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ABSTRACT 
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The finite-temperature HFB cranking equations are solved for the 

two-level model. The pair gap, moment-of-inertia and internal energy 

are determined as functions of spin and temperature. Thermal excitations 

and rotations collaborate to destroy the pair cor,Fe1ations. Raising the 

temperature eliminates the hackbending effect and improves the HFB 

approximation. 
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1 • INTRODUCTION 

Hartree-Fock-Bogoliubov (HFB) calculations have been primarily 

restricted to the yrast line, which consists of the lowest energy state 

1 for each spin. However, heavy-ion reactions populate regions above the 

yrast line which contain a high density of nuclear states. The average 

properties of these states may be described by introducing a temperature T. 

The yrast line corresponds to T = O. Figure 1 illustrates how the excitation 

energy of a nucleus can be split into thermal and collective components. 

The finite-temperature HFB cranking (FTHFBC) equations have been 

derived in a separate article. 2 This theory provides a framework for 

investigating nuclear properties above the yrast line. For a first 

attempt to solve the FTHFBC equations, it seems advisable to choose a 

simple model Hamiltonian rather than embark upon more realistic calculations. 

The model selected is the two-level model of Krumlinde and Szymanski. 3 

The HFBC treatment of this model at zero-temperature has been .extensively 

d · d 3-8 " . d i i . i stu le, so 1t 1S approprlate to exten pr or nvestlgat ons to 

finite-temperature. The model contains a single-particle splitting, a 

pairing force, an angular momentum operator which induces rotations, and 

a finite-temperature is introduced. (The rotor is omitted here.) So 

although the model is quite simple, it contains several essential features 

of real nuclei. Finite-temperature and rotations each destroy pair 

correlations. This model illustrates in a self-consistent fashion the 

inter-dependence of thermal excitations, rotations, and pairing. 
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2. REVIEW OF FINITE-TEMPERATURE HFB CRANKING THEORY 

2 
The FTHFB equations are 

where Ui is the vector (Uil , Uh , ... ) and Ei is the energy of the 

quasiparticle 

t a, 
1 

\' t L (U
iJ

, C
J
, + V,, C.) 

. 1J J 
j 

(2.1) 

(2.2) 

The HF Hamiltonian X, the HF potential r, and the pair potential ~ are 

X .. 
1J 

r .. 
1J 

~ij 

The density matrix p and the pairing tensor tare 

[UfU* + Vt (1- f)V],. 
. 1J = 

The quasiparticle occupation probability f is 

1 
= 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where 8 = llkT, k is Boltzmann's constant, and T is the temperature, 

The chemical potential ~ and the angular velocity ware adjusted to 
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satisfy the number and spin constraints 

A 

(N) = N (2.9) 

= 
1 

[J (J + 1)J::2 I (2.10) 

The internal energy is 

(2.11) 

and the entropy is 

S = -k I [f. in f. + (1-f.) in (1-f i ) ] 
i 1 1 1 

(2.12) 

The grand potential in a rotating frame is 

n = E - TS - ~N - wI (2.13) 

The FTHFBC equations (2.1) are derived from the variational principle 

on = 0 (2.14) 

and the independent quasiparticle approximation 

H "'" ~FB (2.15) 

3, TWO-LEVEL MODEL 

The two-level model contains n identical sets of four states. One 

of these sets is shown in Fig. 2. The levels are half-filled so that 

N = 2n and the chemical potential II = O. The rotor is omitted. The 

Hamiltonian is 

H = H + H s.p. p 0.1) 
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where the single-particle and pair components are 

n t t t t 
E: L (CaCli + C3iC3i - CZiC2i - C4iC4i) 

i=l 
H = s.p. (3.2) 

(3.3) 

The motion is restricted to two dimensions and the angular momentum is 

(3.4) 

where each particle has J x = ±~ and the maximum spin is (Jx > = n. When 

T = 0, the exact energies of this system are given by the R(5) model of 

Krumlinde and Szymanski. 3 

For this model the HF Hamiltonian and the pair potential are block 

diagonal in the index i, which specifies one of the n sets of four levels 

shown in Fig. 2. Consequently the FTHFBC equation (2.1) reduces to n 

identical 8 x 8 blocks. The index i will now be omitted. The matrices 

below are represented in the basis 1,2,3,4 of Fig. 2. 

The angular momentum operator is 

0 ~ 0 0 

!-.,: 
2 0 0 0 

J = (3.5) x 
0 0 0 -~ 

0 0 -~ 0 

The contribution of the pair interaction to the HF potential (2.4) is 

neglected, so that r = O. The HF Hamiltonian (2.3) is 
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£ -w/2 0 0 

w/2 -£ 0 0 
JC = (3.6) 

0 0 £ w/2 

0 0 w/2 -£ 

and the pair potential (2.5) is 

0 0 -I::. 0 

0 0 0 -I::. 
I::. (3.7) 

I::. 0 0 0 

0 I::. 0 0 

where 

(3.8) 

The eigenvalues Ei of Eq. (2.1) are the quasiparticle energies
4 

E (3.9) 

where 

= (3.10) 

and the eigenvectors of Eq. (2.1) define the quasiparticle transformations 

5 (2.2) , 

A+ -B + 0 0 

A B 0 0 -
U 

0 0 A+ B+ 
(3.11) 

0 0 A -B 
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0 0 -B A+ t,. 
+ 

0 0 -B -A -V = (3.12) 
B+ A+ 0 0 

B -A 0 0 -

where 
1 

A± = ~ [1 + E/E±]~ (3.13) 

IB±I ~ [1 -
!.: 

= E/E±] 2 (3.14) 

and A± and B+ are positive, whereas B is positive when 11 > w/2 and 

negative when 11 < w/2. The spin is 

(3.15) 

the moment-of-inertia is 

(3.16) 

and the internal energy (2.11) is 

(3.17) 

The essential difference between the finite-temperature and zero-

temperature cases is that the quasiparticles have a non-zero occupation 

probability (2.8) when T" 0 

f+ 0 0 0 

0 f 0 0 
f = (3.18) 

0 0 f+ 0 

0 0 0 f 

where 
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1 
(3.19) 

The density matrix P is evaluated by substituting Eqs. (3.11), (3.12) 

and (3.18) into Eq. (2.6), 

Pu P12 
0 0 

P12 P22 
0 0 

P (3.20) 
0 0 PH -P12 

0 0 -P12 P22 

where 

(3.21) 

1 [ tanh( ~ SE+) tanh ( ~ SE_) ] 
-+~ E +--E---
2 4 + _ 

(3.22) 

P12 = 1. [ (!:c.+w/2) h(~ SE ) (!:c. - w/2) tanh(~ SE_)] (3.23) 4 E tan 2 + E 
+ 

Similarly the pairing tensor t of Eq. (2.7) is 

0 0 t13 -t
23 

0 0 t
23 t13 

t (3.24 ) 
-t

13 
-t23 0 0 

t 23 
-t

13 0 0 

where 

t13 t [ (!:c.+E:/
2

) tanh( ~ SE+) + 
(!:c. - w/2) 

tanh( ~ SE_)] (3.25) 
E 
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(3.26) 

When T = 0 (8 = 00), then tanh( ~ 8E±) = 1. 

The finite-temperature cranked gap equation is found by substituting 

Eq. (3.25) into Eq. (3.8), 

When the spin and temperature are ~ero, then 

(w = T = 0) (3.28) 

The spin (3.15) is 

I ,- (Jx ) = ~ [(~ ;+ w/2) tanh( ~ 8E+) - (~ ~ w/2) tanh(~8E_) ] . 

(3.29) 

When w = 0, then E+ = 'E and (J ) = O. The internal energy (3.17) is - x 

and the entropy (2.12) is 

s = -2H~ L [f.Q,n f + (1-f).Q,n (1-f)] 
f=f± 

When T = 0, then S = O. 

For W = 0, the critical temperature Tc at which ~ vanishes is 

e: (w= 0) 
2tanh -1 (e:/GQ) 

In the degenerate model (e: = 0), Eq, (3.32) reduces to 

kT = GrU2 c (e: = w = 0) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 
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4. SOLUTION OF THE GAP EQUATION 

The function ~(w,T) is determined numerically by choosing values 

for wand T, and searching for values of ~ which satisfy the finite-

temperature gap equation (3.27). All other quantities are then directly 

evaluated. 

The effect of raising the temperature in the non-rotating case 

(w=O) is shown in Fig. 3. At the critical temperature given by Eq. (3.32) 

there is a "phase transition" from a pair correlated state to a normal 

state. The thermal excitations create a blocking effect which destroys 

the pairing. 

The gap ~(w) is given for various temperatures in Figs. 4 and 5. 

These figures illustrate how rotations and thermal excitations collaborate 

to break down the pair gap. For kT < 0.3 MeV,.the curves are triple-valued, 

indicative of the "backbending" effect; whereas for kT > 0.3 MeV, there 

is no backbending. 

The critical spin I is defined as the spin for which ~ goes to zero. c 

Figure 6 shows Ic versus the temperature. As T increases, Ic decreases. 

When T = Tc' then Ic goes to zero. 

The spin of Eq. (3.29) is given in Fig. 7. For small w, increasing 

the temperature causes the spin to increase. This is the pairing region, 

and pairing resists rotation-alignment. However, raising T decreases~, 

which makes it easier for the spins to align. By contrast, at high values 

of w, increasing the temperature causes the spin to decrease. At T = 0, 

the completely aligned state 1= n is nearly produced. However, raising T 

creates thermal excitations out of the completely aligned state, which 

reduces the spin. It can be shown that each particle has the same spin, 
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which is therefore equal to I/2Q. The particles all align in exactly 

the same manner. The cusps near the top of each curve correspond to the 

point at which ~ + O. 

The moment-of-inertia (3.16) is shown in Fig. 8. At T = 0 there is 

a giant backbending. For intermediate temperature the backbending 

disappears. When T > Tc the moment-of-inertia is nearly cons tant . 

The internal energy (3.30) as a function of temperature is given in 

Fig. 9 for I = 0,4,8. The changes in the energies are primarily due to 

the collapse of the pair gap. The variations in the single-particle (HF) 

energy are very small. Since the pair gap at T = 0 decreases as I increases, 

it follows that the temperature dependence of the energy decreases as I 

increases. 

The internal energy as a function of spin is shown in Fig. 10 for 

several temperatures. For T = 0 the yrast line is concave down, indicating 

a sharp backbending, whereas at kT = 0.4 MeV there is no backbending. 

Once the internal energy E(I,T) has been calculated, Fig. 1 indicates 

that it may be decomposed into ground state, collective, and thermal 

contributions, 

E(I,T) = E + E 11(1) + Eth (I,T) gs co erm (4.1) 

where 

= E(O,O) (4.2) 

Ecoll (I) E(I,O) - E(O,O) (4.3) 

Etherm(I,T) = E(I,T) - E(I,O) (4.4) 

These energies are given by Fig. 8 and Fig. 9. 
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The quasiparticle occupation probabilities of Eq. (3.19) are given 

in Fig. 11. For the model considered here, the quasiparticle energies 

(3.10) are non-negative, so that 0 < f± <~. In more realistic calcula-

tions the quasiparticle energies can become negative in the backbending 

region,1 and then 0 < f. < 1. Consider the I = 0 curve. Then w = 0, so 
~ 

that E+ = E_ and f+ = f _. As T increases, 6. and E decrease, so that f 

increases. For kT ~ kT c 0.498 MeV, then 11 = 0 and E = E = 0.1 MeV« kT, 

so that f ~ ~ for T > T. Next consider the 1= 4 curves. At kT ~ 0.35 MeV, c 

11 = w/2, so that E_ has a minimum and f has a maximum. For kT > 0.35 MeV, 

E increases more rapidly than kT, so that f decreases. At kT ~ 0.45 MeV, 

11=0 and f+=f_ for higher temperatures. For 1=8,6.=0 when kT > 0.15 

MeV, and then f + = f _ . 

Figure 11 shows that at high temperatures, f is independent of T 

and f decreases as I increases. The explanation is as follows: at 

high temperatures where 6.=0 and w/2 » E, Eq. (3.29) reduces to 

~ (1 - 1/n) (4.5) 

Consequently f is independent of the temperature. Since E ~ w/2, it 

follows that w is proportional to T when I is held constant. Equation 

(4.5) also shows that f decreases as the spin increases, and f = 0 when 

the spin acquires the maximum value of n. 
The entropy (3.31) is depicted in Fig. 12. When f± ~, then S is 

maximized, and 

(S/k) = 4n Q.n 2 
max 

(4.6) 

For n = 10, (S/k) =27.73. max 
The features of the entropy curves are 

dictated by the occupations f± of Fig. 11. 



-13-

5. ANGULAR MOMENTUM FLUCTUATION ENERGY 

An approximate angular momentum projection is achieved by correcting 

9 10 the FTHFBC energy by the angular momentum fluctuation energy , 

(5.1) 

where 

E'fluct (I, T) = (5.2) 

~FTHFBC is given byEq. (3.16), and EFTHFBC is given by Eq. (3.30). If 

Ef1uct is independent of I, thenFTHFBC gives the correct values for 

Eco11 ' Similarly if Ef1uct is independent of T, then FTHFBC gives the 

correct values for E h • Consequently if Ef1 is independent of I (T), term uct 

then the energy of a transition at constant T (I) is correctly given by 

FTHFBC. 

The square of the fluctuation in J x is
10 

(5.3) 

where Jx ' p and t are given by Eqs. (3.5), (3.20), and (3.24). The 

result is 

¥ [1 - (kl -(~S + t (Etan:~" BE+) y + t (Etan:~" BE_) n 
(5.4) 

where I = nand!J. = Gn. max max 

The fluctuation in J is shown in Fig. 13 and the fluctuation energy 
x 

is given in Fig. 14. Observe that increasing the temperature reduces the 

spin dependence of the fluctuation energy, and increasing the spin reduces 

the temperature dependence of the fluctuation energy. This indicates that 
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the HFB approximation improves as the temperature or spin increases. 

Comparing Figs. 10 and 14, observe that the fluctuation energy is smaller 

than the FTHFBC energy by a factor of l3 at kT = 0 and 41 at kT = 0.3 MeV. 

6. CONCLUSIONS 

The FTHFBC theory is used to derive the finite-temperature cranked 

gap equation for the two-level model. Solution of the gap equation 

provides various nuclear properties as functions of spin and temperature. 

The manner in which rotations and thermal excitations mutually conspire 

to destroy the pair gap is illustrated. For this model, increasing the 

temperature eliminates the backbending and improves the HFB approximation. 
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FIGURE CAPTIONS 

Fig. 1. Schematic diagram of energy E versus spin I. The energy splits 

into thermal and collective components. The temperature is T. 

Fig. 2. Single-particle states in the two-level model. 

Fig. 3. The pair gap ~ versus the temperature in the non-rotating 

(w= 0) case. 

Fig. 4. The pair gap ~ versus the angular velocity w for various 

temperatures. The quantities ~, w, kT, G and £ have units 

of HeV. The critical temperature kTc is 0.498 MeV. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

See Fig. 4. The critical temperature kTc is 0.485 MeV. 

The critical spin Ic versus the temperature. 

The spin I versus the angular velocity W for various temperatures. 

The moment-of-inertia J versus the square of the angular 

velocity W for various temperatures. 

Fig. 9. The internal energy E versus the temperature for various spins. 

Fig. 10. The internal energy E versus the spin I for various temperatures. 

Fig. 11. The quasiparticle occupation probabilities f± versus the 

temperature for various spins. 

Fig. 12. The entropy versus the temperature for various spins. 

Fig. 13. The square of the fluctuation in J x versus the spin for 

various temperatures. 

Fig. 14. The angular momentum fluctuation energy versus the spin 

for various temperatures. 



-17-

(I,T) 

t 
Etherm \ 

Yrast line 
(r=O) 

Spi n 

XBL 807-1508 

Fig. 1 



-18-

+E 3 

-J x 
2 -E 

4 

XBL 807-1509 

Fig. 2 



... 19-

1.2 

1.0 ,........---_ 

0.8 

" ~ 0.6 

W = 0 
0.4 G = 0.1 

f2 = 10 

0.2 

o ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ 
o 0.1 0.2 0.3 0.4 0.5 0.6 

kT 
XBL 807-1502 

Fig. 3 



° II 

t-
.:::t:. 

N o co 
o 

-20-

to . 
o 

<J 

o °0 
II II II 

<..9q\U 

~ 
o 

N 

o 
o 

co 

<.q 

~ 

0 

co 
0 

N 
o 

3 

lO -lO 

I 
r--
0 
CD 
-1 
eo 
X 

-::t . 
00 

"M 

""' 



C\J o 

0 

co 
o 

-21-

(!) . 
o 

<l 

o~ - . 
0 -0 
II II II 

<.9q\U 

v. 
o 

C\J . 
o 

(!) · 

~ · 

C\J 

o · 

co 
C' 

(!) 

0 

'I:;j" 

o 

C\J · o 

~o 
o 

0 
It) 

I 
l"-
0 
OJ 

-' m 
x 

Lf") 

3 . 
b!l 

'r-i r... 



10 

8 

6 

4 

2 

-22-

E = 0.1 

I 
G = 0.1 
fL = 10 

o ~ ____ ~ ________ ~ ________ ~ __ ~ ____ ~ ______ ~ 
" 0 0.1 0.2 0.3 

kT 

Fig. 6 

0.4 0.5 0.6 

XBL807-1503 



-23-

iJ 

0 
II 

. o . 
0 -0 
II II II 

<.? ~ \JJ 

C\l 

...... 
0 

q 
C\l 

ex:> 

<.0 

C\l 

0 

ex:> 
0 

<.0 
o 

¢ 

d 

C\l 

0 

0 

3 

V 
to 
I 

I'-
0 
ex:> 
....J 
II) 

X 

r--. 
eo 

-r-i 
~ 



'0 ' 
0-0 
II II II 

<.9q\U 

C\J 

-24-

L() 

o 

0 
~ 

to 
to 

C\J 
to 

co 
C\J 

0 
C\J 

to 

N -
L() ;:. 

I 
I"-
0 
co 
...J 
CD 
X 

3 00 
, 

C'l ..... 
LJ.. 



-25-

2 
I = 8 

o 

I 
-2 

-4 

E 

-6 
G = 0.1 
fl= 10 

-8 E = 0.1 

-IOF=----~ 

-12~ __ ~ ____ ~ __ ~ ____ ~ ____ ~ __ ~ __ ~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

kT 
XBL807-1501 I 

Fig. 9 



E 

-26-

2 

0F------J:---.,.---::======7 

-2 

-4 

G = 0.1 

-6 Q= 10 
E = 0.1 

-8 

-10 

-12 L---_---L-__ '---_-'--__ '---_--'--_----' 

·0 2 4 6 
I 

Fig. 10 

8 10 12 

XBL801-1501 



" 

f 

-27-

0.6 
G = 0.1 

0.5 fL= 10 
E = O. I 

0.4 

I = 4 

0.3 

0.2 

0.1 

0~~~~~~~====±====C===±==~ 
o 0.1 0.2 0.3 0.4 

kT 

Fig. 11 

0.5 0.6 0.7 

XBL807-1506 



32 

28 G = 0.1 
fL = 10 
E = 0.1 

24 

20 

S/k 16 

12 

8 

4 

-28-

o 0.1 0.2 

I = 4 

I = 8 

0.3 0.4' 0.5 0.6 0.7 

kT 

XBL 807-1513 

Fig. 12 



'J 

2.8 

2.4 

2.0 

C\J --r- 1.6 

<J -
1.2 

0.8 

0.4 

o 

-29-

kT=O.5 

2 4 6 

I 

Fig. 13 

kT=O 

8 

G = 0.1 
n= 10 
E =0.1 

10 12 

XBL807-1504 



0.8 

0.6 

-u 
-= 0.4 ...... 

W 

0.2 

-30-

0.5 

G = 0.1 
f2 = 10 
E = 0.1 

o ~ ____ ~ ________ ~ ______ ~ ____ ~ ____ ~ ______ ~ 
o 2 4 6 

I 

Fig. 14 

8 10 12 

XBL 807-1505 



. , 
" 

This report was done with support from the United States Energy Re­
search and Development Administration. Any conclusions or opinions 
expressed in this report represent solely those of the author(s) and not 
necessarily those of The Regents' of the University of California, the 
Lawrence Berkeley Laboratory or the United States Energy Research and 
Development Administration. 

) . 
·1 " f? to 1lOJ;~ 'f';-~~ 

f' ~ 
''':" 

f'1 0 tl ~ t, ~. f 

(; ) " 


