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Abstract 

Multiphase fluid displacement in a porous medium gives rise 
naturally to the occurrence of steep fronts, for example between dif
ferent fluids or between regions of differing chemical concentra
tions. Such fronts pose substantial difficulty for most numerical 
methods. However, the recently developed random choice numerical 
method has been found capable of following effectively even perfectly 
sharp fronts. We discuss an application to the calculation of immis
cible displacement in a petroleum reservoir, including the effects of 
capillary pressure and gravity. Previous work with W. Proskurowski 
has considered the limiting hyperbolic case of zero capillary pres
sure with gravity neglected. Numerical results of our current work 
for solving a model problem of two-phase displacement in two dimen
sions indicate that the effects of the additional possible interac
tions of shock and expansion waves permitted by the inclusion of 
gravity can be handled efficiently within the framework of the random 
choice method. 

Introduction 

Multiphase fluid displacement in a porous medium gives rise 
naturally to the occurrence of propagating steep fronts, for example 
between different fluids or between regions of differing chemical 
concentrations. Even though these fronts may not be present ini
tially, they can develop with time as a consequence of the inherent 
nonlinearities of a given problem. For problems in which the dif
fusive effects of capillary pressure are small the fronts can be very 
steep, becoming sharp discontinuities in the limiting case of zero 
capillary pressure. 

The following of steep fronts poses substantial difficulty for 
conventional numerical methods, which are based on differencing or 
other discretization of the governing partial differential equations. 
Such methods generally rely on underlying assumptions on the smooth
ness of solutions that are violated when steep fronts are present. 
As a result, devices such as the introduction of artificial dissipa
tion may be required for stability or to ensure that the correct 
solution is obtained. 

In an attempt to circumvent these difficulties a study was ini
tiated at the Lawrence Berkeley Laboratory several years ago to adapt 
the random choice numerical method, a novel method that is inherently 
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capable of following even perfectly sharp fronts, to solving problems 
of fluid displacement in porous media. The initial phase of that 
study was reported in [6], where a standard model problem of two
phase, immiscible, incompressible displacement with sharp fronts was 
solved. In this model problem the effects of gravity and of capil
lary pressure are neglec'ted, and one obtains for one space dimension 
a single conservation law, the Buckley-Leverett equation, 

~ ~ ~t + ~x f(s) = 0 • (1) 

The quantity s(x,t) is the saturation of the wetting fluid 
(the fraction of the available pore volume occupied by the fluid), 
and x and t are the space and time variables. Of particular 
interest is the non convexity of f(s), the fractional volumetric 
flow rate of the wetting fluid, which for this model problem has 
exactly one inflection (Fig. 1). 

The framework for utilizing the random choice method for the 
model problem was developed in [6], where it was found that the 
numerical solution could be obtained accurately and efficiently. The 
tracking of discontinuities was accomplished without difficulty for 
the test problems considered, which were for one space dimension and 
also for two space dimensions for cases in which the solutions were 
essentially one dimensional in nature. The correct weak solution was 
obtained, a feature that need not be present with other numerical 
methods (see, for example, [11]). 
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In [2], the general two space dimensional case was considered, 
for which (1) becomes 

~s \7 ~ + q • V [f(s)] = 0 • at ~ 
(2) 

The quantity q is the total velocity and satisfies equations simul
taneous with ~(2), but, for the purposes of the study, q was taken 
simply to be a fixed, physically representative function of x and 
y. (q does not appear explicitly in (1), since in one space dimen
sion in the absence of sources it is a constant that can be absorbed 
into the other variables.) By means of fractional splitting, the 
one-dimensional results of [6] can be applied directly to the solu
tion of (2). It was found in [2] that the random choice method can 
obtain a numerical solution of the two dimensional test problems 
efficiently and accurately. 

In [1] the full two space dimensional case, including the simul
taneous equations for q, was considered and solved numerically. For 
the test problems investigated, the computational demands of calcu
lating q were several times greater than those of advancing s in 
time from~(2) by the random choice method, but the total computa
tional efficiency was still found to be most satisfactory. 

Subsequent work at Rockefeller University by Glimm, Marchesin, 
and McBryan [8],[9] considered in detail the problems arising from 
front instability (fingering) that can occur for the full two space 
dimensional case. Such instability does not arise when (2) is con
sidered alone for fixed q, but results from the coupling between (2) 
and the simultaneous equations for q. A two-dimensional front
tracking procedure was developed for the random choice method that is 
not subject to the inaccuracies that may be introduced by one space 
dimensional fractional splitting; such inaccuracies can be particu
larly evident for a fluctuating, unstable front. 

In the present paper we include a discussion of some of our 
current work in extending the random choice method to fluid displace
ment that includes the effects of gravity and of capillary pressure. 
Attention is on the case for which the capillary pressure is small so 
that fronts will be sufficiently steep for the random choice method 
to be of interest. For larger capillary pressure and more diffuse 
fronts, standard numerical methods generally are suitable. 

Equations of Two-Phase Fluid Displacement 

The equations, suitably normalized, for two-phase, immiscible, 
incompressible displacement in a porous medium are (see, for example, 
Ch. 1 of [10]) 

~~ + q • \jf(s) - b -t. g(s) - c \j. [h(s)\js] o (3) 

\J oq=Q (4) 
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(5) 

Here s(x,t) and q(x,t) are the saturation and total velocity, as 
discussed in the pr;vious section, and p(x,t) is pressure. (s is 
the saturation of the wetting fluid; 1 - s -is the saturation of the 
non-wetting fluid.) The coordinates ~ = (x,y,z) are chosen so that 
gravity acts downward in the negative z direction (~k is the unit 
vector in the positive z direction). The quantity Q represents 
the sources and sinks, and the porosity, taken to be constant, has 
been absorbed into the other variables. Eq. (3) is the saturation 
equation, (4) arises from the incompressibility condition, and (5) 
from Darcy's law. 

The quantities f(s), g(s), h(s), A(s), g(s), and fi(s) are 
functions of the relative permeabilities and capillary pressure, 
which are empirically determined functions of saturation alone. Typ
ically, for petroleum reservoir problems the fractional flow f(s) 
has an S-shaped graph with one inflection, which can be conveniently 
modeled by 

2 
s 

f( s) = --=-2 -~---::::-2 ' 
s + a(1-s) 

(6) 

where a is the ratio of the viscosities of wetting to non-wetting 
liquids [II]. The graph in Fig. 1 is for a = 1/2. Eq. (6) is con
venient for numerical computation While, at the same time, represent
ing adequately the essential features of petroleum reservoir 
behavior. It is based on taking the (normalized) relative permeabil
ities being equal simply to the square of the saturations. 

Corresponding models for the other functions are 
g(s) = a(1-s)2, g(s) = g(s)f(s), and A(s) = s2 + a(1-s)2. If the 
(normalized) capillary pressure is denoted by pc(s), then 
h(s) = (-dPc/ds)g(s) and 6(s) = ~(-dPc(s)/ds)[a(1-s)2-s2]. The quan
tity -dPc{s)/ds is positive. Its precise form is not of importance 
here, as the effects of capillary pressure will not be discussed in 
detail. For purposes of numerical experimentation it can often be 
taken, as in [11), simply to be constant. 

In (3) and (5) the terms with coefficient b arise from the 
effects of gravity and the terms with coefficient c from capillary 
pressure. These coefficients give more or less the relative magni
tudes of the terms, as g{s), g{s), h(s), and fi(s) have all been 
normalized. The coefficient c is non-negative (and presumably 
small); b may be positive, negative, or zero. 

Eqs. (3), (4), and (5) are to be solved for s(~,t) and p{~,t) 
given the initial value of s and suitable conditions on sand p 
on the boundary of the domain of interest. The boundary conditions 
on p typically ensure that q could be determined uniquely from 
(4) and ·(5) were s known. In [1], [2], and [6] the case b = c = 0 
was considered. Here we permit band c to be nonzero and con
sider solving (3), (4), and (5) numerically using the random choice 
method. 
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Random Choice Method 

The random choice method (also called Glimm's method or the 
piecewise sampling method) is based on an elegant mathematical con
struction of Glimm [7] that was developed into a practical and effi
cient computational algorithm by Chorin [3],[4]. For a single non
linear conservation law in one space dimension of the form (1), the 
method advances a solution one step in time by first approximating 
the solution s(x,tj) at the time tj by a piecewise~constant func
tion on a spatial grid. The function is equal to sl = s(xi,t.) in 
each interval xi - ~ b.x < x ~ xi + ~ I1x, where [y. is the J mesh 
spacing. Then the exact (weak) solution of (1) is constructed 
analytically for the piecewise-constant initial data, and this ana
lytic solution is sampled at the new time to obtain values for the 
new piecewise-constant approximation. 

If the time increments I1t are chosen sufficiently small so 
that the Courant-Friedrichs-Lewy condition ~t/~) max If'(s) 1 < 1 
is satisfied, then the waves propagating from the discontinuities in 
the initial piecewise constant data will not interact. This permits 
the exact solution of (1) to be carried out for a given time step by 
joining together the separate solutiuns of the Riemann problems, (1) 
with initial data 

(7) 

The practical success of the random choice method depends upon being 
able to solve these associated Riemann problems efficiently. 

In [6] the Riemann problem solutions were obtained for the typi
cal S-shaped porous-flow f(s) depicted in Fig. 1. Because this 
function has one inflection point, the solutions may have combination 
shock and expansion wave solutions, a complexity that is not possible 
in the usual gas-dynamics case for which f(s) is strictly convex. 
Nevertheless, the calculation of these solutions can be carried out 
quite efficiently, as described in [6]. In the next section we shall 
investigate the complications introduced in porous-flow problems by 
the inclusion of the function g(s) arising from gravitational 
effects. 

An important feature of the random choice method in one space 
dimension is that discontinuities are propagated sharply in a stable 
manner -- no numerical dissipation is introduced. Also of signifi
cance is that the correct weak solution for a purely hyperbolic prob
lem is obtained, corresponding to the limiting solution of parabolic 
problems as the dissipation approaches zero. 

Solution of Riemann Problems 

In solving (3) by the random choice method with fractional 
splitting, one "splits off" the capillary pressure term and then 
solves successive one-dimensional Riemann problems such as (1),(7). 
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For the x- and y-components of (3) these problems are the same as 
those considered in [6] for the case without gravity, since only the 
function f(s) enters. For the z-component, however, one obtains 
the equation 

~s ~ 
~ + ~ [~(s)] = 0 , (8) 

where 

~(s) = wf (s) - bg(s) • 

Here w is a constant representing the z-component of the total 
velocity in the mesh interval under consideration. 

For convenience, the Riemann-problem initial discontinuity may 
be translated to the (z,t) origin, so that the initial condition 
for (8), cor'responding to (7), becomes 

z < 0 

z > 0 
(9) 

where sB and sA are the values respectively below and above the 
z mesh point under consideration. 

<P ( S ) 

o 
s 

XBL805-988 

Figure 2 

6 



The qualitative nature of the possible solutions of (8),(9) 
depends upon the relative values of wand b, since as w varies 
over the mesh so does the shape of ¢(s) and its number of inflec
tions. This complication does not arise for the case in which grav-
ity is neglected (b = 0), for which the fractional flow function has 
the same shape at each mesh interval, always with one inflection. 
The three possible Riemann problem solution configurations for b = 0 
are derived in [6]. 

The more complex configurations possible when b is 
are considered here. If IW/bl is not too large, then the 
inflections in ¢(s) typically increases from one to two. 
model f(s) and g(s) this occurs if -b < w < ab for 

not zero 
number of 

For the 
b > 0, or 

if ab < w < -b for b < O. 

Fig. 2 depicts a typical graph of ¢(s) for the 
case with b > 0 and w ~ O. Inflections are at sl 

two-inflection 
and s2. 

The unique weak solution of (8),(9) for this ¢(s) can be 
determined from the Rankine-Hugoniot and generalized entropy condi
tions (see [6] and the references therein). These conditions lead to 
the following: 

If the values of sA and sB are such that the interval between 
them contains either no inflection points or one inflection point of 
~(s), then the situation is covered by the discussion in [6], which 
shows that an initial discontinuity can propagate only as a single 
shock, an expansion wave, or a combination single shock in contact 
with an expansion wave. 

If the interval between sA and sB contains two inflection 
points, then, assuming as depicted in Fig. 2 ¢'(O) < 0, ~'(l) > 0, 
the case for the model f(s) and g(s) considered here, one obtains 
for b > 0 

(1) If sB < sA holds: 

The solution of (8),(9) consists of two shocks separated by an 
expansion wave. One shock propagates in the positive z direc
tion and the other in the negative z direction. The advancing 
shock has speed dz/dt = [~(sA)-~(sA)]/(sA-sA)' where sA < sA 
is the value of s at which the line segment from (sA,1(sA» 
lying below ~(s) is tangent. The receding shock has speed 
dz/dt = -[¢(sB)-~(sB)] /(sB-sB)' where sB > sB is the value of 
~ at which the line segment from (sB,¢(sB» lying below ¢(s) 
1S tangent. 

(ii) If sB > sA holds. 

The solution of (8),(9) consists of a single shock and 

(a) no expansion wave, if the chord joining (sA,¢(sA» with 
(sB,¢(sB» does not intersect ¢(s) in (sA,sB). The 
shock speed in this case is dz/dt = [~(sB)-¢(sA)]/(sB-sA). 
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(b) an expansion wave in contact with the shock, if the chord 
joining (sA,~(sA» with (sB,¢(sB» intersects ¢(s) in 
(sA,sB). The shock speed and relative position of the 
expansion wave vary with differing configurations of the 
intersection point and the sign of w. 

For b < 0 analogous results hold. 

In practice, a computational algorithm will determine the number 
of inflection points lying between sA and sB for a given Riemann 
problem and branch accordingly to the appropriate solution. In many 
cases it is necessary to construct the convex or concave hull of 
¢(s) to determine shock propagation speeds, but this can be accom
plished with a standard root-finding subroutine (see [6]). 

Sampling procedure 

Once the Riemann problem solution is obtained, it is evaluated 
at a sampling point in the new mesh interval in z at the new time 
to obtain the new value for s in the interval. Experience has sub
stantiated that the van der Corput equidistributed quasi-random sam
pling procedure proposed in [5] is favorable for use with the random 
choice method. The nth number a in the basic van der Corput 

n 
sampling sequence is 

a 
n 

= \' i Z-(k+l) 
L k ' 

where the binary expansion for n is 

n=\'°Zk L l.k • 

For a discussion of the merits of this procedure and its generaliza
tion see [5]. 

Numerical Solution Procedure 

A computer program written previously with W. Proskurowski has 
been extended to solve (3),(4),(5) with the random choice method on a 
two space dimensional domain for c + 0 and b + O. For the' unit 
square 0 ~ x ~ 1, 0 ~ z ~ I, a uniform grid of mesh length 
~ =~ = k is placed on the square, and p is approximated by its 
value at the mesh points xi = ik, Zj = jk. The saturation s is 
approximated at points on a staggered grid that bisects the p mesh. 

Let s(n) denote the approximate solution for the saturation at 
time t = t. Then pen) and q(n) = (u(n),w(n» are obtained by n _ 
solving discrete aproximations to (4),(5) and accompanying boundary 
conditions, using sen) for s. Standard discretization methods 
can be used with acceptable accuracy on the uniform mesh if satura
tion discontinuity fronts are reasonably smooth. Eq. (3) is advanced 
one step in time to obtain s(n+1) by solving successively 

~ + u(n) JL f(s) = 0 
~t, ~x 
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~ (n) ~ .1. 
~t + w ~z f(s) - b ~z g(s) = 0 

by the one-dimensional random choice method, and 

~ ~t - c \j . [h(s)\7s] = 0 

by a standard explicit 
tracking techniques are 
reported here. 

method. Special two-dimensional shock
not included in the numerical experiments 

As a particular example we solve a cross-sectional problem s~m~
lar to that described in [11]. The unit square is initially occupied 
completely by the wetting fluid (s = 1). For t > 0 a line source 
injects the nonwetting fluid (s = 0) uniformly along x = 0, and 
fluid is removed at a line sink of the same total strength located at 
x = 1, 0.4 ~ y ~ 0.6. The normal component of q and normal deriva
tive of s are taken to be zero at the boundaries. The capillary 
pressure coefficient c is taken to be zero, for which the solution 
has a sharp propagating discontinuity front. 

The contour plots shown in Fig. 3 indicate the solution obtained 
on a mesh with spacing k = 1/40 for a test problem with b = 5 and 
a = 5. The line source and sink each have total strength of 20, 
which results in values of w ranging from about 20 near the injec
tion line to about -2 near x = 1. The contours are curves of con
stant saturation in increments of 0.1, increasing from left to right. 
The coordinate tick marks indicate the mesh intervals. 

The first plot is for a time (t = 0.2) shortly after injection 
indicating the rapid upward buoyant motion of fluid from the source 
to the top of domain, along which it spreads out toward the right 
boundary. The successive plots (t = 0.11,0.18,0.25) show positions 
of the interface as the injected fluid moves to the right boundary 
and down toward the sink. Because the contour plotting program per
forms interpolation on the data, contours that should lie on top of 
one another are smeared out over a mesh interval. Thus the advancing 
front, which is calculated by the random choice method as essentially 
a sharp discontinuity, is made to appear as a one mesh-width band of 
parallel contour lines in the figure. The occasional undulations in 
the advancing front, of the order of one mesh spacing, are typical of 
the random choice method. These random fluctuations do not cause 
numerical difficulty, however, even for the present case of c = 0, 
as the front is seen to move in a stable manner. 

Initial experiments have indicated that the computer time 
required for the 'present program, although greater than that reported 
in [1] for the c = b = 0 case, is quite satisfactory. The greater 
part of the time appears to be devoted to solving (4),(5) by the 
fast-Poisson preconditioned conjugate gradient method, as was the 
case in [1]. Thus it is indicated that the inclusion of gravita
tional and capillary pressure effects in (3) fit comfortably within 
the framework of the random choice method. It is planned to discuss 
these matters more fully in a subsequent study. 
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