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The intranuclear cascade for relativistic nuclear collisions is 

analyzed in terms of "clusters" consisting of groups of nucleons which 

are dynamically linked to each other by violent interactions. The forma-

tion cross sections for the different cluster types as well as their 

intrinsic dynamics are studied and compared with the predictions of the 

linear cascade model ("rows-on-rows"). 
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1. INTRODUCTION 

The first-generation experiments with relativistic nuclear beams 

(with energies of 0 ~2 - 2 GeV per nucleon) have concentrated on the 

observation of a single reaction product. The gross features of these 

one-particle inclusive spectra can be fairly well reproduced by a number 

of models based on widely different physical assumptions. Recently, 

considerable progress has been made towards obtaining more detailed 

information. Current measurements of coincidence spectra and one-particle 

spectra with associated multiplicities of other ejectiles call for more 

detailed models and may yield better insight into the detailed collision 

d 
. t ynam1Cs. 

At the present, no complete and still tractable theory of high-energy 

nuclear collisions exists. The most detailed description is provided by 

2 3 
the intra-nuclear cascade model (INC).' It follows the fate of the 

individual nucleons (and any additional particles produced) as they suffer 

multiple collisions governed by our knowledge of the elementary two-

particle dynamics. Calculations within this model are rather cumbersome 

and the results are often intransparent: all the different effects - be 

they of geometrical, kinematical or dynamical origin - are interwoven and 

difficult to disentangle. In fact, the complexity of the calculated 

results are comparable to that of the experimental data. This makes it 

so much more necessary to try to understand the collisions in terms of 

simple models based on well-defined idealizations. (Well-known examples 

of such simplistic models are the knock-out,4 the fireball,S the firestreak,6 

t The most recent overview of the field can be found in Ref. 1. 
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and the statistical 7 models.) On the other hand, the wealth of informa­

tion produced in an intra-nuclear cascade calculation allows us to ask 

questions about dynamical details which are experimentally beyond reach 

but which may be essential for our understanding of the collision process. 

A relatively successful, but still transparent, multiple collision 

model is the linear cascade model, the so-called "rows-on-rows" model.
8 

A detailed analysis of high-energy nucleon collisions has been made in 

Ref. 9. The major advaritage of the linear casczde model is the separation 

of geometrical and dynamical aspects: the initial geometry of the nuclei 

essentially determines which groups of nucleons will interact violently 

among each other while the dynamics of these interactions is solely 

reflected in the corresponding spectral shapes. It is the aim of the 

present study to test these simple models against a full-scale intra­

nuclear cascade calculation which treats the space-time evolution of 

the multiple collision process in detail. The goal is to express the 

cascade result in terms similar to those used in the simplified approaches, 

by studying the common fate of those nucleons which have had intimate 

dynamical encounters during the collision process. 

2. INTIMACY - THE CLUSTER DECOMPOSITION 

The starting point for our discussion is the observation that any 

multiple-collision process can be subjected to a cluster decomposition. 

Two particles are classified as belonging to the same cluster if they 
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have had at least one violent interaction in the course of the collision 

process. (The precise meaning of "violent" will be given later.) It then 

follows that particles belonging to different clusters have at most 

interacted gently with each other. By use of this concept the complicated 

collision diagram for the entire process can be decomposed into a number 

of sub-processes, each involving considerably fewer particles; the 

different clusters can, to a first approximation, be treated as dynamically 

independent but the relatively weak mutual interaction could be included 

perturbatively. In this way, in close analogy to the simple models, the 

discussion of the collision process structures into two separate parts: 

one is concerned with the relative probability for the occurrence of the 

different types of clusters and the other deals with the intrinsic dynamics 

of a given cluster type. 

In our present study we are interested only in clusters which 

contain at least one nucleon from each of the two colliding nuclei, A 

and B. These clusters are named the participants, the remaining ones 

being spectators. We shall characterize a given cluster by its number 

of projectile nucleons and target nucleons (~,nk) so that the cluster 

decomposition of a given collision event can be characterized by 

where c is the total number of (participant) clusters. The total number 

of participant nucleons is 

V = 
c 

L 
i=l 

m. 
1 

and their final momenta are denoted by 

c 

+ L n. 
J j=l 

-+ 
••. ,p . 

V 
The cross section 

for producing such an event represents the most exclusive quantity 

" 
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available for our study,* 

Less exclusive information can be obtained from these cross 

sections by defining the following inclusive cross sectiont 

(1) 

-+ -+ 
zQ( c; Pl'" p) a AB (~; Pl'" p) 

(2) 

r 
Here ~ specifies the type of inclusive observable considered and a AB is 

the total reaction cross section as obtained by putting Qequal to unity; 

-+ 

···f~vV (3) 

-+ 
Thus the detection of only one particle at given momentum p and 

energy E results in the one-particle inclusive spectrum, 

E da 
-+ (4) 

dp 

which is simply related to the mean (participant) multiplicity (V> 

(5) 

*We attempt to keep the notation such that arguments in parentheses 
refer to the observables, whereas subscripts such as AB or MN specify 
the auxiliary conditions. 

twhich in a quantum mechanical scheme amounts to calculating the trace 
Tr~p, where p is the many-body density matrix. 



-6-

The major advantage of the cluster decomposition is that all 

one-particle observables, such as the inclusive spectrum or the mean 

multiplicity, are given simply in terms of the corresponding mutually 

independent contributions from the different cluster types, 

= I (M + N) a AB (M,N) 
MN 

This feature naturally suggests two key quantities for the subsequent 

(6a) 

(6b) 

discussion. One is the partial cross section for forming a given type of 

cluster, formally defined as 

(7) 

The other is the spectral distribution of the nucleons of a given cluster 

type, 

(8) 

where 

(9) 

The normalization of the spectral functions is 

dp F -+ f -+ 

E AB MN(P) M+N (10) 

It readily follows that the mean number of clusters generated in 

the nucleus-nucleus collision is given by 
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so that in turn the mean cluster size is 

< M+ N} = 
<v} 
<c} 

= 
~ (M,N) 0 AB (M,N) 

~ 0
AB

(M,N) 

(ll) 

(12) 

The essential building blocks for the one-particle observables in 

the complex collision are the cluster formation cross sections (7) and 

the cluster spectra (8). The general cluster expansion of the inclusive 

cross section (6) is recognized in many of the simple collision models. 

Most of these infer the formation cross sections from simple geometrical 

considerations (often using straight line trajectories) but adopt widely 

different dynamical pictures to construct the spectra F. 

The questions we seek to answer in the following are: How do 

these key quantities look when calculated in a full-scale mUltiple 

collision model? and how do they compare with simpler, idealized pictures? 

3. INTRA-NUCLEAR CASCADE VERSUS SIMPLICITY 

In this section we briefly recall the main ingredients of the INC 

t 
model employed and of the rows-on-rows model. Detailed descriptions are 

given in Ref. 3 and Ref. 9, respectively. 

Throughout the violent phase of the reaction only nucleons and their 

delta isobars are considered whereas pions are created only after this 

phase through the free decay of the remaining deltas. Initially, the 

nucleons of both nuclei occupy sharp sphere spacial distributions with 

t Not all cascade models are suitable for a cluster analysis since some 
of them describe one of the nuclei as a continuous medium rather than 
a collection of nucleons. 
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1.15 fm) and a sharp sphere momentum distri-

bution (Fermi distribution) with a Fermi-momentum of PF = 270 MeV/c. 

The pinary collision cross sections are generalized from known NN data 

by detailed balance and other arguments to the unmeasured processes 

(e.g., N& + ~~). While the INC traces the particles in three dimensions 

between two subsequent interactions, the rows-on-rows model adopts a 

simple straight-line picture: All nucleons which are initially situated 

in a beam oriented tube of transverse extension of the total NN cross 

section, tot 
aNN (~ 40 mb), form a cluster. The cluster formation cross 

sections aAB(M,N) are then simply related to the initial spacial geometry 

of the two nuclei. The intrinsic cluster dynamics is determined by 

demanding that the M projectile nucleons interact sequentially with all 

the N target nucleons, changing their momenta and baryonic state (N or ~) 

in each binary collision. 

Although the INC interweaves geometry with dynamics it is still 

possible to discuss these aspects separately. 

4. GEOMETRICAL ASPECTS 

The sharp-sphere nuclear densities employed lead to a total 

reaction cross section given by 

or slightly less since the finite mean free path makes the nuclear edges 

partially transparent. The next quantity most closely related to 

geometry is the mean participant multiplicity. Straight-line geometry 

yields
8 

Aa~ + Ba~ 
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r 2 
and 0B ~ 'ITRB are the respective nucleon-nucleus 

reaction cross sections. Thus, for equal-mass systems one would have 

r r ° AB ~ 4o A' and hence (V) ~ ~ A which agrees well with the INC results 

( V)NeNe 10.7 (V)CaCa 23 

In addition to these more obvious integral geometrical properties 

we also expect the cluster formation cross sections to be closely related 

to geometry. For this purpose, however, we first have to specify more 

precisely the terms "gentle" and "violent" interactions. 

4.1 Gentle or Violent 

A given binary collision is classified as "gentle" if the following 

two criteria are satisfied: 

i) The collision is elastic (i.e., NN + NN, N6 + N6, or 

ii) The four-momentum transfer is less than a certain cut-off 

value: 2 < q • 
c 

Here 
, 2 +, + 2 2 

t = (E. - E.) - (p. - p . ) C 
1 1 1 1 

a collision between particles i and j. * 

for 

With the above criteria it is elementary to analyze the history of 

each nucleus-nucleus collision and obtain the cluster formation cross 

sections 0AB(M,N). A simple illustration of such a cluster decomposition 

is shown in Fig. 1. 

~~This criterion assumes that the labels of the, final identical particles 
(i',j') = (i,j) or (j,i) have been chosen so as to give the least 
value of It I • 
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Intra-nuclear cascade calculations have been analyzed for 

various values of the cut~off parameter q. In the extreme limit of 
c 

vanishing cut-off (i.e., all interactions are classified as violent), 

rather large clusters result, with sizes up to the total number of 

participants. Many of these large clusters consist of subclusters which 

are only linked to each other by a few rather gentle collisions. They 

therefore quickly break apart as qc is increased. The cluster formation 

cross sections are consequently quite sensitive to qc but, as we shall 

see later, the intrinsic dynamics of a given cluster type is not. 

Figure 2 shows the dependence of the average cluster size (M+N)AB 

as a function of the cut-off parameter q. As expected, (M+ N) drops 
c 

off with increasing qc' but in a slightly more drastic way for the heavier 

system. For Ne + Ne the cluster sizes for central (b = 0) and peripheral 

(b ; 1.87 R) collisions are also shown. The peripherally produced clusters 

contain only around two nucleons corresponding to a single knock-out 

process (or none for large q ), while those arising in the central 
c 

collisions are quite large. The latter are seen to shrink in a more 

drastic way with increasing qc than for peripheral clusters. 

A physically reasonable scale for the cut-off parameter qc is 

provided by the initial Fermi motion. Hence we have chosen a standard 

value of 
270 MeV/c 

The mean cluster sizes estimated by straight-line geometry are (M+N) = 4.9 

and 6.1, respectively, whi~h are substantially lower than those calculated 

with q = 270 MeV/c (see Fig. 2). 
c 

The above choice,'qc = P
F

, implies that the fluctuation in each 
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-+ 
cluster's mean momentum (P}MN due to the gentle collisions is of about 

the same order or less than that due to the intrinsic Fermi motion. 

These gentle interactions represent a residual "friction" force between 

the clusters which tends to reduce their relative mean velocity. To gain 

insight into the transport of energy and momentum between the different 

clusters one may study the incurred dispersions in the cluster momenta, 

i.e., calculate for each cluster type the mean square deviation between 

the final momentum 
M+N 

L 
k=l 

-+ 
P' 

k 

per particle from that given initially 

-+ 
P = 

M+N 

L 
k=l 

1 

1 ( (P' _ P ) 2 } 
(M+N)2 1 1 

(Note that 1 refers to an arbitrary transverse direction so that 

These dispersions arise solely 

from the gentle interactions with other clusters. The transverse 

dispersion reflects the statistical nature of the momentum exchange 

between the clusters while the longitudinal momentum dispersion also 

contains the contribution from the average shift in the cluster momentum. 

The above momentum dispersions are displayed in Fig. 3 in the 

form of kinetic energies per nucleon. These energies, typically a few 
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or several MeV are quite small in comparison with typical kinetic energies 

in the system which are given by T/2 ~ 40 MeV for each translational 

degree of freedom. The cluster decomposition is therefore 

meaninful and residual cluster interactions can be neglected 

without any noticeable effect on the observable spectra. We note that 

the transverse dispersions are larger than the longitudinal ones. This 

is a consequence of the forward-peaked nature of the gentle collisions 

which makes the defect in momentum transfer preferentially perpendicular 

to the direction of motion. 

The dependence of the cluster structure on the impact parameter b is 

illus trated in more detail in Fig. 4 for Ne + Ne and Ca + Ca. The circles 

indicate the mean number of participants, (V>b' divided by the total number 

of nucleons, 2A. The two results are nearly identical but both somewhat 

below the sharp-sphere overlap estimate, due to the partial transparency. 

The triangles show the mean cluster sizes (also divided by 2A). Again, 

the two results are nearly identical, suggesting an approximate scaling 

with the total nucleon number. The figure also indicates that central 

collision events contain about three clusters on the mean while there is 

at most one cluster for a peripheral impact. 

4.2 The Formation Cross Sections 

The previous discussion concentrated on mean values. More detailed 

insight can be gained from the behavior of the formation cross sections 

themselves. As their dependence on M and N as obtained from the INS is 

not suitable for a contour plot, two projections will be discussed: 
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i) The dependence on the total cluster size M + N: 

(M + N) l:::: 0 AB (M' ,N ' ) 

M'+N'=M+N 

ii) The dependence on the mass asymmetry n(M,N) 

= 

n (M,N) E n ± b.n/ 2 

M/(M+N) : 

This mass ratio, as already considered in the firestreak model [WDM], is 

the quantity relevant for the overall kinematics of each cluster. It 

specifies its available cm energy and its mean momentum. The above two 

proj ections are displayed in Fig. 5 for. the case of Ne + Ne; the results 

for Ca + Ca are quite similar, except for an overall scaling. 

As for the dependence on the cluster size, we note a striking 

dissimilarity: in the rows-on-rows picture there is no transverse 

communication and the cluster sizes depend only on the local thickness 

of the nuclei. This picture strongly inhibits the formation of large 

clusters and the ensuing distribution is peaked at the relatively small 

value of (M + N) ~ 6. Al though the dynamics predominan tly evolves in the 

longitudinal direction there is some transverse communication. As we shall 

see later, already the finite range of the NN force will tend to link 

neighboring clusters. It should be noted, though, that the so produced 

large clusters would have a structure of two or several subclusters 

joined by only one or a few dynamical links .. Therefore, their internal 

dynamical state may still resemble that corresponding to smaller clusters. 

The actual analysis of the respective spectra will in fact support this 

conjecture (see below). 
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Though it is very important to study the shapes of the spectra FMN 

characteristic of the various clusters (section 5), it is of equal importance 

to know how the different spectra add up to the final one particle spectrum. 

As already mentioned this is dominantly governed by the mass asymmetry 

-+ 
parameter n. The centroids of each spectrum FMN(p) are placed simply at 

where PA and PB are the momenta per nucleon of the two nuclei. Thus, even 

if all the cluster spectra FMN we're isotropic, the dispersion in n produces 

an elongation of the inclusive one-particle spectrum. The top part of 

Fig. 5 indicates that the linear collision model produces dispersions (~n)2 

which are about twice the INC values. Again this deviation can be under-

stood on the basis of the relatively large clusters in the cascade 

calculation. 

4.3 Transverse Communication 

One of the main advantages of the intra-nuclear cascade model is 

that it provides detailed information of th~ spatial evolution of the 

collision process. In high-energy nuclear collisions the dynamics is 

predominantly forward directed and several models build on the idealization 

that no communication occurs in the transverse direction. To elucidate 

the transverse dynamics we study the following quantity 

= 
I M+N ( M+N) 

M + N L ;~ - M! N L ;k 2 
k=l k=l 

which expresses the dispersion in the initial transverse positions of the 

nucleons in a given cluster type. It thus provides a measure of how far 
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in the transverse direction a given nucleon can influence the dynamics. 

In Fig. 5 (S2) is shown as a function of the cluster: si2:e M+N. The 

result~ show an initial linear increase with cluster size, nearly identical 

for the two systems considered, followed by a gradual leveling off towards 

system~dependent limiting values. 

It is easy to understand these features. The entire process can be 

thought of as a problem of throwing discs randomly on the floor, where each 

disc has ? cross section 1 tot 
"4 aNN • The value for M = N = I is then the 

average di~persion in separation for those pairs of discs which happen 

to ov~rlap and is therefore given by 2 tot 
(s )11:;;: aNN / 2rr • The clusters are 

made 4P of those discs which cover a connected area. The growth in 

dispersiOJ;l with cluster size is then a diffusion process characterized 

by a dif~~sion coefficient D tot 
aNN /4rr. The initial rate of growth is 

tot/ 2 • 2D = aNN 2rr ~ (s )11' ln good agreement 

with the cqlculated results. The fact that the nucleons are confined 
. . 

inside th~ nuclei corresponds to having a bounded floor (walls). The 

dispersion~ then gradually saturate and approach a value reflecting the 

transverse extension at the system. 

The overall good agreement of the INC results with the above 

picture suggests that the transverse communication predominantly arises 

tot 
from the finite extension of the nucleons (as expressed through aNN ) 

rather thaq from actual transverse motion. It would be possible to 

incorporat~ this effect into the straight-line picture and thus, among other 

things, ob~ain a simple tool for predicting the substructure of the large 

clusters. 



-16-

5. CLUSTER DYNAMICS 

We have discussed above various aspects of the cluster formation. 

We now turn to the question of the internal structure of the clusters, 

i.e., how their total energy and momentum is shared among the constituents. 

Figure 7 displays some quantities characterizing the momentum 

distribution of the nucleons, as a function of the cluster size. The 

upper portion is the momentum dispersions in the longitudinal and 

transverse directions. We observe a large similarity between clusters 

produced in Ne + Ne and Ca + Ca collisions. This finding supports the 

universality of the cluster dynamics and hence the usefulness of the 

cluster analysis. The degree of kinematic equilibrium attained within 

a given cluster type can be characterized by the isotropy parameter 

I 
- 2!,; 2!.: 

The values of (PII ) 2 and (PI) 2 are shown in Fig. 6 

together with their ratio I. The INC results for I are typically around 

0.8 indicating a slight preference for motion along the beam direction. 

The linear cascade results exhibit a faster relaxation towards isotropy, 

followed by a gradual decrease of I due to the particular collision 

sequence imposed in the linear cascade. These findings are fairly 

independent of the cut-off chosen, except for the knock-out component 

M = N = 1. For finite values of qc the most forward scattering events will 

be classified as gentle and the isotropy parameter will be increased 

(since the elementary NN cross section is forward peaked). When q is c 

reduced to zero these events are included and the isotropy drops from 

0.80 to 0.61 in accordance with the rows-on-rows results. 

Another quantity characterizing the cluster spectra is the crooked-

ness of the momentum profile. We adopt the parameter 
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which is unity for a maxwellian distribution. This quantity relaxes 

quickly towards unity as a function of cluster size and follows closely 

the linear-cascade result. 

In nucleon-nucleon collisions at 800 MeV/n there is an appreciable 

chance (~50%) of converting one of the baryons into a delta resonance. 

This introduces additional complexity into the collision dynamics. The 

results presented above are for the final nucleon spectra, i.e., after 

the deltas have eventually converted back into nucleons by pion emission. 

Figure 8 shows the relative number of deltas present in the various 

cluster types at the end of the violent collision stage. From a value 

of around 0.20- 0.25 for small clusters (reflecting the branching ratio 

in NN collisions) there is a decrease towards a value of around 0.12, 

which is somewhat lower than the Boltzmann value of 0.16. A similar 

behavior was already found in the rows-on-rows model. 9 

The degree of kinetic equilibrium attained can be elucidated by 

the ratio T6/TN between the kinetic energies carried by the two kinds of 

baryons. At 800 HeV/n the deltas are produced with a relatively low 

kinetic energy (the threshold is at 600 MeV/n). By additional collisions 

the deltas gradually acquire more kinetic energy but the equilibrium value 

T6 ~ TN is never reached. 

Altogether the spectra calculated by the intranuclear cascade 

follow quite closely the results obtained in the simple rows-on-rows 

dynamics. The spectra shapes do not change any more beyond a cluster 

size of 10 nucleons. The anisotropy of about 80% persisting up to very 

big clusters may indicate that these consist of subclusters of more 

equilibrated structure linked together by only one or a few interactions. 
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This aspect could be clarified in a future study analyzing the substructure 

of the clusters. 

6. CONCLUSION 

In the study presented we have made an attempt to disentangle the 

apparently complicated results of an intranuclear cascade calculation in 

analyzing its basic building blocks: its clusters, comprising those 

nucleons which were in intimate interaction contact. In this way we 

achieved a formulation of the collision problem close to those used in 

simplified approaches, then making possible direct comparisons with simple 

physical ideas. 

When making the cluster decomposition it is necessary to distinguish 

between gentle and violent interactions. This was done by means of a 

cut-off in momentum transfer. We found that the cut-off chosen was of 

no significant dynamical relevance. 

The main results are: 

i) Given a specific cluster size, the resulting nucleon spectrum 

does not depend much on the colliding nuclei A and B 

(universality). 

ii) The spectral shapes are found to be in close agreement with 

those calculated with the simple rows-on-rows prescription. 

Beyond a cluster size of about 8 nucleons the shape of these 

spectra do not change any more, indicating that a kind of 

bulk limit is attained. 
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The greatest discrepancy with simplified models appears in the size 

of the clusters formed. ~bile the straight-line concept in the rows-on­

rows model leads to fairly small clusters, the intranuclear cascade links 

many nucleons into the same clusters. The main reason for these large 

sizes produced in the INC was traced to the finite value in the NN inter­

action radius which leads to an increase in transverse communication as 

the size of the cluster grows. Still, a structural analysis of these 

large clusters would probably reveal them as built up of several sub­

clusters linked by only one or two interactions. Hence the subc1usters 

may reflect more directly the dynamics of the process. 

We see the presented analysis as an aid to reducing the inherent 

complexity of the intranuclear cascade description. In particular, the 

cluster decomposition may improve the practical utility of the INC for 

the study of relatively rare events, such as high-momentum components 

or multi-particle coincidences. 
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FIGURE CAPTIONS 

Fig. 1. The decomposition of a six-particle collision into the 

clusters (1,3~5), (4,6), and (2). 

Fig. 2. The mean cluster size < M + N> as a function of the cut-off q • c 

For Ne + Ne: the dashed curve is the result for central 

collisions (b = 0) and the wiggly line corresponds to 

peripheral collisions (b = 1.87 R); the overall average for 

all impact parameters is indicated by the heavy full curve. 

The light full curve shows the overall average for Ca + Ca, 

multiplied by 2/3 for convenience. 

Fig. 3. The dispersions in the cluster momenta as functions of the 

cluster size M + N, for three different values of the cut-off q . c 

The symbol II refers to the momentum component parallel to the 

beam and 1 refers to the transverse component. The lines are 

drawn to guide the eyes to the results belonging to the sum q . c 

Fig. 4. The mean cluster size < M + N > (triangles) and the mean number 

of participants (V> (circles) as functions of the impact 

parameter b. The open symbols are for Ne + Ne and the solid 

symbols are for Ca+ Ca. The full line indicates the universal 

curve for (v> resulting from the clean cut of two equal sharp-

sphere matter distributions. 
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Fig. 5. The cross sections for observing a nucleon arising from a given 

cluster size M + N, as calculated for 800 MeV In Ne + Ne (histogram); 

the kinked curve is the rows-on-rows result. The insert shows 

the cross sections for observing a nucleon resulting from a 

cluster with a given mean velocity (characterized by the 

asymmetry parameter n = M/(M+N); the same notation is used. 

-+ 
Fig. 6. The dispersion in the initial transverse positions sk of the 

nucleons belonging to the same cluster of a given size M + N. 

The straight line is the result for the disc-throwing analogy 

discussed in the text. 

Fig. 7. The upper portion shows the longitudinal (II) and transverse (1) 

widths of the nucleon spectra for different cluster sizes M + N. 

!,; !,; 
The corresponding isotropy parameter I = < Pi) 2/< PII) 2 is shown 

in the middle portion while the lower portion shows the 

crookedness of the spectral profile. When 

present, the horizontal bans indicate averaging over a range 

of cluster sizes. 

Fig. 8. Upper portion: the relative number of baryons in the delta 

state as a function of the cluster size M + N. 

Lower portion: the mean kinetic energy of a delta particle 

relative to that of a nucleon. On both portions the dashed 

curves indicate the rows-on-rows results. When present, the 

horizontal bars indicate averaging over a range of cluster sizes. 
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