
1.

~'
'~

. '

LBL-11463 C , ~
UC-32 _,, _

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics, Computer Science &
Mathematics Division

. :· --:-r.::iVED
.. · :'!CE

<.t:l..id L~CORATOR'l

USER'S GUIDE TO THE LBL MATHEMATICAL SOFTWARE
CORE LIBRARY .

Computer Science and Applied Mathematics Department

August 1980

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy~ call

Tech. Info. Division~ Ext. 6782.

, . .,..,,. •J .,.,. 4,08{}
. ,. ~ .• oJ

•o - ·.~y AND
_.~ ,,·t;:.t~ TS SECTION

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

s
r ,
--

,

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to.any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

USER'S GUIDE

TO THE

LBL MATHEMATICAL SOFTWARE CORE LIBRARY

AUGUST 1980

MATHEHATICS GROUP
LAWRENCE BERKELEY LABORATORY .

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94 720

LBL-11463

ii

TABLE OF CONTENTS

'""'·
I. Introduction 1

II. Systems of linear algebraic equations 7 ~
III. Eigenvalues and eigenvector.s 15

IV. Numerical integration / 22 . . . • • .
v. Special functions • 27

VI. Ordinary differential equations 30

VII. Partial differential equations 37

VIII. Interpolation and approximation 38

IX. Nonlinear equations and optimization 46

,,,.,

1

I. INTRODUCTION

The CORE library is a collection, of state-of-the-art mathematical

software encompassing the following subjects:

·I •'

Systems of linear algebraic equations

Eigenvalues and eigenvectors

Numerical integration

Special functions

Ordinary differential equations

Partial differential equations (in preparation)

Interpolation and approximation

Nonlinear equations and optimization

The software in the CORE library has been drawn from a variety of

sources, including the IMSL. library, SANDIA library, EISPACK, and FUN­

PACK. This library is the only fully-supported mathematical program

library at LBL. Extensive consulting service is provided jointly by

the programming consultants (x 5981) and the mathematical consultants

(x 6006) to assist in the proper use of CORE library routines and to

advise on general numerical matters.

INTRODUCTION 2

B. Purpose _2!.. the ~ library

In the past, many computer users have depended upon their own knowledge

of mathematics and computation to generate software for solving numeri­

cal problems. However, there has been a steady advance in the sophis­

tic$tion of large scale scientific computing and that part of mathemat...,

ics, usually termed numerical analysis, which concerns itself Wi. th the

reliability and efficiency of· numerical methods. This change in the

computing environment has brought about the need for high quality

mathematical software collected into centralized computer libraries.

There are many advantages to using a centralized library: the user

need not concern himself with the details of a particular numerical

problem; duplication of effort is avoided; and ·consultants cano help the

user more effectively.

The purpose of this library is to make available state-of-the-art

numerical routines for mathematical computations, and to do so in· a way

that is convenient for users. (Statistical programs are not discussed

here except for a variety of data fitting routines. For information on

Statistics, see documentation for IMSL or SPSS.) The previously exist­

ing library at LBL, like those at most installations, ·consisted of a

large collection of routines of· varying quality and utility. Although.

many of these subroutines were good, many others were obsolete, inaccu­

rate, or inefficient. In many cases several different programs were

available which purported to solve the same problem, and users were

given little rational basis for choosing from among them the best rou­

tine for a particular need. The effects of such a cluttered mass of

INTRODUCTION 3

programs were general user confusion. and widespread ~se of inferior or

I

inappropriate routines. In· an effort to combat this situation, bring

some- consistency into program documentation' and offer guidance in

software selection, it was decided to split the library into two parts:

a CORE library and a collection· of background routines. Tbe CORE

)
library is of manageable size with some hope of logical organization

and thorough documentation. The programs in it are of wide applicabil-

I

ity and service the bulk of user needs. If, however, the resources in

the CORE library prove insufficient for some special problem, ·the user.

still has recourse to the larger background library.

c. CORE library documentation

The documentation for the CORE library consists of:

(1) CORE library User's Guide (i.e., this volume)

(2) CORE library Writeups

~

The User's Guide is divided into nine chapters, one for each subject

~re~ in the CORE library. Each chapter contains a ·list of available

CORE library routines, suggestions on the proper selection of routines

to use, and discussions of algorithmic aspects of a subject area,

including possible traps and pitfalls that may be encountered in numer-

ical computation. References are provided if additional information is

desired.

INTRODUCTION 4

The Writeups are sets of machine-readable specifications fqr the CO~E

library routines. Each specification cQntains a detailed description

of the. calling-sequence parameters, a summary of the underlying algo-

rithm, and an identifi~ation of the source from which the routine was

drawn. Most specif~cations also contain demonstration programs to

illustrate the use of the routines.

D. Using ~ library and obtaining ~ documentation

To use the CORE library, the control card

MATHLIB.

should be inserted in the control sequence. For example, if a program

uses subroutine RS in the CORE library, its job deck may look like:

< JOB CARD >
FTN4.
MATHLIB.
LINK,X,RF.

7-8-9

compile your program
attach. the CORE library
link and, execute your program returning

all files once they are loaded

PROGRAM MAIN (INPUT, OUTPUT)

CALL RS (.)

END.

6-7-8-9.

.:...

INTRODUCTION

The control card "MATHLIB." causes a CQpy·.of.the binary version of the

CORE library to be linked to th~ user program as a p~file. Note that

the binary library was compiled l,mder FTN4 ·wi~h OPT=2. As a result,

the user program must be compiled under FTN4 or MNF4.

' ..
The FORTRAN source codes for the CORE library are not directly avail-

able to the user due to the proprietary nature of some routines. If a

user is interested in a particular FORTRAN source code, he should con-

tact a programming consultant (x 5981).

The CORE library User's Guide can be obtained by calling the computer

center library (x 5529). The CORE library writeups are stored in the

PSS and can be obtained by executing the MATHDOC control card as fol-

lows:

MATHDOC,*.

This card will cause the entire document (over 300 pages) to be

printed. One may, however, specify subroutine names and obtain write-

ups of only those specified. It is also possible to specify narrow

paper (8-1/2 .by 11) if printing .the document at LBL. Thus:

MATHDOC,RS,DCADRE,PA=1F.

will print the introduction and the writeups of RS and DCADRE on narrow

three~holed paper• ·
I

The special functions, being so numerous, are grouped together in the

document. Specifying

MATHDOC,BESSEL.

INTRODUCTION 6

will provide the user with writeups of all the Bessel ftmctions in the

CORE library. The names of all the possible arguments to MATHDOC are

documented in WRITEUPS subset "CCARD" under "MAl'HDOC", and in WRITEUPS

subset "LIBRARY" under "CORE LIBRARY".

E. Other libraries

For problems that are beyond the scope of the CORE library, there may

be suitable routines available in other libraries. The WRITEUPS subset

"LIBRARY" contains short descriptions of routines from most mathemati-

cal libraries supported (fully or partially) by the Computer Center.

To obtain a copy on narrow three-holed paper, use the commands:

FETCHPS,WRITEUPS,OUT,LIBRARY.
DISPOSE,OUT=PR,PA=lF.

F. Acknowledgments

(use PA=lF only at LBL)

The style and content of this User's Guide have been influenced greatly

by NAPLUG (Numerical Analysis Progr~ Library User's Guide at SLAC).

We are indebted to the pioneering efforts of its authors. We grate-

fully acknowledge the support. and encouragemE7nt given us by the LBL

Computer Center and its Software Support and Development Group during

the preparation of this Guide. This work was carried out under the

auspices of the U.S. Department of Energy under contract W-7405-ENG-

48.

,,

i.

•

7

II. SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

The general form of a -linear system' of equations is ~ = .£,, where A is

a known coefficient matrix of dimension m x n, b is -a known vector of

length m, and x is the unknown vectur of length n. ·There are seven

recommended routines:

GROUP (1) - for square matrices only (m n):

SGEFCS -This routine operates on a general, real matrix.

SGBFCS - This routine operates on a real, banded matrix.

SSPFCS -This routine operates on a real, symmetric matrix.

SPPFCS -This routine operates on a real, positive definite matrix.

SPBFCS -This routine operates on a real, positive definite, banded

matrix.

CGEFCS - This routine operates on a general, complex matrix.

GROUP (2) - singular value decomposition:

SSVDC - This routine computes a singular value decomposition for a

square or rectangular real matrix.

The coefficient matrix of a linear system can have one of many forms. We

shall consider matrices that are square, rectangular, or large and sparse.

We shall consider also what to do in the case of ill-conditioning.

SYS TEHS OF LINEAR ALGEBRAIC EQUATIONS 8

A. l1atrix A is square (m n)

For a linear system whose coefficient matrix is square, a subroutine

in Group (1) should be used. The s.pecific choice within Group (1)

depends on the properties of the matrix.

.
"

1. Real or complex

A matrix is real if all its elements are real. A matrix is com-

plex if some of its elements are complex. There is only one rou-

tine for complex matrices: CGEFCS. For general, real matrices,

use SGEFCS.

2. Symmetry

A matriX is symmetric if its transpose- is equal to itself

(At =A). In terms of matrix elements, symmetry means a .. = aj i l.J

for all i ,j. For rea;l., symmetric matrices without further pro-

perties, use SSPFCS.

3. · Handedness

Loosely speaking,· a matrix is banded if all non-zero elements are

located near the main di,agonal. More specifically, if mL arid

mU are the lower and upper band widths of A, then a = 0 when
ij

i - j > mL or j - i > mu. A tridiagonal matrix is a specific

band matrix with 1. For real, banded matrices, use

SGBFCS.

SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 9

4. Positive definiteness

.A real matrix is positive definite if it is symmetric and all its

eigenvalues are positive. However, the eigenvalu~s of A are

u13u,ally .not known and are costly to compute. An easily verifiable

,condition that implies positive definiteness is

I a .. I > ~ I a .. I
11 ·..J.. 1J

]T1

for all i •

Of course, this condition does not cover all positive definite

matrices. For real, positive definite matrices, use SPPFCS. For

real, positive definite matrices that are also banded,. use SPBFCS.

As an illustration of the potential saving that can be realized by

using the most suitable routine, we consider a linear system whose

coefficient matrix, is real and .symmetric. If .SGEFCS (for real, gen­

eral matrices). were used, it would take approximately· n
3 /3 multipli-

cations and
2

n locations of storage to solve the system. · If the

most appropriate routine SSPFCS were used, it would take approximately

n
3/6 multiplications and n

2/2 locations of storage to carry out the

same solution. Both the number of multiplications and storage are cut

in half.

Often it is desirable to obtain an estimate of the number of signifi-

cant digits in the computed solution of a system of linear e.quations.

This 'estimate can be obtained by assessing, the inexactness in the ele-

ments of A and b and the condition number of A. The elements of

/

SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 10

A and b usually are subject to several sources of inaccuracy. If

the elements are measured, there is error due to limitations of

instruments. If the elements are known exactly, there still may be

error caused by. the binary representation. of numbers with a finite

precision computer. In the solution- process there is error caused by

finite precision arithmetic. The effect of these errors can be

estimated by the condition number of the matrix A, defined as

IIAII-IIA-1 11 where 11·11 is th~ euclidian norm.

. . k
If the condition number is approximately 10 , k ~ 0, then the com-

puted solution may have k fewer significant digits than the elements

of A and b. For example, suppose the elements of A and b are

exact to 3 digits, and the condition number of A is approximately

10
2

• Then there may be only 1 significant digit in the computed solu-

tion.

For a poorly scaled matrix, the estimate of accuracy based on the con-

dition number may be pessimistic. In such a case, proper scaling

strategy should be applied in order to obtain a realistic estimate.

For suggested strategies on scaling, consult [1] or see.a consultant.

The subroutines in Group (1) provide estimates of the reciprocal con-

dition number (!/condition number) at only moderate cost. We recom-

mend the use of this estimate to guard against the inadvertent use of

a possibly meaningless solution.

The method of iterative refinement is used to improve the accuracy of

a computed solution. (The suggested computer implementation of this

method can be found in [1] .) In practice, a highly accurate solution

SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 11

often may not be needed because of the inexact nature of both the

coefficient matrix and the right-hand side. In fact, iterative

improvement may result in the worsening of. solutions for matrices with

vary large condition numbers.

The calculation of explicit inverses or determinants is seldom needed.

Problems that might make use of them often cap be handled more effi-

ciently and accurately by other approaches. For a linear system with

numerous right-hand sid.es (Ax = 1
1

,.E_
2

, • •• ,bk), one could use the

'
matrix factorization computed in the solution of the first right-hand

side .E.,
1

and perform repeat~d back substitutions on ,£.
2

, •• ~ ,bk. (See

the write ups for routines in Group (1).) To determine the rank of a

matrix, singular value decomposition (subroutine SSVDC) should be·

used. To estimate the condition number of a matrix, subroutines in

Group (1) could be used at a fraction of the cost of calculating an

explicit inver~e.

B. l1a tr ix A is r ec tang ul ar (m f n)

1. m > n (more equations than unknown)

An overdetermined linear system usually arises in the solution of

a linear least squares problem. A subroutine such as LINLSQ (see

Chapter VII) would normally be used for this problem. In the case

that the matrix is known to be nearly rank deficient, subroutine

SSVDC sometimes can be used to obtain a more stabl,e solution (see

Section D below).

SYS !EMS OF LINEAR ALGEBRAIC EQUATIONS ;,'' .12

(mqre unkno,wns than eq.uations) .
• ~ .) ~ <• ' • -

An underdetermined linear system' does not have a unique solution.

This type of system usually arises as part of a larger problem

such as 'Constrained optimization. For such ~! ~~oblem, a . stili'rou-

. ~in,e from Chapter IX shoul,d b.e used.

c. , Matrix A is large and spar.se

A matrix is called sp~rs~ if.less th~n about 10% of its elements are

nonzero. when ~il the elements. (zero and non~zero) of a sparse matrix

can be stored in the core memory, then· subroutines in Group (1) should

be used. Many linear systems that arise in ar.eas such as partial dif-

ferential eq~ations, networks,. and optimization involve· matrices that

are both large and. sparse. Often these matrices are too large to be

stored entirely in the core memory, yet sparse en~ugh so that the

non-zero elements can be held in core. An iterative method or sparse

Gaussian elimination may be applicable. The choice of a method in

.. -.

this case is highly problem-dependent. Users with -a large, sparse · ·

matrix problem should see a consultant.

D. Ill-conditioning

A matrix is ill:-co.ndi1;:ione.d if perturbations of the size of the inex-. ·- . :

actness in the. matrix elements cquld result in a rank deficient (less

than f.ull rank) matri;K~ Fo~ a s quar~ mat~ix, ill-conditioning can be

detected by checking the size of the condition number. For example,

if elements of a properly scaled matrix are exact to k digits, and

·"·

_,
•

1._

SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 13.

the condition number is or more, the,n the matrix i.s ill-

conditioned. For a linear least squares problem, one would rely_ o.n

the matrix factorization or certain error . p~rameters. returned by

linear least squares subroutines to determine ill-conditioning •. ~ote

that ill-conditioning of the matrix often indicates an ill-ppsedness

of the underlying problem and .suggests that the user ought to review

the formulation of his problem. The difficulty associated with ill-

conditioning is that the solution is susceptible to large fluctuations

when the matrix elements are perturbed by only a small amount. To

avoid this numerical instability, one could replace the ill-

conditioned matrix by a slightly perturbed, better conditioned one

with smaller rank and solve the linear system using the replacement

_matrix.

To illustrate how this is done, let A be an ill-conditioned matrix

of dimension, m x n (m ~ n). It can b~ factored into U~V (singular

value decomposition) where U and V are orthogonal matrices, and ~

is an m x n matrix whose only non-zero elements lie on the main

diagonal. These non-zero elements are the singular values of A. The

condition of A depends on the ratio between the largest and the

smallest singular values. The smaller the ratio, the better the con-

dition. Suppose A
1

is an L x n matrix (L < m) wi_th a factoriza-

tion u 1~ 1v 1 and u
1

agrees with the first L columns of U,

agrees with the first L rows of V, and ~l contains only the larg-

est L singular values of A. Then, in -terms of norms, A
1

differs

from A by a small amount (as much as the largest neglected singular

values), and the condition of A
1

is better than that of A. If the

SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 14

system A X= b
1- - replaces Ax = ~' a numerically more stable solution

may result. The matrices U, ~' and V associated with A can all

be obtained by using subroutine SSVDC. However, one problem remains:

Which of the smaller singular values should be suppressed to get A
1

?

This problem does not always have an easy answer. Users should con-

sult [3) for suggestions or see a consultant.

ABOUT LINPACK

The LINPACK package is a well-tested comprehensive package £or solving

linear alg~braic equations. It contains over 80 user-callable subroutines.

The subroutines in Group (1) are driver programs (written at LBL) for LIN-

PACK, while SSVDC is directly extracted from LINPACK. For most applica-

tions, the driver sub routines in this chapter will be more than adequate.

However, for problems that demand maximal flexibility or optimal effi-

ciency, the LINPACK package should be used directly.

References

[1] Dongarra, J. J., Moler, c. B., Bunch, J. R., and Stewart, G. w., LIN-

PACK User's Guide, SIMi, 1979.

[2] Forsythe, G. E. and' Moler, c. B., Computer solution of Linear Alge-

braic Systems, Prentice-Hall, 1967.

[3) Lawson, c. L. and Hanson, R. J., Solving ·Least Squares. Problems,

Prentice-Hall, 1974.

J

r~

15

III. EIGENVALUES AND EIGENVECTORS

In this chapter, we are concerned with the problem of finding approximate

eigenvalues and eigenvectors of matrices. An eigenproblem usually assumes

one of two forms:

(i) Standard eigenproblem Ax

(ii) Generalized eigenproblem Ax

For either problem, the given matrices (A, B) are square. Eigenvalues }. ,

and associated eigenvectors ~' are to be determined. There are nine

recommended routines: eight for the standard eigenproblem and one for the

generafized eigenproblem.

A. Recommended routines

1. For Ax ~:

CG

CH

RG

RS

RSB

finds all eigenvalues/eigenvectors of a general complex
matrix.

finds all eigenvalues/eigenvectors of a complex hermi­
tian matrix.

finds all eigenvalues/ eigenvectors of a general real
matrix.

finds all eigenvalues/eigenvectors of a real symmetric
matrix~

finds all eigenvalues/eigenvectors of a real symmetric
banded matrix.

EIGENVALUES AND EIGENVECTORS 16

RST finds all eigenvalues/eigenvectors of a real. symmetric
tridiagonal matrix.

LASO finds some extremal eigenvalues/ eigenvectors of a real
large sparse symmetric matrix.

SILASO finds all eigenvalues/ eigenvectors of a real large
sparse symmetric matrix lying outside an interval. ·

2. For Ax

RGG finds all eigenvalues/eigenvectors
ized problem (i.e., both A
matrices).

B. Selection of routines

1. Standard eigenproblem: Ax ~~

of a real general­
and B are real

For the standard e'igenproblem, subroutines in Group (A. 1) should be

used. The choice of a particular routine in Group (A.1) depends on·

the properties of the matrix A.

a. · Real or complex

A matrix is real if all its elements are real. A matrix is

complex if at least one of its elements is complex. There are

four routines for real matrices and two for complex rna trices.

For a general real matrix, use subroutine RG. For a general

complex matrix, use subroutine CG.

EIGENVALUES AND EIGENVECTORS 17

b. Hermitian

A matrix is hermHian ·if it is equal t() its complex conjugate

transpose H
(A = A) • In terms .of, ma_trix el~ments, this condi-

tion is ~qui valent to ~ij =: aj i for all i ,j. ~ Note that if

the matrix· is real, then being hermitian is the same as being

symmetric. For ·a complex hermitian matrix, use CH. For a real

symmetric matrix, use RS.

c. Banded

Roughly speaking, a matrix is banded if the non-zero element.s
'?

of thti matrix are located near the main diagonal. More pre-

cisely, a matrix is banded with bandwidth K if aij = 0 for

all i,j that satisfy li-jl > K. A tridiagonal matrix is a

special case of a banded matrix with .bandwidth 1. For a real

symmetric banded matrix, use RSB. For a real symmetric tridi-

agonal matrix, use RST.

d. .Large sparse or small dense

.t A matrix is small if it will fit entirely in computer memory,

otherwise it is said to be large. A matrix is sparse if it has

relatively few (5-10 percent) nonzero entries. Otherwise it is

said to be qense ~ All. the ~outines in group (A. 1), except

SNLASO and SI.LASO, are. de,signed. fc:>r small dense matrices.

EIGENVALUES AND EIGENVECTORS 18

A hermitian matrix (either real or complex) always has a complete

set of real eigenvalues and a complete set of orthogonal eigenvec-

tors. A general matrix does not always have a complete set of

orthogonal eigenvectors, even though it has a complete set of

eigenvalues. A matrix without a complete set of eigenvectors is

called defective. The performance of the routines in this chapter

may deteriorate for a defective matrix.

The methods for the standard eigenproblem are based on the QR. algo-

rithm. This is a three-step process for a general matrix. First,

the general matrix is "balanced" so that the magnitude of each row

is made approxima~tely equal to that of the corresponding column.

Next, the balanced matrix is reduced to a. matrix of simpler form

(an upper Hessenberg or a tridiagonal matrix) by similarity

transformations. Finally, eigenvalues are obtained by QR. i tera-

tions applied to the reduced matrix. If .the eigenvectors are also

desired, they are cal~ulated by suitable back transformations fol-

lowing QR iterations. Note that a hermitian matrix is already bal-

anced, hence the balancing step is not required. Further, a real

symmetric tridiagonal matrix is already in the reduced form, hence

neither the balancing nor the reducing step is necessary. By

choosing the most appropriate_ subroutine, considerable .savings can

be realized in terms of storage and execution time.

The QR algorithm finds all of the eigenvalues. This may appear

wasteful for problems that do not require all eigenvalues. How-

ever, because of its superior stability and convergence properties,

the QR algorithm remains the preferred method unless only a small

EIGENVALUES AND EIGENVECTORS 19

fraction (25% or less) of the eigenvalues. of a large matrix is

needed. For such· problems, a method based on Sturm sequences may

be more efficient, and the EISPACK User's Guide should be consulted

for the correct EISPACK routines to use.

General purpose software designed specifically for nonsymmetric

eigenproblems with large sparse matrices is not yet available. For

further information, see a consultant.

2. Generalized problem: Ax = AB~

The.re is one recommended routine RGG for this problem. This rou-

tine is an· implementation of the QZ algorithm ,and requires that
I.

both A and B be real matrices. When either A or B is non-

singular, the generalized problem can be reformulated as a standard

problem that involves the inverse of the non-singular matrix. (For

details, see [3].) From· the standpoint of numerical stability,

however, this reformulation may be unsatisfactory as the non-

singular matrix may be nearly singular, thus causing ill-

conditioning in the inversion. The QZ algorithm is ·designed to

deal with the generalized. problem directlY,, hence avoiding diffi-

.t cul ties associated with the singularity or near singularity of

matrices A or B.

EIGENVALUES AND EIGENVECTORS 20

B. Accuracy~~ computed solution

The accuracy of the computed eigenvalues and eigenvectors can be

estimated by using results from first order perturbation analysis. We ..
indicate these results qualitatively in rather general t'erms below.

..
Details of the analysis can be found in [3). ·-·

1. The problem of finding eigenval';les for a hermitian matrix is

inherently well conditioned. If the hermitian matrix is perturbed

slightly, the eigenvalues of the perturbed matrix \'lill differ only

slightly from those of the unp!=rturbed rna tr~~· The same is not

true for a general matrix: Some eigenvalues (e.g., multiple eigen-

values) may be extremely sensitive to slight perturbations of the

matrix.

2. The problem of finding eigenvectors may be ill conditioned for both

hermitian and general matrices. The sensitivity of an eigenvector

to'perturbations of the matrix depends on the distance between its

associated eigenvalue and other eigenvalues. If the distance is

small (e.g., in the case of nearly multiple eigenvalues), the

eigenvector may be perturbed by a large amount when the matrix is

'" perturbed only slightly. On the other hand, if the distance is

large, the eigenvector should be rather insensitive to the pertur-

bation in the matrix.

EIGENVALUES AND EIGENVECTORS 21

EISPACK PACKAGE

The EISPACK_package is a collection of state-of-the-art subroutines for the

solution of both the standard and the generalized eigenproblems. EISPACK

.. ,
was developed by NATS (National Activity to Test Software). and has been

tested extensively on a wide range of computers at various installations.

There are 58 low-level subroutines and 12 driver subroutines in this pack-

age. Each low-level subroutine takes one step in the solution of an eigen-

problem; each driver subroutine solves an eigenproblem completely by com-

bining several low-level subroutines. .All recommended routines in this

chapter are driver subroutines in EISPACK, e?Ccept SNLASO and SILASO. For

most applications, the recommended routines should be sufficient. However,

for problems that demand optimal efficiency or maximal flexibility, the

direct use of EISPACK may be advantageous.

References

[1) Smith, et al., liatrix Eigensystem Routines- EISPACK Guide, 2nd edi-

tion, Springer-Verlag, 1976.

[2) Smith, et al., Matrix Eigensystem Routines - EISPACK Guide Extension,

Springer-Verlag, 1977.

[3) Stewart, G. w., Introduction to Matrix Computations, Academic· Press,

1973.

22

IV. NUMERICAL INTEGRATION

In this chapter we consider the numerical evaluation of the integral

b
j'f(x)dx. We describe three recommended routines that cover the most fre­
a

quently arising cases:

DCADRE: Evaluates definite integrals (wit.h a and b finite) by the

method of Romberg extrapolation. Adaptive.

b
GB: Evaluates weighted integrals of the form j'w(x)g(x)dx by

a .

9auss quadrature (with a and b possibly infinite). Non-

adaptive.

SPLIQ: Integrates tabulated data using cubic splines.

Both DCADRE and GB -require that the user supply an external function sub-

routine for evaluating the integrand at any point between the limits of

integration. SPLIQ, on the other hand, requires that that a 2 X N matrix

of data be supplied,

... '

... '

\vhere are the abscissa values and are the

corresponding function values.

DCADRE_is an adaptive integration routine:. The user specifies either rela-

tive error 'tolerance or an absolute error tolerance. The routine automati-

cally adjusts its step size internally to meet the error requirement. GB

....

•·

Nill1ERICAL INTEGRATION 23

is non-adaptive. The user has to determine 'the number of abscissa values

to be used before he calls GB.

DCADRE

DCADRE is a general purpose routine for evaluating integrals. The strategy

of this routine is to refine the mesh according to the amount of local

variation in the integrand. This adaptive method insures that the function

is evaluated on a sufficiently fine mesh in regions of rapid variation and,

for efficiency, on a coarser mesh where the function has little variation.

DCADRE is very reliable for integrands that are reasonably smooth and for a

wide range of error requirements.

An important feature of DCADRE is 'that it can handle two ty-pes of discon-

.tinuities:

(1) Jump discontinuities

(2) Algebraic end-point singularities with exponents less than one,

i.e.,

f(x) s (x-a) g(x) (or f(x)
,·

s (b-x) g(x))

where a and b are the limits of integration, f(x) is the

integrand, s is between -1 and 1, and g(x) is a sufficiently

smooth function. (See the writeup for DCADRE for an example.)

If an integrand is· suspected of having an integrable singularity in the

interior of the interval, then the location and the type of the singularity

N1~1ERICAL INTEGRATION 24

must be determined first. If the singularity is algebraic and is at

c ~ [a,b], then the interval [a~b] . can be broken up into [a,c] and

.[c,b], with DCADRE applied on each subinterval. If the singularity is not

algebraic; then it is better to remove or circumvent the singularity

analytically. One other possible source of difficulty is a noisy integrand

(i.e., an integrand tdth high-frequency oscillations). In such a case,

there may be excessive cancellations, leaving essen tial,ly nothing but

round-off error in the result.

Although DCADRE is reliable for many types of integrands, and excellent for

most app~ications, it does require more memory and execution time ·than a

simple, non-adaptive quadrature (e.g., trapezoidal or Simpson's rule). If,

within a program, very large numbers of integrations are needed and low

accuracy is allowable, a simple, non-adaptive routine should be used.

(Consult the General Catalogue.)

GB

GB approximates an integral of the form

N

b '
J':g (x)w(x) dx
·a

by the sum

~ C.g,(x.). Here w{x) is one of six standard weight functions:
i=l 1- 1

'"'

, •.
,•

,.,

.•.

....

}lliMERICAL INTEGRATION

1

2
-x

e

(1-x)c((l+x)IB

Legendre

Chebyshev, . type 1

Chebyshev, type 2

Henni te

Jacobi

-x c(
e x ,, Laguerre

25

N is the number of abscissa points to be used, Ci's are the weights, and

x.'s are the abscissa values, which are determined by the choice of w(x).
1

There are requirements on the limits of integration for each of the six

weight functions. Often a linear change in the variable X

b
J'g(x)w(x)dx may be necessary to bring a and L>
a

to required values.

(See the writeup of GB for details.) This routine is particularly useful

for integrals with infinite or semi-infinite intervals of integration. In

general, w(x) should be chosen to represent as closely as possible the

non-polynomial behavior of the integrand. For example, if the integrand

f(x) behaves 1 ike
c(

X times a polynomial near x 0, and decays like

m
exp(-x) for large x, then to integrate J'f(x)dx; GB is called with an

0

input parameter set to specify w(x) = xc(exp(-x),
,.

and with the external

function g(x)
-c(

x exp(x)f(x).

Due to its non-adaptive nature, GB does not return an error estimate for

its computed solutien. Although general formulae can be given for

NUMERICAL INTEGRATION 26

estimating the error, such. formulae often involve high-order derivatives of

the integrand. A more direct method for estimating the accuracy of the

numerical integration is to evaluate the integral successively with larger

values of N and then to compare the number of digits in agreement.

SPLIQ

SPLIQ is a routine that uses cubic splines to integrate tabulated data.

i = 1, ••• ,N} (xi's are the abscissa

values, and yi's the function values), SPLIFT fits the data points with

an interpola-ting cubic spline (a piecewise third-degree polynomial that

joins smoothly at the abscissa values). The interpolating spline is then
,.

integrated exactly. The advantage of using spline interpolation over

, interpolation by a single polynomial of high degree is that the spline

tends to have oscillations of smaller amplitude between the interpolating

points. For coarse data (2 or fewer accur,ate digits), SPLIQ tends not to

take full advantage of possible cancellation of rounding errors in the

data; simpler, easily hand-coded integration rules, such as the rectangular

or trapezoidal rule, can often be applied with better results. (Note:

SPLIQ should be used in conjunction with SPLIFT; see Chapter VI II.)

Refe.rences

[1] Davis, P. J. and Rabinowitz, P., -Methods of Numerical Integration,

Academic Press, 1975.

[2] Rice, J. R., Mathematical Software, Academic Press, 1971.

•

..

. ,.

27

V. SPECIAL FUNCTIONS

In this chapter we consider the numerical evaluation of special functions.

There are over 40 recommended routines. They evaluate:

- Airy functions

- Real and complex Bessel functions

- Beta functions

- Error functions

- Gamma functions

- Hyperbolic functions

- Elliptic integrals

- Exponential integrals

- Dawson's integral

- Psi function

Routines to evaluate special functions are present in most of the mathemat­

ical libraries at LBL, but those in libraries FUNPACK and SANDIA are of

particularly high quality. The recommended routines are all extracted from

those two sources •

FUNPACK

This package is a state-of-the-art collection of special function routines.

It is organized into packets; a packet usually contains one or more func­

tion subprograms which serve as entry points, and an underlying subroutine

that is called by the function subprograms to perform the computation.

SPECIAL FUNCTIONS 28

Most routines in this package use near-optimal minimax approximations. The

advantages of minimax approximations are that they usually give. full

machine accuracy (14 significant digits at LBL) and are effic:i,ent for all

valid arguments.· NATS (National Activity to Test Software) has tested this

package thoroughly and has certified it as being robust, reliable,· and

efficient.

SANDIA

This library contains a subs.tantial collection of special function rou­

tines. Host of these routines use either Chebyshev expansion or a combina-

tion of series and asymptotic expansions. In general, SANDIA's routines

are easily transportable and achieve an accuracy of approximately 11 to 13

significant digits.

*****·

If a user cannot find an appropriate routine in this sect ion, he is

encouraged to consul,t the General Catalog for other special function rou-

tines.

I~

SPECIAL FUNCTIONS 29

References

I

[1] Abramouitz, 11., and Stegun,, I., Handbook of Mathematical Functions,

U.S. Government Printing Office, 1964 • .•.

Cf'
[2) Cody, ~v. J., "'The FUNPACK package of special .function subroutines",

ACM Transactions on Hathematical Software 1, 1975, pp. 13-25 •

. ,

' . .,

.30

VI. ORDINARY DIFFERENTIAL EQUATIONS

The four recommended routines for the nui!lerical solution of ordinary dif-

ferential equations (ODE's) are:

RKP

LSODE

GEARIB

PASVA3

Solves a non-stiff system of first order, initial value ODE's.

Solves a stiff or non-stiff system of first order, initial value
ODE's.

Solves an implicit system of first order, initial value ODE's.

Solves a system of first order, boundary value ODE's.

All available routines use variable step sizes. The user specifies an

error tolerance, and, by taking appropriate steps, the routines attempt to

keep the estimated error in the co111puted solution within that tolerance.

In RKF, LSODE, a,nd- GEARIB, local truncation error (relative or absolute

error) is estimated, -v1hile in PASVA3 global error (absolute error) is

estimated. The latter three routines (LSODE, 'GEARIB, and PASVA3) also use

variable order methods to heip decrease the number of function evaluations.

The choice of the most appropriate routine for a given problem depends on

the properties of that problem. Some of the important considerations are:

A. Form & the equations

The routines in this chapter require that the user supply a system of

first order equations. For RKF, LSODE, and PASVA3, the required form

is:

•

ORDINARY DIFFERENTIAL EQUATIONS 31

_z(t) f. (t ,.z (t)) , (1)

..
where :z.., f., y are all n-vectors, and fo:r GEARIB,

A (_z (t) , t) y (t) = f. (t ,y (t)) (2)

where A is an nxn matrix, and y, f_, L are all n-vectors.

This requirement is really not a restriction, since any ordinary dif-

ferential equation can be expressed as a first order system of equa-

tions. (See [1] for examples.)

B. Initial value or boundary value

In order to solve a system of ordinary differential equations of the

form (l) or (2), the values of L have to be prescribed for certain

values of t. In an initial value problem, the values are

prescribed at a single time t 0 , and further L values corresponding

to subsequent times are to be determined. In a boundary value problem,

the L values are often prescribed at two times, t , and the
n

:t. val'ues corresponding to interMediate times (between t
0

and t)
n

are to be determined. The class of methods used for boundary value

problems differs significantly from that for initial value problems,

and boundary value problems are generally much more difficult to solve

than initial value problens.

ORDINARY DIFFERENTIAL EQUATIONS 32

c. Stiff or non-stiff

Roughly speaking,' a system of ODE's is called stiff if it involves both

very rapidly changing and very slowly changing cqmponents in the solu-

tion. An example of this is a multiple exponential decay with widely

varying time constants. For a stiff equation, special numerical tech-
./

niques are usually required for efficiency. If the user does not know

whether his problem is. stiff, a simple ,.my to find out is to try solv-

ing the problem with either RKF or LSODE's non-stiff option (HF = 10).

If the typical step sizes used are much smaller than those that the

solution behavior would seem to require (e.g., 100 steps when the solu-

tion changes by only a few percent), then the system is probably stiff,

and the degree of stiffness can be estimated from the actual sizes of

steps taken and the smoothness of the solution.

RKF

RKF is a Runge-Kutta type procedure with extensive error handling capabili-'

ties. It is the recommended routine when the following conditions are

satisfied:

(i) The system of ODE's is non-stiff.

(ii) · The derivative evaluations (evaluations of f in equation (1)) are

inexpensive.

(iii) The required accuracy of the computed solution is low.

ORDINARY DIFFERENTIAL EQUATIONS 33

If any one of these conditions is no·t met, then the use of the Runge-Kut ta

method may become inefficient. This inefficiency would usually be

reflected in the value of a certain flag in 3.KF. (See writeup ·for

details.) In this ca~e, the use of the LSODE package may be appropriate.

LSODE

LSOnE is an extensive package that contains t\vo separate methods, the Adams

method and the backward differentiation formulas, for solving both non-

stiff and stiff equations. Both methods are irn.plicit. To find the value

of y at time tk, a "predicted'~ value yk is computed first, from the

z-values of previous times. Then, the predicted value yk is iterativelv

corrected until the required accuracy is reached. In the correction stage,

a system of nonlinear equations is formed (a different system for each of

the two methods). This system is solved by one of three available itera-

tion procedures: functional iterations, Newton's method, and the chord

method. The following guidelines may be helpful:

(i) If a non-stiff system is not efficient with RKF (because the deriva-,

tive evaluations are expensive or the required accuracy is high),

then the best choice is P!obably the Adams method with functional

~ iterations.

(ii) If a system is very stiff, then the backward differentiation formu-

las should be used \1i th either the Newton's iteration or the chord

method. (The chord method is used primarily for problems with diag-

onally dominant Jacobians (~f/~y).)

ORDINARY DIFFERENTIAL EQUATIONS 34

(iii) If a system i's mildly stiff, then the Adams method with either the

Newtpn iteration or the chord method is often most appropriate.

The LSODE pacl"-.age, although excellent for a wide class of equations, may be

subject to instability when the problei'l is highly oscillatory. The insta-

0ility usually manifests itself as an oscillation of- step size, between

reasonable values and excessively small values. If this ahould"occur, the

user is advised to use the routine EPISODE in SOURCE.

CEARIB

GEARIB is intended for a special c1ass of initial value problems: implicit

systems of the form

A(y,t)y i (y, t)

This package uses the same methods as the LSODE package: the Adams method

for non-stiff or mildly stiff equations, and backward.differentiation for-

mulas for stiff equations. In the correction process, however, onl~r one

iteration procedure is applicable: Newton's method. A1 though equation (2)

can often be rewritten in the explicit form z -1
A (y,t)_f(y,t), .and then

solved by either .RKI<' .or GEAR, solvin8 equation (2) directly 1-Tith GEARIB

offers these advantages:

(i) \.Jhenever raatrices A and (~i/~y) have band structures, a consider-

able gain in efficiency and storage economy can often be realized.

ORDINARY DIFFERENTIAL EQUATIONS 35

(ii) Singularity of the matrix A can often be treated without diffi-

culty.

PASVA3

PASVA3 is used to solve tva-point boundary value probl~ms ;>Ti th linear or

nonlinear boundary conditions. Although initial value problems always have

a unique solution given some mild conditions, boundary value problems may

not, in general. PASVA3 is intended to vork for problems ,.,.i th well-

defined, isolated solutions. The strengths of PASVA3 are:

(i) its ability to solve most sw.ooth problems of moderate size

(n ~ 20);

(ii) its ability to resolve moderate boundary layers (say up to 10-
4

width in [0, 1]);

(iii) its ahility to provide an estimate of the global error (absolute

error) in the computed solution~

If a boundary value problem is beyond the scope of PASVA3, a consultant

should. be contacted • Other approaches such as shooting or collocation
. ,,

might he applicable.

ORDINARY DIFFERENTIAL EQUATIONS 36

References

[1') Dahlquist; C., Bjorck, A., and Anderson, N., Numerical Hethods,
l

Prentice-Hall, 1974.

[2] Gear, c. w. ,, Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-Hall, 1971.

[3] Lambert, J. D., Computational Hethods in Ordinary Differential Equa-

tions, 'Hiley, 1973.

[4] Shampine, 1. F., and Gordon, H. K., Computer Solution of Ordinary Dif-

ferential Equations, The Initial Value Problem, Freeman, 1975.

,,

~}

..
1>·
~·

37

VII. PARTIAL DIFFERENTIAL EQUATIONS

chapter in preparation

38

VIII. INTERPOLATION AND APPROXIMATION

In this chapter, we consider the numerical problem of fitting a function

f(t) either to a set of data points (t.,y.), i
1 1

0' ••• ,:n or to an

analytically defined function g(t) over an interval [t
0
,t]. The recom­

n

mended routines are:

Exact fitting

POLINT,
POLYUL

SPLIFT,
SPLinT

polynomial interpolation using Newton's interpolation formula

cubic spline interpolation

Approximate fitting _and smoothing

LHIT..SQ

POLFIT,
PVALUE

ICSFKU

VARPRO

IRATCU

general linear weighted least squares approximation with QR
factorization

\>leigh ted polynomial least squares approximation with orthogo­
nal polynomials

least squares cubic spline approximation

general nonlinear weighted least squares approxiraation

rational polynomial approximation in the maximum norm

The most crirical step in solving an approximation problem successfully is

probably the formulation of the problem itself. In the formulation stage,

two things should be considered: (n the type of function that vill be

used for approximation, and (2) hm..r the difference (error) l>etween the

approximating function and the data points (or the given function) is to be

•

,

INTERPOLATION AND APPROXIHATION 39

measured. Once the problem is clearly formula ted, the selection of an

appropriate routine becomes. a mu~h simpler task.-

A. Types of the approxinrating function f(t)'
•.

The following types of functions are used hy one or more routines in

this chapter.

1. Polynomial: f(t)
k
~

i=O

i
a.t

1

2. Cubic spline: f(t) = a function composed of piecewise cubic poly-

3.

4.

nomials joined together at knot points so that f(t) is continu-

ous and has continuous first and second derivatives.

Rational polynomial:

of two polynomials).

General linear: f(t)

f(t)

k
~

i=O

k
~

i=O

i
a.t

1

L

/. ~
j=O

a.)ll.(t) where
1 1

¢. (t)
1

(the quotient

is any desired

function in t. In this case, f(t) depends linearly on the

parameters a
0

, ••• ,ak. Case (A._l) is a special case of (A.4).

S. General nonlinear: f(t) = a function that can depend both

linearly and nonlinearly on the the parameters. For ,example, if

-a3t . -as t
f(t) = al + aze· + a4e ' then f depends linearly on al'

a
2

, and a
4

, and nonlinearly on a
3

, aS.

'
The type of function that is most appropriate for· a particular problem

is often suggested by its theoretical background. In this case,

INTERPOLATION AND APPROXIMATION .40

intuition and insight should be the best guide. If the theoretical

background is insufficient for· this purpose, then one has to rely on

the intended use of the approximation and the nature of the data set

(or given function~. For instance, a low-degree polynomial is much

easier to work with than a rational polynomial for integration pur-

poses, and a cubic spline is often preferred if the data set has a

pattern not characteristic of polynomials.

" Trigonometric functions, although not mentioned here, are often used

in approximation problems. Routines related to trigonometric func-

tions are available in the Fourier Analysis section of the General
\

Catalog.

B. Goodness-of-fit

1. Exact fit: The value of f(t) agrees exactly with the values of

the data set at all

i=·o, ••• ,n.

t .•
1

i = o, ••• ,n. for

2. Least sguares fit: The difference is minimized· in t\le least

squares sense: is minimized. When weights

are used, is the weight

for the data point at ti).

3. Maximum ~ fit: The difference. is minimized in the maximum

norm: m~x jf(ti) -yil. ·is minimized in the discrete case or
1

max jf(t) - g(t) I is minimized in the continuous case.
iolii[t

0
,tn]

,,

INTERPOLATION AND APPROXIHATION 41

Usually the exact fit is used only when the data is very accurate, and

the least squares fit is used when the data has noise in it. The max-

imum norm fit is difficult to implement in the discrete case, but is

.''
efficient and gives good results in the continuous case.

PO LINT,
POLYVL Exact fitting \-lith a polynomial

These routines should be used only when these four conditions are sat is-

fied:

{i) There is very little noise in the data.

(ii) There are few data points (n < 7).

(iii) The abscissas

clustered.

(t.'s)
1

are neither widely separated nor closely

(iv) The data has a general polynomial .shape.

The restriction on the number of data points is due to the fact that high

degree polynomial exact fits as a rule result in widely oscillating curves.

Although one could subdivide an interval when there are many data points

and fit a polynomial exactly in each subinterval, a cubic spline usually

can be applied to obtain better results.

INTERPOLATION AND APPROXIMATION

SPLIFT~
SPLINT Exact fitting with a cubic spline

42

Fitting with a cubic spline is usually preferred when the form of the

approximating function f(t) is not suggested by either the background of

the problem ~r the general shape of the data. For integration over

discrete data, exact fitting with a cubic spline is well suited. For

interpolation and extrapolation, however, exact fitting with a cubic spline

should be used only when:

(i) the data has very little noise in it, and

(ii) the nunber of data points is not very large.

Otherwise, least squares fitting is preferred.

LINLSQ General linear \veighted least squares fit

k
In this · case, f (t) has the form ~· a.¢.(t),

i=O 1 1

and the problem is to

determine the values for the parameters that are "best" in the

sense of least squares. This problem can be formulated in terms of an

overdetermined system of linear equations Ax = b where x is the vector

of the parameters a
0

, ••• ,ak. (See the writeup for LINLSQ.) One approach

to solving the system Ax = b is the method of normal equations, where

both sides of the equation are multiplied by At to give a new equation

t t
(A A)~ = A .£.• Then the new equation can be solved using the standard LU-

decomposition. A second approach is to decompose and solve the original

systeu directly. This approach is used by LINLSQ. It is more stable than

the method of normal equations and usually produces more reliable results.

'

INTERPOLATION AND APPROXH1ATION 43

If f(t) is a polynomial or a cubic spline, then POLFIT or ICSFKU should

be usen instead of this routine.

POLFIT,
PVALUE Weighted least squares fit with a polynomial

The main advantage of POLFIT over LINLSQ for the case ¢.(t) = ti
1

is that

?OLFIT allows better control of the degree of the polynomial to be used in

the approximation, and it permits automatic selection of the ."best" degree

based on a statistical test. (See t.he writeup for POLFIT.) Fitting with

high degree polynomials generally is discouraged because the method used by

POLFIT can becol'le extremely ill-conditioned. If n is the number of data

points, and k the degree of the polynomial, a rule of thumb is to choose

k such that k < 2~-n. If the data does not have a polynomial shape, POL-

FIT should not be used. ICSFKU would probably work better.

ICSFKU Least squares. fit \d th cubic splines

This is a versatile routine useful for a wide class of smoothing problems.
~

The successful use of a cubic spline least squares routine depends largely

on the proper placement of knots (locations where the piecewise cubic poly-

nomials are to be joined). ICSFKU is written to facilitate experimentation

with various knot placements.

INTERPOLATION AND APPROXIMATION

VARPRO tkighted general nonlinear least squares fit

In this case, f (t) may depend nonlinearly on some of the parameters

a
0

, ••• ,ak. One approach to solving this nonlinear problem is to treat it

·as an optimization problem: Let the residual function be,

n n
defined as ~

i=O

2
[y.~f(t.)] (or

1 1
~

i=O

2
\~.[y,-f(t.)]

1 1 1
in the \<teighted case).

Then the residual function can be minimized with a general optimization

routine. (See the optimization chapter for further details.) This

approach is particularly useful when certain parameters in f (t) h~ve to

be constrained for physical reasons. Hmvever, when none of the parameters

is constra:lned, VARPRO is a better choice. Often not. many parameters in

!:(t) are nonlinear. For instance, in the case for which

three. of the parameters are

linear; only a
2

and are nonlinear.

(ao, a 1, a 3)

VARPRO treats the linear and

nonli:near parameters separately, thus requiring initial guesses only for

the nonlinear parameters, and often obtaining drama tic improvements in

terms of both .speed and accuracy over the general optimization approach.

IRATCU ~·1aximum norm fit with rational polynomials

This routine is intended for high accuracy approximation to a function

whose analytic form is given.

* * * * * * *

c,f

.fi.

'

INTERPOLATION AND A.PPROXH1ATION 45

Interpolation and Approximation is a very broad area. l-ie have discussed in
. ,' ~

this chapter only those forms and goodness-of-fit criteria that arise most

commoniy in practice. If a user suspects that his problem is non-standard,

he should talk to a cdnsultant •

•
c· ••

References

[1] Forsythe, G. E., Malcolm, }1. A., and Haler, c. B., Computer Hethods

for Hathematical Computation, Prentice-Hall, 1977.

[2] LaT.vson, C. L. and Hanson,· R. J. , c - . .,Q.LV1ng Least Squares Problems,

Prentice-Hall, 1974.

,)

46

IX. NONLINEAR EQUATIONS AND OPTIMIZATION

In this chapter we are concerned with the closely related problems of find-

ing approximate zeros or extrema (maxima or minima) of nonlinear equations.

The recommended routines are:

Roots of a polynomial

ZPOLR

ZCPOLY

finds all roots of a polynomial wi'th real coefficients using
Laguerre's method.

finds all roots of a polynomial wi tli complex coefficients
using the Jenki ns-Traub method.

Zeros of a function (other than polynomial)

ZERO IN

ZANLYT

finds a zero of a continuous real function of one variable
using a combination of interpolation and bisection· algo­
rithms.

finds zeros of an analytic complex function of one complex
variable using t1uller' s method.

Simultaneous nonlinear equations

ZSYSTH

Optimization ,

finds . an approximate solution of a system of simultaneous
real 'nonlinear equations using a modified Levenberg-Harquard t
method. 1

The ent:lre NPL library is recommended for optimization problems. Due to

space limitations, however, only fourteen of the most frequently

requested NPL routines are incorporated in the CORE library:

'~

NONLINEAR EQUATIONS AND OPTIHIZATION 47

(~) General unconstrained minimization:

UBNDQl

UBFDN2

Quasi-Newton algorithm,
(easy-to-use form) •

uses function values only

Hodified-Newton algorithm,
(easy-to-use form). ·

uses first derivatives

(£) Hinimization subject to simple bounds:

BCNDQl

BCFDN2

Quasi-Newton algorithms, uses function values only
{eqsy-to-use .form).

H,odified-Newton algorithm,
(easy-to-use form).

uses first derivatives

(_£) l1inimization subject to general linear constraints:.

LCQNDF

LC11NAF

LP

LCQP

Quasi-Newton algorithm, uses function values only (nor­
mal form).

Modified-Newton algorithm, uses first derivatives (nor­
mal form).

Solves a linear programming problem using a modified
revised simplex method.

Solves a quadratic program using a modified Newton
method •

. (£) Hinimization subject to nonlinear constraints:

SALQDF

SALHNF

Sequential augmented-Lagrangian method, uses function
values only (normal form).

Sequential augmented-Lagrangian method,
derivatives (normal form).

uses first

NONLINEAR EQUATIONS AND OPTIMIZATION 48

(~) Unconstrained nonlinear least squares:

LSNDNl Uses function values only (easy-to-use form).

LSFDN2 Uses first/ derivatives (easy-to-use form).

Cf) Service routines: ' .

CHKGRD Checks first derivatives used by LCMNAF.

CHKNCD Checks first derivatives of· the· function and constraints
used by SAL1'1NF.

Note: NPL routines often exist in two forms: a normal form and an

'
abridged easy-to-use £6·rm. For the CORE library, the easy-to-use

form is selected wherever available.

Roots~~ polynomial

The problem of polynomial root-:finding has a long history of interest;

nethods for this problem have constituted some of the oldest algorithms of

numerical analysis [1]. However, with recent advances i·n numerical linear

algebra and other areas of numerical mathematics, problems that required

the use of polynomials in the past can often be solved today more accu-

rately and efficiently using other approaches. An example of this is the

linear algebraic eigenvalue ~problem. Some years ago, it was assumed that

the eigenvalues of a matrix were obtained by solving a characteristic poly-

nomial. Now we have methods (e.g., the QR method) that are more stable

numerically and do not involve polynomials in any direct way.

NONLINEAR EQUATIONS AND OPTIMIZATION 49

Although the recommended routines, ZPOLR and ZCPOLY, are probably among the

finest available, they should be used with caution. Because of the.extreme

instability of the .roots of some polynoe:tials as functions of their coeffi-

cients, the problem of polynomial root-finding should be avoided whenever

possible. In the special case of a quadratic polynomial, stable routines

can be found in the H1SL library. These routines generally perform better

than the handcoded programs that make direct use of the quadratic formula.

Zeros of a function (other than polynomial)

Algorithms· for finding zerps of a general, nonlinear function are usually

iterative in nature. Familiar algorithms of this type include bisection,

secant method, and Newton's method. Each method has its own advantages and

shortcomings. The most rapidly converging methods often have the most pit-

falls, such as non-convergence or convergence to a "wrong" zero. More

robust methods, on the other hand, tend to be less rapidly converging.

The recommended routine ZEROIN for a real function uses a combination of

robust and rapidly convergent methods. As a result, this routine is

extremely reliable and efficient. The recommended routine .ZANLYT for a

complex function is not as robust as ZEROTN. Nevertheless, ZANLYT has its

advantages: it does not require initial estimates for the solutions, and

... it can calculate more than one zero simultaneously. Not.e that ZANLYT

)

should normal~y be used for complex functions only. (A complex function of

one variable is analytic if and only if it has a first complex derivative.)

NONLINEAR EQUATIONS AND OPTIMIZATION 50

Simultaneous nonlinear equations

The routine ZSYSTM is recommended for solving a system of simultaneous non-

linear equations:

Generally there is no known method for computing all solutions. of such a

system. . ZSYSTM finds only one solution, usually the one closest to the

initial guess. The method used by ZSYSTH is a Newton-like method, which

requires only function values

lems with good initial guesses.

(f / s), and is rapidly converging for prob-
1

~f.
An important special case arises when the .Jacobian matrix (~) of the

ox.
J

nonlinear equations is large and sparse. For such problems, storage econ-

omy becomes crucial, and the sparsity of the Jacobian matrix must be

exploited. Routines for this. special case can be fo1,1nd in the Harwell

library. Interested users should contact a consultant.

Optimization

The NPL (Uational Physical Laboratory, England) library offers high quality

routines in the.following areas:

~'

,,
I

NONLINEAR EQUATIONS AND OPTIMIZATION

mini1nization of a function of one variable

general unconstrained minimization

unconstrained nonlinear least squares problems

miniiniza tion subject to simple bounds

minimi'za tion subject to general linear constraints~
including linear and nonlinear programming

minimization subject to nonlinear constraints

51

Although the routines in NPL are concerned with rninimiza tion only, the

problem of maximizing a function can be transformed into a minimization

problem simply by multiplying the function by -1. Hany of the routines in

this library exist in two forms: a normal form and an· abridged, easy-to-

use form. A routine in the normal form usually contidns in its calling

sequence all parameters relevant to the underlying method, while the·

corresponding routine in the easy-to-use form contains only. those parame-

ters essential to the definition of a problem. The extra parameters in the

normal . form allow users to fine-tune the method to a particular problem,

thus obtaining better efficiency. For casual users, however, this saving

in execution time is probably of little concern.

The successful use of an optimization routine depends to a large extent on

the proper formulation of the problem. Care should be given to the form of

the objective function (function to be optimized) so 'as to minimize cancel-

lation in the evaluation of the function and the derivatives, and to avoid

redundant variables. Care should also be given to the scaling of variables

so· that the variables are all of similar magnitude, and the derivatives

also of similar magnitude. Note •that -linear transformations

•

NONLINEAR EQUATIONS AND OPTIMIZATION

(new)
xi = ~ cij x.

j J

can often be used for proper scaling •

+ d.
1

. .

52

\Jhenever possible, first derivatives of the objective function should be

evaluated analytically. Subroutines that make use of the function 'only are

easily affected by excessive cancellation and poor scaling and are often

less efficient than subroutines that also make use of the derivative infor-

mation. The use of analytically calculated second derivatives is generally

less crucial. The derivatives (and second derivatives), whenever analyti-

cally calculated, should be checked for correctness by 'finite difference

approximations. (NPL furnishes subroutines CHKGRD and CaKNCD for this pur-

pose.)

For nonlinear least squares problems
H

(min ~

i=l
X

2
f. (x)'
1-

X the

residual functions f. often depend nonlinearly on only some of the vari-
1

ables. For example, if

ci,di are constants, then· fi depends nonlinearly on x
3

, and linearly on

and In these cases, it is desirable to pose the optimization

problem on th~ nonlinear variables alone so as to improve efficiency and

reduce the number of parameters requiring initial approximation ([3], p.

25). · Subroutine VARPRO can be used for this purpose. For more details on

VARPRO, see the chapter "Interpolation and Approximation".

After calling an NPL rouUne, the error flag (IFAIL) should always be

checked. For most problems, a successful exit (!FAIL = 0) is probably suf-

(

ficient evidence that the computed solution is an adequate approximation to

the exact solution. If !FAIL is not equal to zero, further confirmation is

·.~·

1ft

NONLINEAR EQUATIONS AND OPTIMIZATION 53

necessary. One possible way would be to try the problem again with a dif-

ferent initial guess and see whether the same computed solution results.

References [3),[4) provide much more information on the !FAIL parameter and

systematic methods to test the "goodness" of the computed solution.
' Q

One area of optimization not covered by the current NPL library is con-

strained nonlinear least squares. A routine for general constrained optim-

ization (LCQNDF, LCHNAF, SALQDF; or SAI.MNF) may be used, although this

approach takes no special advantage of the function to be minimized.

References

[1] Forsythe, G. E., ~1alcolm, H. A.~ and Moler, c. B., Computer Methods

for l1athematical Computations, Prentice-Hall, 1977.

[2] Gill, P. E. and Hurray, \-l. (eds.), Numerical Methods for Constrained

Optimization, Academic Press, 1974.

j

[3) Hurray, w., Numerical Hethods for Unconstrained Optimization, Academic
..

Press, 1972.

[4] ~he NPL Numerical·Optimization Software Library User's Manual.

This work was supported by t.he U.S. Department of Energy under Contract

W-7405-ENG-48.

J

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

.~

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LAB ORA TORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.. -=·· --~~~

