
" 't 'I 
/~ 

'\ 
( " 

! . I 
"0' 
\ '\' 

, I 

- '", "\ 

',\ 
I : 

I" , " 
\ I' 

) , 
(I 

" \ '" 

'" \ 

" , 

,i" 

I 

" 
,I 

( , 

,! J ;, 

1 

\ 

) 

>, 
1-,1 "; 

,( I 
\ 1 

( 
~. t 'J 

/ I 
, I 

/" 

'\ 
» , ; f· '\ ' 

'\ \ II / "'. \. , \ I " ,'I \ ' ,,\ , 

~BL-l1?33t."'. ~ 1 

"Preprl nt,; " 
'.' ,~ '~ 

. 
/ :::-

," ", 

I >: / ,>" 

\ ! 
,', 

i 
I'> '''' '"""'- ; '\ 
!',,-,' 

'SubmHt:ed to 
\ 

\ ' 

/) 
(' < '( 

(,' ',I 

\ 

(t 

!I 
\ '\ 

I 
, 

\ 

i 
, 1-

/ ; 

'J ( , 
1 ,/ 

"- ,\ 

j. 

, 
;; 

, 
-/\ 

\ 

~\ 

\ 1 I" 'j 

COMPARtSON OF. NUMERICAL'MET~ODSfPR SOLVING )THE SEC,OND-ORDER ' 
DIFFERENnALEQUATIO~S OfMOIJ~~U~LAR ),~-At~ERINGrTHEORY_ 'j L)/ 

I ~ , '- { , " 'i ~! \ , / ',' , . .' \ . J\~' / , 

!.;rD.)/Thomas, M.H. Alexander, B;R. Jqhns()Y1, H.A.;Le,ster, Jri~ 
,J. C. L ight,K.D: McLeilitQ~w, G. A;' Parker!, ,M. J. Re'dmon, ( " 
T~G.f \Schma 1 z;, b> Set'res,t anq, 'R.'B. \ W~ 1 ker ,'< 

/ 

Jul y (1 980~ ! 
;' r \ ' I, 

" 

,\ 

. \ \' 

TWO-WEEK LOAN COpy 

,. < 

I '\, 
''-, , 

"\ I This is a Library Circulating Copy 
'which may be borrowed for two weeks. 

',! 

",i I, 

" Ii 
1 

)1 ' / 

For a personal retention copy, call 
Tech. Info. Dioision, Ext. 6782 

"/1 

( , ' 

';'\ ) / I '>, 
", /','. ~ ',' ,I, /' -, . J : 1, i ~ "( i , \. ' 

1 " 

\ "I '" " , , ii, ,'I, I ,I ,I " 
, ,I ' -, ,I' ,-' , ' " I : I ,,', 

LAWRENCE 'BERKEl'E'VLABORATORY 
(UNiVERSITY OF 'tALIFORNIA,1 

(' '\, . _ '," i " ( <,~ . \ :' \ ,;' \. 

(, \ " 
I 

/ , 1\ \ (!~., ) 

'/ 
/, 

I 
\ ! 

\, ' 

) (. 
" ",", \' I ! 

(' ,", ,,--- "'i,' 
, ( 

1 , 

\ ' 

'i 
I, 

, t .\ 

( " ' . " ',\1 ,/ '\ ( '\' I .' 

Prep~r~d:t0r'the F'S, ,1.gepartmel1,t\bfEnergy iurid~rSontr.,ct W'~?)lb5,-,ENG-4~ and for theN~ti()na\'; . 

lj '.il\" ,~cienceFo~\~dat~0n un:er,Inter(~geyCY'Agr~~~\ent,C~E:~72l)05 ,e, ~" " ' 

,\ \, 
, \ 

\ 

( 

'v, 

/1 



1 

COMPARISON OF NUMERICAL METHODS FOR SOLVING THE 
SECOND-ORDER DIFFERENTIAL EQUATIONS OF 

MOLECULAR SCATTERING THEORY* 

t * L. D. Thomas, M. H. A1exande] , B. R. Johnson , 
W. A. Lester, Jr., J. C. Light, K. D. McLenithanU, 

G. A. Parker§~, M. ~. Redmon**, T. G. Schma1z++, 
D. Secrest and R. B. Wa1ker§§ 

National Resource for Computation in Chemistry, 
Lawrence Berkeley Laboratory, 

University of California 
Berkeley, CA 94720 

tDepartment of Chemistry 
University of Maryland 
College Park, MD 20742 

~he James Franck Institute and 
Department of Chemistry 
University of Chicago 
Chicago, IL 60637 

~resent address: 
Department of Physics and Astronomy 
University of Oklahoma 
Norman, OK 73019 

++Department of Chemistry 
Rice University 
Houston, TX 77001 

*The Aerospace Corporation 
Chemistry and Physics Laboratory 
El Segundo, CA 90245 

"School of Chemical Sciences 
University of Illinois 
Urbana, IL 61801 

**Battel1e Columbus Laboratory 
Chemical Physics Group 
505 King Avenue 
Columbus, OH 43016 

§§Theoretical Division 
Los Alamos Scientific Laboratory 
Los Alamos, NM 87545 

*This work was supported in part by the U. S. Department of Energy under 
Contract W-7405-ENG-48 and the National Science Foundation under Interagency 
Agreement CHE-7721305. 



2 

Comparison of Numerical Methods 

Lowell D. Thomas 

National Resource for Computation in Chemistry 
Building 50D 

Lawrence Berkeley Laboratory 
1 Cyclotron Road 

Berkeley, CA 94720 



3 

ABSTRACT 

The numerical solution of coupled, second-order differential equations is 

a fundamental problem in theoretical physics and chemistry. There are 

presently over 20 commonly used methods. Unbiased comparisons of the methods 

are difficult to make and few have been attempted. Here we report a comparison 

of 11 different methods applied to three different test problems. The test 

problems have been constructed to approximate chemical systems of current 

research interest and to be representative of the state of the art in inelastic 
, 

molecular collisions. All calculations were done on the same computer and the 

attempt was made to do all calculations to the same level of accuracy. The 

results of the initial tests indicated that an improved method might be 

obtained by using different methods in different integration regions. Such a 

hybrid program was developed and found to be at least 1.5 to 2.0 times faster 

than any inidividual method. 
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1. INTRODUCTION 

State-to-state chemistry is currently one of the forefront fields of 

chemical physics. In the past 10 years the ability to study the microscopic 

behavior of single collision events, both experimental and theoretically, has 

developed rapidly. A common feature of nearly all quantum-mechanical methods 

for studying molecular collisions, whether elastic, inelastic or reactive, is 

the need to solve coupled sets of linear second-order differential equations. 

In the past 15 years t~ere has been a rapid proliferation of methods for 

solving these equations. Meaningful comparisons of the methods are very 

difficult to make because of the number and intangibility of the parameters 

which should be explored. These include for example, the computer and compiler 

used, the accuracy of the solution and the efficiency of the computer codes. 

The few comparisons which have been made[1-4] usually involved only two or a 

few methods. Sometimes the calculations were done on different computers, and 

possibly worst of all, the tests were done on simple model problems. The 

collinear vibrational problem of Secrest and Johnson[5] and the 9-, and 

16-channel rotational problems of Lester and Bernstein[6,7] are commonly used 

test cases. These problems, however, reflect the status of research in this 

field ten years ago. Methods which perform well on those problems may very 

well not be optimal for problems which are typical of current research in 

molecular collision theory. 

Because of the large number of new methods, the lack of good bases for 

comparisons and the importance of solving these coupled equations in many 

branches of molecular collision theory, the National Resource for Computation 

in Chemistry (NRCC) sponsored a workshop on this topic. The goals of the 

workshop were to identify the methods and computer codes commonly in use, 

compare their performance on a fixed set of problems and make tested versions 
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of them available to the scientific community. Volume I of the workshop pro­

ceedings[8] contains presentations of 12 different methods and a discussion of 

the problems used here. Volume II of the proceedings[9] provides a detailed 

analysis of the test results for eleven different computer codes. All of the 

codes tested are now available from the NRCC[lO-22]. 

The main result of these testsis the development of a new hybrid program 

which typically runs twice as fast as any individual program and in many cases 

even faster for a given accuracy. In this paper we briefly describe the 

methods and test problems, present the main findings of the tests, and 

describe the new hybrid program. 

2. COUPLED EQUATIONS 

The equations to be solved are: 
( 

d2 R,. (R,. + I) + k2} __ 
(_ - 1 1 i U ij 
dr2 r2 

L V .. ,(r) u.,.(r} . 
i' 11 1 J 

The boundary conditions imposed on the solutions are, 

and 

u .. (O}=O 
lJ 

-1/2 -1/2 

(1) 

(2) 

lim u· .(r) = k. jR, (k.r) 6 .. + k. nn. (k1·r) K1·J
· (3) lJ 1 . 1 lJ 1 !Iv r-+ 00 1 1 

where, jR,(kr) and nR,(kr) are spherical Bessel functions. It should be empha­

sized that these equations apply to many different types of collisions and many 

approximate formulations of close-coupling theory. Different systems and 
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approximations differ only in the definitions of the potential matrix elements 

v ..• 
lJ 

The number of coupled equations which must be solved ranges from one, for 

elastic scattering from spherically symmetric potentials, to many thousands 

for large molecules with many closely-spaced energy levels. At the present 

time, up to about 100 coupled equations can be solved routinely and as many as 

210 coupled equations have been solved[23J. With improving computer technology 

and numerical techniques, these numbers will undoubtedly increase significantly 

in the near future. 

3. METHODS 

Almost as important as the number of equations which must be solved, 

however, is the number of numerical methods one must chose from for solving 

them. Table I presents a list of the most commonly used methods for solving 

differential equations. Those which have an abbreviation or acronym were 

tested in the present study. Although the development of these methods spans 

nearly 100 years, most have been developed since 1965. It was about this time 

that high-speed, digital computers became widely available as research tools, 

and chemists and physicists began developing specialized techniques for the 

solution of Eq. (1). 

The methods in Table I fall into two broad categories - approximate 

solution methods and approximate potential methods. With the approximate 

solution methods, some functional form, usually a polynomial in r, is assigned 

to the solution, u, and/or its derivatives, over an interval Ar. The para-

meters of that functional form are then chosen to best satisfy Eq. (1). These 

methods tend to be numerically simple, but require stepsizes 10 to 20 times 

smaller than the wavelength of the solution. They are usually advantageous 

when the wavelength is long compared to the range of the potential. The 
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approximate potential methods assign a functional form to the potential over 

an interval Ar, usually constant or linear in r, for which exact solutions are 

known. The solutions are then matched at the interval boundaries to propagate 

over the entire region. These methods are advantageous when the potential is 

slowly varying and when the wavelength is small compared to the range of the 

potential. They also have the advantage that much of the intermediate compu­

tational information for a given potential and basis set is energy independent. 

Therefore, if the potential is energy independent and calculations are done 

for more than one collision energy, the information from the first calculation 

can be saved and reused with considerable savings in computation time for 

other energies. The approximate potential methods in Table I are the methods 

of piecewise analytic reference potentials, the R-matrix propagator methods 

and the variable-interval, variable-step method. The others can all be 

classified as approximate solution methods. For further classification and 

discussion of the relative advantages and disadvantages of these methods the 

reader is referred to the articles of Secrest[B,45]. 

A very brief description of each of the programs used in the tests follows. 

Approximate Solution Methods 

PC[lO] - Predictor-corrector methods are among the oldest in use, but have 

been significantly improved in recent years[32,33,46]. This program uses the 

variable-order, variable-stepsize predictor-corrector method of Shampine and 

Gordon[46]. 

DEVOG[llJ - The DeVogeleare algorithm was introduced to close-coupling 

calculations by Lester[47]. It is efficient, simple to program, and stepsize 

changes of arbitrary value are easy to introduce. 
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MNN[12J - The Numerov method has been widely used in many problems in 

theoretical physics. Recent modifications to it have been given by Allison[3J 

and Johnson[38J. The program used in these tests was the Minnesota Numerov 

(MNN) program of Brandt, Truhlar, Onda, and Thirumalai. 

LOGD[13,17J - The log derivative method [34J uses a special invariant 

imbedding technique to propagate u' u-1 rather than the wavefunction, u, 

itself. This program also has an option for using a multi-channel WKB approx­

imation[48J. This is useful for very long range problems where the potential 

is slowly varying over several wavelengths. In this region the WKB approxima­

tion is both accurate and efficient. 

SAMS[14J - Sams and Kouri[30J transformed Eq. (1) into a Volterra integral 

equation and'then developed a numerical technique by introducing an equally­

spaced quadrature formula. The program used in these tests employs a 

trapezoidal integration. 

INSCAT[15] - This is an integral equation formulation of the piecewise 

analytic potential method[35]. The differential equations are converted to 

Volterra integral equations, but a constant potential approximation is made 

over each integration step. Since the potential is not diagonalized, however, 

this method is intermediate between the approximate solution and potential 

methods. 

Approximate Potential Methods 

GORDON[16] - The piecewise analytic reference potential method of 

Gordon[31J was the first approximate potential method. This is a modified 

version of the original Gordon code[49]. 

VIVS[17] - This new variable-interval, variable-step method[42J uses 

piecewise constant potentials and a fixed basis within each interval. 
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Analytic perturbation corrections to the solutions are summed over the steps 

in an interval and the solutions are carried in R-matrix form. 

RMAT[18] - This is a modification[SO] of the R-matrix propagation 

method[36,37] in which the analytic R-matrices are perturbatively corrected in 

each sector, but propagated as in the original method[36,37]. 

L2RMAT[19] - This is a modification of the R-matrix propagation method 

which uses an L2 expansion of the wavefunction in the region of rapidly 

varying potential[4l]. Thp. original R-matrix propagation method[36,37] is 

then used for the remainder of the integration range. 

VIVAS[17] - This is a hybrid program[43,44] which uses the log derivative 

method in the inner region where the potential is rapidly varying, and uses 

the variable-interval, variable-step method for the outer region. 

4. TEST PROBLEMS 

In constructing the test problems, an attempt was made to pick only 

realistic, three-dimensional problems of current research interest. With this 
+ in mind, three chemical systems -- He - H2, Li - CO, and e- - N2 --

were chosen. 

Test 1. This is the problem of rotational and vibrational excitation of 

H2 by He impact. An accurate configuration-interaction (CI) potential energy 

surface is available and converged close-coupling calculations of the inelastic 

transitions probabilities have been done[Sl]. The study of this system is 

therefore representative of the present state of the art in inelastic collision 

studies. The case we report here is an l8-channel problem for total angular 

momentum, J = 4, and relative kinetic energy, E = 0.0224 Hartree atomic units. 

When H2 is in its ground state, this corresponds to an asymptotic impact 

parameter of b = 0.38 and a wavelength of 0.6 Bohr. Table II gives the 

complete set of basis quantum numbers. 
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Test 2. This is the problem of rotational excitation of rigid-rotor CO 

molecules by Li+ impact. The problem was chosen because of the extremely 

long range of the interaction potential. The charge-dipole interaction leads 

to off-diagonal coupling matrix elements which asymptotically are proportional 
-2 to r • A high quality CI potential energy surface is available[52] and 

experimental measurements of the differential cross sections in the energy 

range 4.0 - 7.0 eVe have been done[53,54]. Because of the close spacing of 

the CO rotational energy levels, converged close-coupling calculations at 

these energies are not possible with existing methods. Therefore, the full 

cross section problem is really beyond the scope of exact present day methods. 

However, we can still test the speed and performance of the methods on uncon-

verged basis sets. The problem we chose is a 22 channel problem with J = 25 

and E = 0.00195 Hartrees. For CO in its ground state, this corresponds to an 

asymptotic impact parameter b = 4.0 and a wavelength of 1.0 Bohr. The complete 

basis set used is shown in Table II. 

Test 3. This is the problem of rotational excitation of N2 by electron 

impact. We wanted to test the codes on an electron-molecule system, but with­

out the complications of the exchange interaction. For this reason we used 

the potential energy surface of Onda and Truhlar[55] which employs, a local 

approximation to the exchange potential, valid only for a collision energy of 

1.1025 Hartrees. The total angular momentum is J = 5. The asymptotic impact 

parameter is b = 3.37 and the wavelength is 4.23 Bohr. 

for this test is contained in Table II. 

The complete basis set 

Table III summarizes most of the physical attributes which are important 

in molecular collision calculations. For the tested group, we list the range 

of the attribute covered by the tests. Tests 1-3 do not cover the full ranges 

listed in Table III. They are only a representative subset of the 24 test 
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problems studied[9J. However, examination of the full set of results does not 

change the conclusions reached here based on the above three tests. 

5. RESULTS AND DISCUSSION 

In order to get a meaningful comparison, all calculations were done on the 

same computer (LBL's CDC 7600), and all programs were compiled on the same 

compiler. The programs were all written in fairly portable FORTRAN. No 

assembly language routines were used. 

Possibly the most difficult quantity to assess in a comparison such as 

this is the accuracy of the solution. For any given method, the difference 

between two- and three-significant-figure accuracy is often a factor of two or 

three in computer time. Therefore, it is important to compare times only for 

calculations which result in similar accuracy. Unfortunately, precise accuracy 

control is very difficult to obtain - especially when the exact answer is not 

known ahead of time as with these test problems. An attempt was made in each 

case to achieve two-significant-figure accuracy in one specified transition 

probability for each test. The actual values computed and the correct values 

are shown in Table IV. It can be seen that while the results are reasonably 

uniform, there are differences in the accuracies achieved. Therefore, it is 

quite possible that the times reported for specific methods could be improved 

by a factor of two or three on some tests by fine tuning. Nonetheless, we 

believe the comparisons are meaningful for two reasons. First, as we show 

below, the spread in computer times over all methods for each test is a factor 

between 20 and 50. This is a significant difference which could not be 

eliminated by refining the accuracy. Second, the accuracies and times reported 

here are typical of those which would be chosen for a new research problem 

where the accuracy of each partial wave could not be individually fine tuned. 
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Most workers in this field have realized that the computational effort to 

integrate Eq. (1) is different in different regions of the integration 

variable, r. For example~ when r is near the origin the potential is often 

large and rapidly varying. The solutions have exponential behavior requiring 

small stepsizes. When r is large, the potential is small and slowly varying. 

The solutions are oscillatory and numerically stable to integrate. Therefore, 

rather than simply compare the total integration times for all of the methods, 

it is much more revealing to see which methods are fastest in different regions 

of r. We do this in the following fashion. By dividing the total time by the 

total number of integration steps we get the average computer time per step. 

Then by dividing the entire integration range into smaller intervals and 

counting the number of steps taken in each interval, we get an histographic 

approximation to dt/dr, the computer time to integrate a ~nit of distance, 

dt T N(r + I1r) - N(r) (4 ) 
E! 

total err Ntotal I1r 

where N (r) is the number of steps required to integrate from rmin to r. 

Note that the reciprocal of this, dr/dt, is the "velocity" at each point, r, 

with which the computer is integrating the coupled equations. 

The results from all the methods tested are shown in Tables V-VII and 

selected results in Figs. 1-3. It was not convenient to compute dt/dr at 

exactly the same points, r, for all methods. Therefore, linear interpolation 

was used to calculate the numbers in Tables V-VII. The time at the bottom of 

each table is the total time for the region bounded by the first and last 

values of r listed. 
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Figure 1 and Table V show the results for Test 1. High, absolute accuracy 

is required on this problem because the transition probability being calculated 

is very small. For many ~f the programs this was the most difficult problem 

to solve. For small r, LOGO is most efficient by a fairly wide margin, and 

VIVS at the second energy is best for large r. For first energy calculations, 

however, INSCAT has the smallest total time. 

Figure 2 and Table VI show the results for Test 2. This is a long range 

problem and the total times are dominated by the value of dt/dr at large r. 

The results are only shown for r ~ 150.00 even though rmax = 800.0 was 

necessary for the correct answer. For first energy calculations, LOGO is 

still best at small r. However, several of the approximate potential methods, 

especially GORDON, are faster at second energies in this region. For large r, 

VIVS at the second energy is again the fastest. Because of the long range of 

the potential and the large number of oscillations over this range, the 

approximate solution methods are impractical for this problem. 

Figure 3 and Table VII show the results for Test 3. Although the collision 

energy is much higher for this problem than for the others, the asymptotic 

wavelength is still quite long - 4.2 Bohr - because of the small mass of the 

electron. Consequently, the approximate solution methods do much better than 

one might at first expect. For most of the programs, getting the correct 

answer for this problem presented the fewest difficulties. The potential 

energy function for the e - N2 interaction at small r is quite small in con­

trast to the large barriers which are typical of atom-molecule potentials. In 

the non-classical region the interaction is dominated by the centrifugal terms. 

Since these terms are already included without approximation in the SAMS 

program, SAMS excels on this problem. Its total time is best of all the 

individual programs, even bettering the approximate potential methods on the 
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second energy. LOGO and SAMS perform equally well at small r and are best in 

this region. VIVS, at the second energy, is again best for large r. However, 

we should emphasize that when the potential depends on the collision energy, 

as is the case for local approximations to the electron exchange potential, 

the second energy calculations of the approximate potential methods are not 

valid for comparison. The advantage these methods normally have for additional 

collision energies is lost in this case. 

Overall, one is struck by the widely varying performances of the individual 

programs on the different physical problems. For example, INSCAT is the best 

performer for first energy calculations on Test 1 and a factor of 6 faster 

than SAMS. On Test 3, nearly the opposite is true. It is also quite clear 

that the best program would be a hybrid which followed the lowest dt/dr curve 

in all regions. Although no single method is best for all tests in any 

region, the log derivative method is nearly always best for small r and the 

variable-interval, variable-step method is nearly always best for large r. It 

therefore was desirable to combine these methods and form a new hybrid program. 

This is not the ideal combination for all problems, but this hybrid is always 

better than any individual method. This is evident in Table VIII. 

Table VIII summarizes the total times from Tables V-VII, with the methods 

ordered according to computer time. The HYBRID entry is not from an actual 

program. It was hand calculated by integrating dt/dr from rmin to rO for 

LOGO and from rO to r for VIVS. It can be seen that the second energy max 
HYBRID time is always smaller than any individual method. For the short range 

problems the HYBRID result is 1.5 to 2.0 times faster than either of the two 

methods individually. For the long range problem of Test 2, the improvement 

is minimal because the total time is dominated by the long range region. 
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Based on these findings a hybrid program, VIVAS, has been developed [17,43, 

44J, which combines the variable-interval, variable-step and the log derivative 

methods. In addition, this program includes significant improvements to the 

original variable-interval, variable-step program, VIVS. It can be seen in 

Table VIII that the new program is significantly faster than any of the 

individual programs. 

Finally, regarding Table VIII, we return to the discussion of accuracy. 

As stated before, factors of two or three improvement can often be made and 

probably could be made here by refining the input parameters to each program. 

This means that the ordering of the methods in Table VIII should not be taken 

literally. However, factors of 20 to 50 are observed between the smallest and 

largest times. These differences are significant and it is believed doubtful 

that they could be eliminated by refinements in the accuracy of the 

calculation. 
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TABLE I. Numerical methods for integrating differential equations. 

Method 
Name 

Library Author(s) 
Namea . 

predictor-corrector 

Runge-Kutta 

Numerov 

DeVogelaere 

amplitude density 

exponential 

integral equations 

piecewise analytic 
reference potentials 

variable-order, 
variable-step 
predictor-corrector 

iterative Numerov 

MNN 

DEVOG 

SAMS 

GORDON 

PC 

log derivative LOGO 

integral equations with INSCAT 
piecewise analytic 
reference potential 

R-matrix propagator RMAT 

renormalized Numerov 

exponential fitting 

finite element method 

L2 approach to 
R-matrix propagator 

L2RMAT 

Bashforth and Adams [24] 

Runge (1895) [24] 
Kutta (1901) [24] 

Numerov [25] 

DeVogelaere [26] 

Johnson and Secrest [27] 

Pechukas and Light (1966) [28] 
Chang and Light (1969) [29] 

Sams and Kouri [30] 

Gordon [31] 

Krogh (1969) [32] 
Gear (1971) [33] 

Allison [3] 

Johnson [34] 

Redmon and Micha [35] 

Light and Walker [36] 
Stechel, Walker, and Light [37] 

Johnson [38] 

Raptis and Allison [39] 

Rabitz, Askar, and Cakmak [40] 

Schneider and Walker [41] 
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Table I. Continued 

1979 iterative method for a Thomas [23J 
single vector of solutions 

1979 variable-interval, VIVS Parker, Schmalz, and Light [42J 
variable-step method 

1980 hybrid combination of VIVAS Parker, Johnson, and Light [43,44J 
the log derivative and 
variable-interval, 
variable-step methods 

a Library name, when given, indicates that the method was tested in this work 
and the entry is the program name in the NRCC software library. 

") 
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TABLE II. Basis set quantum numbers for Tests 1,2, and 3. 
Blank entries indicate a repeat of the above entry. 

Test 1 Test 2 Test 3 

0 Target Target Target 
No. n j Q, energy No. j Q, energy No. j Q, energy 

1 0 0 4 0.0 1 0 25 0.0 1 0 5 0.0 

2 2 2 0.001616 2 1 24 1. 76E-5 2 2 3 5.46E-5 

3 4 3 26 3 5 

4 6 4 2 23 5.28E-5 4 7 

5 4 0 0.005329 5 25 5 4 1 1.82E-4 

6 2 6 27 6 3 

7 4 7 3 22 1.06E-4 7 5 

8 6 8 24 8 7 

9 8 9 26 9 9 

10 6 2 0.011009 10 28 10 6 1 3.82E-4 

11 4 11 4 21 1.76E-4 11 3 

12 6 12 23 12 5 

13 8 13 25 13 7 

14 10 14 27 14 9 

15 1 0 4 0.018971 15 29 15 11 

16 2 2 16 5 20 2.64E-4 16 8 3 6.56E-4 

17 4 17 22 17 5 
,l 

18 6 18 24 18 7 

19 26 19 9 

20 6 19 3.70E-4 20 11 

21 21 21 13 

22 23 
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TABLE III. Most of the important physical attributes 
of molecular collision problems. 

Attribute 

Chemical systems 

No. of channels 

No. of closed channels 

Integration range 
needed for convergence 

Co 11 is i on energy 

Asymptotic wavelength 

Transition probabilities 

Reactive scattering 

Multiple electronic 
surfaces 

Very high energy 
(very short wavelength) 

Coulomb potentials 

Large No. of channels 
( -100) 

Rangea 

2 - 32 

o - 21 

16 - 1000 Bohr 

0.779E-4 - 1.1025 Hartrees 

0.6 - 5.0 Bohr 

0.91E-10 - 0.47 

not tested 

not tested 

not tested 

not tested 

not tested 

aThe range, when given, indicates the range covered by the 
test problems. 
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TABLE IV. Selected transition probabilities, ISij12, for each test and 
method. The correct answers for Tests 1 and 3 are accurate to four 
significant figures. For Test 2, the correct answer is only guar­
anteed to two significant figures. rmin and"rmax indicate the 
integration range used to calculate the correct answer. 

Program 

PC 

DEVOG 

MNN 

LOGD 

SAMS 

INSCAT 

GORDON 

VIVS 

RMAT 

L2RMAT 

VIVAS 

Correct 

Test 1 

0.1184-8b 

0.1183-8 

0.1181-8 

0.1185-8 

0.1181-8 

0.1149-8 

0.1278-8 

0.1213-8 

0.1193-8 

0.1170-8 

0.1164-8 

0.1184-8 

2.5 

45.0 

Test 2 

0.2036-1b 

0.1722-1 

0.1666-1 

0.1715-1 

0.1752-1 

0.2154-1 

0.1702-1 

0.1732-1 

0.1709-1 

0.1718-1 

0.1710-1 

0.1715-1 

3.0 

800.0 

a The channel numbers i and j correspond to those in Table II. 

b - indicates the power of 10. 

Test 3 

0.2864-2b 

0.2874-2 

0.2874-'-2 

0.2868-2 

0.2876-2 

0.2887-2 

0.2860-2 

0.2867-2 

0.2885-2 

0.2865-2 

0.2861-2 

0.2873-2 

0.01 

120.0 
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TABLE V. dt/dr (sec/Bohr), computer time for integrating a unit distance vs. r 
for Test 1. El and E2 refer to first and second energy calculations, 
respectively. Time (at bottom of table) is the total time for inte­
grating between the first and last values of r in column 1. 

PC DEVOG MNN Lom SAMS I NSCAT (;ORDON VIVS RMAT L2RMAT G<RDON VIVS RMAT L2RMAT 
r EI EI EI EI E2 E2 E2 E2 

2.8 4.241 1.020 .810 .202 2.208 1.500 10.396 2.130 5.019 7.607 2.043 .542 1.920 .520 
2.9 3.540 .912 .719 .202 2.211 1.196 12.184 2.354 4.988 6.966 2.394 .600 1.908 .580 
3.0 2.839 .805 .628 .202 2.213 1.105 13.330 2.579 4.957 6.325 2.620 .657 1.896 .640 
3.1 2.138 .698 .537 .202 2.213 1.040 14.202 3.000 4.927 5.684 2.792 .764 1.884 .700 
3.2 1.438 .591 .446 .202 2.213 .979 15.074 3.532 4.896 5.043 2.964 .899 1.873 .760 
3.3 1.013 .560 .391 .202 2.213 .932 14.943 4.064 4.865 4.403 2.938 1.033 1.861 .820 
3.4 1.583 .635 .412 .202 2.213 .882 13.810 4.515 4.835 3.762 2.714 1.147 1.849 .880 
3.5 2.154 .710 .434 .202 2.213 .820 12.677 4.945 4.804 3.121 2.489 1.256 1.837 .940 
3.6 2.725 .786 .455 .202 2.211 .758 11.647 4.845 4.589 2.480 2.286 1.231 1.755 1.000 
3.7 3.295 .861 .477 .202 2.208 .725 11.029 4.595 4.375 2.354 2.166 1.169 1.673 .950 
3.8 3.787 .919 .492 .202 2.205 .694 10.412 3.900 4.160 2.229 2.046 .993 1.591 .900 
3.9 3.382 .940 .481 .202 2.203 .661 9.794 3.133 3.945 2.103 1.926 .798 1.509 .850 
4.0 2.978 .961 .470 .202 2.200 .623 9.201 2.366 3.731 1.978 1.811 .603 1.427 .800 

5.0 1.663 1.076 .439 .202 2.213 .341 5.057 1.151 2.095 1.035 .999 .293 .801 .420 
6.0 1.751 1.076 .439 .202 1.776 .186 2.980 .795 1.278 .580 .590 .202 .489 .233 
7.0 1.751 1.076 .439 .202 1.325 .117 1.760 .582 .869 .300 .350 .148 .332 .120 
8.0 1.751 1.076 .439 .202 1.325 .090 1.580 .368 .715 .255 .314 .094 .274 .105 
9.0 1.817 1.076 .439 .202 1.325 .079 1.400 .155 .715 .210 .278 .039 .274 .090 

10.0 2.531 1.076 .439 .202 .994 .072 1.265 .123 .673 .197 .251 .031 .258 .083 
11.0 1.821 1.076 .439 .202 .663 .067 1.174 .117 .589 .183 .233 .030 .225 .077 
12.0 1.552 1.076 .439 .202 .663 .063 1.083 .111 .517 .170 .215 .028 .198 .070 
13.0 1.828 1 .076 .439 .202 .663 .059 1.006 .105 .482 .162 .195 .027 .184 .066 
14.0 1.754 1.076 .439 .202 .663 .055 .934 .099 .447 .154 .175 .025 .171 .062 
15.0 1.754 1.076 .439 .202 .398 .052 .868 .094 .412 .146 .159 .024 .158 .058 
16.0 1.764 1.076 .439 .202 .133 .051 .821 .088 .382 .138 .155 .022 .146 .054 

TIME 25.494 13.799 5.894 2.668 15.825 2.602 39.007 9.298 16.421 9.376 7.667 2.366 6.281 2.779 
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TABLE VI. dt/dr (sec/Bohr), computer time for integrating a unit distance vs. 
r for Test 2. El and E2 refer to first and second energy calcu­
lations, respectively. Time (at bottom of table) is the total time 
for integrating between the first and last values of r in column 1. 

PC DEVOG MNN LOGD SAMS I NSCAT GORDON VIVS RMAT L2RMAT GORDON VIVS RMAT L2RMAT 
r EI El El El E2 E2 E2 E2 

3.5 14.089 2.521 3.710 .979 2.136 5.592 4.470 3.209 3.396 16.800 .610 .840 1.298 .790 
3.6 12.262 2.157 3.143 .979 2.136 5.209 4.522 3.322 3.396 16.800 .633 .870 1.298 .790 
3.7 10.435 1.793 2.576 .979 2.136 4.844 4.588 3.434 3.396 15.649 .661 .900 1.298 1.029 
3.8 8.867 1.496 2.160 .979 2.136 4.494 4.653 6.519 3.396 14.499 .690 1.709 1.298 1.268 
3.9 7.614 1.325 1.940 .979 2.136 4.160 4.718 9.033 3.396 13.348 .719 2.368 1.298 1.506 
4.0 6.360 1.154 1.719 .979 2.136 3.840 4.783 8.812 3.396 12.198 .747 2.309 1.298 1.745 
4. I 5.107 .983 1.499 .979 2.136 3.532 4.849 8.590 3.396 11.047 .776 2.251 1.298 1.984 
4.2 3.853 .812 1.279 .979 2.136 3.235 4.914 4.727 3.396 9.896 .804 1.237 1 .298 2.223 
4.3 3.054 .708 1.147 .979 2.136 2.949 4.979 4.480 3.260 8.746 .833 1.173 1.246 2.462 
4.4 2.940 .786 1.209 .979 2.136 2.669 5.045 4.660 2.989 7.595 .861 1.221 1.142 2.701 
4.5 2.826 .865 1.271 .979 2.136 2.393 5.110 4.757 2.717 6.876 .890 1.248 1 .038 2.762 
4.6 2.712 .944 1.333 .979 2.136 2.113 4.895 3.835 2.445 6.588 .852 1.006 .934 2.647 
4.7 2.598 1.023 1.394 .979 2.136 1.829 4.680 2.914 2.174 6.301 .814 .763 .831 2.531 
4.8 2.508 1.089 1.444 .979 2.136 1.506 4.465 2.015 1.970 6.013 .776 .527 .753 2.416 
4.9 2.463 1.091 1.444 .979 2.136 1.179 4.250 1.858 1.834 5.725 .738 .486 .701 2.300 
5.0 2.418 1.093 1.444 .979 2.136 1.069 4.035 1.702 1.698 5.437 .700 .445 .649 2.184 

6.0 2.248 .976 1.444 .979 2.136 1.565 2.960 .629 1.189 3.172 .510 .165 .454 1.276 
7.0 1.667 .804 1.082 .979 1.897 1.314 2.620 .461 1.456 1.897 .454 .121 .556 .765 
8.0 1.401 .691 .722 .979 1.658 1.046 2.020 .372 1.844 1.615 .354 .098 .704 .651 
9.0 1.107 .624 .722 .538 1.418 .830 1.660 .328 1.916 1.411 .289 .086 .732 .568 

10.0 .954 .587 .722 .538 1.179 .665 1.357 .285 1.673 1.515 .234 .075 .639 .610 
11.0 .937 .565 .722 .538 .940 .537 1.223 .254 1.430 1.619 .212 .067 .547 .652 
12.0 .756 .553 .722 .538 .837 .435 1.090 .223 1.187 1.615 .190 .058 .454 .649 
13.0 .784 .545 .722 .538 .735 .351 .957 .192 .944 1.584 .168 .050 .361 .636 
14.0 .639 .541 .722 .538 .632 .280 .823 .162 .701 1.540 .146 .042 .268 .619 
15.0 .847 .538 .722 .430 .530 .213 .754 .142 .458 1.486 .133 .037 .175 .598 
16.0 .550 .537 .722 .430 .427 .170 .705 .134 .440 1.414 .124 .035 .168 .570 
17.0 .612 .535 .722 .430 .427 .130 .657 .125 .421 1.241 .115 .033 .161 .501 
18.0 .651 .535 .722 .430 .427 .141 .608 .117 .402 1.068 .105 .031 .153 .432 
19.0 .788 .535 .722 .430 .427 .164 .560 .109 .383 .895 .096 .028 .146 .364 
20.0 .707 .535 .722 .430 .427 .174 .512 .100 .364 .807 .087 .026 .139 .328 

25.0 .871 .535 .722 .074 .427 .168 .318 .065 .269 .476 .050 .017 .103 .194 
30.0 .649 .535 .722 .061 .427 .149 .272 .056 .174 .257 .043 .015 .067 .105 
35.0 .555 .535 .722 .052 .427 .131 .226 .048 .079 .224 .036 .012 .030 .091 
40.0 .716 .535 .722 .046 .248 .117 .179 .039 .075 .191 .029 .010 .029 .078 
45.0 .658 .537 .722 .041 .126 .105 .133 .030 .071 .158 .021 .008 .027 .064 
50.0 .658 .537 .722 .036 .107 .095 .086 .025 .067 .125 .014 .007 .026 .050 

100. .658 .537 .722 .018 .107 .048 .020 .013 .040 .059 .003 .003 .015 .023 
150. .658 .537 .722 .012 .107 .032 .013 .007 .025 .046 .003 .002 .010 .019 

TIME 110.176 81.001 108.733 15.137 38.449 22.754 37.945 14.529 28.598 56.514 6.407 3.805 10.927 19.634 
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TABLE VII. dt/dr (sec/Bohr), computer time for integrating a unit distance vs. 
r for Test 3. E1 and E2 refer to first and second energy calcu­
lations, respectively. Time (at bottom of table) is the total time 
for integrating between the first and last values of r in column 1. 

PC DEVOG MNN LOGO SAMS I NSCAT GORDON VIVS RMAT L2RMAT GORDON VIVS RMAT L2RMAT 
r EI El El El E2 E2 E2 E2 

.2 13.599 3.601 7.160 .216 .229 4.254 14.943 1.560 2.677 5.910 2.900 .380 1.025 .326 

.4 10.695 2.809 5.371 .216 .229 4.316 7.043 1.560 2.677 5.910 1.364 .380 1.025 .358 

.6 6.313 1.662 2.921 .216 .229 2.868 6.088 2.086 2.590 5.910 1.179 .508 .991 .390 

.8 2.222 .555 .800 .216 .229 2.213 5.132 2.663 2.244 4.952 .994 .649 .859 .408 
1.0 1.641 .453 .650 .216 .229 1.776 4.443 3.373 1.898 3.994 .860 .822 .726 .426 
1.2 1.060 .351 .500 .215 .229 1.401 3.931 3.240 1.552 3.036 .761 .789 .594 .444 
1.4 .852 .275 .409 .213 .229 1.224 3.419 2.262 1.205 2.078 .662 .550 .461 .462 
1.6 1.174 .240 .385 .212 .229 1.073 2.907 1.855 .981 1.120 .563 .452 .375 .480 
1.8 1.497 .205 .361 .210 .229 .951 2.395 1.449 .878 1.013 .464 .353 .336 .431 
2.0 1.281 .181 .321 .208 .229 .868 1.883 1.144 .774 .907 .364 .280 .296 .382 

3.0 .199 .089 .178 .102 .229 .582 1.267 .764 .430 .552 .245 .186 .165 .222 
4.0 .103 .048 .169 .102 .223 .442 .942 .509 .344 .397 .182 .124 .132 .156 
5.0 .103 .081 .089 .102 .130 .352 .739 .387 .258 .334 ;142 .094 .099 .135 
6.0 .875 .095 .089 .102 .023 .293 .657 .316 .258 .279 .127 .077 .099 .128 
7.0 .330 .104 .089 .102 .023 .250 .574 .251 .258 .243 .111 .061 .099 .153 
8.0 .120 .108 .089 .102 .023 .221 .492 .224 .172 .206 .096 .055 .066 .179 
9.0 .273 .111 .089 .102 .023 .193 .410 .198 .172 .182 .080 .048 .066 .171 

10.0 .244 .114 .089 .102 .023 .177 .390 .171 .166 .167 .076 .042 .064 .138 
11.0 .163 .115 .089 .102 • 023 .162 . .370 .144 .155 .153 .071 .035 .059 .104 
12.0 .123 .116 .089 .102 .023 .146 .350 .118 .143 .138 .067 .029 .055 .071 
13.0 .123 .117 .089 .102 .023 .135 .330 .101 .131 .127 .063 .025 .050 .051 
14.0 .104 .118 .089 .102 .023 .127 .310 .098 .117 .120 .058 .024 .045 .048 
15.0 .078 .119 .089 .102 .023 .119 .290 .094 .103 .113 .054 .023 .040 .045 
16.0 .087 .119 .089 .102 .023 .110 .270 .090 .089 .106 .050 .022 .034 .042 
17.0 .089 .119 .089 .102 .023 .102 .250 .087 .076 .099 .045 .021 .029 .039 
18.0 .097 .120 .089 .102 .023 .097 .230 .083 .069 .092 .041 .020 .026 .037 
19.0 .212 .120 .089 .102 .023 .093 .217 .079 .069 .087 .039 .019 .026 .035 
20.0 .096 .120 .089 .102 .023 .089 .211 .076 .069 .084 .038 .018 .026 .033 

25.0 .112 .121 .089 .102 .023 .070 .182 .057 .063 .068 .033 .014 .024 .027 
30.0 .151 .122 .089 .102 .023 .059 .153 .039 .052 .057 .028 .009 .020 .023 
35.0 .120 .122 .089 .102 .023 .050 .124 .024 .040 .050 .023 .006 .015 .020 
40.0 .134 .122 .089 .102 .023 .044 .110 .023 .034 .043 .021 .005 .013 .017 
45.0 .134 .122 .089 .102 .023 .038 .110 .021 .032 .041 .021 .005 .012 .016 
50.0 .134 .122 .089 .102 .024 .035 .110 .020 .031 .041 .021 .005 .012 .016 

TIME 14.422 7.298 7.592 5.321 2.128 9.375 22.095 9.352 7.937 11.778 4.222 2.280 3.038 3.345 
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TABLE VIII. Integrated total times from Tables V-VII arranged in ascending order 
on the time. The HYBRID times are the sum of the times for LOGO 
integrated from rmin to ro and for VIVS integrated from ro to rmax. 
ro is 8.0, 6.0, and 4.0 for Test 1, Test 2, and Test 3, respectively. 

L, Test 1 Test 2 Test 3 

Method Energy Time Method Energy Time Method Energy Time 
(sec) (sec) (sec) 

VIVAS 2nd 1.03 VIVAS 2nd 2.2 VIVAS 2nd 1.10 

HYBRID 2nd 1.31 HYBRID 2nd 3.3 HYBRID 2nd 1.56 

VIVAS 1st 1.65 VIVS 2nd 3.8 SAMS 2.13 

HYBRID 1st 2.08 VIVAS 1st 5.9 VIVS 2nd 2.28 

VIVS 2nd 2.37 GORDON 2nd 6.4 VIVAS 1st 2.89 

INSCAT 2.60 HYBRID 1st 9.5 L2RMAT 2nd 3.34 

LOGO 2.67 RMAT 2nd 3.04 GORDON 2nd 4.22 

L2RMAT 2nd 2.78 RMAT 2nd 10.9 HYBRID 1st 4.43 

MNN 5.87 VIVS 1st 14.5 LOGO 5.32 

RMAT 2nd 6.28 LOGO 15.1 DEVOG 7.30 

GORDON 2nd 7.67 L2RMAT 2nd 19.6 MNN 7.59 

VIVS 1st 9.30 INSCAT 22.8 RMAT 1st 7.94 

L2RMAT 1st 9.38 RMAT 1st 28.6 VIVS 1st 9.35 

DEVOG 13.80 GORDON 1st 37.9 INSCAT 9.37 

SAMS 15.82 SAMS 38.4 L2RMAT 1st 11. 73 

RMAT 1st 16.42 L2RMAT 1st 56.5 PC 14.42 
,,' PC 25.49 DEVOG 81.0 GORDON 1st 22.09 

GORDON 1st 39.01 MNN 108.7 
" 

PC 110.2 
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Fig. 1. Test 1. Comparison of dt/dr for the LOGO, VIVS, and INSCAT 
programs. El and E2 indicate first and second energy calculations respectively. 
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Fig. 2. Test 2. Same as Fig. 1. 
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Fig. 3. Test 3. Comparison of dt/dr for the LOGO, VIVS, and SAMS 
programs. El and E2 indicate first and second energy calculations respectively. 
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