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A. CORE libfary‘w

I. INTRODUCTION

The CORE 'library"is a collection, of state-of-the-art mathematical

software encompassing the following subjects:

= Systems of. linear algebraic equations
— Eigenvalues and eigenvectors : o
= Numerical integration
- Special functions
.= Ordinary differential equations
-~ Partial differential equations (in preparation)
- Interpolation and approximation

- Nonlinear equations and optimization

Tﬁé software in the CORE libraiy has been drawn frmm a varie;y_of
sdurcés, including the IMSL library, SANDIA library, EISPACK, anq FUﬁ-
PACK. This library is thé only fully-supported_mathematical‘pfogréﬁ
1ibfary at LBL. Extensivé gonsultiﬁg service is provided jointly by
the progfamming coﬁsﬁltants (x 5981) and the mathemétical consultants
(x 6006) to assist in tﬁe prépefluse of CORE library routines and to

advise on general numerical matters.
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B.

7

Purpose of the CORE library

, R s . . : )

In the past, many computer useré have depended upon their own knowledge
of mathemafics and computation to_geﬁefate software for solving numeri;
cal problems. However, there has been a stéady.advance in.the sophis-
tication of large scale scientific comﬁﬁting and that ﬁart of matﬁgméfe
ics, usually termed numerical'analysis, which concérns itself with the
reliability and efficiency of'numéfical methbds. This ch&nge in the
computing environmenf has brought about the need for high quality

’

mathematical software collected into centralized computer libraries.

 There are many advantages to usiﬁg a centralized library: the user

need not concern himself with the details of a particular numerical
problem; duplication of effort is avoided; and consultants can help the

user more effectively.

The purpose of this 1library is to make available state-of-the-art
numerical routines for mathematical computations, and to do so in a way

that is convenient for users. (Statistical programs are not discussed

here except for a variety of data fittihg routines. For information on

Statistics,'seé docﬁmentétion for‘IMSL or SPSS.f The previously exist-
ing library at LBL, like those at most installations,'consisted of a
large collection of routines of varying quality and utility; Altﬁough'
many of these subroutines were good, many éthers were obsolete, inaccu=-
réte, or inefficiént. In many cases severalbdifferent programs ﬁere
available which purported to solve the same problem, aﬁd users were
given little rational basis for chqosing from among them the best rou-

tine for a particular need. The effects of such a cluttered mass of
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programs were general user cdnfusion-andeidespread‘use of inferior .or
inafpropriate routines. In-an effort .to combat this situation, bring
some- éonéistency' into pfogram dbc;mentation; and offer guidanqe in.

software selection, it was decided to split the library into two parts:
a CORE .liBréry and a ‘collection of background routines. The CORE

ligrary is of manageable size with some hope of logical organization
and thorough documentation. The programs in it are of wide applicabil-
ity and service the bulk of user needs. If, however, the resoﬂrces in

the CORE library prove insufficient for some sbecial problem, -the user

still has recourse to the larger background library.

CORE library documentation

The documentation for the CORE library consists of:
(1) CORE library User’s Guide (i.e., this volume)

(2) CORE library Writeups

The User’s Guide is di&ided into nine chapters, one for each subject
area in the CORE library. Each chaptervcontains a ‘list of availabie
CORE library routines, suggestions on the proper selection of routineé
to use, and discussions of algorithmic aspects of a subject area,
including possible traps and pitfalls that may be encountered in numer-
ical computation. References are provided if additional information is

desired.
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The Writeups are sets of mach;ne—readablé'specifications for the CORE
libfary routines. Each specification contains a detailéd description
of the‘calliﬁg—seqhence-parameters, a summary of the underlfing algo-
£ithm, and an identification Qf the source from which the routine.was

drawn. Most specifications also contain demonstration programs to

illustrate the use of the routines.

A

Using the library and obtaining the documentation

To use the CORE library, the control card
MATHLIB.

should be inserted in the control sequence. For example, if a program

uses subroutine RS in the CORE library, its job deck may look like:

< JOB CARD >
FTN4. compile your program
MATHLIB. attach. the CORE library -
- LINK,X,RF. link and execute your program returning .
all files once they are loaded

7-8-9

PROGRAM MAIN (INPUT,OUTPUT)

CALLRS ( » « o)

END.

6-7"8-9 .
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The control card "MATHLIB.!" causes a copy-of the binary version of the

CORE 1library to be linked to' the -user program asa p~file. Note that"
the binary library was. compiled under FIN4 -with. OPT=2. As a result,

the user program must be compiled under FTN4 or MNF4. -

 The FORTRAN source codes for the CORE libféry are not directly avail-

able to the user due to the proprietary nature of some routines.. If a-

user is interested in a particular FORTRAN source code, he should con-

tact a programming consultant (x 5981).

The CORE librar& User’s Guide can.be obtained by calling the computer
center library (x 5529). The CORE library writeups are stored in the
PSS and can‘be obtained by executing the MATHDOC control card as fol-

lows:
MATHDOC, *.

This card will cause the entire document (over 300 pages) to be
printed. One may, however, specify subroutine names and obtain write-
ups of only those specified. It is also possible to specify narrow

paper (8-1/2 by 11) if printing the document at LBL. Thus:

MATHDOC, RS, DCADRE, PA=1F .

i

will print the introduction and the.wfiteups of RS and DCADRE on narrow

1

| , l
g

three~holed paper.

The special functions, being so numerous, are grouped together in the

document. Specifying

MATHDOC, BESSEL.
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will provide the user with writeups of all the Bessel functions in the
CORE library. The names of -all the possible arguments to MATHDOC are
documented in WRITEUPS subset "CCARD" under "MATHDOC", and in WRITEUPS

subset "LIBRARY" under "CORE LIBRARY".

Other libraries

For problems that ére beyond thé scope of‘the CORE library, there méy
be suitable routines available in other iibraries. The WRITEUPS subset
"ﬁIBRARY" contains short déscriptions of routinesifrom most matheﬁati—
cal libraries supported (fully or partiallyi by the'COmputer Center.

To obtain a copy on narrow three-holed paper, use the commands:

FETCHPS , WRITEUPS, OUT, LIBRARY.
DISPOSE, OUT=PR, PA=1F. (use PA=1F only at LBL)

Acknowledgments

The style and content of this Usef's Guide have been influenced greatly
by NAPLUG (Numerical Analysié Program Library User’s Guide at SLAC).
We are indebted to the pioneefing efforts of its authors. We grate—
fully acknowledge the support and enéouragemgnt given us by the LBL
Computer Center and‘its;Software.Support and Development Grouﬁ during
the preparation of this Guide. Thi; work was carried out under the

auspices of the U.S. Department of Energy under contract W-7405-ENG-

48.
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II. SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

The general form of a linear system of equations is -Ax- = b, where A is
a known coefficient matrix of dimension m X n, b is.a known vector of
length m, and x 1is the unknown vector of length n. -~There are Sseven

recommended routines:

GROUP (1)

for square matrices only (m = n):

SGEFCS - This routine operates on a general, real matrix.

SGBFCS - This routine operates on a real, banded matrix.

SSPFCS - This routine 6perates on a real, symmetric matrixe.

SPPFCS - This routine operates on a real, positive definite matrix.
'

SPBFCS - This routine operates on a real, positive definite, banded

matrixe.

[

‘CGEFCS‘— This routine operates on a general, complex matrix.

GROUP (2) - singular value decomposition:

SSVDC =~ This routine computes a singular value decomposition for a

square or rectangular real matrix.

The coefficient matrix of a linear system can have one of many forms. We
shall consider matrices that are square, rectangular, or large and sparse.

We shall consider also what to do in the case of ill-conditioning.
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A.

Matrix A is équare (m = n).

“

For a linear. system whose coefficient matrix is square, a subroutine

in Group (1) should be used. The specific choice within Group (1)

depends on the properties of the matrix.

1.

3.7

Real or complex

A matrix is real if all its elements are real. A matrix is com-
plex if some of its elements are complex. There is only one rou-
tine for complex matrices: CGEFCS. For general, real matrices,

use SGEFCS.

Symmetry

!

A matrix is symmetric if its transpose is equal to itself

t
(A" = A). In terms of matrix elements, symmetry means a

-
ij ji
for all i,j+ For feal, symmetric matrices without further pro-

perties, use SSPFCS.

Bandedness

" Loosely speaking, a matrix is banded if all non-zero elements are

located near the main diagonal. Mqré specifically, if m and

mU  are the lower and upper band widths of A, then aij = 0 when

i-3> mL,,or  j-1i> m . A tridiagonal matrix is a specific
band matrix with m = mU'= l. For real, banded matrices, use

SGBFCS.

7.
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-4._ Positive definiteness

A real matrix is positive definite if it is symmetric and all its
eigenvalues are positive. However, the eigenvalues of A are
usually not known and are costly to compute. An easily verifiable

-condition that implies positive definiteness is

ta.. | > 2 la,.l| for all 1i .
ii ij
4 _
0f course, this condition does not cover all positive definite

matrices. For real, positive definite matrices, use SPPFCS. For

real, positive definite matrices that are also banded, .use SPBFCS.

As an‘illustrétiﬁn of the potential saving that ‘can be realiéed by
using the most sui;able routine, we consider a :linear system whose
coefficient matrix:is real and symmetric. If SGEFCS. (for real, gen- .
eral matrices) were used, it would take approximately- n3/3 multipli-
cations and n2 locations of storage to solve the systém. " If the
most appropriate roﬁtine SSPFCS were used, it would take approximately
n3/6 multiplicatioﬁs’and n2/2 loca£ions of sto;ag; to carry out the
same solution. Bd;h the number of mulfiplications énd stofagg are cut

in half.

Often it is desirable to obtain an estimate of the number of signifi-
cant digits in the computed solution of a system of linear equations.
This’éstimate can be obtained by assessing. the inexactness in the ele-

ments of A and b 'aﬁd the condition number of A. The elements of
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A and b ‘usﬁally'ére.subject to several sources of inaccuracy. If
the elements are measured, there is error due .to limitations  of
instruments. If the elements are known exactly, there still may be
error caused by the binary’répxesentation<of nu@bers with a finite
precision computer. In the soiution-process there is error caused by
finite preciéion érithmetic. The effect of these errors can be
estimated by the condition number of the maérix A, defined as

-1 :
[lAll.]lA "]l where |[l.]| is the euclidian norm.

-

If the condition number is approximateiy' ldk, k > 0, then the com-

puted solution may have k fewer significant digits than the elements
of A and b. For example, sﬁppose’the elements of A  and b are
exact to 3 digits, and‘the condition number of A is approximately
102. Then there may bé only 1 significant digit in the computed solu-

tion.

For a poorly scaled matrix, the estimate of accuracy based on the con-
dition number may be'pessimistic. In such a case, proper scaling
- strategy should be applied in order fo'obtain:a realistic estimate.

For suggested strategies on'scaling,'consult'lll or see.a consultants

The subroutines in Group (1) provide estimates of the reciprocal'con-
dition number (1/condition number) at only moderate cost. We recom-
mend the use of this estimate to guard against the inadvertent use of

a possibly meaningless solution.

“

The method of iterative refinement is used to improve the accuracy of
a computed sblution. (The suggested computer  implementation of this

method can be found in [1}.) In practice, a highly accurate solution
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B..

often may not be needed because of the inexact nature of both the
coefficient matrix and the right-hand side. In fact, iteratiye
improvement may result in the worsening of solutions for matfices with

vary large condition numbers.

The calculation of explicit'in§e¥ses or determinants is seldom needed.
Problems that might make use of them often can belhandled more effi-
ciently and accurately by other approaches. ‘For a linear system with
numerous right-hand sides (Ax = 21’22""’hk)’ one gould ‘use the
matrix factorization computed in the solution of thé firét right-haﬁd
side ,21 and perform repeaéed back substiﬁutions 66 22";;’hk' (See
the writeups for routines in Group (l);) To &etérmine ﬁhe }ank of a
matrix, sipgular “value decomposition (subroutine SSVDC) should be’
used. To estimate the condi;ion number éfla matrix, subroutines in

Group (1) could be used at a fraction of the cost of calculating an

explicit inverse.

Matrix A 1is rectangular (m # n)
l. m > n (more equations than unknown)

An overdetermined linear system usually arises in the solution of
a linear least squares problem. A subroutine such as LINLSQ (see
Chapter VII) wdﬁld‘normally be used for this.problem. In the case
that the matrix is known to be nearly rank deficient, subroutine
SSYDC sometimes caﬁ be used to obtain a more ‘stable sélﬁtion (sée

Seétion D below) .
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Hzili—coﬁditioning

2. . m < n (more unknowns than equations).

An underdetermined linear systeim does not have a unique solution.
This type of system usually arises as part of a larger problem
such as constrained optimization. For such a problem, a subrou-

-.tine from Chapter IX should be used.

3 .

;Matrix A 1is large and sparse . .

A,métrix is called spaféé ifjiess'tﬁéh about IOZIdf iﬁé eléﬁents are

nonzero. When all the elements (zero and non-zero) of a sparse matrix

één.bébétored:iﬂ tﬁe coré meﬁofy, then'subroutiﬁes in Group (1) éhouid
be uéed- HManf 1ineér syétems‘thaé'éfise invafeas.such as péftial dif-
férénfial eﬁﬁaiioﬂs,.ﬁétwérks;'énd opﬁimization involve matrices that
are.Bothllargé ;hdisparéé; Often fhése maﬁricés are too large to be
Storealéntifely in tﬁé~cofe méhbry, yet sparse eﬁbﬁgﬁ so that ;he
non-zero elements can be held in core. ' An iterative method or sparse
Gaussian elimination may be applicable. ‘The choice of a method in
this case is highly problem-dependent. ﬁsefs with a large;‘spérse"

matrix problem should see a consultant.

A matrix is ill-conditioned if perturbations of the size of the inex-

actness in the matrix elements could result in a rank deficient (less

than full rank) matrix. For a square matrix, ill-conditioning can be
detected by checking the size of the condition number. For example,

if elements of a properly scaled matrix are exact to k digits, and
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the. condition number 1is LOk, or more, then the matrix is ill-

. , _ . . 4 N
conditioned. For a linear least squares problem, one would rely on
the matrix factorization or certain erréx :pgrgmeterév requrneg vby
“linear leasp squares sﬁbr0utines tb determine ill-conditioning. Note
- that ill—conditioning of the matrix‘often indica;es an ill-posedness
of the underlying problem and,sﬁggests that the user ought to review
the- formulation of his problem. The difficulty assqqiated with ill-
conditioning is that the solution is sqsceptible to large fluctuations
when the matrix elements are pertUrBed 5y only a small amount. To
avoid this numerical instabiiicy, one could replace the ill—
éonditioned‘ ﬁatrix by a slightly pertqrbed, bettér conditioned one ‘

~with smaller rank and solve the linear system using the replacement

.matrixe.

To illustraté how this is done, let A be an ill-conditioned matrix.
of dimension, m ¥ n (m > n). It can be factored into ﬁEV (sinéular
value decomposition) where U and V are orthogonal matrices, and 2
is an m X n matrix whose only non-zero elements lie on the main
diagonal. These non-zero elenments are the singular values of A. The
condition of A depepds on the ratio betwéen the largest and the
smallest singular values. The smaller the ratio, the better the con-
ditiﬁn. Suppose A ‘is aﬁ L Xn matrix (L < m) Qith a factoriza-

1

i tion UlElV1 and U1 agrees with the first L columns of U; V1

| agfees with the first L rows of V, and 21 contains only the larg-

est L singular values of A. Then, in terms of norms, A1 differs

from A by a small amount (as much as the largest neglected singular

values), and the conditioh of Al is better than that of A. If the.
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system A x =b replaces Ax = b, a numerically more stable solution

1
may result. The matrices U, 2, and V associated with A can all
be obtained by using subroutine SSVDC. However, one problem remains:
Which of the smaller singular values should be suppressed to get. Al?

This problem does not always have an easy answer. Users should con-

sult [{3] for suggestions or see a consultant.

ABOUT LINPACK

The LINPACK package is a well-tested comprehensive' package for solving

linear algebraic equations. It contains over 80 user-~callable subroutines.

The subroutines in Group (l) are driver programs (written at LBL) for LIN=-

PACK, while SSVDC is directly extracted from LINPACK. For most applica-

tions, the driver subroutines in this chépter will be more than adequate.

However, for problems that demand maximal flexibility or optimal effi-

ciency, the LINPACK package should be used directly.

(1]

(2]

(3]
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IIT. EIGENVALUES AND EIGENVECTORS

In this chapter, we are concerned with the problem of finding approximate
eigenvalues and eigenvectors of matrices. An eigenproblem hsually assumes

one of two forms:

= Ax

19

(i) Standard eigenproblem

(ii) Generalized eigenproblem Ax = ABx

For either problem, the given matrices (A,B) are square. Eigenvalues A\,
and associated eigenvectors x, are to be determined. There are nine

recommended routines: eight for the standard eigenproblem and one for the

generalized eigenproblem.

A. Recommended routines

1. For Ax = \x:

CG - finds all eigenvalues/eigenvectors of a general complex
matrix. : .
CH - finds all eigenValdes/eigenvectors of a complex hermi-

tian matrix.

RG - finds all eigenvalues/eigenvectors_df a general real
matrix.

RS - finds‘ali eigenvalues/eigenvectors of a real symmetric
matrixe.

RSB - finds all eigenvalues/eigenvectors of a real symmetric

banded matrix.
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2.

RST - finds all eigenvalues/eigenvectors of a real symmetric
tridiagonal matrix.

LASO ~ finds some extremal eigenvalues/eigenvectors of a real
large sparse symmetric matrix.

SILASO - finds all eigenvalues/eigenvectors of a real large
' sparse symmetric matrix lying outside an interval.

For Ax = ABx:

RGG - finds all eigenvalues/eigenvectors of a real general-
ized problem (i.e., both A and B are real
matrices). '

B. Selection'gg routines

l-

Standard eigenproblem: Ax = Ax

For the standard eigenproblem, subroutines in Group (A.l) should be
used. The choice of a particular routine 'in Group (A.l) depends on:

the properties of ﬁhe matrix A.

a. ' Real or complex

A matrix is real if all its elements are real. A matrix is
complex if at least one of its elements is gomplex. There are
four routines for real’matrices and two_for complex matrices.
For a general real matrix, use subroutine RG; For a general

complex matrix, use subroutine CG.
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b.

Hermitian

A matrix is hermitian ‘if it is equal to its complex conjugate
H

-transpose (A =A"). In terms of matrix elements, this condi-

tion is equivalent to aij = aji _for all 1i,j.. Note that if
the matrik~is real, then being hermitian is the same as being

symmetric. For-a complex hermitian matrix, use CH. For a real

symmetric matrix, use RS.

Banded .

Roughly speaking, a matrix is banded if the non-zero elements
. ’ v

of the matrix are located near the main diagbnal;_ More pre-

cisely, a matrix is banded with bandwidth K if a =0 for

i3
all 1i,j that satisfy |i-j| > K. A'tridiagonal matrix is a

special case of a banded matrix with~bahdwidth>1. "For a real
symmetric banded matrix, use RSB. ‘For a real symmetric tridi-

agonal métrix, use RST.

Large sparse or small dense

" A matrix is small 1if it will fitientirely iﬁ‘éomputer memory,

otherwise it is séid to be largé. A matrix is sparse if it has
relati§e1y few (5-10 percent) nonzero entries. Otherwise it is
sald to be demse., All. the routines in group (A.l), except

SNLASO and'SILASO,-are_dqsignéd.for small dense matrices.
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A‘hermitian matrix (either real or complex) always has a complete
set of real eigenvalues and a complete set of orthogonal eigenvec-
tors. A geﬁeral matrix does not always have a complete set of
orthogonal eigenvectors, even though it has a complete set of
eigenvalﬁes. A matrix withOutra complete set of eigenvectors is
called defective. The performance of the routines in this chapter

" may deteriorate for a defective matrix.

The methods for the standard eigénproblem-are based on the QR algo-
rithm. This is a three-stepvprocess for a general matrix. First,
the general matrix is "balanced" so that the magnitude of each row
is made approximé%ely equal-to that df.the corresponding column.
Next, the balanced matrix ié reduced to avmatrix.of simpler form

(an upper Hessenberg or a tridiagonal matrix) by similarity

transformations. Finally, eigenvalues are obtained by QR‘itera—_

tioqs applied to the reduced matr}x. If the eigenvectors are also
desired, they are éalculatéd by suitable back transformations.fol—
lowing QR iterations. Note that a ﬁermitian matrix is already bal-
anced, hence the balancing step is not required. Further, a real
symmetric tridiagonal matrix is already in the reduced form, hence
neither the balancing nor the reducing ‘étep is necessary. By
choosing the most appropriate,subrgutine,1considerable,savings can

be realized in terms of storage and execution time.

[The Qr algorifhm finds all of the eigenvalues. This may abpear
- wasteful for problems that do not require all eigenvalues. How-
ever, because of its superior stability and convergence properties,

the QR algorithm remains the preferred method unless only a small

3
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2.

fraction (25% or less) of the eigenvélueghof a large matrix is

needed. For such problems, a method based on Sturm sequences may

be more efficient, and the EISPACK User’s Guide should be consulted

for the correct EISPACK routines to use.

General purpose software designed' specificélly for ‘nonSymmetric
eigenproblems with large sparse matrices is not yet avaiiablg} For

further information, see a consultant.

Generalized problem: Ax = ABx

. There is one recommended routine RGG for this problem. This rou-

tine is an' implementation of the QZ algorithm and réquires that

both A and B be real matrices. When either A or B 1is non-

singular, the generalized problem can be reformulated éé'a standard
problem that involves the inverse of the non-singular matrix. (For
details, see [3].) From the standpoint of numerical stability,
however, this .reformulation may be unsétisfactory' as the non-
singular matrix may be ‘nearly singulat; thus céusing illi-
conditioning in the inversioﬁ. The QZ algofithm is designed to
deal with the generalized. problem directly, hence avoiding diffi-
culties associated with the singﬁlérity or near singularity of

matrices A or B.
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B. Accuracy of the computed solution

‘The accuracy of the computed eigenvalues and eigenvectors can be
estimated by using results from first order perturbation analysis. We
indicate these results qualitatively in rather general terms below.

Details of the analysis can be found in {[3]}.

1. ‘The problem of finding eigenvalgés for a hermitian matrix is
| inﬁerentiy well conditioned. If the hermitian matrix is perturbéd
slightly, the eigenvalues of the perturbed.ﬁatrix will differ only
slightly from those of the unperturbed }natrix; The same ‘is not
true for a general matrix: Some eigenvalues (e.é.; multiple eigen-

values) may be extremely sensitive to slight perturbations of the

matrixe.

2. The prdblem of finding eigenvectors may be ill_conditioﬁed for both
he;mitian and general matriées. The sensitivity of an eigenvector
to perturbations of the matrix depends on the diétance between its
associated éigenvalue and other eigenvalues. if the distance is
small (e.g.,‘ in the case of nearly multiple eigenvalues), the
eigenvector.may be perturbed by a large amount when the matrix is
perturbed only slightly. On the other hand, if the distance is -

large, the eigenvector should be rather insensitive to the pertur-

bation in the matrix.
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EISPACK:- PACKAGE

The EISPACK package is a collection of state-of-the-art subroutines for the
solution of both the standara and éhe generalized éiéenprobléms.- EISPACK
was developed by NATS (National Activity to Test Software) and has'beén
tested extensively on a wide range of computers at various installations.
There are 58 low-level subroutines and 12 driver subroutines in this pack—
age. Each low-level subroutine takes one step in.the solutidn.of an eiéen-
problem; each driver subroutine solves an eigenpfoblem completely by com-
bining several low-level subroutines. All repoﬁmended routines in this
chapter are driver subroutines in EISPACK, egcept‘SNLASO and SILASO. For
most applications, the recommended routines should be sufficiéﬁt. However,

for problems that demand optimal efficiency or maximal flexibility, the

direct use of EISPACK may be advan;ageOus.

Referenées
(1] Smith, et al., llatrix Eigensystem Routines - EISPACK Guide, 2nd edi- .
tion, Springer-Verlag, 1976.

[2] Smith, et al., Matrix Eigensystem Routines - EISPACK Guide Extension,

Springer-Verlag, 1977.

(3] Stewart, G. W., Introduction to Matrix Computations, Academic  Press, .

1973.
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IV. NUMERICAL INTEGRATION

In this chapter we consider the numerical evaluation of the integral

b
JY(x)dx. We describe three recommended routines that cover the most fre-—
2 .
qﬁently arising cases:
DCADRE: Evaluates definite integrals (with a and b finite) by the

method of Romberg extrapolation. Adaptive.

. o . b
GB: Evaluates weighted integrals of the form Ih(x)g(x)dx by
. P

Gauss quadrature (with a ‘and b possibly infinite). YNon-

adaptive.

SPLIQ: Integrates tabulated data using cubic sglines.‘

Both DCADRE and GB ‘require that the user shpply an external function sub-

routine for evaluating the integrand at any point between the limits of

integration. SPLIQ, on the other hand, requires that that a 2 X N matrix

of data be supplied,
[xl, le
Lyl, .;-, yNJ

LI Y

where XpsoeesXy are the abscissa values and YysoeesVy are the
L . . -

corresponding function values.

DCADRE is an adaptive integration routine:. The user specifies either rela-
tive error ‘tolerance or an absolute error tolerance. The routine automati-

cally adjusts its step size internally to meet the error requirement. GB

&
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is non-adaptive. The ‘user has to determine the number of abscissa values

to be used before he calls GB.

DCADRE - : o

DCADRE is a general purpose routine for evaluating integrals. The strategy
of this routiée is to refine the mesh according to the amount of local
varia;ion in the integrand. This adaptive method insures that Fhe function
is e§aluated on a sufficiently fine mesh in regions of rapid variation and,
for efficiency, on a coarser mesh where the fqncpion has littlé_variation.

DCADRE is very reliable for integrands that are reasonably smooth and for a

wide range of error requirements.

An important feature of DCADRE is that it can handle two types of discon-

tinuities:
(1) Jump discontinuities

(2) Algebraic end-point singularities with exponents less than one,

i.e.,
£(x) = (x-a)°g(x) (or £(x) = (b—x)°g(x))

where a and b are the limits of dintegration,  f(x) is the
integrand, s 1is between -1 and 1, and g(x) 1is a sufficiently

smooth function. (See the writeup for DCADRE for an example.)

If an integrand is‘ suspected of having an integrable singularity in the

interior of the interval, then the location and the type of the singularity
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must be determined first. If the singularity is algebraic and is at

c € [a,b], then the interval [a,b] -can be brokenm up into [a,c] and

[c,b]l, with DCADRE applied on each subinterval. If the singularity is not

algebraic, then it is Dbetter to remove or circumvent the singularity .

analytically. One other possiblé'source of difficulty is a noisy integrand
(i.e., an integrand with high-frequency oscillations). 1In such a case,
there may be excessive cancellations, leaving essentially mnothing but

round-off error in the result.

Although DCADRE is reliable for many types of integfands, and excellent for
most applications, it does require more memory and execution time than a

simple, non-adaptive quadrature (e.g., trapezoidal or Simpson’s rule). If,

within a program, very large numbers of integrations are needed and low

accuracy 1is allowable, a simple, non-adaptive routine should be wused.

(Consult the General Catalogue.)

. b - :
GB approximates an integral of the form fg(x)w(x)dx " by the sum
a

v =z

Cig(xi). Here w(x) 1is one of six standard weight functions:
1

®
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input parameter set to specify w(x) = X
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‘1 , Legendre

1
————— , Chebyshev, type .1
(l—xz)l/2
2.1 : - .
(1-x") /2 » Chebyshev, type 2
e , Hermite

(l—x)c((1+x)lB , Jacobi

-x o | A .

e "x , Laguerre

we

4

N is the number of abscissa points to be used, Ci s are the weights, and -
xi's are the abscissa values, which are determined by the choice of w(x).
There are requirements on the limits of integration for each of the six .
weight functions. . Often a  linear change in the variable x . of -
b .

jg(x)w(x)dx may be necessary to bring a and b to required values.
a : . . .
(See the writeup of GB for details.) This routine is partfcularly useful
for integrals with infinite or semi-infinite intervals of'integration. In
general, w(x) should be chosen to représent as closely as possible the

non~-polynomial behavior of the integrand. For exémple, if the integrand

£(x) behaves like xd times a polynomial near x = 0, and decéys'like

. @ )
exp(~x) for large x, then to. integrate J‘f(x)dx, GB is called with an
0

d

eip(-x), and with the external

function g(x) = x—dexp(x)f(x).

Due to its non-adaptive nature, GB does not return an error estimate for

its computed solutien. Although general formulae can be given for
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.

- estimating the error, such formulae often involve high-order derivatives of
the integrand. A more direct method for estimating the accuracy of the
numerical integration is to evaluate the integral successively with larger

values of N and then to compare the number of digits in agreement.:

SPLIQ

SPLIQ is a routine that uses cubic splines to integrate tabulated data.

Given a set of daté {(xi,yi), i = 1,¢.0,N} (xi's are the abscissa
values, and yi's‘ the function values), SPLIFT fits the data points with
an interpolating cubic spline (a piecewise third-degree polynomial\that
joins smoothly étrthe abscissa values). The interpolating‘spline is then
iﬁtegrated; exactly. The adyantagé of uSing' spiine inte;polation over
interpolation by.a single polynomiél of high degree 1is that the spline
tends to have oscillations of smaller amplitude between the interpolating
points. for coarse data'(Z or fewer accurate digits),vSPLIQ tends not to
take full advantage of pﬁssible cancellation of rbunding errors in the
data; simpler, easily hand-coded integration rules, éuch as the rectangular

or trapezoidal rule, can often be applied with better results. (Note:

SPLIQ should be used in conjunction with SPLIFT; see Chapter VIII.)

. . References

(1] Davis, P. J. and Rabinowitz, P., Methods of Numerical Integration,

Academic Press, 1975.

[2] Rice, J. R;, Mathematical Software, Academic Press, 1971.

ES
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V. SPECTAL FUNCTIONS

»

In this chapter weAconsider the numerical evaluation of special. functions.
There 'are over 40 recommended routines. They evaluate: - .

- Airy functions

- Real and complex Bessel functions

~ Beta functions

- Error funétions

— Gamma functions

- Hyperbolic funqtions

- Elliptic integrals

- Exponential integrals

- Dawson’s integral

— Psi function

Routines to evaluate special functions are present in most of the mathemat-
ical libraries at LBL, but those in libraries TFUNPACK and SANDIA are of
particﬁlarly high quality. The recommended routines are all extracted from

those two sourcese.

FUNPACK

This package is a state-of-the-art collection of special function routines.
It is organized into packets; a packet usually contains one or more func-
tion subprograms which serve as entry points, and an underlying subroutine

that is called by the function subprograms to perform the computation.
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Most routines in this package use near-optimal minimax approximations. .The
advantages of minimax approximations are that they usually gﬁve.‘full
machine accuracy (14 s#gnificant digits at LBL) and are efficient for all
valid arguments.- NATS (National Activity to Test Software) has tested this
package. thdroughly and has certified it as ﬁeing robust, reliéble,‘and

efficient.

SANDTA

This library contains a éubstantial collection of special function rou-
tines. Most of these routines use either Chebyshev expansion 6r a combina-
tion df series and asymptotic exbansions. In general, SANDIA's toutines
are easily transportable and achieve an accuracy of approximately 11 to 13

significant digits.

x % & % %

If a user cannot find an appropriate routine in this section, he is
encouraged to consult the General Catalog for other special function rou-

tines.

33
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VI. ORDINARY DIFFERENTIAL EQUATIONS

The four recommended routines for the numerical solution of ordinary dif- -

ferential equations (ODE’s) are:

.RKr " = Solves a non-stiff system of first order, initial value ODE’s.

LSODE - Solves a stiff or non-stiff system of first order, initial value
ODE’s. : ' '

GEARIB - Solves anlimplicit system of first or&er, initial value ODE’s.

"PASVA3 - Solves a system of first order, boundary vaiue ODE’s.

All available routines use variable step sizes. The user specifies an
error tolerance, énd, by taking appropriate steps, the routines attempt to
xeep the estimated error in the computed_solution within that tolerance.
In RKF, LSODE,’ahd~GEARIB, local truncation errdr (relative or absolufe
error) is estimated, while in PASVA3 global error (absolute error) is
estimated. The latter ‘three routiﬁes (LSODE, ' GEARIB, and PASVA3) also use

variable order methods to help decrease the number of function evaluations.

The choice of the most appropriate routine for a given problem depeunds on

the properties of that problem. Some of the important considerations are:

" A. Form of the equations

\

The routines in this chapter require that the user supply a system of
first order equations. For RKF, LSODE, and PASVAB; the required form

is:
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(0 = £(t,3(0)) , - (1)

where 'zﬁ f, y are all n-vectors, . and for GEARIB,

AGz(E),0)3(8) = £(t,3(1)) | @

where A is an nxn matrix, and y, £, y are all n-vectors.

This requirement is really not a restriction, since any ordinary dif-

" ferential équation can be expressed as a first order system of equa-

]

tions. (See [1] for examples.)

Initial value or boundary value

‘In order to solve a system of ordinary differential equations of the

form (1) or (2), the values of y have to be prescribed for certain
values of t. In an initial value probiem, the y values are
prescribed at a single time tg, and further y values corresponding
to subsequent times are to be determined. In a boundary value problen,
the "y values are often prescribed at two times, t and tn; and the

0
y values corresponding to intermediate times (between tO and tq)
are to be determined. The class of methods used for boundary value
problems differs sigrificantly from that for initial value problems,

and boundary value problems are generally much more difficult to solve

than initial value problems.
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-g.

RKF

RKF

Stiff or nQn-stiff

Roughly speaking, a system of ODE’s 'is called stiff if it involves both
very rapidly changing and very slowly changing components in the solu-

tion. An examplé of this is a multiple exponential decay with widely

varying time constants. For a stiff equation, special numerical tech-
J

niques are usually required for efficiency. If the user does not know

whether hié problem is stiff, a simple way‘to find out is to try solv-
ing the problem with eithef>RKF or LSODE s non-stiff option (MF = 10).
If the typical step sizeé used are much smallér than those that the
solution behavior would seem to require (e.g., 100 éteps when the solu-
tion changes by only a few percent), then the system is ﬁrobably stiff,

and the degree of stiffness can be estimated from the actual sizes of

steps taken and the smoothness of the solution.

is a Runge-Kutta type procedure with extensive error handling capabili-"’

ties. It is the recommended routine when the following conditions are

satisfied:

(i) The system of ODE’s is non-stiff.

(ii) - The derivative evaluations (evaluations of f in equation (1)) are

inexpensive.

(iii) The required accuracy of the computed solution is low.

2
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If any one of these conditions is not met, then the use of the Runge-Kutta
method may become inefficient. This 1inefficiency would wusually be
. ;

reflected in the value of a certain flag in RKF. (See writeup for

details.) 1In this case, the use of the LSODE package may be appropriaté.

LSODE

¢

LSODE is an extensive package that contains two separate methods, the Adams
method and the backward differentiation formulas, for solving both non-
stiff and stiff equations. Both methods are implicit. To find the value

of y at time t a "predicted" value Yy is computed first, from the

k’
y-values of previous times. Then, the predicted value Yy is iteratively
corrected until the required accuracy is reached. In the correction stage,
a system of nonlinear equations is fermed (a diffe;ent system for each of

the two methods). This system is solved by one of three available itera-

tion procedures: functional iterations, Newton’s method, and the chord

method. The following guidelines may be helpful:

(1) If a non-stiff system is not efficient with RKF (because the deriva-
’

tive evaluations are expensive or the required accuracy is high),

- then the best choice is probably the Adams method with functional

. ilterations.

(ii) 1f a system is very stiff, then the backward differentiation formu-
las should be used with either the.Newton's iteration or the chord
method. (The chord method is used primarily for problems with diag~

onally dominant Jacobians (Qg/ﬁz).)
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(iii) 1If a system is mildly stiff, then the Adams method with either the

Newton iteration or the chord method is often most appropriate.

The LSODE package, although excellent for a wide clasé of equations, may be
subject to instability when ihe problem is hiéhly oscillatory. The insta-
bility usually manifests itself as an oscillation of step size, between
reasonable values and excessively small values. If this should occur, the

user is advised to use the routine EPISODE in SOURCE.

CEARIB . : . .

GEARIB is intended for a special class of initial value problems: implicit

systems of the form

Ay, )Y = E(y,t) .

This package uses the same methods as the LSODE package: ‘the Adams method

for non-stiff or mildly stiff equations, and backward.differentiation for-

*

nulas for stiff equations. 1In the correction process, however, onlv one

iteration procéduré is applicable: Newton’s method. Although equation (2)

can often be rewritten in the explicit form y = A—l(zﬂt)fﬁl,t),,and then
solved by either.RKF,oriCEAR, solving equation (2) difectly with GEARIB

offers these advantages:

(i) VWhenever matrices A and (Qg/hx) have band structurés, a consider-

®

able gain in efficiency and storage economy can often be realized.

.8

lLﬁ
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(ii) Singularity of the matrix A <can often be treated without diffi-

CU]_ ty.

PASVA3

PASVA3 is used to solve two-point boundary value_proElems with linear or
nonlinear boundary conditions. Although initial vaiue problems always have
a unique solution given some mild conditions, boundary value problems may
not, in 'geﬁéral. PASVA3 1is intended to work for pfoblems with well-

defined, isolated solutions. The strengths of PASVA3 are:

(i) 1its ability to solve most swmooth problems of moderate size

(n < 20);

-4

(ii) 1its abilitv to resolve moderate boundary layers (say up to 10

width in [0,1]1);

(iii) its ability to provide an estimate of the global error (absolute

error) in the computed solution.

=

If a boundary value problem is beyond the scope of PASVA3, a consultant .

should be contacted. Other approaches such as shooting or collocation

might be applicable.
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(1]

(2]

(3]
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VIII. INTERPOLATION AND APPROXIMATION

In this chapter, we consider the numerical problem of fitting a function
f(t) either to a set of data ‘points (ti,yi), i = 0;¢eeyn oOr to an
analytically defined function g(t) over an interval [to,tn]. The recom-

mended routines are:

Exact fitting

POLINT, .
‘POLYUL - polynomial interpolation using Newton’s interpolation formula:

SPLIFT,
SPLINT ~ cubic spline interpolation

Approximate fitting and smoothing -

LINLSQ - general linear weighted least squares approximation with QR

factorization
POLFIT,
PVALUE - weighted polynomial least squares approximation with orthogo-

nal polynomials

ICSFKU - 1least squares cubic spline approximation
VARPRO - general nonlinear weighted least squares approximation
- ratjonal polynomial approximation in the maximum norm

IRATCU

The mosficritical step inasolving an approximation probléﬁ successfully is
probably the formulation of the problem itself. In the formulation stage;
two things should be considered: (1) the type of function that will be
uséd for approximation, -and (2) ﬁé& the difference (errof) between the‘

approximating function and the data points (or the given function) is to be

3%
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measured.

Once the problem is clearly formulated, the selection of an

appropriate routine becomes. a much simpler: task.” -

A

Types. of the approximating function f(t)’

The following types of functions are used by one or more routines in

this chépter.

l.

-f(t) = a, + a,e ~ + a

k .
Polynomial: f(t) = s a,t1 R
. i
i=0
Cubic spline: f(t) = a function composed of piecewise cubic poly-

nomials joined together at knot points so that f(t) is continu-

ous and has continuous first and second derivatives.

vex
&
t

Rational polynbmial: f(t) = /. 2 bjtJ (the quotient
. i

of two polynomials).

General linear: f(t) = ai¢i(t)'where ¢i(t) is any desired

0

t v

i

function in t. In this case, f(t)‘ depénds linearly on the

parameters ao,...,ak. Case (A.l) is a special case of (A.4).

. General  nonlineérf f(t) = a fuﬁction that éan depend both

linearly and nonlinearly on the the parameters. For example, if

t =a.t
4 , then f depends linearly on a

_aé

1 2 1

a2, and a4, and nonlinearly on a3,.a5.

The type of function that is'most appropriate fbr‘a‘particulér problem

is  often suggested by its theoretical background. In this case,
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intuition and insight should be the best guide. If the theoretical
background is insufficient for this purposé, then one hés to rely on
the'intended‘use of the approxiﬁation and the nature éf the data set
(or given function). For instance? a low~degree polynomial is much
easier to work with than a rational polynomial for integration pur-
poses, and a éubic spline is often preferred if the‘data set has a

pattern not characteristic of polynomials.

1

’ - N
Trigonometric functions, although not mentioned here, are often used
in approximation problems. Routines related to trigonometric func-
tions are available in the Fourier Analysis section of the General

\
Catalog.

Coodness-of=-fit

1. Exact fit: The value of f(t) agrees exactly with the values of

the data set at all ti’ 1 = 0,e00,n. f(ti) =y for

i = ‘0,...,n.

2. Least squares fit: The difference is minimized in ‘the least
. ‘n 2 '
squares sense: 2 lf(ti) - yi| is minimized. When weights
i=0 )
n . 9
are used, 2 w, |f(t,) -y,|" is minimized (w, 1is the weight
2o 1 1 1

for the data point at ti).

3. . Maximum norm fit: The difference is minimized in the maximum
norm: max |f(t1) -'yil “is minimized in the discrete case or
i : ,
max [£(t) - g(t)| 4is minimized in the continuous case.

14[t0,tn]
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Usually the exact fit is used ohly when the data is very accurate, and
the least squares fit is used. when the data has noise in it. The max~
imum norm fit is difficult to implement in the discrete case, but is

efficient and gives'good results in the continuous case.
POLINT, : N
POLYVL - Exact fitting with a polynomial -

These routines should be used only when these four conditions are satis-

fied:
(i) There is very'little noise in the data.
(ii) There are few data points (n < 7).

(iii) The abscissas (ti’s) are neither widely separated unor closely

clustered.

(iv) The data has a general polynomial .shape.

The restriction on éhe number of»data points is'dué to the fact fhatvhigh
degfeelpélynomial exact fits as a rule result in widely oscillating éur?es.
Although one coul& sﬁbdivide an‘interval when thére afe.manf data'pbints
and fit a polynomial exactly in each subinterval, a cubié spline‘usually

can be applied to obtain better results.
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SPLIFT,

SPLINT - Exact fitting with a cqbic spline
'Fitting with a cubic epline is psually preferred when the form of the
dpproximating function f(t) is net suggested by either the background of
the probilem ér the general shape -of the data. For jintegration over
discrete data, exact fitting‘vdth a cubic spline is well suited. For
interpolation and extrapolation, however, exect fitting with abcﬁbic spline

" should be used only when:

(i) the data has very little noise in it, and

(ii) the number of data points is not very large.

Otherwise, least squares fitting is preferred.

LINLSQ - Geheral linear weighted least squares fit

e

In this case, f(t) has the form 2" ai¢i(t), and the problem is to
i=0

that are "best" in the

determine the values for the parameters .ao;...,ak

sense of least squares. This problem can be formulated in terms of an
overdetermined éystem of linear equations Ax =b where x is the vector
(See the writeup for LINLSQ.). One approach

of the parameters a,,es.,a

0 K’
to solving the system Ax = b . is the method of normal equations, where
both sides of the equation are multiplied by At to give a new equation
(AtA)§ = AFE. Then the new equation can be solved using the standard LU-

. .

decomposition. A second. approach is to decompose and solve the original

systerm directly. This approach is used by LINLSQG. It is more stable than

the method of normal equations and usually produces more reliable results. .

Rd

%
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If f(t) 1is a polynomial or a cubic spline, then POLFIT or ICSFKU should

te used instead of this routine.

POLFIT, : ‘

PVALUE - Weighted'lgast squares fit with a polynomial

The main advantage of POLFIT over LINLSQ for the case ¢i(t) = ti is that
POLFIT.alloﬁs better control of the degree of the polynomial to be used in
the approximation, and it permits automatic selection of the 'best" degree
based on a statistical test. (See the writeup for POLFIT.) Fitting with
higﬁ degree polynomials generally is discouraged because the method used by
POLFIT can become extremely ill-conditioned. If n is the number of data
points, and k the degree of the polyndmial; a rule of thumb is to chqose
k such that k < 2\ n. If the data does not have a polynomial shape, POL-

FIT should not be used. ICSFKU would probably work better.

P

ICSFKU - Least squares fit with cubic splines.

This is a versatile routine useful for a wide class of smoothing problems.
&

The successful use of a cubic spline least squares routine depends largely

on the proper placemént of knots (locations where the piecewise cubic poly-

nomials are to be joined). ICSFKU is written to facilitate experimentation

with various knot placements.
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VARPKO =~ Weighted general nonlinear least squares fit

In this case, f(t) may depend nonlinearly on some of the parameters

dgseeesa ‘One approach to solving this nonlinear problem is to treat it

k-

“as an optimization problem: Let the residual function r(aO,...,ak) be.

n n
- 2 - .

defined as 2 [y.-f(t)1" (or > w.[y,—f(t.)]2 in the weighted case).
i=0 i i jop 174 i

Then the residual function can be minimized with a general optimization

routine. (See the optimization - chapter for further details.) This -

approach is particularly useful when certain parameters in f(t) have to

be constrained for physical reasons. However, when none of the parameters-

is constrained, VARPRO is a better choice. Often not many parameters in

£(0) are nonlinear. For instance, in the case for which
| -a,t -a t .

f(t) = ag + ae + aqe , three. of the parameters (ao,al,a3) are

linear; only a énd a are“nonlinear._ VARPRO treats théilinear and

2 : 4

nonlinear parameters separately, thus requiring initial guesses only for
the: nonlinear parameters, and often obtaining dramatic improvements 'in

terms of both speed and accuraéy over the general optimization appfoach.

#

IRATCU - Maximum norm fit with rational polynomials

This routine is intended for high accuracy approximation to a function

whose analytic form is given.

X Kk k k k %k *

¥
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Interpolation and Approximation is a very broad area. We have discussed in

this chapter only those forms and goodness—of-fit criteria that arise most

commonly in practice. If a user suspects that his problem is non-standard,

he should talk to a consultant.

(1]

(2]

[P
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IX. NONLINEAR EQUATIONS AND OPTIMIZATION

In this chapter we are concerned with the closely related problems of find-
ing approximate zeros or extrema (maxima or minima) of nonlinear equationms.

The recommended routines are:

Roots of a polynomial

ZPOLR - finds.all roots of a polynomial with real coefficients using
' Laguerre’s method. ' :

ZCPOLY - finds all roots of a polynomial with complex coefficients
using the Jenkins-Traub. method.

Zeros of a function (other than polynomial)

ZEROIN =~ finds a zero of a continuous real function. of one variable
using a combination of interpolation and bisection  algo-
rithms.

ZANLYT -~ finds zeros of an analytic complex function of one complex

variable using Muller’s method.

Simultaneous nonlinear equations

ZSYSTM - finds an approximate solution of a system of simultaneous
real ‘nonlinear equations using a modified Levenberg-Marquardt
method. ‘ '

" Optimization ',

The entire NPL library is recommended for optimization problems. Due to
space limitations, however, ohly fourteen of the most frequently

requested NPL routines are incorporated in the CORE library:

;5

o
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(a)

General unconstrained minimization:

UBNDQl - Quasi-Newton algorithm, wuses function values only
(easy-to-use form).

UBFDN2 - Modified-Newton algorithm, uses first. derivatives
(easy~to-use form).

R

Minimization subject to simple bounds:

BCNDQl - Quasi-Newton algorithms, uses function values only
: (easy-to-use form).

BCFDN2 "- Modified-Newton algorithm, uses first derivatives
(easy-to-use form).

Minimization subject to general linear constraints:.

LCQNDF - Quasi-Newton algorithm, uses function values only (nor-
mal form). .

LCMNAF - Modified-Newton algorithm, uses first derivatives (nor-
mal form). '

LP ~ Solves a linear programming problem using a modified
revised simplex method.

LCQP - Solves a quadratic program using a modified WNewton

method.

Minimization subject to nonlinear constraints:

SALODF - Sequential augmented-Lagrangian method, wuses’ function
values only (normal form).

SALMNF = Sequential augmented-Lagrangian method, wuses first
derivatives (normal form).
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(e) Unconstrained nonlinear least squares:

LSNDN1 =~ Uses function values only (easy-té—use form) .

LSFDN2 - Uses first-derivatives (easy-to-use form).

(£) Service routines: 0 ' : ' =N

CHKGRD - Checks first derivatives used by LCMNAF.

CHKNCD -~ Checks first derivatives of the function and constraints
used by SALMNF.

Note: NPL routines often exist in two forms: a normal form and an

abridged easy-to-use féfm. For the CORE library, the easy-to-use

form is selected wherever avéilable.

Roots of a polynomial

The problem of polynomial root-finding hés a loﬁg history of Iinterest;
methéds for this problem have constituted some of the oldest algorithms of
numerical analysis [1]. Howéver, &ith recent advances in numerical linear
algebra and other areas of numerical mathematics, problems that required
~the use of polynomials‘in the past can often be sqlved today more accu- v
rately and/efficiently using other approaches. An example of this is the
linear algebraic eigenValuerrleem. Some years.ago, it was assumed that
the eigenvalues of a matrix were obtained by solving a characteristic poly-
nomial. Now we have methods (e.g., the QR method) that are more stable

numerically and do not involve polynomials in any direct way.
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Although the recommended routines, ZPOLR and ZCPOLY, are probably among the
finest available, they should be used wifh“céution;~ Because 6fvthe,extreme
instability of:the‘roots of some-polynomials as funﬁtionS»of their coeffi-
cients, the problem of polynomial root-finding should be "avoided whenéﬁer
possible. In the speciél case of a quadfétic polynomial, stable routines
can be found in the IMSL library. These.foutinés generally perform better

than the handcoded programs that make direct use of the quadratic formula.

!

Zeros of a function (other than polynomial)

Algorithms for finding zeros of a general, nonlinear function are usually
iterative in nature. Familiar algorithms of this type include bisection,

secant method, and Newton’s method. Each method has its own advantages and

‘shortcomings. The most rapidly converging methods often have the moét‘pit—‘
. falls, such as non-convergence or convergence to a "wrong" zero. .More

- robust methods, on the other hand, tend to be less rapidly converging.

The recommended routine ZEROIN for a real function uses a combination of

robust and rapidly convergent methods. As a result, this routine is’

extremely reliable and efficient. The recommended routine ZANLYT for a
comblex function is not as robust as ZEROIN. Nevertheless, ZANLYT has its
advantageé: it does not require initial’estimates for the solutions, and
it can calculate more than. one zero simultaneously. Note that ZANLYT

)
should normally be used for complex functions only. (A complex function of

one variable is analytic if and only if it has a first complex derivative.)
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Simultaneous nonlinear equations

The routine ZSYSTM is recommended for solving a system of simultaneous non-

linear equations:

[}
o

o o fl(xl’...,xrl)

fN(?(l’ cee X

i
o

W =
Cenerally there is no known method for computing all solutions. of such a
system.. ZSYSTM finds only one solution, usually the one closest to the
initial guess. The method used by ZSYSTM is a Newton-like method, which

requires only function values (fi's), and is rapidly converging for prob=-

lems with good initial guesses.

df

An important special case arises when the Jacobian matrix ( EEl ) of the
: | | j

nonlinear equations is large and sparse. For such problems, storage econ-
omy becomes crucial, and the sparsity of the Jacobian matrix must be
exploited. Routines for this. special case. can be found in the Harwell

library. Interested users should contact a consultant.

Optimization

The NPL (National Physical Laboratory, England) library.offers high qdality

routines in the following areas:



NONLINEAR EQUATIONS AND OPTIMIZATION ' ‘ 51

- minimization of a function of one variable
- general unconstrained minimization
- unconstrained nonlinear least squares problems

-~ minimization subject to simple bounds

- minimization subject to general linear constraints,
including linear and nonlinear programming

- minimization subject to nonlinear constraints

Although the routines in NPL are concerned with minimization only, the

problem of maximizing a function can be transformed into a minimization

‘problem simply by multiplying the function by -l. Many of the routines in

this library exist in two forms: a normal form and an abridged, easy-to-

use form. A routine in the normal form usually contains in its calling

sequence all parameters relevant to the underlying method, while the"
corresponding routine in the easy-to-use form contains only.those parame-

ters essential to the definition of a problem. The extra parameters in the

normal . form allow users to fine-tune the method to a particular problem,

.thus obtaining better efficiency. For casual users, however, this saving

i

in execution time is probably of little concern.

The successful‘use of:an optimization routiﬂe depénds to a large extent on
the proper formulation of the probleﬁ. Care should be given to the form of
the objectivezfunction (function to.be épgimized) s0'as to minimize cancel-
lation in thé.evalﬁatién df:the fuﬁction and the derivativés,‘and to avoid
redundant variables.‘ Cére‘éhould‘also be giVen to tﬁe scaling of variaﬁles
so that the variables are all- of similar magnitude, agd the’derivativés

also of similar magnitude. ‘Note:that-linear transformations
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(new) _ <
x5 ;' i3 X3t 9

can often be used for proper scaling.

‘Vhenever possible, first derivatives of the objective function shoula be
evaluated analytically. _Subfbutines that make use of the function only are
easily affected by excessive cancellation and poor scaling and are often
less efficient thaﬁ subroutines that also make use of tﬁe derivative infor-
- mation. The use of analytically calculatea second deriVafiyes is generaliy
less crucial. The derivatives‘(and second derivati?es), whenever analyti—
cally calculated, should be checked for c;rrectneés by finite difference
approximations. (NPL furnishes subfoutines CHKGRD and CHKNCD for this.pur—

pose.)

M=

For nonlinear least squares problems (min fi(ﬁ), X = xl,...,xN), the

i=1
X

,
C —

residual functions ,fi often depend nonlinearly on only some of the vari-
ables. For example, 1if fi(xl,xz;x3) = x; + X, exp(-x3ci) - di; where
ci,di ére consténts, then - fi depends nonlinearly on Xq5 and liﬁearly oé
Xl and Xge In these casés, i; ié desirable to pose the optimizafion
problem on the nonlinear variébles alone so'as to improve efficiency and
reduce the number of parameters requir;ng initialbapproximation ([31, p.
"25). ~Subroutine VARPRO can be used for tﬁis pufpose. For more details on

VARPRO, see the chapter "Interpolation and Approximation".

After calling an NPL routine, the error flag :(IFAIL) should always be
chgcked. For most problemsg, a successful exit (IFAIL = 0) is probably.suf-
 ficient evidence that the computed solution is an adequate appréximation to

the exact solution. If IFAIL is not equal to zero, further confirmation is

.

—
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necessary. One possible way would be to try the problem again with a dif-

" ferent initial guess and see whether the same computed solution results.

References [3],[4] provide much more information on the IFAIL parameter and

systematic methods to test the "goodness" of the computed solution.

One area of optimization not covered by the current NPL library is con-
strained nonlinear least squares. A routine for general constrained optim-
ization (LCQNDF, LCMNAF, SALQDF,; or SALMNF) may be used, although this

approach takes no special advantage of the function to be minimized.
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