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Abstract 

A model for a heavy quark meson is proposed in the framework of a 

gauge-invariant version of quantum chromodynaml s. The field operators 

in this formulation are taken to be Wilson loops and strings with 

quark-antlquark ends. The fundamental different- 1 equations of point

like Q.C.D. are expressed as variational equations of the extended loops 

and strings. The 1/N expansion is described and it is assumed that non-

leading effects such as intermediate quark pairs and nonplanar gluonic 

terms can be neglected. 

The action of the Haailtonian in the A - 0 gauge on a string 

operator is derived. A trial meson wavefunctional is constructed con

sisting of a path-averaged string operator applied to the full vacuum. 

A Gaussian in the derivative of the path location Is assuaed for the 

minimal form of the measure over paths. A variational parameter is 

incorporated in the aeasure as the exponentiated coefficient of the 

squared path location. 

The expectation value of the Haailtonian in Che trial state is 

evaluated assuming the negative logarithm of the expectation value of a 

Wilson loop is proportional to the loop area. The energy Is Chen minim

ized by deriving the equivalent quantua aechanical Schroedinger's 

c:s:.rsc:rs ir K B M J J J ^ a m m T J ^ 
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equation and using the quantum aechanical 1/n expansion to estimate the 

effective eigenvalues. It is found that the area law behavior of the 

Wilson loop implies a nonzero best value of the variational parameter 

corresponding to a quantum broadening of the flux tube* 
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1. Introduction 

All current evidence on the spectrum and internal structure of 

hadrons is consistent with the notion that they are color singlet bound 

states of the more point-like ferraions and vector bosons of quantum 

chrotnodynainics. Not all properties of these composite states are yet 

derivable from the field theory' Most notably, models which give an 

accurate description of at least some part of the spectrum introduce 

assumptions about the structure of the supposed nonperturbative confin

ing force: that it is flavor-independent, has the color structure of 

single gluon exchange, and has little overlap with the deep perturbative 

forces, for example. While this suffices for some heavy quark 

phenomenology, it gives rise to double counting problems in the calcula

tion of perturbative corrections and special treatment is required for 

the lowest-lying pseudoscalar mesons and the lightest singlet pseudos-

calar. 

In addition to lacking a direct proof of confinement, there remains 

the parallel problem of developing an appropriate field theoretic 

description of the bound states. Evidence from spectral fits and from 

analogue models, such as two dimensional field theories and lattice 

gauge theories, suggest different limiting forms for the field theoretic 

bound states corresponding to distinct, not clearly compatible, pertur

bative treatnents. Weak coupling perturbative effects are familiar from 
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scaling behavior in deep Inelastic scattering and. when combined with a 

static (heavy) quark approximation or a 1/H expansion, show up in the 

splitting of charm and bottom meson states* On the other hand, the 

effective linear potential which seems to provide the main binding o£ 

heavy quark states arises naturally in a strong coupling expansion on 

tha lattice. The suppression of intermediate quark-antiquark states, 

* 
seen in the minimal 3x3 and 3x3x3 structure of the lowest hadron multi

ple ts and in the narrowness of the new quark resonances, has received an 

explanation only from topological arguments, corresponding to an expan

sion in 1/N, where N is the number of colors* While any given spectral 

detail can be handled, at least descriptively, within a known pertarba-

tive scheme, no single method has been extended to all phenomena. 

We begin with a brief survey of some approaches to the study and 

characterization of bound states in field theory. No presumption of 

completeness or chronological accuracy is made. The methods here were 

chosen for the light they shed on the physical structure of the hadrons, 

to the extent that they faithfully represent hadron properties, and for 

their demonstration of the efficacy of various perturbation schemes in 

different regimes. The assorted schemes reflect the use of small oscil

lations about distinct dominant Modes• 
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_1. Weak coupling approaches 

Weak coupling approaches are the most familiar, having well-

established precedents in atomic physics and quantum electrodynamics. 

The first major class of weak coupling treatments is founded on the 

notion that certain interactions among constituents, or between consti

tuents and external sources, can be treated perturbatively even though 

the bound state itself represents an infinite superposition of interac

tions. As a phenomenological description, this is an old idea, having 

appeared first in the context of quantum electrodynamics • Asymptotic 

hadron states were introduced as (fermionic or bosonic) fields with unk

nown internal scructure, expressed as a charge distribution to be deter

mined experimentally. The interaction of photons with elementary 

(pointlike) charged particles was believed to be completely described by 

quantum electrodynamics and quantum scalar electrodynamics. However, 

hadrons were manifestly not pointlike, having charge, mass, and other 

properties distributed throughout a finite region. Hadrons were 

believed to be multi- and possibly infinitely- composite; on elec

tromagnetic time scales, a proton, for instance, could pass through many 

virtual states containing pions, rhos, neutrons, etc. Despite an under

standing of the local properties of photon scattering, hadrons remained 

black boxes. Distribution functions then served a.- effective photon-

hadron vertices. Consistency conditions reducing the set of unknown 
[21 functions could be derived frrc dispersion relations but this was 

always United by the saall number of usable hadron targets and by an 



ignorance of the full spectrum. 

Distribution functions were brought closer to field theory when 

they evolved to the phenomenological wavefunction envelopes of 

[3-5] 

partons . To account for scaling behavior observed in deep inelas

tic processes, it was proposed that at large momentum transfer only 

pointlike fermions interact with photons. Distribution functions then 

describe the probability of finding fermions of a particular charge and 

-nass or momentum within a hadron. As there was originally no field 

theoretic justification f- r the presence of free quarks in hadrons, par-

tons were not necessarily identified as such. The parton model was not 

itself a field theory so distribution functions could not be derived. 
13] There were, however, constraints imposed by sum rules and consistency 

[4] conditions end it was expected that many theories would be eliminated 

by the data. If the theory is not eventually predictive, this approach 

is begging the question. In the absence of an underlying field theory, 

it was necessary to rely on assumptions such as the saturation of sum 

rules by low-mass or -angular momentum states and restriction of singu

larities to narrow width poles- Even if an effective theory could be 

extrapolated, the rules for working with effective field theories are 

ambiguous. 

Following the work of Politzer ' and Gross and Wilczek' demon

strating asymptotic freedom in Yang-Mills theories, it became feasible 

for the first time to view hadrons as conventional bound states in a 

field theoretic framework. The vanishing of the effective coupling at 
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short distances gave a qualitative resolution of the former paradox of 

the quark model - permanently bound but quasi-free constituents. 

Restored to the status of elementary particles, quarks could be treated 

in standard ways in bound state models. Potential models exploited the 

experience with atomic composites by proposing the existence of a con

fining force between quarks representable as a quantum mechanical poten

tial. 

Potential models had long been used in attempts to reproduce the 

hadron spectrum by making the simplifying assumptions that only the 

valence quarks are present to any great degree, that these quarks have 

well-defined constituent masses, and that the dominant binding force is 

flavor-independent, two-body, and increasing with separation. For the 

lighter hadron states, and before the advent of Q.C.D., potential models 

repeatedly failed to produce the correct mass splittings and often 

predicted loul tip lets of a size far in excess of anything observed. 

Except that it made the minimal quark structure more mysterious, this 

result uas not surprising since the pion mass was known - and the light 

quark masses believed - to be on the order of nuclear binding energies. 

Relativistic and inelastic effects rendered suspect any quasi-quantum 

mechanical models of the lowesc-lying hadrons. It was not clear whether 

such models could ever be justified In hadron physics. 

The narrowness of the psi signaled its weak coupling to hadrons 

composed of the th»ee lighter quark varieties. Its mass being over 

three tiaes the proton aass, It aeeaed likely that the charned quark 



could be treated quantum mechanically as it is very heavy relative to 

pions. These speculations received confirmation when the spectrum of 

radial excitations for states containing only charmed quarks were fit 
f 8— accurately assuming only that the potential is smooth and confining 

• Two or three parameters - typically the quark mass and the coeffi

cient of a linear or quadratic potential - were all that was required. 

Inverse scattering calculations served to verify the general 

assumed form of the effective heavy quark potential . When data was 

available on a second heavy quark system, the bottor quark states, it 

was possible to extract Information on the quark mass dependence of 

energy splittings and, to some extent, the wavefunction at the origin. 

Gfneral quantum mechanical arguments relate these quantities to the 

power law behavior of the potential. For a monomial potential, best 
{121 fits were found for logarithmic dependence , but this is equivalent 

tor these purposes to linear plus Coulomb, the latter arising from the 

pertuibative part of the interaction. 

Additional fine structure had long been observed in the mass split

tings between states which, in the standard quark model, differ only in 

the alignment of the constituent quark spins. A hyperfine or spin-spin 
FtN interaction occurs In perturbatlve Q.C.D. for single gluon exchange 

The leading graph is of order 1/H because it represents nondiagonal 

spinor coupling, ao there were general reasons to expect this effect to 

be present but relatively suppressed in the heavy quark states. Inclu

sion of a hyperfine term in the effective potential with a flavor-



independent coefficient and color spin structure given by single gluon 

exchange seems to account for spin-dependent mass splittings among the 
[13] heavy mesons . Application of these techniques to baryons has met 

similar success . Even for the low-lying octet, careful treatment 

of the three-body problem with a universal two-body confining force plus 

hyperfine corrections structured like single gluon exchange gives the 

correct multiplicities and mass splittings, succeeding where pve-Q.C.D. 

SU(N flavors), SU{6), and SU, (N flavors)xSU(N flavors) had all failed. 
L K 

The quantum mechanical potential of a two-body bound state is, in 

the context of the underlying field theory, the static limit of the two 

particle irreducible kernel- In an attempt to tie potential models more 

closely to perturbative quantum chromodynamics, several groups investi

gated the 2PI kernel perturbatively. A Foldy-Wouthuysen transformation 

is first performed to isolate leading 1/M contributions. Quark recoil 

effects and intermediate heavy quark states are then suppressed by fac

tors of the ratio of typical momentum exchange in the bound state to the 

quark mass and the kernel is determined by the pure gauge theory. 

In quantum electrodynamics, the coupling approaches a small 

infrared fixed point, <K • yj=- and it remains weak at atomic lengths. 

The lowest order kernel in tha Coulomb gauge is a single, timelike pho

ton exchange and V(r) « *£., the Couloab potential* Analysis for the 

nonabellan gauge theory is complicatei by gluon self-interaction. The 

leading contribution to the static 2PI kernel includes single Coulombic 

gluon exchange as well as multiple ^uiocblc exchanges connected b> 



intermediate transverse gluons. It was found to two loops ~ that 

the renoraallzed, renormalizatlon group improved potential in the nona-

bellan version was of the sane form as the abelian kernel with the 
2 2 

replaceaent of oe by c<(r A ) , the running, strong coupling, and multi
plication by a function F(oe(r)) » 1 + O(oc(r)). 

These calculations assumed weak fields and a naive vacuum. The 

function F(oc(r)) only modifies the Coulombic potential by powers of 

logarithns of r and does not appear likely to produce positive powers of 

r at any finite order c<. The strong coupling behavior of oe may be 

radically different from logarithmic, or there may arise nonpoly-oraial 

oe dependence in the strong coupling series for F, but these effects do 

not seem accessible perturbing about week coupling eigenstates. 

A systematic combination of the small coupling (oe) and static or 

heavy quark (1/ H ) expansions has been performed in a functional 

no 20] 

integral framework ' . The heavy quark-an'iquark four-point func

tion is expressed as a functional integral over the canonical positions, 

X, (T) and momenta, P. (T), of the quarks, and over the gauge field. The 

latter cannot be performed except perturbatively in oj and it must be 

assumed that confinement arises nonperturbatlvely. The original quark 

part of the action in the exponent of the functional integral is 

replaced by: 

X . ^ . P ^ T ) - H q(l) 
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where the second term is the usual 1/M expanded Hamiltonlan. The dou

ble expansion in the Interaction and the quark kinetic energy produces 

all the qualitative features noted above, i.e. a leading Couloabic 

exchange with running coupling and a spin-spin interaction suppressed by 

1/ H . In addition, if the gluon path integration is converted to Ham

ilton ian form, one reproduces the semi-classical operator equations of 

motion in the Heisenberg picture derived from variational arguments by 
£21] another group 

Several interesting results can be gleaned from potential model 

fits to quarkonia spectra. First they confirm the traditional expecta

tion that for large enough constituent masses in the presence of a non-

pathological, mass-independent interaction, any few-body bound state 

will display a familiar nonrelativistic level scheme. Secondly, they 

demonstrate the insensitivity of the spectra to the precise form of the 

confining potential. In a sense, this is a necessary concoaitant of the 

accuracy of the perturbative hyperfine corrections. If the potential 

serves chiefly to restrict the quarks to a region of space where the 

potential is not felt, as a square well, for example, would do, then in 

low angular momentum bound states, subtle distinctions arising from 

spin-orbit interactions will not be wiped out by Interactions of similar 

structure hidden in the long range part of the force. It also reflects 

a rapid, smooth transition from weak to strong coupling: heavy quarks 

arp heavy enough that the coupling is indeed weak throughout much of the 

bound state wavefunction and surface effects are not evident. 



Potential Models continue to be suspect for the lightest hadrons. 

It seems unlikely that the observation of new quarkonlum states vill 

significantly increase our understanding of the dynamical origin of the 

confining force- There are intrinsic limitations on the degree to which 

perturbative and nonperturbatlve effects can be distinguished in spec

tral structure. There is Mixing, for example, between the confining 

potential and pertubative contributions of the same atructure, as seen 

in the near-equivalence of logarithmic and linear plus Couloobic trial 

potentials. Velocity-dependent effects such as spin-orbit coupling will 

also be affected by both nonperturbative and perturbative components of 

the force. Attempts to determine the wavefunction at the origin for S-

wave states, related quantum mechanically to the expectation value of 

the gradient of the potential, are frustrated by the presence of annihi

lation channels, relativistic corrections, intermediate quark-antiquark 

states, and the limited number of such states available below threshold 

for strong decays, effects which may not decrease in Importance as the 

valence quark mass increases. It appears from the perturbative stand

point that lowest order Q.C.O. Feynman diagrams Involving individual 

gluon exchanges, quark loops, etc must still be superimposed on a non

perturbative hadron wavefunction, and that as a result it will continue 

to be nesessary to determine the relative weights of the various terms 

in the potential phenomenologlcally. 

In the second class of weak coupling approaches, the context is 

again perturbacive Q.C.D. but a restricted class of nonperturbative 
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effects are included* Die presuaed source of confinement Is isolated in 

some function - Green's function, propagator, n-point function, etc, -

and a guess is made as to the explicit fora of this function* Substitu

tion Into the perturbative field equations permits improvement on this 

guess and/or investigation of its effects* 

Many of these techniques originated long before quantum chrorao-

dynamics, including the familiar use of an ansatz kernel in the Bethe-

Salpeter equation* The Bethe-Salpeter equation is, within the context 

of perturbative quantum field theory, an exact integral equation for 

bound state wavefunctions* It expresses the wavefunction, which is the 

residue of the four point function at the bound state pole, as a convo

lution of itself with the two particle irreducible kernel and the full 

constituent propagators* The Bethe-Salpeter equation includes potential 

models as a limiting case* Practical calculations are usually res

tricted to the iteration of simple kernels* Lorentz invariance is usu

ally maintained but gauge invariance is sacrificed* 

Iteration of the Coulomb kernel, for example, has been investigated 

[22 23] 
in quantum electrodynamics ' • A bound state will be produced hav
ing the approximate spectrum of hydrogen (unequal masses) or positronium 
(equal masses)* To match experimental accuracy, it is necessary to 
include crossed graphs ov, roughly equivalently, time-reversed fermion 

lines and, for positroniura, annihilation channels in the kernel* 
4 2 

An R -symmetric kernel corresponding to a potential V(r) - cr was 
used in early attempts to clarify the structure of the confining 
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[24] 
force' '. Since spin-dependent effects were not included, this pro
duces an SU(6) symmetric spectrum with the excess multiplicities noted 

above* It also does not produce the appropriate linear Kegge trajec-
f25 261 tories or the correct power law fall-off of form factors ' . Later 

systematic investigations of confining kernels with better high angular 

momentum behavior have failed to reveal a candidate lowest order kernel 

for the four dimensional bound states. 

The Bethe-Salpeter equation for mesons in two-dimensional Q.CD. 
r 271 was solved numerically by 'tHooft in the planar limit* The gauge 

field has no nontrivial degrees of freedom in two dimensions: in the 

lightcone gauge, it is simply an instantaneous Coulomb potential between 

the quarks and there are no gluon self-interactions* Instead of the 

usual perturbative treatment, a topological expansion was performed by 
2 2 2 

replacing the original coupling g by an effective coupling A • g N, 

which is then held fixed as N becomes large* Diagrams are then dis

tinguished by their topology, and the class of diagrams of a given 

topology includes all orders in the effective coupling* In leading order 

in 1/N, fermion loops or crossed gluons are suppressed* With such sim

plifications, it was possible to derive an exact expression for the 

quark propagator which exhibited a pole (physical mass) tending to 

infinity as the infrared cutoff was removed* Substitution of this pro

pagator into the homogeneous part of the Bethe-Salpeter equation for a 

two-body bound state produced a discrete spectrum of excitations identi

fied as a family of fixed valence quark mesons. 
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This result differs in substance from the electrodynamic bound 

state in four dimensions because of the permanence of the binding and 

because the kernel, instead of being merely a single (or finite) itera

tion of the Coulomb interaction, is an infinite sum of planar graphs. 

Thus even in two dimensions, the achievement of confinement in Q.CD. is 

a highly collective effort. Questions about the legitimacy of the two-
f2S»3]1 dimensional planar solution ', and about the convergence of the l/N 

[32 331 expansion in general ' have since been raised, without clear sign 

that there are serious pathologies. 

The perturbative structure of the gluon propagator in four dimen

sions is similar enough to the photon propagator that no sign of per

manent binding appears using finite sets of gluons for the kernel even 
134] with the inclusion of the running, logarithmically growing coupling 

The planar limit in four dimensions does not appear simple enough to 

permit exact solution for the quark or gluon propagators. In the ultra

violet, these are just free propagators due to asymptotic freedom. 

Several workers have tackled the problem of the leading infrared 

behavior by attempting to approximately solve the Schvinger-Dyson equa

tions, truncated to enhance long wavelength modes ' . The assump

tions made pbout the dominance of certain vertices or n-point functions 

have been difficult to justify, and no clear evidence emerged that con

finement Indeed occurs. Less ambitious attempts proposed the replace-
2 2 merit of the usual running coupling with an ansatz form g(k //\ ) which 

interpolates smoothly between the asymptotically free result and a small 
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•icmentum form which produces a gluon propagator having an instantaneous 

[37] 

piece growing linearly with distance . This Is, of course, practi

cally equivalent to phenomenologlcal potential models. The ad hoc 

adjustment of the J3 function in the cross-over region between weak and 

strong coupling corresponds to the choice of coefficients of terms in 

the potential- Also imitative of the two-dimensional results is the 

substitution of a fermion propagator with a pole at infinite mass into 

the four-dimensional Bethe-Salpeter equation with a Coulombic kernel, 

i.e. a standard perturbative gluon propagator 

Other semi-nonperturbative approaches derive from the discovery of 

classical, finite action Euclidean solutions to pure gauge theories. 

Such instantons1 ' or monopoles may radically modify the struc

ture of the vacuun. To take proper account of such classical solutions, 

which are not in evidence perturbatively, it is considered necessary to 

add effective terms to the pure gauge part of the action. In the case 

of instantons, this contribution amounts to a total divergence and since 

the Lagrangian is only defined up to total divergences, one must in gen

eral include this term. Instantons may radically alter the quark-

containing particle spectrum through their coupling to the chiral 

current. These effects say be related to the observed instability of 

the classical Coulomb interaction between nonabelian charges. It was 

shown in a three dimensional gauge theory that a dilute gas of instan

tons induces an effective confining potential between charged parti

cles . Despite ferocious speculation, no results of similar 
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persuasiveness have been forthcoming in four dimensions. 
[44-49] Recent reformulations of the bag models appeal to the formal 

possibility of vacuum structures to produce a so-called dielectric con

stant of the clothed vacuum. The bare vacuum is supposed to exist 

inside hadrons. The transition between these different dielectric 

media, it is argued, occurs at the surface of hadrons producing, for 

example, a change in energy density which accounts for the bag constant. 

It has not been proven, however, that such a vacuum dielectric material

izes in the quantum theory (although classical and semi-
[531 classical arguments suggest the effect). Moreover, pions are not 

incorporated in the mo^el. 

^. Analogue models and strong coupling expansions 

The relative simplicity of the color singlet sector may indicate 

that both the incorporation of the confinement force naturally and sys

tematical.' y in the perturbative framework and the handling of light mass 

collective modes may come from an understanding of collective phenomena 

in gauge theories. The term collective phenomena in the context of 

field theory refers to canonical state bases, usually nonlocal or non

linear in the original fields, which represent the particle content of 

the theory. The field equations expressed in the collective basis have 

the form of a free field theory with a truly perturbative interaction. 

Examples of such collective coordinates occur most clearly in two-

dimensional field theories because these are often exactly soluble. The 
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demonstration of the equivalence of the sine-Gordon and massive Thirring 

models ' led to a dual interpretation of the solitons of the former 

theory as the feruions of the latter. For certain values of the cou

pling, these feraions would repel or attract their antiferiaion partners, 

forbidding or permitting the formation of bosonic bound states which 

would then correspond to the fields in the sine-Gordon theory* Depending 

on the strength of the fundamental coupling, then, the sine-Gordon or 

the Thirring Iagrangian is the proper choice as the stable excitations 

are then, respectively, bosonic or fermionic. 

Perhaps more appropriate as analogues to Q.C.D. are the asymptoti

cally free theories in two dimensions* In these, as in the four dimen

sional gauge theories, the coupling is dimensionless and cannot there

fore be put in by hand* Masses in the theory arise either as solutions 

to the gap equation, or remain trivial, determining only the renormali-

zation point* In the 0(N) nonlinear sigma model , the first term of 

the nonlocal 1/N-expanded Lagrangian expressed in terms of the bilocal 

composites o- (x)cr (y) describes a free field theory of massive 0(N) 

degenerate particles , while perturbation in the original o-(x) 

fields is an interacting field theory with broken symmetry* Similarly, 
r coi 

the 0(2N) Dashen-Hasslacher-Neveu action can be partially linearized 

by substitution of Lagrange multiplier, bilocal fields. Functional 

Gaussian integration over the original Fermionic modes produces a nonlo

cal effective action whose leading order-1/N tern is soluble1 ' . 

Both these models are also solvable via a i/N expansion of the 
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Hamiltonian" , analogous to the pseudospin formulation of the 0(N) BCS 

model. The large N limit is determined in this case by the real-time 

solutions of the original field equations with nonlinear constraints. 

The effective coupling, which is the dimensionless coefficient of the 

interaction Hamiltonian, is in these cases proportional to 1/N. Neither 

method, however, has been shown applicable to theories with matrix-e-g. 

SU(W)- rather than vector-e.g. 0(N)- type symmetry. The problem seems 

to spring from the fact that the volume of phase space for a i.atrix syra-
2 metry increases like N rather than N; the gauge-fixing term is then of 

[331 the same order as the leading term in the action 

A strong coupling in the original theory is, in these two dimen

sional systems, exchanged for a weak effective coupling by choosing as a 

state basis nonlocal bound states of the original fields. A major 

attempt to construct an extended fiel<' theory for hadrons came as an 
f f \ 0 ft^1 off-shoot of dual resonance models ' . The focus in the dual string 

theories was, initially, to reproduce the dual, crossing-symmetric 

amplitudes than were the generalizations of the four-point Veneziano 

amplitude. The spectrum of states is _de facto precisely that of dual 

theories: infinitely narrow resonances on linearly rising Regge trajec

tories. Transverse modes of the string are identified with these 

hadronic resonances. The original string endpoints carried no mass and 

thus traveled at the speed of light. Massive quarks were added later 

for the purpose of producing a more realistic spectruu but they were not 

incorporated in a dynamical way. The lightest scalar in the theory was 
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tachyonic* Low-lying states and the possible internal structure of the 

string were inherently inaccessible In these models* 

There also remained formal problems involved in the transition from 

the classical to the quantum field theory of extended objects with the 

chosen action: 

S s t r i n g - f t d f f d r ^ 

s- d e t'ff£Al 
Such an action is Invariant under a large class of redefinitions of the 

proper "time" and "length" parameters, or and T. It thus represents a 

gauge theory, but one with a nonpolynomial action except in certain 

linear gauges• 

Wilson's strong coupling expansion of gauge theories on a lattice 

provided the first explicit connection between particles which exist as 

stringlike excitations and the fundamental pointlike fields of a gauge 

theory • Local gauge invariance on a lattice requires that non-

singlet operators, such as quarks, at separated lattice sites be con

nected by links carrying iiits of electric flux. States of pure flux 

consist of traces around closed link loops. Lattice models provide 

intuition about the likely properties of the strong coupling regime. In 

the strong coupling limit, the electric part of the Haailtonian dom

inates so eigenstates are distinguished by their link (and quark) 
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content . The perturbing, magnetic part of the Hamlltonian adds 

bumps to flux paths, introducing some scochasticity in the eigenstates 

and allowing for the propagation of strings. 

In order to make the transition from the lattice to the continuum, 

it is necessary to find the phase structure and the critical points of 

the theory ' . A fruitful area of research in this regard has been 

the use of computers to simulate finite-size lattices. Two important 

results have come from computer "experiments" with lattice gauge 

theories. First there is no sign of a first or second order phase tran

sition in the system as the effective coupling moves from weak to strong 

coupling (low to high temperature) regimes- This was observed in Monte 

Carlo simulations of in which the lattice is fixed initially in an 

ordered (disordered) state corresponding to low (high) temperature. A 

weighted heat bath of varying temperature is applied to each link suc

cessively and the evolution of the average action per link is 

observed . This order parameter passes smoothly through the same 

values whether the system was initially hot or cold. In contrast, it 

was demonstrated that abelian gauge systems in four dimensions or a 

nonabelian gauge systems in five dimensions has discontinuities in the 

evolution of the order parameter, as had been expected from renormaliza-

tion group arguments. The same general conclusions were reached by 

other groups using Pade approximants to interpolate from the lower 

end of a strong coupling calculation to the perturbative region. Both 

these groups also demonstrated that the coupling appears to become 
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strong rapidly and at fairly short distances, on the scale of lattice 
[49,50] spacings 

The double expansion in 1/N and the inverse effective coupling 
9 2 [72 731 

1/g N - 1/A ties also been investigated ou the lattice1 ' . The 

behavior of the weak to strong transition of 8(g) as a function of N 

showed an increasingly harrow cross-over region. It was speculated that 

a kink develops in 8 at infinite N. This would be in line with the 

type of nonanalyticity observed in exact solutions of toy lattice 

[74] 

models. Gross and Witten considered the large N limit of two-

dimensional lattice Q.C.D. Plaquettes decouple at infinite N so the 

problem reduces to solving the Schwinger-Dyson equation for a single 

plaquette. A discontinuity in the fl-function occurs at finite coupling 

representing a third order phase transition. Similar behavior was found 

in a three plaquette model and in a 2 + 1 -dimensional model in 

which a single plaquette propagates in continuous time • These 

results display the expected extreme case of a discontinuously sharp, 

weak to strong transition region at infinite N; they do not imply, how

ever, that the two regimes become inaccessible to each other. 

All of these approaches can be expanded as well in the inverse 

quark mass, for bound heavy quirk systems* Light or zero mass quarks 

pose special problems for lattice gauge theories* Treatment of tensions 

on the lattice Involve either explicit breaking of chiral nyisaetry, in 

which case the possible spontaneous breakdown will be hidden, or the 

inclusion of nonlocal intersrlons which awst then be carefully 
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truncated as successive renormalizations are performed " 

3^. Loop space 

The continuum formulation of nonabelian gauge thsories in terms of 

loops and strings appears to be formally consistent, as first suggested 

oy iiaiulelstau ' • The most jtnuial fundamental exciter vons in a 

gauge theory in which physical states are expected to be gauge invariant 

are the parallel transports of ordinary pointlike fields in nonsinglet 

representations. These are the straightforward continuum analogues of 

Wilson's lattice configurations. Extended fields are thus introduced 

naturally while preserving the underlying asymptotically free theory. 

It is not known how to perform a s;".rong coupling expansion ii\ the con

tinuum. Nevertheless, it is possible that coherent hadron states may 

ultimately be more easily described as loop and string composites than 

as quark ind gluou composites* The construction of an extended field 

theory based on Q.C.D. was largely ignored as a practical formulation 
(81-831 until recently . Exact results in the large N limit demonstrate 

decoupling of continuum Wilson loops which leads to the hope that the 

lowest excitation of the strong coupling expansion is accessible to 

leading order-1/N solution. 

If the leading order-1/N solution is found and if the 1/N expansion 

can be shown free of fatal pathologies in the contiruum :•> N goes to 

infinity, then this cay be sufficient to produce higher stjtes by pro

viding a dynamical origin of string-like gluonic modes or equivslently 
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an effective linear potential* To the extent that they can be observed 

in isolation, what are believed phenooenologically to be the collective 

•odes behave in a predictable, fairly linear fashion* We refer in par

ticular to the regularity of radial excitations in heavy quark systems 

and the linearity of Regge trajectories for high angular momentum states 

of the lighter quark mesons* If these modes reflect a 1/N pattern, then 

it is possible that the nonleading corrections are also free of patholo

gies. 

There are major differences bitween these QCD flux tube strings and 

older dual strings. Their dynamics are not put in by hand but are 

inherent In the underlying field theory. The action would be an effec

tive action and may bear little resemblance, except in leading order or 

for high angular momentum states, to that of the original relativistic 

string. Open strings terminate on quarks. Free, quarkless strings must 

be closed and correspond to the Wilson loops or their collective man

ifestation. 

All of this requires better understanding of regularization, both 

In the context of a dual strong coupling and 1/N expansion, and for man

ifestly extended fundamental fields. It is here that the usefulness of 

lattice analogues is most evident. The explicit space of link states 

provides a concrete realization of functional operations, such a key

board displacements and the breaking and Joining of flux lines, and may 

also give clue6 to regularization by isolating nonanalytlc N-dependence 

and identifying the phase structure and relevant <•. ier parameters. 
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As in ordinary perturbation theory, one would like higher order 

corrections to merely refine the mapping between bare and clothed 

fields, not to introduce a nonlinear change of state basis as apparently 

occurs in the transition from Q.C.D. to hadron physics. Such a result 

would partially compensate for the added difficulty of working with 

extended instead of pointlike fields. These ideas will be discussed in 

more detail in the body of the paper. 

The purpose of the present work is to perform a rough practice cal

culation in the framework of a loop space description of a heavy quark 

bound state. The larger issue of establishing a complete field theory 

of loops and strings, although briefly discussed, will essentially be 

avoided. Neither will any attempt be made to reproduce the fine struc

ture of the hadron spectrum as this has been done successfully else

where. Rather, a few technical problems arising £n route between the 

raw definition of loop space and the interpretation of the wavefunction-

als that emerge will be considered-

The heavy quark system has been chosen to minimize complications 

due to familiar kinematic effects ai.d couplings to intermediate states. 

A trial wavefunccional for a mesonic state is acted on by the loop space 

Hamilconian. The resulting variational problem minimizing the ground 

state energy highlights certain problems associated with an extended 

field formulation - in particular, those relating to the use of Che path 

measure and regularization of path space - while circumventing others 

involved with special systems such as glueballs and pions. 
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The partial machinery of a tentative loop space field theory is 

displayed in Section II. The connection to perturbative gauge theory is 

presented to clarify properties of the extended operators. Questions 

pertaining to the regularization of functional differential operators 

are discussed* Simplifications accruing from an expansion in 1/N are 

described. 

The Hamiltonian formulation is developed in Section III. The prin

ciples involved in the integration over path degrees of freedoia are con

sidered. The variational technique in field theory is reviewed In Sec

tion IV. 

The trial wavefunctlonal for a meson is presented In Section V. 

The action of the Hamiltonian operator on this state is derived under a 

set of assumptions about the properties of the full vacuum. The assump

tion of confinement is also introduced in order to exhibit a possible 

truncated form of the variational equation for the ground state* The 

resulting path-averaged expression is interpreted as a quantum mechani

cal expectation value in the limit of heavy quark masses and suppressed 

connunication with vacuum channels* 

A quantum mechanical ,. ... expansion, where d is the number of 

spatial dimensions and L is the orbital angular momentum, is used in 

Section VI to complete the solution of the approximate variational prob

lem* Conclusions and possible extensions of this work are discussed in 

Section VII. 



25 

II. Loop space formulation 

The loop space formulation of Q.C.D. is motivated by the desire to 

work with gauge Invariant fundamental fields since the presumed physical 

states of the theory are strictly color singlets. The seeds of this 

technique can be found in the quantum mechanical treatment of elec-

troraagnetisui by Dirac who introduced the path ordered integral of 

the gauge field to invariantly describe an electron trajectory. Mandel-
r i n ftni 

stam ' extended this notion to the quantum gauge field theories for 

both abellan and nonabelian groups by displaying the formal representa

tion of gauge-invariant Green's functions In terms of path dependent 

operators. Residual gauge dependence remained only in the point at 

infinity where all paths ended. It was shown that all physical, hence 

gauge-invariant, expectation values calculable perturbatively with the 

standard fields could be recovered, also perturbatively, in the extended 

field formulation-
r8i—8^1 

Recent loop space work ~ has been directed toward moving 

beyond a reliance on perturbation in the coupling. The growth of the 

QCD coupling in the infrared and the existence of nonperturbative, fin

ite energy field configurations make a perturbative treatment 

untrustworthy for large loops. The 1/N expansion, which distinguishes 

topological rather than extensive properties, shows the greatest promise 

as a tool for simplifying the dynamics of extended configurations 
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_1. General gauge-invariant operators 

To establish some notation, we first define the usual pointlike 

fields that occur in a gauge theory with ferniona in four spacetioe 

dimensions* The gauge field is denoted: 

A - igAaT* 

The fermions will be written as: 

q(x), «I(x) - q +(x)y o 

Color and Dirac indices are implicit* Flavor degrees of freedom are 

suppressed* The matrices T are in the adjoint representation of the 

gauge group, which will be taken to be U(N) or SU(N) for various N's as 

convenience dictates* They satisfy commutation relations: 

tT*,Tb] - C* b CT C 

We will be concerned exclusively with fermions in the fundamental 

representation so the q(x)'s are M vectors in color and the T 's are N 

by N matrices* Under a gauge rotation: 
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A(x) - exp [ ig8 a (x)T a ] 

A - 1 ( x ) - \"(x) 

the A (x)'s transform as: 

A (x) -* A _ 1(x) [A + 6 ] A(x) 

and the fermions transform as: 

q(x) -»• A - 1(x)q(x) 

q-(x) -*• q-(x)A(x) 

We can easily construct invariants in these fields and their 

derivatives. First consider bilinear combinations of the fermions. If 

0(x) is any local operator transforming covariantly under A(x): 

0(x) -» A+(x)0(x)A(X) 

then the combination q~(x)0(x)q(x) is invariant. The covariant deriva

tive, for example, is given by: 

D - 6 + A P P P 
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since under a gauge rotation: 

D (x) -* 6 m + [ A +(x) D A(x) ] 

- A +(x) D (x) A(x) 

The derivative h'ere acts on everything to its right unless enclosed in 

parentheses. The general invariant form constructed from covariant 

operators at a point is: 

Tr OjCxXyx) 

In particular, the connection F » [D ,D ] is covariant and the bil-
p,<T u a 

inear trace is inv-riant. 

The full, gauge invariant Lagrangian is given by: 

LQCD " LYM + LQ + LFP + LGF 

LYM " " ~ h T r F „ «- ( > t ) F., ,r<x> 4g ?' *̂ 

L Q - lf(x) [/ DP+M] q(x) 

The gauge-fixing and Fadeev-Popov ghost terns are necessary in any 

noninvariant formulation using nonlinear gauges* Though we will 
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occasionally work out examples perturbatlvely, we will always use linear 

gauges sosyntax error in equation 27 file two, between lines 202 and 202 

potentials are used- To display the canonical commutation relations and 

equations of motion, choose the A • 0 gauge (see also Section III)' 

The momenta conjugate to the gauge fields are then: 

nj<x> * L 

&A°(x) 

g 

giving commutation relations: 

[ E*(x>, A*(y) ] 

The ferraions obey the anticommutation relations: 

<, ap(x),q A
+ b(y)> ( X o. y o )-6^6 3(x-y) 

Writing the fermionic current q"(x) / q(x) as J (x), the equations of 

motion can be simply expressed as: 

D (x)F<r,r'(x) - jf(x) 

/ rf^x) q(x) - 0 
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The gauge condition and the Blanch! identity 

D* F f f *f 1 - * . D [ D. , D ] - 0 
<r pcrAp o- A p 

complete the formal set of information necessary to specify the theory. 

Although we began with an invariant Lagrangian, variation with 

respect to the local fields to get the equations of motion destroys man

ifest gauge invariance. Even if it were contrived to reformulate the 

equations of motion in terms of invariant products of operators, most 

regularization procedures require point splitting at intermediate stages 

of the renormalization program. The forms TrO (x+6)0.(x), for example, 

are no longer Invariant but tranform like: 

Tr 01(x+6)02(x) -*• Tr Ag 1 0j(x+6) Ag <>2(x) 

A f i - A(x+6) A _ 1(x) 

There are other, physical reasons for expecting a local gauge invariant 

formulation to be impossible for a physically interesting gauge theory* 

If the fermions can indeed be treated in all respects, i.e. at all 

phases of the calculation, like bilinear singlets, then the relevant 

fundamental fields would appear to be noninteracting bosons. 

We therefore extend the class of general gauge-invariant operators 

to nonlocal combinations of the fora: 
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T r U ( x . y ) f P ] ° l ( y ) U(y,x) °2U) 

These w i l l be invariant if U, . [ ? ] transforms a s : 
(x,y) 

U ( x , y ) l P ] - A - 1 ( x ) U ( X i y ) t P ] A ( y ) 

and to regain the proper local forms: 

U ( x . x ) t P ] - 1 

These equations are solved by the path-ordered exponential: 

: exp C dx Ar(x): 

The path ordering convention is that operators are arranged right to 

left as their arguments range from the lower to the upper limits of 

integration. Gauge invariance requires only that the path of integra

tion P be continuous. The nontrivial singlet operators of a pure gauge 

theory include as well the trace of U's defined on closed continuous 

paths or loops, i.e. operators of the form: 

W IL) - Tr :expGlx AP(X): 
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These will be referred to as Wilson loops. The matrix (untraced) ver

sion of the same operator: 

U [L] - :expCdxti AP(X) x o t p 

will be called simply loop operators* They are Implicit functions of 

the point x chosen as the starting place of the path ordering operation 

and tranform as local covariant operators at x • The loop operators can 

thus be used to represent the local covariants of the original formula

tion. In particular, taking the limit of zero area for a loop surround

ing the infinitesimal region o- . at x , we recover the gauge field 

F.(x Iff .(x ). 

2. Differential operations 

The path dependence appended to make all operators gauge invariant 

introduces ambiguity in the canonical formalism. To treat the W[L]'s or 

some variant thereof, literally as canonical fields would require 

expressing the original Lagrangian in terms of the generalized invari-

antf. The path dependence of the new operators does not appear expli

citly, however, since the theory is independent of paths* As in the 

case of gauge dependence, path dependence appears only when we progress 

to the equations of motion* Although it is possible to derive these 

equations fron a Lagrangian functional of path-dependent operators, we 

find it siapler to translate the covariant equations derived in the 
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usual way directly into differential equations for the strings and 

loops. 

In order to do so- it is first necessary to formally define dif

ferential operations on strings, which is what we shall call the res

triction of the ordered exponential to a particular path in spacetime. 

Since the differentiation acts only on path points, it has the character 

of a functional differentiation. For a functional x (s) describing the 

spatial location of a point on a path parameterized by s, the derivative 

\—f—r is defined to have the effect of moving the string at x (s) by an 

infinitesimal amount in the p-direction. Consider a string which has an 

endpoint at x , neglecting for the moment other fields to which it may 
1851 be attached. The effect of adding a segment dx is : 

P 

x(s)+6x (s) ^ 
C P ds' &-. A.(s ' ) 

xfs) d s A 

6 U(x,*) - [e *^' - 1] U(x.*) 
r1 

dy A C-) o ^ ( s ' ) d 

6 y s ) 9s' 6 ( S _ S ' ) l ds -̂SFTo- V ^ V 0 ] U f * < s ' > ' * ] 

c y . C ) bA bA (s) 

• V s ) - dr- [ srfe - - £ - + y»>v a ) ] 
p <JS oy ( s ; <jŷ  p 

Now embedding x(s) in the middle of a string segment gives the complete 

form: 
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v dx.(s) 

sr i sT u [ P 1 " : v x ( 8 ) 1 " d T — u [ ? 1 : 

The symbols [:,:] are meant to order all operators between them, outer 

symbols taking precedence over inner ones ij.g. those in the righthand 

U[P] above). 

This definition gives a manifest representation of parameterization 

invJriance. If s -* f(s), then: 

d y s ) ^ it y f ) 

ds ds df 

and 

d x . . < s > > At d * . . < f ) > 
- ^ s - ^ l s T U t P ] " f dr ox5 (f) W 

but by symmetry, both sides vanish and are thus equal to: 

d*.,<f> * 

P 

which is the stateaent of reparaaeterization iuvarlance. We will also 

require the differential operation representing the addition of an 

infinitesimal buap In the string. This has already appeared in the 

representation of F , , which was seen to be equivalent to a small loop 

o: area a . • Pinching a string at a point x{«) Is like adding a loop 
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bit there so we can identify: 

>•> l,(.)T°' f l " : F u A [ x ( s ) ] U t P ) : 

The Bianchi identity, which is an expression of the fact that F 

is a connection, becomes in the context of strings the statement that 

the change in a string due to a change in paths is independent of the 

surface traversed in moving between paths. Considering two small sur

faces between locp segmentB near x separated by dx , then Lhe change in 

the string due to the change in choice of surface is: 

&, C or . F . - C dv *, b F k ^ uA uA J krst r st 

The equations of motion similarly translate to differential properties 

of strings. Applying the functional v twice ,'ives 
r1 S 

v2 dx, 
— 2 U[P] - S ( s - s ' ) : D f F , [ x ( s ) j -jf- U[P] : 
&x (s) o^(s ' ) r* d s 

+ : V X ( S ) ] ^ V x ( s ' ) ] f^U I r ] ; 

The first term vanishes in the pure gauge theory and is proportional to 
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the quark current J,(x(s)) - ?(x{«)}/. q{x(a)) in Q.C.D. 

_3. Kegularization 

The new que*tions to be asked about regularization in the loop 

space formulation concern the nature of loop operators as infinitely 

composite - albeit countable - functionals of the gauge fields or as 

extended operators which may be fundamental excitations in a 1/N expan

sion and which are defined on paths rather than at points. Regulariza

tion problem*, may be circumvented by working on a lattice - The form jf 

the expectation value of products of Wilson loops in this case is: 

- 4 r H [ u j 
<0| II W[0] | 0 > - C n d U . e 6 Tr n "UJ 

i-1 *1 * l i ^ 

where the U's are defined on the links of the lattice and are Integrated 

over the group. Ultraviolet divergences are controlled by the finite 

lattice spacing. Infrared divergences do not appear in the strong cou

pling expansion because the state apace contains only color singlet 

operators whose minimum energy configurations are minimal structures on 

the lattice. Calculations are performed in an inverse coupling expan

sion, which has a finite radius of convergence. The crucial problem 

remaining is to show that a second order phase transition occurs at 

critical coupling g "0, which would give asymptotic freedom, and that in 

the Unit g-»g and a-»0, the physical parameters approach finite values 
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integrations around the loops and nust be dealt with in the averages 

over paths discussed belou. 

A second class of regularizations is needed to handle the singular

ities peculiar to operators defined only on a curve. This is related to 

the possibility mentioned above that infinitely many field operators are 

relevant to the short distance behavior. Kinks and self-intersections 

may occur even for single loops. We need to consider the possibility of 

rough paths such that, for example, a path functional F[j*J may be finite 

and well-defined for any j* smooth, but develops infinities for suffi

ciently irregular paths. Lacking a complete regularization program 

based on the calculated short distance properties of infinite sets of 

gluonic excitations along the paths, one can nevertheless introduce the 

operation of smearing over the location of the paths, which must be done 

in any case in order to define physical expectation values. In general, 

wherever a functional of a fixed path appears, a smooth distribution 

around the path can be substituted. For example, choosing an infinitely 
3 smoothing operator 2 of compact support in R , we may express all func-

tionals of paths F[0] as: 

[2 FJ(^) - Cds £i3x i(x) F[*(x(s))J 

Each point on the string is smeared around the original path. The 

smearing need not necessarily be removed later, but it must be chosen to 

preserve all physical symmetries and should not Introduce unphysical 
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parameter dependence. The physical parameter which defines the regular-

ization point for path averaging will be related to the string tension 

at some momentum value (slope of the Regge trajectories In the linear 

region) or equlvalently to the mass gap, the enevgy relative to the 

vacuum of the lowest excited state* (This assumes the ratio of these 

quantities is fixed by the theory and is well-behaved in the planar 

limit.) 

The operation of path averaging will generally have the effect of 

suppressing contributions of rough, self-Intersecting paths relative to 

smooth, non-self-intersecting ones. This is because two adjacent paths 

3 

in R almost always miss each other, and under the action of the smooth

ing operation, nonsraooth paths look like smooth ones. It Is not 

expected that purely geometric singularities will introduce significant 

physical complications. 

In the context of a strong coupling expansion, one considers the 

full expression: 

<a |W[#\] • • -W[0 ]| Q> 
l n 

Regularization is needed to make sense of the case where loops overlap. 

For continuum as opposed to lattice formulations, the functional opera

tors of differentiation with respect to the path that occur in the equa

tions of motion asu iUanchi Identity: 
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with suitable redefinition of the bare parameters, which would restore 

Lorentz Invariance and establish the renorraalizability of the strong 

coupling expansion• 

The composite nature of the Wilson loop adds no complication in the 

framework of perturbative renorraalization if terms are truncated at fin

ite order in the coupling* This will destroy manifest gauge invariance 

and will require imposition of the Ward-Takahashi identies. The full 

set of terms in every order 1/N, however, involves an infinite set of 

graphs. Renorraalizability is usually proven in the context of a weak 

coupling expansion having finite sets of graphs in each order* Lowen-
T871 stein and Speer have developed renorraalization procedures for the 

4 

1/N-expanded f theory in three dimensions. There is probably no insur

mountable difficulty involved with the 1/N expansion, though it will be 

necessary to develop techniques for systematic application of 1/N for 

the entire scheme to be feasible* 

The choice of regularization in the continuum is contingent on the 

class of objects being investigated* In lieu of a conplete understand

ing of the planar limit, for deep inelastic processes it is often con

venient to perform calculations perturbatively in the coupling* Proofs 

of relationships within the 1/N expansion are also often more easily 
2 

accomplished using the g N expansion* In these cases, one must regular
ize the expectation values of multiple operator products of the gauge 

field at nearby spacetime points on fixed paths arising from fixed 
2 order- g N terms in the expansion of products of Wilson loops: 
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M *n 

The ^ '• in the Integrand say represent the same or distinct paths and 

the A (0 ]*• « r e ordered along the several paths. The expectation value 

of path-ordered n-products of the gauge fields can be regularized in the 

same way as any time-ordered product. To each order, a well-defined 

finite, cutoff-dependent expression is obtained. It is possible that 

interesting short distance physics derives from the Unit of infinite 

numbers of gluons on finite string segments. Additional regulariztion 

or proof of regularizability may be needed in this case. 

The fact that points approach each other along a fixed path rather 

than from arbitrary directions does not change the structure of the 

singularities in perturbation theory. However, points approaching each 

other along a string retain the same degree of singularity regardless of 

the ambient dimension so dimensional regularlzation is not an appropri

ate choice of technique. 

From the standpoint of renormalization, it has been pointed out 

that the Wilson loop is equivalent to the propagator of a quark-
[19] antlquark pair after integration of femionic modes . The fermion-

antifermion pair are here restricted to follow a specific trajector 

corresponding to the path. It can thus be renormailzed perturbative. 

as any ordinary propagator i.e. cutoff dependence can be removed from 

physical expectation values after a finite number of parameter i-edini-

tions. Klnklness of the paths themselves will show up in the 
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ftx(s)2 

So-^Cs) 

will require separate regularization. This is a new feature not seen in 

the fully perturbative version of Q.C.D. where the equations of motion 

involve standard partial derivatives. Regulator functions can be 

defined on the space of loops such that they depend only on one-

dimensional parameters, equivalent to angular variables. Examples of 

regulator functions are: 

1 _ _D 
Mass-dependent version: R(x,y) « (—) e (x-y) 

Mass-independent version: R(x,y) - D (x-y) 

&x 2 

We will also be interested in the regularization of the Hamil-

tonian operator which is bilinear in the gauge field. When acting on 

Junctionals of Wilson loops, the Hamiltonian acts like a second order 

functional derivative The electric term is effectively a Laplacian on 

the space of loops since its action on a functional of a loop f> i.~: 
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l £ d 3 x (E*(x>)2, F](*> - $ V x [ £ l * tEj(x).WW) jjj^y 

2 
+ J * . D„2 l E ^ O . W ^ ] (E*(x),W[*2JJ ^ ^ j ^ ^ JF W 

2 
In order to soften the 6 (0) singularity that occurs due to the double 

functional differentiation, it is necessary to point-split the product 

of E.(x)'s. To maintain gauge invariance, it is then necessary to 

insert strings between the separated operators, i.e. to use the general

ized invariant form of of the inner product: 

£ d 3 x E*(x) E*(x) -» £d3x d 3y R 1 , 2(x,y) Tr[ U ^ y . x ^ W U ^ x . y ^ y ) ] 

where we choose the U.'s to be non-self-intersecting. The function 
1 2 R ' (x.y) is the three dimensional version of the regulator on the loop. 

The pointsplit form of the commutator of the electric term with a non-

self-intersecting Wilson loop, if we choose the arbitrary path segments 

to lie along the loop, then produces a factor of: 

d* (o-) d* (o-*) 
£d<rdo-' ( - i j - . - i — 1 R ^ c r ) .*<„*>] 

instead of the two dimensional delta function* Upon removal of the reg-

ulariiation, usually at some value of a parameter on which R depends, 

K(x,y) should tend toward 6 (x-y). For the choice of non-self-

intersecting paths (1.2), the U.'s tend to unity and the original 
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expression is recovered. The sane regulation should be performed on the 
2 B (x) term. 

^. Results from ̂ /N expansion 

Although It is not expected that the bound state spectrum will be 

obtainable in ordinary perturbation theory, there are indications that 

the Schwinger-Dyson equations may become workable in the limit of an 

infinite number of colors. There are qualitative results from the 1/N 

expansion which persist for all N and which appear to account for cer

tain phenomenological features of the hadrons. The suppression of fer-

mion loops regardless of their mass provides a possible explanation of 

both the minimal valence quark structure of the known hadrons and of the 

O.Z.I, rule, or the suppression of decays forced to proceed via quark 

pair creation. 

The strong coupling expansion on the lattice is effectively an 
2 expansion in inverse powers of g N. In the continuum, it is expected 

that the coupling will grow large naturally at large distances, from 

extrapolation of renormalizatlon group arguments. If we permit the 

color group to grow also, tho effective coupling can be made as large as 

needed to simplify the dynamics. 

It is desirable to have a natural way to scale the ordinary cou

pling as the number of colors varies. One criterion of naturalness is 

to maintain fixed the relation between the effective potential in a 

quark-antiquark bound state and the gluon propagator. The effective 
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potential can be expressed as the expectation value In a meson state of 

single gluon exchange to lowest order. He obtain a factor of — squared 

for the meson normalization, two powers of the ordinary coupling from 
2 2 2 

the vertices, and a factor of N (for large N, N s N -1 ) for the 

number of types of gluons that oust be summed over* Insensitivity to N 

can thus be achieved by replacing the usual coupling g by -^ at every 
\|N ' .. [88] vertex . 

In addition, it is necessary to include appropriate factors of 1/N 

to give normalized states, as in a meson: 

|M > = 4 : q-(x)J(x.y)q | Q. > 
\|N 

This case can be covered by the rule that the trace operation occurring 

in measurable operator combinations should always be replaced by 1/N 

times the trace* In calculating the meson state normalization, for 

instance, with bare fermions, we obtain after commuting: 

< M | M > - < a | - i l r U +(x,y) U(x,y) | Q. > 

< Si I ± W(x,y) | Q. > 

The required normalliability of meson states can thus be translated to 

the condition that 1/N times the Wilson loop, not the plain Wilson loop, 

is the relevant measurable operator in the large N limit. Application 
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of these rules to all diagrams in either weak or strong coupling pertur

bation theory proves sufficient to give a consistent 1/N expansion in 

the sense that no physical expectation values have terns proportional to 

positive powers of N. 
2 When N is taken to be large at a fixed value of g «, there arise 

fairly simple criteria for determining the relative 1/N weighting of 

classes of Feynman graphs. Graphs with F fermion loops are suppressed 
-F by a factor N relative to the same diagram containing only gluons. 

Within the gluon sector, purely topological distinctions arise. Planar 

graphs are defined to be those which can be mapped on a plane, without 

any crossed lines. Nonplanar graphs require handles appended to the 

plane to carry crossing lines. Graphs with H handles are suppressed by 
—2H N relative to the corresponding planar graph. 

In any order 1/N, there still remain infinitely many graphs to be 

summed so for finite N, the relative weighting of various orders topo

logical complexity cannot be calculated exactly. They can be estimated 

2 2 - 1 in many cases by using leading g N or (g H) contributions. 

A useful result is that, in the large N limit, the vacuum expecta-
f82 831 tion value of Wilson loops factorizes so that ' : 

lim (N-*D) < | W[ ? 1] ^ W(s»2J > - 1 <W[j»1]> ^ <W[?2J> 

This encourages the hope that the large N spectrum of pure QCD may be 

exactly calculable since factorization is characteristic of soluble 



46 

field theories* In any case, the factorization property can be combined 

with ordinary perturbative expansions for the purposes of analyzing con

tributions to the expectation value of the Wilson loop. Maheenko and 

Migdal have shown, for example, that the Wilson loop is the generator of 
183] planar vacuum to vacuum diagrams 

There may exist infinite N properties, such as massless glueballs 

or discontinuities in the p function, which are not continuable to fin

ite N. Although it has not been shown that Q.C.D. is soluble in leading 

order 1/N, or which large N results may be smoothly extrapolated and 

persist as leading effects at N-3, we will use 1/N suppression in cir

cumstances where classes of effects are chiefly distinguished by their 

color combinatorics. This will apply to the elimination of intermediate 

fermion loops and will be used to single out planar gluonic structures 

where there is no obvious difference in other singularities. 

L 
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III. Hamiltonian Formulation 

In order to produce measurable functions in the loop space frame

work, it is necessary to dispose of the unphysical path dependence. Tne 

problem of whether stable states are stringlike is in some ways analo

gous to the familiar question in ordinary field theory as to whether the 

physical states ar^ localized. This is a dynamical issue not a matter 

of choice of notation. It is necessary to demonstrate the persistence 

of stringlike configurations in the presence of interactions. Choosing 

an incorrect bare state basis will lead to radical alterations in the 

form of trial eigensystems in each order. Q.E.D. could be described in 

term of loop operators, for example, but the phase structure of a U(l) 

gauge theory indicates charged particles may be free finite energy 

states. Given the known large distance sm=llness of the coupling, per

turbation theory about the unconfined phase is permissible in the 

infrared. This gives a Coulombic distribution of flux lines, i.e. 

stringlike states become diffuse in lowest order in the interaction-

It may be possible that the Hamiltonian of Q.C.D., to leading order 

in some form, possesses a known spectrum. The eigenstates, although 

simple in the transformed basis, would be coherent superpositions of 

ordinary field operators applies to the vacuum. With the expectation 

that the ultimate states of the system will be, even in lowest order, 

coherent states, it is of interest to investigate the question of 



choosing bare states before the solution of the full theory which may be 

amenable to elucidating information. 

There has been little work done with true coherent states in four-

dimensional field theories. The most familiar models, (S and Q.E.D., 

she re the features chat they are infrared stable so weak couplia/^ at 

intermediate distances permits extrapoation to large distances and hence 

asymptotic states are directly related to the bare, pointlike fields. 

In two dimensions, a greater variety of workable theories occur 

the igh none so far show precisely the structure expected in QCD. The 

sine-Gordon model above a critical coupling is more succinctly described 

by che Thirring model' ' . Here there is a distinct, discrete cou

pling above which a new stable particle appears as the fundamental exci

tation. The two-dimensional nonlinear O(N) sigma model ' displays 

a perturbative spectrum of (N-l) degenerate massless particles and spon

taneously broken 0(N) symmetry* Transformation to a new set of general

ized, nonlocal group invariants <r(x)tr(y) peiaiits the action to be 

rewritten in a form having a consistent 1/N expansion, soluble in lowest 

order. The natural bare spectrum consists of an N-degenerate massive 

mult iplet. 

Whatever the change in the state basis, the spectrum of the Hamil-

tonian remains foraally the same for a wide class of tranforaations, 

although its perturbative fora may bea.r l.ttle resemblance to the origi

nal expansion. Numerical results from lattice, string, and bag models 

point to the possibility that, at least for heavy quark and high angular 
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momentum light quark systems, the coherent states are strikingly close 

to the naive strong coupling lattice states. 

_1. The J}\C«I)' Hamiltonian 

The general form of the Hamiltonian and the canonical commutation 

relations will be derived using the method of Dirac . If the canoni

cal coordinates for the gauge sector are chosen to be A (x), the canoni

cal momenta obtained from the Lagrangien are: 

njoo 
&(fioA^(x) ) 

1 IT 3 / N 
1 F o i ( x ) 

g 

E*(x) 

I^(x) = 0 

The second equation is a primary constraint, using Dirac's terminology. 

The = sign indicates the operator can only be set to zero after all com

mutations have been performed. Primary constraints with arbitrary coef

ficients c must be included in the full Hamiltonian to obtain the 

correct equations of motion. 

The Hamiltonian density at this stage is given by: 
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HjCx) - 5 nJ<x)SoA"(x) - L(x) + c" I^(x) 
i-1,2,3 " ° 

2 
Tr t ̂ -II^x) IL(x) + - i 2 F (x)F <x) 

4 g J J 

+ Ill(x)Di(x)Ao(x) + Cl(x)I^(x) ] 

The time development of operators should be given by their commutator 

with the Hamil tonian. Before imposing constraints, the naive canonical 

commutator between any (Bose) coordinate Ij (x) and its conjugate momen

tum Pb(y) is: 

I Q a(x), Pb(y) J - i 6 a b 6(x - y) 

In particular, if the primary contraint is to be true for all times, we 

require the weak ( ~ ) vanishing of: 

[ l£(x),H ] - I^(x)D^a(x) = 0 

This gives Gauss' law, which is required to be true on the space of phy

sical states. It is equivalent to a gauge rotation and is thus automati

cally satisfied by all states in the loop space formulation, to the 

extent that we do not destroy gauge invariance at intermediate stages by 

our regularization procedure. 
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The commutator of Gauss' law with the llaniltonian 11 vanishes 

identically, so it induces no new contraints. The foru of the Haaii-

tot.ian with all constraints is thus: 

2 
H2(x) - Tr [Vl.(x) 1^00 +- t2F i j(x)F i j(x) 

+ [Ao(x) + c2(x)]Di(x)Ili(x) + cx(x) I^(x) ] 

Note that the time derivative of the A (x) field is equal to c.(x). 

Since furthermore A only occurs added to the arbitrary coefficient of 

Gauss' Law, we are free to set A « 0 for all times. 
o 

The final form of the nonvanishing equal time commutation relations 

expressed in the A = 0 gauge are: 

[ E*(x) , A^(y) ] - -i 83(x - y) if. 

i,j - 1.2,3 
a,b - 1.2....N 

The quark anticommutators are straightforward: 

< q > ) . qn(y) > « 63(x - y) 6 ^ 

The subscripts refer to Dirac, color, and flavor indices. Quark opera

tors commute with all gauge field operators. The full Hamiltonian 
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density including fernions i s thus: 

2 
>i(x> - ^ - n * ( x ) flffx) - f - ^ F^ (x)^ (x) + q + (x) I ^ ^ + / „ • J <j(x) 

2- Application to Wilson loop operators 

States will be constructed by applying products of Wilson loop 

operators to the vacuum |il> defined as the state annihilated by the nor

mal ordered Hamiltonian and by all quark annihilation operators. All 

operators are defined at a fixed time. Paths are required to be con

tinuous on this fixed time slice. The action of the normal ordered Ham-

iltonian on loop states: 

S wis»iJ i a > 

can then be obtained directly from the canonical commutators. 

The commutator of the electric field with multiple loop states 

effects a functional differentiation with respect to the gauge field: 

E*(x> - -i - * — 
»A*(x) 

V 

From the representation of W[j»] in terms of A , commutation of E with a 

single loop produces: 
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[ £?(x),W{*J ] - Tr Cds d* ( s> : Ta(s) D[^] :6( ?(>) - x ) ?' ds 

The differential element of path dx has been represented by the gra

dient of a three-vector function f»(s) with respect to an arbitrary path 

parameter, s. The notation T (s) means the matrix T is to be ordered 

in the operator product as if it were at the point fi(s) on the loop-

Commutation of the full electric term gives: 

[ Tr (E a(x)) 2, W[jj] ] 

C Cds ds' (~^jp- ) • Ta(s) Ta(s') U[j>] : 63(x - p(s)) 63(x - s»(s')) 

+ 2 Cds -^r = Ta(s) UIj»] : oJ(x - ?(s)) Ea(x) 

Written in this form, it is evident that the electric energy operator 

distinguishes non-self-intersecting from self-intersecting paths. In 

the former case, the first term factorizes, after integration over x, 

to: 

2 
(T ) $ ^ ds ds' (-^) 6 J( 0(s) - ?(s') ) Wty] 

0 

The coefficient of W[p] is roughly the loop length times a two 
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dimensional delta function, refle:ting the zero path width. 

In the latter case, we use the identities: 

U(N): S ( T 3 ) * ( T a ) * - 5 * 8* 

The analogous i d e n t i t y for SU(N) has the same form plus a p iece of order 

1/N, which i s assumed suppressed. For a s e l f - i n t e r s e c t i o n at X d iv id ing 

2 
the loop in to c lo sed s e c t i o n s ( j». , ( < „ ) , a contr ibut ion to [ E , h' [ 0 ] ] 

i s : 

1 9>s d s ' I T ^ 6< *i<"> " '2< s '> > J S -s 1 ,s '»s 2

 W " l J W [ * 2 ] 

Thus the electric terra causes a splitting of Wilson loops at points of 
2 self-intersection. If E acts on a product of Wilson loops for paths 

which overlap, there will also be contributions corresponding to the 
Tr fusion of loops at common points. However, using the — convention: 

f- :Ta(s}U[i»1]; £ :Ta(s')U[„2]: - A ^ ^ [ ^ J U l ^ ] : 

it can be seen that fusion of loops will be suppressed by a factor of 

1/N relative to the other two types of terms. 

The magnetic energy term commutes with states composed of Wilson 

loops. It has the form of a uniform density of infinitesimal spacelike 

loops since: 
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where y is a small spacelike loop and the average is over all spatial 

orientations. In the expectation value of the magnetic term in a state 

F[W]: 

< a I F'[W] B*(x) 2 F[WJ | a > 

there will be contributions to the background, which will generally be 

absorbed in the normalization, and to correlations between states on the 

left and right differing only by factors of infinitesimal Wilson loops, 

suppressed by 1/tJ. The explicit contribution of the magnetic terms will 

not be needed for the leading order contribution to the expectation 

value of the normal ordered Hamiltonian. 

_3. Physical state space 

In order to define physical expectation values, it is necessary to 

dispose of the path dependence. This will be done by defining path-

averaged wavefunctionals for the trial states: 

|* > - D̂fil(»] *[(»] I a > 

with the inner product of state vectors given b/; 
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This definition retains the distinction between ordinary expectation 

values of Q.C.D. operators - such as Wilson loops - which may be unin

teresting because of their loop dependence, and the path averaging used 

to form coherent superpositions which are both stable and measurable. 

We assume the existence of a state | Q. >, the full vacuum, which is 

the minimum eigenvalue eigenstate of the Q.C.D. liamiltonian. The normal 

ordered Hamiltonian H is then defined with respect to this state so 
no v 

tha..; 

B „ o l f l > - tHQCD " V ' * > ' ° 

The gauge field operator structure of the full vacuum is left unspeci

fied. The full vacuum is naive Fock vacuum for fermions since fermion 

bubbles (strings) are always suppressed by 1/N relative to leading 

gluonic terms. Excepi where quarks appear as valence components in 

external states, they will be deleted from what follows. 

Excited trial states of the system are contructed by application to 

the full vacuum of valence loop space operators, averaged over paths. 

For exatL'le, a glueball centered at >: say have the form: 

I G(x) > - $*Dr>x[*] "1*1 I 0. > 

L 
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where the subscript on Dti centers the measure at x. Information about 

the internal structure of states is presumably contained in the measure 

over paths, with a different measure, in general, applying to each 

state. 

jt. Properties of the path measure 

If this method is to be workable, a measure should be used which 

enhances what are expected to be the dominant configurations in some 

limit - most likely large N. Although there is no rigorous theoretical 

reason to suppose that these configurations functionally resemble ordi

nary Wilson loops and fermionic strings, the geometric and group 

theoretic similarities between many physical hadron states and the bare 

string states of the strong coupling lattice lead us to attempt to 

absorb in a well-chosen path measure nonlinearities of the mappings from 

our original modes to the eigenmodes of the Hamiltonian-

The bounded measure Du[̂ J will be required to have the properties 

that, first, if n #.'s appear in the integrand, then: 

n 

i-1 

Secondly, the measure should be invariant under rotations and transla

tions of the paths appropriate to the symmetry of the state under 
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consideration. It can thus depend only on certain invariant coiabina-

tions of <f(a) and J' » which are the three vectors of the path posi

tion and gradient at the point s. Finally, we require that the set of 

measurable functionals include, in both the small coupling and large N 

perturbative form, <&|W[0] |£> and H W[p] for some types of loops. 

These conditions make all n-products of Wilson loop expectation values 

measurable, and from the factorization result for large N, expectation 

values of n-products of loops are also measurable. 

The class of allowed paths is naturally intimately associated with 

the allowed measures. Path configurations can affect singularities in 

the expectation values of Wilson loops and of HW[0]. On the other hand, 

D\i[4l may be chosen to effectively exclude certain configurations, such 

as self-intersecting paths. We can immediately dispose of the complica

tion of discontinuities in ^' ' by using the fact that smooth paths: 

C : [0,1] -* R 3 

CD 

3 

are dense in the set of continuous paths C (R ). 

There is some information available on the functional path depen

dence of < H|W[jJ] m >. Prom the small coupling perturbative form, we 

will get arbitrary order polynomials in the path gradient. Polynomials 

in the path separations aight be expected in nultil^op expectation 

values. A ueasure space over smooth paths which contains as measurable 

function all polynomials in <f and the gradient of # has a measure which 
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-{ts»,Bd] 
Dpl^j « D$* e 

B is a positive, 3 x 3 matrix containing no more than two derivatives. 

The symmetry of B determines the symmetry of the measure. The expres

sion on the right is the limiting form '̂  the product of Gaussians at 

each point s. on the loop. 

Using the perruruative information that loop expectation values may 

contain arbitrary oruer polynomials in only the path gradient, we choose 

a minimal form of the measure independent of Che path location. By the 

translation invariance of the measure, we can choose B so the Gaussian 

is diagonal: 

_ 1 ,d?i d ' i 
DfJm i n£i>(s)] - D0(s) e 2 (ds ds * 

If no i?|-dependence arises in the integrands, as is the case in lowest 

order electronagnetism, this measure is sufficient to produce Coulombic 

distributions. The perimeter dependence which arises perturbatively and 

which dominates configurations in Che abelian theory conCribute an 

effeccive measure of the form: 

i, ! 

r d s ,dsLisi, 
J ' a s 
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[91] This is subsumed by the free measure above since it is well-known 

that both effective actions are minimized along geodesies• The geo

desies in Euclidean space without sources present are straight lines, 

with sources and with the requirement of flux conservation we obtain the 
[921 usual Coulomblc distributions 
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IV. Variational Principle 

The possibility of making a reasonable guess of the approximate, 

form of the path weight suggests using a variational technique. 

^. General characteristics 

The principles of variational calculations in quantum field theory 
r 931 

are much Che same as those in quantum mechanics . The full Hamil-

tonian is presumed given in terms of the canonical variables. We take 

as the space of possible physical states the set of normalizable func

tional of the canonical fields (coordinate representation) or momenta 

(momentum representation) such that the Hamiltonian acting on this space 

is self-adjoint. A trial state of a particular structure is cnosen iron 

this space. Its fora is partially constrained by known properties of 

the exact wavefunctional, such as the fermion content, or expected pro

perties, such as similarity to the solution when some coupling is set to 

zero. An arbitrary parameter or parameter function is introduced in the 

structure of the wavefunctional so that variation of this parameter pro

vides access to a subspace of the state space. The expectation vale of 

the Hamiltonian gives an upper t •• d or the exact energy. Minimization 

of the tripl energy determines tl.e .̂ es': wavef unction of the pridi ated 

lorn. Trial excited states are chosen to satisfy the additional cri

terion of orthogonality to the ground state. 
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j2. Example in quantum field theory 

In quantum mechanical variational calculations, the trial state is 

usually parameterized in such a way that the minimization condition 

gives an algebraic equation for the trial parameter- Such a parameter 

in field theoretic problems may be required for each spacetime point. 

As an illustration, we first consider a field theoretic calculation 

which can be viewed as an extension of a quantum mechanical problem-

Gauge theories are not good examples in this regard because of their 

inherently extended character in the strong coupling regime* It is 

simpler to work in a theory having weakly bound composite states so the 

coordinates of the coordinate representation retain their pointlike 
[941 4 

character* Therefore, following Barnes and Ghandour , consider (* -

theory in four spacetime dimensions* lie corresponding quantum mechani

cal problem is that of an anharmonic oscillator, which in one spatial 

dimension has the Hamiltonian: 

H(p-q) • Y + ^ " " i ^ o q 

2 The space of states is L (R) with an inner product: 

<*!l* 2 > - $"dq*}(q> * 2<q) 

When A is zero, the exact, nor allied solution is the Gaussian; 
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± _UJ 2 

*o«> " # * * 2 q 

A possible trial solution is a Gaussian with an unknown, oc(uj,A), sub

stituted for UJ. The trial energy is then: 

c< oc' oc 

2 •» 
4 4tx , 2 

and the equation for alpha coming from &E « 0 is: 

6A 
oc / 2 2 S 

(oc - ui ) 

The field theoretic calculation is done in the Heisenberg represen

tation with sll states and operators defined at a fixed time. The coor-

dinate (0) space representation of the 0 Hamiltonian: 

-= C d 3 x ^ - - ^ 1 + j ( v 0 ( x ) ) 2 + - ^ 0 ( x ) 2
+ ^ 0 ( x ) 4 

O-0(X) 

has the same structure as the anharmonic oscillator Hamiltonian with the 

substitution of j»(x) for q, -ivrf, ^ for p, and the addition of the gra

dient term. State functionals in the coordinate representation are 

denoted by: 
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*•!#] - < * I i > 

< *(x) | j*(y) > - 63(x - y) 

with an Inner product defined: 

< *jl* 2 ) - £DJ({X) *I[(»(X)] *2[i»(x)3 

Allowable >Hs»]'s are those which are square integrable in the Wiener 

sense; if's inside the functional integral are treated as classical 

fields. 

The variational problem is set up as before by first noting that 

the A-0 vacuum solution can be written: 

Q.oW - H f e 
£d3x d 3y *(x) fQ(x-y) *(y) 1 r,3 ,3 

2 

3 2 2 2 with f (x-y) - 6 (x-y)(-v +m ) the analogue of u> A trial vacuum state 

is now chosen to have the same form: 

0. [*] - N e g 8 
-| <JVx dy ?(x)g(x-y)*(y) 

3 2 2 with a trial parameter function g(x-y) « 6 (x-y)(-v +a) • The same 
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results would follow from the more general choice g(x-y) « 6 (x-y)glT j. 

The expectation value of the Hamiltonian in this state is: 

E « °3C0) (CJ-B- , i + IP 2 + "2>i 
6 8 l ) g(p) ' + 2. , J 

g 00 

2 
) J , A S3(0) f r _ d j . 

8(2„) 3 ^ *<*> 

_1_ 
>(p) - (p2 + a ) 2 

Minimization of the energy with respect to the parameter a produces the 

equat ion: 

2 ^ A_ r d3p 
a •= m + — k — j - c ~ 

4(2„) 3 •> «(P> 

The interacting vacuun wavefunctional has the form of the free vacuum 

with a new mass u « \Ja. For comparison, consider the renonnalized mass 

found from ordinary perturbation theory by summing all nonoverlapping 

bubble diagrams. The contribution from each bubble is, up to a factor: 

dp d p 
2 2 2 p + p + m 
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, 2 ^ 2,2 (p + n> ) 

and the sum of all bubbles produces: 

2 2 A 
B 2(2n) 4 B 

which is the same as the variationally determined corrected mass. The 

coupling is unaffected. 

Both the nature of the correction - improvement of the propagator -

and the form of the renormalization - a sum of disconnected bubbles -

follow directly from the assumed form of the vacuum wavef unctional. 

This has the advantage of permitting the choice of the wavefunctional to 

be dictated by the desired sensitivity to a particular measurable func

tion, but it is disadvantageous in that the results are more or less 

predetermined. The correspondence between variational renormalization 

and standard perturbative renormalization does not folJow a fixed pat

tern. The assumed form of the vacuum wavefunctional is not sufficient, 

for example, to produce the lowest terms in the renormalized coupling. 
[94] 

Using a bound state wavefunctional or an effective potential , cou
pling renormalization occurs but with peculiar consequences: stability 
of the bound state seems to imply a repulsive renormalized coupling, in 

the former calculation, and in the latter, the coupling looks like (but 
4 is not quite equal to) the leading order M coupling in an 0(M) $ 
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theory* These problems may be circumvented if four-point correlations 

are included in the trial vacuum. 

Nevertheless, there seems to be nothing intrinsically wrong with 

the use of the variational method as long as its limitations are under

stood- It will not be relied upon here to produce a complete set of 

equations for renormalization, analogous to the boundary conditions in 
4 the covariant formulation. The key assumption in the 0 example was the 

form of the vacuum wavefunctional- It nay be equally effective to 

assume a functional form for expectation values of operators especially 

in cases where these factorize to leading order. The vacuum variational 

calculation may then be avoided and one may pass directly to excited 

state calculations. Since renormalization must presumably be carried 

out on the level of the loops themselves, it is feasible that, we need 

only consider finite, physical parameters as coefficients in the pa':h 

space measure. 

2- Path space version 

The path degree of freedom in the gauge-invariant formulation 

introduces additional possibilities for the use of variational con

structs. The Wilson loops as coordinate functionals can be used as the 

arguments of the wavef unctional, analogous to the use of the j* fields in 

the example. In addition, wavefunctionals of the paths, of unspecified 

operator origin, may be introduced. 

In the former method, it is not supposed that only a finite number 
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of Wilson loops are present* The most general wavefunctional which 

should be considered has the form: 

n co 
5 [WJ - C n Dfi[*.] i II*. • • • 0 ] W[* ] • • • »ld] 

"'i-l i n-0 * n l n 

The inner product in state space is defined: 

( Sjl"]. J2IW] ) - £ D W * [ * ] DW[tf]i|[W] i2[W] 

The functional integration over the loop operators is necessary to cora-

pensate for an ignorance of the actual expectation values. To measure 

the energy, we must require that the Hamiltonian acting on a state of 

class |, however that is defined, gives another element of the class so 

that the expectation value of H makes sense* The general conditions 

which the class of wavefunctionals must fulfill can be gotten directly 

from the W-operator form of the Hamiltonian* The procedure for defining 

the Hamiltonian operator on this space of functionals of the Wilson loop 
[95] was described by Sakita . For any particular choice of trial 

wavefuntion, it is a matter of taste whether one chooses to use this 

formal definition or not* It is entirely equivalent to use the explicit 

commutators* 

An alternative way to construct the trial wavefunctional Is to 

incorporate variational functions in the measure over path space* This 

certainly seems the most economical for the heavy meson trial states. 
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Trie re will be dynamical path dependence coming from the actual calcula

tion of expectation values of Wilson loops, but one may use the varia

tional path dependence to simulate higher order corrections. The Hamil-

tonian could be formally expressed as an operator on the space of path 

functionals , which has been done in the preceeding section for the 

electric term acting on a single Wilson loop. For a general wavefunc-

tional, and in particular for the vacuum, it is necessary to consider 

also the magnetic term. The expression for this term as the limit of a 

functional in loop space was displayed in Section II. It is not neces

sary to express the iiamiltonian as an operator on the measure since its 

action on Wilson loops is known. The key assumption is that the 

wavefunctionals depend on paths only through the loop operators. One 

should choose a trial measure such that, for the class of Wilson loop 

functionals desired for state space, gives again a measurable function. 

Since the action of the Hamiltonian, to leading order l/li, is effec

tively multiplication by either Wilson loops or simple functions such as 

loop length, the criteria for the effective loop measure are straight

forward. They will be discussed in more detail in the next section. 

It will also be seen that in the leading order strong coupling and 

1/N expansion, the Wilson loops decouple* In this case, it is entirely 

equivalent to assume a form for the vacuum expectation value of the 

loops as to assume a form for the trial vacuum, as it should be required 

of the trial vaccum that factorization occurs to leading order. It is 

then straightorward to perform a variational calculation using the 



70 

measure over paths as the trial wavefunctional as the Wilson loops them

selves have been eliminated in favor of their expectation values, which 

are assumed explicit functionals of the paths-
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V. Trial Meson Wavefunctional 

The ideas and approximations of the preceeding two sections will 

now be applied to a rough variational calculation of a heavy, color 

singlet, quark-antiquark bound state wavefunctional* 

_1. Heavy quark meson 

The valence composition of a meson is the minimal set of quarks 

whose additive quantum numbers give the quantum numbers of the meson. 

The valence wavefunctional of a model meson in the loop space formula

tion is defined analogously as the minimal gauge-invariant state with 

the appropriate quantum numbsrs, including net ferinion and antiferinion 

number at separate points. The valence meson wavefunctional is given by 

the fixed-time state: 

I « ( x > y ) ^ - ^ H W <+(y> u
( x , y ) W q ( x ) l a > 

The form q (y)q(x) is abbreviated notation for a general quark-antiquark 

bilinear with Lorentz and additive quantum number structure also 

expressed minimally. We assume that the vacuum and the bound state are 

such that heavy bound quarks may be treated as free fields, so that we 

may define spinorial raising and lowering operators such that: 
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b(x) | a > - d(x) | a > - o 

and if | M > is a physical meson state, then: 

< M | b^ d + | 11 > -| 0 

for some i,j- The b's and d's satisfy the canonical anticommutation 

relations. 

The string measure du [0] has the general properties discussed in 

the previous section with the modification of boundary conditions that 

the strings end on the color charges: 

0[Q] - quark position 

(•[1] - antiquark position 

There are more substantive changes due to the dynamics of the massive, 

charged endpoints such as the enhancement of longitudinal modes due to 

radial oscillations- A meson string may be more likely to break into a 

q*q pair because the longitudinal modes, which are coupled to the quark 

current, are enhanced by the axial geometry of the meson. 

With the restriction to heavy quarks in the ground state of the 

meson, the endpoints will be fixed to lowest order approximation- The 

notion of heaviness may be made more precise by defining it as a large 
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ratio between the free quark mass and the energy scale at which confine

ment sets in, roughly determined by the measured parameter A setting the 

scale for the falloff of the coupling: 

2 
g 2(q 2) - log"2 (*-) 

A minor problem with this choice is the ambiguity in the value of A 

because of possible higher twist contributions. 

Alternatively, the large ratio could be required between the quark 

mass and the coefficient of the linear potential A in spectral fits. 

Since (j.C.D. has no intrinsic scale, these two dimensionful quantities, 

A and A, are related in a way fixed by the theory, although not yet cal

culable. The linear potential measures the quark - antiquark binding in 

the radial direction and the meson radial oscillation frequency is on 

the order of this binding energy. The relevant inertial frequency comes 

from the quark mass. Heavy quarks, by these definitions, can be con-
. 6E 

sidered static in the ground state to order —"—- or — — where 6E is a 
tv \ 2 M „ r 

(V q 

typical radial excitation energy splitting. 

The normalization condition for the meson wavefunctional will, 

under these circumstances, provide a relation between string and loop 

measures. At each order of approximation, we require that: 

1 - Cdx* dy* <H. . ,.| A. .> 
J (x ,y ) (x.y) 
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- $bp[*j] Dpl^j < &l ^•TrU*(^1;x,y)U2(j(2;s,y) |& > 

where the subscript on the loop measure constrains it to paths passing 

through the points (x,y). The trace over the left and right strings 

producing the Wilson loop came from the fermion anticommutators. Hen

ceforth, we will implicitly use the 1/N-consistent definition of the 

trace so that vacuum expectation values of Wilson loops as so redefined 

will be written simply as: 

< ui £ tru[(«) |a > - < a\ v w in > 

In the more general case in which arbitrary numbers of fermion - anri-

ferinion pair"? (sea quarks) appear in U , the righthand side is a sum 

over products of Wilson loops. 

2^- Action of H on minimal meson 

The operational Schroedinger equation for the ground state meson 

has the form: 

2 
I Cdx I fjT(E^(x))2 +- J i

2-<B^(x)) 2 + q"\x)< o e ^ + M )q(x) J - E ^ | M > - 0 
2g 

Note that the covariant derivative in the quark part has been replaced 
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by the ordinary derivative which gives the proper action on the quark 

fields within an extended gauge invariant wavefunctional. We are 

interested in the energy of the meson above the vacuum so we replace E 

by E + E . Using the valence form for the meson, which commutes wi 

a 2 B.(x) , and the strong vacuum condition: 

th 

[ V D - E O ] la > = o 

W2 get the simplified equation: 

0 - [ H - E , ] |M > no ri 

2 

+ [ q+(x)( oc1vi + m ) - ^ — - E M ]>1 Ul > } 
dq (x) 

The kinetic quark terms are, as mentioned above, suppressed by factors 

of 1/M relative to the mass term. They may be comparable to the gauge 

field part of the energy even in the ground state• However, as we are 

interested in determining the flux distribution rather than radial 

oscillatory modes, the will be dropped. Subtracting the quark masses 

from the ueson energy now gives an expression for the contribution of 

the string to the total energy of the fens: 
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We would like to further decompose the effect of the Harailtonian in 

order to isolate leading order contributions which are sensitive to 

0. - 0. correlations. To do this, rewrite the expectation value of the 

electric commutator in symmetrized form using the identity: 

<fl| Tr u|[E2,U2] |JQ> - <H\ Tr [uj,E2]U2 |fl> 

<H\ Tr[U^,E^][E^.U2] |At> 

-, | «ill Tr E*U*[E*,U2] + Tr[u|,E^]U2E^+ Tr[u|,E*]E*U2 + TrUjE*[E*,U,,] |ii>> 

Now us that fact that under the combined charge conjugation and time 

reversal operations, the gauge fields are unaffected and electric field 

changes sign. A typical (n,m) -order term in the perturbative expan

sion of the commutator has the form: 

A • • .AfE2(x),A* • • -A* )] -I n m l 

n m 
(i 2 (A...IA.J..A A' ..[A*.]..A')6(x-k)6(x-k')] 
k-lk'-l * * n m k 1 

+ 4 * [A...A A* . .[A#
t ]..A'E{x) + E(x)A_..AA' ..[A*.]..A* ]6<x-k) 2. | I n m k 1 l n m K m 
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where spatial arguments and group matrices have been sjpc es;.»d and 

square brackets around an A indicates absenci of th r C L , : , the pro

duct. The A*s are ordered so that their indices increase is their argu

ments range on the path from j»[0] to ^[1]. The CT i^.ariance of the 

vacuum implies that the vacuum expectation value of any oper^ r 0 

satisfies: 

<ai o \&> = <a\ i(cx) ^ ( C T ) ] " 1 " iii> 

Now using the symmetrized expression for the expectation value of -he 

Hamiltonian, it can be seen that, order by order, terms involving a sin

gle commutator of E. with the string functional can be paired so that 

the combinations, such as: 

<U| A, . .A A' . . A ' E(x) |.Q> + <al E(x)A' . . A ' A . .A , |J2> l n m l m i n i 

undergo a change oC sign under 0-*[(CT) 0(CT] . He have also made use 

of the symmetry in ;he integration over paths under interchange of t_he 

dummy path labels I and 2. The single commutator terms are therefore 

zero which can also be seen ty using the transformation property ')f the 

U.'s under CT: 
l 

[(CT)_1U(CT)]+ - [U +]* 
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and: 

l(U)*,E*(x)] - - (U,E*(x)]' 

The star indicates complex conjugation. The symmetrized single commuta

tor terms such as: 

< U\ Tru|[E(x),U2JE(x) |£ > 4- < Q.\ TrE[uj,E(x)]U^ \H > 

thus transform to: 

< Q.\ TrE(x)[(U2)*,E(x)]U* |U > + < IllTrdJ^'Vcx) ,U*] E(x) \Q. > 

l< a\ TrE(x)[U2,E(x)]U1 |il > + < H| IrlU^EfxJlU^x) |U >]' 

but the symmetrized sum is also real so it vanishes. The surviving 

piece of the energy is: 

< U| Tru|[E2(x),,U2] |i > - < ill Tr[u|,E^(x)J[E^(x)rU2J|a > 
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J. Estimate p_f < U j W(^j | il > 

This expression, although formally exact, will only be useful if it 

is possible to obtain at least an approximation to the explicit path 

dependence of the full-vacuum expectation value of the Wilson loop- The 

Wixson loop in sourceless quantum electrodynamics can be evaluated 

exactly. Photons have no self-interactions and satisfy the free, zero 

mass Klein-Gordon equation b & A. - 0 in the radiation gauge, 

A • 0, v A - 0. The full set of solutions can be represented in a 

plan., wave basis by: 

3 
V * ) " ^ d k i ^(k.A) [a(k,A)eikx + a +(k,A)e' l k x] 

la(k,A),a + (q,p)] - 6 63(k-q) 

K.k. 
I *.(k,A) *.(k,A) = 5< . - - ^ 
A 1 J i j k 2 

The Nth order term in the expansion of the vacuum expectation value 

of the Wilson loop: 

<0| J d x ^ d x ^ - . ^ d x N A 1(x 1)...A N(x N) |0> 

is given by the Wick expansion for a product of N gauge fields: 
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N 
N 2 

<0| ft A (x ) |0> - 2 n U (x -x ) N even . m m . , „ , , . . an a n a>"l n(N) (m,n- l ) 

- 0 N odd 

where D (x-y) in Euclidean space i s : 

<0| Al(x) A <y) |0> - J H V T < 5 i i - ^ ¥ > e " i k ( X _ y ) 

J J (2n) (k. + k ) J k' 

or the t-»0 limit of the free propagator. The abbreviation n(N) is the 

instruction to sum over all distinct permutations of the N indices among 
N the — U 's- The integrand does not distinguish among the arguments 

since D.(x-y) - U (y-x) 

The ordered integration over the N x 's can be converted to N 
m 

independent integrations by averaging over the N! permutations of the 

variables. The sun over permutations I1(N) is now redundant, giving a 
(N') N 

factor of —f '— for the number of ways to group N indices into -r 

indistinguishable pairs. The net result is that the vacuum ev.pectation 

value of the abelian Wilson loop In the absence of Interactions is: 

(-e) 2 N rr 1 
<0\ W[f] |0> - l - ^ [<Xdx.dy. D (x-y)]* 

(S even) -5 ,. Jf J J 

2 2 (f)< 
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< ¥ ^ d X i d y j D i j < X " y ) J J d x ^ Dt 

Using: 

dk.d k k.k. . . . . , 6. 
f> f « _ _±J.^ ik(x-y) _ 3 y _ 

,2 ,2 t D i j ,2 ' e U . . 2 
k + k J k (x-y) 

gives for the double integral around the path: 

$K î —S s p ^ I d r -i 
# (x-y) (j») r 

r ; (x-y) 

P(0J - loop perimeter 

Now let A be the momentum space cutoff so that r - A : 
min 

3e 2 

<0| W[f»] |0> = e 

which shows the origin of the perimeter dependence in the Wilson loop in 

QED. 

When interactions are included, we expect the bare coupling to be 

replaced by the renormalized coupling but the perimeter dependence 



should persist- The argunents for this are, first, thai the renorwi-

lzed coupling at large distances Is small so large Wilson loops should 

be calculable perturbatlvely. Secondly, area dependence could only 

arise through intermediate interaction with charged particles. If these 

propagate over large distances, e.g. between distant legs of the loop, 

they should behave like free particles and their effect will be damped 

exponentially in their mass. At shorter distances, they only contribute 

to the renormalization of the photon propagator from which they arose. 

The assumption of confinement will be expressed as an ar.&atz func

tional path dependence of the vacuum expectation value of large scale 

Wilson loops. In particular, we assume the functional W[0J Is dominated 

by: 

_1 

- A W | f ( t ) - j » ( l - t ) | 

< G|W[j>]|fl. > -* WQ e 

for loops with diameter: 

max | 0(s) - *(s+t) | 
t 

large relative to typical inverse bound state masses. This is the usual 

area law with a specific representation of the area chosen to conform to 

the notation used in the path measure- The parameter X reflects the 

coefficient of the linear term in the nonrelativlstic potential models 



or the rtcg£c slope In dual string theories. It is presumed fixed by 

another calculation or by phenooenological fits. 

j4. Reduction to quantua mechanical form 

The ansatz functional form for the dominant infrared behavior of 

the Wilson loop in the full vacuum will now be inserted in tin- path 

space integral with a trial measure. We choose tne minimal uaussiac 

form described ir, -rtion III with an additional term m : r.r ex, :.tnt, 

quadratic in the patli parameter $l(s), weighted by a /^national parame

ter 3: 

-Cds i (^)2
 + f,(s)r 

Df,slf) - bf(s, e J 

The choice seems natural as it is the simplest, axiaHy sycim-1ric func

tion of the only other vector in the problem. Ii the minimal term has 

the effect of damping paths wiiich are too convoluted, the variational 

terra in this context tends to suppress even fairly smooth paths which 

stray too far from the origin. The origin with respect to which (<(s) is 

measured will be fixed by the geometry of operators within the func

tional integrand, in this case the meson string. 

We choose a particular parameterization of the string, identifying 

s with the coordinate z lying along the meson axis. The quark shall be 

located at the the origin and the quark-anti. k separation is a fixed 

constant R. The functional, — — , is replaced by — — for i-(l,2), and by 
ds dz 



a constant for 1-3- Tali constant need not be retained in the aeasure-
2 The |?| tera In the measure Is defined relative to the z-axls *o z will 

only appear as a parameter of the path and not as a functional. This 

should be a good paraaeterlzatlon for strings long enough so that end' 

point effects do not significantly Influence the quasi-free gluonic 

modes. 

The z-paraineterized form of the measure Is thus: 

2 2 "2 9**1 l ( - ^ z — > + Wl" ] 

n CUKUJ - n U . d , ) e 
1-1 V i-l V 

We now have a distinct parallel between this method of path averaging 

and a Euclidean, quantum mechanical Feynroan path integral. Used on a 

meson wavefunctional in normalized coordinates, the Integration is sub

ject to the endpoint constraints: 

/(0) - 0 and /(l) - R 6 1 3 

The path vectors <f must be continuous in z and can be taken to be infin

itely differentiable. Subject to the endpoint constraints, the path 

position and its gradient can be independently varied, and the path 

measure will be peaked about path configurations 0(z) which minimize the 

exponent. 

We can thus make a formal identification between the average over 



path* of general patu-depcndcnt yCD expectation values and the Euclidean 

functional integral over representations of these expectation values as 

operators in a two plus two (spatial) diaensional quantum mechanical 

theory. The fact that the functional* d (•) , ".' have a one-dimensional 
ds 

argument, s, makes this a quantura mechanical rather than quantun field 

theoretic functional integral. The exponent of the measure is the 

pseudo-action of the theory: 

S - <Jdt L [q(t).q(t)] 

\r . 2 ? 
= -\dt I q(t) + (iq(t) 1 

The canonical coordinates are: 

q 1(t) <-* («1(z) 

and their conjugate momenta, defined as ;—, are: 

P v > ~ ^ F 

The assumption above of z-independance of the measure is equivalent 

to requiring that the pseudo-time axis is defined so that the pseudo-

Lagrangian (the integrand of the z integration in the exponent of the 

measure) contains no explicit z-dependence. The expression for the 
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j». - <f? correlation dependent form of the energy expectation value 

includes a three-dimensional delta between the ?.'»• This constrains 

the integration over the two paths to a single value of the parameter z-

Both canonical coordinates, ft and ft , are then defined with respect to 

a unique effective time variable- Hence we can construct an operator 

whose eigenstates, independent of z, minimize the exponent- The quantum 

mechanical riamiltonian corresponding to the minimal measure is: 

i J-
H * 2 ( , 21 

dq 

and for the t r i a l measure we have a harmonic o sc i l l a to r Hamiltonian: 

H'CjJ) - H ° + f l q 2 ] 

The variational coefficient 8 is identified with the squau of the 

oscillator frequency. If QCD opertor expectation values introduce only 

polynomials in j» and f, as in perturbation theory, the corresponding 

path average is just the expectation value in a plane wave or harmonic 

oscillator state of polynomials in q and q. 

However, expectation values of Wilson loops generate exponential 

functions- Even for weak coupling, i.e. for small or abelian loops, w 

get a factor of e v . These sorts of terms modify the action 

since they affect the saddi point approximation. The perimeter law 

induces a trivial modification of the pseudo-Haniltunian - a constant 
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snift in the canonical momenta. A similar conclusion applies to 
1 2 exponentials in q or q • He will consider the perimeter dependence 

ignorable at the level we are calculating. 

The area law, on the other hand, adds a definite interaction term 

in the pseudo-Lagrangian. In the calculation of operators involving 

large Wilson loops, there will be an additional piece in the exponent 

proportional to |0.(s) - ji„(s)|. The functional form of the area law 

for a long Wilson loop W(0 UJ? ] having sides along string paths j» and 

jj, will be chosen, in the z-parameterization, to be; 

-A <J"dz ! J S J U ) - 5* 2(z) I 
< ii. | W[j»1uj»2J i it > = W Q e 

This is consistant with known properties of the Wilson loop. Since the 

iiianchi identity for the Wilson loop says that all surfaces spanning the 

loop are dynamically equivalent, the representation of the area as the 

fixed-z distance between opposite sides of the loop introduces no new 

assumptions. Because the meson axis selects a favored direction and the 

static quark-antiquark separation introduces a length scale, the origi

nal reparameterization invariance becomes irrelevant. 

The resultant form for the expectation value of the Hamiltonian is, 

in functional notation: 

2 $• d?i dS» 2 ? 
\ Cdz ^DfJjU) Dj.2(z) < [ ^ - - ^ + U 6 (CjU) " S>2(z))> 
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X exp -$dz -i (-j^) + | (^) 2 + A I ^ U ) - S»2(z)l 

At each value of z, the pseudo-Hamiltonian corresponding to the pseu-

doaction which has the simple form: 

V" - I [ 7 ^ + 7 ^ 2 3 + - K 2 + i 2

2 ] . + ^ i - q

2 ' 
dq 1 dq 2 

We define quantum mechanical wavefunctions 4'f.(q,>q-) which are 

eigenstates of this Hamiltonian in the (q.,q.) coordinate space 

representation. They are required to satisfy the usual conditions of 

finiteness at the origin and normalizability' Normalizability in this 

context guarantees conservation of the color electric flux passing 

between the colored sources endpoincs. The pseudotime (z) evolution of 

the wavefunctions is given by the exponential of their energy. 

The functional expression for the expectation value of the Q.CD. 

Uamiltonian can then be translated into the quantum mechanical expecta

tion value of an equivalent operator, in a state which maximizes the 

flux weight at every point z: 

v * v 6 2 < « i - « 2 > i * ! ^ + i 1 ' v 

The variational probleu which we wish to solve now requires the solution 

of the pseudo-Schroedinger's equation, which we proceed to do in the 



89 

next s e c t i o n . 
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VI. Reduced Variational Problem 

_1. Separation of modes 

We seek the eigenstates and spectrum of the trial quantum mechani

cal Hamiltonian which describes the dominant mesonic string configura

tions in our approximation. The appellation pseudo-Hamiltonian is 

dropped in this section. When referring to QCO quantities it will be 

made explicit. 

Define a new set of two-dimensional variables (vector indices 

suppressed): 

q « — (q, + q 2) 
\j2 

1 r * 
r - — (q, - q,) 

M2 l i 

Schroedinger's equation in these coordinates has the form: 

2 2 
A 2 A < 

dq dr 
I- j(fj + -Jj) + | (q2 + r2) + A |r| - E J *p(q.r) - 0 

which can be separated by substituting: 

*,(q.r) - X(q) *<r) 
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E, - £ + E p q r 

The full spectrum for the q-equation is known since it describes a 

cwo-diaensional harmonic oscillator- We will only be oaking use of the 
2 lowest state. Redefining j} as 111 , the normalized ground state q-

wavefunction is: 

1 "J _2 
X (,) - O 2 e" .2 _ 2 q 

with eigenvalue t « u> 

The r-equatior. has the form: 

2 
[ - j - ^ 2 + | r 2 + A | r | - E j *<r) - 0 

dr 

The problem of a two-dimensional Schroedinger equation wich a linear, or 

a linear t.us quadratic, potential is not exactly solvable. In the con

text of the quark-antiquark bound state, the coefficient of the linear 

term is a fixed physical parameter whereas the quadratic term has been 

introduced varlationally. There is no initial information on their 

relative size so ordinary perturbation theory, which would assume 

A « uu, may not reveal a true "best" action with ui « A- Experience 

with other problems indicates a variational calculation with a trial 

Gaussian wavefunction may not suffer a similar defect despite assuming a 
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form close to A - 0 solutions. However, it would be desirable to have a 

cross-check on the variational result and, if possible, a technique 

capable of producing higher order corrections* 

2- Quantum mechanical _l/ti expansion 

Such a technique, recently developed by Mlodlnow and Papan-
[971 

icolaou , expresses the spectrum of Schroedinger's equation in arbi
trary spatial dimensions d for potentials of the form 

V - — ui r + u Ar", -2 < u < a>, as an expansion in a parameter 
2 -1 

x <* 2[d + 2L] where L is the total angular momentum eigenvalue. 

Their method in d » 3 reproduces earlier results on the Coulomb ( r~ ) 

and anharmonic oscillator ( r ) potsntials. The accuracy of their cal-
2 culations for L » 0 states ( x « 2/3 ) shen compared to kr->wn exact 

solutions indicate their expansion nay be generally good, even for 
2 fairly large x • For the ground state in the two-dimensional case, 

2 x » 1. An explicit calculation of the spectrum, however, reveals that 
2 

the 0(x ) term is about an order of magnitude smaller than the leading 

term over the entire range of parameters. Furtheraore, the ground state 

energy is manifestly lower than the energies computed using ordinary 

perturbation theory or a trial Gaussian waverunction. 
2 The Mlodinow-Papanicolaou (MP) x -expansion is based on the 

fftDl 

Holsiein-Primakoffl representation of the general spherically sym

metric Hamiltonian: 
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H - - - | v + -| u i Z r 2 + (j ArP 

1 d .d 
i -1 d x i d x i * * 

r - x ^ 

Change variables to the 2d Heisenberg operators: 

"i " \f? x i + 1 = P i 
\I2S1 2a. 

+ a i 
• i - * " i - - S ; p i 

with uiundetermined at this point- The Hamiltonian: 

4ai 4uu 

+ p A(2ii0 U ^ + a*a+ + ( a ^ + •i^)l 

+ + + + is a function only of the coablnations 1.1., a.i., and (a.a. + a.a.}, 

reflecting the 0 (3) syaaetry< If we define a new set of operator*: 

file:///I2S1
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A - -| « i. i 

.+ 1 + + A - j V i 

2 B - K ' i + v̂  

computation shows they satisfy the commutation relations: 

[ A, A + ] - 2B 

[ A, B ] - A 

[ A +, B ] - -A4 

We thus have a representation of the S0(2,l) algebra. The Casimir 

invariant S 2 of S0(2,l) is related to that of 0 +{3), J , by: 

S 2 - B 2 - |l AA +
 + A +A ] - ̂  + |t| - 1] 

2 where J • L(L + d - 2). Therefore: 

S 2 » k(k - 1) 

vith: 
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" " i < L + ! > 

By restricting to a fixed L (hence fixed k) subspace, the operators 

A, A , and B can be represented by a single pair of Heisenberg operators 

(p,B ) via the relations: 

A - 2k \|l + x 2p +B xp 

A + - 2k x p + \|l + x 2 p + p 

2B - 2k (1 + 2x 2 p + p) 

2 - 1 + 

with x - (2k) • The usual commutator [ 3, ii J - 1 reproduces the 

correct S0(2,l) algebra. 

If we set A - 0 and ui - in , H,(p,p ) has the form: 

x 2H L(p,p +) - (1 + 2x 2p +p) 

[98] which is the Holstein-Priaakoffl J representation for the unperturbed 

haraonlc oscillator- The normalised p-Fock space states (n>, are In 

one-to-one correspondence with haraonic oscillator states [2n + L;L>; 

i.e., the solution space has been decomposed into a sun over fixed-L 

Fock spaces in which the (round state has priciple quantua nunber L. 
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The perturbed Hamiltonian (A l4 0) could now be expressed .as a power 

series In x, expanding all powers and roots by the binomial formula. 

The lowest order nonconstant terus, however, are proportional to Q and 
+ 2 +2 + 

p , and the next order terms Include p , p , and B p. There is no 

simple interpretation of this truncated Hamiltonian. Instead, a canoni

cal transformation of U (3, p ) Is first performed: 

H(p,p+) - U«r) H(p,p+) U +«r) 

where: 

1 * + > P - crp ) 
li(«r) « e 

corresponding to a shift in the operators: 

a _ » . + f . p + S 

* * 

Now when we carry out the expansion In x> the parameters o and ui can be 
+ 2 +2 

chosen so as to eliminate the nonharmonic terms p, p , p , and p , to 
2 order x • 

The final form for the Hamiltonian is: 
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2x r i H 

+ 2ttc2p+p + 0( x 2 ) 

with the following defining equations: 

2 2 2 c » 1 + er » cosh f» 

H - ffl e * 

M 2 . ^ 2 - ^ ^ * 2 ^ ^ 1 ^ 

c* . 1 + (2-p) fan2 - M 2] 
4M2 

The problem of determining the spectrum for any d, L, and u has thus 

been reduced to solving two algebraic equations• Higher order correc

tions are computed using standard nondegenerate perturbation theory• 

_3. Two-dlmensional linear potential 

For the Hamiltonian of interest, we set p •« 1 to get: 

X 2 H L - a i s - 4 + i » V - i ) i 
M 
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2 2 + 2 
+ 2Mc x f> p + 0(x ) 

where ii i s g iven by: 

J. 
M « - | [y + (2y - l ) 2 ] 

4 2 i 
y - [ l + ^ f - 3 2 

u 

-nf^i^) 

" I T 17 I 1 

1 
3 

] 

The ground state energy is given by the constant terns in H , 
L> 

denoted by E„, and the coefficient of the quadratic terra gives Che level 
2 spacing. To compare the different order-x terms, we look at two 

extreae values of the ratio of the quadratic to the linear teras in the 

original Haoiltonian* First, for the case where the quadratic term dom

inates, we define: 

6 . - ^ 3 ^ ^ 



and expand E_ for snail 6: 
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E 0 s at I 1+ 25 - -| 8 2 + ...J + x2ui {-j + -^| S 2 + ...] 

For the complementary case of a dominant linear term, define a small 

parameter: 

giving an + - expanded £. of the form: 

E Q s 3 A 2 / 3 t 1 +\ * + ..-] +x 2A 2 / 3[(\|3 - 2) + C ^ ^ ^ ) * + •••] 

2 
The order-x pieces in both cases arc inherently smaller than the lead
ing terms: by a lector 76 in the first instance and by a factor 0.089 in 
the second* The latter is particularly surprising since it persists 
even for u*-*0, or the pure linear limit. 

The small A expansion can be compared to the energy calculated via 

standard perturbation theory about a harmonic oscillator vith fundamen

tal frequency u> The lowest order ground state energy and wavefunction 

are: 

Ep - m U + \ A"V 2 / 2] + o(A2) 
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* (r) - # > 2 e 2 

P " 

In terras of the parameter 6: 

1 
E„ - u i [ l + -2JJE. 6 2 + 0 ( 6 ) ] "p - " H i T

3 3 / 4 

2 
so that the lowest order MP correction is 1.13 6 times the lowest order 

perturbative correction, indicating more rapid convergence. 

If, on the other hand, UJ is the small parameter, H_ » - -z + Ar is 

not solvable so perturbation theory is not a good technique. A workable 

variational wavefunction os a Gaussian of undetermined frequency w for 

the ground state: 

i * 2 
w 2 ' r 

w Kn 

Minimizing E • <•£ ]H[i- > with respect to w gives a best value w f ) which 

is the solution of: 

w 2-o. 2-i\*A» 2 

and 
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0 w 0 

Since w Q satisfies the same equation as M with the replacements of A by 

•x \|n A, and since: 

w>0 

W0 l ^ O , , , 2 , ^ 
w o 

• \± have E < HL._ to order x . However, the next order term in the MP 
w0 ™ 

2 expression is negative. When it is Included and x is set equal to 1, 

this inequality is reversed. In particular, we have the following 

expansions when 6 « 1: 

V m £ 1 + * 6 " ^ 6 2 + 

E a p = u . t i + | 8 - ^ 5 2

+ . . . J < E W Q 

and when * « 1: 

E s A [2.68 + 0.84* + • • • ] 
0 
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EMP S A 2 / 3 [ 2 * 7 3 + °' 5 1* "••••• ] i Ew 

4 -2 
Corrections to EL,- to 0(x ) can be shown to be down by about 10 so 
these inequalities persist* 

jt. Detennination £|_ variational parameter 

Returning to the original problem, the calculation of the expecta

tion value of the partial (J.C.D. Hatniltonian in the transverse flux mode 

ground state, we wish to evaluate the following quantity: 

2 2 

dq dr 

|*(0)| 2 (1 -UJ) - Cd2r 52(r)[ /(r) - ^ •f(r) ] 
2 

dr 1 

d 2 
both -f" (0) and <)t|—r{^> are functions of the variational parameter u> 

r dr 
The apparent constant, 1, in the coefficient of the first term comes 

from (-j—) when the parameterization was fixed• It should be replaced, 

therefore, by a dinensionful quantity such as the square of the average 

leigth of strings passing between the quarks• It will be treated as a 

knjwn quantity here. 

To solve the variational equation for ^i)CB> It is necessary to know 

the form of the wavefunction ^ , or at least its value at the origin and 

Che expectation value of the squared momentum. These can be obtained in 
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the 1/n approximated form but we choose instead to work with the simpler 

trial Gaussian. Using the notation of Part 3, the expression for the 

area dependent part of the QCD energy now reads: 

-
V D " ( T > 2 I l-- +2w o J 

If A were zero, w - ui and E„»„(iu) is minimised when UJ « 0> The incro-o i}LD 

duction of any area dependence in the effective action produces an asym

metry in the modes corresponding to the average position and separation 

of the flux lines. The eigenvalue associated with the average position 

is linear in ui; for any nonquadratic separation (r) dependence, the best 

value of the Gaussian frequency, w , will not be a positive powe* mono

mial in ux, as can be proven directly from the algebraic equation for w . 

The variational equation to be solved for mis: 

o . > w _ Jfc , .ia»"+ 3 C - ] - KT 0 duT^ luT l , r— + 3\To 3 fo 
*\To 

We are not so auch interested in the precise value of tu that minimizes 

the energy as in determining whether this value is finite and nonzero. 

An Infinite ui would force Che flux distribution alonfe the z-axis. This 

would Bean that despite Che attempt to saear out Che strings, we still 

have geometrically singular configurations. A atro result would indi

cate a highly diffuse flux configuration v'nich can be shown to be 
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Coulonbic. 

It Is straightforward to show that the minimization equation has a 

finite ui solution by using the asymptotic forms of the various teru as 

ui ranges from 0 to CD. Referring to the solution for M( A )• which is 

w (\|rrt), note first that the function u(iu) is continuous in ui, ranges 
2 
3 -2 

from A to zero (decreasing like ui ) as ui ranges from 0 to CD, and has 
no other zeros or singularities. Consequently, the function ytm) is 

3 also continuous in ui, ranging monotonically from 1 to co : m as ui 

ranges from 0 to co. Over this range, then, w is continuous, approach

ing a constant as ui goes to zero and becoming linear in uu for large u> 

d W o d E0CD 3 Thus — ' ranges from 0 to 1 and — -~— ranges from -A to CD. i.e. the QUI OUJ 

latter must pass through zero at finite u> This shows that there is a 

finite value of ui which mirimizes E^r.. 

The energy is minimized at zero m in this model only when A, the 

coefficient of the area dependence, is exactly zero. None of these 

results will be qualitatively changed If area-independent or higher 

order area-dependent terms are included in the expression for the QCD 

energy. Using this approach, then, the quantum spreading of the flux 

tube is an automatic consequence of the assumed linear potential. 
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VII. Conclusions 

We have shown how, in a variational framework, the area law 

behavior of the vacuum expectation value of the Wilson loop may induce a 

quantum mechanical broadening of the flux distribution* This effect can 

be viewed as the converse of results ' showing that a path-

dependent wavefunctional satisfying the massive loop wave equation: 

M A 

and decaying smoothly when the loop f(s) becomes large, falls off 

exponentially in the area of the loop. This roughly duplicates the 

behavior familiar frou point! lite field theories that massive particle 

correlation functions decay exponentially in the particle mass. Here 

the roassiveness of the string, reflected in the Gaussian damping of the 

flux spread, forces an area law suppression of large loops, and vice 

versa. 

There are several routes one may take in attempting to generate 

higher order effects within this model. Given the overwhelming impor

tance of the confinement ansatz, none of the obvious extrapolations will 

significantly add to an understading of meson wavefunctionals. 

Nevertheless, for the sake of completeness, we briefly describe them 

here. 
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2 The calculation of the energy in the quantum mechanical x -

expansion may be carried out to arbitrary order and the wavefunction 

correspondingly amended using standard techniques- From experience with 

other systems, it is likely this will produce only minor refinements at 

the expense of vastly complicating the variational problem. Higher 

order states - excited modes of the transverse flux tube - are given 

directly from the ground state solutions, of interest here, perhaps, is 

a quantitative comparison between L and N "transverse "angular" and 

"radial") energy levels, and between these and the scale of the true 

radial modes. The latter can be computed using standard two-body poten

tial techniques. The radial mode calculation is most likely to be sen

sitive to order 1/M quark kinetic energy terms 

Corrections which are higher order in 1/ft would include contribu

tions from intermediate quark-antiquark states, corrections to the gauge 

matrix sum rule which will introduce twisting of strings, as well as 

possible modifications of the functional area law behavior of the vacuum 

expectation value of the Wilson loop. Loop fusion terms might enter in 

the regularization of the length-dependent term in the expectation value 

of the energy. These more or less neglected length-dependent terms will 

affect calculations of radial modes, will contribute to the renormaliza-

tion of the quark masses, and will require regularization consistent 

with that used In related calculations, but, as pointed out, will not 

significantly influence the large distance behavior of the wavefunc-

tional. 
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Finally, one could attempt to drop the assumption of i-i independence 

of the wavefunctional to allow for more spherical flux distributions 

appropriate to lighter quark mesons. This would certainly require a 

better understanding of the short distance properties of the strings ms 

relativistic and inelastic effects become important. The introduction 

of a substantially more sophisticated variational wavefunction, given 

the plethora of higher order effects, would seem to hinge on a more 

explicit knowledge of the path dependence of the vacuum expectation 

value of the Wilson loop. 
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