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FORMATION AND DESTRUCTION OF MAGNETIC ISLANDS
IN TOROIDAL SYSTEMS [1]

F. M. Hamzeh
Inorganic Materials Research Division, Lawrence Berkeley Laboratory

and the Department of Materials Science.and Engineering; College of
Engineering; University of California, Berkeley, California 94720

. We present a theoretical study of formation and destruction
of magnetic surfaces in toroidal systems. As applied to levitrons

the theory agrees with the numerical results.

Perturbed magnetic surfaces in toroidal systéms are equivalent to
nonlinear oséillatingvéystems with rotational transform for frequency.
Resonances that transtrm the unpérturbed suifaces into a structure of

megnetic islands we call primary resonances and the secondary resonances

transform the bound-state like contours of é given island into a siﬁilar
structure of secondary magnetic islands. To every magnetic island we
attaéh two types of stochaéticity, external due to the overlapping of
primary resonances and internal due to the overlapping of secondary

resonances, Fig. 1.

1. Noniinear Oscillating Systems

We consider the nonlinear equations:

r .
4. £ Lv26 m,e,t)] +0(e) (a)

1.1)

Q.

Q

2= v{l + e[vzalﬂ(l,e,t)] + 0(62)} ®)



where I and [l are periodic functions of 6 and t, and ¢ is a small
parameter. & and &’ are introduced to allow I and I to include terms
that are not functions of v. We derive Eq. (1.1) for levitrons , where
2nmv(I) is the rotational transform. (I,8) are the action and angle vari-
ables corresponding to (%%-, $), where r, &, z are the toroidal
coordinates and t is determined from the relation dt = dz/Bz. The
major radius of the torus is normalized to 1. Equations (1.1) were

also derived for the stellerator [2].

1.1 Primary Resonances:

We let v(I) be positive between the central magnetic axis and the
separatrix. (v <O can be treated similarly). Primary resonances are

obtained frdm secular contributions and are characterized by mixg - ﬁi =

where mv, %, are the 1lowest positive integers satisfying mivi - 21 = 0.

i
Their nonlinearity coefficients are given by:

Ii
— . 1.2)
v,
i ,
In the following, : . . we assume that x >> eé .
This assumption is verified for the levitron (refer to table 1).
In the vicinity of a given resonance stable island contours may
. . 1/2 . .
occur in the region ¢ Ii m|AI| << Ii . We expand (1.1) in this

region and average over fast oscillations, we get:

f (1,,u) (a)
Vv 1

1.3)

du _
'd—t—uAI (b)
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where u =_£it - mie, po= - mi(dv(Ii)/dI) and
28 2m
v,
f (I,u) =— [ ra,-2 + o, tat 1.4)
v, 2n J ' om, Vit :
i i
o.
Equations (1.3)ab' can be derived from the Hamiltonian:
u
B Z_EJ '
K (AI,u) 5 (AI)v v f\&(Ii,y)dy, (1.5)
o

where surfaces of constant K will represent the island contours. The
condition that AI be real defines a discrete set of intervals for u

variations, thus forming my families of contoﬁrs Sepérated by a local
separatrix. Each family we call an island, the center of which is an

elliptic singularity. We used rélation (1.5) to plot some

magnetic island contours for the levitron [3].

The pfimary resonance width {a is related to the maximum

1 ’ .
action excursion by: Q. = v.x, EEEELQ~'. " We get:

i ii Ii
172 %1 s
CE = 2¢ T vy Fi(Ii,zi,mi) ’ (1.6)



where Fi(Ii,Li,mi) is a form factor which characterizes the syétem and
: .

depends on the resonance parameters.

1.2 Island Perturbation and Secondary Resonances: ‘ .

m.
We let {03]11 be the set of elliptic singularities, and re-

normalize t to 7 = vit . The island oscillations, (in terms of vj =

. ~ Ay
AI[u(wj)], w (Sgnp) uj, where u, = u - qj, and T), are of the

J
libration type. If we introduce the action and angle variables J,m

corresponding to (vj,wj) the island contour equations become:

dJ _ . . dT _

i 0; il Q.n
where ® is a positive function of J in the region between the
elliptic singularity and the local separatrix [1]. At the local
separatrix w = 0.

The island perturbations obtained from Egs. (1.1)ab perturb
(1.7) as follows:

d N S ~

a_Tr AJ = 3_2 'A (J,n,T) (a)
w./zli v, e

(1.8)

d _dw *
s M=g5 & ®)

~

where A (J,T,T) is a periodic fﬁnction of T and t[1],

e'= 8§ + e and e is the lesser of § and 8’ .
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Secondary resonances are characterized by qk uk-;pk = 0, where

Py

_ dw _ : ~ : e €
We let M = - q == (J), & =p,7- 9./ and fwk (7,8 = AU, - 3
+ @ T T) )'r . We linearize (1.8) near the secondary resonance

. , 1 _
@ (for ¢l vw‘IAJ| KX ¢ /2 I) and average over T, we get:

3
dAJ 2 € mX,

— 1 ~ . .
aT 175 328" Tolx'® @)
: I, V.
1 1
€ - mar )

Equations (1.9) can be derived from the Hamiltonian:

L3 3
h ) = .}. M( J)2 __2__3_12_:.[_ r?
(AJ,E, = 2 A - u)kll/z v3_2e' ‘J Ulk(Jk’y)dy
i i (o]

» 4, are the lowest positive 1nteger$ satiéfying qkwk - P = 0.

k

1.9

(1.10)

where surfaces of constant h represeht the secondary island contours.

The secondary resonance width Aik is related to the maximum

d d
, , _ Max | AJ | - % k
excursion of J by A, % g where X | ar g
k
3 i
A = /2 2¢ miXi x—k ’F (J. q )
ik~ 3/2-e’ I Ik k'Px’’

1

We get:

(1.11)

where ’F is a form factor that characterizes the system and depends

k

on the secondary resonance parameters.
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2. Instabilities and Destruction of the Magnetic Surfaces:

2.1 Overlapping of Resonances:

It is well confirmed [5] that a strong instability with random
like behavior occurs when resonances overlap.

Overlapping of two neighboring resonances occurs if their separa-
tion is smaller or equal to the arithmetic average of their widths.
Overlapping of resonances below‘a given frequency Yj means that the
sum of the widths of all resonances with frequencies smallef or equal
to xﬁ, is greater or equal to \3 , (this assumes that overlapping
proceeds in the order from the separatrix). We take this criterion
to define the limit of stochasticity'bélow \3, it is equivalent
to: |

v, ~ z Q.4 .m) 2.1)
J S RS T R |

V, SV,
i)

and should give an underestimate of the critical perturbation for \3 .

Assuming that for evéry pair mi,Li there is a resonance, we get from

2.1):
© m o ©
N .
v ~ 21 z [Q(I.L,m)- ) O,pL,pm | (2.2)
m=; £= ‘ p=2

J

If we replace sums by integrations (2.2) becomes:

©

1~ I m dm [?’z (m) - f dy T (y):] 2.3)
_l_ 2m
V.
J




where

V.
J
- 1
am =2 [ aaym ay @.4)
J 1/m

and Q(I,4,m) is an interpolating function that equals Qi at the
i-resonance position for all i's.

From (2.3) and (1.6), if ej is the limit of external stochasticity

below \5, we get:
1 .. ,.
3 —_ v | (2.5)

where Gj depends on the system and the ordering of the resonance.

If ¢

Sk is the limit of internal stochasticity for the \3

resonance below the W secondary resonance, from (1.11) and (2.3)

1 /J : _
~ 3/4_ /2 3j k 3/2-e' ‘
G, €. ~i= | o0—— -— V. (2.6)
k ik 2 2m x, X
J 5% X 93 S _

where E; depends on the system and the ordering of the secondary

we get:

resonance (Dk .

Near the elliptic sinéularities we have shown that‘kawl [1l.

. 1 . -
Also, from Eq. (1.5) one can easily show that Jk ~‘€j/21J \ﬁrl/g xj 1/2.

If we substitute in (2.6) we get:

’ 8
~ 1/2 ~ /2 133/4 \)5?/4- (e+§) x—,3/4

G ; 2.7
k ok @nyt/t 3 j @D



Since each island is similar to the whole structure [6],

we assume that E} ~'GJ . By substituting in (2.7) and (2.5) we get:

1
8 j 5/2-68" : :

€.. = - v, . 2.8

33 ﬁmj x. “j 2.8

J

where 8" = 2e - 6 .

For the stellerator, where ¢ was below‘the external stochasticity
limit [2], formula (2.8) explains why destrucfion occured near the
separatrix. In Fig. 1, we show a typical example ofvdestrdction by
internal overlapping in levitrons. We note also that secondary
magentic islands appear in Fig. le.

For the levitron (§=0=6’) we calculated e& by directly testing the
overlapping of neighboring priméry resonances and deduced ejj by
using Eq. (2.8). The results are tabulated in table 1. (For
the lévitron ¢ is a tilt angle; in table i it is given in degrees).
Ve codclude that for \3 < 2 destruction is caused by internal. over-
lapping. _In fable 1 quantities in parenthesis are the theoretical

limits for destruction. €, are the numerically measured tilts for

which the resonances are completely destroyed [4].

3. Conclusions:

1t has been established that if resonances overlap, a rapid

destruction of their island structure occurs {51,

-
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Thus, if primary resonances overlap, a raﬁid destruction of their
flux surfaces‘is expected. |

For largé nonlinearity coefficients (x >> 61/2), the field lines
are trapped in an effective potential well near the primary
resonances forming trapped contours in the region of each stable
primary resonance. Another possible phenomenon of destruction is
the overlapbing of secondary resonances. Depending on the re-
sonance (and the system) destruction may occur by either or both
phenomena.

The primary island width increases as ¢ /2 while the secondary

island width increases as 63/4 . Internal overlapping proceeds
almost orderly from the local separatrix to the elliptic singu-
larity. Therefofe, for islands that are most affected by in-
ternal overlapping the observed primary width should increase

at a slower rate fhan el/z due to the successive disappearance.
of outer contours destroyed by secondary resonances 0vef1apping,
This is in agreement with the numerical observation by Freis

et al where the 1 and 1/2 resonances width increase as .el/?
until breakup while the 3/2, 2, 5/2 énd 3 resonances width in-

3/2
creases as ¢

For small nonlipearity (x = 31/2) the field lines may escape the
resonance zone and cause instabilities [1’7}.

For levitrons (§=0=§') we plot the critical perturbations of
resonances as functions of x (Fig. 1). These functions are

determined from formula (2.5) (formula (2.7)) for primary (se-

condary) resonances. The arbitrary constants are determined from
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the values of (xJ, e (ejj)) given in Table 1. Obviously the

regions of external (internal) stochasticity lie on the right

hand side of the P(S) curves. The encircled points are numeri- v

cal, from Table 1. We note that below x = 51/2 there is no

trapping in the sense described above. f
6 ~ For systems which are characterized by §"< 5/2, Eq. (2.8) shows

that the region of internal stochasticity extends over all of »

the x - € plane as vJ approaches zero; thus flux surfaces are

always destroyed near the separatrix.
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TABLE 1

N e | e
v X ’ J l] c

| 71| degrees-| degrees | degrees
3 | 1256 | (2.75) | 5.70 | 2.50
T | 1074 | 2.75) | 435 | 2.00
2 | 1.045 | 4.95 (3.70) | 3.00
2 | 1140 1.68 0.76) | 0.70
i | 1.300 | 0.54 | (0.0m | 0.30
.%. 2.200 | 0.54 | (0.04) | 0.5
+ | 2.280 |~0.244 |(0.0n |<0.02




Figure Captions

Figure 1:

In part (a) a closed contour of the m~ resonance is shown.
In part (b) the perturbation is doubled and the contour is heavily
distorted. in part (c) the perturbation is doubled again, the:
contour is completely destroyed and secéndary magnetic islands
appear. This is a typical example of destruction by interﬁél over-
lapping. The 2m-~ resonance after reaching its maximum flux in part
(c) is seen partially destroyed in part (d). (The numerical results

are taken from [41).

Figure 2:
Critical perturbations as functions of the nonlinéarity coeffi-

cient for levitrons (6=0=8"). The regions of external (internal)

stochasticity are on the right hand side of the P@) curves. Below the

1 .
X =€ /2 curve, the field line may escape the resonance zone. The

encircled points are numerical [4]. The small arrows indicate the
theoretical curves to which the numerical points belong. (¢ is

measured in radians).

Caption for Table 1:

For the levitron € is a tilt angle. The theoretical tilts for
which the resonances are completely destroyed are approximately equal
to the smallest of Ej’ Ejj' Ec are the numerically measured critical

tilts. xj represent the non linearity coefficients.
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