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ABSTRACT 

Using Oseen's and de Vries's model, we predict theoretically that 

phase matching of optical third-harmonic generation can be achieved in 

cholesteric liquid crystals. The prediction is verified by measurements 

of third-harmonic generation in mixtures of cholesteryl chloride, 

cholesteryl myristate, cholesteryl nonanoate and cholesteryl oleyl 

carbonate. Among the various phase-matched conditions for··third• 

halmoliic generaMon•;··there ·.IU"e many involving the simultaneous presence 

of optical wav~s propagating in opposite directions •.. This :i:s. in. sbarp 

contrast to most phase~matching situations which·involve all' waves 

propagating in the same direction. This difference arises from :the 

periodicity of the cholesteric structure which is_ tunable- throughout" 

the optic~-wavelength region. 

c -We show··that phase-matched third-harmonic generation in· 

cholester~c media can be used to ·measure both the· width and ~asymmetry 

of ultrashort ·pulses. c·No phase-matched second-harmonic generation is 

observed,· implying our cholesteric·· structures hAvE!· inversfoti · syYnllletcy 

on· the scale of optical wa:veli!ngths. - · · 

.. ., ......... .:;·. 
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I. INTRODUCTION 

Harmonic generation has been studied in a very large number of 

materials. There are generally two objectives. Firstly, the creation 

of laser~like (intense, coherent and collimated) sources of radiation 

at new frequencies provides new tools for linear and non-linear 

spectroscopy. Secondly, careful measurements of these non-linear 

interactions provide data for comparison with theory, thus furthering 

our understanding of the non-linear properties of materials. 

The conversion efficiency of energy from the laser frequency to a 

harmonic depends critically on the relative phase velocities ,of·--"b4e 

w:aves., and;. is most· efficient- if k-vector conservation or phase matching 

is achieved.1 - In 'most media phase· matching does not occur. _•For _the 

case of co-linear third-harmonic generation in isotropic media 

the phase-matching condition is satisfied if the refractive indices 

at the fundamental and third-harmonic frequencies are equal. This is 

not true in typical media since ordinary dispersion implies an increase 

of the refractive index with frequency. One technique to achieve 

phase matching in isotropic media is to utilize the anomolous dispersion 

of an impririty material with strong absotbtion between the fundamental 

and third-harmonic frequencies to compensate the normal dispersion of 

the host material. 2 •3 More commonly experimenters have utilized either 

the linear or circular birefringence of a medium to compensate the 

1 d . . 4-7 norma 1spers1on. 

Recently interest has arisen in harmonic generation in liquid-

crystalline materials,8•9 in part because of their large possible 

birefringence and hence pot_ential for achieving phase matching. These 

materials typically consist of large anisotropic organic molecules. 
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. Under appropriate conditions (e.g. of temperature or concentration) 

they exhibit both fluidity and ordering properties, such as birefrin-

gence. Investigations have been made of second- and/cr,third-harmonic 

generation in all three of the major liquid-crystal mesomorphic phases-­

smectic, nematic and cholesteric.10
- 13 There is no convincing evidence 

of any second-harmonic generation in these media, which in itself is 

important information about their structures, since it implies they 

are centro-symmetric on the scale of optical wavelengths.14 

Third-harmonic generation does not have the same symmetry con-

straints and in fact has been observed in a number of liquid-crystalline 

materials •12
•
13 No concerted attempt was made to achieve phase-matching 

although it was suggested that the very high optical rotary power 

(or circular birefringence) of cholesteric materials might be sufficient 

to compensate the color dispersion and thus achieve phase matching. 

In this thesis we investigate the phase-matching ability o~ 

cholesteric liquid crystals in detail. Using Oseen•s15_and de Vries•s16 

model ror the optical properties of the cholesteric structure, we 

predict the potentia+ existence of-fourteen different phase-matched· 

conditions for third-harmonic. generation, most of which arise 

not from the large circular birefringence of the medium but from its 

periodic structure. The helical structure of the cholesteric Mesophase 

gives rise to a spacially-periodic dielectric constant. The periodicity 

can be tuned throughout the optical wavelength region. The effect of 

this periodicity on electromagnetic waves has much in common with the 

effect of a periodic potential on electron waves as well as with all 

other cases with waves in periodic media.l7,lB 

In particular, this periodicity makes possible some very unusual 
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d ·t· We can dJ."vJ."de them generally into three phase-matching con 1 1ons. 

types: The usual case of both fundamental and third harmonic waves 

propagating in the same direction, cases in which the phase-matched 

third-harmonic emerges propagating in a direction opposite to that 

of the fundamental, and cases in which phase-matched third harmonic is 

generated only when fundamental waves are simultaneously present 

propagating in opposite directions. The large number of phase-matching 

conditions and their unusual nature are due in large part to the 

tunable and large-scale (- optical wavelengths) periodicity of 

cholesteric liquid crystals. In essence, a wave propagating in a 

periodic medium can be expressed in a Bloch-wave form17 ,lB with wave 

vectors k given by k + 2rr N where N is an integer and S is the period 
0 s . 

of the medium. If S can be continuously tuned, then the wave vectors 

k can be adjusted and consequently many phase-matching conditions can 

be satisfied. 

In the following section we·. ·briefly describe the salient pro-. 

perties of cholesteric liquid crystalline materials and a simple model 

of their structure. In Section III the theory of, ~ electro­

magnetic wave propagation in cholesteric media is discussed at same 

length for in it lie the essentials for understanding the non-linear 

theory which follows in Section IV. With the non-linear theory we 

predict the· existence of fourteen conditions for phase-matched third-" 

harmonic generation. Our experiments are described and discussed in 

Sections_V and VI. 
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II . THE MEDIUM 

The detailed structure of the liquid crystalline mesophases is 

currently under intense investigation and is very far from being well 

understood.9 However some simple strucnural models have proved 

adequate to explain the most prominent optical properties and also, as 

we shall see, phase-matched harmonic generation. 

The constituent molecules of liquid crystalline materials are 

typically anisotropic (e.g. rod-shaped) organic molecules (Fig. 2-1). 

In what is called the nematic structure these molecules have long-range 

orientational order, tending to line up parallel to each other, but 

the molecules can move fairly freely past each other parallel to their 

long axes, ·giving rise,. at least in part, to the medium's fluidity. 

Because of the molecular alignment, the nematic mesophase is bire­

fringent, although in samples thicker th~n- 0.1 mm non-uniformities 

in the alignment direction can give rise to turbidity thus obscuring 

the simple birefringence of the small-scale structure. 

The cholesteric structure is simply a twisted version of the 

nematic. Its constituent molecules not only have an oblong or plate-

like shape but also have a particular "handedness," i.e., they are 

not identical to their mirror images~ The cholesteric structure they 

form is the nematic structure twisted about an axis normal to the 

molecular alignment so as to form a medium with uniform helical 

s~etry (Fig. 2-2). In planes normal to the helical symmetry axis 

(z), there is uniform molecular alignment. The direction of this 

alignment changes regularly· as a function of distance along z. In 

thick samples c> 0.1 mm) the orientation of the helical axis may not 

be uniform throughout the sample; hence Fig. 2-2 represents a 
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ail the molecules and the dielectric response of the medium is therefore 

uniform, not periodic. 

Light propagating parallel to the helical axis encounters a 

longitudinal periodic refractive index giving riseto strong reflectivity 

1 - -for 2 (Vn) = p/2 where n is a suitable average refractive index of 

the medium (see next section). This process is analagous to. Bragg 

reflection. The helical symmetry of the birefringence also gives rise 

to optical activity which can be as great as 1o4•s of degrees in a 

sample 1 rmn thick. All of these prQperti·es -Will be diRscussed in 

r more detail in the next section. 
27 . 

Cholesteric materials are typically rather viscous, -resembling 

heavY oil. They also are usually very turbid, primarily because of 

non-uniform orientation of the helical axis throughout the sample. 

Thin samples ($ -0.1 rmn thick) between flat glass can be made optically 

clear, indicating a relatively uniform structure, and in our experience 

the helical axis is usually oriented normal to the glass surfaces. 

This may be due to interactions at the interface favoring the appropri~ 

ate alignment for molecules in the boundary layer which then carries 

over into the bulk of thin samples. It could also arise from flowof 
... 

the material parallel to the glass faces during assembly and from 

stresses after assembly. These could favor alignment of the long axes 

of the molecules parallel to the flow and hence encourage the helical 

axis to be perpendicular to the flow. 
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time-averaged and small-scale structure. As the name would imply, 

certain derivatives of cholesterol (e.g;, cholesteryl chloride) can 

have this structure (Fig. 2-3). Some a-helix proteins (e.g., poly-y­

benzyl-L-glutamate) also can form this cholesteric structure.19 

The period or pitch (p) of the helical struct.ure has a range of 

from- 2500 A to oo (untwisted). It is a function of chemical composi-

t . d t t 8 d 1 t · d t· f" ld 20- 25 Mi t 1on an empera ure, an e. ec r1c an magne 1c 1e s. x ures 

of cholesteric materials are usually also cholesteric. The actual 

difference in a.ngib.lar orientation of neighboring molecules along the 

helical axis is small; for p = 6000 A and an average molecular diameter 

of 3oAj ,this angle is about 0.6 degree. 

The optical properties of this structure are those of a twisted 

birefringent medium. Thin (<< p) layers normal to the helical axis are 

birefringent due to the uniform alignment of the anisotropic molecules. 

But since the alignment direction changes as a function of position 

along the helical axis, so also do the principle axes describing the 

birefringence. The resulting optical properties are those of a 

birefringent medium twisted about one of its principle axes into a 

medium with helical symmetry. Light propagating perpendicular to the 

helical axis and polarized perpendicular to the helical axis encounters 

a transversely periodic refractive index, producing an interference 

pattern with maxima _at angles 6 satisfying sin8 = NA/(p/2) where N 

is an integer and A= 2'rr w/c. 26 (The periodicity of the (linear) 

optical properties is p/2). With this geometry the liquid crystal is 

like a grating. For light propagating perpendicular to the helical 

axis but polarized parallel to the axis, there is no diffraction, 

since then the light is polarized perpendicular to the long axis of 
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Chapter II Figure Captions 

?ig. 2-l. P-azoxyanisole, whic~ is a nematic liquid crystal in the 

temperature range 116° to 136°C. 

Fig. 2-2. Idealized molecular arrangement in a cholesteric liquid 

crystal. E; and n are the .molecular-alignment axes, which are 

twisted around the z-axis with a period p, the pitch. 

Fig. 2-3. Cholesterol. Cholesterol itself does not have a liquid-

crystal phase, but a number.of its derivatives do. For instance, 

cholesteryl nonanoate is liquid crystalline in the temperature 

-8-

CH3-00N-NOO-CH3. 
- \I -. . 0 . , .. 

XBL 717 -6952 
Fig. 2-1 
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We present in this Eection a review of relevant linear optical 

properties of the cholest~ric-iiquid-crystalline mesophase for light 

propagating along _the db·ection of helical sYJDDletry. The results are 

of importanc_e to harmoni-c generation .which will be discussed later. 

The m~d~l was developed ·:by Ose~n15 and de Vries •16 

It is convenient.·::to introduce two coordinate systems, a cartesian 

laboratory_ frame of reference with coordinates x, y and z, and a 

reference frame with coordinates~. nand :i:,_which twists with the 

cholesteric structure (see Fig. 2-2) • The common z~axis is defined 

to be parallel to the axi.s of helical symmetry. The components of 

a vector referred 'to the laboratory frame (labelled ~) are· related to 

the same vector's components in the twisted frame (labelled ll!.r) 

through a twist transfol::!DB.tion having a matrix ~: 

ir (~, n~ .z) = ~(z) E (x, y, z), 
L 

Cos 2I.T z Sin 2'tr z 
·p p 

T(z) = -Sin 2IT z · Cos 21T -z .., p p 

0 0 

0 

0 

1 

p is the pitch or per.iod of the helical structure. 

(3-1) 

(3-2) 

We assume the medium to be characterized by helically-twisted 

birefringence -- i.e.,. that sufficiently thin (<< p) layers normal to 

the helical axis exhibit simple birefringence with two principle 

dielectric constants~ong orthogonal directions specified by the unit 
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vectors ~ and n. These directions twist about the z-axis with peri?d 

p in the direction z;- Thus the dielectric constant exh~bits the- helical 

symmetry and is diagonal in the twisted frame: 

(
£~ 

~ = 0 

0 

0 

e: 
n 

0 ~ ) 
z 

(3-3) 

Without loss of generality it is assumed that e:~ > e:~. The inherent 

_(isotropic liquid phase) optical~activitv of the molecules is of the 

order of - 0. 4 ° /ram in our experimental materials. This has a 

negligible effect on our experiments and thus has been neglected in 

the theory presented here. For notational simplicity we assume ~ is. 

real; the effects of absorbtion can easily be added to the final 

formulae. 

For a non-magnetic dielectric medium Maxwell's equations give 

2 
~-x (~ ~ ECt'JI.i)) + 00

2 §,(r_,w) E(r,,w) = 0 
c 

( 3-4 )_ 

V • (&(r,,w) E(r,,w)) = 0 

where E(r,,w) is the electric field at frequency w and & is the cor-

responding dielectric tensor. For waves propagating in the ± z 

direction in a cholesteric structure, Eq. (3-4) reduces to 

(
a2 . 002 \ 
az2 + c2 ~(z,w),~(z,w) 0 (3-5) 

in the laboratory frame. We have assumed both & and E have only z 

spacial dependence, The spacial dependence of ~· which arises from 

·•· 
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the twisted birefringence, is eliminated upon transformation into the 

twisted coordinates (just as the time dependendence of the-rotating 

llll!lgiletic field in magnetic resonance is eliminated by a transformation 

into rotating coordinates). Applying the twist transformation, _-

Eq. (3'-2), to Eq. (3-5) gives 

L + 4'11" Q:-~- 2'~~" + ~ £_(w) lL(z,w) ( 2 . ( )2 2 ) 
az2 p - IJ~ . p c2 ""l' <::01' 

0 (3-6) 

where 

(3-7) 

The two extra terms in the twisted-frame wave equation ·ar.e-::due to the 

spacial dependence of the transformation. 

Solutions to Eq. (3-6) can be determined by assuming28 

ikz-iwt 
e 

vhere e is a "4hit polarization vector. This gives 

= 0 

+i~ke'E;.+ 

(3:-8) 

(3-9) 
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Non-zero solutions for eE;. and en exist only when the determinant of 

their coefficients is zero. The resultant expressions fork and the 

corresponding polarizations follow: 

where 

and 

~41..' 2 
+ cl 

d 
2 

= 1 + A.' 
2
· + ~41..' 2 

+ c:l 
2 

= 

k = m ~ 1,2 1,2 c 

I 

, = fu,2 
~.2- IE 

A.' = 21f•w . 

pe-l£ 

- 1 ( ) 
E = 2 EE;, + \ 

(3-lOa) 

(3-lOb) 

(3-11) 

(3-12a) 

(3-12b) 

(3-13) 
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Formally, ~ and m2 are the twisted-frame refractive indices, 

but because of the unusual coordinate system their valves (Fig. 3-la) 

bear little resemblance to urdinary refractive indices. Note that the 

only parameters of the medium which enter these expressions are E~(w), 

trt(w) and p. 

The magnetic field~ associated with each solution for the electric 

field t can be obtained 'by transforming the appropriate Maxwell equation 

into the twisted coordinates: 

T: ( .;; ,l.l_ B_ = 'V x E = a 1_ !f!-) 
~ c at ~ -L -L ~ az ~ 

(3-16) 

where again we have assumed ~ has only z spacial dependence. Hence, 

for each solution (or normal mode), 

or. 

where 

B = 
-T 

IE 
Bt" ·=-- E 

"' q ·n 

- , '),.' . f 
q=m- f=rdr-'A' 

(3-17) 

(3-18) 
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Poynting's vector can then be expressed in terms of the electric field 

in the twisted-coordinates. The result, for a single mode, is 

(3-19) 

where Re indicates the real part of its argument. 

There are four· solutions of the wave equation, corresponding 

to the· four values of m ( ±~, ±m
2

) • Two of the We.ves propagate in 

the forward (t-~) direction and two in the backward direction. However 

the direction of the phase velocity (in the twisred frame) is not 

always the same as the direction of energy flow (Poynting Is yector' ~). 

(We are assuming o~dinary dispersion, so that the direction of 

Poynting's vecter fo~ a single frequency is the same as the direction 

of the group velocity.) From Eq. (3-19) it is apparent that the sign 

uf £ is the same as the sign of Re(q) which in turn is related to m. 

We have adopted the convention of calling modes with positive (+£) 

Poynting vectors the forward (prc:;>pagatil)g) modes, which has the 

consequence that the sign of kl (or~) must be negative in the region 

'A' 2> 1 + a to describe a forward wave (Table 3~). 
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Fig. 3-1 shows typical values of the three basic parameters 

d,_ ·f and q for the two forward propagating modes. For 1:-a < A1 2 < 1 +a, 

mj__.!· fi and q1 are. p:ure imaginary. In this region around A1 = 1, 

cholesteric media exhibit strong reflection of the incident polarization 

feeding into mode 1 (Fig. 3-6) .. This .f'eflectivity occurs because the 

periodic strucutre's linear-optical periodicity, p/2, is just half 

the reflected wavelength inside the medium: 

or 

where A 
0 

jj/2 

A 
A' = __Q. 

piE 

A /2/E 
0 

1 

21T !!!. 
c- A more complete discussion of bound~ value 

conditions and the reflectivity is given later. 

(3-20) 

(3-21) 

From Fig. 3-1 it is apparent that both modes (excluding mode:'l 

near its reflection band) are in general elliptically polarized in 

the twisted coordinate system, becoming linearly and circularly 

polarized in the limits X ~ 0 and X ~oo respectively. As viewed 

in the laboratory frame the normal mode polarizations will have a 

superimposed spacial twist. The general constant-elliptical polar-

ization in the twisted frame appears in the laboratory frame as a 

twisted-elliptical polarized wave with the same ellipticity as in the 

twisted frame but with its major axis twisted or rotating at the 

spacial rate 21T/p radians per unit length. This may be seen math-

ematically by transforming the twisted frame solutions back into the 

lab frame> which yields, for each normal mode 

-18-

e ( 21T " 2rr ,lll = . (x Cos - z + y Sin- z.) 
L .11 + lfl 2 P P 

+ if( -x Sin Z: z + Y. Cos ~)) ikz-illlt 
e (3-22) 

This laboratory-frame expression for each mode may be resolved 

into a superposition of left and right circularly polarized components, 

each with different amplitudes and different propagation constants. 

For ·each mode 

where 

and 

e [A +f.~ + iY) ein*-::· s-c~;At.ut 
!1 + lfl 2 

\ 1:2 

· ·" e;; ;9 .;.·;;: ·"""" 1 

± A 
n =m+--0 -

P 

(3-23) 

(3-24) 

(3-25) 

Two of the four effect:l:ve· refractive indices (z;, 2)in this representation 

have unusual values (Fig. 3-2), differing significantly from IE, the 

average index of the medium. The corresponding amplitudes of these WaVe 

compo~ents •. are small,. f:Fig •.. 3~3) but essential in man1c. of: the pha:se-

matched third-harmonic generation conditions to be derived. 
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Clearly the detailed character of the solutions is strongly 

~ependent on the ratio of wavelength to pitch. In the limit of 

X + 0 (or p + oo) the medium is untwisted and the normal modes are 

linearly polarized along the two principle axes, as occurs in ordinary 

(untwisted) birefringent media. In the opposite limit-oft ~ oo 

(p + 0) the helical character of the structure is on an infinitessimal 

scale compared to a wavelength and the normal modes become circularly 

polarized in opposite senses as in optically active media. Between 

these two limits the normal modes are generally intermediate in 

character. For very small but finite t..' ·c 0 < t..' $ ~ a) the modes. 

are nearly linearly polarized along € and n in the twisted frame and 

hence appear as twisted (or rotating in space) linear polarizations 

:in the laboratory frame with a spacial twist rate equal to that of 

_the cholesteric structure, namely 2rr/p radians per unit length. If 

both modes are excited, the overall behaviour is more complicated 

because the two modes have different propggation constants. 

For ~ $ X $ 1 - a and X > 1 + a both normal modes are approx­

imately circularly polarized in the laboratory frame. The relative 

amplitude (Eq. 3~24) of the stronger pure circularly-polarized com-

ponent of .each mode is greater than 3. Hence the medium exhibits 

approximate optical activity (approximate in the sense that incident 

linearly polarized light emerges no:t as .purely linearly polarized., 

but always slightly elliptically polarized15). For a right-handed 

cholesteric material, the dominant laboratory-frame circularly 

polarized components are ~ and A;. Thus the approximate optical 

activity is given by 

-20-

R ( radians ) 
unit length 

=!.~(n--n+) 
2 c 1 2 

= X ,(~ - m2 + 2 >) 
0 

(3-26) 

(3-27) 

(3-28) 

Fig. 3-4 illustrates the dependence of the optical activity ~n t.' • Note 

that although Eq. · ( 3-28) is singular at t..' =1. and 0, the optical activity 
"(.:.: 

'iS not infinite;. both the . conceptual :cand mathema.tica.:t. appro:it::L11J8,tions . ' ,:. 
. 

used in deriving Eqs. (3-26) and (3-28) respectively are invalid near 

t..' =land 0. 

The reflectivity of a cholesteric medium is obtained through con­

sideration of the boundry conditions. Suppose a planer monochromatic 

wave in an isotropic medium of refractive index n is normally incident 
0 

on a semi-infinite slab of cholesteric material with its helical axis 

normal to the interface. The incident, reflected and transmitted fields 

are written as follows: 

Incident field: 

(::) (::) 
(I) 

in - z -iwt 
= 0 c e 

(3-29) 

(::) (::) 
(I) 

- iwt in - z 
= 

. 0 c 
e 

Reflected field: 

(::) • (:t) e -ino ~' - ihlt 

' J! ) ' ( ' ) -in !!!. z _ iwt 

' ( B': = n~ , ::~ e 
0 

' 

(3-30) 

~ 
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Transmitted field: 

With the boundary at z = 0 (where s = x and n = y) continuity of 

tangential ~ and ~ (=~) implies 

+ e I = i(f1A1 + f2 A2) e y y 
f f 

I 
in (_.!.A +_g_A) e e y y ql 1 q2 2 

where n • 

Consequently we obtain 

2e 
X 

-2iey·-.:·=.,_r1 (1 + !!.q ) A_ + r2(1 + !!. ) A
2 - ·. 1_-"l. q2 

-1 
D .· 

-f (1 + !!.)) ex- i(l + ;;-q
1

) e 
1 ql y 

(3-32) 

(3-33) 

(3-34) 
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(3-35) 

where 

D = !.. (1 + ;;-q ) f 2 (1 + .!L) -(1 +;;-a_) f
1 

(1 + !!. ) 
2 1 q2 -~ ql 

( 3-36) 

From Eq. (3-33) one can calculate the incident polarizations 

which feed exclusively into €ach of the normal modes. These polariza-

tions differ significantly from the two circular polar~zations ·only 

near A1 ·= 0. The sense or handedness of the incident polarization29 

which feeds into mode 1 is the same as the handedness of the cholesteric 

structure. The reflectivity of the cholesteric medium for these 

same two incident polarizations is sbQwn in Fig. 3~6. The reflectivity 

of sufficiently thick (typically >-50 p) samples is independent of 

the thickness, 16 due to the finite penetration depth of the reflected 

wave. For essentially the same reason, the band of total reflectivity 

(of mode 1) bas finite width. 

In ordinary (untwisted) birefringent media, the polarizations 

(~ ~) of the two normal modes corresponding to each given propagation 

direction ar€ orthogonal. In a cholesteric structure (for light 

propagating along the twist axis) this is not true. Since transverse 

(in xy plane) scalar products are invariant under the twist trans-

formation one can express such quantities directly in terms of the 

fields of the twisted frame. Thus 

(3-37) 
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This expression is non-zero except in the two limiting cases a + 0 

and >..' :.... co. 

Although one might expect the lack of. orthogonality to lead to 

cross terms in the expression for Poynting's vector when both modes are 

excited~ this' is not the case. In the gene~alcexpressi~ i'or Poynting's 

(3-38) 

However·-_tt 'Will:· be"'"' 

pointed out later. that the lack of orthogonality ~-be relevant in 

111m1-linear :' interactio!ls. : ~··· . 

The propagation of electromagnetic waves along the helical axis 

in a cholesteric medium has many characteristics in common with the 

propagation of electrons in a one-dimensional periodic lattice. Both 

situations, as well as a host of others, are described by wave$ 

interacting with a periodic medium. Bloch's theorm17 •18 is generally 

applicable to such problems, and we shall •rederi ve here: the polariza-

tiona and dispersion relations of the normal moues using. this theorm. 

In .. a cholesteric structure, which has a periodic dielectric 

susceptibility, solutions for the electric field canbe expressed in 

the form 

(3-39) 
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where ~(K,z) has the periodicity of the susceptibility which is 

p/2 for linear-optical phenomena. Substitution into the wave equation-

(Eq. (3-4)) gives the. equation for~: 

0 (3-40) 

Since both E(z) and u(K,z) have the periodicity p/2.they both may 
~ - - . 

be expanded in series containing only "reciprocal-lattice-vectqr" 

components : 

~(z) = ~ ~ eiGz (3-42) 

where---G = N ~ with N being any integer. Substituting and taking 

the scalar product with eigz yields 

(3-43) 

Typically, the potential of a lattice for an electron contains 

many (perhaps co) Fourier components. In a cholesteric structure 

the dielectric constant has only three (complex) Fourier components, 

which contributes to making exact solutions obtainable. In the 

laboratory -frame 

.. 



,. 
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[ (

Cos ~ z 

£(x,y) = £ I + a 
~ . R::: 

S. 41T 
1n -z 

p 
-:::: :)] 

p 

(3-44) 

vhere ~ is the unit matrix, and £ = ~ (£~ + £n) 

before. Because of the helical symmetry of the 

£ - £ 
and,a = tl I; as 

£~ + £ 
., T.) 

cholesteric structure, 

ve gain formal simplicity by working in circularly polarized transverse 

coordinates (+ = x + iY 
.rz 

Thus we obtain 

~ = x - iY ) , z • 
-12 

£(+,-) .., = £ (1. i-i 41T z 
ae P 

This tensor has only 0 and ± lm complex Fourier colllJlOnents ... 
p 

From Eq. 1 (3-4.3) one then obtains an infinite set of scalar 

(3-45) 

equations (two for each value of g taken from the reciprocal lattice 

vectors) in the infinite number of unknowns ,rJ' (resolving the vector g . 

Q. into its + and .: com:Ponents): 
""g .· . . . 

(K + 2Q)
2 

-
w2 

£-
~ 

c;Q 

w2 
c;Q -a-

c? 

(K + Q)2 
w2 

CQ -£-
c? 

-a£ 
w2 

c2 CQ 

K2 -
2 w 

c~ £-
c2 

w2 
-a£-

c2 co 

. . . 41T 
where Q = -. In matrix form, 
... --.. -- ----- -_-JL - - - - -- - ---- ---
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w2 '+ 
-· a£ 

cF 
c = 0 
Q 

(K + Q)2 - £ 
w2 + + c = 0 
if Q 

2 
c+ w 

0 - a£ 
c2 0 

2 (3-46) 
K2 w ~- c+ 0 + £-:- = 

c2 0 

2 
a£ ~c+ 0 

c2 -Q 

(K -
2 w2 + 

+ Q) + £- c = 0 2 -Q. c 
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± 
Non-zero solutions for the amplitudes CG exist when the deter-

minant of the coefficient matrix vanishes. The form of the matrix 

allows the determinant to be expressed as a product of the determinants 

of the smaller 2 x 2 matricies along the diagonal. All of these 

smaller matrices are identical except by translations in.k-space by 

reciprocal lattice vectors. This is a consequence of K in Eq. (3-39) 

being defined only modulo 4n/p. It is sufficient to solve only one 

of the 2 x 2 matrices. Solving for example the ~trix determining. 

- . + 
the amplitudes CQ and CQ yields for the allowed values of ~ 

2 w2 
(K + 2n) = E: 2 

p . c 
"'A' 2 ± /4"'A' 2 + r:l ) (3-48) 

using again the paramaterization of Eqs. (3-12) - (3-15). Comparison 

with Eqs. (3-lO)and {3ll2) shows that 

K = k.r 2n -- (3-49) 
p 

where kT is any of the twisted-frame propagation constants discussed 

previously (Eqs. ( 3-10) and ( 3-12)). The corresponding solution for 

the electric field, expressed in Bloch form, is 

iwt 
e (3-50) 



" 
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where e~ is an arbitrary amplitude and f is given by Eq. (3-11). The 

actual solution for the electric field obtained by first solving any 

of thi:Fother 2 x 2 matrices in Eq. (3-47) is identical to Eq. (3-50). 

This same-expression can be obtained immediately from the laboratory­

frame resolution of each mode into its circularly polarized components, 

l!lq. (3-23). 

The reflection band of mode 1 in cholesteric structures is 

analogous to the band gaps of electrons in lattices. However tn 

contrast to the electron case, in a cholesteric structure there is 

, only one gap (for propagaj;ion parallel to the helical axis) 30 and 

for only one of the two. normal mode polarizations. There are three 

related sources of this difference: the two-dimensionality of the 

electron magnetic wave equation, the "handedness" symmetry of the 

cholesteric structure, and the small number of Fourier components of 

the periodic dielectric response. The situation has some similarity 

to a diffraction grating with a sinusoidally varying transmission 

characteristic in the plane of the grating; such a grating bas only 

zeroth- and first-order interference maxima, which is formally related 

to the fact that the Fourier transform of its transmission pattern bas 

only three complex Fourier components. Similarly, a cholesteric 

liquid crystal has a sinusoidally varying dielectric constant (as a 

function ·or z) giving rise to only three complex Fourier components. 

However this fact alone is insufficient to explain the single band gap 

in cholesteric liquid crystals, since and electron in a one-dimensional 

sinusoilal potential would still have higher order gaps. The additional 

critical differences are the helical symmetry of the cholesteric 

-30-

structure and the higher spacial dimensionality of the wave equation. 

Note that the solutions derived in this section are exact; unlike. the 

electron case, each solution consists of a superposition of just two 

plane harmonic waves (Eq. (3-23). 
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Chapter III Figure Captions 

Fig. 3-1. The values of m 1 
, f and q for the two forward modes (Poynting 

vector in + z direction) in a right-handed cholesteric structure 
. A 

(p > 0) with a = 0. 03, as a function of A 1 (=-0
- , where A = 2Tr.J£._ ) • 

p/E" 0 c 

For 1-a < A12 .< 1 +a, ml, f 1 and.~ are pure imaginary; their 

values, divided by 1=1 , are plotted as dashed lines. For the 

backward propagating modes all signs change. For a .lef't-handed 

helical structure (p < 0), the signs of f
1 

and f
2 

change. 

Fig. 3-2; Normalized refractive indices for _the two circularly polarized 

components of each forward normal mode in ~he laboratory frame for 

a = 0.03 and a right-handed cholesteric structure. +· n~ ·and n2 are 

actually not equal, but are virtually indistinguishable on the 

scale of this graph •. In the reflection band (around A1 = ~. both 

+ 
n1 and n1 are pure imaginary. For a lef't-handed structure the 

senses ( "+" and "-") are reversed. For the backward propagating 

modes, the senses are reversed and all signs change. 

Fig. 3-3. The relative amplitudes of the two circularly polarized com-

ponents of each forward normal mode in the laboratory frame, for 

a = 0. 03 and a right-handed cholesteric structure. For a lef't-

handed structure the ratio for each mode is inverted. For the 

backward propagating modes, the ratio for each mode is inverted.· 

(The handedness's. of the backward~ode polarizations with respect 

to their backward propagation direction are however unchanged.) 

Fig. 3-4. Optical rotation in a cholesteric material with a = 0. 03 an.d 

IE = 1. 5 for light propagating along the helical axis. For A 1 > 1 

the sense of rotation is the s~e as the sense of the choleste~ic 

structure; for A 1 < 1 these senses are opposite. The curve is a 

• 

• 
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plot of Eq. (3-27) outside of the reflection band; it is dashed for 

A' <a and 1- a< A1 < 1 +a where optical activity does pot 

approximate the medium's optical properties. 

Fig. 3-5. Polarization of normally~incident light which feeds ex-

elusively into each of the two forward normal. modes 1 and 2, for 

a = 0 .03, ~ = 1, and a semi-infinite slab of right-handed cholesteric 

material with its helical axis normal to the interface. The upper 

(lower) curve indicates that except near A' = 0 left-(right) circularly 

polarized light, x + iy (x- iy) efficiently excites mode 2 (1) in 

a right-handed cholesteric structure. 

Fig. 3-6. Reflectivity of light normally incident on a semi-infinite 

slab of idealized cholesteric material with its helical axis: 

normal to the interface. The curve Rl(R2) is for the incident 

polarization feeding exclusively into mode 1(2) (see Fig. 3-5). 

R d d W. X' (-__ .A.o) e uce ave length, P/F 

XBL 717-6954 

Fig. 3-la 
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IV. NON-LINEAR THEORY 

For propagation of infinite plane waves along the helical axis 

(taken as the z axis) of a cholesteric medium, the wave equation in 

the laboratory frame, including non-linear sources, has the form 

f?JJJ)
2 

NL -471"\~ 1: (z,aw), 

where ~(z,3W) is the electric field at frequency ?;JJ, ~(z,?JJJ) is the 

corresponding (linear) dielectric constant and ~(-z ,3w) is the 

non-linear polarization at frequency ?;JJ. With the electric dipole 

approximation, the non-linear polarization for third-harmonic 

generation has the form 

~(z,?;JJ) = ~ ~(z,w) !(z,w) ~(z,w) (4-2) 

where ~~ is the corresponding no~-linear susceptibility. In the 

laboratory. both ~ and fL vary vi th z because of the changing 

direction of molecular alignment as a fUnction of z. However in the 

twisted coordinate system ((~. n, z) - Eqs. (3-1) and (3-2)), the 

alignment direction does not change, and hence E and ~ are both 
""' ""' -

constant. Application of the twist transformation, Eq. (3-2), to 

Eq. (4-1) yields the correspondingwave equation in the twisted 

coordinate system: 

~ .. >;i:..·· 
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(4-3) 

The forward propagating field at frequency 3w is generally a . 

linear combination of the two forward propagating modes, 

(4-4) 

where e it ( z) and e 2 (:z) are assumed to be slowly varyi~ functions 

of z. (Solutions for the backward propagating third-harmonic waves 

may be obtained by inverting all propagation directions in the final 

solution, Eq. (4-12).) Substitution into Eq •. (4.::.3) and using 

Eq. (3-9) yields 

( 2;k + 4. 1T (J ) A ikl z a {! 
~ 1 1l ... el e az c 1 ( z) + 

41T . ik2z 
( . ) " 2ik +- cr e

2
e 

2 Jl ... 

(4-5) 

vhere we have neglected the second derivatives of t
1 

(z) and €
2

(z). 
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At At 
The scalar products of e

1 
(3w) and e

2 
(3w). (the conjugate 

transposes of ~l and e
2

) with Eq. (4-5) yield 

where 

2i1T(3w) e t (3w) • f.r NL( z ,3w) 
cle:(3w) 1 · 

2i1T(3W) eAt
2 

(3w) NL( ) 
. ~T z,3W ' 

c~ 

f2 
n = -m ·- 2) . .' 2 --2 

l+f2 

(4:-68.) 

. (4-6b) 

(4-7a) 

(4-7b) 

(4-7c) 

(4-7d) 

and where the parameters m 'and f are to be evaluated at frequency 3W. 

• 



.... 

-45-

Hence 

( At At) -i~z a 
el(z) = 2i1T(3w) 

De1 - Be2 ENL(z,3w) 
az e 

c-1£ AD - BC 
(4...,8a) 

~At At) -ik z a 
e'~(z) 2i1T(3w) Ae2 - Ge1 • 

_ENL(z,3w) 2 
az e 

c/£ AD - BC t _ 
(4-Bb) 

The fact that the components of pNL in the directions of both normal-- . --
mode polarizations radiate into each normal mode is a consequence of 

the lack of orthogonality between the modes (Eq. (3-37)). 

Assuming that the driving field at frequency w is not depleted, 

~(z,w) in Eq .• (4-3) can be expressed as a superposition of the four 

normal modes at frequency w (two propagating forward and two backw~rd). 

(4-9) 

Integration of Eq. (4-8) then yields 

(3w) e ( .. lz) = 2i1T(3w) 
1 \··'~ 

c-IE 

~ A ( ) A ( ) A ( ) ~~f.ll) &;'(f.ll) "'"{w) X ,L..J eR; w em w en w c;R, em '"'n 
R.,m,n 

(4-lOa) 

with 

e (3w) (z) 
2 

21Ti (3w) 

~IE 
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A ( ) A {w) ~ (w) e, (w>.edw) -~ {w) 
eR, w em . n R, . m en 

R, ,m,n 

Sin(~ (&) 2R.mnz) 

¥ {Ak) 2R.mn 
e 

1 . 
-i - (L\k) z 

2 2R.mn 

{.ik)j"-- = k (3w) -- ·k {w) - k {w) - k (w) 
kWll j ~ m n 

X 

If one particular combination {R., m, n) of fundamental-frequency 

{4-lOb) 

~4-11) 

modes is dominant, for instance due to experimentally chosen incident 

polarizations and/or due to phase matching (Ak = 0, see below) we 

can neglect all other terms in the sum. Then, using the expression 

for the time aver~ed Poynting's vector derived in the previous 

section, Eq. {3-19), we obtain for the third-harmonic intensity in 

either of two forward modes at the end of a sample of thickness -z 

{neglecting boundary reflections) 



I (3w)(z) 
2 

:: 'IT (3w)2 

2c·~ 

le~Cwl emCwl e.Cwll 
2 
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Sin
2 (~ (llk)Hmnz) 

( ~ (llk)lR.mn) 2 

. 2 (1 ) Sin 2 (&)2J.mnz 

(1. (&·) ) 2 
2 2R.mn 

X 

(4-12a) 

2 

(4-12b) 

Third..:.harmonic generation is most efficient when the phase-r..f·•··•·.,l.i 

matching condition (llk);JR.mn == 0 is satisfied. Given w, € and a, 

one can compute from Eqs. ( 3-10) - ( 3-11,) and ( 4-11) the phase. mismatch 

(Ak) for all mode combinations at all pitches. Because of the strong 

dependence of k on pitch (Fig. 3-la) and the fact that the pitch of 

cholesteric materials is a continuously variable parameter over a 

large region (2200 A< jpj < ~ ), phase-matched third-harmonic 
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generation can in fact be achieved in principle for a~ least fourteen 

different mode combinations. Table 4-1 lists all these possible phase-

matching conditions for third-harmonic generation from 1.06 ~ waves 

propagating along the helical axis of a twisted birefringent medium ~ 

with ordinary dispersion. 

The phase-matched mode combinations involving waves propagating 

both forwards and backwards have no analp-gues in homogeneous media~ 

There is an apparent lack of conservation of linear momentum among the 

interacting waves. Phase matching in these cases can be understood 

in. terms of the periodicity of the medium. Since the periodicity 

of the linear and third-order optical properties is p/2 the unit 

lattice momentum is (4'IT/p) h. Hence we can expect momentum in 

multiples of this unit to be echanged with the medium.17:18 In the 

limit that the birefringence a is negligible in the expressions for k, 

we have from Eqs. (3-10) .and (3-12) 

where 

Using this approximation the phase-matching condition for the fifth 

mode combination, for example, in Table 4-1, 

k (w) + k (w) + k- ~w) == k (3w) 
2 2 1 1 (4-14) 

.. 
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!"educes to 

k (w) + k (w) + (-k (w)) 
0 0 0 

~ k ~ 
0 

2 4'1T 
p 

(4-15) 

• lienee the apparent laboratory-frame momenttun mismatch among the optical 

fields is accounted for by. two un~.t·s· f ·h. ~ o t e lattice momentum. 

" a e mJ.xed-drrection mode Analagous results can be obtaJ.·ned.for 11th · 

combinations. One can compute from Eq. (4-15) the approximate pitch 

for phase-matching of the corresponding mode combination: k9 (w) ~ 

9 .. lJI!l-l and kQ. (3W) ~ 27 11m -l .. ,, ~ giving P ~ 1.4 lJI!l, in agreement with the 

value in Table 4-1. 

Similar considerations are applicable for angular momentum. 

For small a the two normal modes are approximately circularly polarized 

in opposite senses in the laboratory frame (except for X< a). 
· """" Ct 

Thus 

plilotons in the two forward mddes carry equal and opposite units of 

&J:lgular momentum l±h ), with the signs reversed for the backward pro­

pagating modes. For the tenth mode combination, for example, in 

Table 4-1, the consequent angular-momentum mismatch among the fields 

is 4h. But since the medium has two-fold rotational symmetry about 

the z-axis (see below), the fields can exchange angular momentum 

rith the medium in units of 2h. Examination of all the mode com-

~ binations in Table 4, assuming the modes are circularly polarized, 

shows that the angular momentum mismatch among the optical fields is 

always an interger multiple of 2h and hence can be accounted for 

. by exchange with the medium. 

All of the phase-matchedc1mode combinations can also be under­

stood in analogy with electrons propagating in a one-dimensional :::-···'·, 

periodic lattice. We can express ;the no:f'mal modes in Bloch-function 
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form (Eq. (3-39)) 

E(z) = eiKz ~(z). (4-16) 

K is given modulo 4'1T in Eq, (3-48). 
p 

It is customary to make K unique 

by requiring that it lie in the first Brillouin zone, -2'1T/p< K < 

2 I 17,18 'IT p. Consequently, for example for the tenth mode combination, 

which is phase matched for p ~ 0.47 ~. we have K - k + 2'lT 1 - 1 p 

the corresponding phase-matching condition, 

k (w) + k (w) + k (w) = (-kl(3W~) 
1 1 1 

can be written equivalently as 

.·. (w) 
+ 

. (w) + K (w) (-"i( (3w)) + 4'1T 
Kl K: 1 1 1 p 

Then 

(4-17) 

(4-18) 

The occurrence of a reciprocal lattice vector (integer multiple of 

4'1T/p) is the definition of an umklapp process.
31 

Thus this mode 

combination, as well as #6 and #14, generate third harmonic fields 

via a coherent optical umklapp process. For all the other mode 

combinations no reciprocal lattice vector appears in the expressions 

analagous to Eq.,(4-18) arid hence their harmonic generation would be 

11 d " d" " 31 ca e or 1nary processes. 

One final interpretation of the phase matching conditions may 

be useful. , As indicated in Eqs. (3-23) - ( 3-25), each normal mode 

made be written (exactly) in the laboratory frame as a linear 

superposition of left-and right circ~ar~ polarized waves each with 
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+ +-:ts own amplitude A1 :; (Fig. 3-3) and effective refractive index n1 : 2 

(Fig. 3-2). Since the .normal modes themselves are nearly circularly po-

larized for most values of X ; the amplitude of one of the circularly-

polarized components of -each mode is much lArger: than the other. But the 

weak amplitude components play critical roles in achieving phase match­

ing. If the fournon-;zero elementsof leNL (Eqs. (4-26) and (4-27)) are 

equal (see Section 'VI)., the non-linear tensor has the same form as for 

third-harmonic generation in isotropic media and it is independent of z 

in the laboratory frame. Hence linear and angular momentum are conserved 

among the electromagnetic waves inside the medium, without exchange with 

the lattice. Then if one treats each circularly-polarized component of 

each normal mode as independent and searches for all possible phase-

matching conditions. for third-harmonic generation, consistent with an-

gular momentum conservation, one obtains a list corresponding exactly to 

that in Table 4-1. For instance for mode combination #4 in Table 4-1, 

(4-i9a) 

(4-19b) 

we obtain 

(4-20a) 

(4-20b) 
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A. (w) 
Since n~(w) = m

2
(w)+ p the two phase-matching conditions (Eqs. 

Q-19b and 4-20b) are exactly"equivalent. In addition to yielding the 

phase-matching conditions exactly, this picture provides an easy way to 

estimate the relative intensities of the third~harmonic signal generated 
11 

with the various mode combinations, simply by computing the· relative am­

plitudes A+,- of the relevant circularly polarized -components aftbi:i modes. ~ 
-~,2 -

~base-matched mode combinations involving very weak circularly-polarized 

components of some of the modes (necessary to conserve angular 

momentum) will be relatively inefficient in converting the laser light 

to its third ha..'"IDOnic. Such estimates of course will be accurate only 

to the extent that the Iion...;zero· eiements of xlfL in ·tact Ue'eqwilr', Our 
"" 

experiments indicate ·that to a .first rough approximation this i-s ·indeed 

the,case for our liquid-crystal samples. 

Some of these phase-matchable mode combinations have correspond•r: 

ences in untwisted media. The second combination in Table 4-1 is 

~ (3W) a: €_ (w) ~ (w) ~ (w) 
1 . 1 2 2 (4-2la) 

k (3W) = k (w) k (w) + k (w) 
1 1 + 2 2 

(4-2lb) 

In the limit p + 00 where el = € = X and e2 = n = y ' Eq. (4-21) become 

e (3W) ~ e (w) ~ (w) € (w) 
X X Y Y 

(4-22a) 

ri (3w) - n (w) 
X :·X 

= R ( n ( w) - n:- : w) ) • 
3 Y X 

(4-22b) 

.. 
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The phase-matching condition has been rearranged to illustrate the 

compensation of the color dispersion by linear birefringence. This 

is the most common laboratory technique for achieving phase-matching. 

In_the regions of pitch where the normal modes at both wand 

" 1 (" ") .... 3W-are approximately circularly polarized we have e1 "' - x - iy = 
12 

and e "'_l (i + iy) = + (for p > 0). Then the third mode combination 
2 12 

in Table 4-1, 

~ (3w) Q) 

1 
e. (w) e (w) e. (w) 

1 1 -2 

k (3w) = k (w) + k (w) + k (w) 
1 1 1 2 

can be described approximately by 

m (3w) -m 
(w} "' 1 ( (w) 3 m+ -.m 

Physically, the color dispersion is compensated by its circular. 

(4-23&) 

(4-23b) 

(4-24a) 

(4-24b) 

birefringence or rotary power in the twisted coordinate system. This 

phase-matching technique, 6 applied to difference-frequency generation, 

has observed in optically active materials. 7 

We were unable to observe third-harmonic generation phase 

matched by circular-birefringent compensation in cholesteric liquid 

crystals despite their extraordinarily high optical rotary power 

. (or circular birefringence). 8•9•32 Mode combinatienw#3 (discussed 

above) was not phase-matchable in our cholesteric materials because 
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the values of the parameters E and a did not satisfy the inequality 

in Table 4-1. But even if the inequality were satisfied, the resulting 

phase matching could not be properly attributed to circular-birefringent 

compensation unless phase-matching occurred at a pitch such that the 

normal.modes at both wand 3w were nearly circularly polarized, so 

that the medium could indeed be characterized by circular 

birefringence. If the inequality is satisfied as an equality, the 

phase-matching pitch is oo, and the normal modes are linearly polarized. 

For a~ 0.03 (typical for our materials), the color dispersion 

(E(l.06 lJ!!l) - E(0.35 lJ!!l)) would have to be- 0.001, one tenth of the 

actual value in our materials, in order to achieve phase-matched 

third-harmonic generation via circular-birefringent compensation. 

In the twisted-frame coordinates (~~ n) the only relevant 

NL elements of ~ are 

X~ ~ ~ ~ x~ ~ ~ n X~ ~ n n X~ n n n 

Xn ~ ~ ~ Xn n ~ ~ Xn n n ~ Xn n n n 

(Elements differing by permutations of the last three indices are 

equal; this degeneracy has not been included in this list.) The 

(4-25) 

medium is homogeneous, with all molecules aligned parallel or anti-

parallel to each other. The molecules themselves lack inversion 

symmetry, so that if they were all aligned pointing the same direction 

it would be possible to generate second harmonic. The 1ack of observed 

second-harmonic generation in cholesteric media11-13•33 implies 

that the medium has a high degree of inversion symmetry and hence 
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that the molecules may be alignen with equa1 "up" and "down" 

orientations. This would' .imply the medium has reflection symmetries 

· aeross. both the ·!:; .and n axes and: nence only fotlr el~ents of 'X,~' in,::.­

Eili· (4-25J· are no~-vanishing. They are 

~l2 = 3X~ ~ n n 

e21 = 3X, n ~ ~ 
(4-26) 

The non-linear polarization along € and n in the twisted frame are 

therefore given by 

= e E (w) E (w) E (w) 
11 ~ . ~ E; 

E (w) E (w) E (w) 
+ e12 ~ n n (4-27a) 

= e E ~w) E (w) E (w) 
21 n ~ E; 

+ e E (w) E {w) E (w) 
22 n n n 

. (4-27b) 

Experimentally we measure the components of ~NL in Eq. (4-12). 

These co~ponents can be expressed in terms of e11 , e12 , e21 and e22 

using the relation (obtained from Eqs. ( 3:...8) and ( 3-11) 

1 (4-28) 

The results are given in Table 4-2. 
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It is clear that since e11 , e12 , e21 and e22 are all non-vanishing, 

phase-matched third-harmonic generation should exist for all the mode 

combinations in Table 4-l. In principle the relative v;alues of e
11

, e
12

, 

e2l. and e22 can be det~-by measuring the relative third ha.r:D!onic in­

tensity generated via four (or.more} different mode combinations. In our 

experiments we used different mixtures of cholesteric materials and/ar 

different temperatures to observe most. of the different mode com-

binations, and hence the non-linear susceptibility may be different 

for these combinations, However the temperature effect should be 

very small over our - 30°e range and experimentally we find our data 

is consistent with XNL being nearly the same for all our differen~ 
"" 

mixtures. This is reasonable in light of the large size of each type 

of molecule and the lack of any radically different structure or 

bonding in the various groups added to cholesterol to make the 

cholesteric liquid crystalline materials we used (see next section). 

.. 



... 

-57-

Table 4-1. All mode combinations which are phase-matchable for third-

harmonic generation. from 1. 06 ].JID. fundamental. The bars indicate back­

ward modes (with fbynting vector in -z direction), The possiblity 

of phase~tching for the first three mode combinations is very 

sensitive to the medium parameters E and a. All the other mode 

combinations are phase-matchable at some (not the same) pitch for any 

medium parameters in the range investigated, namely Q<a<0.5, o<E(3W) -

E(w) < 0.2 and 1 < ~ (E(3lli) + E(w)) < 4. The particular pitches for 

phas.e matching given in the table are for a = 0.03, E(w) = 2.18 and 

d3W) = 2.30, which are typibcal for our eXperimental materials. The 

possibility of anomalous dispersion between w and 3W has not been 

included in this table. 

\ 

1. 

2. 

3. 

4. 

;. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Mode 

Combination 

' w 3W 

222 -+ 1 

122-+ 1 

112 -+ 1 

222 -+ 2 

221 -+ 1 

il2-+ I 

222 -+ 1 

21I-+ 1 

22I -+ 2 

ill -+ I 

lli-+ r 
122 -+ I 

ll2-+ 2 

ill-+ 2 
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Table 4-1 

Condition For Existence 

of Phase Matching 

(E(3W)/dw) - 1) ?:: a 

(d3W)/e:(w) - 1) > -<, 
_ga 
3 

(d3W)/dw) 1) $ !.a 
3 

Approximate Pitch For 

:t'hase Matching (].JID.) 

17 

1.4 

0.70 

0.69 

0.69 

0.69 

0.47 

0.35 

0~35 

0.35 

0.24 
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Table 4-2 

ell c12 c21 c22 

xj lll/Nj(3W) Nl3(w)) 1 - fl2(w) fj(31P) r 1 (w) - :fi'j (3W) fl3(w) 

Xj 112/(Nj(3w) N1
2

(w) N2 (w)) 
-

- 3rj(3W) r 1
2 (w) r 2 (w) 3 . - fl ( w) ( f 1 ( w) + 2f 2 ( w) ) fj(3W)(2f

1
(w) + r

2
(w)) 

Xj 122/(Nj(3W) N1 (w) N2
2{w) 3 - r

2
(w)(2t'n_(cii) + r 2(w)) fj(3W)(f

1 
(w) + 2f

2
(w)) ~ 3fj(3W) r 1 (w) r

2
2 (w) 

Xj 222/(Nj (:?PJ) N
2 

3 (w)) 1 - f22~w) rj(3W) r
2

(w) - rJ(3w) r/(w) 

XJ lli/(NJ(3W) Nl3(w)) 3 fl2(w) rJ (3W) r 1 (w) 3fJ(3w) r 1
3 (w) I 

"' 0 2 - . 
r
1 

(w)(2f
2

(w) - r
1 

(w)) rj(3w)(2r
1

(w) -f'f
2

(w)) 3f j ( 3W) f 1
2 

( w) f 2 ( w) 
I Xj 112/(Nj (3w) N1 (w)•fN2 (w)) 3 

Xj 22i/Nj(3W) N1 (w) N2
2 (w)) 3 r

2
(w)(2f

1
(w)- r

2
(w)) fj(3W)(2r

2
(w) - r

1 
(w)) 3fj(3W) r 1 (w) r 2

2 (w) 

xJ 222/(NJ (3U1) N/(w)) 3 f22(w) :(j(3W) r 2(w) 3fj (3W) r/(w) 

Xj ll2/(Nj(3W) N
1

2 (w) N
2

(w)) 6 2f
1

2 (w) 2fJ {3w) r 2 (w) 6rj (3w) r
1

2 (w) r
2

(w) 

Xj 221/(N/3W) N1 (w) N
2 

2 (w)) 6 2f
2

2 (w) 2fj (3W) r 1 (w) 6f j ( 3w) f 1 ( w) f 2 
2 

( w) 

- " t NL 
eR.(w) em(w) ~n(w) NR.(uf)'= 

1 
xJR.mn = eJ (3w) • ~ : 

l:j;R.(w' >1 2 

J .. ,. 
'" 
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V. EXPERIMENTS 

In our experiments we have used a number of different cholesteric 

liquid-crystalline materials in order to observe the various predicted 

:;Jeak.s in third-harmonic generation. Our observations of the mode 

combination 2,2, 2 -+ 2 ( #4 in Table 4-1) were done using a mixture of 

1.75: 1.00 by weight of cholesteril chloride and cholesteryl 

. t t 34 Th" "xt myr1s a e. 1s mi ure has the advantage of having a pitch which 

is variable from -1.7 ~ to ± oo to + 2 ~ by varying the temperature 

from 20 to 68°C. (A negative pitch denotes a ~-handed twisted 

structure. ) In particular, the samples could be tuned to both -17. 3 

ana + 17 •. 5 )1Ill' the phase-matching pitches for mode combination #4 in 

Table ·4-1 allowing verification of the predicted polarization reversals 

when the helicty of the structure changes. 

All the other phase-matching peaks we observed required 

eholesteric structures with pitches < 1.5 ~. We used mixtures of 

cholesteryl oleyl carbonate, cholesteryl nonanoate (also called 

h 1 t 1 1 t ) d h 1 t 1 hl "d 34 c o es ery pe argona e an c o es ery c or1 e. The particular 

mixtures were chosen for the accessibility of the desired pitch at 

a convenient temperature and for the convenience of· a weak temperature 

depence of pitch, in order to decrease the criticality of. temperature 

control. The ratio of cholesteryl oleyl carbonate to cholesteryl 

nonanoate (by weight) is unity in all our mixtures and the ratio of 

cholesteryl chilioride.to the sum of thesetwo components varies. 

Fig. 5-l shows ·how the pitch changes as a function of the concentration 

of cholesteryl chloride. The temperature variation of ~he pitch 

between 20°C and 40°C can also· be crudelY estimated· from the two curves 

in Fig. 5-1. 35 The actual samples used to obserye the various 
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phase-matched mode combinations are listed in Table 5-l. 

Samples were prepared by placing a few drops of the thoroughly 

mixed (in the isotropic liquid phase) mixture within a ring of teflon or 

mylar on a glass window. A second window was then pressed upon the first 

and the two were held together in a simple press. Samples up to -250 ~ 

in thickness were obtained which were clear and uniform to the naked eye. 

Under a polarizing microscope however small regions were discernable 

with slightly different optical properties, indicating slightly different 

alignments of the helical structure within the domains. The effects on 

phase-matched third-harmonic generation of a distribution of helical-

axis alignment is discussed in Section VI. Most of our experiments were 

done with 130 ~ thick samples. Samples with relatively random and mixed 

helical-axis orientations (desirable for some pitch-measuring techniques)_ 

were obtained by increasing the thickness or by subjecting samples to 

thermal shocks such as quick melting and cooling. 

Prediction of the precise pitches for phase matching reauires the 

measurement of E and a (Eqs. (4-11), (3-10), and (3-12) throught(3-15)). 

E (Eq. (3-14) is the average dielectric constant over the two principle 

axes s and n. We measured E(w) in the isotropic liquid phase where the 

relatively random orientations of the molecules gives the desired aver­

age. We used the prism method36 with a mercury-arc lamp as the light 

source and a filtered photomultiplier tube as the detector. The results 

the £ at the laser frequency (A = 1.06 ~) and its third harmonic w 

(A3W = 1.06 )lill) are given in,~Tabl:e.c5~1. By using £ as measured in the 

isotropic liquid phase as the appropriate £ for the liquid-crystal phase 

we are neglecting its temperature and phase -ependence. These are rea-

sonable approximations in light of the small temperature difference bet-

ween the temperatures at which £ was measured and the temperatures for 
~ 

phase matching (typically -25°C) and the small difference in molecular 
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interaction between the two phases. 

The parameter a. (Eq. 3-15) is proportional to the birefringence 

in the twisted frame. It is most easily obtained from Eq. (3-28) by 

measuring the optical activity of the sample. In the region of 

applicability (see Fig. 3-4) a.2 is given by 

a.2 = j.!±. p)..' 2(1-A' 2) Rj 
1f 

where R is the optical rotation per unit length. We measured the 

(5-1) 

optical activity at the He~Ne laser frequency (6328 A.) and we assume 

that the dispersion of a. is negligible. For all sample mixtures a. 

showed a temperature dependence, decreasing with increasing 

temperature. 37 •38 In Table 5-l we list our measured valves of a. at 

the temperatures corresponding to the pitches for phase matching for the 

various sample mixtures. The optical activity of the O% cholesteryl 

chloride mixture was unobservably small at A = 6328 A and p = 0.24 ~ 
0 . 

(the phase-matched pitch observed with this mixture). Eq. (3-28) 

shows that optical rotation decreases sharply with decreasing p, 

and should be only- 0.5 degree/25 ~under the above conditions. 

However to within our experimental uncertainty the a.(T) curves for all 

the other mixtures in this three-component series were identical over 

the regions of interest for phase-matched third-harmonic generation. 

Hence we assumed the value of a. for the O% cholesteryl chloride 

mixture to be that of the other mixtures at equivalent temperatures, 

namely-0.027. 

From the values of E and a in Table 5-l and using Eqs. (4~11), 

(3-iO), and (3-12) through (3-15), one can calculate the predicted 
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pitches for phase matching with the various mode combinations. These 

pitches are given in Table 5-2. 

We used three experimental techniques for measuring the actual 

pitche~ of our samples. For-pitches significantly greater than optical 

wavelengths two techniques are convenient. Direct observation in a 

polarizing microscope can reveal the periodic structure as alternating ~ 

light and dark bands, 39 whose periodicity is p/2. This method requires 

knowing the orientation of the helical axis in the region being 

examined, and the axis must have a component perpendicular to the 

microscope axis. A generally more convenient technique is the diffrac~ 

tion method. 26 If a sample has a uniformly oriented helical-axis 

·aligned parallel to the glass windows, a laser beam propagating normal 

to the s~e and polarized normal to the helical axis will generate 

diffraction spots at angles 6 (with respect to the sample normal or 

beam direction) satisfying 

N).. 

Sin 6 = p/~ (5-2) 

where N is an integer and k = 2'11' !!!. • If the laser is polarized o· c 

parallel to the helical axis no diffraction pattern. appears; in this · 

case the dielectric response of the medium is not periodic since the 

polarization is perpendicular to the long axis of all molecules in 

the structure. If the sample region probed by the beam has sufficient-

ly random orientation of the helical axis, diffraction will yield 

arcs or rings satisfying the same relation (Eq. (5-2)). 
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For pitches in the vicinity of the visible spectrum the pitch 

may be deduced from measurements of reflectivity or transmisivity as 

a function of wavelength. At the center of the reflection band,!..' 

·::-r p = 'A/lEW . Thus measurement of- the center of the reflection 

1, 

. be.nd and e:('A) gives'the pitch. The center of the reflection band is 

~st easily measured in thin (~ 10 ~) samples, in which the band has 

a true peak; in thickerJ·samples the finite region of total reflectivity 

cf mode 1 makes the center of the band more difficult to determine. 

In the regions where these three techniques for measuring pitch 

overlap they are in good agreement. 

In Table 5~2 we list the temperatures at which the various 

experimental mixtures have the pitches predicted for phase-matching, 

together with the accumulated. uncertainty in these predictions. Most 

·:lf the uncertainty arises from the measurement of dw), which enters 

the theoretical expressions both explicitly and indirectly through 

our experimental determinations of a and p. Table 5-2 also lists the 

rate of change of pitch with temperature in the same regions. 

Each of the listed phase-matched mode combinations may of course 

be observed in cholesteric media of either sense - right- or left-handed. 

The orily difference is the senses of polarization of the normal modes 

and hence the senses of incident-light polarization necessary to 

exc.i te efficiently the desired modes. The sense of the twist of a 

cholesteric material may be determined either from the direction of 

its optical rotation (see Eq. (3-28) and Fig. 3-4) or from the 

polarization of the reflected light at !..' ·= l. In the reflection 

band one circularly polarized component of the incident light is 

strongly reflected and the other is virtually all transmitted (Figs. 3-5 
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and 3-6). The sense of the twist is the same as the sense of polari­

zation29 of the strongly reflected light at !..' = l. The cholesteric 

mixture we used to observe the fourth mode combination had a left-

handed structure at the lower temperature and a right-handed structure 

at the higher temperature (Table 5-l). All the other mixtures had 

left-handed structures, as indicated by the negative signs of the 

predicted pitches in Table 5-2. 

We used a mode-locked Nd:glass laser as the fUndamental pump 

field. A typical pulse train lasted about 200 ns with the individual 

pulses separated by about 7 ns. The total energy in each train was 

about 0.03 joule and the typical average individual pulse· width was 

40 41 
about 6 ps (as measured by two-photon fluoresence ' and third 

h . t• 33) armon1c genera 10n • The beam diameter was - 2 mm. 

The experimental arrangement for measuring the phase-matched 

third-harmonic involving a single propagation direction for the " 

fundamental waves (mode combinations #'s 4, 10 and 14 in Table 5-l) is 

shown in Fig. 5-2. The laser beam was always circularly polarized, 

first, because the two circular polarizations are nearly the optimum 

polarizations for exciting the two normal modes (see Fig. 3-5) in all 

the samples of interest to us, and second because this eliminated the 

background third harmonic radiation generated from the cell windows, 

optical filters and the water bath, since no third harmonic can be 

. "db 42 generated in an isotropic medium by a circularly polar1ze eam. 

The.third-harmonic blocking filters are necessary to eliminate the 

third harmonic generated in the laser cavity. The samples were 

immersed in a water bath with the temperature controlled to within 

± 0.02°C. Typically the temperature was swept very slowly (0.1 to 
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0.01 °C/min) through the region of a predicted third-harmonic peak, 

while the third harmonic .signal was measured every 2 or 3 minutes 

A 1P21 photomultiplier tube detected the signal, which was normalized c. 

against the reference signal of third harmonic generated in a phase­

!D!I.tched solution of fuchsin basic dye dissolved in hexafluoracetone 

sesquibydrate. 2 The response time of the whole detection system was 

sufficiently long that individual pulses were averaged out. The signal 

was measured as the area under the oscilloscope trace for a whole 

pulse train. 

To observe the mode combination·.2;2,2 + 2 (#4 in Table·5..:.2) -:t.he 

detection apparatus was placed so as to intercept the beam propagating 

forwards out of the sample. The experimental results of variation of 

third-harmonic intensity around the phase-matching temperatures are 

shown in Fig. 5-3. The two peaks at p < 0 (T < 51. 9°C )_and at p > 0 

(T > 51.9°C) correspond respectively to fundamental pump waves being 

right- and left-circularly' polarized, as predicted ey the theory. 

The peaks appear at temperatures within 0.1°C of the predicted phase­

matching temperatures. The theoretical phase-matching curve is'also 

shown in the_ figure_ for comparison with the experimental data. The 

experimental peaks are definitely broader with no clear fine structure 

at the wings. This is probably due to the slight variation of the heli­

cal pitch in the sample, EXpecially near the boundary surfaces. Since 
- NL . 

the molecular structures 'for p >- 0 and p < 0, are diff-erent _and X could 
"" 

vary accordingly, we would not expect the two phase-matching peaks to 

be of the same height. Experimentally, we found that the two peaks 

were different in height, but their difference was within_the 20% 

experimental accuracy. 
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The third-harmonic-output was found to be elliptically polarized 

with the ratio of the two circularly polarized components being 5 ± 1. 

. . . 161 [ ('' -1/2) (?AJ) (?AJ} ]/[ ('' - 1/2) The theoret~cal rat~o, g~ven by , A -E f+ -m+ - A + E 

f+(3W)_m+(?AJ)]f 2 , is 4.8. Comparison of the phase-matched third­

harmonic signals from the liquid crystal and from the fuchsin basic 

dye solution yields I~)/ I~)~ 0.1 for this mode combination. We 

also.measured the phase-matched third-harmonic generation from samples 

with different thickness. The third-harmonic intensities were indeed 

roughly proportional to the square of the sample thickness. 

To observe the mode combinations 1,1,1 ~I and l,l,l ~? (H's:lO 
\ 

ana 14 in Table 5-2) a gla-ss-slide beam splitter was placed on the 

~aser side of the sample to couple out some of the backward third-

harmonic signal. Tbe detector was moved<~to intercept this beam and 

a_ focusing lens was inserted, all as indicated in Fig. 5-2. The laser 

beam was left-circularly polarized to feed efficiently into mode 1 

in these left-handed cholesteric structures. The experimental results 

of the variation of the third-harmonic power around the predicted 

phase-matching temperatures are shown in Figs. 5-4 and 5-5. There ":.--

indeed exist peaks at the predicted phase-matching temperatures. 

However, the widths of the peaks are several times broader than those 

of the theoretical phase-matching curves for a monochromatic input 

laser beam. This broadening is due mainly to the large spectral 

content of the laser, as will be discussed later. As a further 

confirmation of the theoretical predictions, we found in the s~e tem­

perature ranges no phase-matching peak £or third-harmonic generation in 

the forward directipn and no peak for backward third-harmonic generation 

with the fundamental right-circularly polarized. We also found that 
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~he phase-matched third~harmonic output was nearly left-(right-) 

circularly polarized for mode combination #10 (#14), as predicted by 

the theory. The intensities of the third harmonic generated by these 

mode combinations compared to that of mode combination #4 are I(3w)(#l0)/ 

'" I(3w}(#4) '- 10-4 and I(3w)(#l4)/I(3w)(l4)- 2 x-10-::14 (co:trected·for :_ 

... 

the different experimentai arrangements), 

The remaining mode combinations in Table 5-2 require the 

simultaneous presence of fundamental waves propagating in opposite 

directions along the helical axis. This was accomplished in two ways. 

One method was to construct the sample cell with a front-surface 

mirror in contact with the back of the sample. The mirror reflects 

each mode-locked pico-second pulse back on itself in·the sample. 

Alternatively, we put a movable reflector an optical distance beyond 

the sample equal to the optical length of the laser cavity (Fig 5-6). 

This mirror directs each pico-second pulse back through the sample 

where it meets the next pulse in the mode-locked train passing through 

in the forward direction. A variable-retardation plate (stressed 

fused silica) in.the region beyond the sample can then be used to 

control the polarization of the returning beam. 

We observed mode combination #5(2,2,1 +1)in a cell with a-·--

reflecting back. Normally incident right-circularly polarized 

fUndamental fed efficiently into mode #2. Upon reflection off of 

the mirror in contact with the back of the sample, the sense of circular 

polarization is reversed, becoming left h~nded; hence mode 1 propagating 

backwards is excited. The third harmonic generated in the forward 

direction is also reflected by the· same mirror and emerges. from the 

sample propagating backwards~ Again a glass-slide beam splitter 
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couples out sOllie of the. third-harmonic signal. The experimental 

results·(~. 5-'7)·.show a-peak at'the-predicted temperature~ ~e·· 

width is again d~·primarily to the Spectral content of the laser: 

Relative intensity measurements give I(3w)(#5)/I(3w)(#4)- 4x 10-4 • 

The same experimental .arrangement gave the results shown in 

Fig. 5-8 for the 22% cholesteryl chloride mixture.arouhd the predicted 

phase-matching temperatures of mode combinations #'s 11, 12 and 13. 

All three of these mode combinations are predicted to be phase matched 

at the same pitch (352 nm). However the peak in Fig. 5-8 is due only to 

mode combination: #i3; (1-;1',2 '+-. 2)~because ·of the ·particUlar .. fUndamental 

Vai:e polarizations in the medium resulting from circularly polarized 

incident laser light. Relative intensity measurements give I(3w)(# 13)/ 

I(3w)(#4)- 10-2 , and again the width of the peak is due to the broad 

spectral content of the laser. 

This same cb,olesteric mixture ( 22% cholesteryl chloride) was 

also studied in an ordinary transparent cell using the experimental 

arrangement shown in Fig 5-6. With no retardation plate in front 

of the mirror, we have the same relation between the two fundamentai 

beam polarizations as in the previous case with the mirror in contact 

with.the sample. A left-circularly polarized incident laser beam 

excites mode 1. Upon reflection at the mirror the polarization is 

reversed to right circular, which then on passing back through the 

sample will excite mode 2 propagating backwards, i.e., mode 2. Hence 

only mode combination # 13 can generate third harmonic and the signal 

should emerge propaga1;ing backwards and be right-circularly polarized. 

Experimentally we found the ratio of right- to left-circularly 
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:;:clarized third harmonic -propagating backwards to be - 10/1 and found 

no third harmonic generated in the forward direction. We also verified 

the necessity for the simultaneous presence of laser light propagating 

both forwards and backwards in order to generate phase-matched third 

harmonic via .this mode combination (# 13). The width of the mode-

:ocked laser pulses was- 6 ps, corresponding to- 1 mm inside the 

i!!&!Dple. By translating the movable mirror over distances of - 1 mm 

forward or backward from the position yielding the maximum signal, we 

essentially eliminated the third~harmonic signal, thus confirming the 

requirement of opposed beams. Conv.ersely, such observa~ions are in 

fact a measure of the pulse width (Section VI) • 

Inserting a .1/4 A retardation plate (at 1.06 ~) in front of 

the mirror (Fig. 5-6) results in the backward propagating :fundamental 

W'a.Ve in ,the sample having the same sense of circular polarization as 

the forward wave. This should excite only mode combination # 11, and 

indeed, we found the third harmonic to be nearly left-circularly 

polarized in this case, as predicted by the theory. Relative 

measurements give I(3W)(# ll)/I(3W)(#4)- 3 x 10-3 • 

Excitation of mode combination # 12 requires both left and right 

circularly polarized laser light propagating iri one direction. 
. . 

Experimentally this is easily achieved by using linearly polarized 

incident light. But then a relatively large background signal is 

.created by third harmonic generation in the cell windows, ~water ·bath 

and other optical components. This problem plus a weak signal to 

begin with made it impossible for us to make any good measirements of 

mode combination # 12. (The expected (see Section VI) intensity of 

this peak compared to that from mode combination # 4 is - 3 x 10-
3

; 
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the relative background signal with linearly polarized laser light is 

- 2 X 10-2 .) 

The final group of mode combinations, #'s 6, 7, 8 and 9 also 

have very closely grouped pitches for phase matching. With the 40% 

cholesteryl chloride mixture in a cell with a reflecting back we r 

obtained the results shown in Fig. 5-9. The small peak at 31.2°C 

comes from mode combination #6, as predicted by -the theory. The other 

three mode combinations are predicted to be phase matched all at 

essentially the same temperature, 30.1°C, and there is a strong peak 

at this temperature. However, similarly to previously discussed 

cases, the fundamental_ wave with right-circular polarization in this 

experimental arrangement selectively excites mode combination # 9. 

Relative intensity measurements give I(3W) (#9)/I(3W) (#4) - 3 x 10-1 • 

We studied this same cholesteric mixture in an ordinary 

. transparent cell in the experimental arrangement shown in Fig. 5-6. 

Again with no retardation plate in front of the mirror, only mode 

combination #9 was excited. Experimentally the third harmonic signal 

was propagating in the same direction as the right-circularly-polarized 

fundamental beam and had a 30/1 ratio of right- to left-circularly 

polarized components. Inserting a. quarter-wave plate for A = 1.06 ]Jill 

in·front of the mirror and using right-circularly-polarized incident 

laser light should exclusively excite mode combination #8. 

Experimentally we found only 1/3 of the third harmonic to have the 

appropriate polarization (left-circular) for mode 1. Presumably our 

fundamental polarizations were not perfect and a small amount of 

third harmonic from mode combination #9 obscured signal from #8. We 

estimate I(3W)(#8)/I(3W)(#4) $ 2 x 10-2 • No observations of mode 

combination #7 were made, again because of the large ba.ckgro~d third 
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harmonic resulting from the necessity of using linearly polarized 

fUndamental light to observe this mode combination. 

In principle, second-harmonic generation can also be phase 

~tched in a cholesteric liquid crystal. The mode combination 2, 2 + 2 

is phase-matched for second-harmonic generation for p ~ 28 .~ in the 

same mixture we used to observe phase-matched third-harmonic generation 

via mode combination 2, 2, 2 + 2 (#4). However we observed no peak 

in second harmonic generation around this pitch. This is presumably 

because the overall molecular arrangement in planes perpendicular to 

the helical axis has an inversion symmetry. Durand and Lee11 and 

. 12 13 h . . ,Goldberg and Schnur ' have also found the absence of second- armon~c 

generation in liquid crystals and have come to the same conclusion. 
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Table 5-l. Empirical data on cholesteric mixtures used to observe 

phase-matched third-harmonic generation. The bars over the mode 

numbers designate the same mode propagating in the opposite (-z) 

direction (i.e., with a negative pointing vector). 
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Table 5.-2 

% .Cholesteryl Predicted Predicted Observed Relative 

Mode Chloride Pitch For ~ Temperature Temperature Observed Peak dT 
Combination In Sample Phase For Phase For Phase Third,..Harmonic 

Mixture (a) Matching (:) Matchipg ~0c) Matching ~0c) Intensity 

w 3W --... -- {- 17.3 ± 1 )Jill 6400 49.4 ± 0.2 49.3 1 4. 2,2,2 + 2 (a) 
++17 .5 :t 1 )Jill 6400 54.2 ± 0.2 54,(1 i 

5. 2,2,1 + 1 48 -1377 ± 10 nm 39 33.3 ± 0.3 33.6 4 X 10-4 

6; 1,1,2 +I -700 ± 5 nm 8.5 31.1 ± 0.6 31.2 .;;;; 3 X 10-2 

7. 1,1,2 + 1 40 -689 ± 5 ;tJm 8.5 30.1 ± 0.6 I 
-'I 

8. 2,2,2 + 1 .,.;; 1 X 10-2 CX> 
-689 ± 5 nm 8.5 ' 30.1 ± 0.6 I 

9. 2,2,1 + 2 -687 ± 5 nm 8.5 30.0 ± 0.6 29.9 3 X 10-l 

10. 1,1,1 + I 30 ,...472 .± 3 nm 3;6' 38.2 ± 1 38.1 :)_ X 10-4 

11. 1,=,1 ~ = l -352 ± 2 nm 1.3: '.''~2 ± 2 3 X 10-3 

12. 2,2,1 + 1 22 -352 ± 2 nm 1.3~ 32 ± 2 

13. 1,1,2 + 2 -352 ± 2 nm 1.3 32% 2 30.5 1 X 10-2 

14. 1,1,1 + 2 0 -237 ± 2 nm 0.7 38 ± 3 29.5 2 X 10 -4 

--
(a) See notes for Table 5-1. 
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Chapter V Figure Captions 

Fig. 5-l. Center of the reflection band at two temperatures as a 

function of the percentage of cholesteryl chloride in a mixture 

containing equal amounts of cholesteryl oleyl carbonate and 

cholesteryl nonanoate (all. by weight) • The reflected color 

is expressed as the inverpe of its wavelength in air, which is 

equal to (p IE )-l where p is the pitch of the cholesteric 

structure and£ is its average dielectric constant (Eq. (3-14)) 

at the frequency of the reflected light. A negative (positive) 

sign indicates a Ieft-(right-). handed cholesteric structure. 

Mixtures containing > 80% cholesteryl cbmoride are relatively 

unstable at temperatures lower than the true solid-crystal to 

liquid-crystal transition temperature (~ 95°C for pure cholesteryl 

chloride). They are "super-cooled" liquid-crystal mixtures and 

are unstable to tbe onset of solid crystallization; when freshly 

prepared and cooled from the liquid phase to around .room 

temperature, these :!ligh cholesteryl-cPloride-content liquid!·c-: ' 

crystal structures".last on the orde!' of minutes 'befcre·lll8ittWgi· 

the,: transi tiens to the ordinary solid crystal phase. 

Fig. 5-2. Experimental arrangement for observing third-harmonic 

generation in temperature-tuned cholesteric liquid crystals. 

Numbers refer to Corning and Scholt glass filters. The main 

laser beam passes through a linear polarizer (Lp), a glass-slide 

beam splitter (Gs) and a 1/4 wave plate <t A) for 1.06 ~. 

Glass filters then absorb any third harmonic generated up to 

this point before the beam~enters the liquid crystal sample (LQ) 

immersed in a temperature-controlled water bath (WB). An aqueous 
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solution of CuS04 then filters out the laser light before the 

third-harmonic signal passes through an interference filter {IF) 

and the detector, a lp21 photomultiplier tube. The reference 

arm (for normalization) generates third harmonic in a cell con­

taining a solution of fuchsin basic (FB) in hexafluroacetone 

sesquihydrate. Laser attenuation filters {LF) and a 15 em 

focal-length lens (L) coul~ be inserted. The second glass-slide 

beam splitter and alternate detector position were used for 

observing third-harmonic signal generated in the backward 

direction. 

Fig. 5-3. Normalized third-harmonic intensity versus temperature 

near the phase-matching temperatures for the mixture of 1.75: 1.00 

by weight of cholesteryl chloride and cholesteryl ~istate, in 

a cell 130 ~ thick. The peak at the lower temperature 

(corresponding to left helical structure) is generated by right­

circularly polarized fundamental waves and the one at the higher 

temperature by left-circularly polarized fundamental waves. The 

solid line is the theor.etical phase:..matching curve and the dots 

are experimental data points. The uncertainty in the experimen-

tal third-harmonic intensity is about 20%. 

Fig. 5-4. Normalized third-harmonic power generated in the backward 

direction as a function of temperature in a mixture of 35:35:30 

by weight of cholesteryl oleyl carbonate, cholesteryl nonanoate, 

and cholesteryl chloride, in a cell 130 ~thick. The phase­

matching peak appears at the predicted temperature of 38.2 ± 1°C 

for mode combination #10. The circles are the experimental 

data and have about a 20% uncertainty. The solid line is a 
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theoretical phase-matching curve, assuming the laser pulses had 

a spectral content of 150 A. 

Fig. 5-5. Normalized third-harmonic power generated in ·the backward 

direction for a mixture of 50:50 by weight of cholesteryl oleyl 

carbonate and cholesteryl nonanoate, in a cell 130~·inn thick. 

The peak occurs within the uncertainty of the predicted tempera­

ture ·(38 ± 3°C) for mode combination #14. The circles are 

experimental points with an uncertainty of 20%. The curve is a 

smooth fit to the data. 

Fig. 5-6. EXperimental arrangement for observing phase-matched third­

matched third-harmonic generation in liquid ccystals requiring 

the simultaneous presenseof laser light propagating both for­

wards and backwards. The two optical path lengths marked "L" 

in the figure must be equal to ensure the coincidence of the 

pico-second mode-locked pulses in the sample, since their 

separation as they come out of the laser is the round-trip 

transit-time in the laser cavity. The unlabled optical components 

are the same as in Fig. 5-2. The glass-slide beam splitters (GS) 

. for coupling out the third-harmonic signal were oriented as 

close (- 10°) as practicable to perpendicular to the laser beam 

so as to minimize the change of polarization of the reflected 

third-harmonic signal as well as the transmitted fundamental 

beams. An adjustable retardation plate (RP) stands in front of 

a movable mirror MM. The reference third-harmonic apparatus 

(REF) is the same as in Fig. 5-2. 

Fig. 5-7. Normalized third-harmonic power around the predicted 

phase~tching temperature for mode combination #5 (33.3 ± 0.3°C), 
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for a mixture of 26:26:48 by weight of cholesteryl oleyl carbonate, 

·cholesteryl nonanoate and cholesteryl chloride, in a cell 130 ~ 

thick with a reflecting back. The circles are experimental 

points with an uncertainty of 20%. The curve is a smooth fit 

to the data. 

Fig. 5-8. Normalized third-harmonic power around the predicted phase­

matching temperature for mode combinations #' s 11, 12 and 13, 

for a mixture of 39:39:22 by weight of cholesteryl oleyl carbonate, 

cholesteryl nonanoate and cholesteryl chloride, in a cell 130 ~ 

thick with a reflecting back. The circles are experimental 

points with an .uncertainty of about 20%. The curved is a smooth 

fit to the data. 

Fig. 5-9. Normalized third-harmonic power around the predicted phase­

inatching temperatures (32±2°C) for. mode combinations #'•s· 6~ 7, 8 

and 9, for a mixture of 30: 30·:40~;by weight· of cholesterl'l olt;!yl 

carbonate; cholesteryl nonanoate.,~ an.d chblesteryl chloride inica 

cell 130·:lJill thick with a reflecting baCk.• The circles-ewe .experi­

mentil.l points::-with an uncertainty. of 20%. · The· curve is. anSitfaoth 

fit to thi:r data. 
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VI. DISCUSSION AND CONCLUSIONS 

In all cases, the widths of our observed phase-matching peaks 

(as a function of temperature or pitch) are greater .than predicted' · 

theoretically for a monochromatic laser and a perfect liquid-crystal 

sample. If the laser beam were monochromatic and the liquid crystal 

were as idealized in our theory, the widths of the phase-matching 

curves would depend on the rate of change of the index mismatch Ak 

(Eq. (4-11)) with pitch and the thickness of the sample. The full 

width at half maximum would be given by 

(t.p)l 
1T 

L d(Ak) 
dp 

(6-1) 

where L is the sample thickness. The value of i.e. (~~Jifp t'cii' ·each of 

the carefully observed mode combinations is given in Table 6-1~ 

But two other effects in fact dominate the observed widths. 

Many liquid-crystalline molecules exhibit strong surface effects; in 

many materials the initial orientation of the boundary layer of 

molecules appears to remain unchanged despite changes in temperature 

· · 1 a·· h 43 I . 1 f h 1 t · t ··al even l.nc u l.ng p ase changes. n a samp e o c o e~ erl.C ma erl. , 

the molecular alignment at both interfaces may therefore be fixed. 

These constraints would· not .allow a per feet helical ·structure of arbi..;. · 1 •1 

trary pitch to fit between the two inter.faces. ~ ~e-woUld in general 

be a distortion of -the 'helical structure amounting to ...; p/2 over the 

sample thickness ·(L). This implies a pitch distribution with a width 
1 2 

(t.p) 2 - 2 f- . The values of (t.p)J~ at the phase-matching pitches 

are given in Table 6-1. This effect clearly increases with pitch, 

and apparently is the dominant contribution in our observations of .. 
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the third-harmonic peak for p- 17 ~ (mode combination #4). For this 

peak, (~p)2/(dp/dt) - 0.2°C, and (~p)1/(dp/dT) ~ O.l°C. Our observed 

full width at half maximum is - 0.3°C. 

For all the other phase-matched mode combinations we observed, 

the dominant broadening effect comes from the-large spectral content. 

of the mode-locked laser. The different frequencies within the laser's 

spectral width are phase matched for third-harmonic generation at 

different pitches. Thus as one varies the pitch (by changing the 

temperature) one brings different frequencies (or, more generally, 

frequency combinations) into a phase~matched condition for third 

harmonic (or, more generally, sum frequency) generation. By assuming 

a spectral content of the mode-locked laser pulses of about 150 A 

(full width at half maximum of a Gaussian pulse) due mainly to frequency 

chirping, we obtain a contribution to the widths (~p) 3/p = 7.5 x 10-3 

at any pitch and for all mode combinations, as indicated in Table !5-l. 

This is clearly the dominant contribution for all the other observed 

peaks and gives good agreement with the observed widths (Table 6-1). 

Observations of our samples under a polarizing microscope and of 

the angular distribution of reflected light from a resonant (>.' = 1) 

sample indicate the alignment of the helical axis is not uniform •. 

However this does not affect the observed widths of our third-harmonic 

peaks. Phase matching is' :achieved in cholesteric' liquid C'cyst'als 

through the contribution of one or more units.of lattice momentum to 

the required overall momentum balance. The lattice momentum is always 

parallel to the helical axis. Our third harmonic detector was always 

positioned so as only to admit signal - co-linear with the fundamental 

beam( e)· The momentum mis-mat.ch among co-linear optical fields is 
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always co-linear with their propagation direction and hence it cannot 

be compensated by the lattice momentum in a mis-aligned cholesteric 

structure. Phase matching~ be achieved for off-axis beams, but 

only if they are non-co-linear in such a way as to conserve their 

components of momentum perpendicular to the helical axis, since the 

medium's contribution .can only be parallel to the axis. 

In our experimental arrangement the third-harmonic detector had 

an acceptance angle of -3°; consequently, consideration or the vectors 

in phase matching indicates we could observe phase-matched harmonic-

generated from a -3° range of domain alignments. Phase-matching 

occurs in a domain tipped- 1.5° at a pitch difference ~p/p -3 x 10-
4 

compared to an aligned domain. This is always small compared to other 

effects as can be seen in Table 6~1 and thus does not contribute to 

our observed widths. (The laser beam convergence was $ 1° when focused, 

and so did not contribute.) There is a loss of third-harmonic power 

due to the fact that only the aligned (± 1.5°) regions contribute. 

Compared to a perfect sample, this loss is roughly proportional to the 

amoun~ of misaligned (< 1.5°) sample. Rough ~surements suggest an 

alignment distribution' of' -.,j; 6°. Thus our numerical •.e'atimate (belo.w) 
. NL 

of the C 's- .compared ·to. X~. : may be low by a factor of - 2. . u.ye 

From our measUrements of the relative intensities of phase-

matched third-harmonic generation by all these various mode combinations 

we are able to deduce some information about the relative values of 

the non-linear-susceptibility elements. Equations (4-12a) and (4-12b), 

and Table 4-2 give the theoretical relations between measured third-

t'. •" 

.L.i.' 

. i, ; "··~ • . ~ 

I:. • 



-95-

harmonic intensities and the non-linear tensor element c11 , c12 , 

c21 and c22 • Making the assumption that the non-linear tensor elements. 

are the same for all our different samples, we find that computer 

calculations using our relative intensity measurements of mode 

combinations #'s 4, 5, 9. lO,ciLB and 14 corrected: for their different 

widths indicate that all four C 's are nearly equal; their values 

differ by from- 3% to - 10%, but the data do not justify more specific 

conclusions. Uncertainties in the experimental values of the 

parameters m', ·f and q in the theoretical expressions are important in 

some reg~ons of pitch, but the dominant uncertainty is in our 

relative intensity measurements. Because of the inherently: .. ·dit'f'e'reat:: 

beam geometries for the various mode combinations, the experimental 

arrangement could not be the same for all observations. In additdon, 

the four orders of magnitude range in the relative third-harmonic 

intensities required different amounts of focusing of the laser 

beam(s) and attenuation of both the laser and the third harmonic. 

Corrections for all these different situations introduce_uncertainties. 

Different experimental runs also yielded slightly different results, 

presumably due to differences ·in sample quality. Taken together, all 

these factors result in an uncertainty of about a factor of 2 in our 

relative intensity figures. As a consequence we can only conclude 

t}lat ell, cl2' c21 and c22 are equal to within :5 10% and unequal by 

by ~ 3%. Comparison with the third harmonic intensity generated in a 

phase-ma-tched solution (45~gmfditer) of fuchdn dye;·tn bexafluoracetone 

sesquihydrate
2 

gives that the magnitude of the C's is - 0.2 X~e· 

-96-

In the above calculation, the experimental result for mode 

combination #6 was not used. Assuming the c •s are equal, we compute 

that the expected peak from mode combination #6 should be four times 

greater than that from mode combination #9. Our· experimental data 

(Fig. 5-9) indicate instead that combination #&is only 1/10 as intense 

as #9, or - 40 times weaker than predicted. In some experimental :irons 

no peak at all was yisible at this pitch. The discrepancy between the 

observations and the prediction is due to strong reflection of left-

circularly polarized laser light. The central laser wavelength, 

A
0 

= 1.06 lJm, is centered in the reflection band for p = 0. 72 lJI!l. 

Mode combination #6 is phase matched for p = 0.70 lJm. The theoretical 

normal incidence reflectivity at 1.06 lJm of a semi-infinite. sample is 

- 25%. Actual·. measurements cif the ·transmission ii:l our tuned.:samp.loee in.-

di t
. . ./. -1 . 

ca es that··:::::: 1.0 ; "of tthe-- ·left'-circularly-polarized light is ti'&DBB!itted. 

In our experiments'we used right-circularly-polarized incident light 

which was virtually all transmitted, but .;;; 10-l of the reflected 

backward propag;ting left-c i:rcularly polarized light· was transmitted~­

Since mode .combination #6 involves two left-circular~-polariz~· 

fields (and one right), this effect would decrease the observed third­

harmonic intensity by a factor of :5 10-2 if the Ieft~eircularly­

polarized beam were weaker by 10-l throughout the sample. The 

decrease would be somewba:t,less ·if the ;intensity ·of the left-ctrh-Ulv~~-­

polarized beam decreases gradually as it penetrates the sample,' due 
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to effects not considered in our theoretical analysis (e.g., scattering 

losse~ due to imperfect cholesteric. structure). 

The analagous situation of high reflectivity at the third 

harmonic does not affect our observations. Although mode combisation 

114 is phase-matched for a pitch which puts the third harmonic inside 

its reflection band, there are no observable consequences since the 

harmonic is right-circularly polarized and therefore not reflected. 

We note in summary that the assumption that the four non-linear 

tensor elements are the same for all our experimental samples is 

consistent (to within 10%) of our experimental results. 

We also observed one of the phase-matched third-harmonic peaks in 

an entirely different kind of cholesteric-liquid-crystalline material. 

All our previously discussed observat'dlons were made using mixtures of 

materials all of which were chemical derivatives of the cholesterol 

molecule. This choice was arbitrary in some respects; any material 

forming a cholesteric structure with appropriate pitch and dielectric 

constants _will generate phase-matched third harmonic. In particular, 

poly-Y•benzyl-L-glutamate (PBLG), a synthetic ex-helix protein, 

dissolved in dioxane is.cholesteric for concentrations from- 0.1 8m 

to - 0. 5 gm of PBLG per gm of sol vent •19 Tlie dielectric constants 

are comparable t6 those of our cholesterol-derived materials and 

hence the pitches for phase-matching are approximately the same. A 

pitch of- 17 ~is realizable and hence phase-matched third-harmonic 

generation via mode combiaation #4 should be possible. Although the 

pitch of PBLG in dioxane has a temperature dependence, we did not 

use it to tune the pitch because of the slow response time of PBLG 

samples under changing external conditd!ons. (It takes wet,ks -for a 
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freshly prepared sample to form a moderately uniform cholesteric 

structure; samples prepared from derivatives of cholesterol are usable 

within seconds.) Therefore we used the concentration dependence of 

pitch, preparing many samples with different concentrations • .- We observec 

a peak in third-harmonic intemlity around· p = 17 ~with theolas~· 

polarized to feed efficiently into mode #2, and no Peak for the 

opposite laser polarization. There was a moderate amount of scatter 

in the data, presumably due to the use of many different samples. 

We expended a good deal of effort in trying to observe phase-

matched third-harmonic generation :from mode combination #3 (Table 4-1). 

Unlike mode combinations #5 - #14, #3 is not necessarily phase-::c:~ ,.,.,"* 

matchable at any pitch in cholesteric materials; its phase-matchability 

depends critically on its parameters £ and ex. We believe this mode 

combination is phase matchable in the same cholesteric mixture we used 

to observed combination #4 but at a pitch ~ 50 ~. Our. experimental 

efferts were largely frustrat~d by the poor quality of our liquid 

crystal samples when the pitch became this large; the samples no 

longer appeared clear. others have encountered similar difficulties 

. . 38 44 when the pitch approaches the sample th1ckness. • We did observe 

a slight peak at the expected pitch but could not verify the expected 

dependence of the peak intensity of sample thickness (square law) due 

perhaps, to the large light scattering in oursamples. 

Recently, measurements of ultrashort pulses have attracted 

much attention. 40•45- 47 In all cases, except the case of Treacy using 

h · t hn" 46 th · t · 1 t ·o t e compress1on ec 1que, e exper1men s measure a corre a 1 n 

function which is intl'insically symmetric, so that only information 

about the .puJ.se width can be obtained, and not information about the 



-99-

possible assymmetry of the pulse shape. Techniques using second-harmonic 

generation or two-photon fluoresence measure the second order auto­

correlation function, G( 2 )(T) = J 
00 

jE(t}fjE(t+T)j 2 d'j;, which is inher­

ently symmetric (G(2 )(T) = G( 2 )(;')). Phase-matched third-harmonic gen­

eration has been used for pulse-width measurements,47 but under circum-

stances in which only· a symmetrized form of the third-order auto-

correlation function could be observed. Here, in principle, the. tech-

nique can provide information about pulse asymmetry as well, if phase 

matching requires two fundamental photons in one mode and one in the 

other mode, since t.hen the correlation function G( 3 )(T) = 

f"" jE(t)j
4

jE(t+T)j 2 dt * G( 3 )(-T). 48 This is indeed the case for~-. 
-"" 

:f'ourteen phase matchable mode combinations except #'s 1/4, 10 and 14. 

To demonstrate the technique, we split the laser beam into two beams 

with proper polarizations for excitiui mode combination #9. The two 

beams, after traveling about the same optical path, met each other at t 

the sample from opposite sides. A variable optical delay in one arm 

allowed continuous variation of the relative arrival time T of the two 

pulses. Our results are shown in Fig. 6-1. The curve shows an average 

pulse width of about 7.5 psec and a slight pulse asymmetry in the sense 

that the trailing edge of the pulse was steeper than the leading edge. 

This agre~s qualitatively with the result of Treacy. 45 Assuming a hypo-

thetical asymmetric pulse shape constructed from two half-gaussians 

joined at their maxima, we find a satisfactory fit to our data with the 

ratio of the widths of the two half-gaussians being ;;;. 4. Although third 

order correlation functions give qualitative data about asymmetry, they 

are not a sensitive quantitative measure of pulse shape. Some prior 

knowledge of pulse shape and very precise data are necessary to draw 

accurate conclusions. The resolution of our data was limited by the 

sample thickness-which was 130 ~. For better resolution and signal-to-
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noise ratio, we should probably use crystals such as calcite49 as the 

nonlinear .medium in such measurements, where phase-matched third-harmonic 

generation can be achieved with two fundamental photons in the ordinary 

mode and one in the extraordinary·mode. Since in calcite phase-matching 

is achieved with all fields propagating in the same direction, the reso~ 

lution is not limited to the sample thickness and one can greatly in-

crease the signal without sacrificing resoluti.on. Ideally one might be 

able to obtain· informatiQUJabout individual pulses instead of averages 

over all the pulses in many trains. 

Our maximum observed conversion of energy from the laser fre-
1 

quency to the third-harmonic was small. The most efficient mode 

combination in this respect was #4. Without focusing the~ 2 mm 

diameter laser beam, our 130 ~ thick samples converted - lo-
14 

of 

the laser energy to its third harm.onic. By focusing the laser beam 

down to - 0.1 mm diameter, one might increase the conversion by a 

factor of- 5 x 102 • We did not observe any damage threshold; if the 

laser intensity.did damage our samples, they recovered in the time 

between laser shots (- 2 min.). We believe thicker samples are possible, 

but .probably not .without external electric or magnetic fields to 

maintain unffa:Jrm orientation of the symmetry axis throughout the 

sample. 20- 26 •5° If the square-law dependence of third .harmonic 

intensity on sample thickness holds up to centimeters, a 1 em thick 

sample would increase the conversion efficiency by another factor of 

- 6 x 103 : A laser with a peak power of - 108 watts would then 

generate a peak third-harmonic power of- 3 watts. Even this may be 

optimistic. It could not be achieved with a typical mode-looked Md-

glass laser beeause only part of its broad spectral width (- 150 A) 

can be phase~tched at a given pitch in such thick samples. In 

~ 

·• 

) 
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addition even if an aligned 1 em thick sample were achieved, 

~fections could lead:oto .dephasing·and/6r scattedng of'-"the beams 

to· the extent that the square-law dependence were no longer valid. 

The potential of cholesteric liquid crystals as practical conversion 

dev.ices thus awaits further investigation of the proper:ties of thick 

(~ 1 em) samples. 

We have explicitly considered the phase matching of only two 

il!l.teractions, second- and third-harmonic generation. ·rn fact it is 

j,wt as easy to phase match almost any other optical interaction, 

~ily because the periodicity of liquid crystals is continuously 

t:um.able, and it is the periodicity which gives rise to most of the phase­

mwtching possibilities. other. large-:-scale.,;periOdic medi'a otter ·sill!ilar 

potential. Bloembergen and Sievers51 have considered possiblities for ~ 

phase matching of a number of interactions in composite layers of 

GaB and GaAs. This material. lacks inversion symmetry, thus permitting 

Ue observation of second-order non-linear effects. However it is 

difficult to fabricate and not so directly tunable.. The great 

advantage of cholesteric liquid crystals is their inherent and variable 

periodicity. 
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Table 6-1. Data on predicted and observed widths of phased-matched 

third-harmonic peaks in_ cholesteric liquid crystals. pis the 

approximate pitch for phase-matching of the designated mode combination; 

d(~)/dp is the rate of change of the corresponding phase mismatch 

(Eq •. (4-11)) with pitch and dp/dT is the rate of change of pitchwith 

temperature around the phase-matched pitch. (~p)l, (~p) 2 and (~p) 3 
are estimated contributions to the widths of the third-harmonic peaks 

in a sample 130 ~ thick due repectively to the rate of change of the 

index mismatch, possible distC!>vtion of helical structure, and laser 

bandwidth~ and are defined in the text. The. total_ predicted width is 

calculated from the sum or· the previous three columns, and the 

observed widths are given in the-last column. 
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