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ACCURACY OF THE EDGEWORTH EXPANSION FOR LOLP 
CALCULATIONS IN SMALL POWER SYSTEMS * 

Donald J. Levy Edward,P. Kahn 
Energy and Environment Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Abstract Because they speed numerical calcula-
tions and exhibit functional dependences, Edgeworth
type series are increasingly used to approximate and 
calculate LOLP's. They are usually sufficiently 
accurate for large power systems (>15 000 MW) ,'but can 
be very inaccurate for small systems or those with low 
forced outage rates. This is because the approximating 
Edgeworth-type series are appropriate only for contin
uous probability densities, while discrete lattice-type 
density functions describe a typical power system's 
probability properties. This paper investigates these 
inaccuracies for small systems (~5000 MW), working 
out specific examples in a numerical approach and 
examining underlying functional dependences in an 
analytic approach. 

INTRODUCTION 

Numerical methods have historically been used to 
calculate reliability indices like loss-of-load proba
bility (LOLP) for electric power systems [1). For 
many purposes, however, numerical methods are a 
cumbersome means of computation. In capacity expansion 
models, for example, 20-year planning horizons are 
evaluated over a wide range of input assumptions. 
To reduce computational complexity and add conceptual 
perspective, several authors have studied analytic 
methods for approximating the numerical calculations. 
The most successful of these methods is an expansion 
based on the normal probability distribution, its 
moments and derivatives (see [2) to [6). There are 
several variations on this approach, depending on the 
exact form of expansion used. Individual forms of the 
series are associated with Edgeworth and Gram-Charlier 
[7) • 

The purpose of this paper is to make a systematic 
investigation of the accuracy of these methods with 
particular attention to power systems of 5000 MW and 
less. Two approaches will be described: (1) a numeri
cal approach where specific examples are worked out, 
and (2) an analytic approach where underlying functional 
dependences are examined. 

The most successful applications of the Edgeworth 
expansion and related approaches has been to large 
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systems, typically in excess of 15 000 MW capacity. 
Even for systems of this Size, if the average forced 
outage rate (FOR) is very low, the series can have 
disturbing properties and limited accuracy [B). Since 
the method relies in part on central-limit theorem 
arguments, it can be expected to work well only when 
the number of random variables,' I.e., generators, is 
large. Hence, there is reason to believe that the 
Edgeworth expansion will be less useful to approximate 
small systems than large ones. 

Edgeworth-type expansions are usually appropriate 
when the underlying random variables take on continuous 
values [9). This condition is viOlated in the case of 
most LOLP calculations where the generators' output 
characteristics are represented by probability distri
butions that limit the variables to discrete values 
only. Usually units are assumed to be either on or 
off in the two-state model. Where partial outages are 
considered, the standard model is again discrete 
rather than continuous. The underlying discrete 
probability distributions used to describe generators 
give rise to an aggregate probability distribution 
that is not continuous ,and that is referred to as a 
lattice-type probability distribution. In the limit 
of an infinite number of generators (N ~ ~), lattice 
as, well as continuous probability distributions can be 
accurately described with the central~limit theorem 
[9,10). In practice, the number of generators (N), 
is finite so corrections to the central-limit theorem's 
normal distribution need to be considered. To calcu
late these corrections, most authors [2-6) have used 
an Edgeworth series even though, as we have remarked, 
such expansions are inappropriate for lattice distribu
tions and simple criteria for their accuracy are lacking. 

There are several reasons for focusing attention 
on the problems analytic methods pose for small power 
systems. Recent investigations of the accuracy 
question have found good results for systems of 10 000 
MW and more [11). Schenk, however, found very disturb
ing results for ,some forms of the Gram-Charlier series 
applied to a small (1800 MW) system with an average 
forced-outage rate of around 3% [12). A more practical 
reason lies in the near-term ma:t'ket for solar electric 
technologies. This market is likely to be largest in 
the southwestern part of the United States because of 
climate (the solar resources are good) and fuel 
dependence (there is much oil to be displaced) . 
Excess capacity is less likely to be a market restraint 
in this region, and most utilities in the southwest 
are relatively small. Moreover, there are few insti
tutionalized pooling arrangements to perform an 
aggregating function for reliability planning in this 
region compared to the eastern part of the country. 
In addition, adequate modeling of solar electric 
technologies requires representing the available 
capacity distributions in much detail (13). Finally, 
the Edgeworth series is more computationally efficient 
than numerical techniques where multi-state generator 
models are used (5). With these constraints and 
opportunitites in mind, we conducted a study of the 
Edgeworth series as an approximation of the LOLP of 
certain utilities in Texas, Arizona and Oklahoma. 



FORMULATION 

To describe the case studies in detail and to lay 
the foundation for deeper analysis, it is necessary to 
describe the particular version of the Edgeworth expan
sion that we used. Our notation primari1y follows 
Abramovitz and Stegun [14]. 

We are looking for a way to compute the instantane
ous probability that available capacity on a power 
system is less than the load it must meet. This is 
the loss-of-load probability (LOLP). 

We define the random variable, S, as the total 
available capacity for the system of interest. 

In terms of each generator's otttput xi' 

N 

S L xi 
i=l 

where N is number of generators. 

(1) 

We denote the probability· density function for S· 
as P (S), where 

pes) 
N N 

JcS(s -! Xi) n P. (x. )dx. 
i=l i=l 1. 1. 1. 

and the Pi(xi) are the probability density functions 
for each generator. If W denotes the load, then: 

W 

LOLP = f P (S)dS 
o 

is the required distribution function. We write the 
LOLP as.a function of a standard variable: 

with 

and 

x S-5 
""7 

00 

s f SP(S)dS 
o 

00 

a2 f (S - 5)2 peS) dS 
o 

The Edgeworth approximation may be written as [14]: 

(2) 

(3) 

(4) 

(5) 

LOLP(x) [
Y1 2 ] [Y2 3 Y~ 5 ] P (x) - ""6 Z (x) + 24 Z (x) + 72 Z (x) 

CD 
[ 

Y3 4 Y1 Y2 6 \ 3 8 ] 
+ 120 Z (x) + 144 Z (x) + 1296 Z (x) 

+ 
Y1Y2 9 ·Y~ 11 J. 
1728 Z (x) + 31104 Z (x) (6) 

2 

where 

x 

P(x) ~J 
_CD 

_(W2 j2) 
e dw 

N 

! K r,i i=l 

[N 2y/2 
i~l ai 

(7) 

Here, Hen(x) are the standard Hermite polynomials [14], 
Kr i is the r'th ordercumulants for the i'th generator, 
and of is the variance of the i'th generat.or with the 
relation 

N 

! a~ (8) 

i=l 

In (6), P(x) is the term which would remain in the 
limit of an infinite number of generators. It is the 
central limit theorem's approximation term and is 
simply the complementary error function erfc(x). 

Each bracketed correction term in (6) includes all 
terms which appear to a given order in the parameter 
l/a~. In particular, we refer to each bracketed group 
of terms as one term and note that each term is of order 
£1/(a2 )]n/2, where n = 1,2,3,4. If all N generators .
were identical, then.each bracketed term would be of 
order £1/(NO~)]nj2, with a~ the variance of one 
generator. In this case, terms go to zero as N + 00. 

CASE STUDIES 

For our case studies, we take generators represented 
by a two-state pro~bility density. They have capacity 
xi and a forced outage rate Li. Their probability 
density is 

Table 1 gives the releva~t means lli' variances aI, and 
cumulants Kr,i for these density functions. For our 
numerical analysis we compare the exact LOLP calculated 
by computer to the approximation formula (6), in each 
case comparing the effects of including more of the 
bracketed terms in the Edgeworth expansion. 

To lend concreteness to these calculations, we 
examine the generator mix of particular utilities, 
using data obtained from Department of Energy compila
tions [15]. Since forced-outage rate data for the 
systems studied are not readily available, we relied 
upon the EEl averages listed in Table 2. In Table 3 
we list the units, by size, used in calculations for 
each company. 

Figure 1 shows a typical result for the Arizona 
Publi"c Service generator mix. The two-term Edgeworth 
expansion gives a very good approximation down to the 
region of roughly 5 x 10-4 At this level of risk, the 
corresponding load is roughly 1700 MW. In terms of 
reserve margin such a peak load on a 2600 MW system 
would imply a reserve margin of more than 50%. Such 
a level is impractical. 

I' 
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TABLE 1. Formulas for relevant means ~i' variances 
ai, and cumulants Kr,i for density functions 
of (9). 

~i ai (1 - Li ) 

O~ 2 Li(l-Li ) a. 
J. J. 

3 
Li (l-Li ) h~ - (l-L. )2} 11 3 , i a. 

J. J. J. 

4 
Li(l-Li ) h~+ (1-Li )3} 114 ,i a. 

J. 

5 h~ - (1_L.)4} 115 ,i a. Li (l-Li ) 
J. J. J. 

116 ,i 
6 a. 
J. 

Li (l-Li ) {L:+(1-L.)5} 
J. J. 

K3 ,i 11 3 ,i 

2 2 
K4 ,i 114 ,i - 30'. • O. 

J. J. 

10 
2 

Ks,i 11 5 ,i 113 ,i • O. 
J. 

K6 ,i 116 ,i - 15 
2 

114 ,i • °i - 10113 ,i • 11 3 ,i 

+ 30 222 
0i • 0i • °i 

TABLE 2. Average full forced outage rates [15] • 

a. L. 
J. J. 

Nuclear 0.110 

Fossil: 50 MW 0.023 

200 MW 0.053 

400 MW 0.095 

600 MW 0.160 

800+ MW 0.180 

combustion turbine 0.100 

This illustrates a generic problem of using LOLP 
indices on smaller power systems. Many large pools 
set a risk criterion of "one day in ten years" for LOLP. 
Where this is an annual index, the corresponding peak 
risk will be typically on the order of 10-2 • Some 
versions of the "one day. in ten years" criterion refer 
to a peak risk that is much lower, Le., about 4 x lO-

4 

Usually these criteria will yield reserve requirements 
in the 20-25% range for large systems. For smaller 
systems analyzed in isolation, very much higher reserves 
are needed at the LOLP levels usually adopted by the 
large systems. 

In practical applications of LOLP methods to 
smaller systems, it is often assumed that interconnec
tion support is available to reduce risk, i.e., LOLP, 
to appropriate or acceptable levels at reserve margins 
of 20-25% on the isolated small systems. One example 
of this approach is given in a Power Technologies Inc. 
study of the Northern States Power System [17]. Here a 
system is expanded from about 6600 MW to over 13 500 MW 
at an isolated risk criterion of six days per year, or 
about 2 x 10- 2

• Thus acceptable accuracy for reserve 
margin analysis might focus on the LOLP region of 10- 2 

3 

TABLE 3. Power ra~ings (MW) of generators in 
four 'utility systems. 

Arizona Texas pi:; 
Public Service Electric Oklahoma El Paso 

26 123 120 15 
27 188 85 23 
33 396 85 25 

119 248 2 34 
120 387 4 37 
116 44 170 50 
263 75 473 50 
263 405 450 82 

24 455 450 82 
51 455 473 85 
24 18 473 85 
51 18 3 103 
24 46 84 120 
51 75 84 166 
33 170 315 
12 518 6. 957 

63 20 33 
56 15 170 
56 81 95 

115 13 170 
115 13 8 

56 13 25 
56 13 25 

115 115 30 
99 536 67 
55 13 67 
55 13 67 
25 4466 
22 

4034 

22 
57 
57 
21 

4 
1 

105 
!CIS 
105 

2602 

to 1. For other purposes, however, 
desirable to have accuracy at lower 
probability. In the analysiswhi=~ 
focus on the region from LOLP '" 10 

Low FOR 

it might be 
levels of 
follows we will 
to LOLP '" 1. 

Not every case turns out to be as well behaved as 
Fig. 1.. Indeed, several different kinds of pathologies 
·can appear using the Edgeworth expansion. Let us 
consider the effects of low forced outage rates. We 
illustrate the kind of outcome Schenk [11] depicts for 
very reliable systems in Figs. 2-4. These are based 
on the generator mix of Texas Electric (4466 MW total 
capacity). In these calculations, we fix all forced 
outage rates at 10%, 5%, and 2%. Figure 2, with 
FOR'" 0 .10, is quite similar to Fig. 1. The two-term 
approximation is good down below 5 x 10- 4 and higher 
order terms add very little. In Fig. 3, with average 
FOR'" 0.05, we see oscillations and pathologies with 
the fourth term in the series, while fairly reasonable 
accuracy is obtained for the two- and three-term 
expansions. But the series gets less 'stable and indeed 
the distribution has negative values in a small region 
around 3200 MW. 

The possibility that the Edgeworth series can go 
negative has been noted in the literature (18].' This 
becomes a substantial problem in Fig. 4. Here, the 
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D erfc + 1 
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Fig_ 1. LOLP plotted against generating capacity of the 
Arizona Public service System (Edison Electric 
Institute forced outage rate data): Edgeworth 
expansion error functions compared to numerical 
results. 

o erfc 
Derfc + 1st correction 
A erfc + 1st and 2nd terms 
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.....J 10-2 
0 
.....J 

10-3 

XBL 803-432 

Fig. 2. LOLP plotted against .generating capacity of 
Texas Electric System at FOR'" 0 .10 _ Edgeworth 
expansion error functions compared to numerical 
results_ 
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TEXAS ELECTRIC 
For 0.05 

o erfc + 1st term 
D erfc + 2 
A erfc + 3 
., erfc + 4 (Note: ill defined 

ot-3200MW) 

a 

XBL803-430 

Fig. 3 _ Same as Fig. 2, except that FOR'" 0 _ 05. 
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TEXAS ELECTRIC 
For 0.02 

XBL 803-431 

Fig. 4 _ Same as Fig _ 2, except that FOR'" 0.02. 
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average FOR = 0.02. The oscillations of the four-term 
series are more pronounced. The accuracy of the two
and three-term series is poorer than in Fig. 3. There 
is also a small region, not shown in Fig. 4, where the 
series goes negative with the third term. The diminish
ing accuracy in Figs. 2 - 4 is not simply a feature of 
the generator mix assumed. The same qualitative results 
obtained in sensitivity studies of the Arizona Public 
Service system (2602 MW total capacity). 

A Very Small System 

To ve~ify the problems that can come up with very 
small systems, we examined El Paso Electric (957 MW 
capacity). Figure 5, based on EEl forced outage rates, 
shows the results. In this case, there is reasonable 
accuracy using the two-term series, but the higher 
order terms make matters worse instead of better. The 
three-term series shows a region of insensitivity at 
about 600-750 MW of load. In this region the approxi
mation provides essentially no information. A negative 
distribution occurs in the four-term series at about 
660 MW (not shown in Fig. 5). 

Large-Unit Additions 

The last series of studies performed focuses on 
the large-unit phenomenon. We consider public Service 
Company of Oklahoma (4034 MW capacity). This company 
is planning a two-unit nuclear project, called Black 
FOx, which will add 2300 MW to its system, a 57% increase. 
Figure 6 examines the accuracy of the Edgeworth expan
sion before adding the large units. The story is the 
same as in Figs. 1 and 2. The two-term series does 
well, and nothing is gained or lost with more terms. 
Figure 7 shows the outcome with the addition of the 
first 1150 MW unit. Here the result resembles Fig. 5. 

o erfc 
D erfc + 1 
" erfc + 2 
v erfc + 3 

10-1 
(Note: erfc + 4 exhibits 

pathology at 660MW) 

10-3 

D 

10-4 

400 1000 

XBL 803-428 

Fig. 5., LOLP plotted against capacity of El Paso 
Electric system (based on EEl forced outage 
rates); Edgeworth expansion error functions 
compared to numerical results. 

5 

o erfc 
a erfc + 1 
.. erfc+2 

XBL 803-426 

Fig. 6. LOLP'vs. capacity, Public service Company of 
Oklahoma (before addition of nuclear units); 
Edgeworth expansion error functions. 

The two-term series works with tolerable accuracy, 
although less well than in Figs. 1, 2 and 6. The third 
term shows a substantial region of insensitivity, 600 
MW or more at LOLP of 5 x 10- 3

• The fourth term 
exhibits a negative distribution at loads that 
correspond to LOLP of less ,than 10- 3 

Finally, Fig. 8 shows the results with both large 
units added. Here we begin with LOLP = 5 x 10- 3 This 
corresponds to an 80% reserve margin at the correspond
ing load of about 3500 MW. The two- and three-term 
series perform acceptably over this region. The 
four-term series 'exhibits a negative value at loads 
that correspond to 100% reserve margin. In general, 
Fig. 8 shows better results than Fig~ 7. The large 
units in this case are each about 18% of the total 
capacity. That is roughly the fraction represented by 
the largest unit in the El Paso Electric case. In 
Fig.7, the large unit represents about 22% of the 
total capacity. This probably accounts for the poorer 
performance of the Edgeworth series, since the under
lying distribution is more "lumpy," 1. e., less easily 
approximated continuously. 

Analytic Results 

We illuminate the above numerical examples with a 
simplified version of our analytic results. For low 
forced outage rates and ,a finite number of generators, 
we describe: (1) origins of negative LOLP's using 
Edgeworth-type approximations, (2) problems induced by 
including a generator much larger or smaller than those 
already present, and (3) non-convergence of Edgeworth 
series. 

We first note that for calculations where the key 
region of interest is 10- 4 ~ LOLP ~ 10- 2

, a typical 
range of the variable x is -312 ~ x'~ -2>1'2. In this 
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distribution at 2500-, 
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Fig. 7. LOLP plot for PS Oklahoma after addition of 
1150 MW nuclear unit. 
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(Note: negative distribution at 
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Fig. 8. LOLP plot for PS Oklahoma after .addition of 
two 1150 MW nuclear units. 
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region the Edgeworth expansion, including the first two 
bracketed terms of (6) looks like: 

LOLP ... - -- (2x -1) [
YI 2]' 

6..[2 

+[ Y2 Y: 5 3']} 24 (2x 3 
- 3x) + 72 (4x - 20x + 15x) 

For x =' 3,12, the above expression becomes 

LOLP 

o 1 2 

and for x = -21:2 it becomes 

LOLP 

Thus, we see that if Y1 and/or Y2 becomes too large, 
this approximation to the LOLP can become negative. 

(10) 

By requiring Y
1 

and Yz to be sufficiently small, we 
can make the first and second order corrections to the 
Edgeworth expansion small and unable to cause the LOLP 
to have negative values. Nonetheless, this does not 
guarantee that the fraction of the series retained is 
an accurate approximation to the exact probability 
distribution. , 

By examining Y1 ' we can see how adding a generator 
whose output is much larger or smaller than the other 
units already present would make an Edgeworth-type 
expansion less accurate. From (7), we have [in the 
case of small forced outage (Li)' and a finite number 
of generators (N»): 

(11) 

This expression is minimized when the added generator 
size (aN+l) is 

N 

i~l a~ L. 
1 1 

~+l N (12) 

i~l 
2 a. L. 
1 1 

In the case where the originally present N generators 
are of equal size (a), the minimizing added generator 
size is aN+l = a. In this case 

[
N+l ]-~ 

Y = I L, 
I i=l 1 

] -~ whereas if a N+l » a, Y1 would become [LN+l ; or 
approximately VN+l times larger than the minimized Y

I 
with a N+l = a. 

As indicated in (6), the higher-order cumulants and 
the associated products of lower-order cumulants deter
mine whether higher-order terms in the Edgeworth expan
sion are accentuated or not. With this in mind, we can 
easily demonstrate that for low forced outage rates (Li) 
and finite numbers of generators (N), higher order terms 
may contribute significantly to the Edgeworth expansion. 
,To see this, we consider a typical form that contains 
the above mentioned cumulants and which mUltiplies 

~: 
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directly the various Hermite polynomials in Edgeworth
type expansions. In particular, we consider the term 
Yr-2 to lowest order in Li; it may be written to good 
approximation as 

1 

(13) 

From expression (13), we see that if ~ Li < 1, ever 
higher order terms of the Edgeworth expansion will be 
increasingly weighted. In short, there is no conver
gence of the series. 

CONCLUSION 

In summary, for the case of a finite number of 
generators N and low forced outage rates Li , we have 
shown why adding a generator much larger than those 
already present makes the Edgeworth-type expansion 
more inaccurate than adding one of the optimal size, 
where: 

N 

ctoptimal L 
i=l 

We have also shown that, when the forced outage rates 
are too low, i.e., 

N 

L Li < 1 
i=l 

that the Edgeworth-type series are very poor approxima
tions to the LOLP. We have also illuminated the origins 
of negative LOLP's when Edgeworth-type approximations 
are used, using the above two criteria. 

In the Appendix, a more detailed look at the under
lying lattice characteristics of power system distribu
tion functions and their impact on approximation methods 
are given. 
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APPENDIX 

(1) In most LOLP calculations, the power spectra 
for the individual generators are described by discrete 
probability densities (see (9)). This leads to aggre
gate power system probability densities that are also 
discrete. These densities and their associated . 
probability distributions are referred to as lattice 
distributions (densities). In the limit of an 
infinite number of generators, both lattice as well 
as continuous probability distributions can be 
accurately described using the central-limit theorem. 

(2) Edgeworth-type approximations are appropriate 
for continuous distributions, not lattice distribu
tions, so criteria for their accuracy are of an ad-hoc 
nature. We use some formalism to demonstrate the point. 
We note that quite generally an aggregate probability 
density for N generators can be written as a Fourier 
transform: 

peS) 

(X) iw(S-S) 
J.:.. f e (G(W))dW 
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-00 

N 
G(W) n fi (w) (14) 

i=l 

where Pi(xi ) is the i'th generator's power spectrum. 
Edgeworth approximations are appropriate when G(w) 
satisfies the following conditions [9]: 



G(W) = 1 W o 

IG(w) I < 1 W # 0 (15) 

lim IG(w) I + 0 
W -+ ±oo 

When these conditions hold, G(W) is expanded in a 
series of terms about the point W = 0 with the following 
form 

G(W) (16) 

where the cm are evaluated in terms of the standard 
cumulants and moments of the exact distribution func
tion. Performing the indicated Fourier transform (10) 
and gathering terms of the same,orderin (1/02)n/2, we 
arrive at the standard Edgeworth approximation for 
peS) = p[(S-S)/rcr]=P(x). When the above appro~riate 
conditions are met, the size of the terms (1/0 )n/2 
gives an estimate of the accuracy of including terms 
up to that order. 

P(x) _x
2/2 {[Y ] '[Y 

e ' 1 + + He,(x) + 2~ He~(x) 
I:2-IT ' , 

[ 
Y, Y1 Y2 y' ] 

+ 120 Hes(x), + 144 He 7 (x) + 12~6 Heg (x) 

+ [7:~0 He6 (x) + 1:~2 Hea(x) + Y;:; Hea(x) 

+ :~:~ HeIO(x) + 3:Z04 Heu(X)]} 

See (6) for the Edgeworth approximation of the LOLP 
probability distribution function. 

(17) 

In the lattice case, G(W) violates conditions (Eq. 
(11) ). 'To see this, consider G (w) for our case where 
the generators' power spectra are given by Eq. (9). 

N iWS 
[Li + 

e -iWai] 
G(w) n e (1- Li ) 

i=l 

L iwL\n 
~e (18) 

m = sum of all 
possible states 

and 

1: am 1 

Here 
G(W) = 1 W 0 

IG(w) I .;;; 1 W # 0 

lim IG(w) I Q 1 (19) 
w-+ ±c:o 

As we can see, contributions for appropriately applying 
an Edgeworth-type expansion are not met. Furthermore, 
the point W = 0 does not leap out as an obvious point 
to center an expansion. Hence, if we use an Edgeworth 
expansion to describe such a lattice distribution, 
establishing conditions for its range of validity 
will be' possible only on an ad-hoc basis. 

a 

(3) The smoother or smaller the steps in the exact 
lattice distribution, the be~ter the continuous func
tions of the Edgeworth expansion will describe the 
exact distribution. 

(a) Large N means a smoother distribution. 
(b) Small forced outage rates (Li) , mean 

less smoothness. The nearer in value 
to 1 that the expression 

N 
II (1 - L i ) 

i=l 

approaches, the less smooth the exact 
distribution. 

In Figs. 2, 3 and 4, we compare LOLP curves for 
power systems, each with the same generator mix. 
Each system's forced outage rates are equal for each 
generator, but different between systems. In partic
ular, one system has Li = 0.1 (Fig. 2); another, Li = 0.05 
(Fig. 3) ; and a third, Li = 0.02 (Fig. 4). We see 
clearly that smaller Li gives rise to a more lumpy 
distribution. 

(4) The Edgeworth expansion uses as its zero'th 
order term a symmetric Gaussian centered at S with 
_variance 0 2 • Thus, the more skewed the exact distribu
tion, the less accurate is the approximation. The 
parameter Y~ is a measure of relative skewness and in 
the limit Of small forced outage rates (Li small) 
becomes 

(11) 

This parameter clearly demonstrates two properties 
already discussed in the preceding text. 

Y + 
I 

(a) As the Li decrease, YI increases (see (13». 
For example, if all the ai are equal, 

1 

and for nonequal ai' YI becomes 
(see (13»: 

(20) 

which also increases as 1/[1: LJ~, when 
the L. become small. 

1 

(b) Adding a unit much larger or smaller than 
the already existing generators increases YI' 

(5) As is clear from Eq. (17), the Edgeworth expan
sion is based on the zero'th order term being a Gaussian 
centered at S with variance 0 2 . In this limit, N goes 
to infinity. This is the only term that remains 
(central limit theorem). 

The Edgeworth corrections to this Gaussian term are 
a series of Hermite polynomials that are weighted by 
various products of the standar~ized cumulants Yi (see 
(13». As the variable x = (S-S)/1cJ7' leaves the origin 
(x = 0) and increases in absolute values (I x I > 0), the 
Hermite polynomials approach their large x limit of 
Hew(x) Q xn. Depending on the size of the cumu!ants 
multiplying them, these polynomials can dominate the 
expressions for peS) and LOLP(w). Since they c!n and do 
go negative in certain regions of (x), they can cause 
overall negative probability densities and/or distri-
butions. ' 



J 

One ad-hoc criterion used by several authors is to 
use only the first two bracketed terms in the Edgeworth 
expansion and restrict the values of Y

j 
and Y2 such that 

the probability density does not go negative in the 
region of interest for the variable x [12]. See text. 

Another ad-hoc criterion is to fix the range of x 
and then require that the. cumulants be such that the 

9 

maximum values of the first two bracketed terms be small 
compared to the zero'th order term in this range of x. 
Neither of these two requirements is sufficient to 
prove that contributions from higher-order corrections 
aren't larger or more negative than the first two 
corrections plus the zero'th order term. This is 
adequately demonstrated in our computer runs for 
certain cases. 
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