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ON S INGULARITH:S OF CAPILLARY SURFACES ON TRAPEZOIDAL DOMAINS 

· Abstract 

l"e study numerical solutions to the equation of capillary 

surfaces in trapezoidal domains when the boundary contact angle 

declines from 90° to· some critical value. There is also obtained 

a result on behavior of solutions in more general domains that 

confirms numerical calculations~ 
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ON SINGULARITIES OF CAPILLARY SURFACES ON TRAPEZOIDAL DOUAINS 

0. Introduction 

In this paper we study the behavior of numerical solutions to the 

capillary problem in the absence of gravity for a cylindrical capillary 

tube with trapezoidal cross-section. 

From the mathematical point of view ·the physical properties of a 

liquid in a capillary tube in the absence of gravity can be described with 

the help of only one parameter -- the contact angle. This is the angle 

between the capillary surface ·and· the walls of the cylinder. For homogene-

ous material of walls, the contact angle must be constant along the boun-

dary. 

P. Concus and R. Finn [ 1] have shown that the capillary surface does 

not exist for all physically reasonable contact angles. They obtained a 

necessary condition for existence of the solution. The condition gives an 

estimate of the contact angle in terms. of geometry' of the base domain of 

the cylinder. In the case that gravity is absent the estimate is essen-

tially non-local, as it can not be expressed by means of local geometrical 

char at ter is tics of the boundary. 

R. Finn in [2] noticed that even for a polygonal domain one cannot 

infer infonnation on the existence of a solution from knowledge of the ver-

tex angles alone. He has shown that a trapezoidal domain presents a good 

example in the sense that for any Y
0

, 0 < y
0 

< n/2, there exists a small 

deformation of rectangular domain to a trapezoidal one such that there is 
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no solution in the trapezoidal docain for contact angles less than y
0

• 

For the rectangular domain a solution exists for any angle larger than 

n/4. 

We will describe the results of two kinds of numerical experiments. 

First, for a fixed trapezoid,. we consider solutions' as the contact angle 

declines from n/2 to some apparently critical angle; and second we con-

sider the behavior of solutions as the base domain is deformed from a rec-

tangle to some critical trapezoid (with the contact angle fixed). 

1. Capillarity phenomena 

We adduce here some information on capillarity phenomena. For a 

detailed presentation we refer to the· article of R. Finn [3). 

·We consider a liquid partly filling a vertical cylinder with a base 

domain U; the boundary of U is denoted by ~. We assume that the height 

of the equilibrium free surface of .the liquid in the cylinder is a single-

valued smooth function u(x,y). We assume also that the volume of the 

liquid is sufficiently large to cover the base of the cylinder entirely. 

In the absence of gravity the height u(x,y) of the liquid over the 

bottom of the cylinder satisfies the equation 

div(~ ~u) = 2H (1) 

where· ~u (~u/~x,~u/~y), w = (1 + l\7ul2) 1/2 

The constant H .is the mean curvature of the liquid surface. It is 

defined by the cross-sectional shape of the cylinder and the boundary con-

f. ( ', 

(! 
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dition satisfied by the free surface of the liquid at the cylinder wall. 

We ~.rill demand the free surface make a prescribed contact angle Y 

with the cylinder wall. Thus the boundary condition is 

1 ~u 
W "Sii' = cosY (2) 

'for (x,y) ~ ~. Here ~u/~n is the derivative with respect to the outward 

directed normal at the wall. 

To the equation in divergence form (1) with boundary condition (2) 

there corresponds the following variational principle. The solution of 

(1),(2) is the minimum of the energy functional. 

E(u) ~.J' w dxdy + 2H J' u dxdy- cosY [ u d<T 
~ ~ ~ 

(3) 

Eq. ( 1) is the Euler equation for the variational problem of minimiz-

ing (3). 

Applying the divergence theorem to (1) with boundary condition (2) we 

obtain the relation between the mean curvature and the contact angle: 

2~ = ~cosY (4) 

Here and also later we use the same symbols to denote domains and their 

measures. Eq. ( 4) is a necessary condition for existence of the solution 

to (1),(2). P. Concus and R. Finn in [1] obtained in addition a more gen-

eral condition than (4). 

* Let the cross-section ~ of the cylinder be cut into two parts ~ 

* and ~\.Ll by a curve r, which intersects the boundary ~ at points pl 

and Let -* ~ denote the part of ~ cut off by r and adjacent to 
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* * .a. • . Applying the divergence theorem to the domain .a. and taking into 

account that IVu/WI < 1 along r (as everywhere)' Concus and Finn proved 

the estimate 

cos y ~ v .. (5) 

where 

C/~ 
V = min ---*--~=--*---

~~ /~ - 0. /.a.l 
(6) 

The minimization is carried over all curves C described above such that 

* * ~ /~ -.a. /.a. is nonzero. The estimate (5) holds if the solution to (1) and 

(2) exists. 

2. Symmetry of the solution 

In our calculations for a trapezoidal domain we will employ the fol-

lowing simple property of the capillary problem. 

Theorem: Let u(x,y) be a solution to the problem (1) and (2) in a 

domain .Q. that is invariant under reflection: x' = -x, y' = y. Then 

u(x,y) is also symmetric 

u(x,y) = u(-x,y) 

Proof: We put 

v(x,y) u(x',y') = u(-x,y) 
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It is easy to see that the equation (1) and the boundary condition (2) 

are also invariant under reflection. Thus v(x,y) has to be a solution to 

(1) .and. (2), and by virtue of the uniqueness 

v(x,y) .::. u(x,y) 

(A uniqueness theorem for (1) and (2) is straightforward, following immedi-

ately from the variational formulation of the problem, since the energy 

functional (3) is convex.) 

Remark: The theorem is true for any domain, invariant under orthogo-

nal transformation, say for a regular polygon. 

3. Computational experiments 

' 
Now we consider the problem ( l) and (2) when the base domain is a tra-

pezoid. 

For numerical experiments an equilateral trapezoid was chosen with the 

following parameters: the long base b = 2., the short base a= 1.3 and 

the height h = 25. The angles of the trapezoid ar:e very close to 90°, 

approximately 90° + 0. 8°. This trapezoid has sufficiently large altitude 

to exhibit clearly the nonexistence phenomenon under study, but not so 

large as to require an excessive number of mesh points for representation 

of the solution. The departure from ·a rectangle is sufficient to permit 

visualization of the change to the trapezoid when the shorter base is 

decreased from 2 to 1.3. 

For the trapezoid the quantity V in (5) giving an upper bound for 

the cosine of the contact angle can be calculated numerically. The minimum 
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of the expression (6) for v is realized when r is a particular circular 

arc connecting sides of the trapezoid. The calcuLations gave for the crit-

ical angle Y 
0 

for the trapezoid with the above parameters an approximate 

value 

In view of the theorem we solve Eq. (1) in the half-trapezoid 

T {(x,y) I 0 ~ y ~ 25, 0 < x < 1 - 0.014y} 

with the boundary condition ( 2) on the half-perimeter of the trapezoid and 

the boundary condition 

The problem was solved numerically using a suitably modified version 

of R. A. Brown's finite-element program (4] for the capillary problem in a 

rectangle. The domain was discretized employing a trapezoidal grid con-

s true ted as follows. Each base of the half trapezoid T was divided 

equidistantly into M parts and the height was divided equidistantly into 

N parts. Mesh points were formed by intersections of the mesh lines con-

necting the obtained points on the bases and the mesh lines parallel to the 

x-axis through the points of partition of the height. 

The program used reduced quadratic polynomials as the basis functions 

for the finite-element method (the reduced quadratic element differs from 

the full biquadratic element by the. elimination of the 2 2 
X y term and 

omissions of the centroid node). The resulting non-linear algebraic prob-
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lem is solved using Newton's method._ 

Computations were carried.out with N =SO, M = 4, and were repeated 

for N = 75, M = 7. The two series of computations showed very good con-

sistency between their results. The method was tested for the 2 x 25 rec-

tangle for contact angles close to 45°. The method converged for Y 2:. 46° 

and did -not converge for Y ~ 45° (the step of changing the contact angle 

in test calculations was 1°). 

The results are depicted in figures 1-3, normalized by the addition of 

a constant so that u(O,O) = 0. ·In figure 1 the surface height u(O,y) 

along the symmetry line is shown for several contact angles y. The 

behavio-r of the· solution along other mesh lines in the "y direction" 

differs very little from that along u(O,y). 

In figure 2, the variation of the surface height with x is depicted 

f 1 1 f f h Y -- 58°. ha h or severa va ues o - y or t e case Note t t t e optimal 

curve ro, along which the solution surface would become vertical for the 

critical contact angle 57.6°, is a circular arc of radius 1.444 intersect-

ing the symmetry line x = 0 of the trapezoid at y = 17.6 and the slant 

edge at y = 17.4. 

In figure 3 ·are depicted the surface heights u(O,y) for a sequence 

of trapezoids ranging from the rectangle (a = 2) to the almost-critical 

one (a = 1. 3), ·for Y = 58°. The tendency toward verticality is notice-

able as criticality is approached. 
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4. On the gradient of the solution 

Figure 1 indicates that for Y close to the critical angle the graphs 

have inflection points where the derivative u 
y 

is maximal. The maximum 

of u appears to occur in a small neighborhood of the curve ro for 
y 

which the minimum in the estimate (6) is realized. This prope.rty is not 

incidental. Actually ro is the curve along which a discontinuity of the 

solution may arise. Namely, ~u I 4 oo 
"SO ro as Y 4 Y0 , where 

~ . 

rn is dif-

ferentiation with respect to the outward normal to r0• More precisely, 

the following is valid. 

Theorem: Let a solution to the problem (1) and (2) exist for Y > Y
0

, 

where Y0 is defined by the equality 

cos Y0 
min .qC 
r I~* .o.-.o. *~I 

(6a) 

and let r0 realize the minimum in (6a). Then 

(7) 

Proof: Let 6 > 0 be small and 

cos y 0 > cos y > cos y 0 - 6 

* Applying the divergence theorem to the domain .0. defined by r 0 , we 

have 



Let 

for -r, 
0 

-* ~ cos 
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. 1 * ~ cos l Y + f, W ~u.n ds =· .0. 0. 

. 0 
(8) 

(otherwise we can obtain the necessary estimate 

1\7 . 1 W vu.nds), then it fol ows ' J 

1 1 W ~ .n ds 

0 

* -* * ~ * rcf-1. = (.0. ~/.a. - ~ )cosY > (.0. " - ~ )( * * - 6) 
.1.1. ~-~.a. 

as 6 ~ Q. 

The theorem is in a sense an inverse to Concus and Finn's estimate of 

the critical angle (6). 

By usual means it can be derived from the theorem (by assumption of 

the regularity of the solution) the property that ~u/~n goes to infinity 
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Figure Captions 

\,y Figur.e 1. u(O,y) .vs. y for contact angles 75° 60°, 59° , 

: .• Figure 2. u(x,y1) vs. X for Yj_ = 0,9,15,17.5,20,25; y = 58° 

Figure 3. u(O,y) vs. y for a = 2,1.5,1.4,1.3; y = 58° 
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