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ABSTRACT 

ncticn of the chloroplast is to capture solar quanta and 

~.:..:;: '", l n 
<= v'.~ =' .. "'- We are in the process of trying to CO!1-

tern that would simula some of the reactions 

of the two photcsys!ems which occur in natural chloroplasts. 

Toward this end. we have demonstrated a number of the reactions re-

quired in separated systems. We have shown that it is possible to transfer 

electrons across an insulating membrane barrier with a surfactant photosensitizer. 

Others have shown. and we have confirmed. that it is possible to collect the 

two electrons necessary for4the generation of molecular hydrogen on a hetero­

geneous catalyst suspended in water and similarly to collect the four holes 

on another heterogeneous catalyst suspended in water for the generation of 

molecular oxygen. A synthesis .some of these molecular catalysts for both 

these purposes is undenvay~ with some partial success. 

When these partial reactions are assembled in a system, the resulting 

lisynthetic chloroplasts" w'l11 not resemble the natu 

construction as they wil' contain no protein. 

entity in detailed 

To be presented at Faraday Soci ety Genera"j Oi scuss i on tlo. 70, Photoel ectrochemi s try, 
St. Catherine's Conege, Oxford University, Oxford, England. Sept. 8-10, 1980 





INTRODUCTION 

I would like to describe to you an artificial photosynthetic system 

which 1o'le have been trying to construct whkh win ach'jeve the essential 

function of the chloroplast, that is~ the capture of quanta and their con-
. . 11-3) verSlon lnto stable chemical form.' I know that the synthetic system 

will not perform in exact'!y the same structural fashion as the natural 

photosyn tic system of the green plant (th~ natural chloroplast). All 

we wish function(s) of the natural system~ i.e., the capture 

of quan ':2. ~ .e~r s::~~;e in a stable chemical form. 

Recen ., T 
J' -

which impinges·on 

" cc:::::sion to encounter a r~ther interesting quotation 

subject. It was an editorial entitled liThe Photo-

chemistry of the Future!! written by the Italian photochemist, Giacomo 

amician~ in October 1912 and published in Scienc(~. (4) This is one 

paragraph 

"Modern civilization is the daughter of coal. for this offers 

to mankind the solar b,,;:r'gy in its most concentrated form; that 

a form in which it has been accumulated in a long series of 

centuries. Modern man uses it with increasing eagerness and 

thoughtless prodigality for the conquest of the wOi'ld and 3 like 

the mytflica'j gold of the Rh-ine, coal is today the greatest source 

of energy and wealtho" 

r think this statement represents a point of view which was of great impor-

tance then and perhaps even more valid today. One last sentence from this 

artfcle. by way of introduction to the subject of the present discussion. is: 

"ls .~~~ilsolar energy ,the only one that may 

life and d lization? That is the ques on." 

used in modern 
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utilizing solar energy, with the green plant being the most common. (8) 
We are 81 90 ing back" to the "green machine" today by converting the carbohydrate 

the plant into a more useful liquid fuel by a fermentation process to make 

alcohol. The processes and technology for this first step are already available 

and in use in some areas of the world (speci cally Brazil)(9) and are currently 

under development here in the United States.(lO,ll) 

e s2':ond s e of this "going back" to the "green machine ll involves the 

di s,,",,--.'"t:Jy=-,1' ~ .::: ., 1 ,,~ ,I 
wV i ...... ; ",,# ~ r' _!i \. >;:;,.,!",...; velopment of their agronomy) which carry the 

reduct; on ,..:: ca :t C:l ~ xi v , all the way to hydrocarbons. instead of stopping 

at carbo s as ~ost plants do.(8) There are some plants already in use 

commerciany a: ce.i1 go an the way to hydrocarbon; for example the .!:i~ve~ 

rubber • a we have found others which will go all the way to hydrocarbons 

and which will grow in the semiarid areas which are available in many places 

in the wor1d. les of plan which produce hydrocarbons are members of 

the family. which has over 2000 different species of latex-
~,,~-~~~ 

producers. 

The third and final method of IIgoing back" to the "green machine" will 

be to reproduce synthetically the quantum capturing and converting function 

the chloroplast (7.12.12a.12b) so that we will not require either plan 

or the land on which to grow the plants. 

We are using the green plant chloroplast as a model to guide us in the 

construction of effi ent and useful ways of capturing and storing the quanta.(13) 

In general, while a sensitizer can absorb the quantum and reach an excited 

s te~ we must still nd a way that excited state energy to be stored in a 

permanent form. The principal 1t/ay to do this is by inducing an electron 

trans reaction. i.e I moving the electron from a donor system to some acceptor 
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EXPER AND RESULTS 

order to simulate the natural quantum conversion act in the green 

plant we constructed an insulating membrane, placed somewhere between the two 

quantum acts, which would allow the two steps to take place on opposite sides 

such a membrane. This rather naive concept is a simpli ed method of 

reducing the natural photosynthetic quantum conversion act to a level where 

it mi t be synthetically reproduced. The diagrammatic representation of this 

pho in Figures 3 arid 4. The biljpi~ ~embrane 

~~:s;, lipid molecules on either side l and on one side is 

a donor :2;';1 en:::: en"' other si an acceptor catalyst. There are two' 

sensitizers~ one en side of the membrane (labeled photosystem I and 

photosys T 'C ) ~ 1 • The electron is taken from a water molecule on the left-

hand 51 e na by the first quantum act. It falls back part way 

and then is the second quantum act up to the level of molecular 

hydrogen and i ected into the acceptor catalyst. One could try to construct 

such an arti cial flat.membrane on a solid or 'Iiquid surface; a number of 

people are doing this with some degree success.(14,15) It seemed to us, 

however, that we could achieve this kind of a tern by constructing vesicles. 

This en ty was i by a biochemist (biologist) named Bangham, (16) who 

took phospholipids from cells, eaned them uP. and after having removed most 

of excess tein and other extraneous matter, he achieved a fairly pure 

phospholipid substance. By shaking the phospholipid violently in a water 

medium. Bangham was able a vesicle which he caned a "liposome" 

becatise he was using the lipids of the 1 s . liposomes were in various 

» one of which was a simple bilipid membrane sphere. By bilipid I mean 

two 1 phospholipids, 11 tail, in which the surface tension and 

surface properties of the 11 ds and the wa were such that when the monolayer 
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with their associated pigments, but the catalyst that leads to the hydrogen 

generation, on one side, and the oxygen generation, on the other side of the 

membrane are not so well known. Before we tried to generate the catalyst, 

we used a donor system which did not require water and oxygen generation. and 

an acceptor system which did not immediately require the generation of hydrogen. 

In other iv'ords. \'<'e performed "simpler!! chemistry when we began this series of 

:-.::::-'~ ~-:;: 
... ~~" '-"-' l re t ng to synthesize the hydrogen and oxygen generating 

catal t c.S \Aien. ~::t~ral hydrogen generating catalyst is rather' well 

knoir1TI, 2n ircn-su;'-' ;:~C in,(18) but the oxygen generat-jng cata'lyst is still 

Ins of usi wa r as a donor and protons as the acceptor we used 

a simpler re:'lC on lihich was easier to accomplish than the generation of 

hydrogen and oxy;en from V'/ater~ which is depicted in FIGURE 5, shovling the 

oxidation of ethylenediamine tetraacetic add (EOTA) with methyl viologen 

(MV) sensitized by a suitable sensitizer, which resulted in oxidation of one 

of the glycine groups to formaldehyde and carbon dioxide. with the simultaneous 

reduction of the MV to a cation monoradical.(17) This is a rather simple slightly 

uphill chemical reaction, which produces deep blue color as one of the 

reaction products. This color can be used as an indication of whether or not 

the reaction is IIgoingli. We used EDTA as a donor and MV as an acceptor, and 

instead of using water soluble ruthenium bisdipyridyl as the sensitizer we 

constructed a surfactant with a C16 11 which creates a complex which will 

- locate at the water-oil interface. The surfactant dyestuff will occur at the 

water-oil interface when the vesicles themselves are created (FIGURE 6). All 

the components are dissolved in ethanol-diethylformamide. together with the 

phospholipid. and that solution is injected into 0.5 M fOTA in buffer. This. 
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acceptor were anywhere near the sensitizer during its excited state. 

It appeared desirable to insert something which would trap the electrons near 

surface of membrane which could then hand the electrons over to the 

bul k acceptor. Therefore, \tIe usedheptylviologen to be distri buted bebieen 

the surface of the membrane and the bulk of the solution. This provides an 

acceptor next to the excited sensitizer which could then transfer to viologen 

in sol~tion very rapidly. Once the electron leaves the membrane 

it will n:: ~ b~:~ :E:2~S2 of dilution in the bulk viologen. 

How di d ,2; e 1 2::rcn through the membrane? Once the excited electron 

is: trapped ~, the external Ru+2 has become Ru+3. I thought for 

some me t tr::3te had to be a second quantum absorbed by the internal Ru+2 

. to trans the electron across the membrane. This would make the reaction 

dependent upon s~uare of the light intensity; one quantum "'lOuld move the 
+? +2 +3 

electron from RUe; to viologen and the other quantum from RU int to Ruex . We 

then performed ali ght i ntens ity experiment, the resul of whi ch are shown 

in FIGURE 9, and the reaction is linear with l-ight intensity, showing that it 

is not a bimolecular (two-quantum) process but is a one-quantum process. 

Therefore, the trans of the electron through the membrane 1s not light-

dependent. The exchange reaction between Ru+3 on the outside of the membrane 

+2 and Ru : on the inside of the membrane is very fast, and the kinetics and 

equations for the photoreduction of viologen are shown in Figure 10. The 

exchange reaction, as far as the membrane is concerned. is perfectly symmetrical» 

and the two rate constants are equal and in opposi directions. An the 

other constan can measured separately. and then the overa11 reaction can 

measured. From is rate of the excha reaction can be deduced, and it is 

gh. 
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t oxide could be used for the catalyst as well as ruthenium oxide. 

is method accumulates four one-electron oxidation steps on the solid 

, because the Ru+3 bipyddyl has the potential for this type of reaction. 

The other end of the reaction is reduced MV (methyl viologen radical cation) which 

has the ntial to generate molecular hydrogen from protons, again only 

is an a t present which will allow the two ectrons to 

V2 s~~e other catalyst (such as rhodium cluster) which 

wi 11 SJ allow electrons to accumulate in the same place. 

It is, however. ci cult to place a solid catalyst on the inside of 

a vesicle use solid particles would have,to be extremely small to 

be abl e to ins; of the vesicle without disturbing its surface. It 

d r. if possible, to learn what the natural catalyst might be 

oxygen generation. now have both catalysts and both systems developed. 

The potential exis create a device which would perform the same functions 

as natural photosynthetic quantum conversion. 

Man~anese Function: 

We know a good bit about the natural catalyst for oxygen generation. 

example. we know that it is a manganese compound of some sort.(6,7) 

years ago. the plant physiologists had determined that when a plant is 

starved for manganese it fails to have the capacity to generate molecular 

oxygen. Hhen manganese ion is added to the plant l s environment it recovers 

very quickly the capability of generating molecular oxygen. Many experiments 

been done to confirm that idea. 1 . e. , that manganese is somehow 'j nvo 1 ved 

in C.n essenti a 1 e in the rs t react; on of taking an electron from water 

whatever it is in chlorophyll or other substance to which it goes. ( 
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and the manganese atoms alone can be examined. The interference pattern 

the scattered x-rays detec only the manganese atoms and its nearest 
., (23) 

neighbors. We then used the binuclear manganese compound previously 
,. 

synthesized as a calibrat'ing matedal; the EXAFS of this compound is shown in 

FIGURE 13. From this spectroscopic information it is possible to deduce that 

in the chloroplasts there are two manganese atoms with a small distance 

(Figure 13) represents the position of one of the 

manganese ~:J~S, ':,~'.? s2:cond manganese atom shows an intensity peak somewhat 

1ar picture is observed in the chloroplasts, showing 

that there are a~ least two manganese atoms within 2.5 A of each other. The 

EXAFS method ved at there is at least a binuclear manganese compound present 

in the chloroplas~ material. We can say. therefore. that there are manganese 

atoms acti~g in irs (or groups larger than pairs) in the chloroplast which 

can perform the same e1ectron transfer reactions which occur in the natural 

material. 

With that as background. we undertook to use the synthetic vesicles which 

we had developed(12.17) and to replace the ruthenium with a surfactant manganese 

compound. A general scheme for the photochemical generation of oxygen sensitized 

by manganese compounds is shown in FIGURE 14. This indicates that there must be 

two or more manganese atoms, as shown in the last reaction, acting in concert 

in the vesi es. 

We then prepared tetrapyridyl porphyrin, the structure of which is shmvn 

in FIGURE 15. This chlorophyll analogue is a surfactant porphyrin which will 

lodge at the interface of the yesicle in place of the ruthenium. 

In preparation for this part of the experiment, we performed a reaction 

in an alcohol solution where there was not an interface. The first experiments 
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