional calculation using the
spectrum provided by the solution of the mean field equations as a starting
point. Fortunately, as we shall discuss fully at a later point, at the
critical density the two approaches can be related. This permits the
advantages of the propagator approach to be carried into the field
theoretical approach through a renormalization of the pion-nucleon
coupling constant. It turns out that the renormalization is almost
independent of density.

It is the second of these approaches, a field theory of matter,
that we explore here. Our study differs from earlier research along this
line in the choice of the interacting fields. The choice in earlier work
was motivated by a desire to preserve a certain elementary particle '
prbperty,,chiral symmetry, which is explictly realized in the chiral
(I--model.l}’5 One drawback in these calculations, which however is not inherent
in the model, is that they were carried out in a non-relativistic approx-
imation. One expects that at higher densities and for‘finite pion

momentum, this will lead to significant error. We find in fact that
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already at normal density, the non-relativistic approximation is serious.
However, the most disturbing aspect: of the earlier work is that while
purporting to discuss new states of nuclear matter, the chiral lagrangians
employed are not able to describe the normal nuclear state, as Kerman and "
Miller showed_.6
The motivation behind our choice of interacting -fields is first to
account for the known bulk properties of nuclei, and thus constrained,
to extrapolate to moderately higher density, to learn what the theory
implies about the existence of a pion condensate. We make four contribu-
tions to the theory of abnormal states in hadronic matter.7

1) We have formulated and solved self-comsistently in the mean
field approximation a field theory of nuclear matter that
possesses a pion condenéate;

2) The theory is comstrained to reproduce the known bulk properties
of nuclear matter, namely, its saturation energy, density and
compressibility;

3) It is solved in its relativistically covariant form;

4) A continuous class of space-time dependent pion condensate

solutions is exhibited.

In the next sections we formulate the theory, derive the connection
with the propagator approach that allows us to determine renormalized
coupling constants, calculate the source currents, and finally present
and discuss the numerical results. We will emphasize the implications -
of self-consistency for the existence of condensate solutions, the
dependence of the condensate energy on the nuclear equation of state
within acceptable uncertainties and we will test the ndn—relativistic

approximation which has been used in previous work.



II. RELATIVISTIC FIELD THEORY OF NUCLEAR MATTER

A. Discussion of the Relevant Fields

Field theory is the appropriate mathematical scheme in which to
discuss matter under conditions where new particles can spontaneously
appear. FSince we are interested here in matter near the density of normal
nuclei,vthen the nucleons enjoy a special role. The state of such matter
is determined by expectation values of the various nucleon current
operators.

) = <YETVE)> ,
(1)

r = {l’ Y5’ Yu’YuYS’ Gu\)} x {19:5} .

The normal state of symmetric matter has a very uncomplicated structure

in which only I'=1 and Y, are non-vanishing currents. The second is the
nucleon density, and the first reduces to the same in the non-relativistic
limit. Other states of matter are characterized by non-vanishing expecta-
tion values of additional currents. The pion condénsate has non-vanishing

current

Jus = <E)YﬂY51‘P> or Jg = <UY, TP

Our problem is to determine whether and under what conditions the field
equations will give rise to such non-vanishing currents.
If quarks and gluons are the fundamental fields, then the interaction

between the nucleons would be described by such diagrams as
T [
— 4
N

N XX




This is intended to indicate not only the exchange of quarks but a space-
time structure to the exchange and some involvement of more than two
nucleons at a time. This theory of matter (QCD) is incomplete, especially
as concerns the large distance behavior, and so does not provide a means .
of calculating the nucleon currents, Eq. (1), at the present. However,
nature provides a partial (asymptotic) representation of the exchange
quanta through tHe physical mesons and resonances. This is the historic
approach to nuclear forces. By introducing a set of meson fields of
various spins and isospins with Yukawa coupling to the nucleons, one
should be able to represent the interaction between nucleons as long as
the intrinsic quark structure can be ignored. The internal structure

can be ignored presumably at densities such that the nucleon bags do not

1

overlap, i.e., for densities p < Pe (4/3m R;)-l. Estimates8 for the
bag radius vary between 1/3 to 1 fm, corrésponding to pc/p0 between 30 and
1 respectively. Here pd = 0.145 fm"3 is the normal nuclear matter density,9
corresponding to a radius parameter r, = 1.18 fm. If the bag radius were
really as large as 1 fm, then a description of ordinary nuclei in terms

of nucleons would be a poor one. Since, however, this would contradict
our experience with the shell model and direct nuclear reactions, we
assume here that up to moderately high densities, say 4po, the nuclear
forces can be adequately represented by the exchange of mesons. For

higher densities (or temperature), the internal structure of the nucleon y
would need to be considered, at least in the approximation of introducing
the resonances as new fields.2

In accord with the above discussion, 2 set of meson fields in the

various spin-isospin channels is introduced to represent the interaction



of nucleons in a medium up to intermediate density. These meson fields

are.

+ - ' - -
G(J =0 N I":O) N wu(l 50) ’ 'IT(O :l) s Qu(l sl)

and they are Yukawa coupled to the nucleon field ¢ = (E) where P and
N are each 4-component spinors representing proton and neutron.

£int - 800@111 ~ g, WM @Yuw - gﬂ(aulr) . @Ys YHE‘P)

-8

L 1/— A . .
0? (szuEw+Ex3M'f~r) . ‘_ (2)

. s . + .
The scalar interaction in the (0 ,0) channel is-represented by a broad
resonance believed to represent two-pion exchange. In the static approxi-
mation, it contributes an attractive Yukawa potential. The vector meson
wU on the other hand contributes a repulsive interaction. -These two meson
exthanges can account for the saturation of nuclear matter. A model based
on the first two chargeless mesons, the O and wu, was' introduced many years

10 11 ' .

ago by Johnson and Teller and by Duerr, It has been revived and exten-

12,13 who also examine

sively investigated by Walecka and collaborators,
the properties of finite nuclei.14 We shall refer to a lagrangian that
includes the O and wU as the standard Walecka model.

The lagrangian densities for the fields are

£Dirac = V&3 - my ’ (32)

Lo = ’/z(aucauc - mc2 02) - U(o) , b)
\V _

Ly = —%www“ + lzmw wuw“ s c)



L = 3 (%JE . Buﬁ - m{zg - T) , (3d)

Lo = Mgyt e+ umypy et ©
where we use_the standard notation ¢of Bjorken and Drell,15 and

Wy = AWy - e ()

The Euler-Lagrange equations based on the above lagrangian yield
the following coupled field equations

T

(18 -m+g0-gb-gp- S T By BT o= 0 (5a)
(@+n))o = goﬁw——;‘% : b)
@+m)m = g 3, (Py YH Tw) 25 0 x aym , o
(0 + mj,)wu - 3,8%, = g, DY ¥ , d)
(O + mg)‘gu - Buavg\, = g, {‘/ZITJYUI\P trxdm} . e)

In the ¢ equation we have included a potential term U, which will be
discussed later.

The above equations- are intractible iﬁ their present form.
However, they clearly show the connection between a finite ground state
expectation value for a nucleon current, Eq. (1), with the existence of
a finite amplitude for the cérresponding field. For example, <$w> #0
implies <0> # 0. In the normal state of symmetric nuclear matter, the

0 and w, have finite expectations values <o> #0, <w,>#0, andall



other field expéctatiohs vanish. Theyéther point of‘displéyihg the
field equations (5) is to emphasize thé higﬁly non—linear”character of
the equations. The source currents are impiicit functionsvof all tﬁe
fields through the coupling‘of thé nucléons to thése fields, Eq. (Sa);
Thus it is qhite possiblé that the field equatiohs can be satisfied by
several distinct sets of field configurations: {<G>i, <w>i; <ﬂ>i;"'
i=1,2,... . o
The study of é fully developed.pion condensate invblves finding

the conditions, if any, under which a finite <m(x)> 4is a solution to

Eqs. (5).

B. Critique of Mean Field Approximation

vWe will solve the system of equations (5) by the mean field
approximation. This is equivalent to the Hartree épproximation. Ihe
ground state wavefunction is assumed to Be a single Slater determinant ¢O,
composed of quasi-particle wavefunctions that sgtisfy Eq. (5a), with all

meson field operators replaced by their ground state expectation values,

o> <0> W, > <w,> etc. (6)

b u u b4

These cxpectation values are computed in turn from Eqs. (5b-5e) by
calculating the nucleon current operators appearing on the right-hand

sides as the ground state expectations
Yoy > <PTY> = <é |Urvlee> . (7

The system of equations (5) thus reduce to a set of transcendental

equations in the unknown mean field configurations <g> ,° <uﬁl>, etc.
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This approximation has already been used extensively in the
literature, both for the normai state of matter based on a lagrangian
similar tovours, and for the pion condensed phase based on a chiral
lagrangian}’4’5’16Nevertheless, a jﬁstification for its use is in order.

The use of the mean field approximation to discuss the pion
condensed state, a possible phase of matter lying in energy near the
normal étate, is analogous to the use of the shell model to calculate the
nuclear spectrum near the Fermi level. Neither attempts to calculate the
absolute energy using thé_fundamental coupling constants. To do s0 would
require a theory with an accuracy on the order of 1 MeV on the scale of
the total energy, on the order of GeV. Instead, our lagrangian, Egs.
(2)-(3), when used in the mean field approximation, is an effective theory
with coupling constants adjusted to the ground state properties. The
theory is then used to make moderate extrapoiations from this point.
Having thus determined the coupling constants it does not make sense to
sum higher oraer diagrams since their contributions are implicitly built
into the normalized coupling constants. Moreover, Chin has shown that
while the coupling constants which lead>to the correct saturation
of nuclear matter are sensitive to the particular class of diagrams
iﬁcorporated into the effective theory, the density dependence of the
equation of state is not.13 The higher order diagrams are found to vary
only slowly with density. Thus the variation of the ground state energy
with density is mainly determined by the mean field, and only the absolute
scale is sensitive to all the diagrams. The corollary of this is that the
effective coupling constants for the mean field theory are essentially

density independent, over a moderate range of density.
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The pion céndeﬁsate phase cdrresponds_to a lohg—range.cdrrélation
(in the spin-isospin density) and so is susceptible té deécription By a
mean field theory. However, the effective coupliné.cohstant g% cannot be
determined from the groun& state properties;‘éince'the ﬁion field <m>
is either'very small or vanishes in the ground state.l7 Otﬁer invéstigations,
~using the propagator approach, show that there is a considerable renormal-
izatioq of 8y due to short-range correlations.l8 In additioh, the renormal-
ization will depend on whether the A resonance and finite-size form factors
are incorporated explicitly into the mean field equations or not. In
Section III we show how these effects can be incorporated as an effective
& in our theory.

A description in the mean field approximation of the equation of
state and any pion condensate phase that may develop as a function of
density can be contrasted with the traditional approach to the'many-body
problem through the Schrodinger equation solved in the Breuckner or e®
theory. Here one uses potentials, sometimes of a form suggested by the
field theory of nuclear forces, with constants adjusted tQ describe free-
space scattering. These approaches then relate thé ground state energy to the
phenomenological forces. They are powerful in the class of diagrams that they
sum, and lead to valuable insights. However, they do represent an extreme
extrapolation from the free-space interaction to the total energy of a
nucleus. Since the spectrum of a nucleus or the pion condensate energy,
which is sensitive to the spectrum, is a small fraétion of the total
energy, then these energy differences will likely lie within the error
of the method and of thé accuracy with which the potentials can be' |

determined from scattering data. This situation is further aggravated
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by the fact that the non-relativistic approximation is inherent to any
approach baééd‘on'the Schrodingér equation. In additidn; they are very
cumbersome formalisms. The mean field approximation theréfqre has an

advantage in providing essentially analytic insight into the physiés of

high (p,T) nuclear matter.

C. Self-Consistent Equations for the Mean Fields

The mean field approximation to the equations of motion, Eqs. (5),
was described above. All meson, fields and source currents are replaqed
by their ground state expectation values. In infinite homogeneous matter
<¢(x)¢(x)> and <$(X)YUW(X)> are independent of x. The scalar and
vector fields 0 and w,, are therefore constants, and their mean values,

il
0 = <o> and‘(—;)u = '<wu> , .can be read from the equations of motion,
Eqs. (5b,c). The rho meson plays no role in symmetric nuclear matter .

and so is not considered further. The equations for the mean fields

corresponding to (5) are therefore

(1% - g - (m-g0) - g YV, T * B<T(X>)Px) = 0 , (8a)
m025 = g0<‘ﬁq;> - <%%§ , | b)
my Oy = gw<liYulP? . | c)
(O+n) <1e0> = g ¥ <F@ Y,y TIE> . D)

Non-linear scalar field interactions are incorporated as Boguta and

14 ' ‘ :
Bodmer, through the potential density
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U(o) = (%bm4—%C%ﬁ)@éb3 . ey

The field configuration corresponding to the normal phase of

symmetric nuclear matter is {0#0, =68 <m> =0, 511: 0}.

6U po "o’

This is the configuration investigated by Walecka,12 Chin,13 Boguta and
Bodmer.l4 Since, however, the equations (8) are a non-linear system of
transcendental equations in the mean fields, the system may have another
(ébnormal) solution.v As we stated eérlier, our goal is to investigate
whether a phase having a finite pion amplitude is also a solution, when
the constants of the'theory are chosen to represent correctly the bulk
properties of nuclear matter.

The pion field must be allowed to have a space-time dependence
because of the importance of the p-wave interaction. The pseudo-vector
coupling (YuYs) between pions and nucleons is chosen to avoid the
unphysical s-wave interaction of the pseudo-scalar couplings (Ys).

We investigate the class of solutions

m(u cos kx + vxu sin kx) , (veu = 0)

~

<m(x)>
kx = koxo - keex (10)

where u and v are orthonormal vectors in isospin space. The particular

~

choice u = (1,0,0), v = (0,0,1) corresponds to the charged running
wave case

1 - *ikx
<ﬂ+(x)> = T e C <T >=0 , (11)

NE) ©

that has been investigated in the G—model.5 In symmetric nuclear matter,
the orientation of u and v is immaterial since there is no preferred

direction in isospin space. All such solutions (10) are therefore
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degenerate in energy for symmetric matter.

The Dirac equation (8a) as it stands, depends explicitly on space-
time through the pion field. However this dependence can be transformed
into a trivial phase factor, which is what reduces the system to a
tractablé‘one. Considef the space-fime dependent rotation in isospin
space

: -l/zi(kx)l_'-z
Rv(kx) = e . (12)

One. can then show that (10) can be rewritten

Te<m@)> = TR (kx)Teu R} (kx) , (13)
and that the pion term in the Dirac equation is

TeB<m(x)> = TR R (o)TevXu Ry (k) (14)

Thus by making the local isospin gauge transformation on the Dirac field
b = R0 V0o (15)
v p:4 = Ry X X s

the Dirac equation ( 8a) reduces to a space-time independent equation

for IPV(X),
[i? - g - (m-g,0) + KT+ (hv +gmy vxwlyx) = 0. (16)

Now we verify that the space-time dependence assumed for the pion
field is a self-consistent solution of Eq. (8d). Since the Dirac
equation for the transformed field, (16), has no x-dependent terms in it,
and we are concerned with homogeneous nuclear matter, then momentum

eigenstates are solutions of Eq. (16). 1In this case, Bu@ and Buw are
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proportional to iipp. Therefore the source current in (8d) is

w7 | = <0 Wt -

T <Py Yy TU> = <Py, 90 (RpTRIY > (17)
Since

9 R+ TR =k vx (T cos kx - TX in kx) 18

3, R, TRy i T T Xv sin kx (18)

we deduce from (8d) and (10) that u must be orthogonal to both v and the

expectation value of WYSK TY. In that case,

(-kg + k% + m:_)'lT = -8 <ITJV Y, KTy xuy >, (19)

Thus the pion field (10) is a solution of (8d) if its amplitude

is a solution of (19), where the right side is an implicit function
of all:fhebﬁesbn fiélds. Oné één infer from‘a generél theorem given |
in Ref. 16, and as we show explicitly in appéndix A,bthe spaée—liké
part bf_‘au vanish in the ground state. On the other hand, the
time-1like component of the vector field is fixed by the nuclear

density from (8¢c),

2— = g + = + = | |
WP = By Wy WP = gy <V > =gp . (20)

D. Eigenvalues of the Dirac Equation and the Fermion Propagator

Since the transformed nucleon fields wv satisfy an equation which

is independent of x, momentum eigenstates are solutions of (16),

b, = UG P (21)
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where U(p) is an eight-component spinor for protons and neutrons which

satisfies

[ - gwfﬁ - (m- gsc—i) ;1-163 '(1/2V+gﬂ;[YSXXE)]U(p)'

=0 . (22)
The notation can be simplified by writing
Py - By = B (23a)
m - gsa = m* s b)
'Then,
(¢ -'m*_+1€3'(’/zg+g,,[1_r Y, vxu)]ue = 0 . (24)

Note that Gu shifts the origin of four-momentum. The scalar field gives
the nucleons an effective mass m*. This is the source of binding in the
Walecka model.;2 The last term in (24) couples the neutron and proton
componenfs.

The eigenvalues can be found in the usual way by rationalizing the
Dirac operator. Whereas multiplication of the usual Dirac equation
(P-m)u=0 by (p+m) accomplishes this, yielding P, = \/224-m2 .
the operator needed to‘rationalize the operator in Eq. (24) is more

complicated. The inverse of this operator is the propagator in momentum

space. We find it to be

S, () = [P -+ kr e Gy + g v,y
]—)—(%)— {(PP) - g% - (Fr)T v - ZgTTﬁ[(Pk) + m*k] Ys T -ng}
x {P+wt+ kT [hy-gmy vxull (25)

where .
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282 2 - 2
D(p,,p) = D) = ((*P)-€))" - (k)" - g’ WL - m** (k)]
(26)
and
2 2 =2
e = m* - (4 + g T ) (k) , (27)
(Pk) = Poko-f' E , (28)
where recall that Pu = pu-gw(%J. The numerator of SV is the operator

that rationalizes the Dirac equation, yielding

It
o

D(p) U(p) (29)

The qﬁasiparticlevspectrum P, w(p) 1is therefore given by solutions of

D(w(p),p) = O (30)
It is a fourth order equation in Po. However, we show later
that for symmetric nuclear matter we must choose,

k, =0 > oo =0, (31)
In this case we readily find the positive zeros of (30) to be

P, = E, = +V/RP4e’ et (32)
and corresponding negative solutions. Here

2 o, 2 =2, 2 = % 21%

A" = k<4 (l+4g T )P + (2g_Tm™)

m fl i)
: Prk
= |k s P = — s 33
k = |k ' o (33)

whence the Fermion spectrum is
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w) = p, = +E, . : (34)

This result is analogous to the Walecka theory, where the Fermion
spectrum is given by %u&o'+ vﬁf4-m*2, which is spherically symmetric
in momentum. However the situation here is more complicated. Due to the
pion nucleon interaction, the Fermi surface is distorted. The spherical
symmetry is destroyed, the new symmetry being cylindrical about the pion
momentum E. Momen tum E ~~ 15/2 has lower energy compared to the case with
no pions.

Two cases can be distinguished depending on the relative magnitude
of k. In Fig. 1 the two positive energy solutions E, are plotted in the
Pl = 0 plane. Depending on where the Fermi energy falls in this figure,
only E_ or both E_ and E, will be oécupied, and the region of occupied

momentum space may be either connected or disconnected regions.

E. Evaluation of the Source Currents

In Section C the equations for the mean meson fields were derived.
In this section we will derive explicit expressions for the source
currents required, namely,
=<— >
JP wv va

(35)

P=lomys YekIoyxe

u s
and thus complete the mathematical description of the problem.

The Dirac matrix equation (8a) which depends on space-time was

transformed to a constant matrix equation of dimension 8, given by Eq.(22).
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Therefore, the problem of evaluating the currents is an algebraic one.

In principle the eigenspinors could be explicitly constructed. ﬁowever,

unlike the four-component free Dirac equation, this would be non-trivial.

Instead we use the very powerful propagator technique to evaluate the

sources. The spinorsvthemSelves are of no partiCulér interest. |
In general, the ground state expectation value of an operator‘F

is given byl9

<Y TP > = -i lim  lim, tr I'S_(x-x") (36)
v X' >X t'+t v

where SV(x-x') is the coordinate space representation of the propagator

of Eq. (16) or (25). The symbol tr denotes a trace over spin and iso-
spin indices. In Appendix A the proof is sketched and we show how to

reduce this to an explicit integral over momentum states.

.3 .
<Y Ty > = tr_[rf dp E Res S_(p ,P)] . (37D
v 3 v o’s
(2m)™ po=w(P) ,
‘The poles of the momentum representation of‘Sv(po,p) and the eigenvalue
spectrum wW(p) were given in Section D. The integration is carried out

’

up to the Fermi surface specified by those momenta satisfying
Ei(P” ’Pl) = EF (38)

where E, was given by Eq. (32) .and Py and p, are the momentum components
parallel and perpendicular to k.
In Eq. (25) we have an explicit expression for our propagator.

Denoting the numerator as N(p), we write it

N(p_,p)
s,(p) = ——— . (39)
D(p_,p)
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A

The denominator is given by Eq. (26) which for symmetric nuclear matter,

Eq. (31), can be written in terms of the eigenvalues E, of Eq. (32), as
D(PO ,B) = (P,-E)(P + E) (P, -E )(P, +E_) . (40)

(Recall that Po = Py~ gw (T)o ), from which we see that the denominators

of the residues at P, = E, are i4A2E+. Hence,

= _ dap 1 6(EF_E+(E)) ‘
Wyl = f(ZTr)3 440? £, (p) (trrN(p))P0=E+

e(ﬁ -E_(p))
F -

where ‘6 (x) is unity for positive x and zero otherwise. The trace is a
double trace over spinor and isospin space having dimensionality 4 and 2
respectively. The results of the trace evaluations are listed in the
Appendix A.. | |

The resulting evaluation of the source currents yields the following

explicit equations, valid for symmetric matter (koE 0):

. 3 3]
2, 2= =.2 d - 2 %2 2
KE+m)T = -2g2Tk ——-——P—{—-—(l-—-—(m +P))
Mo 'rr (2,”)3 E_ A2 Il
+ _ei (1 + 2 (m*? p2)> (42a)
E+ A2 i '
3 0 262 T K
2 = du - d’p - Sn
m.o = ~--= + 2g (m-g_0) g~(~ , "‘)
o a5 o o f(Zw)B E_ A2

S

o [ Zg;'r-fzvkz
o e z (42b)
+ A
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Gy =0 Ck=1,2,3 (42¢)
g
- W
G = , d
o= o )
W
3
o = <Yty = 2[ 92 6 +0) )
(2m)
1+7T '
+ 3

, . S
_ d’p - -
€ = 2[——————B {8__(E_ + gwwo)k + 6_{_('E+ + gwwo)}

(2m)
2 2\~-2 2 -2 ’ | 2 =2 -
+ 1/2(1~< -i—mﬂ)ﬂ - ‘/zmw(.;.)o +‘1/,,r‘ngo +U(g) . g)
We use the notation
ei‘ = e(EF - Ei(g)) . R o (43)

The first two of these equations define the self-consistency
conditions on T and G. We also find that the space-like part of the
vector field vanishes. The nucleon density is deﬁéted by p, and the
charge density by q, which as asserted earlier, is % p for k0==0.

The energy density is denoted by e; All the iﬁtegrals can be reduced
to one-dimensional over p”, as shown in Appendix A.

These equations, together with the definitions of the quantities

appearing in them, define our entire problem for symmetric nuclear matter.

The numerical procedure is to fix E_, to solve Eq. (42a,b) for.

F’

simultaneous solutions T and O, and then to calculate the corresponding

density and energy density.
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TII. CONNECTION BETWEEN PION PROPAGATOR AND MEAN FIELD APPROACHES

As discussed in the introdgction, the mean field approach allows
us to investigate the fully developed pion condensate, whereas the
propagator approach permits a calculation of only the critical density
at which the new phase appears. HoWever the effect of short-range
correlations, the A-resonance, and finite-size form factors are easier
to incorporate in the pion propagator (RPA) approach. Fortunately in the
T+ 0 limit of the méan field theory the two approaches can be related.
The pion nucleon coupling constant B of the mean field approach can then
be(evaluated as an effective coupling which incorporates the above
mentioned effects. This connection we now establish.

"The pion propagator approach, proposed by Migdal and refined by
Weise and Brown searches for the critical density for pion condensation
by looking for the Goldstone modes in the spin-isospin (0 ,1) channel.l
This amounts to finding the density and pion wave number k at which
the pion propagator A(N(E)»E) has a singularity for w(E)==0 (Goldstone
mode) .

The pion propagator in the nuclear medium has the form
Mw,) = [Pk -m?-Tw,0]7h (44)

Without II this would be the free pion propagator. Il(w,k) is the proper
self-energy or polarization operator and is the object that we can relate
in the two approaches. The pion—like.excitation is degenerate with the

ground state when

wi (k) = K+ m; +1(0,k) = 0 X - (45)
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In actual calculations using this approach, Il is approximated by the

pion self-energy due to the strong p-wave TNN and 7NA vertices, together

: !
with an effective short-range interaction g' between particle-hole pairs,
and is evaluated in the non-relativistic approximation. . This leads to

1
the following structure of II in symmetric nuclear matter

e+ 1 '
n - T | (46)
1- g g+ |

: where'HN is the nucleon particle-hole propagator (Lindhard function)

._222 g 2 ) Y e
HN(O,E) o fﬂk FﬂN(k) 2m pF/ﬂ (47)

with f“ = llmw, m* is the effective nucleon mass, is the Fermi momentum,

Pp
and FnN is the 7NN form factor. The A particle-nucleon hole propagator

HA is given by

3

L . P
2.2 _2 l  °F
HA(O,E) f -fAk EnA(k) BZ 5;; . | (48)

where wA = 2.4 oo ﬁA w S/m:, and FﬁA is the 7NA form factqr.

Estimation for the value of g' varies between 0.5+ 0.2 and is the subject
of considerable theoretical controversy}7

The functional forms of HN and I, are easily understoﬁd as follows:
Both HN and HA describe the amplitude forvthe pion to create a virtual

particle and hole excitation in the medium. Therefore, the structure of

both self energies is the familiar perturbation form

, » 9
[<rlagpelon|”

Hi(w,k) = zz (49)

g W + wh(g) - wp(g-FE)

~
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where wh(q) is the emergy of the initial nucleon (hole) of momentum q

~

that absorbs the pion with four momentum (w,k) and wp(q4-k) is the
energy of the’ intermediate particle with momentum q+k. For HN'the

intermediate particle is a nucleon so that wh-wp = —q * k/m*. For HA

the intermediate particle is a A33 resonance, so that mh-wp ~ W ~ 2.4 m

almost independent of k and q. Thus, the energy denominators for w=0

~

are very different for HN and HA'
Because both NN and 7NA interactioms are p-~wave, the numerator

2 ,
I<ﬂ£nt>l « k2, However, for the nuclear intermediate states, the Pauli

- 42
principle blocks occupied states and |<"IﬂinthN>| « kzn(q)(l-n(k+q)),
while no Pauli blocking occurs for A.and |<nlﬂint|Aﬁ>]2 o« kzn(q).
Here n(q) is the Fermi distribution of occupied states. Because HA does

not involve Pauli blocking and the energy denominator is insemnsitive to q,

we can simply sum over q giving HA « k2p/wA as in Eq. (48). On the

~

other hand, Pauli blocking severely limits the sum over q for HN‘ As

k>0 only those momenta q inside the Fermi sphere that lie within a

~

half shell of radius Py and thickness k and oriented such that q+k > 0
satisfy n(q) (1 -n(q+k)) # 0. The number of states in that shell is
o« pé]ﬁ. The particle-hole energy denominator is then « ka/m*, so

finally we obtain HN o kzm*pF as in Eq. (47). Even for k ~ , this

Pp

form for HN holds because then wp-w o« p;/m*, while the sum over g

~

k

gives p§ in the numerator. Therefore, we see that the forms of HN and HA
in Eqs. (47) and (48) are easily understood.
To get a feeling for the magnitude of the self energies involved

in Eqs. (46)-(48), consider HN’ HA and II for P=Py> ~ 1.8 m, g'=0.5,

Pp

* = i - i = = 1
m* = my, and for pion momentum k Zmﬂ. Setting FTrN FﬂA 1, we find
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JHN(O,Zm") =~ -10 m: and I, = -Zm:. Thus, the numerator of Eq. (46) is

Ta =12 m;ﬂ while the denominator is =2.5, so that H(O,Zmﬁ) ~ 25 m;. So,

: . . 2 2
we see that Il is large and cancels the kinetic energy k 4-m“ = Sn%f at

about normal densities.

Now consider the effect of finite form factors. Conventionally,
Foy(k) = Fp(k) = (A% -m2)/(A*+k*) = 1- (k*+m2)/A* is described by a
monopolé form factor with A= 1 GeV. Note, hoﬁe&er, that this large value
of A doeé'not require an assumption thét the quark bags aré small. 1In
Ref. 20,‘the form factor for the intermediate quark bag of radius RB==O.72
fm was computed as F_ (k) = F"A(k) = 33 (kR) /KR, ~ 1~ (kRB)Z/lO. For
k = Zmﬂ; this in fact yields the same result as the ﬁonopole form factor
with thé large Av= VCE?:?/ kB'=‘970 MeV,  giving F1TN = FTrA % 0.9. The net
affect is to‘reduce HN-FHA by about 207 to a value =~ -10 mi at normal
density. For m* < mN,'this'value is further>reduced by a factor m*/mN.

We can conveniently summarize the combined influence of HA’ g',

and F
T

y On the self energy, II, in Eq. (46) by defining an effective TNN

coupling constant via

£ 2
- eff o _e2 2, %x_ 4.2 .
n = ( £ > IIN_ foep K 2m pF/‘n' . (50)

Comparing it with Eqs. (46)-(48), this effective coupling constant is

given approximately by

£2 p2
2 1 A F
9 - 2 IEnN(k)l [l + 6 'ET m*wA ]
£ _(k,p) = f L
eff * ’YF m * £2 p. 2 :
1+ ¢'|F (k)]zfzgﬂ—p [1+l—A F
N T ¢ *F 6 f% m*wA

(51)
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Although the form of this "constant" certainly does not look constant

" as a function of Pps Table 1 shows that f;;f ié actually very insensitive
to m* and p = 2p§/3ﬁ2. The remarkable property of Eq. (51) ié.that in

the density range Po to 3po, where we expect m* t04vary-between
.(1.0~«Q.7)m . feéf varies by only ~10%.

In the Appendix we show that the relativistic mean field equations

reduce to the relativistic RPA equations when the pion field strength

vanishes. In particular, Eq. (8d) reduces, in the limit <w(x)> >0, to

(K +m +T_ ()T =0 (52)

where Hrel is the relativistic Lindhard function

u .
Ty (0 = =21 g ] <:nl>34 er (kY So(0) kY, Sop+ 1)) (53)

The contour of integration fof P, is specified in Appendix A.
Here S, is the nucleon propagator given by Eq. (25) when T=k=0. When

<«<m*, 1 reduces to the non-relativistic Lindhard function above

pF rel

(with FﬂN=:l)' Recoil and relativistic kinematics lead to corrections

TABLE 1. Effective TNN coupling feff in units of fm for k==2mﬂ, g'=0.5,
'|Fﬂw(k)]2 = 0.81 incorporating correlations, A production and
form factors as a function of m* and density from Eq. (51).

Compare feff to fTT = 1,41 fm in free space.

¥/ = P, 20, 30,
1.0 ¢ = 0.93 0.89 ~0.86
0.75 1.01 0.98 0.96

0.50 1.14 1.12 1.11
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of the orders of (pF/m*)2 and (k/m*)2 ~ 10-20% to the non-relativistic
self-energy. In any case, Eq. (50) and (53) provide the link between
& and feff with uncertainties as quoted of lO—ZQ% in the link as well
as uncertainties in feff due to the imprecision with which g' and form
factors are known.

We note'that the idea of using an effective coupling to incorporate
A and correlation effects was first pointed outbin Ref. 18'in connection
with neutron matter,

A last point we stress in comnection with the pion self energy is
the near proportionality of II to.the effective nucleon mass, m#(pF).
This means that the drivihg force for condensation depénds sensitively
on the details of the single particle-hole excitation spectrum and hence
on nuclear structure physics.ZlTherefore, pion condensation calculations
should bnly be carried out with models consistent with known nuclear
properties. An example of a model not consistent with nuclear properties

is the chiral modef’SVMere m* =

m, Since the effective mass, m* = m-—goa
is less than the nucleon mass, the chiral model can be expected to
overestimate the condensate energy. We note at this point that the

chiral o-model has not been solved in a fully self-consistent manner.

It is self-consistent in the “chiral angle" but not in the "chiral

radius."
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v, RESULTS

A, Determination of the Parameters

The equation of state of nuclear matter, e(p), is obtained in the
theory by finding the self-consistent T and G fields which are simultaneous
solutions of Eqs. (42a-b), for a chosen Fermi energy, EF’ and then calcu-
lating the corresponding density and energy density, Eq. (42e,g). The
pion wave number k is then varied to achiéve a minimum energy. We note
that T E/O, the normal state, iS‘always a self;consistent solution. For
given coupling comnstants the equations do not necessarily have a solution
with finite pion amplitude. In particular, as we have discussed, our
goal is to find whether such an abnormal state is compatible with the
known bulk properties of nuclear matter. These prbperfias are the

saturation binding,9 density,9 and compressibility of symmetric nuclear

matter.
E/A = e/p-m = -15,96 MeV , (54a)
Py = 0.145 fm° , b)
R 82 ’
K = 9p> 2— (E/A) = 200-300 MeV . c)
[o] apz

.

In addition to these constants, based in part‘on the results of Breuckner
calculations, is the prejudice that the binding should reduce to zero

somewhere in the range 2po-3p These four properties of the normal

o’

state determine for us the four parameters,

gg/tg » 8,/my b, c . (55)
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(It can be verified that Eq. (42) depends on the ratios shown and not
separately on coupling constants and masses of the scalar.and vector
meson.)

The normal state (m = 0) does not depend on the fiftﬁ pérameter of
the theory, B+ The free space TN coupling gﬂ'= 1.41 fm gives ﬁhe
correct p-wave scattering length. However, as discussed in Section I1T,
we can incorporate in our mean field theory the ‘effects of éhort—range
correlations, A resonance, and finite-size form factors by renormalizing
By in the specific way described. These effects yield an effective
coupling that is remarkably density independent. Wifhin the many

uncertainties discussed, they reduce By from the free-space valde to

about 1 fm, depending on the effective mass m* (see Table 1).

B. The Normal Staté

”In Figs. 2 and 3 we_show the calculated equation of state for the
normal’ground statelﬁ =0 cérresponding respectively to two sets of
parametefs, Eq} (55),‘that have the three bulk properties, Eq. (54), and
differ in the‘densiﬁy at which the binding vanishesf We shall»call these
the stiffer and softer equations of state, referriﬁg to thei? high

density behavior, though we stress that at the saturation point they

have the same curvature, described by K= 280 MeV.

‘The difference between the equations of state in Figs. 2 and 3
. . . *
is due mainly to the difference between effective mass, m (p), for

%
each case. In Fig. 4 we show m (p) corresponding to each case.
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In our theory, the ﬁ*(p) is controlled indirectly by the nonlinear

0 interactions in Eq. (9). For b=c=0, corresponding to the Waleéka
model, m*(p) is strongly density dependent and has a rather small value,
~0.6 m., Associated with this small m* is a'rather high compressibility
K ~ 500 MeV, which follows from the large values gc/mc andvgv/mV needed
to reproduce the binding and saturation density. By introducing the
nonlinear interactions of Eq. (9), which are equivalent to three and

four body forces; we can lower gG/mo and gv/mv. Since gv/mv controls

the magnitude of m*14 while gd/mo‘controls the density dependence of m*,
by lowering gy /m; and g /m, we increase the magnitude of m* and reduce

its density dependence. This is what we find in Fig. 3. The larger the
values of b and .c, the smaller are the values of gU/m0 and gv/mV needed
to reproduce the saturation properties, and consequently m*(p) is larger
and less density dependent. Aléo, by lowering gc/mg_and gv/mv, wé see
~from Figs. 2 and 3 that‘fhé equation of state becomes softer. Therefore,
there is a corrélaﬁionvbetween larger three and four-body forces, a laréer
and less density dependent m*(p), a softer equation of state, a 1oﬁef

critical density, and greater condensation energy.

C. The Pion Condensate State

Turning now to abnormal states, for sufficiently large B there
is a secondvsblution to the self-consistent equations (42), the pion
condensate, that lowers the ground state energy. We show such solutions
for several values of &y in both the stiffer and softer case. As B is

lowered from the vacuum value of 1.41 fm, simulating the correlations,



~31-

A and form factors, the critical density increases and the gain in
binding due to condensation decreases. The dependence on g is quite
different in the two cases shown in Figs. 2 and 3. At corresponding
values of{gn, the condensate is much stronger for the softer (at high
density) equation of state. Indeed, for Fig..2, with the smaller
non-linear 0 potential (b,c), condensate solution exists only for gn>
~1.18 fm. Since, according to our discussion of Section III; we believe
that the renormalized coupling constant should be B ~ 1 fm, we conclude
that for the stiffer equation of state, no pion condensate can exist.
In the other case with larger non-linear terms leading to a softer
equation of state, the critical density is merely shifted to higher

- values as gw is reduced, and at the effective value of 1 fm lies at
about 290. The energy }s minimized for k = 1.5 fm_1 ~ Zmﬂ.

We conclude that pion condensation in symmetric nuclear matter can
be made consistent with the bulk properties of nuclei if the effective
mass is large (m* > 0.9), which in our theory occurs when sufficiently
largérthree and four-body forces exist. To gauge how large these forces
are in the case of Fig. 3, we can compute from Eq. ( 9) the net contri-
. bution of these many body forces to the energy per nucleon at normal

density. For these parameters of Fig. 3 this is

)t voay ™
A 3,4 body | Po

= -46 MeV , (56)

which is quite large. However, slight variations of b,c yielding nearly

identical results to Fig. 3 can result in a factor of 10 smaller value.

Next, we contrast our results to calculations using the chiral
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model5 where m* is fixed to be m.. In Fig. 5 we compare the condensation
energy, the difference in energy between the normal and condensed states,
calculated in Ref. 5, to those obtained froﬁ Figs. 2 and 3 for B chosen
to give approximately the same critical density. As expected, the chiral
model with the much larger driving force tends to give a much higher
condensation energy that increases rapidly with density. We conclude

that self-consistengy and compatibility with the bulk nuclear properties
are very Strpng constraints on the existence and persistencée of the
condensate phase.

Finally, we want to knéw the expected‘magnitude of ‘the pion field
for various B T&pically, ﬁ=in‘Eq. (10) turns out to be on the order of
0.1 m. In order to get a feeling for this number, we should compare the
amplitude of spin-isospin oscillations to the normal baryon density.

From Eq. (19), we can convert T into a magnitude of <@Ysya(z-g)w>
for E = 2m,‘T 83 as

_ (k2+m,"2) -
QU Y5Y3:£'xxglll>=-——g-k—t—ﬂ_, (57)
m

(We omit now to put the subscript v on VY, always understanding that
we use the transformed Dirac field.)

For T = 0.1 W, 8p = 1/mﬂ, the right-hand side is 0.25 m; which is about
one-half the normal baryon density, Py =~ 0.5 m;; Thus, sizeable oscilla-
tions of the spin-isospin density are possible. It is important to note,
however, that unlike the neutral condensate, the class of condensate
solutions considered in Eq. (10) do not lead to density oscillatiomns.

The baryon density is uniform; only the spin-isospin density oscillates.
In Fig. 6 we plot the ratio of the spin-isospin density <ﬁTY5Y3T31p> to

the baryon density <y Y. P> for a éase with = 1 fm in Fig. 3. Note
o} . g’lT

.
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that non-relativistically <‘FY5 Y, T, 9> = p(pt) + v;l)(n+) - kp(p'vlr) - p(nt)
is the spin-isospin density, where p(p+) is the deﬁsity of protons with
spin pointed along the 2z axis, etc. On the other hénd, P =“<$Yblb> ~
o(pt) + p(n¥) + p(p¥) + p(nt) dis independent of x. The ratio
R53 = <lT)Y5 Y, T3w>/<1TJYO¢> in Fig. 6a measures the magnitude of the
spin-isospin density oscillations in the condensed state. We see
that R53 ~ 0.5 for p 2 Zpo. The corresponding oscillations of the
densities p(pt) + p(n¥) and p(p¥) + p(nt) are illustrated in Fig. 6b.
It is remarkable to note in Fig. 6a that although the condensate
energy is very small, < 3 MeV, the spin-isospin oscillations are about
as large as they can possibly get. In fact, R53 only increases to 0.85
when-gﬂ = 1.41, even though condensate energy is-about 10 times larger.
This has important comsequences when considering dynamical effects of
pionic instabilities. :Clearly, the very slight softening of the equation
of state, E/A(p), due to condensation would have very little effect on the

hydrodynamics of nuclear collisions. However, the large spin-isospin fluc-

. ‘s . , ' 2
tuations can lead tocritical scattering phenomena which we could hope to observe. 2

Our theory is not constructed to satisfy PCAC, unlike the chiral
O-model. However it turns out to have a suitably‘small divergence of the
axial vector isospin current over the fange of densities considered. This
divergence can be read with the aid of Egqs. (17, 19, 57) and Fig. 6(a) to

be less than 4%pk.

D. The Non-Relativistic Approximation

We have solved a relativistic theory of nuclear matter in which
Lorentz invariance was retained throughout. This offers the rare opportunity

of assessing the importance of relativistic kinematics in a many-body theory.
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Therefore we have also solved the mean field equations in their non-rela-
tivistic limit. This limit is obtained when the effective mass m* is
regarded as much larger than typical kinetic energies -p;/2m*, ‘k2/2m*,

etc. In that case the quasi-particle spectrum, Eq. (32), can be approxi-

mated by

E, ~ m*+ 3%;{«132 - (4 + 827%) (kK) % Az} | (58)

where A? is stiil given by Eq. (33). The source currents are otherwise
calculated as before in Eq. (42).

The numerical results are shown in Fig. 7, corresponding to the
coupling constants of Fig. 3 (where the éffective mass is the largest
and therefore the relativistic kinematics least important). Comparing
the normal state, calculated relativistically, and the non-relativistic
approximation, we see that the binding is underestimated by about 5 MeV
and the saturation. point is shifted to slightly smaller density. The
approximation is even worse for the condensate state. Of course, on the
scale of the total energy density of ~940 MeV pef nucleon at normal
dgnsity, this is a small error. But that is precisely the point:

A small error in the calculatiqn of the total energy can be a large error
~in the binding energy. This mightﬁbe a significant warning concerning
the attempt to calculate nuclear binding energies in theories based on

the Schrodinger equation.
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V. SUMMARY

We have studied the pion condensate phase of symmetric nuclear
matter, in the mean field approximation of a relativistic field theory,
which is constrained to possess the known bglk properties of nuclear
matter. It was shown how to incorﬁorate the effects of short-range
correlations, the A—resonance, and finite-size form factors into an
effective coupling constant. It is essentially independent of density
over the range considered. The relativistically covariant theory was
solved self—cbnsisteﬁtly for the field configurations. Two cases were
studied, corresponding to parameters of the lagréngian which in both
cases yielded identical saturation properties, and differed only in their
softness at higher density. This latitude was introduced to represent
our ignorance of the equation of state away from the saturation point.
Only one of these possessed a condensate solution for pion-nucleon
coupling constant in the range of the expected effective coupling. Tﬁis
was the case where the equation of state was softer at higher density.
Even in this case the condensafe energy was very small, not exceeding
3 MeV for density up to 3po. This is in sharp contrast with other studies
based on the chiral o-model. Since the normal state of the O-model does
not possess the saturation properties of nuclear matter, we believe that
out estimate is more reliable. Thus self-consistency and compatibility
with bulk nuclear properties are stroné constraints on the existance,
persistance and magnitude of the condensate phase. Despite the small
condensate energy in our theory, the corresponding amplitude of the
spin-isospin density was very significant, being about ¢/2.. We conclude

that a pion condensate is compatible with the known bulk properties of
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nuclear matter, at least within our theory.

Of broader interest to the many-body theory of the nucleus, we
also évaluated the non-relativistic approximation of this covariant
theory to assess the importance of relativistic kinematics. At normal
nuciear density, this approximation introduces an -error in the binding
per nuclebn, on the order of the‘binding itself. This might be regarded
as an estimate of the error that is inherent in many~body theories that
are based on the Schrodinger equation. |

One of the authors (B.B.) wishes to thank Dr. N. K. Glendenning

and Dr. J. Cerny for the hospitality of the Lawrence Berkeley Laboratory.
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- APPENDIX A:
PROPAGATOR METHOD OF EVALUATING EXPECTATION VALUES

We need ground state expectation values of various operators

<> = fdax G TE V> )

Examine

[}

2 B Tg () Y0 >

a,B

<Px) Tx) P(x)>

It

lim o () <P(x") Y () >, (A2)

X *X

where o,B are the spinor component labels. Now the Feynman propagator

is defined by

15,00 = <R Foih)>

<Y () ITJB(X') O(t-t') - {I)B(X‘)woz(x) B(t'-t)> ,

(A3)
. where T deﬁotes the time-ordered product. Therefore,
T ‘ _ . . !
YPE) T'E) vE)> = -i Xl,lj;j tl'imt+ FBa(X) Sus(x x")
= -i 1lim 1lim Trace TI'(x) S(x-x")
X'»+x t'stt
(A4)
This is a result derived in Fetter and Walecka.19
To learn the structure of S, expand the field operators
3 ~-ipx : + ipx .,
P(x) = 2 d*p (U(p,s) b(p,s) e + V(p,s) d(p,8) e ) (AS5)
s
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where b and d+' are destruction and creation operators respectively.

The ground state of our system is schematically

> = bpl pr o> (EpF = Ep) . (A6)
Because
<b7(p,s) b(p'ys")> = 8 6., B(E-E) (A7)
then
— _ s — ip (x'~x)
<w60€) wa(x)>v9(t'~t) = fdp UBUu e o(t'-t) G(EF-EP) .
, (A8)

The infinite contribution from the filled negative energy sea has been
subtracted away in (A8). Since we wish to avoid the explicit calculation
of the eight-component spinors, U, we turn instead to the differential
equation that is satisfied by S(x-x'), using (A8) to specify the boundary

conditions. From Eq. (16), the propagator satisfies

[id - g b - m* + Kt . (Bv+g Ty v><u)] S(x-x') = Gu(x—x')
‘ (A9)
Write -the Fourier transform of § as
q* ip(x'-x)
S(x-x") =/ p4 e s(p) (A10)
(2m)

where it follows froﬁ (A9) that S(p) is given by Eq. (25). The contour
of integration for the P, integration, which yields the form (A8) is
closed in the upper half plane and encloses only those singularities
that correspond té occupied statés.

These singularities are located at
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P =

o Ei(g) + gw& = w(g) R S . (A1)

as found in Eq. (34); For fixed P the P, integrallyields

ip (x'-x) v
i) e ~ Res S(p) A G(EF— w(p)). (A12)
w(p) p,= w(p) ~

~

Finally, if T'(x) is not a differential operator, the limits in (A4) can

be taken immediately with the result

= d’p
<YTYP> = tr Iff ZG(E ~w(p)) [Res S(p)]  _ . (A13)
' (2'")3w(p) Po=0(R)
1f T is a differential operator, for example, the energy, Yo 1= ST it
must be allowed to act before the limits‘are taken:

<u?vyoi %w = [ d’p 2 G(EF-w(p))tr Yo [P, Res 5(p)] —0(p)

(2m)> w(p) Pom0E
(A14)

Using the above techniques, we obtain therexpfessions for all
needed source currents in Eqs. (42a,b,e,g). These involve a three
momenfum integration, which may be reduced to a one-dimensional integral
over the component of p parallel to B as follows: Observe that
Ei(p”,pl) = Ei(p",O) + pf. For the T and O source we need integrals

of the form

, 5 ) [ o e(EZ _ E2 (p ’0) _.p2)
f I oE e - J?fdpujdpf — — ()
2m) + 8m \/ 2 2
= b - -
= 4'"-2 f dp" [EF Ei(p" ,0)] f(P") S(EF Ei(P“ ao))

(A15)
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Because of the theta function this is simply a one-dimensional integral
over a finite interval, possibly two disconnected Sngents. To evaluate
Eq. (Al5) numerically it is convenient to remove a singulér piece of

. the integrand. »Ihis singularity arises from the l/A2 behavior of f(p”)
in Eqs. (54a,b). Since A% > kp” aé T>0 and A%~ kp”(l4-ég§ﬁ2)%

as m* >0, we see that in either limit the integration in Eq. (AL5)
diverges 1ogarithmica11y if ml= 0 is allowed (EF > Ei(0,0)). Thus, in
particular for finite 7, the source integral behaves as log T near T > 0.
To extract this 1ogarithﬁic behavior it is conQenient to add and subtract

E_(0,0) in Eq. (Al5). Then the piece proportional to E_-E (0,0) can

F
be evaluated in closed form and the remainder proportional to
E+(0,0)-E+(p”,0) is free from singular behavior and can readily be"

evaluated with a few point Gaussian quadrature. To illustrate this

proéeduré we evaluate theve—piece of the pion integral in Eq. (54a)

o= Jj.R.. _el: - _2_ %2 2
Iﬂ = .(ZW)3 E (l A2_(m + p"))
X2 - : .
1 2 2 2
- -z?f dp, (EF - E_(0,0) + E_(0,0) - E__(p||,0)) (1 - E ey ))
%)
- - 00 [0 - ) - 36y - 3(xy)]
X2 : .
2 w2, 2
+,fdp” (E__(0,0) - E__(p",O)) (l - -A-z— (m +p" ))z . (Alﬁ)
Xl ’

The end points x; and x, are taken from the positive roots of the

équation E_(p”,O) = EF. If only one positive root exists then Xy = 0
and x, is that root. The function J(x) is
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J(x) =
* 20>

-1% [%’5; 2h<ocx + Votx? + g2 )+ Lo Vet v g2 | @
with o = (14—43§ﬁz)%, B = Zgﬁifm*. Equation (Al7) contains all the
singular parts of the integfal and shows explicitly that J(0) =+ &nT

as T -+ 0. The remaining integral in Eq. (Al6) is done by Gauséian
quadfature. The 6+ paft of the pibn integral and the ¢ integrals in
Eqs. (54a,b) are perférmed similarly.

For the density integral in Eq. (54e) we need

X

’ 2
d3P - _l__ 2 2
f % T 3 f dpy (Bp - By(pp0) (A18)
X
1

(21T)3

where X, ,X, are determined from the positive roots of EF = E+(x,0).

Although Eq. (A18) can be analytically done, a few point quadrature was
used in practice. For the energy integral in Eq. (55), we need
S|

d3p . 1 2 3 3
f(Zﬂ)3 R émzfdp"' 5 (Bp - .07 0) (419)

X9

As a final note, we show the trace results that are needed,

according to Eqs. (35), (37), (39), (42f).
tr(N) = 8m [P2 -e? 4245 Frz(kk)] (A20)

er(y, M) = 4 [2(?2 - ey - 1+ 4gﬂ21?2)(1>k)k"]g (A21)

v

%2
tr(ysk Tevxul) = SgHE [Z(Pk)2 - 2m  (kk) - (P? - 62)(kk)] (A22)
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' 2 251V \Y _
tr(YUT3N) = A.BI’ - e9)k” + 2(Pk)P ]V3 guv (A23)

where gpv is the diagonal metric temsor (1, -1, -1, -1) and vy 1is

the component of v along the 3-axis. These results are obtained

using the trace theorems in Ref. 15.

From the last of these we can prove that kj; = 0 corresponds to

]

symmetric nuclear matter Egqs. (31), (42f). The u 0 component of

(A23) is required for the evaluation of the charge density, Eq. (42f).

Dy, T, ¥> & =P, /d3p Pek sfor k, = 0 (A24)

In Sec. I11.D we proved that when k; = 0, the eigenvalue spectrum w(g)
is symmetric about the ?L =0 plané (Fig. 1). .Thérefore making the
change of integration variable to P, by Eq. (23a), we sée that any-
integral Such as (A24) containing odd powers of P must vanish. Thus
Eq. (42f) follows. Turning to Eq. (A21) we see that when k, = 0, the
space~1like componenté, u=1,2,3, are linear in P and so the source,

Eq. (8c) of the &i field vanishes also. We have proven Eq. (42c¢).
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APPENDIX B:
RELATIVISTIC PROPER SELF-ENERGY OF PION

Here we want to derive the connection between the propagator and
MFA approaches. Such a connection was discussed by Baym16

We present an alternate and more explicit derivation here.

We start from the pion mean field equation, Eq. (8d),
(O+n®) <n(0)> = J () (B1)
- where

3,00 = g MDYy, TV > (82)

which depends implicitly on <m(x)> . In terms of the full propagator
Sﬂ(x,y), which satisfies Eq. (16) with Gb(x-y) replacing 0 on the

.right~hand side, we can write as in Eq. (A4)
I (x) = -ig_ ¥ Tr{y vy TS (x,x)} (B3)
~T i 5' U~ T

where x = (x,t+0). "We now expand J;(x) to first order

in <m(y)>:

| y ng(x) | 2
‘.J.'n(x) = go(x) +fd y | ——— <-£(y)> + 0(<m>%) ,

8<m(y)>
- <>-+0
Defining (B4)
{ é.li(x)
I,.(x,y) = - lim ————— b
1] <n(y)>>0 L s<n(y)> (B5)

and noting that the divergence of the axial current is zero when



bl

<> =0 (go==0), we can rewrite Eq. (B.1) to first order in <E(x)> as

(O +m_;‘;) <1ri(x)> = -/d“y nij (x,y) <'rrj (y)> . (B6)
In symmetric homogeneous nuclear matter Hij(x,y) = Gijn(x-y), and

@ +m) <r, > = - [y Been 0> . oD
Expanding <ni(x)> in Fourier components, we get finally

G m) T = T T K) . (88)

Taking, however, the Fourier transform of Eq. (Bl) shows that the

right-hand side is just Jy(k) . Therefore,

m, (k) (89)

k) = - lim ;
i

Ji(k) ‘
wi(k) +0

In order to compute Hij(x,y) or II(k) explicitly from Eq. (B.5),
we can start from the integral equation for Sn(x,y):

- ~ b_o
Sﬂ(x,y) = So(x,y) +-I-d z So(x,z) 8qr YSY T <ni(z)> TiSﬂ(z,y) .

(B10)
where So(x,y) is the nucleon propagator when <m>=(0, First integrate

by parts to transfer the 8/32u away from the 7 field. Then recall that

6<ﬂi(x)> Y
—— = 8y, 8 (oY) .
(o) <‘n’j(y) > 1

Thus,
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GS“(x,z) 3
lim —————— = -F {So(x,)’) ganYuTj So(y,z)} .
. < >
<1rJ(y)>+0 ) ﬂj(y) y (312)
Using Eqs. (B.3) and (B.5), we obtain finally,
I, . (x,y) = —igz 2 2 Tr(YYu-r S (x )YY;)T S (y,x))
ij ’ T axu ayv s i o ’y 5 j o ’ ’
- (B13)
and therefore in symmetric homogeneous nuclear matter,
d'p
Mk) = -2ig? B o1r (v kS () Y, ES (p+R)) . (B14)
| ) (m ) s o ‘

In the non-relativistic limit (pF << m¥*),
So(p) > (2m*)—1(po-gvvo-p2/2m* + ie 9(pF-p))-1, Trace =+ -8|k|2 and

(k) reduces to the familiar Lindhard function (see, e.g., Ref. 22).
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a) k>4g, Fm¥Y(1+4g272)  b) k< 4g, Tm/1+4¢2 72)

EZ(P,,0) ' EZ(P,,0)

' - Py Py

XBL 806-9976

Fig. 1. Eigenvalues of the Dirac equation in the BL=0 plane, depending
on the magnitude of k as shown. There is symmetry P” > —P”.

If Eé is less than g° - ZgWifm*k for case a, then the range

of P, is two segments which do not include zero.
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B/ =15.96 MeV
PR = 0.145fn?
K= 280 MeV

("‘7m)sm.= 0.77

Fig. 2.

Plo
R
XBL 7912-5246
Binding energy per nucleon as a function of density. The TTC=O
solution is the normal (non-condensed) state. Self-consistent
condensate solutions exist for 8 > 1.18 fm. Two examples are
shown. Parameters are gc/mc = 15/m, gw/mw = 11/m, b=0.004,
¢ =0.008, where the nucleon mass is m = 4.77 fm '. Pion

o . -1 .
momentum k that minimizes energy is k = 1.5 fm . Effective

mass at saturation is indicated on the figure.



B/A (MeV)

=50~

O ' S '. [ 1.
B/A=1596 MeV  ____//a-1im
p,=0.145fm=  © o

5 K=280 MeV ]

X gp=110Tm
-10 —
95 = 1.28fm
-15 —
—20 ]
Ngpz 14l fm
25 | _ I |
0 I 2 3
P/Ry
XBL 805-837
Fig. 3. Similar to Fig. 2 but.condensate solution exists for all Bt

In particular, for the renormalized value & ~ 1 fm (Table 1),

critical density is at p = 2p_. Parameters are /m_ = 9/m,
7 Po 8o/

, b=-0.192, c = 2.47.

e
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019_

O|8—‘

0.6}

;

Softer ( at high density )

/Shffer

Walecka

l

05 '
0 | 2 3
P/ P
XBL 805-835
Fig. 4. The effective mass m* = m-gca for the stiffer (Fig. 2) and

softer (Fig. 3) equation of state. Also shown for the standard

Walecka model.
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. d chiral_~ gv:l-Ofm

1.0 2.0 3.0
PP,

XBL 805-9728

Fig. 5. The condensation energy from Fig. 3 for B = 1 fm compared to the

prediction of the chiral o-model (Ref. 5).
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Rea=I <¥757373¥ > 1/ <Py, 9>

i (a)

i 0.2 0.28

. 1403
()]

- 13.0=

. 12.0

- 11.0

.0 2.0 3.0

PP,

P = Ppy™) + Py X+ Ppy (X + Oy X)

PP'(X) +PN'(X) R53 = 0-5 :
— =~

~ N

P/2
g _—_
i ey pp X l
0.0 0 20 3.0 4.0
z (fm)
XBL 805-9726
Fig. In (a) the amplitude R, of the spin-isospin density oscillations

in units of the baryon density for the Br = 1 fm case of Fig. 3.

Also indicated are values of the condensate field m and

the condensate energy.

of the spin-isospin oscillations for R

Part (b) illustrates magnitude

53 = 0.5 as a

function of coordinate parallel to condensate momentum k. pt

means proton with spin up.
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O R 3
XBL 805-836

Fig. 7. Self-consistent solutions of the theory for the non-relativistic
approximation are compared with the relativistic results of

Fig. 3 for the normal and condensed state.
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