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ABSTRACT
A mathematical model is proposed to treat the transient response
of a disk electrode to a change in the applied current. The analysis
reduces to a well-defined boundary value problem, which yields solutions
in terms of newly defined eigenfunctions. The results allow the
determination of time constants characteristic of decay due to an
electrode reaction and due to a redistribution of charge within the

double layer during the transient process.
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INTRODUCTION
The transient behavior of electrochemical cells has been of .
interest since the development of the commutator method for the .

agsessment of electrode overpotentials.1 The subsequent invention of
the more accurate interrupter technique2 and its perfection in the last
couple of decades3’4 have provided a reliable tool for the measurement
éf the uncompensated ohmic drop in the solution. The presence of a
non-uniform current distribution at the electrode surface (such as in
the case of a disk electrode below the limiting current5—7), however,
appears to complicate the interpretation of interrupter data, as this
subject has already received ample thought and caxperimentation.lh8_12
Newman8 has shown that the step change in pdtential at interruption
corresponds to the primary current distributioné and discussed the time
constants for decay of the double layer capacity due to a Faradaic
reaction and redistribution of charge within the double layer. A more
complete mathematical study will be presented here in order to determine
the transient response of a disk electrode to step changes in the cell
Current,
The problem was originally conceived for an ideally polarizable
electrode with the purpose of calculating the transients one would .
observe during the charging and decay of the double layer capacity.
However, the effect of a Faradaic reaction can be incorporated into the )

formulation without any added difficulty in the analysis. The more

general case will therefore be analyzed with due notice of the



mathematical subtleties relevant to an ideally polarizable electrode.

The following assumptions are made in the treatment of the
problem:

1. The digk electrode is embedded in an infinite, insulating
plane, and the counter-electrode is placed at infinity.

2. The diffusion layer is neglected. This is a fairly good
assumption when the rate of stirring is high (high rotation speeds),
and the current densiﬁy'at the electrode surface is considerably below
the limiting current.13

3. Linear kinetic relationships govern the electrode reaction.
This situation is encoﬁntered for high reaction rate'coﬁstants and
sufficiently small current densities such that ]il < io’ where io
is the exchange current density.6

The last two assumptions are stated for the sake of simplicity
so that the phenomena which directly influence the transient behavior
of an electrode can be singled out for investigation with a minimum
number of complicating factors. The effect of steady state mass
transfer on the current distribution below the limiting current has been
discussed elsewhere for various geometries with the consideration of

6,7,14,15

nonlinear electrode kinetics. Newman has treated the

mass transfer probiem in rapid double layer charging at an ideally

polarizable electrode.16



MATHEMATICAL MODEL

The potential in the solution satisfies Laplace's equation

V9% = o0 ¢))

The boundary conditiqns are
%g = 0 at z =0, r > T, (2)
® +0 as r2 + 22 » o (3)

and the potential is well behaved on the axis of the disk. Furthermore,
the normal component of the current density at the electrode surface

is given by13

on i F

1 =.'C 7?5' + (@, +a.) ;T Mg = ; < %%
at z =0, r < T, (4)
&here
ng = V-9 - )

is the surface overpotential associated with the Faradaic reaction,
V is the electrode potential, @o is the potential in the solution
adjacent to the electrode, K is the conductivity of the solution, C is

the double layer capacity; and (aa + ac) io F/RT is the kinetic



coefficient for the Faradaic reaction.

We would like to have our model simulate the transient response
of a disk electrode for the charging or decay of the double layer
capacity immediately after the current is turned on or off respectively.
The potential in solution for the charging period can then be represented

as the difference of a steady state and a transient contribution
o = 55 - gt (6)

such that each part satisfies Laplace's equation by itself. The
electrode potential V can similarly be expressed as the difference of
a steady state and a transient part. The steady state part of the
potential includes the contribution of the total cell current, while
the tramnsient part contains no net current. Once the current is

turned off, therefore, the steady state part vanishes, and the decay

t

period is represented by only the transient part: & = @

STEADY STATE PART OF THE POTENTIAL

The solution of Laplace's equation for the potential distribution
in a disk electrode system is well known for various steady state
5,6,9

boundary conditions at the electrode surface. A solution for the

steady state part of the potential will be presented here to meet the
purposes of this analysis.
In rotational elliptic coordinates5 n and &, the solution for the

steady state part of the potential satisfying the conditions (2) and (3)
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can be expressed as

o]

Ss S8
i?Lp__ - z ; B ‘n (M M, (&) (7)
<I>o n=0

where P2n (n) is the Legendre polynomial of order 2n, Mzn(E) is a
Legendre function with known properties,7 and @z is the uniform potential
in the solution just outside the double layer corresponding to the
primary éurrent distribution.5 This quantity,.in fact, is the ohmic

drop which is normally measured by interrupter methods8 and is identical
to I/4i<-ro in this work. The choice of @g as the scaling factor in

Eq. (7) is mathematically convenient since this normalizes the numerical
value of BOSs to unity regardless of the electrode conditions.

Substitution into the boundary condition (4) yields

a@SS
13

. _ 3 (Vss _ <I>oss) (8)
=0

1
3=

where J is the dimensionless exchange current density given by

ioroF
T= e Cat o ©)
Combining Eqs. (7) and (8) and emplwmying the orthogonality property of

the Legendre polynomials6 gives
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and
nmax 1
a - 2a a -6 ggg—ﬁgi— B 5% - A a
m,n o,m o,n m,n  (4urkl) J n m™J “o,m
n=
m=1, 2, . . ., nmax) (11)
where
1 .
am,n = f N P2m ) PZn(n) dn (12)
0
L P, (0)
ao,m = N P2m(n) dn = - 2(2m-1) (mrt+l) 13)
0
0 if on
§ = (14)
m,n 1 if m=n

The series in Egs. (10) and (11) are truncated at n o for the purposes

of numerical calculation. The accuracy of calculation hence depends

on the number of terms taken into consideration. The coefficients

ans for the first 10 terms in the series are listed in Table I for
various J values. The quantity Vss/¢g » which can directly be calculated
from Eq. (10) once ans are obtained from Eq. (11), is identified as

the dimensionless effective direct-current resistance17 4roKReff for

the disk system with the reference electrode at infinity.



Table I. Direct-current resistance VSS/Qg and coefficients in the

series for the steady state potential

n J=0 J=0.1 J=1 J =10
0 1.00000 1.00000 1.00000 1.00000

1 0.31250 0.30731 0.26863 0.13306

2 ~0.05273 -0.05446 -0.06568 -0.07356

3 0.01984 0.02040 0.02491 0.04037

4 -0.00993 -0.01019 -0.01232 -0.02324

5 0.00580 0.00594 0.00713 0.01423

6 -0.00373 -0.00382 -0.00455 -0.00926

7 0.00256 0.00262 0.00312 0.00636

8 -0.00185 ~0.00189 -0.00224 -0.00456

9 0.00139 0.00142 0.00168 0.00339

10 -0.00107 -0.00110 -0.00130 -0.00260
vss/<1>op - 13.81194 2.34368 1.16459
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The solution can therefore be given by

[e o}

U, = E B P, () M, (&) (24)

n=1

The zeroceth term is excluded from the summation since Ui includes no

contribution to the net current. The boundary condition (4) now reduces

to

3Ui
—E- £=0 = Ain (ani,O) (25)

Combining Eqs. (24) and (25) and invoking the orthogonality property

of the Legendre polynomials yield

n
max
E a B ., = % (26)
o,n n,i 2
n=1
n \]
E fa.  +-ZR _2m B = a (m=1,2 n_ ) @
m,n Ai 4m + 1 n,i o,m 2Tt " Umax

The above set of equations can be solved simultaneously for Ai and
Bn,i' Some results are given in Table II, and the first three
eigenfunctions are plotted in Fig. 1.

Each term in Eq. (17), and the corresponding term in Eq. (21),
describes a potential distribution and a state of charge in the

electric double layer which can decay with a single time constant and
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Table II. The first five eigenvalues and the related coefficients
Bn,i of the eigenfunctions )
[
Al A2 A3 A4 AS
4.12130 7.34208 10.5171 13.6773 16.8308
n i=1 i=2 i=3 i=4 i=5
1 4.56973 3.77404 3.44402 3.25859 3.13834
. 2 3.58511 ~-3.70786 ~4.65162 -4.79052 ~4.75588
3 0.51738 -7.51662 -0.26797 2.76522 4.12690
4 0.10883 -2.89555 9.61986 5.38653 1.50542
5 -0.03143 -0.67828 6.80911 ~-8.19367 ~-8.96691
6 0.02275 -0.02899 2,44681 -10.7732 3.13085
7 -0.01587 -0.03992 0.44950 ~5.76319 12.7102
8 0.01161 0.02428 0.11318 ~1.72888 10.1186
9 -0.00879 - -0.01883 -0.02226 -0.42937 4.33793
10 0.00684 0.01470 0.02445 ~0.02853 1.34844




Fig. 1.
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The first three eigenfunctions for the transient solution.



~14-

involves no net current flow to the counter electrode at infinity. The

state of charge is proportional to V-@o or to 1-U for a particular .

i,0
eigenfunction. If this state of charge is non-uniform, it will have
associated with it a flow of current through the solution in a direction
which tends to make even the charge distribution across the electrodé.
At the éame time, the double layer charge may be decaying through the ?
Faradaic reaction (if J > 0). |
If each eigenfunction is to represent a single time constant,
the amount of current flowing through the solution (related to BUi/BE
at £ = 0) must be proportional, over the surface of the electrode, to
the rate of change of the double-layer charge. Equation (25) represents |
this state of affairs. Only for certain characteristic decay constants |
Ai is it possible to find consonant current and charge distributions
which decay with a single time constant, and these eigenvalues are
not known in advance. The lowest eigenvalue, either Ao = 0 or
Al = 4.12130, is the most important because its effect can most ;
readily be observed experimentally after the other eigenfunctions have :
decayed to negligible values, ‘
It is a further consequence of boundary condition (25) (current
in solution is proportional to surface charge for each eigenfunction)

that the eigenfunctions Ui satisfy the unusual orthogondlity relationship

[ had !
1 Ai Z 4n + 1 n,i =3
n=1
f Yi,0 (1-Uj,o)ndn = ‘ (28)

0 0 O Af i
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This has much the same meaning; the potential at the surface for one
eigenfunction is in a sense orthogonal to the current density for another
eigenfunction.

One can study the eigenfunctions in Fig. 1 to visualize how the
current flows through the solution. The potential is non-uniform for
a given elgenfunction becauée the state of charge 1s non-uniform. The
current density in the solution is proportional tq l_Ui,o and flows
from a region of high charge to a region of low charge. The higher
order eigenfunctions have more minima and maxima in the curves. The

current.need therefore flow a shorter distance in order to even up the

charge, and the time constants are correspondingly shorter.

TRANSIENT POTENTIAL DISTRIBUTION

In order to be able to calculate the values of C, and thereby

i
complete the analysis, we need to specify suitable initial condiﬁions
for the problem. Let us assume that the current is switched on as a
step at © = 0 + and kept constant until 0 = qu

is turned off. The time scale for the decay period can be defined as

at which instant it

' == — .
,Therefore,’ for the Charging period

= = p = = ,
\ @o @o at 6 =0+, »E 0 (30)

and for the decay period
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_ _ &P
V=1V (ech) <I>0
at 8'=0+, £=0 (31)

_ _ &P
o, = (8- o

Application of the inftial condition (30) for the charging period to

Eq. (6) gives

) ] |
5 1 = E 404 (32)
1=1

Multiplication by (l—Uj o)n and integration with respect to n yields
. 3

rl ‘(I)OSS - M2'n (0) ss
] o G0 z :m‘r Bn Po,g
cj = o1 o = n:1 (33)
]
r Uj o(1—Uj o) ndn M2n (0) B2
) T Zn=l, AT s

Application of the corresponding initial condition for the electrode

potential gives

SSs a
= v _ - - 4
‘o * o P ! Z ! mJ (34

.

For the decay period where ¢ = ot (the negative of the transient
part for charging), the same résults, summarized by Eqs. (32) through

(34), also apply as long as edhis large enough so that the steady state
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been reached right before interruption. If this is not the case,

equations for decay become

o0

I -e.a+n] -6'@+1) -
e . z:"i [1-9_ ch™d ]e 1 U, (35)

P
®o i=1

the potential in the solution, and

[}

-8 . J N -0 . (A, +J)] -0"(A,+T)
—V-='co<1—e ch ) e 4 E c, [l-e ch™ 1 ] e 1 (36)

P
oo : ) i=1

the electrode potential. The coefficients C, are the same as for

i
charging period, given by Egs. (33) and (34).

For an ideally polarizable electrode (J=0) theisame relationships

hold to express the potemtial in the solution, both for charging and

for decay. The electvode potential, however, increases indefinitely once

 the

current is turned on and decays to a non-zero value after the inter-

ruption of current. This is because of the fact that the net double-

layer charge has no means for decay in the absence of an electrode

reaction; it can only redistribute by flow of current through the

solution in order to attain a final uniform state. Hence, for the

charging period we have -

oo

’ -0, 0O
_";s,%eﬂa-z ce ! (37)
0]

o i=1
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The constant term can be obtained by integrating condition (4) over
the electrode surface for the total period of charging to obtain the

net charge added to the dduble layer

Yo ch B(V—Qo) Yo tch
2nC 3t dtrdr = 2W iz dtrdr = Itch (38)
0 0 ' 0 0

Substitution of Eqs. (6) and (37) into the left side and integration

lead to the result

D = 2 E B 5% , = 1.08076 = 32/31° (39)
n o,n

Finally, the electrode potential for the decay period is

o0 . ]
- A0 :
_YE' = %- 6., + E uge i (;-e 1 °g> : (40)
(0} .

o . i=1

The analysis at this point can readily be extended to account
for arbitrary changes in the cell current by a straight forward
application of the superposition integral. If the time dependent cell

‘current is given by I(0), the electrode potential can be expressed as

8
4r KV = 1(6) + coJe‘eJ 1¢6)e™a0
~ -8, + 1) B(A, + 3)
+ E C (A, + De I(8)e a6 (41)
t=l ’
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in the presence of an electrode reaction, and

L b . . 440 A8

4r°KV = T1(6) + - I(S)de +Z CiAie I(0)e ~ d6 (42)

o 0 1=1 | 0o
for an.ideally polarizable electrode. One appiication of these
equations would be for an alternating current situétion, where the
frequency.dispersion of tﬁe méasured impedanée is of interest. A more
rigorous and acpufate calculation has been performed by Newman17 for
this particular case. The ﬁresent eduations were used to compute the
frequency dispersion in capacit& measurements at a disk electrode and
compared to Newman's results.17 The agreement is gbod fqr small
frequenéies, but a iarge number of terms is reqﬁired in the series to
attain any reﬁsonable accuracy at high frequencies. The same numerical
probiem is encoﬁntered in calculating the short—time response of the
potential to a step change in the current since the series do not
converge very fast. An asymptotic solution, applicable to small

charging and decay periods, may therefore be desirable.
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RESULTS AND DISCUSSION

Figure 2 depicts a typical potential trace for double layer
charging and decay in the presence of a Faradaic reaction, and Fig., 3
shows potential decay curves after the interruption of current for
various values of the kinetic parameter J. For both fepresentations,
the current is interrupted after the double layef is charged to steady
state conditions. For large decay periods, the slope of each curve
approaches the corresponding J value oﬁ a semi-~logarithmic scale as
can be inferred from Eq. (36). Curves similar to Fig. 1 could be con-
structed for different J values by making use of the information
contained in Fig. 2 and by remembering that the ohmic drop is given by
the primary distribution @op, and the charging and decay portions of
each curve are symmetric.

The fact that the instantaneous potential step immediately
preceding both the charging and decay portions of Fig. 1 corresponds
to the primary current distribution8 is implicit in the present
analysis by virtue of the particular initial conditions (Eqs. (30) and
(31)) employed. Nanis and Kesselman9 have expressed the contrary
view in this regard. We would like to stress that the same criterion
would hold for the ohmic drop even if the diffusiop layer were taken
into consideration. An experimental verification along‘these lines
has been provided by Miller and Bellavance.12

The transient response of an ideally polarizable electrode to step
changes in the current is depicted in Fig. 4. The step portions again

correspond to the primary distribution. The differences in comparison
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Fig. 2. Double layer charging and decay in the presence of a Faradaic
reaction.
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Fig. 3. Decay of the electrode potential for various values of the kinetic
parameter J. A steady condition was attained before interruption
of the current.
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Fig. 4. Double layer charging and decay in the absence of a Faradaic
reaction. :
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to Fig. 2 are obvious. The potential-time relationship becomes linear
for sufficiently large charging periods as the surface current aensity -
attains a uniform distribution. After the interruption of current, the
electrode potential decays to a non-zero value, given by 49Ch/ﬂ. Decay -
curves for various charging periods are sketched in Fig. 5 to show the
effect'éf short charging times on the potential decay. The same effect
is also discernable when J is greater than zero, but the dependence on
the charging peribd was not of prime interest invconstructing Fig. 3
and wasvsuppressed by allowing a steady state tb‘develop before current
interruption.
The reference electrode was assumed to be positioned at infinity
relative to the working electrode in obtaining all these results. The
measurements would be different for other placements; and appropriate
corrections would be necessary.s’11
An imporéant result of the present analysis is the assessment of
an accurate time constant for the decay of the double layer capacity

in the absence of concentration gradients at the electrode surface.

From Eq. (18), we obtain

1 - roC
KT v R 3
i o)
When an electrochemical reaction is possible, the dominant time constant e
at long times is
rOC :
T = — (44)
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Fig. 5. Decay of the electrode potential for vérious charging periods

in the absence of a reaction.
times to the first eigenvalue Al‘

The slope here is related at long
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as identified by Newman.8 When an electrochemiéal reaction is not
possible_(the ideally polarizable electrode), this time constant -
becomes infinite, and the potential decays to a non-zero constant. The

dominant time constant then is

T = fx = 713 % (45)

also suggested in the same context8 but without the determination of
the numerical factor. The present analysis amplifies the roles and
interrelationship of these two quantities and the processes they
describe.

A direct experimental test of these time constants may be performed
with the utility of an original reference electrode system designed by
Miller and Bellavance.12 This consists of two probés positioned
coaxially with the disk in the solution, so that-thé potential drop
between two distinct locations in the solution could be measured. If
linear electrode kinetics and finite exchange current densities are
ensured, and concentration gradieﬁts hear the surface of the disk are
avoided, the time constant so measured should correspond to Eq. (43)

for i=1.
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CONCLUSIONS

The transient behavior of a disk electrode for a step change in
the applied current has been worked out theoretically in the absence
of mass transfer effects. The analysis leads to a boundary value
problem, which yields analytic solutions in terms of a new set of

-

eigenfunctions U These equations can be extended to account for

L
arbitrary variations in the applied current by employing the super-
position integral.

The results demonstrate a) the effects of a Faradaié reaction and

b) the non-uniform primary current distribution on the double layer

charging and decay at a disk electrode, and c¢) the. interaction of these

‘phenomena to determine the resultant electrode behavior. The overall

treatment of the problem allows the determination of accurate time

constants for each of these effects.
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NOMENCLATURE
see Eq. (12)
see Eq. (11)
eoefficients in series for ¢SS

coefficients in series for Ui

double layer capacity (f/cmz)
vcoefficients in series for 9" and V'
1.08076

Faradéy's constant (coulomb/equiv.)
component of current density normal to the plane of disk (amp/cmz)
exchange current density (amplcmz)
total current (amp)

dimensionless exchange current density
Legendre fuhction discussed in ref. (6)
Legendre polynomial of order 2n

radial pbsition from axis ofbdisk (cm)
radiuslof disk (cm)

universal gas constant (joule/mole-deg)
effective D.C. resistance (ohm)

time (sec)

total period of charging (sec)

absolute temperature (°K)

eigenfunctions in series for ot

value of Ui at the electrode surface

electrode potential (volt)
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steady state part of the electrode potential (volt)
transient part of the electrode poteﬁtial_(Qolt)
distance fromvplane of disk (cm)

parameters in the kinetic coefficient

Kronecker delta

rotational elliptic coordinate

surface overpotentiél fvolt)

conductivity of the solution (ohmnlécm—l)

dimensionless eigenvalue

- potential in the solution (volt)

value of ¢ at the electrode surface (volt)

"steady state part of potential in the solution (volt)

trangient part of potential in the solution (volt)

potential in the solution adjacent to the &isk corresponding to
the primary current distribution (volt)

rotational elliptic coordinate :

time constants for decay (sec)

dimensionless time for the charging period

dimensionless time for the decay period
dimensionless total period of charging

constants in the series for Vt (normalized to unity)



~-30-

REFERENCES

1. S. Glasstone, "Intermittent Current Electrolysis. Part II. Overvoltage

Study of the Lead Electrode,'" Journal of the Chemical Society

(London), 123, 2926-2934 (1923).

2. A. Hickling, "Studies in Electrode Polarisation. Part I. The Accurate

Measurement of the Potential of a Polarised Electrode," Transactions

of the Faraday Society, 33, 1540-1546 (1937).

3. S. Schuldinger and R. E. White, "Studies of Time-Potential Changes

on an Electrode Surface during Current Interfuption," Journal of

the Electrochemical Society, 97, 433-447 (1950).

4, JL b. E. McIntyre and W. F. Peck, Jr., "An Interrupter Technique
for Measuring the ﬁncompensated Resistance of Electrode Reactions
Under Potentiostatic Control," ibid., 117, 747-751 (1970).

5. J. Newman, "Resistance for Flow of Current to a Disk," ibid., 113,
501-502 (1966).

6. J. Newman, '"Current Distribution on a Rotating Disk below the
Limiting Current," ibid., 113, 1235-1241 (1966);

7. J. Newman, "The Diffusion Layer on a Rotating Disk Electrode," ibid.,
114, 239 (1967). |

8. J. Newman, "Ohmic Potential Measured by Interrupter Techniques,"
ibid., 117, 507-508 (1970).

9. L. Nanis and\W. KésSeiman, " Engineering Applications of Current

and Potential Distribution in Disk Electrode Systems," ibid., 118,

454-461 and 1967-1968 (1971).



-31-

10. J. Newman, Discussion of paper by L. Nanis and W. Kesselman, ibid.,
118, 1966-1967 (1971).

11. W. Tiedemann, J. Newman and D. N. Bennion, "The Error in Measure-
“ments qf Electrode Kinetics Caused by Non-Uniform Ohmic Potential

Drop to a Disk Electrode," (LBL-890) submitted to the Journal of

the Electrochemical Society.
12. B. Miller and M. I. Bellavance, "Measurement of Current and
Potential Distribution at Rotating Disk Electrodes,'" submitted to

the Journal of the Electrochemical Society.

13. J. Newman, "The Effect of Migration in Laminar Diffusion Layers,"

International Journal of Heat and Mass Transfer, 10, 983-997 (1967).

14. W. R. Parrish and J. Newman, ''Current Distribution on a Plane

Electrode below the Limiting Current," Journal of the Electro-

chemical Society, 116, 169-172 (1969).

15. W. R. Parrish and J. Newman, "Current Distributions on Plane
Parallel Electrodes in Channel Flow," ibid., 117, 43-48 (1970).
16. J..Newman, "Migration in Rapid Double Layer Charging," Journal of

Physical Chemistry, 73, 1843-1848 (1969).

17. J. Newman, "Frequency Dispersion in Capacity Measurements at a

Disk Electrode," Journal of the Electrochemical Society, 117,

198-203 (1970).



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



