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INTRODUCTION 

As the cost of foreign oil derived from traditional 

sources skyrockets, the economics of developing rich na­

tive oil shale deposits of the Green River Basin have be­

come more attractive. Unfortunately, the potential occu­

pational and environmental risks of large scale shale oil 

production are sufficient to cause concern. In addition, 

assessment of these risks presents a complex logistic 

problem. Thus, a preliminary listing of only those ident­

ified chemical byproducts found in oil shale and shale oil 

by EMIC and ETIC, has already yielded some 500 organic 

compounds, 40 metals and other inorganic species. l In­

cluded among these substances are potential and known car­

cinogens. Existing biological data are often inconclusive 

or inadequate and the logistics and costs of assessing po­

Itential environmental and health (E&H) effects by tradi­

tional biological methods are prohibitive. 

Curr en tly in vitX'o tes t methods such as the Ames Sal­

monella tests for mutagenicity are used by the EPA in con-

junction wi th such in vivo biological test data as are 

available to establish a ranking of compounds for fu-

ture in vivo testing of suspect commercial chemicals. A 

similar approach is being used on shale oil fractions 

which consist of complex mixtures of neutral, basic and 

acidic classes of organics. However, in vitro testing 

cannot yet replace long term animal test procedures--them-

selves often not conclusive because of variations in 
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metabolic pathways with species. The Ames test is not re­

liable for metals--an import~nt contaminant of shale oils 

and retort waters. 2a ,b 

Under the best of circumstances, there remain unan-

swered questions of synergisms--the interactions of sub­

stances to enhance or inhibit bio-effects; questions of 

the reliability of mutagenicity as a ranking criterion for 

testing such a wide variety of substances as are found in 

raw and spent shales, shale oils and retort waters; and 

questions also of the relationships, if any, between car-

cinogens, mutagens, and teratogens. 

Since the complex environmental and health problems 

posed by commercial oil shale development are clearly mul­

titactorial, their solution will require a statisticalma­

trix approach whose components. are descr ibed in the fol­

lowing sections. 

THE MATRIX APPROACH 

In the complex chemical environment typical of most 

oil shale samples, the matrix approach involves parameters 

which relate biol('gical activity directly or indirectly to 

chemical composition, and ultimately to molecular struc­

ture. In addition to distinctly structural .. criteria such 

as rings, double bonds and functional groups, thermodynam­

ic data may also provide useful predictive parameters. 

Such general properties as spectral and photodynamic be-
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havior, molecular conformation and electro- and pucleo­

philicities have all been associated with carcinogenic­

ity.3,4,5 

On the biological side, quantitative mutagenic re-

sponses, mammalian cellular transformations, DNA repair 

and DNA sedimentation analysis are among the useful param-

eters for correlation. 

An overview of matrix methodology applied to the exam­

ination of repository samples for potential health effects 

was of this Symposium given at the opening session by 

Coffin . 

For complex chemical mixtures, quantitative structure-

activity and molecular connectivity relationships (QSAR, 

MC) within classes of compounds, where available, are use-

ful functions, particularly when applied in conjunction 

with the methods of factor analysis (FA) and pattern rec­

ognition (PR). In the remainder of this paper, each of 

these four methodologies will be considered as it relates 

to the assessment of environmental and health (E&H) ef-

fects in multivariate, mUlticomponent systems similar to 

those encountered in the Oil Shale Repository studies re-

ported at this Symposium. 

STRUCTURE-ACTIVITY RELATIONSHIPS (SAR) 

Historical 

The relationship between chemical structure and reac-

tivity of organic compounds was recognized long ago by 

Crum Brown and Fraser6a ,b who used the following equation 
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to express biological response (R) in terms of chemical 

structure (C): 

R = f(C). (1) 

However it was Hammett 7 who gave structure-activity re­

lationships of chemical systems more precise definition: 

log Ka = log Kll + ap. (2) 

Here K's are rate or equilibrium constants, Ka refers to a 

substituted benzoic acid, and Kll is the unsubstituted 

parent acid. Rho (p) and a are reaction and substituent 

constants, respectively. 

Still later Hansch8 and coworkers used the substitu-

ent constant TI, related to the octanol-water distribution 

coefficient P, to further quantify these. relationships: 

TI = log Px - log PH. 

Here PH and Px are the partition coefficients of the 

parent compound (H) and its substituted derivative (X). 

This function and other versions of it have been widely 

used in drug and pesticide studies. 

In 1973 Fahmy9 and coworkers used the Taft steric 

parametet-° E to relate LDso's of DDT derivatives to 
-5 

the size of a substi tutent on one of the benzene rings: 

(3) 

(4) 

Figure 1 shows a typical curve obtained in these studies, 

indicating that there is an optimum substituent size for 

maximum LDso' hence the quadratic form of the equation 

and the resemblance of this plot to a typical potential 

energy curve. 
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A number of approaches to SAR have been used. For a 

recent review of the parameters and methodologies of quan­

titative structure-activity relationships (QSAR) the rea­

der may consult the chapter by Osman, et al in Ref. 11. 

Polynuclear Aromatic Hydrocarbons (PAH) 

Polynuclear aromatic hydrocarbons (PAH) are found in 

the neutral fraction of shale oils. They are among the 

substances present in shale oils and retort waters which 

bear close scrutiny, since there are a number of known po­

tent carcinogens among them. It is therefore of interest 

to consider two simple features, namely ring number and 

position, as they relate to a health effect: carcinogen­

icity.· In Figure 2 a series of PAHs related to anthra­

cene (I) and phenanthrene (II) are shown. The parent com­

pounds are listed as "inactive." However, it is important 

to remember that the supposedly inactive lower members of 

a PAH series may function as initiators, co-carcinogens or 

synergists to enhance carcinogenic activity of the whole 

over the sum of its parts. Also at very high doses an oc­

casional papilloma or tumor has been noted at the site of 

application of the inactive compound itself. 

Fusion of a fourth aromatic ring in the 1,2 or [a] po­

sition of anthracene enhances carcinogenicity only slight­

ly (III). However, the asymmetric dibenz[a,h]anthra-
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cene (IV)is a moderately active carcinogen. The corre­

sponding linear pentacene (not shown) is also classified 

as inactive. 

Early work on the carcinogenic activities of PAHs 

pointed to the importance of high double bond activity at 

the K-region as an essential feature (see structure III). 

Availability of the L-region which is active toward 1,4-

addition appeared to diminish carcinogenic activity, at 

least in the lower fused ring systems. Substitution of 

methyl groups in the L-region positions has an activating 

effect, presumably because of the positive inductive 
, 

(electron releasing) effect of the -CH3 group. Thus, 

7,l2-dimethylbenzanthracene is a potent carcinogen. 

In view of the varied mechanisms of carcinogenisis 

possible, and the many factors affecting the biological 

activity of a chemical compound, it is not surprising that 

no absolute generalizations relating structure to carcino-

genicity have emerged. However, many of the more potent 

PAH carcinogens are relatively good electron donors, have 

low ionization potentials, form charge~transfer complexes 

with ease and exhibit "photodynamic activity"--e.g., be­

have as photochemical sensitiziers. 

Other structure-activity relationships which have been 

used with some success include molecular size and thick-

ness and the relationship of PAH structures to those of 

the steroids. Perhaps the most universal attribute of 
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the carcinogenic PAHs is their structural relationship to 

phenanthrene (II). This is consistent with theoretical 

arguments requiring a region of high double bond activity 

(K-region).12 

More recent computer-assisted studies of a PAH data 

set using pattern recognition techniques by Yuan and 

Jurs 13 confirm the importance of multidimensional analy­

sis in applying SAR to the prediction of carcinogenicity 

of PAHs. Among the important determinants mentioned were 

molecular geometry, structural characteristics, lipophil­

icity and steric effects. 

Aromatic Compounds Containing Nitrogen 

Aromatic amines and their alkyl derivatives are prom­

inent contaminents found in the base fractions of shale 

oils and retort waters. Aniline, all three toluidines and 

five of the xylidines have been reported, as have some of 

the mixed ethyl methyl derivatives. l 

Historically aniline itself was viewed as a suspect 

carcinogen, because of the clustering of bladder cancers 

observed by Rehn (1895) in the Swiss dye industry, where 

commercial aniline was the starting material for magenta 

and other dyes. Later it was shown that the actual causa­

tive agents were aniline derivatives and the l-and 2-naph-

thylamines (Figure 3). By the early 1900's bladder cancer 

was a recognized occupational disease wherever an estab­

lished chemical industry flourished. 14 
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Aromatic amines show much greater species specificity 

than the PAHs and, unlike the latter, do not induce tum­

ors locally at sites of application. Instead the bladder, 

liver, or intestines may be affected. Also, 2-naphthyl­

amine, a powerful bladder carcinogen in humans and dogs, 

is essentially inactive in both rabbits and rats. This 

highly specffic behavior implies that arylamines require 

metabolic activation to render them carcinogenic. Current 

evidence is that N-hydroxylation of the substituted aryl­

amine must occur, possibly followed by esterification of 

the OR group, yielding an unstable intermediate~ The lat­

ter then breaks down to a positive nitronium ion, an elec­

trophfle capable of reacting at a nucleophilic (electron 

rich) site of the cell (Figure 4). 

Although aniline itself does not appear to be a car­

cinogen in man, o-toluidine (hydrochloride) is, and other 

derivatives of aniline have also induced cancers in mam­

mals. In extended anilines such as 4-biphenylamine, the 

position of the amino group is important. In general aro­

matic amines with a conjugated para substituent are much 

more active than their isomers with a free para position. 

Similarly the substitution of a methyl grouportho to an 

arylamino group often increases carcinogenicity. 

With rare exceptions (e.g., o-toluidine) carcinogeni­

city data of the many isomeric arylalkylamines found in 
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shale oils are missing, incomplete or equivocal. This is 

unfortunate because recent mutagenicity testing of shale 

'1 f . 15. d' h h . b f 01 ractlons In lcates t at t e organIc ase rac-

tion, because of its magnitude, may prove to be a greater 

health hazard than the PARS of the neutral fraction which 

are present in lesser amounts than encountered in other 

synfuels and" coal. 

Among the other known tumor initiators found in shale 

oils are the benzacridines, benzcarbazoles and substituted 

phenols. The benz carbazole series shown in Figure 5 

illustrates two possibly significant factors in carcino-

genicity--namely hydrogen bonding and steric (electronic) 

effects. As expected, the addition of benzene rings in-

creases activity, but the degree of enhancement appears to 

be strongly dependent on ~he location of the asymmetric 

benzene(s) with respect to the pyrrole nitrogen. Thus 

benzcarbazoles I, II and III with benzene rings adjacent 

to the pyrrole nitrogen are weak carcinogens, whereas IV, 

in which the pyrrole NH group is sterically unhindered, is 

a strong carcinogen. Similarly, while replacement of a 

benzene ring with pyridine enhances the overall activity 

of a weak carcinogen (11,111) to a moderate one (V,VI), 

rotation of the pyridine heterocycle in V through l8~ 

produces a strong carcinogen (VII). In the last structure 

each N-heterocycle can function independently, since 

H-bonding is sterically impossible. 

9 
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MOLECULAR CONNECTIVITY (MC) 

Chemists have long known that even minor structural 

variations in molecules can have profound effects on phys­

ical properties, chemical reactivity, and on biological 

toxicity. This knowledge has been applied to the altera­

tion of structures and substituents of molecules intended 

for a variety of industrial and medical applications. Two 

of the most successful applications have been in the areas 

of drug and polymer design. 

Molecular connectivity (MC) attempts to relate these 

structure-property dependencies to the topological charac­

teristics of the molecule. MC is the most recent and 

probably the least familiar of the predictive methods used 

in the correlation of molecular structure with chemical 

and biological activity. It is based on relatively simple 

topological principles long familiar to the organic chem­

ist, since a structural formula is in reality a topologi­

cal graph. Figure 6 illustrates in graph form some simple 

organic structures with their topological descriptions. 

Molecular connectivity makes the fundamental assump­

tion that it is possible to differentiate molecular struc­

tures by abstract numerical means so that their correla­

tion with physical, chemical, and biological properties 

become possible. The method is defined by Kier as a "non­

empirical derivation of numerical values that encode with­

in them sufficient information to relate (them) to many 

physicochemical and biological properties."l6 
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Some Definitions and Simple Graph Theory 

A graph is a set of points (vertices) connected by 

lines (edges; Figure 6). The Molecular Connectivity meth-

od assumes that information essential to a quantitative 

correlation of organic molecular structure with properties 

is inherent in a valence-weighted graph (Gv). Secondly, 

a relationship between the connectivity characteristics of 

the graph and the specified molecular properties is postu­

lated. This relationship is' expressed as a sum of terms, 

each linearly dependent on the graph characteristics. 

The connectivity function C(X) for a graph has the form 

(5) 

where bo is a constant and mXt is the connectivity in­

dex. Here bt(m) depends on the property and may be cal­

culated from a model, from theory, or by multiple regres­

sion against experimental data. In the latter case, the 

experimental values are regressed against C(X). The num­

ber of edges in Gv determines the highest order of the X 

term. Each connectivity index term mXt is defined by 

its subgraph type, t, of m connected edges and subgraph 

order m. Subgraphs are of the four types listed in Table 

I. Connectivity Indices mXt are obtained by summing 

terms over all distinct subgraphs: 
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(6) 

where nm is the number of type t subgraphs of order m. 

mSj terms are calculated for each subgraph as recip­

rocal square root functions of valency: 

m+l 
mS. ".. - 1/2 = II CC;i). 

J i=l J 

where j refers to a particular set of edges. The number 

(7) 

of valencies involved depends on subgraph type. Summation 

terms Ox through 4X are shown in Table 11. From these it 

may be seen that the zero order subgraph consists of a 

single ver tex (no edges); 1 X is summed over all edges, 

appropriately weighted by reciprocal square root valen-

cies. Here we have only one type of graph edge es termin-

ating on v. and v j' 1 
with a total edge number Ne~ 

Second order subgraphs have pairs of adjacent edges of 

single path type P. Thu~~ each term will contain the re­

ciprocal square root product of three vertex valencies. 

In the third order connectivity index (3X), path, 

cluster and chain terms may occur, each to be calculated 

as a reciprocal square root product of four deltas. Fin­

ally, in 4X all four subgraph types are possible for the 

first time. Here nm in the summation term shown refers 

to the number of type t subgraphs having four edges, 



m Xt terms of higher order are calculated in a similar 

manner, with the term superscript m corresponding to the 

edges involved in the calculation. 

13 

Thus, the connectivity index is a valence-weighted 

count of connected subgraphs. This weighting process is a 

key feature of the MC method. 

Figure 7 illustrates steps in the calculation of the 

first order connectivity index IX for two isomeric 

branched aliphatic hydrocarbons (n = 7): 2,2,3-trimethyl­

butane and 2,4-dimethylpentane. Some useful fundamental 

equations of MC theory are summarized in Table III. 

The topological matrices and algorithm for dimethylcy­

clohexane and subgraphs are shown in Table IV.. Connected-

ness values were determined from edge counts Es: 

n n 

LLA 
i=l j=l ij 

(8) 

where A is the adjacency matrix. 

Some Uses and Limitations of the MC Method 

Using the techniques described, Kier and others have 

successfully correlated MC with physical and biological. 

properties. 17 ,18 The method has the advantage of rela­

tive simplicity and flexibility. It can be used to repre­

sent molecular structure quantitatively at a number of 

levels of complexity. Each level provides some informa­

tion uniquely related to the structure (graph, subgraph) 
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and through it to physical, chemical, and biological char-

acteristics. 

The C(X) function is essentially a weighted count of 

substructures of the molecule, each described numerically 

with reference to adjacencies within them. Using similar 

methods MC may incorporate hetero a'toms and valence dif­

ferences between them.lx takes account only of adjacent 

influences on a specific atom. These are modified in the 

higher order subgraph terms. Also basic to the X calcula­

tion is o.o.--the atom product--and use of the recip-
1 J 

roca1 . square roots of this product. 

Preliminary attempts have been made to develop an 

atomic chi value C(IX.) in which each bond term (c .. ) 
1 1J 

is divided equally between the two vertices and the ha1f-

bond terms summed. Other aspects of molecular structure 

which require further refinement are: cis-trans isomerism, 

nonbonded steric interactions and conformational struc-

ture, all of which have either three-dimensional or direc-

tiona1 features, or both, that are not included in the or­

iginal treatment. The fact that reasonable correlations 

have already been achieved for fairly complex systems 

largely within the limits of an elementary graphical ap­

proach, is encouraging, for MC is a still maturing tech­

nique for coping with the multifactorial problems of chem­

ical-biological interactions. 
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FACTOR ANALYSIS 

The complexity of the chemical mixtures and attendant 

biological problems assoc ia ted wi th oil shale technology 

clearly preclude the use of a simple SAR or Me approach in 

the calculation and assessment of environmental and health 

effects. Thus, while the PAR's contained in the neutral 

fraction of shale oils have high specific mutagenic activ­

ities, they represent only a small fraction of the total 

activity of a given oil sample because of their low con­

centrations in shale oils. Consequently the base fraction 

is viewed as posing the greater health risk. Any predic­

tive method must take these factors into consideration. 

One method of dealing with such complex multifa~torial 

data utilizes factor analysis (FA), an approach originally 

applied mainly to the social sciences and only more re­

cently to chemical and biological problems. Using FA as 

an analytical tool, it is possible to systematize the mul­

tifactorial data of complex interactions without knowledge 

either of the exact number of significant factors involved 

or of their precise nature. Thus the assumption is made 

in QSAR analyses that the biological response (R) of a 

system to a chemical compound is a function of structure, 

which in turn has electronic, steric, hydrophobic, and 

polarizibility terms: 

R = f(a,Es ,7f,M
R
). (9) 



The electronic term is further .assumed to be factorable 

into inductive (~) and resonance (~) terms. Factor an­

alysis provides a rational approach to handling this mul­

tiplicity of interrelationships. One need only represent 

the observed response data in terms of these parameters, 

or combinations thereof, and develop a model in conformity 

with the data. 

Some Basic Assumptions of F~ 

A detailed development of FA is beyond the scope of 

this chapter, and the reader should consult a suitable re­

ference text such as Rummel's Applied Factor Analys-

is. 19 What follows is a summary of the basic princi-

ples of FA applicable to any multivariate system, in-

cluding our chemical one. 

If we assume a two-dimensional data matrix, two mathe-

matical requirements must be satisfied by the property 

measured. One requirement is that each data point D be 

expressed as a linear sum of terms: 
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(10) 

The second requirement is that each data point D also be a 

sum of row and column product terms: 

D=rc +rc+!··+rc 
1'1 22 -nil (11) 

where r k and ck represent the kth row and column fac­

tor s, and each is independent of the other. Thus in ma­

trix notation the data matrix may be ~xpressed as the 

product of a row and a column-related matrix: 

[D] = [R].[C]. (12) 



Matrices may be of the entity-entity or entity-property 

type. The latter generally has greater relevance in chem­

ical-biological interactive systems. Figure 8 is a dia­

gram of the steps involved in the FA method. The stepwise 

procedure is described below: 

1. Correlation: An experimental data matrix is used 

to construct a correlation matrix. 
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2. Decomposition: The correlation matrix is decomposed 

into a number of linear factors or abstract eigen-

vectors. 

3. Rotation: This is a mathematical operation which re­

lates physically significant parameters to the abstract 

eigenvectors generated by the preceding operation. 

4. Combination: Real factors obtained in step 3 are com­

bined to reproduce a data matrix within the required 

precision--i.e., to obtain the best solution. 

5. Prediction: Good solutions obtained in step 4 are used 

to predict new data, either by interpolation or by the 

use of best combinations. 

The FA method has been used in a large number of chem­

ical systems and in interactive studies of molecule-bio­

logical test pairs. 20 - 23 It has been used extensively 

in conjunction with SAR for the study of chemical-biologi­

cal interactions. The utility of FA and other statis­

tical methods as applied to QSAR has recently been re­

viewed by Martin. 24 



PATTERN RECOGNITION (PR) 

Frequently experimental science also requires the pre-

diction of properties not amenable to direct measurement. 

Thus we may infer elemental composition from atomic emis­

sion or absorption spectra; use quantum theory to provide 

a rational model of atomic structure, and group theory to 

describe molecular structure. Chemical interactions with 

bio-systems constitute yet another domain where cause and 

effect are often obscured by system noise, and their exis­

tence must somehow be indirectly inferred from available 

data. In addition, direct measurement is becoming in-

creasingly less practical for economic and logistic rea­

sons. 25 Here pattern recognitto? (PR) is a valuable 

tool for clarifying and ordering information in an effi-

cient and economic manner. It minimizes the quantity of 

data required and aids in the selection of suitable param­

eters for achieving the desired.correlations. 26 

PR is an expanding branch of artificial intelligence 

which has long been familiar to biologists, engineers and 

psychologists. 26 ,27 The sole assumption made in PR is 

that a relationship ixists between a set of data and a 

specified category. For a chemical system this category 

will be defined in terms of, say, a functional group, or 

some structural feature (e.g., unsaturation, branching). 

One then attempts to interpret the experimental data ob­

tained in terms of this classification. 

18 



19 

Methodology of Pattern Recognition 

Operationally the methods of PR fall into two classes, 

parametric and non-parametric (Figure 9). Parametric 

methods assume access to probability density functions not 

usually available for chemical-biological interaction 

problems. I will therefore confine my remarks to the non­

pararretric branch of the PR diagram which is devoid of 

any a priori statistical assumptions concerning data dis-

tribution. 

First, consider each experimental data point in a col­

lection of ~easurements as an object in n-dimensional 

space with coordinates equal to its measurements. The 

Euclidean distance d .. between any two points, mathemat-
1J 

ically defined as 

(13) 

is a measure of their similarity. As similarity between 

data points i and j increases, the distance between them 

decreases, approaching zero. Therefore we define a new 

similarity function Sij' such that 

S .. = 1 - d .. ID. '. 1J 1J 1J 
(14) 

Here Dij is the maximum distance between Xi and Xj 

and S"-r 1 when d.. assumes a minimum value. 
1J 1J 



Next, classification and learning processes operate on 

the n-space in one of two learning modes--supervised or 

unsupervised. In supervised learning, some of the points 

are classified and function as a "training set" which can 

then be used to classify unknown points. In unsupervised 

learning there is no training set. Instead, the objective 

is to locate clusters of points in n~space which serve as 

clues to possibly significant relationships. In either 

case the basic aim of the PR method is to classify the 

patterns obtained into well-defined categories. 

Preprocessing involves changing the actual structure 

of points in n-space, and is minimal in the case of unsu­

pervised learning, generally being confined to the scaling 

of measurements with different units, so as to obtain 

equal weighting, regardless of the units employed. In the 

case of supervised learning, data preprocessing may in­

clude algebraic transformations; actual changes in vari­

ables via mathematical transforms, and feature selection. 

These operations serve to enhance pattern discrimination 

by spreading clusters further apart or by reducing the di­

mensionality of the n-space. 

Display of Data: Mapping 

If parameters of a system have been judiciously se­

lected with regard to the property being studied, like ob­

ject.s will have similar measurements, hence their proxim­

ity in n-space. For n-space >3 computer techniques can be 
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used to reduce the data to a more manageable 2- or 3-di­

mensional space. Here the technique of nonlinear mapping 

(nlm) is often employed to preserve interpoint distances 

in the ordered space. Figure 10 shows the acid-base sep­

aration achieved in a data set abstracted from the period­

ic table, using the following six properties (n=6) to de­

scribe each element: (1) most important valence; (2) mel­

ting point; (3) covalent rad~us; (4) ionic radius; (5) 

electronegativity and (6) 6Hfusion. None of these prop­

erties used alone could achieve such separation. 28 

Another method of displaying n-dimensional data in­

volves their projection onto a selected 2-dimensional 

plane after appropriate weighting of the data. This meth­

od was used by Ting et al in their successful classifi-

21 

. f· . d ·11· d· 29 catIon 0 SIXtY-SIX rugs as tranqui Izers or se atlves. 

Pattern recognition techniques have been applied to 

h . f . . d 30 d t e screenIng 0 prospectIve antI-cancer rugs an to 

structure-activity studies of chemical carcinogens. 3l A 

detailed discussion of the applications of PR to drug de­

sign is given in Ref. 32 by Kirschner and Kowalski. 33 

Reports of environmental applications of PR are appearing 

. h 1· . h . . f 34- 37 In t e current Iterature WIt IncreasIng requency. 

Extensive references to the application of PR methods to 

chemical, medical and environmental problems are given in 

at least three recent books dealing totally or in part 

with computer assisted methods. 32 ,38,39 



With the wealth of information already available, can 

application of PR to the multivariate chemical-biological 

problems associated with the development of new oil shale 

and other fossil fuel technologies be far behind? 

SUMMARY AND CONCLUSIONS 

The potentially toxic byproducts of surface 

22 

and in situ oil shale retorting are too large in number 

to examine individually. Nor is this desirable, since the 

insults to humans and ecosystems will be in the form of 

complex mixtures of toxic gases, particulates, unretorted 

and spent shales, shale oils and retort waters. Shale 

oils contain the more volatile toxic trace metals (Hg,As, 

Sb,Se,V, etc.) and a large number 0f organic contamin­

ants which are separable into three complex fractions: 

neutral, acid and base. Although the neutral fractions 

contain the most potent carcinogens - the PAR's their 

total amount appears to be low compared with that found in 

coal and coal-based synfuels, and therefore not of major 

concern. The base fractions, however, show greater total 

mutagenic activity and contain a large number of aryl 

amines and nitrogen heterocyclics which are either known 

or suspect carcinogens. It is also this fraction which 

may mobilize the transition metals found in methylene 

chloride extracts of retort waters by complexing them 

(Kland, et al). 



23 

No single in vitro test applied to such complex mix­

tures can be expected to be of sufficient universal relia­

bility to provide a criterion for the assessment of poten­

tial environmental and health effects. Use of a number 

of in vitro tests dependent on different biological mechan-

iC isms will enhance the reliability of prediction (Legator, 

THIS VOLUME). Best of all is a combination of these with 

judiciously selected in vivo testing. 

The complex nature of both the contaminants and bio­

logical test systems involved in the assessment of envi­

ronmental and health effects of oil shale technologies re­

quires a statistical matrix treatment. Four methods of 

dealing with such multivariate biological-chemical systems 

have been described: quantitative structure-activity and 

molecular connectivity relationships (QSAR,MC), factor an­

alysis (FA) and pattern recognition (PR). QSAR and Me are 

useful in the prediction of toxic behavior for individual 

members of a class of compounds for which much SAR data 

are already available. The QSAR approach uses mathemati­

cal functions based on octanol-water distribution coeffi­

cients, electronic, steric, hydrophobic and resonance ef-

fects, and molar refractions. QSAR is a statistical 

method. Only objective data are used. It is therefore an 

excellent predictive tool. However it is not particularly 

useful in dealing with chemical mixtures, where complex 

synergistic effects may be operative, and its greatest 



successes have been achieved in the fields of drug design 

and the prediction of new drug behavior. 
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MC utilizes the topological characteristics of mole­

cules to develop nonempirical numerical values based on 

the connectivities of the atoms within the molecular 

structure. These are in turn related to actual physico­

chemical and biological properties of the molecule using a 

theoretical model or experimental data. The MC approach 

holds out the very attractive prospect of reducing the 

essential empirical components of a matrix, and in this 

respect has some advantage over SAR. It suffers from the 

same limitations, however, with respect to complex sys­

tems. This leaves the methods of factor analysis and pat­

tern recognition, to cope with complex chemical mixtures 

perturbing biological-environmental systems. 

The methods of FA and PR have both been applied to 

data derived from SARs and PR techniques have also been 

used with connectivity functions (Jurs). Thus, both of 

these methods may be viewed as primarily mathematical 

techniques for operating on any data to obtain a) more 

generally applicable solutions in the case of FA and b) 

reveal clustering or patterns in the data via PR. The bi­

ological processes and chemical structures of SARs while 

implied, are totally irrelevant. PR is a particularly 

powerful tool for discrimination--e.g., the detectIon of 

relationships in categories of data, regaPdless of their 

significance. ' I t should mos t cer ta inly be applied to the 



data matrix for parameters already measured on repository 

samples, with a view to selecting the most useful informa­

tion, reducing the number of parameters or measurements 

required, and defining the relationship(s) between proc­

esses and data. 

PR should also be applied to occupational and health 

data where currently available from employee and patient 

profiles (e.g., Stallard, THIS SYMPOSIUM). In the course 

of a developing synfuels industry much more occupational 

health data will become available to health 

professionals. The early application of PR methods to the 

growing data based could help anticipate problem areas and 

enable appropriate preventive action before the industry 

is burdened with costly employee compensation claims and 

excessive lost time from job-related causes. 
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Table I. Subgraph Types 

Order (m) Valency (0) Path type (t) Path descriptor (P) 

0 1 

1 2 path P 

2 3 path P 

3 4 path, cluster (star) , P,C 

chain (tr iangle) CH 

4 5 path, cluster P,C 

path /cluster PIC 

chain (cycle) CH 



r .-t 

33 

Table II. Connectivity Indices mXt 

Term order, Vertex No., Path type (s) Equation 

m n 

o 1 P 

n 
~ _1/2 

o = £.J o. 
X i = 1 1 

1 2 P 

2 3 P 

3 4 P, C, CH 

4 5 P~ C, PIC, CH 



( 1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Table III. Equations of MC Theory 

n 

L 
i = 1 

o. = 2m 
1 

m = n-l 

C(x) 

mX 
T 

mS. = 
J 

Es = 

T .. 
1J 

= b + Lbt(m)TIX t 0 

m,t 
I1m 

= 2: ~, 
J 

j = 1 

m + 1 
(Oi)jllz n 

i = 1 

m m 
1/2 L L A .. 

1J 
i = 1 j ::: 1 

G(v i ), (i = 1 ••• n) 

v = vertex 

o = vertex valence 

m = no. of edges 

Tree graph 

Vertex valence from summa-

tion of row i, matrix T .. 
1J 

Connectivity function 

Connectivity index 

SUbgraph term (edge set j, 

subgraph order m) 

Subgr aph edges 

A = subgraph adjacency 

,. 



Table IV. 

203 

4 S 

6 7 

Vc:nex Number 
Sets 

1 246 

1 2 3 4 S 

1 2 l 4 6 

4 5 678 

8 
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Subgraph evaluation and enumeration algorithm 

for l,l-dimethylcyclohexanea 

Subgraph Matrix V' J 

E, = l 

4 

E = 4 , 

2 

E = 4 , 

2 

E = 6 s 

Topological Matrix 

o 1 1 1 100 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 

1 0 0 0 001 0 

000 1 () 0 0 

000 0 1 0 0 

00000 1 1 0 

Subgraph 

.. ..... (> 
... 

I ......... . 

«1 
"0 ••••• ... 

«1 ............. 

Type 

Path 

Ouster (star) 

Path/Cluster 

Circuit 

(Es = subgraph edge count) 

XBL 7711-10514 

aAdapted from Ref. 16 
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Figur~ 1. Relationship between toxicity and Es for ' 

l,l,l-trichloro-p-methyl-p'-x-diphenylethanes. 
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CARCINOGENiC ACTIVITIE3 OF 
POLYNUCLEAr~ AROMATIC HYDROCARBONS 
==~=-=-====~~=~------
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Figure 2. Carcinogenic activities of polynuclear aromatic 

hydrocarbons. 
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~ 
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~NH2 

~ 
2-NAPHTHYLAMINE 
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4- BIPHENYLAMINE 
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XBL 805-1107 

Figure 3. Carcinogenic activities of aromatic amines 
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Figure 4. Possible metabolic activation pathways for 

aromatic amines. 



8 gH I 
7~N~2 
6~3 

5 4 

CARBAZOLE 
"inactive" 

40 

II-H-BENZO[o]CARBAZOLE 
weak 

r.Joderate 

~I 

N '" N 1.--:: H 

7-H-8ENZO[g] PYRIDO [3 ,2-0]-
strong CARBAZOLE 

13-H-DIBENZO [a,i ]CARBAZOLE 
weak 

13-H-SENZO[a] PYRIDO[3,2-i]-
moderate CARBAZOLE 
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Figure 5. Carcinogenic activities of carbazoles. 
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( a ) 
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Ethane 
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hydrogens 
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H -su ppressed (tree graph) 

Cyclopentane 
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Pentene - 2 
Multiple edge (with H) 

X BL 1110 -6918 
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Figure 6. Gfaph representations of chemical structures. 
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S te p s 2,2, 3·Trimethylbutane 

Write structural 
formula 

Draw hydrogen­
suppressed graph 

Shew valence at 

each vertex 

Compute product 

of end point valences 

for each edge 

Compute each 
edge term: 

reciprocal square 

root product 

CH 3 

CH3-cl /CH3 

C 
/ 'CH 

CH3 3 

3 

3 

.577 

~-,:-;- all edg<::!terms 2.943 

2,4· Dimethyl pe n t a ne 

3 3 

3 3 

.577 .577 

3.126 

xaL77iO-692i 

1 Figure 7. Procedure for calculating connectivity index X 
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Figure 8. Factor analysis: diagram of the stepwise pro­

cedure techniques. 
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Figure 9. Functional analysis of pattern recognition tech-

niques • 
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Figure 10. Separation of acids 0 and bases 0 for 68 ele­

ments of the Periodic Table: n!m from 6-space to 2-

space. 
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