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Nonlinear Models in 2 + ¢ Dimensions

by
Daniel Harry Priedan

Abstract

The general nonlinecr scalar model is studied at asymptotically low
temperature near two dimensions. The lov temperature expansion is
renormalized and effective algorithms are derived for calculation to all
a “lers in the renormaiized expansion. The renormalization group coeffi-
cients are calculated in the two loop approximation and tcpological pro-
perties of the renormalization group equations are investigated. Spe-
cial attention is paid to the infrared instabilities of the fixed
points, since they provide the continuvm limits of the wodel.

The model consists of a scalar field ¢ on Buclidean 2 + ¢
space vhose values ¢$(x) 1lie in a finite dimensional differentiable

manifold M. The action 1is
- “ 1.-1 i b
s = AC fax T gy (px) LXRC aF, ™)
vhere /\-l ia the short distance cutoff and T-lgu is a (positive

definite) Riemannian metric on M, called the metric coupling.

The standard nonlinear models are the special casec in which M 1is



a homogeneous space (the quotient G/H of a Lie group G by a compact
subgroup H) and gu is some G- invariant Riemannian metric on M.
G acts as a global internal syametry group.

The renormalization of the model is divided into two parts: show-
ing that the action retains its form under renormalization and showing
that renormalization respects the action of the diffeomorphisms (i.e.
the reparametrizations or transformations) of M. The techniques used
are the standard power counting arguments combined with generalizations
of the BRS transformation and the method of quadratic identities-

The second part of the renormalizstion is crucial for renormalizing
the standsrd models, since it implies the renormalization of internal
symmetry. It is carried out to the point of identifying the finite
dimensicnal cohomology spaces containing possible obstructions to the
renormalization of the transformation laws, and of noting the absence of
obstructions when M has finite fundamental group and nonabelian semi-
simple isometry group.

The renormalization group equation for the metric coupling 1is
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is the curvature tensor and R the Riccl tensor of the
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The p~ function p“(g) is a vector field oa the
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infinite dimensional space of Riemsnnian metrics on M.

Tvo results on global properties of P are cbtained. When N 1is
a homogeneous space G/H, the p~ function is shown to be a gndignt
on the finite dimensionsl space of G~ iwvarisut metric couplings on N.
And, vhen M is a two dimensional compsct manifold, the p~ function
is shown to be & gradient on the infinite dimensiomnal spsce of setrics
on M., The rest of the results are concerned with fixed points. The
fixed points are shown to correspond to the metrics satisfying a gen-

eralized Einstein equation:

- -
RiJ Y g” - v"v‘1 + vJv1 ’ a=% or 0

for v} some vector fleld on M. ¥nown molutions to these equations

are discussed and some of their general properties described. Jn par-
ticular, it is shown that infrared instability occurs in at moet a fin-
ite number of directions in the infinite dimensionsl space of metric

couplings.
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Typographical Note

shis thesis was prepared on a8 PDP-11 computer using the NEQN and

NROFF typesettifig programs of the UNIX operating system. Limitations of

the printer required that Greek letters and apecial symbols be con-

structed as combinations of «:her characters.

their meanings are:

o alpha

B beta

Y gamma
r GAMMA
6 delta
« epsilon
A lambda
A LAMBDA
p mu

n ol

n P:, product
¢ phi

§ PHI

¥ psi

~ > e

»

The composite symbols and

integral

partial derivative
sum

ionfinity

del, covariant derivative
gradient

laplacian
perpendicular
direct aum

tensor product

PS1

rthe

sigma

tau
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I. The Low Temperature Expansion



1. Introduction

This is the firset part of a study of the general noullnear sca.ar
model at aympitotically lov temperature near two dimensions. It treats
the renormalization of the low temperature expansion. The second part
is an investigation of the topnlogical properties of the renormaltzation
group equations uear zero temperature. A partisl summary of both parts
is to be found in (1].

The model consists of a ecalar field ¢ on Euclidean 2 + «
space whose values ¢(x) 1lie in a finite dimensional differentiable

manifold M. The distribution of the fields is
Edp(x) exp[=S(p)) , (.1
where I;l dg(x) 1is the a priori measure on the fields and
sty = A Gax §17la () aP#(x) LRSS (1.2)

is the action. A™l 1is the short distance cutoff.

The parameters of the model are: (1) T-lgij, a {positive defin-
ite) Riemannian metric uvn M, called the metric coupling; and (2)
dg(x), a volume element on M (independent of x), called the a
priori volume element, which is taken to be some natural volume element,

such as the metric volume element, associated with gij'
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parameters: paraueters describing nonrenormalizable vertices are ignor-
able. Power counting determines that the bare parameter ) can be
written as a function of a renormalized parameter ,\r and the ratio of
scales p-ll\ so that 2Z{ A, )), when expanded in ).r. has a sensible
limit order by order in AT as A > . To lowest order, ) 1is 2T
scaled by appropriate powers of p-ll\ 80 that the renormalized distri-
bution of fields is, at lowest order, independent of A. At higher
order, A consists of cutoff dependent counterterms (containing povers
of log phl/\) needed to cancel the primitive divergences in the Feynuman
diagrams of the perturbative expansion.

By power counting, the primitive divergences depend only on the
short distance properties of the model. Therefore the perturbation
theory can be made cutoff independent by means of counterterms which are
independent of the infrared regularization.

The space of renormalized parameters Ar wust be large enough to
contain all counterterms permitted by power counting, because the dis-
tinction between renormalized parameter and ccunterterm is arbitrary, up
to cutoff independent reapportionments between the two.

The continuum limit of the perturbation theory, which depends on p
and ).r, is defined by (6.1.3). Renormalization group equations follow
from the equivalence of cutoff and continuum theories at distances much
larger than the cutoff. Z(A, J) 1is independent of p, so differen-
tiating the expression on the left in (6.1.3) with respect to p, hold-

ing A and ) fixed, gives the renormalization group equation



appropriate to renormalize perturbatively. The internal ©O(N) syanetry
equates all constants, so it is only necessary to investigate fluctua-
tions about any one of thea. The O(N) symmetry of the action, and ite
approximate scale invariance nesr two dimensions, give the result that
the distribution of fields retains the form (l.1-2) under renormalize~
tion. The renormalized distribution depends on a renormalized teapera-
ture (and a renormalized field). The renormalization group acte on the
fields and on the one parameter space of the tempersture T.

A first order perturbative calculatico of the senormalization group
coefficients finds an infrared unstable fixed point st a temperature of
order <. The smallness of ¢ Jjustifies the use of perturbative techk-
nique to find the fixed point. From the point of view of Wileoni7}, the
unstable manifold of the renormalizatfon group actfm at the fixed point
describes a Fuclidean quantum field theory or, equivalently, the univer-
sal scaling limit of a nearly critical extended statistical syetea. In
tvo dimensions the fixed point is at zero temperature and the model is
asymptoiically free.

Brezin, Zinn-Justin and Le Guillou(8-10) systematized Polyakov’'s
results on the O(N)- model in the language of perturbative quantum
field theory. (See also {11]J.) The double expansion in T and ¢ is
found to be a rencrmalizable perturbation series, so that standard per-
turbative field theory algorithmas can be applied to the calculation of
renormalization grouy coefficients to all orders.

The stazdard perturbative vorsion of the model is used. Small



fluctuations of the nonlinear field ¢(x) are represented as linear
fields oi(x) by means of coordinates about some point on the (K-1)-
sphere M. Because of the homogeneity of M, all such points are
equivalent. An O(N-1) subgroup of the internal symmetries acts by
linear transformations on o, the rest by nonlinear transformations. A
apecial choice of coordinates is wade in order to simplify the form of
the nonlinear symmetry.

The distribution (1.1=2), rewritten in teras of the linear fields,
describes an (N-1)- component massless scalsr field governed by an
action counristing of the integral over space of an infinite power series

in the lineer field times & product of two of its derivatives:

3e) = AT Gux %r"iij(o(x)) apai(.) bpa—’(x) (1.3)

EU(V) - 611 + U= vgvy (1.4)

The expansion in T becomes a sum of Feynman diagrams.

Power counting determines that the renormalized perturbative action
remaine the integral of a power series in the linear field times two of
its derivatives. The nonlinear symmetries of the bare action give rise
to quadratic identities on the renormalized action.[12] The most gen-
eral solution of these identities consimtent with power counting is
exactly the bare action, up to a renormalization of the teaperature and

a multiplicative renormalization of the field.



The equivalence of bare and renormalized descriptions of the model
implies renornulization group equations for the temperature and field,
vhose coefficients can be determined at each order in T and <« from
the ultraviolet divergences of a finite number of Peynman diagrsas. In
[12), the coefficients are calculated in the two loop approximation.

The aim of the present work is to extend the results of Polyakov to
the general nonlinear model, using an elaboration of the aethcds of per-
turbative Eield theory. Part I is concerned with the rencraalization of
the double expansion in T and <.

The treatment of renormalization divides into two conceptually dis-
tinct tasks. The first task is tc show that after renormalization the
distribution of the fields retains thz form (1.1-2). Linear fields sre
intreduced to represent the fluctuations around the constant fields
#(x} = m, using coordinates on M near m. In the absence of homo-
geneity all constants must be included. For each constant wm, the dis-
tribution of linear fields is governed by an action of the form (l.3).
Vertices are pr .ded by the Taylor series e::pansion at m of the
metric coupling in coordinates around =. Power :ounting deteraines
that each distribution of linear fields retains its form under renormal-
izatisn. The problem is to show that the renormalized vertices ari
linear fields associated with the various constants can be made to fit
together as the Taylor expansions of a single renormalized metric cou-
pling for a single nonlinear field. This 1s accomplished by expressing

the conditions for compatibility of the vertices as an invariance of the



collecttion of distributions of linear fields under simulctaneous change
of m and . Resulting quadratic identities on the renormalized dis-
tributicna ¢f linear fields are solved to find a renormalized distribu-
tion of nonlinear fields of the form (1.1-2). The result is that, under
any renormalization scheme, the continuum limit A = @ csn be taken,
order by order in T and <, wvhen the bare metric and field of (I.l-
2) are expressed as cutoff dependent functions of a renormalized metric
and a renormalized field. It follows that the renormalization group
acts on the fields and on the metric couplings. Differeant renormaliza-
tion schemes give rise to equivalent renormalization group actions.

Eifective algorithms are derived for performing sanifestly covari-
ant calculations to »stl orders in T and «; and the coefficients of
the renormalization group equations are calculated in the two loop
approximation. Por the metric coupling, the result is

d

AL voll ML Pyy (@ {1.5)

-1 -1 1
pu('l' gl = -&T Bij + R” + 3 T Ripqr ijqr
+ 0“.2) . (1.6)
R,  1is the curvature tensor and R, = R the Riccl tensor of the
1pgr 13 ipip
metric BIJ' The field ¢(x) 1s renormalized within the space of order

parameters: the nonnegative unit measures $(x) on M. The



renormalization group equation is linear in the order parameter:

A 2 o - vt Eo (1.7)

wn!

¥t = -irww o+ o) (1.8)
vhere vl is the covariant derivative for the metric gij' These equa-
tions are studied in Part 1I.

The second task in the study of renormalization 1is to investigate
the effects on the transformation properties of the model. The dif-
feomorphisas of M (i.e., the transformations or reparametrizationa of
M) act on the fields and paraneters of the model as a group of
equivalence transformations. The diffeomorphisms which leave the paranm-
eters unchanged are global internal symmetries. The question is whether
it is possible, given an arbitrary renormalization scheme, to find fin-
ite corrections which make the remormalizationm preaserve the structure of
the equivalence treasformations. This seems crucial to the interpreta-
tion of the renormalized model. In particular, the preservation of
internal syammetry is needed for the renormalizability of tie standard
models.

The investigation of the renormalizability of the transformation
laws 1s not carried to completion here, but stops with identification of
the finite dimensional cohomology spaces which contain the possible

obstructions. The mext step, which is an examination of the extent to



vhich the action of the renormalization group removes the obstructions,
is not taken; nor is any interpretstion offered for the pathologies
associsted with the obstructions to renormalizability of the transforma-
tion laws.

The construction of the renormalized model and the calculation of
the renormalization group coefficients require no conditions on the glo-
bal properties of the manifold M. The discussion of the renormaliza-
tion of the transformation laws, on the cther hand, is limited here to
the cases in which M 1is either a compact manifoll or a noncompact
homogeneous space. In the latter case, additional qualifying assump-
tions are made when convenient.

The organization of Part I is as follows. Section 2 describes
basic structural features of the nonlinear models: the parameters of
the models; the transformation properties; the structure of the standard
wodels; and the definition of correlation functions, the order parsmeter
and the generating functions. Section 3 sketches the construction of
the regularized low temperature expaneion. The technical details are
g.ven in sections 4 and 5. Section 4 is a treatment of systeas of coor-
dinates on the wmanifold M. Section 5 discusses the representation of
the small fluctustions by linear fields, describes the distributions of
linear fields, and derives invariance properties. Section 6 treats the
renormalization. It discusses the renormalization group in general,
constructs the renormalized nonlinesr model, and begins the investiga-

tion of the renormalization of the transformstion laws. Section 7
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sunmarizes rules for calculation, including special rules adapted to the
standard models; and presents the results of several calculations, not-
ably the two loop calculation of the renormalizatiom group coefficients.
Material specific to the standard modele is given in sections 2.3, 4.8,
5.8, 6.5, and 7.2.

The essential ingredients of Part I aie manipulations of formal
power peries. Analytic niceties are either suppressed or ignored. Ten-
sor analysis is done using index notation, which is regarded from the
point of view of [13]. The indices {1,j,k, +++ ,p,q,t, *++} are used
for tangent vectors on M. The summation convention is used throughout.
[14) 18 a reference for basic facte and nota:lon of differential

geometry.
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2. Structure of the Noulinear Models

2.1. The distribution of fields

The form of the distribution of fields (1.1-2) is determined by
Euclidean invariance, by the scalar character of the field ¢, by the
requirement that all interactions be short range and order inducing, and
by certain assumptions of regularicy.

The a priori measure l} dp(x) 1s, by itself, the most general
Euclidean invariant distribution of fields in which the values of the
field at different points in space are completely independent. It is
the first term in an expansion in the range of interaction (having range
zero). The full distribution of fields can be wri! zn as the a priori
measure times the exponential of (minus) an action. Because only short
range interactions are admitted, the acticn must be the integral over
space of a local expression: s sum of products of spatial derivatives
of the field.

A derivative bP’i(x) - of the field, in the p direction at x,
is & tangent vector to the manifold M at the point ¢(x). Because ¢
1s assumed to be scalar, only products of even numbers of derivatives
can occur in the integrand of the action; and the spatial indices must
be contracted in pairs with the Euclidean metric. The result, for each
point x, 1s a partially symmetrized tensor at ¢(x) 1in M. This ten-
sor must be contracted with a dual tensor in order to obtain a real

nunber which can be integrated over space. The dual tensor nmust in
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general depend on ¢(x); but, by Euclidean invariance, it cannot depend
explicitly on x . Thus the coupling associated with each term in the
action is a tensor field on M.

A term in the action containing no derivatives of the field takes

the form
FXand Gax h(p(x)) (2.1.1)

where h 1s a real valued function on M (a tensor field of rank
zero). h 1is the generalization of & constant external field. It can

always be absorbed into the a priori volume element:
dg(x) —> dg(x) exp( h(g(x}) ] . (2.1.2)

Moreover, the ratio of two volume elements, being a positive funcrion on
M, can always be written as the exponential of a function h. The
range zero portion of the distribution of fields is parametrized
equivalently either by a priori volume eleaents or by constant external
fields.

The action (1.2) is the most general possibility containing the
product of two derivatives of the field. The two derivatives must
appear in the form BPQ"(:) quj(x). vhich 15 a symmetric two-temsor at
#(x). It must be contracted against - symmetric quadratic form on

tangent vectors at ¢(x). The quadratic form should be nonnegative in
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ordar that the action be order inducing. A field of nonegative sya—
metric quadratic forms is a (possibly degenerate) Riemannian metric on
Ha

Contributions to the action containing « product of more than two
derivatives of the field have naive length dimension > 2 + 0(<).

Since true scaling behavior consists of naive scal ing behavior plus
corrections of order T, these contributions are suppressed under
renormalization at low temperatures and small <. In the language of
perturbative field theory, they are nonrenormalizable. In the language
of statistical mechanics, they are irrelevant.

The regularity assumptions are: (1) that the manifold in which the
field takes values 18 smooth (infinitely differentiable); (2) that the
a priori volume element is smooth and nowhere vanishing; and (3) that
the metric coupling 1s smooth and nowhere degenerate.

The temperature T in the coupling T-lg“ is not a separate
parameter. Multiplying T by a positive comstant ¢ while multiplying
g“ by c-l leaves the coupling unchanged. The temperature is wricten
geparately only to make the expansion parameter visible and appears only
in the combination (T g—l)lj- Except when an explicit expansion paran-
eter is needed, the temperature will be absorbed into the metric, the
coupling writcen simply gu.

The parameters of the general nonlinear model are the a priori
volume element d¢(x) and the metric coupling gu. Two a priori

volume elements are equivalent if their ratio is a coustant, because the
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corresponding a priori measures differ only in their normalizations.

1t is convenient to select a particular a priori volume element
dg;(x) for each metric coupling gij' and to parsuetrize the model by
metric couplings and constant external fields ho' TWo constant exter-~
nal fielde are equivaleni if they differ by a constant function on M.

The distribution of fields becomes
Dd g0 expl - 5(p) +H($) ] (2.1.3)
B = AT Gaxon (eeas . (2-1.4)

The obvious choice of dsy(z) is the metric volume element associated

with g, but it will be useful to allow for a more general :hoice.

2.2. The manifold M and its diffeomorphism group

The mznifold M 1s taken to be finite dimensional, connected and
smooth. If M 18 not connected, then, because fluctuations between
different connected components are negligible at low temperature, the
model decomposes into a collection of independent nonlinear models, e-ch
based on one of the comnected components. Therefore M might as well
be assumed connected.

In the construction of the renormalized low temperature expansion,
vhich sees only small fluctuations of the nonlinear field, only the

local properties of M are significant. Global conditions on M, such
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ags compactness or completeness, ace not needed. It is expected, how-
ever, that, for the sodel to be sena’ble (both perturbatively anu non-
perturbatively), scme global conditlons are required. In particalsr,
the global properties of M seem to be relevant to the existence of the
infinite volume limit of the low temperature expansion, order by order
in T. (Compare [15].) Compactness should certainly be enough to give
a sensible wodel. Of the noncompact manifolds, certain homogeneous
spacee, at least, should have sensible low temperature expansions. The
discuesion of the renormaliiicion of the transformation properties of
the model is limited to these cases because they are technically acces-
sible. -

The diffeomorphisns of M (i.e., the transformations or
reparametrizations) are the smooth maps of M to itself which have a
smooth inverses. They form a group D. The infinitesmal diffeozor-
phisms are the vector fields on M. A diffeomorphism ¥ acts on the
fields by acting simultanecusly on their values everyvhere in space,
taking the field ¢(x) to the field %og(x). It carries the distribu-
tion of fields to a transformed distribution. It also transforms volume
elements and metrics oz M, taking the metric 811 and volime elewent
dg(x) ac ¢g(x) to the metric i-.gu and volume element ¥,d¢(x} at
¥0g(x).

The transformed distribution of fields retains the form (1.1-2),
ch> metric coupling and the a priori volume element replaced by the

transformed metric and the transformed a priori volume element. It
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follows immediately that any diffeonorphism of M which leaves the
metric and volume element unchanged acts as a global symmetty of the
model .

When the model 1s parametrized by a constant external field h‘J
(witii respect to a special choice ds,(x) of a priori volume element
for each metric coupling), the transformed distribution of fields
corresponds to the transformed metric i'*g“ and the transformed exter-
nal field i*ho if and only 4f the cholce of a volume element for each

metric is natural; that is,

i',dggi(x) - di'.gi(x) (2.2.1)

for all diffeomorphisms +¥. This certainly holds when dgg(x) is the
metric volume element for g. MHenceforxth dg¢(x) is agsumed wnatural in
Be

The transformed distribution of fields is entirely equiva'ent in
its observable properties to the original. The manifold M 1is not
itself directly accessible to observation because there is no means of
singling out a distinguished parametrization of the values of the field
by points in M. The only observables are the spectral properties of
the Euclidean motions (and of the ibternal symmetries), and are not
affected oy the dif;eomorphisma of M.

The gioup of diffeomorphisms of .i acts on the space of parameters

of the model as a group of equivalence transformations. The space of



parameters is, after selection of a natural volume element for each
metric coupling, the infinite dimensional spac—e E of Riemannian
metrics oan M together with the spece of real valued functions on M
(modulo the constants). The true maicls are the equivalence classes
under the action of the diffeomorphism grovp. The space R of
equivalence classes of metrics is an infinite dimensional manifold
except at the metrics with isometrics, where there are singulari-
ties.[16] The true parameter space is a vector bundle (with singulari-
ties) over R, whose fibers are equivalent to the space of real valued
functions on M (modulo constanta}.

A covariant renormalization scheme is one in which the bare and
trenormalized parameters (and fields) transform in identical fashion,
which is to say thst the renocrmalization and diffeomorphism groups com-
mute. A renormalization scheme 1s manifestly covariant if it is natural
in the metric coupling and the a priori volume element (or external
field). The manifestly covariant schemes developed below are natural in

the metric alone.

2.3. Standard models

The standard models are characterized by the property that the
transformstions of M leaving the metric coupling and a priori volume
element invariant act transitively on M. That is, for any pair of
points in M there is a symmetry transformation taking ome point to the

other.
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The isometries of a Riemannian manifold always form a finite dimen-
sional Lie group. The condition that the a priori volume element also
be preserved determines a closed subgrou,. Tiherefore the internal sym-
metry group is a finite dimensional Lir group G. The synmetries leav-
ing fixed a single point = in M form & closed subgroup H of G,
called the isotropy (or "little") group at L The map n: G = M
which takes the transformation ¥ in C to the puint i'(!o) in H
identifies M with the quotient G/H, the space of right H- cosets in
G. Varying the base point LR amounts to conjugating H by an element
in G. The action of G on M 1is therefore determined by the conjuga-
tion class in G of the compact subgroup H.

Since H leaves mo fixed, it acts by linear transformations on
the tangent vectors to M at m . This i3 called the isotropy action
of H. Since H 18 a group of isometries of 8 Riemannian metric on M,
and since the exponential wmap for c€ich a metric identifies the tangenmt
space at = with a neighborhood of L in Y- invariant fashion, and
since M 18 connected, it follows that any element in H which acts as
the identity on tangent vectors at ", is in fact the identity
transforzation of M. d is therefore identified with a closcd subgroup
of an orthogonal group and must be compact.

The Lie algebra of G 1is writtem g, that of H, h. 4 1is a
subgroup of G, so [h, h] 18 contained in h (where [+,¢] 18 the
'ie bracket in g). Since H 1is compact, there exists a linear sub-

space m complementary to h in g:
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g= meh (2.3.1)

such that the adjoint action of H on g (by conjugation) takes m to
itself. On the Lie algebra level, {(h, m] 1is contained in m. The
letters {a,b,c «¢s} are used for indices taking values in h and the

letters {1,},k ... p,q,r ...} for indices taking values in m. The

c ’l k
nonzero structure constarts of g are cab' cﬂi - Cu. CiJ' and
c? vhere the structure constants are given, for example, by

13°
v, vlk i c;‘j.

The O(N)- modcl has G = O(N), H=o0(N-1), M=5""), and

o= RN_l. The adjoint action of H = O(N-1) onm m = RN—l 18 the
definl.g representation. The chiral SU(N)- model has G = SU(N‘XSU(N),
H = SU(N) (the diagonal subgroup), M = SU(N), and m = su(N). The
adjoint actijon of H on m 1s conjugation.

The tangent space to M at m, can be identlfied with the sub-
Bpace m in g by means of the derivatlve den of the quotiept¢ map
m: G —» M at the identity e 1n 5, because de"(ﬂ) = 0. An infini-
tesmal transformation v f!n m moves the poinc o, infinftesmally in
M along the corresponding tangent vector den(v)‘. The isotropy action
of H on tangent vectors at LN is the same as its adjoint action on
m.

Since G acts transitively on M, all G - invariant temsor

fields on M, including the metric and volume element, are determin-d

by their values at @ s and are in one to one correspondence, via de"'



20

with the H=- invariant tensors on @m. In particular, the invariant
metric is an H~ invariant inner product on m and the invariant volume
element an H- invariant volume element on m. There is only one volune
element on m (up to multiplication by a positive real number):

le

~e ~¢se|] 1in a bastis {el) for m. So the metric coupling is the
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only free parameter in a standard model.

Because H 1s compact, it leaves the volume element nn m {invari-
ant. Any nondegenerate inner product on m can be averaged over H to
make an H- ipvariant inner product. Therefore, for any G/H, H com~
pact, there exists a standard model.

Any positive multiple of a G- invarfant metric is also G- invari-
ant, so the temperature is always a& frze parameter of s standard model.
Whether there are more parameters depends on the isotropy action of H.
if

and are two H- inrvariant inner products on m,

(Bl)lj’ (32)1_1
then (g;l gz);‘ is =2n He invariant symmetric linear transformation on
m, whose eigenspaces reduce the representstion of H ou m. If H
acts irreducibly, then gIl 8, 1s alvays a multiple of the iden- ity and
the temperature is the only free parameter. Wolf{l7] has classified all
such isotropy irreducible homogeneous spaces.

More generally, the isotropy representation of H contains k
inequivalent irreducible representations in multiplicities
“1' nz, X R uk « The space -EG of G- invariant metrics on M is 1

product of k factors. The 1~th factor is the space of positive

definite symmetric forms on a real vector space of dimension n- It is



21

a noncompact smooth manifold of dimensfon %ni (ni + 1). 1f soze of
these metrics have isometry groups G° larger than G, then the G’-
invariant metrics form a submanifold of the space of all G- invariant
metrics.

Inside the infinite dimensional manifold E of all metrics on M
ig the infinite dimensional manifold EIG] of all metrics which have
(sub~) groups of isometries equivalent to G under conjugation by dif-
feomorphisns of M. The diffeomorphisms of M act as equivalence
transformations on g » Restricting to the finite dimensional mani-

(3}

fold :EG of G- invariant metrics eliminates most but not necessarily
all of these equivalence transformations. Por the atandard models,
preservation of the transformation laws under renormalization includes
the preservation both of the Interzal symmetries and of the residual
equivalence transformations.

A general characterization of the residun enuivalence transforma-
tions will not be given. The problem 1s of a cohomological character.
For example, the space of infinitesmal equivalences at a given G-

invariant metric 1s the first cohomology group of the Lie alzebra

811
£ with coefficients in the full Lie algebra of infinitesmal isometries
of Bij.

There 18 always, however, a natural Lie group of equivalence

namely the group D, of diffeomorphisms of M

tran rmations on
ransfo B

L3
vhich commute with all transformations in G. Its Lie algebra is the

space of all G- invariant vector fields on M, which is identical to
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the space of H- invariant vectors in m, equipped with the with Lie
bracket C:j.

When G 1s semisimple, the G- invariant vector fields exhaust the
infinitesmal equivalence transformations by diffeomorphisms of M,
because all of the first cohomology groups of g are trivial. The
space of metric couplings is then a finite dimensional noncompact mani-
fold EC on which a finite dimensional Lie group i_)c of diffeomor-
phisms of M acts as a group of equivalence transformaticas. The space
&: of true parameters of the model is the quotient Ec/gc. _Rc is a
manifold except at me*rice with isometry groups larger than G (more
precisely, larger than the generic isometry group of the G- invariant
metrics).

An example is the model M = G = G/{e} in which ¥ 1s iteelf a
Lie group, H 1is trivial and the metric coupling 1s assum=d left, but
not necessarily right, G- invariant. The space ic of G~ invariant
wetrics is the space of positive definite syametric foms on m = g. It
has dim_nsion %n (n+ 1) vhere n 1s the dimension of G. Alli of m
is H=- invariant, so the residual transformations of M (those commut-
ing with left multiplication) form the Lie group G (acting by right
multiplication). The spece R of equivalence classes of G- invariant
metrics has dimension %n (n+1)-n = %n (n = 1) wherever it 1is
nondegenerate.

It will sometimes be convenient to assume that G/H 1s unimodular,

meaning that all transformations in I_Jc preserve the G- Iinvariant
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volume element on M. For the infinitesmal transforaations in l_)c,
this is equivalent to the condition cij = 0 on the structure con-
stants. If G 1s a unimodular Lie group (l.e. the left invariant
volume elewent on G is also right invariant), then G/H 1is automati-
cally unimodular. The compact and the semisimple Lie groups are all

unimodular.

I~

«4. Correlation functions, the partition function and the free energy

The correlation function < p(xl) p(xz) vee y(xk) > of the non-
linear model 1is, for each k-tuplet (xl, “ee ,xk) of (distinct) points
in space, a nonnegative unit measure on Hk. It is the probability dis-
tribution induced from (l.1) on the values of the field at the points
xl, ene 'xk « Equivalently, it is the average over distribution (1l.1)
of the point measure in Hk located at ( p(xl). oo, !(xk) ).

A real valued function F on Hk i{s inteprated against

< p(x)) ’("z) (X i(xk) > according to
(P, <¢(xl) .re i(xk)> ) =
207 § Qapx) expl-5(A] FCHlx)s =oou $lx) ) (2.4.1)
vhere Z(0) normalizes the distribution of fields. If F 1s nounega-

tive then the integral is also, » the correlation function 13 a nonne-

gative measure on Hk. If F =1 then its integral i3 alsc 1, sao the
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correlation function 1is a unit measure.
In particular, the order parsaeter < ¢(x) > 1is a nonnegative unit
measure (a probability measure) on M.

In the presence of an external source the distribution of fields is
§Oap0 exp [ - St + (g ) (2.4.2)

vhere the source term 1is
ne = AT (x hx (o) . (2.4.3)

h 1s a space dependent external field. Its value b{x) at each point

x 1s a real valued function on M. The partition funccion
z = CQapx) exp [ -5 + 8 ] - (2.4.4)

depends on the external field and on the metric coupling.

Adding an external field to the sction is equivalent to making the
a priori volume element dg(x) vary with =x. 1In the infinite volume
limit it 18 feasible to make a distincticn between global (or thermo-
dynamic) and local parameters: the a priori volume element, remaining
constant in space, is the thermodynamic parameter; the external field,
compactly supported or at least tempered n space, the local parameter.

But remormalization depends only on short distance effects (and will be
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carried out at finite volume) so does not see the distinction. The form
of the renormalization of the range zero part of the distribution of
fields is more transparent in the language of external fields (in face,
it is linear in the external field), soc it is convenient to fix an a
priori volume element dg(x) = dgf(x) for each coupling 81.1 and to
consider the spatially varying external field h to be the global and
local parameters combined.

The correlation functions are derivatives of the partition function

with respect to the external field:
< p(xl) L '“"k) > =
2o 2 . z (2.4.5)
Bh(x)) Bhlx) “/h=0 ° s

The dual to the space of functions on M 1s the space of measures on
M; thus a derivative with respect to h(x) 18 a measure. The deriva-
tives are always unit measures because the partition function chang.s
trivially vhen a constant function on M 18 added to h(x).

The free energy [° 4is the Legendre transform of log Z:

Poeswpl-togz + A”" Gax (a0, B0 1 - (2.4.6)
h

" 18 a function of the metric coupling and of the (spatlally dependent)

local order parameter §, which at each x 1s a nonnegative wnit
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measure PB(x) on M. The peiring between h(x) and §(x) in (2.4.6)
18 the integral of a real valued function on M against a measure on
M. The Legendre transform of [* 1s, in turo, log 2.

In the low temperature expansion, the supremum over external fields

in (2.4.6) is achieved by evaluating
-tog 2 + AT Qax (hiw), B0 (2-4.7)

at ite critical point as a function of §; that is, by inverting

-1 2
B(x) = 2z WD z (2.4.8)

to express h(x) as a function of §(x), aud then substituting for
h(x) 1a (2.4.7).

The partition function 2, or the free energy [V, remains
unchanged when the metric and the external field, or the order parame—
.er, are transformed by the same diffeomorphism of M. They are func-
tions, therefore, of the equivalence classes under the action of the
diffeomorphism group of M. The content of the model is summed up in
the dependence of the partition function or the free energy on the glo-
bal and local parameters. The true space of parameters is therefore the
space of equivalence classes.

The equivalence classes cf metric couplings and spatially dependent

external filelds (modulo trivial external fields) make up a vector bundle
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(with singularities) over the equivalence classes R of metrics. The
equivalence class_s of metrics and local order parameters form a coanical

sub-bundle of the dual bundle.

2.5. The order parameter

The essential property of the order paraneter {s its averag:abil-
ity. The renormalization group acts by averaging the variables of the
model over small regions in space (and by an oversll rescaling of dis-
tances). Points in a manifold M can only be averaged 1f M s uabed-
ded in a space in which convex combination makes senwsc !Iur example, a
vector space), and then the average of points in M will in general not
remain in M. There are ma:.y embeddings of s given msaifold M 1n a
finite dimensional vector space, but none which is natural. Any such
embedding involves arbitrary choices obscuring the character of the non-
linear model, which depends only on the intrinsic structure of the
abstract manifold M. The ouly natural embedding is the one which
places M 1inside the space of all unir measures on M {itself, sending
each point in M to the corresponding point measure. The order parame-
ter then varies over all possible averages of point measures, which is
to say over all the probability measurec on M.

In a standard model (M the homogeneons space G/H) this picture
can be considerably slmplified. The internal symmetry group G acts oan
¥, 80 acts by linear transformatione on the real valued functions on

M. Let V be a finite dimensional subrepresentation which separates
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points in M; that is, which, along with the products among its
wmembers, generates all the functions on M. Without loss of informa-
tion, the values h(x} of the external field can be agsumed :o lie in
V. Esch point m in M cao be identified with a distinct point in the
dual space V*: the linear functional vhich assigns to each function h
in V its value h(m) at m. M is thus embedded in V', and the
order parameter takes its values there. The correlation functions have
their values in tensor products of v'. In the O(H)- model, such a
subrepresentation is given by the N linear coordinate functions on

RN, restricted to the unit sphere M.

When more than one G- invariant met..c coupling extists, it is
necessary to use a reducible subrepresentation V of functions oa M
as external fields in order to ensure, by appropriate choice of G-
invariant inner product on V*. that, for any G- invariaot metric on
M, the embedding of M 1 V' can be made an isometry. An Isometric
embedding is desirable because ic allows the model to be written as a
free field subjected to counstraints. This formulation of the model
puffers from possible redundancy in the parametrization of G- invariant
metrics on M by innevr products on V'.

The general manifold M possesses no distinguished generating sub-
space of functions, so all functions must be allowed as possible values
of the external field, and all probability measures as possible values
of the order parameter.

An asymptotically small action of the renormalization group on the
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model has the effect of smearing the field ¢(x) wvhose values are in M
to produce a field §(x) whose values are in the probability measures
on M, close by the point measures. The renormalized distribution of
fields is a distribution of the §(x). The renormslized action, as a
function on this convex space of fields, has, preaunably, a degenerat:
set of minima which is identical to the manifold M. (This {s true of
the minima of the free energy at lov temperature in the mean field
theory, which also requires for its formulation ean averageable order
paraneter.) The renormelized nonlinear fields correspond to those §
whose values P(x) 1ie in this copy of M. The fluctuations transverse
to the space of renormalized nonlinear fields are iIntegrated out of the
renormalized distribution of the §(x) without any loss of information
associated with distances auch larger than the cutoff I\_l. The issue
becomes the form of the resulting renormalized distribution of nonliamear
fields and the effect of the renormalization procedure on the action of
the diffeonorphisa group of M. These Issues are addressed, in somevhat
different language, in the discussion of the renormalization of the low

temperature expansion.
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3. The Regularized Low Temperature Expansion

3.1. Linear fields

In the low temperature expansion only asymptotically small fluctua-
tions about the constan: fields have any significance. In order to
apply the standard techniques of perturbative field theory, mome linesr
representation for the fluctuations is needed. That is, a neighborhood
of the constant ¢(x) = m 4in the space of nonlinear fields must be
replaced by a neighborhood of zero in some linear space of fields. This
is most conveniently done by choosing coodinates on a neighborhood of m
in M. Then points in M near m are represented by vectors in the
linear space of coordinates. The value ¢(x) of the nonlinear field is
represented by the vector ci(x) which is ¢(x) 1in coordinates around
m. o 13 the linear field.

The advantages in defining the linear fteld by means of coordinates
are that (1) manifest Euclidean invariance is maintained (when the coor-
dinates are independent of x), amd (2) power counting is simplified by
the fact that the nonlinear field is local and of zeroth order in the
linear field. These two conditions exactly characterize the d finition
of the linear field by means of coordlnates.

Without logs of information, as far as the low temperature expan-
sion ig concerned, the distribution of nonlinear iields (2.4.2) is re~-
expressed in terms of the linear fields which represent the small fluc-

tuations. The a priori measure [l dg(x) becomes
x
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de = l;[dv(x) exp[I(m,o)] (3.1.1)

vhere do(x) 1ia the a priori volume element on M at the constant &

(whizh is independent of cri(xl). and
Jme = AT Gx jaetn (3.1.2)

is the logarithmic jacobian of the map from the linear field o to the
nonlinear field ¢. j(m,e(x)) 1s tie logarithmic jacobian of the
coordinate map from o'i(x) to ¢(x) (with respect to the appropriate
volume elements).

The action becomes
= “« 1 -1 i
Smia) = A Gux 517G (mo(x) dteo b"r1(x) (3.1.3)

at the point vi(x) in coor-

where §ij(m,o'(x)) is the metric 81.1
dinates around m.
The external source becomes
ftme) = AT Gax B0 (et (3.1.4)

vhere h(x) (m,o(x)) is the nxternal field h(x) evaiiated at cri(x)
in coordinates around m.

The distribution of the linear fields is
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do expl - A(m,o) )
A =5 - H. (3.1.5)

The low temperature expansion for the fluctuations around ¢(x) = m 1is
calculated using standard Feynman disgrsm technique on the functional

integral

5 de expl - &) . (3-1.6)
The propagator and vertices come from expanding §, B and J in
powers of o. Since coordinates are used to provide the linear fields,

this amounts to expanding the metric (m,v), the functions

g,
h(x) (m,v) and the logarithmic jacobian j(n,v) in powers of the coor-
dinate vi.

To achieve a manifestly covariant low temperature expansion, the
coordinates should be such that the Taylor series coefficieats of Eij .
h(x), and J are themselves manifestly covariant. That is, the linear
space of coordinates atound w should be the tangent space ‘th to M
at m; and the Taylor series coefficients should be tensors formed from
the metric, the curvature and its covariant derivatives, and the exter-
tal field and its covariant derivatives.

One set of coordinates having this property are the geodesic normal

coordinates defined with respect to the metric coupling gij'
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For the standard models it is convenient tc use coordinates which
are defined with reference only to the internal symmetry group, not to
.ny particular invariant metric coupling (wvhen more than one exists).
Geodesic normal coordinates defined with respect to the canonical con-
nection on M are of this type.

In section 4, effective algorithms are derived for calculating man-
ifestly covariant Tayloi seri.s expansione in normal coordinates to
arbitrary order.

The value of the functional integral (3.1.6) is at least formally
independent of the chofze of coordinates used to define fit, uo‘ the con-
struction of the general low temperature expansion should not require a

particular choice of coordinates, even a manifestly covariant choice.

3.2. lofrared regularization

At T near zero, the distribution of linear fields (3.1.5)

approaches asymptotically the gaussian distribution

I} do(x) expl - §°(m.ﬂ')]

= - “ 1.-1 - i
Bme) = A G 3T gm0 3ot 3l - iz
This determines the propagator for o to be that of massless scalar

field (a spin wave). But the masslees propagator is infrared divergent

in two dimensions:
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S
gd kK £ = . (3.2.2)
0 k

Therefore some kind of ianfrared regularization must be introduced.

The renormalization of the model sees only short distance effects,
so the form of the infrared regularization cannot be essential. How-
ever, certain features would be especially attractive. The infrared
r2gularization ought to be applicable to the full nonlinear model
(2.4.2) and oot merely to the sum over small fluctuations, in the hope
that the lov temperature expansion is that of a (oonperturbatively) sen-
sible theory (having a good infinite volume limit). There should also
be at least a plausible scenario for removal of the regularizstion,
order by order in T, lesving Lehind a well-belaved set of correlation
functions.[cf. 15] Finally, the infrared regularization should be
specified without reference to a particular choice of coordinates (even
a marnifestly covariant ome).

By these criteria, the simplest forms of infrared regularization
are unsatisfactory. A direct low momentum cutoff for the linear field,
or the additiun of a regulator mass

¢ ax %-r" a? gy (m,0) tx o , (3.2.3)
to the action are not applicable to the nonlinear field and depend on a
choice of coordinates for their specification, changing form under

change of coordinates.
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One form of regularization which does respect the vonlinearity of
the model is modifying the distribution (2.4.2) of nonlinear fields by
including in the ac lon a constant external field - El T-l ho('(x)).
then T 18 asymptotically small the nonlinear field fluctuates only
around the poiat mo in M vhich minimizes ho. The fluctuations are
described by the distribution of linear fields (3.1.5). The external
source H includes the O(T-l) constant external field. The leading,
quadratic, term in the exponent of (3.1.5) provides a massive propagator
for linear field, the masses being the eigenvalues of the Hessian of ho
at m . This 18 the form of regularization which was used in [9,10].

Infrared regularization by means of a constant external field has
three principai disadvantages. First, it requires choice of a fuaction
on M and, in general, there is no choice which is natural in the

i

metric 'l‘_:L is of order T = and can be guaranteed to have a non-

gij »
degenerate minimum. Second, it complicates calculation by separating
the external field into two pieces, placing the quadratic part of one
plece in the propagator as a mass term. Third, it singles out one point
n, in M, which 1s n~t in keeping with the fact that, in two dimen-
sions, the presence of spin waves in the model prevents the spontaneous
emergence of order. (See section 6.4 below.) The external field, being
of negative length dimensicn, is a soft operator. Therefore, even in
models in which order is imposed by a nontrivial external field, the

short distances properties are those of the disordered state which sees

all of the points in M. In a standard model all points in M are
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equivalent, 8o no harm is done by selecting one of them. But, in the
general nonlinear model, the global structure of M 1s obscured by the
constant external field. This is signalled by the persistence of
infrared divergences in the correlation functions after ho is sent to
zero.

On the other hand, the constant external field infrared regulariza-
tion is entirely suitabl2 for separating infrared divergeoces fron
ultraviolet divergences in order to perform the renormalizatfon. It ie
simply necessary to use a different external field to renormalize the
distributions of linear fields about vach of the constancs.

An alternative to the consatant external field is the finite volume
icrm of infrared regularization. The system is placed in a box, which
for simplicity is taken to be square, of side L. Perifodic boundary
coudiciong are imposed in order to mimic the anticipated disordering
effect of the spin waves.

Finite volume regularization presents two complications. First,
there 1s a loss of global spatial eymmetry. The standard expectation is
that this returns in the infinite volume limit. 1In any case, renormali-
zation involves only the short distance property of local Euclidean
invariance, which is not affected by the Einite;:esa of the volume. The
second complication is that, in the evaluation of Feynman diagrams,
moments are summed over a discrete set of values. This has r> conse-
quence for Tremormalization. All of the primitive divergences of the

Feynman dilagrams are either quadratic or logarithmic. The quadratic
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divergences can be extracted using only operator theoretic properties of
the propagator, without need for an eigenr ° expansion. Logarithmic
divergences are calculated by approximeting the finite volume propagator

with the continuum massless propagator k-z. Corrections, which are

o lk!

},» do not contribute to the primjtive logarithmic divergences.

It seems to be possible, with periodic boundary conditions, to col-
lect terms at each order in T so that, in the infinite volume limit,
the bare propagator 1is, in effect, twe subtracted (infrared finite)
massless propagator. (Compare [15).) If this is so, then the discr~te-
aness of momentum space need never complicate actual calculaticn of
infinite volume correlation functions. This would justify the use of
periodic boundary conditions for the low temperature expansion.

Under periodic boundary conditions, the distribution of fields
(2.4.2) 18 dominated at low temperature by all of the absolute minima of
the action (1.2). These are the constant fields, forming a copy of M
inside the space of all nonlinear fields. Fluctuatious around all of

the constants participate in the low temperature expansion of the parti-

tion function Z:

z = S Z(m) (3.2.4)
M

vhere 2Z{m) 1is the sum over fluctuations around the constant ¢(x) = m.
Each sum Z(m) 18 calculated using a linear field cri(x),

defined by means of coordinates around m, to represent the



38

fluctuations around the constant ¢(x) = m. Such a choice of coordi-
nates around each point in M 1is called a system of coordinates for M.
Metric and canonical normal coordinates are examples. Systems of coor-
dinates in general, and these two in parcticular, are discussed in sec-
tion 4.

If each 2Z(m) were calculated by the functional integral (3.1.6),
then the constant nonlinear fields would be overcounted, since they
pccur as constant fluctuations around all nearby constant fields. The
degeneracy of the minimum of the action is reflected in the fact that
there are zero modes in the inverse propagator for the linear field at
each constant: namely, the constant linear fields o’i(x) =- vi.

In each sum over fluctuations a gauge comndition ii(n,c) =0 1is
needed to avoid the overcounting and eliminate the zero modes. A gauge

function of the form

~ -(2+¢ ~

a,o) = L9 de 3 m,e(x)). (3.2.5)
maintains manifest Euclidean invariance and simplifies the power count-
ing. f’i(m,v) is, for each m, a vector valued function on the coor-
dinate space at m. The simplest of gauge functions is

e = o . (3.2.6)

The gauge condition 1s imposed by including a delta=function
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6§(P(m,o)) 4in the distribution of linear tields (3.1.5). A Fadeev-
Popov determinant must also be included to correctly reproduce the a
priori measure. The gauge function has a finite number of components,

80 the determinant is of a finite dimensional matrix f*"(n,a’)z

3

(m,g) = L9 de Hme)). (3.2.7)

i i
h] h]

A multiplier ¥, 1s used to enforce the gauge condition and a fin-

i

ite set of anticommuting ghost variables give the Fadeev-Popov deter~
minant. The distribution of linear fields and auxiliary variables

describing the fluctuations around ¢(x) = m is
dY dc*~dc de expl - K(m,o,F,c,c”) ] (3.2.8)
Am,o,Y,e,c™ = §(me) - Hi(m,o)
i

-1y, e - 'Ji(m.a-) <t (3.2.9)

The contribution to the partition function of the fluctuations around m

is
Z(m) = g dY dc*~de do expl - A(m,o,Y,c,c®) 1 . (3.2.10)

§ is gdven in (3.1.3), H in (3.1.4) and do in (3.1.1-2). Z(m)
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i3 a volume element on M at m, which is fategrated in (3.2.4) to
give the partition function Z. In section 5 these constructions are
described in more detail and a formula for i;(-,a') 13 derived.

Both the constant external field and the finite volume forms of
infrared regularization are used below. The simplicity of (3.1.5) in
comparison with (3.2.8-9) 1s an advantage of the former. The arguments
for renormalizability are correspondingly simpler. Below, when the

relationship between the two arguments is sufficiently clear, only the

simpler of the two 18 made explicit.

3.3. Ultraviolet regularization

Ultraviolet regularization is needed to tame the short distance
divergences occurring in the Feynman diagrams which give the low tem-
perature expansion of the functional integrals (3.1.6) or (3.2.10). The
ultraviolet regularization should be applicable beyond the low tempera-
ture expa;xsion. Among available forms of regular.zation, only the lat-
tice has this property.

V The action {(1.2) makes no sense on the lattice. A nonlinear analo-
gue of the finite difference operator must be found to take the place of

*he continuum gpatial derivative bP » One possible lattice action is

i

0% g0, (0 ) (3.3.1)

S(p) = 2
(x,y)

vhere the sum ranges over unordered nearest neighbor pairs on a
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periodic, cubical lattice; and where Dz(ml.nz) is the distance squared

letween the two points m, and m in M, calculated with respect to

1 2
the Riemannian metric coupling g“. In place of DZ aight be used any
function l((-1 .mz) which is minimized when its two arguments are ident-

ical and whose second derivatives at the ainima are the values of the

metric coupling:

2
1. 3K
-5 (m, .m,) g, () . (3.3.2)
z bni'bm% 172 /m1 SR
If vl’2 are mI,Z in coordinates around m, then R(ml'mz) is

R(mvvp) = By (@) &t ! o+ w3

where <v> = %(v1 + v and Sv = v, = v The terns of crder

2)
(6\1)3 depend on the choice of K.

The lattice action in coordinates around m 1is

3 = A 5 e doteo 3ot
(xop) poE k
+ terms containing more than two derivatives. (3.3.4)
The sum is over points x and directions p 1in the lattice; /\.l is

the lattice spacing; <<r>"l - % (o(x) + o(x + p)); and BF is the

finite difference operator in the p direction:
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bpci(x) - Aldtx+p -l . (3.3.5)

At asymptotically low temperature the terms contsiniog more than
two derivatives are irrelevant to the continuum limirt. Therefore the
arbitrariness in the lattice action is of no consequence.

The propagator of the finite volume lattice o field is the usual
massless lattice propagator, the zero mode eliminated by the gauge con-

dition. 1In Feynman diagrams, the momenta are summed over & periodic

finite set ({k )=
p

1

k = (28L" ) n

p

1
n'u = - FAL - 22, -1, 0, 1, 2, see -;—AL

Ikl 4 0. (3-3.6)

To define the value of a diagram in noninteger dimensions, the <
dependence must b~ isolated. Tnis ia done by proper time parametriza~

tion of the propagators, exactly as in the case of continuous unbounded

momenta:

6 (0 = (£ 2AY (1 - cos /\-lk}l) 17t

p

a0
- g de 11 expt -t { 2A2 (1 - cos/\-xk’l) 1} . (3.3.1)
p
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Summing over the loop momenta leaves an explicitly <« - dependent
integral over the proper times, which can be evaluated at noninteger
dimensions. There does not seem to be lnown a nonperturbative extension
of the lattice regularization to noninteger dimensions.

i.1ong the forms of short distance regularization which are applica-
ble only in the low temperature expansion, the most sttractive are those
which do not depend upon the choice of coordinates on M. Dimensional
regularization is ope such. It is carried out by calculating the parti-
tion function Z order by order in T for a model based on a torus
(periodic box) of side L and Jimension 2 + <. Again, the discrete-
ness of the values of the * .menta due to finite volume does not impede
isclation of the <« dependence of the Feynman diagrans. The diagrass
are evaluated at <« sufficlently negarive for tle result to be well
defined and then analytically continued to <« = 0.

Regularization using a cutoff in momentum space is also feasible,

but depende for its specification on the choice of linear fields.
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4. Systems of Coordinates

4.1. Introduction

A system of coordinates is a set of coordinates around each point
o in the manifold M. In this section a technical apparatus is
developed for describing systems of coordinates in general. This
apparatus is then used to find recursive procedures for calculating Tay-
lor series coefficients of a Riemannian metric and other tensor fields
in special systems of coordinates: Riemannian geodesic normal coordi-
nates and canonical geodesic normal coordinates in particular.
Equivalent prucedures for calculating the Taylor series coefficlents of
a metric in Riemannian normal coordinates were derived by more direct
arguments by Cartan{l8). The Taylor serles coefficients provide mani-
festly covariant vertices for the Feynman diagrams of the low tempera-
ture expansion of the nonlinear model. The general technical apparatus
is used in succeeding sections in the description of the Fadeev-Popov
determinant and in the renormalization of the low temperature expansion.

A natural linear coordinate space for a neighborhood of a point m
in M is the tangent space TmH to M at m. With these as coordi-
nate spaces, & system of coordinates is a collection of coordinate maps
Em: TmH —> M identifying, for each m, a nelghborhood of zero in TmH
with a .eighborhood of m in M. The coordinate maps are assumed to
fit smoothly together to give a single map E: T™M — M from the tangent

bundle ™ to M. In perturbation theory only formal power series
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expansions have significance, so domains of definition in the tangent

Bpaces 'l‘mH are not made explicit, here and vhere relevant below.

4.2. The compatibility operator D,
A system of coordinates E: TM —-» M determines, for o’ suffi-
-1

ciently close to m, a transition functjon E, 0O E: TH =T M.
m m m m

The infinitesmal version of the transition functions i3 a first order

differential operator Di acting on real valued functions h on TM:

1= d P -1
viD R (mw) = oy Ba(n, B0 BV, (4.2.1)

where w and v are tangent vectors im TmH. and m(t) 1s a curve in
[}
M with m = m(0) and w = ac/t=0 m(t).

Written in coordinates (m‘l) on M, Di takes the form

3 _ ;5 -2
b, ! Qi(m.v) ik (4.2.2)

Di can be regarded as defining a locally flat, incomplete, non-

lincar connection in the tangent bundle; it is the ordinary derivative
on ™ followed by horizontal projection. The traasition functions are

the path independent parallel transport functions of this flat nonlinear

connection.

Di has two defining properties. First, acting on functions on M,

Di is identical to the ordinmary derivative di' That is, 1f
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ti(m,v) = h(m), then

niﬁ (m,v) = dih (@) . (4.2.3)

Second, Di satisfies the integrability condition

2
nij = Q. 4.2.4)
where D:'j is defined by
b§ 2 b§
v wj Dij v D:I.' HJDj] - v, H]"l)1 (4.2.5)

for v,w vector fields on M and {v, w] their Lie bracket. With

respect to coordinates (-1) on M,

L Dj] . (4.2.6)

D2 is the curvature of the nonlinear conmection (represented as an

1}

vperator on functions); ij = 0 expresses the local flatness.

A function E(m.v) on T can represent, via the various coordi-

nate maps Em, many distinct functions hm on nzighborhoods in M:

h (') = f(s, elo) . (4.2.7)
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Di is called the compatibility operator because it measures the extent
to which these functions depend on um. h 1s the expression in coordi-

nates of a single function h on X,
fi(m,v) = WE (V) (4.2.8)

1f and only if Diﬁ = 0.

Any diffeomorphism ¥: M —» M near the identity gives rise to a
transformed system of coordinates % © E. T,e trsnsition functions and
the compatibility operator do not change. Therefore, the compstibility
operator can at most determine the system of coordinatea up to such
trausformations by diffeomorphisms of M. In fact, integration of Di
as a one form on M recreates the transition functions, and the transi-
tion functioms clearly deteruine the system of coordinates exactly up to
diffeomorphisms of M. Moreover, any first order operator satisfying
(4.2.3-4) 1is the compatibility operator for some system of coordinates.

The additional data which are needed to specify completely the sys=-
tem of coordinates are the coordinate origins o(m) = E;I(m). A real
valued function h on M 1is represented in coordinates E by the
unique solution of the compatibility equation Diﬁ = 0 with initial
conditions ﬁ(m,o(m)) = h(m). The obvious choice of origin in 'l'mM is
zero. But the ambiguity in the system of coordinates associated with a
given compatibility operator will be important in the discussion of

renormalization.
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A tensor valued function ti::: on ™ 1is a function whose value
at (m,v) ls a tensor at m. The compatibility operstor extends to act
on these functions. FPor each m, t 1is regarded as a tensor field on

the tangent space TmH- The transition functions are used to differen-

tiate with respect to m:

ko slses d -1 A af.es

Ykt T dtee0 Fae) °EO Gl (4-2.9)
vwhere m = m(0) and w = E/t-ﬂ =(t).
A tensor valued function E;_::(m,v) is the expression in coordi-
nates of a single tensor field t;’:::(l) on M,
-~ *
t(m,v) = Et (v) , (4.2.10)

i1f and only if t satisfies the compatibility equation Diz =0 with

iaitital conditioms

" (mpo@) -

1. o(m) B g RN C

) ---t (m) e{4.2.11)

O(I) m

.1

The extended compatibility operator continues to satisfy the integrabil-

ity condition D2 = 0.

11
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4.3. The linear comnection

It is useful to combine a system of coordinates with a linear con-
nection in the tangent bundle TM. The linear connection serves two
distinct purposes. The firet is to provide a covariant derivative vy
allowing l?l1 to be written as A plus an operator which acts
independently at each point m. This is z technical convenience which
presupposes no special relationship between the system of coordinates
and the linear connection. The second purpose is to define geodesic
normal coordinates for the linear conmnection. Two types of connection
are of special interest: the torsion free Levi-Civita connection when
M is Riemannian, and the canonical connection when M 15 homogene~
ous.[14}

A linear connection in T determines a set of path dependent
linear parallel transport functions between tangent spaces TmH and
Tm,l(- As in (4.2.1), the infinitesmal version of the prrallel transport
functions is a first order operator, the covariant derivative v,» act-

ing on real valued and tensor valued functions on T. In coordinates

(mi}. writing Bk for a—k-,
¥

' T Jim v 3 ) B @y (4.3.1)

vﬁ(m,v) - (= - I"k
3

v @y - (% - r‘p'i‘(m) w3 ) # (@

+ Ml & mw (.3.2)
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where I‘J: is the Christoffel symbol for the linear connection. If
E;"'(m,v) does not depend on v then 'kj *** is the ordinary

covariant derivative.

Any tensor valued function t on T™ has a formal Taylor series

expansion:
-;':::(m.v) -
© k
s b ovlaw™ oy na .;:'. (2,9) jyup » (4:3.3)
n=0 * 1

vhere the coefficients b ---B i'" (»,0) are tensor fields on M.
l

From (4.3.2) it follows immediately that
vl =p (4:3.4)
and

Iy, aj] =0. (4:3.5)

Thus the Taylor series coefficients of viz are given by the covariant

derivatives of the coefficients of .
v

fj' defined as in {&4.2.5), is

vih (my) = - n“Pi (= V3 (m,v) (4+3.6)
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2~k o _ om0 P ~k k -~
viy¥ R Y 3 & +x e +. (4.3.7)
ka-Jj is the curvature tensor of the linear counection:

k i
uivj“p R i - (v v vJvJ] uk - [lu, vi? vq vk (4.3.8)
for u, v, w vector fields on M.
Define a matrix valued fuction Q‘}(-,v) on ™ by
D, = v - IERY Y, . (4.3.9)
Equivalestly,
d -
Tt/ =0 Em(t)o Em (v) = (w, = Q(m,v) w) . (4.3.10)

The expression on the left in (4.3.10) is a vector tangent to TM at
(m,v)+ On the right is the same tangent vector decomposed into horizon-~
tal and vertical parts with regpect to the linear counection in TM.
Both the linear and the nonlinear parallel transport functioms
preserve the Lie brackets of vector fields on the tangent spaces TmH.

It follows that 1)i i3 given on temsor valuved functions by

. . k- <k
p, & - oo o+ Fd (4.3.11)
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koo ~keos ~ keoo

Ditj.” - N T lo;» t]j.", (4.3.12)

where Q at m is the vector fleld Qia on T M and Ni’E] at

3
m is the Lie bracket of thiw vector field with the tensor field T:(n,v)
on T M.

m

The integrability condition ij = 0 becomes, substituting (4.3.9)

in (4.2.5),

® Q: + RE WP (423413

Tk 18 the torsion tensor of the linear coanectioa:

ij

vid T:; - vivivk - wjvjvk - v, wk (4.2.14)

for v, w vector fields on M.

1

The derivative of E at the origin o(m) = F.; (m) 1is given by

-1.1

1 i
CIN N Q5 (m, ofm) ) + w0 (m). (4.3.15)

]
Q depends on both the system of coordinates and the linear connection,
but the particular combination on the right in (4.3.15) depends only on

the system of coordinates.
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4.4. Normal coordinates

Given a linear connection on TM, unormal coordinates around the

point m are defined by

Em(v) = p(m,v)“) (4.4.1)

where (t) 1s the geodesic leaving w with initial velocity v.

Pm,v)
By construction, the origin o(m) 1s at zero.
The velocity field ig covariant constant along a geodesic, so, in

the language of (4.3.10),

d -1
-— E o E (v) -~ (v, ~v) . {4.4.2)
dt/e=D P(n,v)(t) m
That 1is,
vig mw = V. €4.4.3)

Also, since Pla v)(t) has velocity v at t = 9,
1]

Q(m,0) = 1. (4edad)

Conditions (4.4.3-4) determine Q uniquely. The contraction of

vi with both sides of equation (4.3.13) gives a matrix equation
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g + @2 - q = QT + . (4.4.5)
The first order operator O = = viv'i is
i
d = v (hi - '1) (4.4.6)

The matrix valued functions T(m,v) and R(m,v) are

i k o1
Tj(n,v) v Tkj(ll) (4.4.7)
R;(l.v) -~ n‘klj(n) . (4.4.8)

Equation (4.4.5) has a unique solution Q;(n.v) satisfying the initial
condition (4.4.4).

The Taylor series in normal coordinates of a real valued function
h on M 1is the expar ;ion of E(m,v) - h(Em(v)) in powers of v.
The compatibility condition niﬁ =0 implies O = - vknkﬁ =3Mdh =0,
With inirial condition E(u,O) = h(m), the formal power series solution

is

- a 1 kl k
h (m,v) = & TV v ¥ +esg h(m . (4.4.9)

anQ k) ky

The Taylor series coefficients of K are the symmetrized covariant

derivatives of h.
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————

4.5. The vielbein v;(.,v)
A vector field Hi on M 1is represented in normal coordinates by
the vector valued function ;1(-,v) vhich solves, from (4.3.11),
0 = -vlD, % « d-1+Q) 7, (4.5.1)
w(m,0) = wim) . (4.5.2)
The vector valued function ﬁi(n,v) vhose Taylor series coefficients
are the symmetrized covariant derivatives of w 1is the solution of
3w = 0 with initial condition (4.5.2). The two vector valued functions
% and ¥ are related by a linear transformation: ¥ = V W, where
the matrix valued function Vj(m,v) is the solutiom of
3v = v(g-1) (6.5.3)
V(m,0) = 1. (4.5.4)
d 1ip applied to both sides of (4.5.3) and (4.4.5) 13 ugsed to obtain

v+ QM UA-T) - VIT+R) = 0. (4.5.5)

(4.5.5) has a unique solution satisfying initial condition (4.5.4).

It is possible to calculate the Taylor series coefficients of Q
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recursively using (4.4.4-5), but, because the equation is nonlinear in
Q, this is an inefficient method. (4.5.4=5} i3 linear in ¥, so0 is
more suited for practical calculation. Q 1is given by rewriting

(4.5.3):

Q = 1 + viyy, (4.5.6)

The tensor valued function .t;':::(m,v) vhich represents in normal
coordinates the tensor field t;'::: on M 1is found by a direct exten-

sion of (4.5.1-3). First, the tensor valued functiom t(m,v) which
solves 3t (m,v) = 0, t(m,0) = t(m) is found. Its Taylor series coef-

ficients are the symmetrized covariant derivatives of t:

[+ ]
Gglimy - % vt v e @ L s
n=0 1 n 3
Then
~fene i ~peee q
t = Voeee € Vimer 4.5.8
Joo- P qeee k] ( )

The Teylor series expansion in normal coordinates of any temsor field on
M is thus obtained immediately, once the Taylor series expansion of

V;'(m,v) 1s known.
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4.6. Metrics an. volume elements in coordinmates

In a coordinate system E, a metric gij is represented by the
tensor valued fumction Eij(l,v) - E:gij (v). It satisfies the compati-

bility condition

D&y, = © (4.6.1)

and the initial condition

5 - P q
81_1("" o(m)) (do(m)l!n)i gpq(u) (do(m)su)j . (4.6.2)

#hen the origin is at zero, the initial condition is, by (4.3.15),

@0 = Qw0 g (@ @ H¥n,0 . (4:6.3)

iy Pq i

#hen tne coordinates are normal with respect to a linear connection

in ™, § 4is given by (4.5.7-8):

Eij(m,v) - vf(m,v) gpq(m,v) v‘j*(m,v) (he6.4)
( b 1 l"1 krl
g (myv) = T == v Teeny v, cerv. g () . (4.6.5)
pq =0 n! kl kn Pq

In particular, when the metric is covariant constant,

81_1
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- yP q
(m,v) Vi) gpq(-) Vj(n,v) . (4.6.6)

gij
A volume element dm on M 1is represented in coordinates by the
rensor valued function dv (m,v) = E:dm (v), which satisfies the compa-
tibility condition D,dv = 0, with initial condition

dv (m,o(m)) = dm det d . (6.6.7)

o(u)Em
The ratio between dv and dm is a positive real valued function
exp J(m,v) on TM:

dv = dm exp J(m,v). (6.6.8)

I(m,v) is the logarithmic jacobian of the coordinate map Em at {(m,v)
with respect to the volume element dm at m and at Em(v).

dv consists of a volume element on 'rmn for each m, so integra-
tion against dv turns a real valued function h on T iato a real
valued function S-'Jv i on M. The compatibility condition Diav -0

implies the integration by parts formula
§av pf = a4 Cav i (4.6.9)

In perturbation theory the integrations are asymptotic erpansions, so

conditions on the support of h are Unecessary-
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When the coordinates are normal with respect to a linear comnec-

tion, dv 1s given by (4.5.7-8):

dv = dv det V(m,v) (4.6.10)

- @ 3 K ky

dv (m,v) = s T:T V T esev vk ---vk do . (4.6.11)
n=0 1 n

In particular, when the volume element is covariant comstant,

dv = do det V(m,v) . (6.6.12)

The logarithmic jacobian I(m,v) of the coordinate map Em at (m,v}

is then tr log V(m,v).

4.7. Calculation of Taylor series: torsion free normal coordinates

The system of coordinates is assumed to be normal with respect to a
torsion free linear coonection in THM. An example of such a connection
is the Levi-Civita ccoonection of a Riemannian metric on M.

The matrix valued function Vi(m,v) is expsnded 1o in powers of v

3
with nonstandard coefficlenta:
@
= 1 (n)
V= 3 —— ({', 7. l)
=0 (o+1)!

(0)

V(n) is homogeneous in v of degree n and V = 1. Equatiom
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(1)

(4.5.5) gives V = 0 and, for n > 1, the recursiomn relation

(n)

v - 2w v(n—l)

R L Y (4.7.2)

where, in this context, v = vivi. The matrix valued function R 18

defined in (4.4.8). The first few terms in the expansion are

1

- L L L 2
v l+3!n+“(2vk)+5!(3v

R+R%)  (4.73)

3

+ e R+3v(RE) - Ry vR]) + -

1l 1 1 2 1 2

log V = 6R + l—z'vk + (‘—o'v R—I_B-I?-R ) (4e7e4)

+6—1,(l;v3R—2v(R2)-[R.vR])+ cen
. . |
Note that ¢r R VVRij'
(4.5.6) gives
- 1 L Log2p o Lg?
Q 1+3R+12'R+(60'R45R)
+ 2l rR-6v Ry 4 .ol (4.7.5)

1f 81_1 18 a covariant constant metric on ii, then the linear connec=

tion, being torsion free, must be the Levi-Civita counection for 51_1'



The curvature matrix is then symmetric: R = g- R

-1
g B

+ (P R+2V( RZ)) 4+ ...

More explicitly:

~ k1
gij

k1lnp 1 2
+ vvwvv ( 75 'k'lninpj + a5 niqu

4.8. Homogeneous spaces

In this subsection, M 18 8 homogeneous space

G- invariant system of coordinates. That is,

E = §°1

o ° B °H

for all m in M and all ¥ in G. If t 1is a

(m,v) = gij(m) + %VV niklj(m) + %vkvlvnvk

rd
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* g. From (4.6.6),

(4.7.6)

(m)

k ilnj

npj) (m}

G/H and

(4.7.7)

E 18 a

(4.8.1)

G~ invariant tensor

field on M, i.e. ¥,t =t for all ¥ in G, then its representation

in coordinates Et(m,v) = E;t (v) 18 a G~ invariant tensor valued
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function on TH:
tHm, £, = ¥, t(a,v) . (4.8.2)
The canonical connection in T 4is a natural linear ~onnection

defined using the group theoretic structure of the guotient G/H (see

section 2.3 and (14)). It can be defined by giving the operator w

4 on
tensor valued functions on TM. '1 is defined at the H- iavarianc
R 1 .
base point mo.
i_ =~ d -tw -, tW tw
wwt (mo,v) At/t=0 % t(e B &y v) , (4.8.3)

where w and v are vectors in LI"Tm . ¢, at a, respects the
o

action of H onm Tm ¥, 80 it extends to & G- lavariant operator on
[

all of TM.
It follows immedfately from (4.8.3) that G- invarlant tensor

« In particular, the

valued functions on TM are annihilated by v

torsion and curvature of the canonical comnection are G- jinvariant and
therefore covarfant constant. 5ince G- invariant tensor valued func~

tions are completely determined by their values on m = Tm M, they need
o
only be studled there.

1
3

canonical connection and the system of coordinates E, 1is G- invari~

The matrix valued function Q,{m,v), defined with respect to the

1q;‘ = 0. (4.3.13) becomes

ant, 80 v
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Pagk - P d g¢ - 1P ¢* k P 8.
Qfday - ofdq - ther + RV, (4.8.4)
or,
- K 3
e, o Ti5% * Ry vy, . (46.8.5)

The torsion and curvature (at no) are (see section 2.3 and (14]):

k
T:I.j - -C (4.8.6)

1 a .1
Rijk - -cjk Coy * (4.8.7)

The ventor fields =~ Q1 and - Rkpuvpbk on @ ponerate the ideal

m+ [m, o] in g. The Q1 are nonlinear vectcr flelds; the rest are

linear. Note that unimodularity of G/H 1is expressed in the condition

k -
k. 0 (4.8.8)

(Cl:k = 0 follows automatically from the compactness of H.)
Canonical normal coordinates are described by the matrix valued

function V;‘(v) on m eatisfylng (4.5.4-5). In this context,

d = vihi. R(v) and T(v! are matrix valued functious on m defined

by (4.4.7-8), Explicitly,
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(VI w = ~ [v, vlg (4.8.9)
R(v} w = [v, [v, uly] (4.8.10)
where (v, H]E is the component of the Lie bracket lying in m and
fv, wl;, is the component in h. Note that 3T =T and 3R = 2 R.
Recuraion relaticns for the Taylor series coefficients of V;(v)
are obtained by writing (4.5.5) in terms of the expansion (4.7.1):
v . W) Ly (4.8.11)

and, for n > 1,

ylo) o ogle=l) g ylem2) g (4.8.12)

The first few terms are:

1 3
+z_!.(-r +RTH+TR) + oo (4.8.13)
1 2

log V= 17T + (19 +4R) + ot (4.8.14)

In the special cases in which [R, T) = 0, (4.5.4-5) can be solved
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exactly:
v . Mradind (4.8.18)
vhere
o) = o2 gimngal’?) (4.8.19)
@ 1 n
« 2 T (4.8.20)
n=0

The Taylor series of Q 1is calculated using (4.5.6) and (4.8.13):
1 1 2
Q l+2'r+12(T+l.R)
1
+24(RT-TR)+ cee . (4.8.15)

A G- invariant metric on !4 1is determined by an H- fmva. fant

inner product on m. Infinitesmal H- Invariance is

gij

k k
0 Cai gkj + 84k CaJ . {4.8.16)

The representation of the metric in canonical normal coordinates is

given by (4.6.6) and (4.8.13):



.V*SV
1
-p o+ L
i
* %

(Mg+aD + 1% 1

e g + gt 4 R)) 4 e .
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(4.8.17)
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5. Linear Fields

5.1. Introduction

The space of fields ¢{(x) taking values in the manifold M is
itself a nonlinear manifold. For calculation in the low temperature
expansion, a linear represertation is needed for the fields near each
constant ¢(x) = m. Natural linear fields at m are the tangents to
the manifold of nonlinear fields at the constant n, 1i.e., the fields
o taking values o‘i(x) in the tangent space to M at =a. The linear
representation is a collection of maps Em from linear to nonlinear
fields, defined near the zero linear field, taking the linear field o
at m to the nonlinear field ¢ = l-:m(o‘) which it represents.

It is convenient to use linear representations which respect the
spatial symmecry of the model, in order that the symmetry remain mani-
fest in the low temperature expansion. It simplifies power counting to
use representions which are local and zeroth order in the linear field.
Any representation satisfying these two criteria is determined by a sys-

tem of coordinates E on M:

Em(a) (x) = E (o(x)) . (5.1.1)
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5.2. The comparibility operator 51

Each nonlinear field is represented by many linear fields, associ-
ated with different constants. A compatibility condition determines
vhen a real valued function of the linear fields represents a single
function of the nonlinear fields. The compatibility operator 51 is
defined to act on real valued functions E(m,c) of the linear fields

by

ix d - = -1,z
W Dic (m,o) dt/ =0 G( m(t), E‘(t)o Em(o) ) (5.2.1)
vhere m = ®{0) and w = :_:/:-o w(t). E(m.c) is the representation

of a single function G(phi) of the nonlinear fields,

G(m,o) = c('ﬁm(c)) . (5.2.2)

if and only if

D.G=0 . (5.2.3)

The linear fields form a vector bundle over the constants. The
compatibility operator is the infinitesmal expression of a flat noa-
linear connection in this bundle whose path independent parallel tran-
1

sport functicns are the transition functions E; o Em « The flatness

of the nonlinear connection is expressed in the integrability condition
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=2
D:I.j = 0. (5.2.4)

ﬁfj is defined as in (4.2.5).
5.3. Linear connections

It is convenient to have use of a linear comnection in the bundle
of linear fielde. It provides a first order operator ?1 which acts on
real valued functions of the linear fields, as the infinitesmal form of
linear parallel transport of linear fields along paths in the constants
M.

In calculation of the low temperature expansion it is convenient to
use linear connections which respect the spatial symmetry and which are

local and zeroth order in the linear field, thus which are determined by

linear coenections in TM. With respect to coordinates {n'} on M,

~ d k 3
F o= = - rkoy o) . (5.3.1)
1 N i1 3 (0

l‘j: 18 the Christoffel symbol of the linear connection on M in coor-
dinates (mi). The summation convention applies to the index x as
well as to the ordinary indices.

Given a linear connection in the bundle of linear fields the coumpa-

tibility operator can be written in the form

b - ¥ - ai(m,a)% (5.3.2)
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where ﬁi(m,c) EB: is a vector field on the space of linear fields at
m. When the linear representation is based on a system of coordinates
and ;i is determined by a linear connection on M, then

B, = ¥ - d@ow

1 1 (5.3.3)

3
33 (x) )
Q;'(m,a') is the matrix valued function on T, defined by (4.3.9),
which describes the system of coordinates with respect to the linear
ccanection in TM.

A linear connectior; in the bundle of linear fields 1s not essential
to the representation of nonlinear by linear fields. It merely pro-
vides, as in (5.3.2-3) a convenient separation of the compatibility
operator into 2 linear covariart derivative plus an operator which acts

independently on each space of linear fields.

5.4. Extenrlons to tengor valued functions

In extending these operators to temsor valued functions of the
linear fields, two types of functions must be distinguished.

Those whose values are temsors in the linear fields themselves are
treated exactly as were teansor valued functions in section 4.2. A vec-
tor valued function of this type 1is of the form Tdi(x) (m,0), an exam-
ple being ci(x) itself. The extension of ;i to such functions

satisfies
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¥ Ax) =0 (5.4.1)

~ 2
¥, ——1 = 0. (5.4.2)
el ()

The secound kind of tensor valued function takes its value at
(m,o) 1in a tensor space of TmH. I: is of the form ?;:.':(m.cr). In
order to extend the operators ;1 and 51 to these functioms, an auxi-
liary linear connection in ™ 1is needed to transport the temsors of
™.

This auxiliary linear connection in T™ is im principle distinct

from the linear connection in the bundle of linear fields which giv:s

\71, even when the latter derives from a single linear connection in

TM. It is also distinct irom a linear connection used to define normal

coordinates.

The operator ;1 extends to:

3
(x)

A R AR S ) W (o)

+ Bl o) . (5.4.3)

.r'qf is the Christoffel symbol for the limear counection determining
;i’ and Fki is the Christoffel symbol for the auxiliary linear con-

nection.
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The compatibility operator ﬁi extends to:

~ - - ~ d -~
B, - vik‘j - jme g W, (5.64.4)

1f T(m,o) is a tensor valued function which depends only on m,
i.e. a tensor field on M, then Bii and ;ii both equal ;ii’ the
ordinary covariant derivative with respect to the auxiliary linear con-
nection. The extended cperator satisfies

~2 o~ ~k -~
B, W (o) = R b1y (@ Wime) . (5-4.5)

3

R pij is the curvature of the auxiliary linear connection.

5.5, The action, source and a priori measure

In terms of linear fields at the constant m, the action and

external scurce are

S(m,o) = s(Em(a)) (5.5.1)

i(a,0) = HE (o)), (5.5.2)

satisfying the compatibility conditions

B3 = DA =0. (5.5.3)
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In a linear representation based on coordinates, € and # are

$(m,0) = gdx %T-l E‘

€m0 (x)) BPcri(x) BPcJ(x) (5.5.4)

2+€

fitm,e) = A §ax B @e) , (5.5.5)

vhere EU and h(x) are the metric and external field in coordinates

around m. The compatibility condition 5;! « 0 1s equivalent to
Dih(x) = 0, and D‘S = 0 1is equivalent to Dtgjk = 0.
The a priori measure d¢ is represented in terms of the linear

fields at m by

do (m,0) = E;dp (o) . (5.5.6}
It satisfies the compatibiliy condition
Bde =o0. (5.5.7)
1t can be written

do = do exp Jam,o) (5.5.8)

where do is the measure d¢ at the constant ¢ = m, and j(m,c’) is

the logarithmic jacobian at ¢ of the linear representatian Em.
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A spatially invariant a priori measure d¢ rtakes the form

1;[ dp(x), where dg(x) 1is the a priori volune element on M. Unhen the

linear representation is by means of a system of coorcinates, then
do = l;(ldc(x) {5.5.9)

Hmo) = AT de J(m,o(x)) - (5.5.10)

da(x) 1is the a priori volume element dg(x) at ¢(x) = m. j(m.c(x))
is the logarithmic jacobian of the coordinate map Em at lri(x).

do consists, for each m, oif a volume element on the linear

fields at m. Integration against do turns a real valued function

G(m,o) of the linear fields into a real valued function Sac ¢ on
M. The compatibility condition Biac = 0 1implies the integration by

parts formula

do DG = d ds © . (5.5.11)
1 1

do also integrates rensor valued functions of the linear fields, pro-

ducing tensor fields on M. The integration by parts formula is

§do 5, B = 5 (3o Hil. (5.5.12)
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S5.6. The pauge condition

This section and the aext are concerned with technical aspects of
the degenerate perturbation theory sssoclated with finite volume
infrared regularization of the low temperature expansion.

The minima of the action consict of the conatant fields ¢(x) = m.
The low temperature expansion of the integral over nonlinear fields is
calculated by integrating over the linear flelds at each constant. To
prevent overcounting, the integral over the linear fields cl(x) at
the constant ¢(x) = m must avoid the constaant linear field
Gi(x) - vi ¥ 0 which represents #(x) = m’. Integration over the non-
linear fields is replaced by constrained integration over the linear
fields:

~

5 d¢ G(g) =

S Sﬁa §(F(n,0)) det Fm,0) G(E (o)) (5.6.1)

where G(¢$) 1is any real valued function of the nonlinear fields,
;i(m,d) 1s a vector valued gauge function and F;(m,d) is a matrix
valued function to be determined. det F is a Fadeev-Popov determinant
which compensates for the distorting effect of the gauge condition. The
§- function in (5.6.1) 15 the natural point measure ar the zero in TmM

with values in the volume elements at m. A more explict notation would

be dom 8(F) where dom is an arbirrary volume element at = and §(F)
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is the standard 6- function on TmH defined with respect to dom' The
product dom 6(F) does unat depend on the choice of doa. The integra-

tion g over m in (5.6.1) is integration againat the volume element
m

left by B8(F).

The gauge condition is enforced by means of a multiplier Y, in

]

8(F) = de e.cp(iyjf’j) . (5.6.2)

dY 1is the natural volume element on T;H whose value is a volume ele-
ment on M. That is, for f a real valued function on T;H,
Sd)‘ £(Y) is a volume element on M at m.

To ensure that the gauge condition I’i(m,o‘) = 0 selects from the
collection of all linear fields near zero a faithful copy of the space
af all nonlipear fields near the constants, T’i must satisfy the nonde-

generacy condition:

det Bjii (2,0) ¥ O. (5.6.3)

The gauge function cught to respect th: spatial symmetry of the
model and, to simplify the power counting, should be local and zeroth

order in the linear field:

ooy = 1”@ ¢ ax m.or(ay . (5.504)
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A useful choice is

g, = 1729 de el . (5.6.5)

5.7. The Fadeev-Popov determinant

The strategy for finding Fi(m,a') is to fix an arbitrary coamstant

k!
m and to represent the linear fields at nearby comstants =" by the
linear fields at m, using the noanlinear parallel transport functions
E;}O Em' The auxiliary linear connection is used to tramsport vectors
in THM. For convenience of exposition, coordinates {mi} are used on
M. Only the firast order in (m’ - m) 1is of interest, so path depen-
dence of the auxiliary parallel tranc-.rt does not matter.

The vector valued gauge function I’i(m' ,0) becomes, for each n’,
a function on the linear fields at m with values in TmH. The a
priori measures do (w’ ,6), because of their compatibility, are ail

represented by deo (@,0)s For ¢ and w” both near m, equarion

(5.6.1) becomes

§ap sepy =

g gau (m,0) §(F(a’,0)) det Bo',0) G(E o) .  (5.7.1)
»

Since do (m,o) repregents dp 1in terws of the linear filelds at
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Capatpr = §io (o) c(Eo . (5.7.2)
Therefore the Fadeev-Popov determinant is determined by the condition

1 = S' §(P(n’,0)) det F(a’,0) . (5.7.2)
»

Since m is arbitrary and since ¢ participates in the integral

over fluctuations only if f’i(m.o) = 0, f;(m,o) need only satisfy

(5.7.2) on the gauge slice 'l;i(m.o) = 0. To first order in (" - w),
o) = e + @ -ml ij’i (m,0) « (5.7.4)
So det i‘(m,u’) is determined, on the gauge slice, by

1= ¢ 8 - o 5.5 (me) ) det Flm,a) . (5.7.5)

o 3
Therefore the correct Fadeev-Popov determinant is provided by

(z,0) = -D,F (mo) . (5.7.6)

When the linear representation is given by a system of coordiaates,

when 5 is determined by a linear conmnection in TM, when the
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auxiliary comnection is the same linear connection, and when the gauge
function is (5.6.5); then, using (5.3.3), (5.4.1) and (5.4.4) to calcu~
late (5.7.6),
F(m,o) = L€ ax Qma(x) . (5.7.7)

i‘(m,a) is well defined by (5.7.6) even off the gauge slices
I’i(m,c') = 0, but its definition depends on the choice of auxiliary
linear connection. On the gauge slices, however, the definition lepends
only on the linear repregentation of the fields, because when the auxi-
liary conditfon 7aries, the change in Bi}i' being licear in 1;. van-
ishes wherever P does.

The Fadeev-Popov determinant can be represented, for each m, as

an integral over a finite set of anticommuting ghosts variables:
. (5.7.8)

The ghost ¢ is in TmH, c* in T;M. A function of ¢ is an element
* x *
of the Grassmann algebra A (TmH); a function of ¢ 1is an element of
*
the Grassmann algebra A (TmH). A monomial in the ghosts comtaining ¢
r times and c* s times is said to have bidegree (r,s) and ghost
number r - 8 .
*
The volume element dc ~ dc integrates a function of the ghosts

to the trace of its component of highest bidegree. Explicitly, in terms
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of a basis {c:} for T;M and the dual basis {ci) for TmH. tem-

porarily abandoning the summation convention,

dc® ~ de = (dc’{»dcl) (dc;~dc2) .

(5.7.9)
* i * i
o] sdc1~dc (ci or ¢ or 1) {5.7.10)
* i 1
1 gdciadc '] . (5.7.11)

The volume element dc**dc is natural. It does no. involve an arbi-

*
trary choice of volume element on T‘lH or on TmH.

3.8. Redundancy equations and BRS invarience
When Infrared regularization {s provided by a constant external

field, the distribution of linear fields at m 1is

do exp( - §(m,) + H(m,o)] . (5.8.1)

The fact that this represents, for all m, the same distribution of

nonlinear fields is expressed in the compatibility equatioms:

siau =0 (5.8.2)

D.§ = 0 (5.8.3)
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D =« 0. (5.8.4)

The compatibility equations state that the vertices contained in the
Taylor series expansions of 3, § and F at m determine those con-

tained in the expansions for any m” infinitesmally close to m. Di

satisfies the integrability condition
D2 - 0. (5.8.5)

bhen finite volume infrared regularization is used, the distribu-

tion of linear fields and auxiliary variables is
dy dc*adc do exp [ - x(m,c,)’,c,c*) ) {5.8.6)

A(m,o,Y,c,c™) = S(m,0) - H(m,o)

<1y, P - JF

i *
.8.7
f j(m,O'J oy (5 )

e = - Ejpi (m,0) . (5.8.8)

i
3

An extension of (5.8.2-4) is sought which includes the multiplier
and ghost contributions to (5.8.7). After Becchi, Rouet and Stora(l9],
ic is expected that there is an equation of the form s(ﬂ) = 0, where

s 1s a first order operator which increases ghost number by one, which
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satisfies sz = 0, and which includes, in some sense, a term cif)

i

Formally, s 48 to be a vector field of ghost number one on the super-
manifold described by the variables (n,rr,)’,c.c*).

51 is extended to act on the multiplier and ghosts by means of the
auxiliary linear connection in T. In coordinates (mi) this amounts

to adding to expression (5.3.2) for ﬁi a term

The extended 51 satisfies
Bed - ﬁic; =5y =0 (5.8.10)
[131,%—)? - lsi'i—;] - tﬁi.i-f) =0 (5.8.11)
52 - Ry € c;:c—: + yp%Tq - c"h) ; (5.8.12)
c'B, aow makes sense, and
(e'Bp? - Lt (ij - 51;‘ By - (5.8.13)

The BRS operator 1s defined to be
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1= _ -]
5 e’ D, 1)’j "ot
3
lai 3 kd 124 * k13
+ ZTjkcc aci + ZRjkl cicc Si-ﬁj—)— (5.8.14)

where i and % are the curvature and torsinn of the auxiliary linear
connection.

It follows immediately from the Bianchi identities

- 2P =q - P
0 .:lc (R 19k + Tij '1‘k '1T_1k (5.8.15)
Jk
- &P 7T RP
0 Ale (vik ajk + Tij R qtk) (5.8.16)
ijk
that
52 =0 . (5.8.17)
Moreover,
~ 1- ~
s(S) = cDis = 0 (5.8.18)
stl) = <MBE o= 0 (5.8.19)

and
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T Hme ), (5.8.20)
80
8(A) = 0 . (5.8.21)
Also,
s(de) = O (5.8.22)
s(de*~de) = 0 (5.8.23)
s(dY) = 0. (5.8.24)

Pinally, an integration by parts formula which will be used below is

faoary s@ = 2 §acay &. {5.8.25)

3.9. Standard models

In this section, which 5s a continuation of section 4.8, M is a
homogeneous space G/H, and all structures are assumed G- invariant,
except the external source H. Because of the G- imwariarce, the dis-

tribution of fields need only be examined at a single point m in M.



The linear comnection in TS which determines v, and also ;1
i8 the canonical connection. The auxiliary linear coanection determin-

ing ¥, might be chosen the same, but, more generally,

1

o= -0 v“?:j-. (5.9.1)

[:ki is an H- invariant tensor at @ . On G- invariant functions of

the linear fields, ﬁi is the vector field

- P(me(x)) T . (5-9.2)
i ?!rh:}

The compatibility equations (5.8.2-3) become the nonlinear symmetries
[§, d0) = 0 (5.9.3)
Q.8 - o. (5.9.4)

The integrability condition (5.8.5) becomes, using (4.8.5), the commuta-

tion relation

3,81 = 10 P o9 & —— )
@, 41 = 10+ RP 0% Sy (5.9.5)

- 61 is extended to the auxiliary varilables by adding to it the

term {5.8.9). The comnmutation r=lation for the extended operator is,
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using (5.8.12),

@, 31 = TG+ ¥ e :,p(‘,
+ ipqij ( c; gzi + %7; s %:; ) . (5.9.6)
The BRS operator is
8 = cxai - 1yj -:—c—-
NS chki_c? s bR eleke! Bm,j) . (5.9.7)

All of (5.8.17-18,20,22-24) continue to hold. (5.8.19,21) become
- {1 - -~

6(H) = =-¢ [Qi' H) (5.9,.8)

a(R) = s(i) . (5.9.9)

Note that the canonical commection on a Lie group has ipijk = 0. s

(5.9.7) 1s then the original BRS transformation.(19]
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6. Renormalization

lor

.1. Generalities

From the point of view of of Wilson{7}, renormalization means elim-
inating from the distribution of fields of a model all fluctuations on
scales smaller than a cutoff distance I\-l. leaving an effective distri-
bution for the remaining degrees of freedom. The effective distribution
has the same properties as the original at distances much larger than
A

The most general distribution of fields, including all possible
short range interactions, is characterized by a point )\ in an infinite
dimensional space of parameters. Appropriate powers of A are used to
make A dimensionless. Each effective distribution is characterized by
an zifective parameter A(A). A 18 considered here to include a char-
acterization of the local sources conjugate to the fields of the model,
so that renormalization of the field is fmplied by renormalization of
A

The invariance of the long distance properties of the model under
simultaneous change of the cutoff A and the parameter A 1s expressed

in a differential equation for the partition functiom:
3 3
(AR + PAY ) 2AM) = 0. (6.1.1)

p - p(A) %- is is a vector field on the space of parameters, called
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the p- function. The renormalization group equation (6.1.1) states
that increasing the cutoff lemgth from A-l to et A-l while flowing
along the vector field - B for a “time" ¢t has no net effect on the
long distance properties of the model. The effective pazameter A(A)
corresponding to the cutoff distance /\-1 satisfies the ordinary dif-
ferential equation

P e W1 VI (6.1.2)

M-I
The vector field - f 1s the infiniteanal generator of the renormali-
zation group. The time t which indexes the action of the renormaliza-
tion group is the logarithmic change of the cutoff length A-l.

Flowing along =~ B in parameter space has the effect on long dis-
tance properties only of decreasing all dimensionless characteristic
lengths. That i1s, if r(A) 1is a dimensionless length in the model, so
that /\-lr(.\) is, for example, some correlation length, then it follows
from the renormalization group equation (6.1.1) that vhen A f£flows to
e-tp()\) and A 1s replaced by e_tA the length A-lr(,\) remains
unchanged. Therefore, the dimensionless length obeys
re”Poyy = et

The model shows critical behavior at values of A where some
characteristic le~zth F-l goes to infinity. The collection of such
values of the parameter forms the critical surface. The divergence of

the dimensionless length p-l/\ near the critical surface allows a
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scaling or continuum limit to be defined, in which p-l serves as the
fundamental unit of length, measured against which the cutoff length
disappears.

Critical behavior is associated with instability in the renormali-
zation group action (so called infrared instability). The renormaliza-
tion group leaves infinite lengths infinite, but sends finite dimension-
less lengths towards zero. Therefore two nearly identical values of the
parameter, one critical aand the other only near critical, go to entirely
different fates under the renormalization group. Such behavior charac-
terizes instabilicy.

The thermodynamic, or infinite distance, properties associated with
a value )\ of the parameter are determined by the ultimate fate of A
under the renormalization group. The abrupt change in this fate at the
critical surface indicates that the critical behavior is associated with
a phase transition.

The fact that infrared ipnstability in the renormalization group
implies critical behavior is most easily seen in the case of a fixed
point with nontrivial unstable manifold. (The unstable manifold of a
fixed point consists of the points in parameter space driven to the
fixed point by the renormalization group as t — - ®. The stable man-
ifold consists of the points driven to the fixed point as t = + m.)

A parameter A near the stable manifcld is driven by the renormal-
ization group into the vicinity of the fixed point and then away along a

trajectory which conveges towards the unstable manifold. Parauseters
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near the fixed point are almost left fixed by the renormalization group,
so the trajectory spends a long time there. As )\ approaches the
stable manifold, the trajectory approaches a limit which consiets of a
path lying in the stable manifold teminating at the fixed point followed
by a path in the unstable manifold leaving the fixed point. If AY s
some point on the outgoing part of the limiting trajectory, then, as A
approaches the stable manifuvld, the time it takes for the trajectory to
reach a neighborhood of Ar grows without bound. Assuming some nonzero
dimensionless length assoclated with Ar. the corresponding length
asgociated with A diverges at the stable manifold of the fixed point.
The stable manifold is therefore a critical surface.

The scaling or continuum limit of the model 18 characterized by a
space of renormalized parameters Ar- The cenormalized partition func~-
tion 2° 1is defined as a function of the renormalized parameter Ar

and of the macroscopic length scale p-l by

2 (pA") - Jam ZCAL X pAAD Y, (6.1.3)
—>D

in which the bare parameter )\ 1s given as a function of Ar and the

ratio of scales by inverting
2 - P (6.1.4)

The expressior on the cight in (6.1.4) describes the point in parameter



space reached by flowing from A along - f for a time log p_H\.

By the renormalization group equation (6.1.1), Z( A, A) 1is
independent of A, 1in its long distance properties, when A is given
by (6.1.4). Therefore the renormalized partition function as a funccion
of the renormalized parameter describes a continuum model. It follows
from (6.1.1-4) that the renormalized partition function satisfies the

renormalization group equation

2

125@a5H = o. (6.1.5)
Nl’

Ip% + pan

There remains the problem of describing the appropriate space of
definition of the renormalized parameter. The space of renormalized
parameters, as they are given in (6.1.4), is the same as the space of
bare parameters. But the remormalization group is, strictly speaking, a
semigroup, since there 1is no way to undo the elimination of degrees of
freedom. The definition of the continuum model (6.!.3) requires that
the renormalization group bc run backwards an infinite amount of time.
Pathological short distance behavior is to be feared unless the entire
backwards trajectory can be exhibited inside the space of bare parame-
ters. Therefore the renormalized parameter should lie in &n unstable
manifold associated with an infrared instability of the remormalizaction
group.

Equivalently, the continuum model should be defined by making the

bare parameter approach a critical surface within the space of bare
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parameters, rather than by allowing the bare parameter to follow an
arbitrary trajectory of the renormalization group backwards into unknown
territory.

Suppose A{s) a curve in parameter space such that A{0) 1lies on
the critical surface, t(8) being a dimensionless length assoclated
with A(s) which diverges at s = 0. The continuum limit is defined by
sending 8 — 0 with the cutoff A(s) = p r(s). By the renormalization
group equation (6.1.1), the same continuum limit is obtained from
A7 (s) = e-tp(l\(s)). N (8) = e-t/\(s), for any t << r(s). Letting
t o, as 8 = 0, brings A(s) to the unstable manifold. There-
fore, the directions of infrared stability in parameter space are
irrelevant te the continuum limic.

Recapitulating: the continuum or scaling limits of the model are
described by the unstable manifolds associated with infrared instability
of the renormalization group.

In perturbative field theory, the renormalization traces a reversed
course. First, the renormalized partition function is shown to be well
defined in the continuum limit as a function of the renormalized parame-
ter, when the bare parameter is made to depend appropriately on the
renormalized parameter and the vatio of scales. Renormalization group
equations then follow from the existence of the continuum limic.

The perturbative field theory is given order by order in an expan-
sion about a free field theory, that is, about a gaussian distribution

of fields. Power counting limits the space of possibly relevant
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parameters: paraueters describing nonrenormalizable vertices are ignor-
able. Power counting determines that the bare parameter ) can be
written as a function of a renormalized parameter ,\r and the ratio of
scales p-ll\ so that 2Z{ A, )), when expanded in ).r. has a sensible
limit order by order in AT as A > . To lowest order, ) 1is 2T
scaled by appropriate powers of p-ll\ 80 that the renormalized distri-
bution of fields is, at lowest order, independent of A. At higher
order, A consists of cutoff dependent counterterms (containing povers
of log phl/\) needed to cancel the primitive divergences in the Feynuman
diagrams of the perturbative expansion.

By power counting, the primitive divergences depend only on the
short distance properties of the model. Therefore the perturbation
theory can be made cutoff independent by means of counterterms which are
independent of the infrared regularization.

The space of renormalized parameters Ar wust be large enough to
contain all counterterms permitted by power counting, because the dis-
tinction between renormalized parameter and ccunterterm is arbitrary, up
to cutoff independent reapportionments between the two.

The continuum limit of the perturbation theory, which depends on p
and ).r, is defined by (6.1.3). Renormalization group equations follow
from the equivalence of cutoff and continuum theories at distances much
larger than the cutoff. Z(A, J) 1is independent of p, so differen-
tiating the expression on the left in (6.1.3) with respect to p, hold-

ing A and ) fixed, gives the renormalization group equation
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Lp ?g+ (7! —br 125@A5 - o, (6.1.6)
where
r a r
- . 1.7
POH = pEr A A (6.1.7)

More precisely, for t = log p-ll\, let l"lt be the map from renormal-

ized to bare parameter which provides the continuum limit:

Z@EATY = LmozoA D) . (6.1.8)
A0
Then
T, T 3 ~1 .
PRy = -yt veqy - (6.1.9
-1 3
= (), . (6.1.10)

Being dimensionless, the renormalization group coefficient pr

can depend on p and A only in the combination p-l/\. But, at each
order in ;\r. any tera in pr which diverges when p-ll\-im can be
isolated as a separate invariance of the model and discarded without
affecting the validity of the renormalization group equations. Thers-
fore the renormalization group coefficients are incdependent of u and

A in the lait p~A - o.
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For properties associated with distances much greater than A—l,
the bare partition function is governed by a renormalization group equa-

tion of the form (6.1.1), the P- function being

3
pAY = A A (6.1.11)
L
or, more precisely,
3 -1
pA)Y = (g MroM " . (6.1.12)

The above constructions depend on expansions which have a chance of
making sense only when both )\ and A are small. Bur A is given as
a power series in Ar with divergent coefficients. As the ratio of
scales increases, Ar and A must be confined to smaller and smaller
values. The perturbative renormalization group equations are at best
asymptotic expansions of the nonperturbative equations. They are useful
because the topological structure of a vector field such as the renor-
malization group generator, in the region of small values of the parane-
ter, 15 exhibited in its asymptotic expansion.

The topological properties of the renormalization group determine a
posteriori the length scales at which the perturbative analysis is
appropriate. When perturbation theory shows infrared instability in the
region of small values of the parameter, the perturbative analysis is

appropriate at short distances: it establishes the existence of the
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continuum limit and exhibits the short distance ( << p-l) scaling pro-
perties. When perturbation theory shows infrared stability, the pertur-
bative analysis can be used to find long distance properties ( >> P_l)'
but cannot pick out the remormalization group trajectory vhich leads

back to an infrared unstable fixed point, or even guarantee that such s

trajectory exists.

jon

-2. Power counting for the nonlinear models

The general program outlined in the previous section is now to be
adapted to the nonlinear models. Two complications arise: (1) the
degeneracy of the gaussian models at asymptotically small values of the
parameter, and (2) the existence of a group of equivalence :rmsform;-
tions on the parameters.

Thie section describes the constraints on perturbative renormaliza-
tion determined by power counting. The arguments are applicable to
models on Fuclidean 2 + € space for asymptotically small €, but for
convenience ouly the case € = 0 13 treated explicitly. Por « ¢ 0,
the essential point is that the significant cutoff dependence of the
Foynman diagrams consists of powers of 1log p-ll\ and that, in the dou-
ble expansion in T and <, the power of log P-ll\ vecurring ir each
term of the expansion is controlied by the combined power of T and <«
multiplying the term, which i3 therefore the appropriate aurder by which
to order the expansion.

The parameters of the nonlinear model are the metric coupling and
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the (spatially dependent) external fiele. The perturtative expansion is
in powers of the temperature. The model is to be renornalized by
expregsing the bai‘e metric and external field as a renormalized metric
and external field (acaled acccording to naive dimension) plus couater-
terms, so that the partition function (2.4.4), expanded in the renornal-
1zed temperature, is a cutoff independent function of the renormalizead
parameters. Renormalization of the external field 1s equivalent to
renormalization of its dual, the order parsmeter.

The apparatus of perturbative renormalization cannot, however, deal
directly with the nomnliiear model. The theorems which support power
counting arguments require a Feynman dlagram expansicn, which in turr is
derived from a functional integral over linear fields. Therefore the
perturbative renormalization must take place in the collection of dis-
tributions (3.1.6) or (3.2.8-9) of linear fields. It is necessary {irst
to renormalize the individual distributions of linear fields, and then,
as a separate matter, to show that the collection of renormalized dfs-
tributions of linear fields is equivalent to a single renormalized non-
linear model.

It might seem that infrared regularization by means of a coastant
external field - -%-T_l'no avolds the second 1issue by eliminating all
but one distribution of linear fields from cun:ideration. However, h0
is a soft operator whose effect is negligible at the short distances
which are of concern in the remormalization. ho should be considerea

a device by which one distribution of linear fields at a time is singled
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out for renormalization. Each distribution is renormalized in the pres-
ence of an apprzpriate external field. The issue of the compat*bility
of the resulting collection of rerormalized distributions remains.

The parameters of the distribution of linear fields at m, (3.1.5)
or (3.2.8-9), are the Taylor series coufficieats of Eij and h(x),
and, in (3.2.8-9), also the coefficients of Ei and E}.

series coefficlents of E. E. ], E and T are the couplings asso-

The Tavlor

ciated with the vertices of the Feynman diagram expansion. The loga-
rithoic jacchian ] of the coordinate map is not an independent parame-
ter, because the a priori volume element from which it derives is fixed
in association with the metric coupling. The variability of :1' is
absorbed in<o that c¢f he

The distribution of linear fields at m 1s remormalized by
expressing the bare vertices as (nalvely rescaled) renormalized vertices
plus courterterms, so that the functional integral (3.1.6) or (3.2.10)
at m 1is a cutoff independent function of the renormalized couplings.
The renormalized vertices take the most general form prescribed by power
counting for the counterterms.

Of the varfables in (3.2.8-9), only the field a‘(x) has short
distance fluctuations. Power ccunting reveals that the primitively
divergent diagrams involving © contain arbitrary numbers of the
dimensionless vertices from the expansion of §(m,c’). These are the
vertices containing two derivatives of ai(x). The rest of the ver—

tices of (3.2.8-9) contain no derivatives of o. They have length
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dimension - 2. By power counting, at wost one of thew can occur in a
primitively divergent Feynman diagram.

The diagrams contairning only vertices from 5 are quadratically
divergent. The primitive divergences of such diagrams consist of
integrals over space of two kinds of local expression in cl(x): poly-
nonials in cri(x) multiplied by /\2; and polynonials in a'i(x) mul -
tiplied by bPai(x) BPOJ(x). These have exactly the form of the ver-
tices occurring in the expsnsions of S and H. Since any number of
vertices from 3 can be present in these diagrams, the coefficients of
the primitive divergences are polynomials iun the Taylor series coeffi-

clents of the metric The order of the polynomials can grow

By
without bound as the number of loops inireases.

The remaining primitively divergent diagrams contain exactly one
vertex not Irom the expansion ~f §. and are logarithmically divergent.
A primitive divergence ¢f such a diagram is the integral over x uf a
polynomial in cr'i(x) multiplied by a coeffirient from the expansion ~¥
one of J(w,0(x)), him,a(x)?, 1)‘_15'1(m,o-(x)), or

J

~ *
c ff(m,o’(x))ci. These primitive divergences have exactiy the forum of

H, i)'jf’j, and cj;‘;'c:. The Taylor series coefficients of the wmetric

occur nonlinearly, while those of 3, fv, E, and f occur at most
linearly.
The power counting argument appropriate to f3.l.5) 1s identical to

the above, simply omitting mentiom of p and f.

The renormalized distribution of linear fields at wm therefore



takes

or

where

the same form as the bare oue:

ifo expl - Kr(n.o) ]

4y de*~de 3¢ expl - AT(ma,Yiche®) 1

ifo = gd‘o(x) expl - I (m,0) )
i (m,o) = pz* de ¥ (m,o(x))
Af(m,0) = §T(mo) - i%(m,o)

(@070, = (@) - @ (a,)

- 1y, lae - J (i‘)}(n.a; &

! E;j(n.a'(x)) BFcri(x) anj(x)

o=

§F(mo) = p© de

o) = p?'* G B0 @o0)

i
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(6.2.1)

(6.2.2)

(6.2.3"

(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)
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O ime = LY Cax Dot (6.2.9)

i

J(In.cr(x))- (6.2.10)

Filme = 1T Cax (1

The renormalized parameters at m consist of the coefficients of

the Taylor series expansions (in porers of v) of E;j (m,v},

i
3

renormalized parameter but is determined by the fixed relationship

f\r(x) (m,v), (Fr)!, and (Er) {m,»). 31’ is not an independent

between d'¢ and ir. Any discrepancy between the counterterms for
the 3 verticeg and 3: vecomes an inhomogeneous counterterm for h,

that is, a counterterm of the form of an external field, but not linear

in h.
Tre bare parameters for esach m are expressed in terms of the
ractio of scales p_l/\ and the renormalized parameters at m, S0 as to

give a well defined renormalized partitioon function

2w = lm  zZ(m, (6.2.11)
Ao

which depends only on g and the remormalized parameters at m.

For each constant n, at wu depends nonlinearly on E:j at

EU

m. h, p, and f at m depend nonlinearly on E:j at m and at

wost linearly on h°, p°, and £° at m (respectively).

Power counting alone puts no restrictions on the renormalized ver-

tices. Each term of each of the fnrmal power series E;j' ﬁt, Er,
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and ' at m 1s an independent parameter.

b.2. Renormalization of the compatibility conditions

The power counting arguments apply independently at each coanstant
m. But the bare parameters describing the various distributicves of
linear fields not indegendent. For exanple, the vertices contained in
E(m,:r) and ﬁ(m,o) for a given m deteruine thosz for any m’
infinitesmally close, because any small fluctuation around the constant
$(x) = @ is also a small fluctuation around ¢(x) = n°., To coo-
sistently describe a renormalized nonlinear model, the renormalized per-
turbative paraseters must contain an equivalent reduandaccy. That is,
the collection of renormalized distributious of linear fields (6.2.1) or
(6.2.2) must be the expression in some "renormalized" system of coordi-
nates of a renormalized distribution of noulinear fields of the form
(3.1.5) or (3.2.8-9). If this were n.t the case then the space of
parameters for the del would have grown enormously: from meirics and
external fields to independent Taylor series of metrics and external
fields at each point in M.

The redundancy in §, in B and in the a priori measure do is
expressed as an invarilance under a first order differemtial operator
51, described in section 5.2. When infrared regularization is provided
by a constant exte-:al field, the renormalization of the noanlinear

structure of the model follows from the remormalization of the invari-

ance of the collection of bare distributions of linear fields under Ei'
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For finite volume infrared regularization, the collection of bare dis-
tributions of linear fields (3.2.8~9) is invariant under a single
anticommuting transformatioe of the BRS type, described in section 5.8,
which connects distributions at different values of m. The renornali-
zation of the nonlinear rtructure follows from the renormalization of
the BRS invariance.

The line of argument 1s an elaboration cf that of (8-10]. an
effective action is defined for . .uch distribution of linear flelds as
the sum of one particle irreducible Feynman diagrams. The invariance
properties of the collection of distributions of linear fields are used
to obtain quadratic identiities on the collection of effective actions.
At lowest order these identitities state the original invarjance proper-
ties. The primitively divergent pleces of the efiective actions satisfy
the same quadratic identities. Therefore the renormalized distributions
of linear fields can also be made to satisfy the identities. The gqua-
dracic identities are solved to obtain the result that the renormalized
distribution of linear fileds is the expression of a renormalized dis-
tribution of nonlinear fields in terms of a renormalized system of coor-
dinates, and, for finite volume infrared regularization, of a renormal-
ized gauge function. The argument is presented in parallel for both
forms of infrared regularizaiton.

The sum of connected Feynman diagrams for the distribution (3.1l.5)

or (3.2.8-9) 1is generated by
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Wa,p) = log SEc expl = K(m,0) + (p,sigaa) ) (6.3.1)
or
il(m.p.p.c.c*) = log ng do (6.3.2)
expl - A(m,a,Y,e,c™) + tpyo) + 1Ypd ) .
Pi(x) is a local source conjugate to oi(x):
o) = A Cax pm ol . (6.3.3)

The auxiliary variables of (3.2.8-9) can be kept as parameters for pur-
poses of renormalization, because integration over them is finite dimen-
sional and cannot introduce additional divergences. They global objects
coupled only to the large distance fluctuations of the local field. But
it 1s counvenient to introduce a conjugate variable pj for the multt-
plier )’J and to integrate out YJ, in order to remove the zero models
from the integral over o. It i8 not convenient to integrate ¢ ut the
ghost variables, because of the trilinear and quadrilinear terms in the
BRS operator (5.8.14).

The effective action r‘. comprising the sum of one particle

irreducible diagrams, is given by the Legendre transforu of W:



105

Moy + W = @@ (6.3.4)

Mo + Wpp) = @o) + inP3 (5.3.5)

wvhere p and p in (6.3.4~5) are given by inverting

T = %i (6.3-6)
iy, -~ -, (6.3.7)
17 %)

In (6.3.5) the dependence on m, c, < 1s suppressed. Note thatr, for
finite volume regularization, W@ and I‘ transform as logarithms of
volume elements on M (see section 5.6).

The generating functiorns are calculated in a perturbative expansion

about t.e gaussian distribution
< 1 ..-1
Mootx) exp ( =A §ax 37 (6.3.8)

[ By 0 2 aldodd 4+ A Ry, 4y (@0 oty

Bor i

or
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< 1l .-l i
aY Mdox) exp { - A de 3T B0 ch apei (6.3.9)

+ oy L2 sdx G (0,00 + ij.k(n,u) Fixy ),

vhere ﬁo‘“(n,O) is the hessian of the constant external field and
Bj’k(m,o) is the first derivative of the gaug: function Ej(m,o(x)) at
Ui(x) = 0.

The consequences of the redundancy equations are derived first for
constant external field regularization. As in (5.3.3), the compatibil-

ity operator is written in terus of a linear connectiuvan in TH as

B, = ¥ - Qa0 :uJ(x) . (6.3.10)

The integration by parts formula (5.5.11) yields
61(;’) = (B tloexpl-5+E+ (o)) (6.3.11)
- -S'Ha Cexpl - § + i + (u,m) (6.3.12)

Sdz Qi(n,tr(x)) pj(x)

or

- ¥ W - io_d %
0 \ w PJ(X) (Qi' m) W. (6.3.13)
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1 3
The pairing (Qi' SKT;T) is defined as follows. The expression on
the right in (6.3.12) requires integration of power series in vl(x).
Such integrals are generated by differentiation with respect to the Tay-

lor series coefficients of h(x) occurring 1in H. 1f

k k
) = £ EvloovPRm, L (6.3.14)
n=0 " 1 n
and
k k
Caw = Fdvtooetqd, . (6.3.15)
n=0 1 n
then define
5 - d .
Q. 3 £ o), i Wy eeer (6-3.16)
n=0 1 n 1 n

d , 1
Pairings of SFT;T with other functions o7 o (x) are defined simi-
larly.
The Legendre transform of (6.3.13) is the quadratic identity

Pt = 0 (6.3.17)

vhere
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- - 3
5 = ¥, - (Q, -% y S¥—o. (6.3.18)
1 1 1 ® 7 33

At lowest order - gE?;T =1 80 (6.3.17-18) is then the original redun-
dancy equation.

The standard argument by induction in the order of perturbation
theory gives the guadratic identity on the renormalized distribution of

fields (6.2.1):

pFaT - 0o (6.3-19)

d

~r -~ r.j
D - v - Q) (e(x)) {6.3.20)
1 1 1 Baj(x)
@3y = @ -m—&'t ) (6.3.21)
! , =) 3

Power counting and Euclidean invariance give that (Qr)i(d(x)) is a
power series in ci(x), containing no derivatives of 01(1), with
coefficients independent of x. Therefore (6.3.19) implies the separate

identities

. (6.3.22)

=4
Sl
i
]
(=1}
]
mi
L}
Q

~r. 2

The operator (D )11. defined as in (4 2.5), satiefies, by (6.3.22),

(D ),, H = 0. (6.3.23)
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(]31')2l does not differentiate with respect to m, because 353 does
not; that is, (Br)ij acts independently on each space of linear
fields. But for each m individually, ir(n.d’) can be chosen arbi-
trarily. Therefore (6.3.23) implies the renormalized integrability conr-

dition
@92, - 0. (6.3.24)
Now defline

@, 2 (6.3.25)
»d

as a first order operator on functions on 7M. {(6.3.19-24) imply

T, 2 .

(D )11 Q {6.3.26}
o] A0 = 0 (6.3.27)
3 - (6.3,
o ], 0. (6.3.28)

It follows immediately, using the results of section 4.2, that Di

is the compatibility operator for a remormalized system of coordinates

r

E° on i, that E;j is the expression in that system of coordinates

of a metric g;j on M:
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Bljmv) = €08, (v, (6.3.29)

and that h'(x) 1s the exprssion in the renormalized coordinates of a

function ht(x):
By (myv) = b0 €L . (6.3.30)
The renormalized distributf{on of nonlinar fields, represented in

the renormalized coordinates by the collection of renormalized distribu-

tions of linear fields, is

T4 #(x) exp (=5 (H +H(P) ] (6.3.31)
-3

T - < ) 4 1 3

S = T fax ey R0 B (6.3.32)

i = et G " (s . (6.3.33)

T 1s

As discussed in section 4.2, the system of coordinates E
r

determined by D1

only up to transformations by diffeomorphisms ¥ of

M (mear the ideatity):

r

E - $o0fg . (6-3.34)

Therefore the renormalized metric gr apnd the renormalized external
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field hT(x) are only determzined up to tt.: transformations

sfL b0 -  #85, hmog . (6.3.35)

The relationship between F(x) and ©"(x) is, by power counting,

a linear one:

R = Z 0 EO0 o+ Ryta) . (6.3.36)
For each um, ih(n) is, to any finite order, a differeatial operator on
functions on ‘I“H and El(w) is a real valued function on ka. Both
depend on the cutoff and, nonlinearly, on Et. The renormalized conmpa-

tibility conditions imply

n(x) = z b o+ (6.3.37)

- x T

Im = E 7z (D), (6.3.38)
(6.3.39)

Zh is, to any finite order, a differential operater on real valued
functions on M and hl is a real valued function on M.

The inhomogeneour. term h1 in (6.3.34) takes the form
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-2-¢

by = byt TN R (6.3.40)

1,r

h1 ¢ 1s a finite contribution to the renormalized external field. h1 b
, :

contains the counterterms for whatever quadratic divergences appear,

given the choices dg‘(x) and d l_¢(x) of a priori volume elements.
g

The dependence of hl b ©° the cutoff is in the form of powers of
»

log p-l/\. hl is trivial for the standard models because there 1is no

nonconstant invariant function on a homogeneous space M.

To lowest o-.er,

-1 =1, =% -1 .r o
Tgy = @A LT "g)yy +0(TD) ] (6.3.41)
and
z, = @AY f1eoa™ ) .

The counterterms of order T° 1in (6.3.41-2) are nonlinear in T-lgr
and depend on the cutoff through powers of log p-ll\.

Loop counting constrains in the usual fashion the powers of T,
log p-l/\, snd € occurring in the counterterms. As the number of
loops increases, more of the vertices play a role in the primitive
divergences, so the primitive diverge.ces come to depend on more and

more derivatives (in M) of the paraw-.‘ers.

For finite volume regularization, the argument pruceeds in
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esgentially the same fashion. ‘he integratioa by parts formula (5.8.25)
and {nduction on the order of the perturbative expansion give the qua-

dratic identity on the renormalized vertices

s*(A") = o0 (6.3.43)

where s° is identical to s (5.8.14) cxcept that D

r
A (6.3.20)
takes the place of 51. There is also a linear identity
d <r ~r
m—) A = ~ (P) (6.3.44)
3
~T
@y - @, b: )
-2-« -1 A"
- v gdx & $E - (6.3.45)

(sr)2 acts independently at each m, and (sr)z(zr) = 0, so
(s") - 0. (6+3.46)
From (6.3.43-46) it follows that

= 8T - #i' + sT¢ c; 353 (6.3.47)

with
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§° = pH° = (B35 - 0. (6.3.48)

Therefore the renormalized discr!bution of linear filelds (6.2.2) 1s the
expression of a renormalized distribuiion of nonlinear fields (6.3.31-
33) in terms of a renormalized system of coordinates g and a renor-
malized gauge funciton P'. From this point the argument is exactly as

ln the case of constant external fleld infrared regularization.

é,ﬁ. Renormalization gproup equstions

The equivalence between bare and renormalized descriptions of the
distribution of nonlinear fields is used to derive renormalization group
equations. The renormalized partition function 1s givenm by

iy, gij, ') = lim ZA, . h) . (6.4.1)

A=>o Bij

where the full dependence of 2 and z' on parameters has heen made
explicit. The limit is taken with the bazre parameters functioms of
t = log p-lA and of the r~-rmalized parsmeters:
r
g = glt,g) (6.4.2)

h = zh(:,g‘) T o+ hl(t,gr) . (6.4.3)

The freedom to change origins in the coordinate spaces defining the



115

linear fields gives the freedom to insert an arbitrary diffeomorphisu of
M 1in the transformation from renormalized to bare parameters.

The renormalization group equation for the bare partition function

[A -g/—\ + pa) %E + £ ¥() hix) + 8(g) )S——bh(x) 12 = 0. (6e4eb)

ple) = %T .8 (6.4.5)
/B
Yz) - (%T/ L&) g (6.4.6)
-3
3 5 )
5(g) = BT/gr hl - )'hl . (6.4.7)

The p- function, p = p(g) ?rs. is a vector field on the space of
Riemannian metrics on M. 7(3) is, for each metric coupling g, a
linear operator on real valued functions on M. 8(g) 1is, for each
metric g, a real valued function on M. The combination
Y(g) h(x) + 8(g) is an inhomogeneous linear vector fleld on the space
of external fields, which depends on the metric coupling. This pair of
vector fields, on metric couplings ~nd external fields. is (the negative
of) the generator of the remormalization group. It is the object which,
in the general discussion of the previous section, was called the p-

function.
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The inhomogeneous term in the renoraalization group equation for
the external field is an inconvenience which can be eliminated by an
appropriate choice of bare and renormalized a priori volune elements.

To see this, write h, = h +h

i Ir I,b* as in (6.3.40), and express ha,b

as a function of t = log p-l/\ and g. Then
Be) - (& + p@E - V@ ih (6.4.8)
& b—':_/8 pls b—3_/|: 8 i,b o

The arguement now goes by indvition in the order of perturbation theory.
The renormalization group coefficients are independ~nt of the cutoff.
div
Therefore, at each order, the most divergent part hl b of hl b(t,g)
. »

satisfies

{ pta g—g—“ - W 1agl - 0. (6.4.9)

But the lowest order contribution to the operator in brackets in (6.4.9)

is the naive scaling value -~ 2 of Y. implying that hi“': = 0.
»
Therefore hl b must be independent of t. As a function of g alone,
»

it csn be absorbed into the bare a priori volume element, th:reby elim-
inating the inhomogeneous coefficient from the renmormalization group
equation for the bare external field. An exactly parallel argument
shows that hl,r can be abasorbed into the renormalized a priori volume

element, eliminating the inhomogeneoua coefficient froo the remormaliza-

tion group equation for the renormalized external ficld.
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Thus the renormalization group equation for the external field
identifies a unique choice of volume element, given perturbatively order
by order in T (and «), with respect to which the external field is
renormalized homogeneously. Homogeneous renormalization of the external
field 1igs the signal that the a priori volume element is chosen so that
setting h = 0 1in fact means the absence of an effective external
field. With respect to any other choice of volume elemeut, h = 0
leads to nonspontaueous ordering of the model. In the standard wmodels
this issue does not arise, because the distinguished, or neutral, volume
element 1s fixed completely by the internal symmetry.

The distinguished bare volume element depends on the form of ulta-
violet regularization. To lowest order, ir 1s the metric volume element

for In dimensional regularization there are no quadratic diver-

gij'
gences, so the distinguished volume element remainfs ths metric volume

element to all orders. On the lattice, however, a one loop calculation

gives the distinguished bare volume element

4, 80 = & ptx) expl 4—1;11 +o0a?) ) (6.4.10)
T T 'g

where dgp(x) is the metric volume element and R 1is the scalar curva-
ture of gij .
Henceforth it is assumed that the a priori volume elements are

fixed at their respective neutral values. The renormalization group

equations arc< then
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(/\?ﬁ + p(g)%; + Y@ h(xagh—(ﬂx z = 0. (6.4.11)
3 ) * d

AR + @ - Y(g) B(x) m] fF=o0. (6.4.12)
3 r, r. 3 ~r, r, .r 3 r

( + g = + YH ' 1 28 - 0. (6.4.13)

= P %" ' (x)

[p% e e Gt o d 17 = 0.  (6.6.14)

.Y ¥ (x)

The renormalized order parameter Er(x) is the conjugate variable to

the renormalized extermal field, and is related to the bare order

farameter by

Er(x) - (P-IA) 2+€

z; g , (6.4.15)
so § = § + O(T). The renormalized free emerg; [‘r(p,g,ﬁ) is the
legendre transform of log Zr, as in (2.4.7-8).

The coefficients of the renormalization group equations are given

by

B ¥n = (g—tl'!t y ot (6.4.16)
% ¥ u)y = @, o%—;nt , (6.4.17)

where
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0 (z"h") = (gh) . (6.4.13)
More concretely,
)
ple) = 37 . ¢ (6.4.19)
/8
Vo - (2 yoz! (6.4.20
& S;,Er zh zh +4-20)
T, r dg -1
pte) = &0 ps) (6.4.21)
3
N -1
Y = 2o (%E - p'(g')%) z, (6.4.22)
Y = (2+e)+ 7 (6.4.23)
¥ = 2+e+ ¥ (6.4.24)

Y(g) and )’r(gr) are linear aperators on real valued functions on M,
* r r.x
Y(g) and Y (g') are the adjoint operators on measures on M. The
former annihilate constant functions on M; their adjoints generate
semigroups which preserve probabilicy.
The effective parameters satisfy the renormalization group equa-

tions
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>

L

o
]

g = - p@a (6.2.25)

1
—
|0’

h(x) = = ¥(g) h(x) (6.2.26)

%

(|
L
I:r

= B0 = V" B 16.2.27)
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-1

-
Ior
[ -]
)

&
L

- pfgh (6.4.28)

-1 Ri(x) = - ¥(gH n'm (6.4.29)

-1
_?W
i

TIgEF® - FEH (6.4.30)

-

_?W

Recall that flowing along ( - f, - y h) 1is equivalent to decreasing
all dimensionless lengths: dimensionful lengths remain constant while
the unit of length Al increases.

The ambiguity in the relatiomnship between bare and renormalized
parameters, due to the freedom to choose arbitrarily the origins of the
coordinate spaces, implies that the renormalization group coefficients

are only defined up to infinitesmal diffeomorphisms:

Bla), Y& - P(a) - tv(g)al, ¥(g) - w(a) (6+4.31)

vhere v(g) 1is a vector field on M, and {v, g] 1is the Lie bracket,
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(with singularities) over the equivalence classes R of metrics. The
equivalence class_s of metrics and local order parameters form a coanical

sub-bundle of the dual bundle.

2.5. The order parameter

The essential property of the order paraneter {s its averag:abil-
ity. The renormalization group acts by averaging the variables of the
model over small regions in space (and by an oversll rescaling of dis-
tances). Points in a manifold M can only be averaged 1f M s uabed-
ded in a space in which convex combination makes senwsc !Iur example, a
vector space), and then the average of points in M will in general not
remain in M. There are ma:.y embeddings of s given msaifold M 1n a
finite dimensional vector space, but none which is natural. Any such
embedding involves arbitrary choices obscuring the character of the non-
linear model, which depends only on the intrinsic structure of the
abstract manifold M. The ouly natural embedding is the one which
places M 1inside the space of all unir measures on M {itself, sending
each point in M to the corresponding point measure. The order parame-
ter then varies over all possible averages of point measures, which is
to say over all the probability measurec on M.

In a standard model (M the homogeneons space G/H) this picture
can be considerably slmplified. The internal symmetry group G acts oan
¥, 80 acts by linear transformatione on the real valued functions on

M. Let V be a finite dimensional subrepresentation which separates
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infrared regularization. Only the infinitesmal diffeomorphisas are
treated, although it should be possible to extend the arguments to deal
with the full group of diffeomorphisms. The discussion is carried only
to the point of identification of the finite dimensional cohomology
spaces containing the potential obstructions to renormalizability.

In the case M compact, the problem divides into two stages. The
first question 18 whether models which are equivalent under an infini-
tesmal diffeomorphism of M go to renormalized models which are also
equivalent under some diffeomorphism of M. A negative answer clearly
indicates some sBort of pathology in the renoraslization of the model.
Given an affirmative answer to the first question, the second one
arises: 18 it possible, by some finite modification of the renormaliza-
tion procedure, to mske the renormalizatiom covariant? A covariant
renormalization is one for models which are equivalent under a dif~
feomorphism of M are renormalized to modelsa which are equivalent under
tne same diffeomorphism of M. That is, a covariant renormaltzation is
one which commutes with the diffeomorphism group of M.

The renormalization of the equivalence relations is described by
means of a set of quadratic identi:{cs on the renormalized action. Sup-
pose v1 to be an infinitesmal diffeomorphism of M, 1.e. a vector

1

field on M. Let ¥V be its expression in coordinates around m.

Then, for W defined by (6.3.1),

¢ v, gl %E + (v, h(x) gh—(;)- y e (6.5.1)
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¥ (x)
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¢ v, g}%; + v, h(x)lgri‘—)) u

1 AW
- - (v .m) Pi(” .
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(6.5.2)

The Legendre transform of (6.5.2) implies the transformation law for the

renormalized action:

{ (v, gl %—8- + (v, h(x)] gsz—) } AT

- GHlmetn) 2 n Iy
do " (x)

vhere
1 W

e = G, R

(6.5.3) 18 equivalent to

~T
[v,gl §§~ - w, g%

and

(6.5.1)

(6.5.4)

(6.5.5)



g 4 T
tv, g} %E— + v, h(x)] %E?i;l (6.5.6)

- (5w - W(w, &)

where v (m) = (;r)i(m,v)a—{ and U (m) {is an arbitrary power

series Infinitesmal isometry of Er at m, which r.an freely be sub-
tracted from v (m) because it has no effect on (£.5.3}:

(6.5.4) is rewritten, using (6.3.29),

T
tv, gl gg— = i@, gh 6.5.7)
where
Vim = (BN, { G, - Iv, g) = EF ) (6.5.8)
o) & ! 21 R S A .5,

The vector fieli <~ has been renormalized to a zollection of power
serfes vector fields vr(m) at the points m in M, defined up to
addition of power series infinitesmal 1isometries ur(m) of gr at m.
The 1ssue now is whether there is some choice of u'(m) which
makes the vr(m) the power series expansions of a single vector field

vl on M. Differentiating (6.5.7) with respect to m gives

[divr(m), gl = 0, (6.5.9)
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s0 div'(m) 13 a closed one form on M with values in the power series
infinitesmal isometries of gr.

If there exists a field u (m) of power serles infinitesmal
isometries such that divr(u) - diur(-), then v° = vr;n) - u'(m s
independent of a, so is a well~defined vector field on M. The obstruc-
tion, 1f any exists, to finding ur(m) is a cohonology class in the
first cohomology of M with coefficients in the power series infini-
tesmal {isometries of gr.

if there 18 no obstruction, chen {6.5.7), and (6.5.6) rewritten

using (6.3.30), become

T
lv, g) %ﬁ“— - v, 8" (6.5.10)

r r

tv, slgé‘— + v, h]%{l‘— = v, n

. (6.5.11)

(6.5.10-11) state chat bare parameter:: equivalent under an infinitesmal
diffeomorphism v go to renormalized parumeters equivalent by an infin-
itesmal diffeomorphism v', Therefore the obstructions to renormaliza-
tion of the equivalence relatiors lie in the first cohomology of M
with coefficients in the power series Infinitesmal isometries of the
metric gr.

When the fundamental group "l(H) of M 1s finice, f.e. when the

simply connected covering space of M 1s compact, then this cohomology

space is zero. ur(m) is constructed on the covering space by
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integration of divr(m). It is then projected down to M by averaging
over the fundamental group.

It will be noted in Part II chat all known infrared unstable fixed
puints of the renormaljzation group equations have "l (M) finite, bdut
that there are infrared stable fixed points for which the cohomology
space of possible obstructions to renormalizability of the equivalence
relations 18 nontrivial.

Assuning that the equivalence relations are renormalizable (for
example, 1f "1(H) is finite), there remains the issue of the renormal-
{zability of the group theoretic structure of the equivalence transfor-
mations. The transformation properties are renormalized if, for all

infinitesmal diffeomorphisms v,

I'e
[v, gl %g— - v, g7 (6.5.12)
r r
tv, &) ?,%— + [v, hl g%— - v, b1 . (6.5.13)

This is discussed in terms of the renormalization group equations. From

(6.5.10-11), the renormalization group coefficients satisfy
d .
v, pl [v, g) H = [T(v), 8" (6.5.14)

v, 1 - (v, gl fgl - T(V) (6.5.15)
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wvhere T 18 1 linear transforwation, depending on g, from vector
fields to vector fields. The renormalization is covariant if T = Q.
As discussed 1in section 6.3, the renormalization group coefficients

are only defined up ~o modification of the form
CPG, Y@ ) = ( ple) - [wg), g], ¥g) - wlg) ), (6.5.16)

where, for each netric g, w{(g) 1is a vector field on M. The problem
is to find w{g) so that the modification (6.5.16) eliminates T in
{6.5.14-15).

p lies in the tangent space Tgi to tne space of metrics at g-.
The vertical subspace VEE conslsts of tangents kij of the foru
k = [w, g]. Tgi splits, in D~ invariant fashion, into the vertical
subepace and a horizontal subspace Hgi orthogonal in the inner product

on T ﬁ:
g~
(=]
(k, &) = gdgm gy gy (6.5.17)

where d:m is the metric volume element for g.

Standard eliiptic operator theory for compact manifolds gives a
smooth decomposition of P into horizontal acd vertical parts.[16]
The freedom to modify B as in (6.5.16) is used to discard the verti-
cal part. Now, since the hurizontal subspaces go iato each other under

diffebmorphisms of M, the expression on the left in (6.5.14) must be a
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horizoantal tangent vector. But the expression on the right is obviously
a vertical tangent vector. So both are zero. Thus, by a suitable g-
dependent transformation of M, the renormalization of tke metriec cou-
pling can alvays be made covariant. It alsc follows that, for all v,
T({v) i3 an Infinitesmal isometry of g.

The remaining problem is to make covariant the renormsalization of

the external field; that is, to find w(g) such that, for all v,
Vew = T(v) (6.5.18)
where Vv - w is defined by
vew = [v,w] - [v, g] %-‘-"- . (6.5.19}
8
From (6.5.13) follows the cocycle condition
vyt T(vz) - v

, s TOV) - TUv, v,)) = 0. (6.5.20)

If T(v) = 0 for all infinitesmal isometries v of g, then (6.5.20)
becomes the integrability condition for (6.5.1G). So the problem
reduces to solving (6.5.18) for v restricted to lie in i, the Lie

algebra of infinitesmal {sometries of g. For v in i,

vaew = [v,w , (6.5.21)
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so the obstruction, if it exists, 1s a cohomology class in the first
cohonology of the Lie algebra i with coefficients in its adjoint
representation.

Since M 1is compact, 1 is the Lie algebra of a compact group:
the direct sum of an abelian Lie algebra a and a semi-simple Lie alge-
bra k. A semi-simple Lie algebra has no nontrivial first cohomology
groups, so the cohomologically nontrivial T are all linear maps from
a to 1. The cocycle condition etates that, for v in a, T(v) must
comuute with all of i. Therefore the first cohomology space, which is
the space of possible obstructions to covariant renormalization of the
external fileld, is exactly a ® a*.

The case M a howmogeneous space G/H wust be handled somewhat

differently. The compact homogeneous spaces are subsumed in the previ-

ous case. So the techniques are directed at the nc pact homog s
spaces. It does not seem feasible to renormalize the metric everywhere
on M, because of the lack of control at infinity. In particular, the
elliptic operator theory used to obtain the covariance of the p- func-
tion is not available. An alternative is the usual treatment of the
standard models: fluctuations are examined only at one typical point
m, in M. The arguments are sketched.
The first problem is to show that the homogeneous space structure

is pregserved under renormalization. Tn place of the compatibility con-

ditions are the nonlinear symmetries described in section 5.9. These

give rise to quadratic identities on the renormalized distribution of
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linear fields. The solution of the identities 18 a distribution of
fields invariant under a deformation of the nonlinear representation of
g on the rrl(x).

The question becomes whether there is a nonlinear transfommation of
the field ci(x) which undoes the deformation of the representation of
g+ The deformation is described by a one~ cocycle on g with values in

thz pawver series vector fields on Tn Y. It is removed if it 1s cohomo-
o

logically trivial.

Note that h acts linearly omn Tm M, 80 the vector fields on
[»]

T M which represent h vanish at the origiz. The deformation of g
]

need not preserve this property, so gives & linear map T Irom h to
m. The cocycle condition on the deformation becomes a cocycle condition
on T, with respect .t.o the isotropy representation of h on @. It
can be shown that 1f T can be eliminated then the entire deformation
can be removed. Therefore the possible obstructions are cohomology
classes in the first cohomology of h with coefficients in m. It fol-

lows from the fact that h is the Lie algebra of a compact group H

that this cohomology space is g* ® o, where a 1s the abelian factor
in h and B is the aubspace of h- invariant vectors im m, i.e. the
&- invariant vector fields on M.

Assuming that the symmetry is preserved under renormalizationm, it
remains to renormalize the residual equivalence transformations EG

(see section 2.3). This part of the argument proceeds as in the compact

case. The first step 1s to attempt to renormalize the equivalence
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relations. The second is to use the geomeiry of the space ic of G-
invariant metrics to make $ covariant under the equivalence transfor-
mations, and then to attempt tv make the external field renormalization
alsc covariant.

The analogue of the local isometry obstruction to renormalization
of the equivalence relations 1s an obstruction in the first cohomology
class of n» the Lie algebra of _r_,c, with coefficients in the space
of all residual infinitesmal equivalences of G- invariant metrics (see
section 2.3).

The obstruction to covariant renormalization of the external field
turns out to be a cchomology class in the first cohomology ox B oo with
coefficients in its adjoint representation, vwhere Zoo is the subalge-

bra of m leaving the metric g invariant. Therefore the obstruction

is possible if and only 1if Do has a nontrivial abelian factor-
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7. Calculation

1.1. Rules for calculation

This section summarizes effective procedures for wmanifestly covari-
ant calculation to all orders in the renormalized low temperature expan-
sion, using the results and constructions of the previous sections. The
procedures are discussed in less than the full generality those results
and constructions allow; the more general procedures are left implicit.
Infrared regularization is assumed to be ty 2 constant external fietd or
by finite volume, but details are given mainly for the latter. Metric
norzal coordinates (section 4.7) are used for the general model and
canonical normal coordinates (section 4.8) for the standard models.
Details are given mainly for dimensional regularization with renormali-
zation by minimal subtraction.

The object is o calculate the renormalization group coefficients
and the renormalized partition fumction zf (6.4.1) order by order in
T as & function of the renormalized metric coupling 'l'.lg:J and the
renormalized external field h'(x). The functional integral (2.4.4) for
the partition function is rewritten in terms of the linear field
c-i(x). as in (3.1.6) for constant external field regularization or as
in (3.2.10) for finite volume regularization. Both requive choice of a
system of ccordinates. Finite volume regularization also requires

choice of a gauge function and an auxiliary linear connection in T™

(see aection 5.4).
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The bare metric coupling is written as the naivel- : ‘ed renor-

malized metric coupling plus counterterms:

A® T-lgij - p* 1! (gﬁ:) + oty (7.1.1)
(0) r
8 = 8y - (7.1.2)

Similarly, the bare external field is written as the naively rescaled
renormalized external field plus counterterms:

k+1) 1

A h - p™ P+ 0a (7.1.3)

% = 1w . (7.1.4)

The central problem is to find the counterterms as functions of gr and
hT(x).

The a priori volume element is, to lowest order, the metric volume
element. Both bare and renormalized a priori volume elements are to bz
adjusted, if necessary, at each order in T to ensure that the external
fields are renormalized homogeneously (see section 6.4). Dimensional
regularization eliminates all quadratic divergences, 1.e. divergences
proportional to /\2“ vanish in the continuum limit for € < -2. So
the a priori volume element is not an issue; in fact it plays no role in

the calculationg. The external field is renormalized homogenecusly as
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long as no finite inhomogeneous counterterms are added to the external
field. Minimal subtraction, in particular, allows no finite counter-
terns at all.

For the general model the coordinates are taken to be metric normal
coordinates for the renormalized metric. For the standard models canou-
ical normal coordinates are used. The gauge function 1is, for simplicity
or calculation, (3.2.5,6). The auxiliary linear connection is the
Levi-Civita connection for the renormalized metric in the general case
and the canonical connection (sectiom 4.8) in the standard case.

The coordinates, gauge function and auxiliary connection are held
fixed as the low temperature expansion 1s renormalized. As a conse-

quence, the Fadeev-Pcpov matrix f;‘(m,o'(x)) {3ection 5.7) also stays

fixed. By (5.7.6), (5.3.3) and (5.4.2),

i

tlwow) - @

j (m,or(x)) (7.1.5)

where Q° 1is the matrix valued function defined in (4.3.9) and given in
normal coordinates by (4+5.6), (4.7.5) and (4.8.15).

As each order in perturbation theory for the functional integral
(3.1.6) or (3.2.10) over the linear field is renormalized. the system of
coordinates and, possibly, the gauge function also undergoes renormali-
zation (see section 6.4). But the renormalized compatibility conditions
{(section 6.4) guarantee that the collection of counterterms for (3.1.6)

or (3.2.10) can be reduced to counterterms for the functional integral



135

(2.4.4) over the nonlinear field, by using the renormali:«d system of
coordinates. A new set of counterterms for (3.1.6) or (3.2.10) can then
be constructed by returning to the original system of coordinates and
gauge function.

The couplings for the vertices of the Feynman diagram representa~-
tion of the functional integral (3.1.6) or (3.2.10) are provided by the
Taylor series expansions in coordinates of the renormalized metric plus
counterterms (7.1.1) and of the remormalized external field plus coun-
terterms (7-1.3), by the expansion of the logarithmic jacobian j(m,v)
(absent for dimensional regularization), and by the expansion of
E;(m,v) (in finite volume). Formulas (4.5.6), (4.6.4), (4.4.9) and
(4.6.10~11) give these expansions in terms of the expansion of one quan-
tity, the vielbein V;(m,v), which 1s calculated recursively using
(4.7.2) or (4.B.12).

The gauge function (3.2.5-6) produces an especially simple propaga-
tor for ai(x). From (6.3.9), th~ propagator is

My = 1 eH™HY

Go(x,y) (7.1.6)
where Go is the finite volume (real space) propagator for a scalar
field in which the constant fields have been projected out. The volume
element g do(x) restricted to the 2ero modes 1s the metric volune
element, 80 integracion over the multipliar Y using the metric volume
element for dY leaves the propagator (7.1.6) and gives Zr(m) equal

to the metric volume element dm times the Feynman diagram expansion
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generated by the action 5.

Since the techniques of calculation are all manifestly covariant,
it is only necessary to calculate at a single point = in an arbitrary
n- dimensional manifold M. The results of the calculation, which are
expressions in the curvature tensor and other covariant objects, are
immed fately transferable to all points in any n- dimensional manifold.
(It seems to oe the case that with normal coordinates the dimension =n
never appears explicitly in calculation, in partricular never appears
explicitly in the renormalization group coefficients.)

The calculation procedure 1s uow described recursively. z is

assumed known to order Tk. To order TO.

- gdm exp [ p2*€ gdx W (x) (@) ] - (7.1.7)
To calculate 2¥ to D(Tk) requires knowledge of gi;‘), h(kj(x) and
i 2k 4

the expansion of VJ(m,v) to O(v ). In order to calculate 2Z to

k+1
ofT ) using (3.1.6) or (3.2.10) ir is necessary to find V to

2k+2
o(v ), which is easily done using (4.7.2) or (4.8.12), and to find
the O(TkH) counterterus

8;‘,‘1 - gg“*” - g:;) (7.1.8)
¥ - 2D o a g . (7.1.9)
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The firat step 13 to calculate counterterms for the divergences in
the Feynman diagrams generated by the action (3.1.5) or (3.2.9) for the
linear field e. The metric and external field in coordinates are
written as the rescaled renormalizéd metric and external field plus

counterterms:

« -l « -1 , ~(k) k+1

AT By " P T (gij + o(T ) (7.1.10)

AR = a1 W+ 0t (7.1.11)
where E(k) and E(k)(x) are the expressiouns in coordinates of g(k)
and h(k)(x)-

Superficially it appears as if counterterms are needed at O(Tkﬂ)
for all of thz vertices given by the c¢xpansions of §(m,o’) and E_l(m,o')
in powers of o. But the renormalized compatibility condictions

(6.3.20~22) imply that only enough counterterms need be calculated to

determine g[kﬂ] and h(kﬂ](x)'. For this it is enough to calculate

counterterns for the two point vertex
~r i
ax &, @0 dotm aPa-Jm (7.1.12)
and the zero point vertex

gdx (%) (m,0) - (7.1.13)
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The counterterm for (7.1.12) is minus the part of the primitive
divergence in the one particle irreducible two point funciion of oitx)
which 18 quadratic in the external momentum. By the induction assump-
tion the divergences are O(Tkﬂ) relative to the lpwest order contri-
bution. With dimensional regularization there are no gquadratic diver—
gences, 8o on dimensional grounds the only divergence in the two point
function must be quadratic in the external momentum. The diagrams which
provide the primitive divergence have two external legs and contain only
vertices from the expansion of 8§ (section 6.3), s0 the coefficient of
the divergence i5 a symmetric tensor at m formed from the Taylor
series coefficlents of the metric coupling at m, which in turn are
formed from the metric, its curvature tensor and the covariant deriva-
tives of the curvature, all at @m. The corresponding countet:eria for
E:j(m,O) is written E;;O(m,o)

The counterterm for (7.1.12) is minus the primitive divergence 1in
the one particle irreducible zero point function. Again, by the induc-
tion assumption this is O(Tkﬂ). On dimensional’ grounds the primitive
divergence is proportional either to a Taylor serles coetficient of the
external field at m or to AZ*®. e latter does not occur with
dimensional regularization.

The diagrams which provide the part of the primitive divergence
proportional to the external field have no external legs and one vertex
from the expansion of ﬁ; the rest of the vertices are from the expan-

gion of 5. The coefficient of this part of the primitive divergence is
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a real number formed by contractimg a covariant derivative of hr(x) at
m with the metric coupling, its cirvature tensor and covariant deriva-
tives of the curvature, all at m.

The diagrams which give the quadratic primitive divergences have no
external legs and vertices all from the expansion of § except for at
most one from the expansion of the logarithmic jacobian J. The coeffi-
clent of this divergence is a real number formed from the metric, curva-
ture and covariant derivatives of the curvature at m.

The counterterm for Flr(x) (m,0) 1s written E<k>(x) (m,0). By
the above dfiscussion,

A0 @0 = E* ) @ ¢ BP@ . e

~<
z k> is a differential operator in cri(x) (independent of x) with

constant coefficients formed from the metric, its curvature tensor and

~<
the covariant derivaiives of the curvature at m. hlk)(m) is a real

number formed from the metric, curvature aud covariant derivatives of
curvature at m. With dimensional regularization 1t is absent.

By (4.4.9) and (4.6.3), the counterterms Ezk)(m,()) and

3
~<k> . [k]
h (x) (m,0) for the 1inear fields determine the counterterms gij {m)

[k]

and h (x) (m) for the nonlinear fields:

WM @ - 5w @ (. 1.15)
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and

~(k) ~<

(k+1) - P k> q
Bij (m) Q; (m,0) [g (m,0) + qu (m,0)] Qj(m,O) , (7.1.16)

where, by the renormalized compatibility condition (6.3.21),

C(@0 = (@ Pm@0 + ¥R @0 . (711D
So
g - 5 @0 + 2P0 ¢ @
+ g m 30D @ . (7.1.18)

3

Since the counterterms for the external field are linear in che

renormalized external field they can be written

W®x - z,fk) hT (x) (7.1.19)
z}(‘kﬂ) Zr(lk) + Zrllk] (7.1.20)
29 - (T.1.21)

Note that (7.1.19) differs from (6.3.37) in that here Zh does not
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contain the rescaling factor (P-IA)—Z“. Z,('U is a lipear differen-

tial operator, natural in the renormalized metric, of order at most 2k.

dnmogeneous renormalization, if necessary by adjustment of the a priori

volume element, has been assumeds By (7.1.14-15), erk] is given by
2 i = 3% R @0 - (7.1.22°

So, since the Taylor serles coefficients of a function in norwal coordi-

nates are the covariant derivatives, z'_llk] at m 1is _2_<k> at m with

covariant derivatives substituted for partial derivatives.

(k] [k] (

Once the counterterms g and h x) are known, the renormal-

Tk+l

ization group coefficients can be calculated to order (relative

to the lowest order contributions). For cutoff farms of ultraviolet
regularization the formulas were given in section 6.4. They are
presented here for dimensional regularization with wminimal subtraction.

The renormalization group coefficients give the change in gr and

(k) 244 h(k)(x)

hr(x) needed to keep F‘ g and p fixed when making an

infinitesmal logarithmic variation of p:

- - ss— “ 7.1.
P § ) 8 ( 23}

7( k)

(kyy-1 5 3 z;k) . (7.1.28)

RSO BN CNA R

The r- auperscripts have been suppressed because the renormalization of
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the bare parameters is of no interest.
The finiteness of the renormalization group coefficients at < = 0
implies that they are determined by the the simple poles in <« of the

counterterms:

(k) _ _ 2 (k1) _ (kD)
P <8 *t e3;e g (7.1.25)
Y . (7.1.26)
83 4 . ol
The residues of g‘*’, Zt(lk)- gl and ZtEk] are written g'<r 1),

IS UN N U

7 2

Once the renormalization group coefficients are known to O(TkH),
k+1
the full counterterms at O(T ) are determined by (7.1.23-24). (See,
for example, [20).) Therefore it is only necessary to find the primi-
tive divergences which are simple poles in € 1in order to find the
full set of counterterms. With these counterterms, the Feynman diagram

r

expansion of (3.1.6) or (3.2.10) gives the partitiom function Z fin-

ite to order Tk+1.

7.2. Renormalization group coefficients

This section summarizes the application of the procedures of 7.1 to
the calculation of the renormalization group coeftiicients in the two
loop approximation, using dimensional regularization and minimal sub-

traction. Metric normal coordinates define the linear fields. To
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eliminate factors of 2w, T 4is replaced by 2m T. The r~ super-
gcripts are suppressed.

The primitive divergences in one loop diagrams give

-1.<0> 1
T sij (m,0) = -E:Rij(m) (7.2.1)

P00 @0 = 1 e @ . (7.2.2)
The operator §<0> is therefore
~<0> 1 =-1.1j
z = 32T () bibj (7.2.3)
and
(0} 1 -1,1}
Zh - 1 4 2$'I‘ (g ) vivjh(x) (m) . (7.2.4)
Using the expansion (4.7.5) for Q;‘,
~<0> 1 o A . mLiip oS
z (Q)j(m,O) 3¢ T (g ) Rplm) . {7.2.5)
So, by (7.1.18},
S0 1
T sij - ‘Rij . (7.2.6)



144

By (7.1.25~26), the one loop renormalization group coefficients are

1 1

pij’(r'lg) - ety oy, (1.2.7)
Y(l)(T_lg) = - (2+€) - % Tvew, - (7.2.8)

In the next order it is easily seen that there are no simple poles
in the counterterms for (7.1.13), ao
1,1}

=0 (7.2.9)

{
ZI'l
and

#*U > w,0) (7.2.10)

1

g[ .ll(m)

where §<l'1>(m,0) is the residue of §<1>(m,0) at € = Q.
Calculation of the simple poles in the two loop Feynman diagrams

for the two poiat function gives

-l<l,1> 1,2 N

81.1 (m,0) = =<T (R + R

1par 1qpr (m) (7.2.11)

T R
Jpar

where contraction is with gij' The first Bianchi identity, (5.8.15)

with T =0, implies
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]
. ® ) - 7.2.12
1qpr “ipqr 2 Ripactipar ( )
Therefore .
-1 -<},1> 1.2
T ’ 0 = - i . 7.2.13
843 (m,0) z T Rqur ijqr (m) It )
By (7.2.10),
-t (L1 _ 1.2
T By 2T Ripar Rypgr ™ - (7.2.14)
From (7.2.9), {(7.2.14) and (7.1.25-20),
2y _ 1), L
Piy Pis" v 7T Rypar Byper (W ¢ (7.2.15)
ARSI A 7.2.16)

The two loop results are therefore (l.6,8).

Algebraic equations for the two loop p- function are obtained
frow (1.6) by expressing the metric curvature Rpijk in terms of the
wetric 81_1 and the canonical curvature and torsion, here written R
and ?, and given in (4.8.6-7).

P - RP =q q _
: . + THME + Moy M - Mol (7.2.17)
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where

- _L"i l -1.ip ~q ~q
Pjik 3T v 7 YT By Tp + g Typ) - (7.2.18)

Wen M 1is a locally symmetric space GfH, these equations reduce

to

-1 a 2, .-l
PT8) = (-e+3THe THT g, (7.2.19)
]
- n_+ 4 (dim A) (dim H - n)
€ 8 n (dim H - dim A} . (7.2.20)

a is +1 or ~! depending on whether G is compact or noncompact; n
is the dimension of M; and A 1is the abelian factor in H. For

M = 5" = 50(n+1)/50(n) this reproduces the result of [10].
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The Renormalization Group Equation
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l. Introduction

This 1s the second part of a study of the general nonlinear scalar
model near two dimensions. In the first part, the model was described
and its low temperature expansion renormalized. This part i5 an inves-
tigation of the topological properties of the renormalization group
equations near zero temperature.

The fields ¢(x) of the model are functions from 2 + ¢ dimen-
sional Euclidean space to a finite dimensional differentiable manifold
M. The coupling of the model is given by a (positive definite) Rieman-

nian metrie 81.1 on M. The action is the energy integral
1 -1 i 3
s - dx =T ) 3 . .
(» Gax 3 R SR (1.0

The Tenormalizatlon group is a one parameter group of transforma-
tions of the space Il_ of Riemannian metrics on M, which describes the
change in the effective coupling as the scale of distance im Euclidean
space igs increased. Findiug its orbit picture is the crucial first step
towards understanding the model. The large distance properties of the
model are determined by the the long time properties of the renormaliza-
tion group, the simplest of which are seen at attractive fixed points.
Critical behavior (and the possibility of defining a continuum limit) {is

assoclated with i{nstability in the long time properties, the simplest

forr of which 18 seen near fixed points with nontrivial unstable
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manifolds.
The infinitesmal form of the renormalization group is the reroramal-
ization group equation

d
3t By " T Pye (1.2)

where f§ is a vector field on _i_. called the @- function. The
tangent vector f(g) to the space of metrics at g is the symmetric

tensor field (g) on M.

Pij
p(T-lg) is calculated by techniques of perturbative quantum field
theory as an asymptotic expansion in the positive real number T,

called the temperature. Effective algorithms for calculation were

derived in Part 7. To the second nontrivial order, the result is

=] -1 1 2 2
p“(r g) = -<«T 844 + Rij + 3T Rij + o(TS) (1.3)
P h 1 - g%
R 15k is the curvature tensor of the metric gij’ Rtj R 13 is the
2
Ricci tensor, and R stands for R R .
* 13 1par jpqr

Results on the properties of the f- function can be interpreted
when <« = 0 and also in the fictitious regimz « = 0. The latter is
used as an approximation for the case <« = |, which cannot be studied
directly by perturbative techniques. The interesting properties of i
are thosc which depend smoothly on € and whose quantitative features

can be expanded as asymptotic series in <.
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p is, to all orders in T, a natural functiom of the metric, in

the sense that
BE,8) = ¥,p(2) (1.4)

for all diffeomorphisms ¥ of M. More concretely, p 1is, to every
finite order, a polynomial in the curvature tensor and its covariant
derivatives. It follows that the remormalization group preserves sym-
metry.

0Of special interest are the models in which M 1is a homogeneous
space G/E, H compact, and 31_1 lies in the space i(c of G-
invariant metrics on M. Since it preserves symmetry, the renormaliza-
tion group acts on BG'

The renormalization group commutes with the diffeomorphism group D
acting on i, s0 it acts on the space R = E/g of equivalence classes.

In fact, only the equivalence classes are meaningful in the physical

interpretation, so p is defined only up to replacements
B(g) — pla) - [v(g), g) » (1.5)

where v(g) 1s, for each metric g, a vector field on M <cefined up

to infinitesmal isometries (Killiug fields) of g, and sgatisfying

vi¥,g) = ¥,v(g) (1.6)
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(up to Killing fields) for all diffeomorphisms .
When M 18 a homogeneous space G/H, a natural analogue of D 1is

D the group of diffeomorphisms of M which commute with G. 26

b
acts on l:lc, the equivalence classes being BG' The vector fields
v(g) occurring in {l.5-6) are taken to be G- invariant, i.e. in the
Lie algebra of 2(." It 1s possible, at least when G 1is not semi-
simple, that there exist equivaleance relati-ns between G- invariant
metrics that are due to diffeomorphisms of M which are not in D.
This possibility is systematically ignored. In situations where it is
realized, the treatment here will be incomplete.

The result (l.3) was calculated using dimensional regularization
wit'. iinimal subtraction. There are other ways to calculate, none pre-
ferred. The p~ functions calculated by different techniques are
related by conjugations under transformations of E which commute with
D, 1in the absence of the obstructions discussed ir section 6.5 of Part
I. The properties of the renormalization group which are of interest
are the invariants under these transformations.

The manifold M 1is assumed to be compact and/or homogeneous. Gen~
eral statements below are implicitly qualified by this assumption. If
M is a noncompact hgmogeneous space, then it is assumed also to be uni-
wadular, meaning that all ipvariant vector fields on M preserve any
invariant volume element. Unimodularity must be assumed because almost
all of the description of P presented here requires for its justifi-

cation integration by parts on M. When M 1is coopact, the integral of
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a function f over M with respect to the metric volume element is
written gf. The integration by parts formula states that gv-iv1 = 1
for any vector field vi on M, where v1 is the covariant derivative
assoclated with the metric. When M is homogeneous, any invariant
function f on M must be constant. gf will mean simply the value
of f at any point. Unimodularity 1s exactly the coadition needed to
give the integration by parte formula S\viv1 = 0 for all invariant
vector fields.

The space R 1is described in [l]. A reference for basic differen-
tial geometry is [2}. Tensor analysis is done here in index notation.
For an explanation, see (3]. The aim of this presentation is to survey
the accessible general features of the problem as an aid ro further
exploration. The isaue of the existence of the renormalization group
flow is not dealt with. Details are for the most part left to the
reader.

The organization of Part II is as follows. Section 2 derives the
fixed point equations, dz=scribes the known solutions and begins the dis~
cussion of topological properties near fixed points in terms of the
linearization of P+ Section 3 examines the special case M a howmo-
geneous space; section 4 the special case M a twc dimensional mani-
fold. In both cases the f —function 1s shown to be a gradient. Sec-
tion 5 continues the discussion of the fixed points, based on Bochner

estimates foo the linearization of the B- function.
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2. Fixed Points (I)

2.1. The fixed point equation

The renormalization group equation is, following (l.4-5),

ac 8 = - B + [ v(g), ) (2.1.1)
where v(g) 1is an arbitrary vector field on M (satisfying (1l.53) ).
The fixed points of the renormalization group are (the equivalence
classes of) the metrics gij at which P is tangent to the orbit of

the diffeomorphism group:
¢ = - p& + {vig), g (2.1.2)

for some vector field wv(g) om M. The perturbative expansion (1.3)
for p(T-lg) can only be used rel.dably to locate fixed points at
T = 0.

A simple way to exhibit the amall T structure of the f~ func-
tion is to parametrize the general metric on M 1in the form T_lgij

where is a metric of some fixed total volume (or, in the noncom-

EU

pact homogeneous cade, of some fixed invariant volume element). The

renormalization group equation (2.1.1) becomes

%ET - -1 + (;R >T + <-—1‘R >T + O(Tl‘) (2.1.3)
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d 1
ac By T T T ( Rij “<gR>ey - v (), sli_1 ) (2.1.4)
2,12 ___1 .2 _ 3
-1 (3 R“ <soRg 2 By v, (g), gl1J )} + o(T)

2
where R Rkk is the scalar curvature, Rij stands for Riklmnjklm’

n 1s the dimension of M, v(T-lg) is expanded as
2
v (8) + T v (g) + O(T"), and < f > is defined as gf / gl, the

integrals taken with respect to the metric volume element for gij'

Of interest are the metrics left fixed by the renormalization group
vhen € = 0, and also those left fixed whea € = 0 which depend

asmoothly on < and approach <« =~ 0 fixed points as < -» 0. By

(2.13), the & = 0 fixed points are at T = 0. The metrics T-]'g at

T =0 form a part of the boundary of the space of all nondegenerate
metrics. Every metric at T = 0 1s a fixed point, but not all are lim-
its of renormalization group trajectories. At issue 1is the behavior of

the renormalization group flow near the T = 0 metrics.

If -:—%‘- wvere O0(T), then the orbitas of the renormalization group

would approach the T = 0 surface transversally at each gu, a0 that

each point on the T = 0 gurface would be a true fixed point. But when

% - O(TZ), as 1s the case in (2.[.3), the situation is quite dif--

ferent. This can be seen heuristically in an analogous equation in two

variables:

2

:—t (Tyx) = ( aT +O(T3), £(x)T + O(Tz) ) . (2.1.5)



155

The integral curves (T,x) of (2.1.5) are given for small T by

-1 d
log (T T,) = agx ?;17 (2.1-6)

48 T —» 0 (or becomes »>> To) % 1s driven eicher to infinity or to a
zero of f-

The true fixed points at T = 80 are the metrics at which
g—t- gij ~ O(TZ). They are the solutions of the nonlinear differential

equation

1
Rij -~ <nR >gij - [va, 8]1_1 0 (2.1.7)
for some vector field vor Explicitly excluded from consideration here
are fixed points "at ®," the analogues of T =0, x = in (2.1.5}).
(But see the example in section 3.3 below.) A fixed point at o 1s one
which lies on the boundary aof the T = 0 metrics.

A solution of the fixed point equation (2.1.7) which has <R> ¢ 0
can be seen to survive as a fixed point whatever the higher order

daT 3
corrections to the P~ function. But if <R> =0 then ac - o(T")
and the existence of a fixed point depends on the poasibility of elim-
2 d

inating the O(T") contribution te ac By in (2.1.4) by perturbing
the solution of (2.1.7) by an amount o{l), so that the O(T) term in
(2.1.4) cancels the O(Tz) term. This will be possible unless the

<R> = 0 solution of the fixed point eguation lies in a manifold of
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solutions, so that perturbing along the manifold has no effect on the
O(T) term in (2.1.4). 1In this case, the o(Tz) contribution ir
(2.1.4) projects onto the manifold of <R> = 0 eolutions to (2.1.7).
The vcnishing of the projection 1a ar auxiliary nonlinear equation which
nust be satisfied by the fixed point metric.

A certain amount is to be learned about this problem by exanining
the linearizacfon of the (- function at an <R> = 0 solutfon. In
particular, it is learned that >he manifold of solutions is finite
dimensional, so that the auxiliary fixed point equation is finite. The
linearization for <R> = 0 solutions is discussed in section 2.4 and
again Jn 5.2-3.

The <R> = 0 solutions face no more conditions beyond the auxili-
ary fixed point equations. If 4t were O(TI‘J then <R2 > would van-

dt kk

ish, implying flatness: 0. Flat metrics are uninteresting froo

Rgia =
the noint of view of perturbative renormalization and are henceforth
ignored.

The topological properties of the renormalization group flow near a
fixed point are examined in sections 2.4 and 5 using the linearization
of the pB- function. The behavior in the T- direction, however, can

be seen immediately inm (2.:.3). Near a solution of the fixed point

equation (2.1.7) the behavi.. of the temperature 1is deacribed qualita-

tively by
1 2
-<-T+<;R>T <R> ¥ 0
d
dtT = 12 3 (2.1.8)

-6T+<-2;R_kk>T <R> =0 .
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when <« = 0, %% vanishes at T = 0 to first or second order. This
is called aysmptotic freedom. It is ultraviolet asymptotic freedom when
<R> > 0 because at short distances ( t-# - @ ) the effective tem-
perature (slowly) approaches zeros. The T = 0 models are free (gaus-
slan) field theories. When <R> = 0 the approach to freedom is espe-
cially slow. The fixed points with <R> < 0 are asymptotically free in
the infrared, the effective temperature approaching zevo at long dis-
tances.

The <« ¥ 0 fixed points are exhibited also in (2.1.8). Besides
the T = 0 fixed points (whose infrared stability or instability is
determined by the sizn of <) there are fixed points: (1) at
T = 0(«), unstable in the T- direction, when <R> and € are posi-
tive; (2) at T = 0()«}), stable in the T~ direction, when <R> and

1/2), unstable in the T- direc-

%« are negative; and (3) at T = O(«
tion, when <« is pesitive and <R> = 0. For all three types of fixed
point, the existence of a nontrivial manifold of solutions of the fixed
point equation (Z.1.7) gives rise to auxiliary fixed polmt equations,
because the projection onto the solution set of the higher arder contri-
butions to the f- function are now O(Gk) inatead of O(Tk), T

asymptatically small, and have nontrivial effect as long as any degen~

eracy in the solution set remaina.
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2.2. Solutions of the fixed point equation

In this subsection are collected some general results om properties
of the solutions of the fixed point equation (2.1.7) and general
descriptions of the known examples. First, the fixed point equation is
rewritten so that the solutions are normalized by curvature instead of
volume:

R = ¢v, +9v, , a=ftl oro0. (2.2.1)

13 ~ @ Byy 173 T YyVy

then a ¥ 0, thz resulting normalization is < % R>=ga. Wen a=0,

<R> = 0 provides no normalization, so the additional assumption
<L g2 > - 1 4is made to normalize the metric.
7o Rik
The solutions to

R = 0 (2.2.2)

13 7 % By
are called Einstein metrics. They have long been of interest in
geometry and general relativity. (See, for example, [4-10}.) The solu-

tions to

- vV, + WV $ 0 (2.2.3)

Ryg = 2 By AT

might be called quasi-Einstein metrics. vl is determined only up to

addition of infiniteswal isometriea, or Killing fields, which are the
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wi satisfying '1"_1 + va1 - 0. v1 can be fixed by requiring

gvi wi = 0 for all Killing fields ui. It then follows immediately
i

that v is invariant under th. isometry group of gu.

A vector field w1 is a Kiliing fieid 1f and only 1€, for all vec-
i i
tor fields wu", including w itself,

1
0 = 3 S.(wiuJ + 'jui) ('1"3 + 'jvi)

i
gu (- \1ijw1 - R“\vr1 - vivj'j ) .

But vj"j = 0, 50 the Killing fields are exactly the solutions to

0 = -vow -R W (2.2.4)
Jii i3
which also satisfy 0 = v ui.
The next five propositions are concerned with the properties of a
quasi-Einstein metric, i.e. a metric 81.1 together with a vector field

vi satisfying (2.2.3).

Propogition 2.2.1.

\li satisfies (2.2.4) but vi\l1 -% (R - n) ¥ 0.

Propositic. 2.2.2.

The scalar curvature R 1is not constant.

Proposition 2.2.3.
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M is not homogeneous.

Proposition 2.2.4.

The constant a can only be +1 and the scalar curvature

satisfies R > 0.(10]

Proposition 2.2.5.

If R>n -2 then the first betti number vanishes

oo = 0).

A theorem of Myers[1l] gives the fundamental result on Einstein

metrics with a = 1:

Theorem 2.2.5.

If R = 0 then M {is compact.

11~ By

Since the universal covering space of M has the same local geometry as
M, it also is compact. Therefore the fundamental group nl(H) is fin~
ite.

Einstein metrics with a = 0 (Ricci-flat metrics) which have
\:o1 ¥ 0 are locally the product of a bl dimensional flat menifold and
an n - bl dimensional Ricci-flat manifold.[12] The metrics on the
factors can be scaled independently without loss of Ricci-flatness, so
there is always a degenerate solution set of the fixed point equatiom.
When the two loop term in the f-function is taken into consideration,

the ratio of the scales of the two factors is seen to diverge under the

rencrmalization group. This is an example in which the auxiliary fixed
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point equation has no solution. Therefore only the Ricci~flat metrics
with b1 = 0 are of interest. From equation (2.2.4) it is apparent
that on Buch manifolda all Killing fields are covariant constant, s0
give also harmonic one forms, so, since b1 =0, must be identically
zero.

The theorem of Cheeger—Gromell{l3} implies that, for a = 0 Ein-
stein manifolds, nl(H) is finite. Aleksevskii and Kimel-Feld[l4] have
shown that the only homogeneous a = 0 Einstein manifolds are the flat
ones-

Einstein metrics with a = -1 have no infinitesmal isometries,
because (2.2.4) cannot be solved. (Note that for M = G/H noncompact
homogeneous this is the statement that there are no G- invariant Kil-
ling filelds.)

1n summary, the types of fixed point wetric are, with references to
the known examples:

he (-) type Einstein metrics: R = 0.

e Binstein metrleet Ry By
These are noncompact homogeneous spaces or compact manifolds
without Killing fields. The corresponding fixed points are stable in
the T- direction (asymptotically free at long distances).
The known noncompact homogeneous examples are the symmetric spaces
of noncompact type (see [15]). The known compact examples are: (1) the

compact locally symmetric spaces of noncompact type (which are noncom-

pact symmetric spaces modulo discret: groups of isometries), and (2) the
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Kahler-Einstein metrics of Yau{l6,17]. The latter exist on all Kahler

manifolds with negative first Chern class.

The (0) type Einstein (Ricci-flat) metrics: Rij = 0.

The constraint bl = 0 1is imposed. M 1s compact without Killing
fields and is not homogeneous. The corresponding fixed points are
unstable in the T~ direction {(asymptotically free at short distances,
with an especially slow approach to the gaussian limit). If there is a
degenerate solution set, an auxiliary fixed point equation on the solu-
tion set must be solved.

The only known examples are the Kahler-Einstein metrics of

Yau[l6,17) on Kahler manifolds with vanishing first Chern class.

The (+) type Einstein metrics: Rij-gij =~ 0.

These are compact, with nl(M) finite. The corresponding fixed
poiats are unstable in the T=- direction (asymptotically free at short
distances).

Any compact homogeneous space G/H for which the isotropy action
of H 1s irreducible has, up to a scale, only one G- invariant sym-
metric tensor field, so 1S necessarily an Einstein manifold. These
spaces have been classified by Wolf[l18]. All but the noncompact sym-
metric spaces are of (+) type.

Many other homogeneous examples are known{19-22}. The first nomnho-

mogeneous example was found by Page(23]. A number of others are now
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known[24].

The quasi-Einstein metrics: Ri.'l - gij = vivj + v'Jvi $# 0

These are not homogeneous. R > 0 and is not constant. The

corresponding fixed points are unstable in the T- direction (asymptoti-
cally free at short distances).

No examples are known. (But see section 5.5 below.)

2.3. Llinearization of the p@- function at a fixed point

The aim here is to calculate enough derivatives of the f@i- func-
tion to establish, in the generic case, the existence of a true fixed
point and the topological character of the renormalization group action
nearby. In less favorable cases, the aim is to identify threats to the
existence of the fixed point and the additional information needed to
complete the portrait of the renormalization group action.

For the Einstein metrics, the renormalization group equations
(2.1.3=-4) are a suitable starting point. The metri~ coupling is written

T-l(gij + ki ) where is an Einstein metric (

3 By Tagy 0

Rij

and ki is a small perturbation {leaving the volume fixed). The stan-

]
dard formula for the derivative of the Ricci tensor with respect to the
metric givea[25-27)

-eT + atT? + b1 + o, Tk, 1% (2,4,1)

[-%
e}

o
o
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d 1 _ 1 *
d_{kij = T lep(k)lj ans (k)x

1.2 .
7 Ry ~ BBy ~ D0V

+ocr’, 14, 1%

where

A(k)ij = ~vvk - ZL(k):l

g Kk 13 3

Ly = Ry R

*
", = - (k )

1
577 Xk By
Dgw)ij = v, g]1J - '1"_1 + '_1"1

d

i
ds/s-O vo(g + 8 k) .

i
dvo( k) =

3

3

]

- Dg(dvo(k) )1
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(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

dvD should be chosen to be a convenient first order differential opera-

tor from symmetric tensor fields to vector fields, natural in

is a vector field on M, also natural in g.

dv (k) 1s -%Si(k), giving

1 2
=k, o= -ETAF(!:) - 1°5s

dt 1) ij

1 X3

v

1

The obvious choilce for

+ 0,

(2.4.8)
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1.2
Sy = 7Ry - bey T Dy (2.4.9)

A, 1is an elliptic operator with positive symbol. Therefore its

P

spectrun is discrete and, of its eigenvalues, ouly a finite number have
real part nonpositive., By construction, 1f k is of the form Dg(w),

then

1 *
iup“‘) - DgS (R, = (v, R ] = 0. (2.4.10)

3 13 7 By

Therefore A maps R.ange(Dg) to Hange(Dg). The k- directions in

P

Range(l]g) are tangent to the orbit of D, so are immaterial. (See

{1).) Also, k., = gij is an eigenvalue of /\, which is discarded

ij |3

because it represents a change of volume; it is a variation of gij in
the T- direction.

The space of symmetric two tensors Kk has a natural inner pro-

i)

duct
(k, k) = Skij ky (2.4.11)

with respect to which AP is essentially self-adjoint. Therefore all
of its elgenvalues are real. Also, the orthogonal complement

Range(Dg)-L to Range(Dg) is taken to itself by A The space of

.

glignificant k- directions is the complement to in Range(Dg)—L.

81_1

1f AP has no zero eigenvalues on the space of significant k-
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directions, then, by the inverse function theorem, the Einstein wetric
corresponds to a true fixed point, which at most changes position
slightly in response to higher order corrections. A neighborhood of the
fixed point can be represented as the product of a stable manifold and a
finite dimensional unstable manifold.

If Ap does aunihilate some significant kK then a more com-

i1°
plicated situation 1is possible. The nature of the complications depends

on the terms of order 'I'k2 in the IJ- function. The k on which

13
AP is zero might be tangents to a nontrivial manifold of solutions to
the fixed point equation, in which case the O(Tz) corrections are
capable of eliminating the fixed point entirely (or of sending it to
®). Wien < = 0, this is possible only for a = 0, but when <« ¥ 0,
it is possible for any of the values of a. (Although, when
< #0, a¥0, the fixed point is only eliminated by effects at 0Q(<).)
It is also possible that the null k- directions are not tangents to
curves of actual solutions of the fixed point equations. The terms in
(2.4.8) of higher than first order in k might not be eliminable by a
perturbation of the metric.
Answers to the followlng questions are to be sought in the lineari-~
zation of the p- function.
(1) Are there gignificant null vectors for AP?
(2) How many significant negative eigenvalues does AP have? That

is, how many additional directions of instability are there,

beyond possibly the T- direction?
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(3) What are the values of the :opological invariants of the fixed
point: the significant eigenvalues of AP and the invariants
of (2.4.1)7

The rest of this section lays groundwork for studying these questions.
Some more detailed information is assembled in section 6.
The following gives a standard decomposition of the space of sym-

metric tensor fields.

Proposition 2.4.6.

2
The space S of symmetric two tewrsor fields splits into

2
§ = (Range(Dg) + HC ) e Hop e (2.4.12)
where
HC - {f gij : f a function on M } (2.4.13)
HTT - { kij H kii =0, vjkij =0 ). (2.4.14)

HTT 1is clearly orthogonal to both Range(Dg) and HC' Use of .he Ein~

stein condition ylelds

Ap(f g“) = [ (-vww -2a)f) Bi; - (2.4.15)
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Therefore AP takes each of Range(i)g), H. and Ho ¢ty itself, and

can be studied independently on each of them.

It remains to check whether Range(Dg) and HC can jintersect.

Proposition 2.4.7.
Given the Einsrein condition, the intersection of Range(Dg)
and H, consists of the variations of the metric by infini-

c

tesmal conformal transformations

CRAS --nl}l-a) f o= 0} o(2.4.16)

P

ot |
¢ vyt ey

In particular, when a £ 0, the intersection is always

trivial.

Proposition 2.4.8.
For M a compact Einstein manifold, - vkvk - n%a, acting on

functions modulo constants, 1s nonnegative.

Proposition 2.4.9.

Zero eigenvalues of - M ﬁa, which correspond to con-

formal vector fields on M, are possible only when M is the

n

sphere 8§ with the standard metric.[28]

The significant gpectrum of AP can now be described as:


http://_2._4._9*

1)

(2)
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the spectrum of (- 'k'k - 2a) on functions, not including the

eigenvalue =~ 2a, which corresponds to the T- direction, or
the eigenvalye -~ % which corresponds to conformal transfor~
mations; and

the spectrum of AP on HTT' The unstable directions, besides
possibly T, correspond to negative eigenvalues of AP on

HT'I‘ and to eigeuvalues of the Laplacian on functions in the

range

-_— < -v9 < 2. {(2.4.17)

The one loop marginal directions correspond to zero eigenvalues
of AP an HTT and to the eigenvalue 2 of the Laplacilan on
functions. Some more detailed information on these spectra is

glven in section 5.

The foregoing discussion treated only the Einstein solutions to the

fixed point equation. The quasi-Einstein fixed points have, by

appropriate choice of vo(g) in (2.1.4), the linearization

d 1 2 2
at kiJ = -3 T A(k)ij + OT", Tk™) (2.4.18)
where

k
A(k)iJ - Ap(k)ij + 2 v (vikjk + vjkik - vkkij) (2.4.19)
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+ [ D (v) + D (v) ) .
g 4

ikkkj jkkki

The operator A 18 elliptic with positive symbol, 8o haa dis-rete
s. :«ctrum and only a finite number of finite dimensional eigenspaces on
which its real part is nonpositive. By comnstruction, it preserves
Range(Dg). The eigenspaces in Range(Dg) and the eigenspace propor-
tional to g‘j are discarded. Again, only a finite number of unstable
or one-loop marginal directions are possible. Note that A 1is not
necessarily a symmetr{c operator, 8o complex eigenvalues are possible.
B;cause no examples of quasi-Einstein manifolds are known, and because
the operator A {8 technically more complicated than [Sp, the linear~
izavion problem for quasi-Einstein fixed points is not discussed

further.
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3. Homogeneous Spaces

3.1. Introduction

The p- function (1.2) is a natural vector field on the space of
metrics, so the renormalization group which it generates preserves
isometries. In particular, it carries G- invariant metrics on the
homogeneous space M = G/H to G~ invariant metrics. In the first part
of this section it is shown that the p- function (1.2), restricted to
the space l_-l( of G- invariant metrics on the unimodular homogeneous
space G/H, 18 a gradient vector field, up to O(TZ) corrections. As
a consequence, the possibility of 1nterestinlg global topological struc-
ture in the renormalization group is severely limited. The second sub-
gection presents |3 explicitly for e simple example in which EG is a
two dimensional space.

Recall, from section 2.3 of Part I, that H 1s compact, that the

s.gebra g of G splits into the Lie algebra h of H and a com-
:1 wentary subspace m, that H acts linearly on w by conjugation,
.~3 that the G- invariant tensor fields on M are in one to one
zerrespondence with the H- invariant tensors on m. The representation
c: H on m reduces to a sum of k 1irreducible repregentations of
rultiplicities Ay ores e The space of G- invariant metrics on M 1is

k

~hn product

1
—
=

- X aee xRy (3.1.1)

s
5
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where B(l, is the noncompact manifold of positive symmetric forms on a

vector space of dimensfon n - E(, is therefore a real algebrale mani-

fold of dimension

dim(_RB ) = 151 Foln 4 1) . (3.1.2)

3-2. The - functfon as 8 gradient
The vector field  1s expressed as the gradient v§ of a poten-

tial tunction § on i((‘ with respect to a certain Riemannlan structure

an 5(, The p- function 1s meaningful only as a vector field on the

space BG of equivalence classes of G- invariant metrlcs under dif-

feomorphisus of M, so both potential function and Riemannian structure
should be invariant under the action of the diffeomorphisms on Ec.
Recall from section 1 that, in this context, diffeomorphiasms of M

means diffeomorphisms which commute with G.

A natural metric on R is

2q
(k,k)g - I|c1-1 I|c1-1 (3.2.1)
where k is a tangent vector to R, 1.e. an H- invariant symmetric

1] =G’

tensor on m. Contractions are taken with gij' Clearly this Rieman-

nian structure on EG is invariant under diffeomorphisms of M.
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The zero loop term = % g .. the expansion (1.2) of p(g) is the

gradient, with respect to the metric (3.2.1), of

§(g) = -2 « log (d m/d m) (3.2.2)
(] 8 o

wvhere dgm 15 the metric volume element for g, and dom is any fixed
G- invariant volume element on M. The ratio is a constant. Eo is
invarlant only under diffeomorphisms of M which preserve dnm. For

vnimodular spaces, this is all of D

U
The one loop term R“ in (1.2) is the gradient of
§1(g) = - R (3.2.3)

(See {21}.) The scalar curvature R 1is G- invariant, therefore con-
stant, so (3.2.3) makes sense. The derivative of the scalar curvature

R with respect to the metric is

d - - - . . 2.

vR(k) Rij kij vkvkk11 + vkv-kik (3.2.4)
The term - vkvkkii vanishes because k“ 1s G- invariant, so con-
stant, The term 'kvikik vanishes because of the unimodularity of M.
Therefore, R 1s the gradient of - R with respect to the metric

i3
(3.2.1).

The full two loop approximation to the - function, (1.2), 15 the
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gradient of a potential § = ;0 + il + iz, where

1
) = =R R 2.5
g, % Rijpq Miipg * (3.2.5)
with respect to a modified metric on EG
(k) | = 12 Ky Ry (3.2.6)
T 8
+ T (k R -k, ,k R _, +vk, vk ) + oTh
ip 1q 'Bq i} pq ipiq 173k i1k )
Explicitly,
-1 1 2 - -1
«T 845 + Rij + 21'11ij vg (T ") . (3.2.7)

This follows from a direct calculation using standard formulas for the
derivative of the curvature tensor with respect to the metric.
It is a trivial observation that

(48

d .
o ) = (g )

g

or

4 .y =
o Be) = - (%R VR, (3.2.8)
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implying that § must decrease along the orbits of the renormalization
group. It follows that the ounly subsets of EG left fixed by che
renormalizatiou group are the critical sets, where 55 - p = 0.

This observation is strictly useful only when T can be taken
small enough that the 0('1‘2) corrections are of no consequence. This
will be possible when the critical sets are isolated points; more pre-
cisely, where the zeros of the two loop approximation to f are iso-
lated. If the two loop fixed points are degenerate, then the renormali-
zation group shows gradient-like behavior except in an aysmptotically
small neighborhood of ¢ nontrivial critical set. Then higher order
terms in f come into play. When < = 0, the qualitative topological
properties of the renormalization group are not affected by the correc-

tions beyond two loops, so only gradient-like behavior is possible.

3.3. An example

The familiar nonlinear models all have M = G/H an isotropy
irreducible space. That is, H acts irreducibly on m, so0 that the
space ic of G- invariant merrics is one dimensional, described com-
pletely by the temperature. To obtain some idea of the possiblities
available in more complicated homogeneous models an example is examined
here in which l:i(’ is two dimensional.

M 1is taken to be the group manifold SO(N), but the s ametry

group is not assumed to be the full SO(N)XSO(N)} of left and right mul-

tiplication. G 1is taken to be SO(N)XS50(N-1) and H the diagonal
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SO(N~1) subgroup, m 1is the Lie algebra so(N), on vhich H acts by

conjugation. The representation of H on m decouposes into the stin-
N-1

dard representation on R and the adjoint representation on so(N~

1) A vector in m 1s presented as a pair (v,W) vhere v is in

Rl and W is in so(N-D).

f—{(; cunslats of the H- invariant inner products on m, which are

of the form

g(v,w, () = & w2+ Lot (3.2.1)
1 2

The metrics with ‘1'l - 1‘2 are the bi-invariant metrics on SO(N).

SO(N) should be seen here as a bundle over he quotient

SN_I = SO(N)/SO(N~1) with fibers the SO(N-1) cosets. The metric g

on SO(N) 1s a multiple TI" of the astandard metric on the

cosets combined in the natural way with a mulctiple T;l of the standard

SN-I

metric on SO(N-1). '1'l is the tempzrature governing fluctuations from

coset to coset; T2 i8 the temperature governing fluctuations within

each coset.

The metric (3.2.1) on BG is, in this case,

((kl.kz). (kl'kz))(Tx'Tz) (3.3.2)

2 1 -2 .2
+ 3 (N=2) '1'2 k2] .

- - -2
(N-1) [ T" k]
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(kl,kz) is an infinitesmal variaction of (Tl.'l'z). The scalar curvature

is
1 1l 1 -2 2
R = 3 (N=-1) (N-2) ['1'l + A (N-3) To - % TZ T, ] (3.3.3)
and
log (dgm/dom)
a -l f1eg T + L N-2) 1og T, ] (3.3.4)
2 1 2 2 * b
The one loop renormalization group equations are
d 1 2 1. -1
at 'l'1 - - Tl + 3 (N=2) Tl (1= 2 TZ Tl) (3.3.5)
a4 - 1.2 _ -2 .2
dcTZ -<-T2 + l.Tz(N3+T2 'll). (3-3.6)

To exhibit the topological structure it is convenlent to change vari-

ables to
-1

r = ?2—-;—,1.—- -lsrgl (3.3.7)

1
8 = 53 (T, +Ty) 0<s . (3.3.8)



The renormalization group equations become

Q.
"

Gt = " 8 Fl(r) (3.3.9)
ds 2

il €8 4+ 8 Fz(r) (3.3.10)

where

F() = 2r¢1-r) (-1 (3.3.11)
1 4 N-2 i
P ro i S . 1 - 1 -

':'z‘u‘} - E {1 + 13 i -1y {4+ 3r) + 7'- r {r ~ ﬁ) o (3.3.12)

The cases N >3 and N = 3 are qualitatively different. The
flow in (r,s) space is pictured, for N > 3, € > 0, in figure 1;
for N> 3, € =20, in figure 2; for N =, « >0, 1in figure 3;
and, for N=3, &« =0, in figure 4. The lines r = 0 describe the
SO(N)XSQ(N) invariant models.

First consider the case N > 3, & > 0. There are two low tem-
perature phases, governed by the stable gaussian fixed points at
r=0,8=0 and r =1, g =0, separated by a critical surface, which
is governed by the once unstable gaussian fixed point at

r= ;1%2_‘ 8 = 0. There are also critical surfaces governed by the

nongaussian fixed points at r =1, & = 4 S—_% < and r=0, s =8 <,

separated by the multi-crltical fixed point at
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There are also two phases in the region: Tl + 'I'2 immediately
above the critical surface. One phase is driven to the line r =0 at
long distances, the other to the line r = l. The nongaussian fixed
point at r = -i% 1s therefore a quadri-critical point.

The three low temperature phases are all characterized by a mani-
fold of pure equilibrium states equal to M 1itself. They differ in the
symnetry properties of the free energy governing the fluctuations about
these gtates. The line r = 0 1s the SO(N)XSO(N)/SO(N) model. The
line r =1 1is the SO(N-1)XSQ(N-1}/S0(¥-1) model, because the limit
Tl —> 0 freezes the field into one of the SO(N-l) cosets. As the
tempetature 1s increased along the line r = Q it is expected that the
system disorders coupletely at the critical point s =~ 8¢, the space
of equilibria becoming a single point. On the other hand, at the criti-
cal point on the line r = 1 the system should disorder only within one
coset, because the temperature Tl governing fluctuations among the
cosets remains zero. The space of equilibria above the critical point
ghould be the space of cosets, SN_]'- Betwveen this partially disordered
phase at v = 1 and the completely disordered phase at r = 0 there
should be a phase boundary ending at the quadri-critical point.

Note that no analogous partial disordering takes place at TZ -0
(i = =1). The curvature of the natural connection in the bundle
N-1

SO(N) = § does not permit the system to disorder among cosets while

remaining ordered within each coset. Sending T?. — 0, starting on the
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high temperature side of the critical surface in figure 1, in an attempt
to bring order within the cosets only, actually results in ordering che
system completely. There is no way for the system to spontaneously
choose, in a couzinuous fashion, on2 point in each coset.

In the case N >3, €« =0, pictured in figure 2, the critical
surfaces have collapsed to T = 0, only the high temperature phases
surviving .

The continuum limits of the model are described by the unstable
manifolds: the region 0 <r <1, 0 < s in figures ] and 2. The boun-
dary r = 0 1is the one parameter space of SO(N)XSO(N)/SO(N) models.
e Louadary § -~ ! i3 the vone pa:ameler space of
SO(N-1)X50(N-1)/SO(N~1) models, the rest of the degrees of freedom hav-
ing been frozen. In two dimensions (% = 0), the limit r -» 0 pro-
duces two length scales, one for the fluctuations within cosets and
another much larger one for the fluctuations between cosets.

when N = 3 the phase structure is simpler; there are only the
completely ordered and completely disordered phases. Note that, in two
dimensions, the line r = 1 1is the line of fixed points of the
S0(2)/{e) or XY- model. They are all renormalization group unstable
against unfreezing of the fluctuations among the S0(2) cosets in
S0(3).

The existence of r » 1 fixed points in figures l, 2 and 4 is sug-
gestive. These are "at o" in the language of section 2.l. They are on

a part of the boundary of the space of metrics which is not in the
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interior of the T = 0 surface. Here the interior of the T = 0 sur-
face is the region s = 0, =1 <r < 1. The boundary of the space of
metrics on a manifold M 4is a complicated object. It is not clear how
to investigate in general the behavior of the renormalization group in

the neighborhood of the boundary.
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4. Tuwo Dimensional Manifolds

M is assumed iun this section to be & compact two dimensional mani-

fold: The one loop @~ function for M is shown to be a gradient.
Two properties of two dimensional Riemannian manifolds are used.

First, the symmetries of the curvature tensor imply tha: it is entirely

made up of the scalar curvature:

1
R - = - 41
11pq 7R (81589 ~ BigByp ) (6 1)

1
Rij - 'Z-R gij . (4.2)

Second, every metric is conformal to a metric gij of constant scalar

curvature:

£ c
8y =~ ® gij . (4.3)

where € 1{s some real valued function on HM; aad R® the scalar cur-

vature of gc 18 constant. The scalar curvature of g 1is
R = ef(®+p°c, (6.4

where
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c (I
A - -, (4.5)
is the laplacian for gc.
The renormalization group equation, up to two loops, 1s
d -1 1 1.2 .2 -1 3
dt('r 3)13'("2TR’ 8'I.'R)'r g“+0(‘r))(4.6)

Therefore the two loop approximation to the fp- function is tangent to
t-he conformal class. There is no reason to suppose that this remains
true at higher order; terns like vin ij might well appear. However,
to exhibit the topological properties of the renormalization group, it
will only be necessary examine the one loop approximation. Then it does

make sense to discuss the action of the renormalization group on the

functions £, holding gc fixed:

R 103 (4.7)
BE = -« + 2w (4.8)
= -e + 2t (x4 1) (4.9)

The natural metric (2.3.11) on R induces a metric on the space

of functions f:

(B}
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ki), = Gan i (6+10)
wvhere k 1is a function on M, an infinitesmal variation of £, and

dgm is the metric volume element for g.

The zero loop term =~ « in B 1is the gradieat of
B0 = -« S'dgn 4-11)
c £
--‘Sdne (4.12)

wvhere d%n is the metric volume element for gc. The derivative of fo

is
dByky = -« gdsm K, (4.13)
so, ian the metric (4.10),

;50 = - (4.14)
The two loop term %R in P(f) 1s the gradient of
1 c c 1l .c
El(f)-igdmf(R + s ) . (6.15)

The derivative of El is
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1 c c c
g 00 = Egd. (r® + A" ey x (4.16)

so the gradient with respect to (4.11) is

%5, = %e-f(kc + A E)

(4.17)

]
e
]

The one loop renormalization group equation is, writing § = ;0 + !l'
af -
it - - b . (4.18)
It remains to show that the potentinl § 1s invariant under the
conformal group € of diffeomorphisms ¥ of M preserving the confor-
mal class of gc, These diffeomorphisms satisfy

¥, g:J = exp(ny) gij 4.19)

where, for each ¥ in g, h* is a real valued functiom on M. C

actu on the functions £ by
%, (efgjj) = exp(f,£) H,8], = exp( B, +h) 8, (4.20)

or
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¥£ = ¥ £ + h*. (4.21)
Clearly §0 is (- invariant, so the problem is to calculate

§l(i' £) for ¥ 1n C.

Proposition 4.1.
g6y = () + !l(h*).

Proposition 4.2.

p: ¥ - El(h'lf" is & representation of C in the additive

group of real numbers.

Proposition 4.3«

P vanishes on Eo’ the counected component of the identity

in C.

Theorem 4.4.

§l is C- invarlant.

Proposicions 4.1-2 are direct calculations. Proposition 4.3 follows
from the fact that the derivative of p at the identity is zero, by
direct calculation. Theorem 4.4 follows fvom proposition 4.3 and the
fact that, for compact two dimensional manifolds, g/go ie finit2
dimensional.

It has now been shown that the one loop f- function as a vector
field on each conformal ciess of metrics (modulo conformal transforma-

tions) is a gradient. This is not exactly to say that f 1s a
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gradient on the space of metrics (modulo diffeonotphisus), because the
gradient of § on the larger space of all metrics has & component which
changes the conformal class. Since the one loop f- function preserves
the conformal class its topological properties can be studied class by
class, so the result obtained is sufficient. It is not clear that an
improved result, giving f as a gradient on the space of all metrics,
is possible. This point and the nontriviality of the potcential function
® suggest that the p~ function or metrics (modulo diffeomorphisms)
for the general manifold M might well not be a gradient.

Attention is now directed towards the critical points of the poten-
tial §. These are the constant functions £, corresponding to the
constant curvature metrics themselves. The hessian of § at a critical
point is easily seen to be positive definite except in the f- direc-
tions produced hy infinitesmal conformal transformations. In the signi-
ficant f- directions, therefore, the fixed poiats are infrared stahle.
The remaining questions are: is the space of inequivalent constant cur-
vature metrics nontrivial; and, if so, how do higher order corrections
to P project onto it.

The two dimensional compact manifolds are: the sphere Jz. the
real projective space RPZ consisting of the sphere with antipodal
points identified, the torus TZ. the Klein bottle, and the surfaces of
genus greater than one. The sphere and the real projective space each
has exactly one constant (positive) curvature metric (up to overall

scale). The constant curvature metrics ow the torus and Klein bottle
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are all flat metrics. The manifolds of genus greater than one all pos-
sess manifolds of inequivalent constant (negative) curvature metrics.
These manifolds of metrics have dimension 6 g+ 3 c - 6, ‘\u_here g is
the genus (the number of handles) and c¢ is the number of .:.crosscaps in
M. ‘

The perturbative expansion of the @- function is formed entirely
from the curvature and its covariant derivatives. But for a constant
curvature metric gc there are no covariant derivatives. Therefore, to

all orders in T,

Pyt e = £m g 4.22)

It follows that no perturbative corrections can remove the degeneracy of
the fixed points for the manifolds of genus greater than one.

The metrics of constant negative curvature oo a given manifold M
are all locally, but not globally equivalent. They all have infinite,
nonabelian fundsmental groups. As discussed in section 6.5 of Part I,
perturbative renormalization cannot veliably distinguish among such
metrics. 1t is to be expected that nonperturbative effects enter gigni-

ficantly into the renormalization.



5. Fixed Points (II)

5.1. Introduction

This section is a miscellany of results on the fixed points
described in section 2, based on study of the linearization (2.4.8) of
the p- function. Except in section 5.6, only Einstein fixed points
are discussed. Some of the the results are to be found in [29,30], but
those on Kahler-Einstein metr’cs do not seem to be in the literature.

Two results are most notable. The first is that the linearized one
loop g- function at every known (=) type Einstein metric metric has
only nonnegative eigenvaluer. This implies infrared stability except
possibly in the finite number of one loop ma:rginal directions. The
second is that for every known (0) type Eins:ein metric there is, to one
loop, except for the infrared instability in the T~ direction, only
infrared stablity and marginality.

Section 5.2 presents basic estimates of the Bochner type for the
Laplacian -~ 'k'k on functions aand for AP on B,n for Einstein and
Kahler~Einstein metrics. The general strategy is to bound the differen-
tial operator AP from below by a manifestly nonnegative differential
operator piug a zeroth order, algebraic operator formed from the curva-
ture tensor of the metric. Bounds for this algebraic operator are then
obtained point by point on M, for the known (%) and (-) type Einstein
metrics. Section 5.3 discusses the one loop marginal directions (zero

modes of A for these metrics. Section 5.4 presents a number of

P)
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general facts and sample calculations for (+) type Einstein metrics.
Section 5.5 contains a number of coumments on quasi-Einstein metrics,

concentrating on the Kahler oumes.

5.2. Bochner estimates

The first proposition of this sec*lon estimates the Laplacian on
functions (modulo constants) for Elanstein-Kahler metrics. It improves
the Bochner estimate for Einstein metrics given in Propositions 2.4.8-9.

A Kahler-Einstein metric 1is one satisfying
- - 5.2.1
R a Sls 0 ( )

- 0. (5.2.2)

Proposition 5.2.1.

For 81_1 a Kahler-Cinstein manifold,
-vv, =- 2a > 0, (5.2.3)

on functions module constants. Equality is achieved only on

functions satisfying AAN f = 0.

The next four propositions estimate Aﬂ -3 H‘I‘l" the first for

Einstein metrics in general, the rest for Einstein-Kahler metrics. AP


http://R_.-ag.--0

191

is defined in (2.4.3-4), lin. in (2.6.14), L in (2.4.4).

Proposition 3.2.2.
For sij an Einstein metric, AF on “'rr satisfies

Dy 2 ~a - L (5.2.4)
P
with equality only for k:l satisfying = kqi -v kp‘; and

AP > 2a - 41 (5.2.5)

with equality only for kij satisfying

vk _ +vk +vk = D.

In the next three propositions g 13 a Kahler-Einstein metric

B.5" The space of real, traceless symmetric two tensors on M splits
into the real hermition traceless tensors
kab’ - kg - T;' kp = kg =0, kg =0 (5.2.6)
and the real anti-hermitian tensors
- 0. (5.2.7)

kab-kba-qﬁ' an-kSB

[\, preserves those subgpaces. Therefore, 1f k 18 an eigenvector of
p pa
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AP in HTT' then so are kaS and k.b' The vanishing of the diver-
gence of k 1is

v kaE + A kab = 0. {5.2.8)

Proposition 5.2.3.

If k 1is real, snti-hermitian and symmetric, but not neces-

sarlly divergence free, then

2 Svhkﬁ ¥z kea S SkIS ‘Ap k dab (3:2.9

with equality only for the kab satisfying 'akbc - 'bka.:'

The object is to find under what conditions AP has nounpositive
eigenvalues, sv attention is now restricted to the subspace ll;ro of
HTT on which AP is nonpositive. By the previcus propositicn, the
anti-hermitian part of a tensor field in H.;; must be divergence free.

-0
Therefore so aust be the hermitian part. HTT splits into H“ * “A
where HH consists of the hermitian, traceless divergence free temsor
A

fields in H,;? and H consists of the anti-hermitian divergence free

tensor f{rlds in }L;:. AP respects the splitting.

Proposition 5.2.4.

On traceless divergence free hermitian temsor fields, includ-

ing those in H’H'



AF 2 ~2a (5.2.10)
with equality ouly for kaB satisfying 'akbE - "okaE; ana

Ap 2 2a - 4L (5.2.1))

with equality only for kuB satisfying '-‘bE - - 'kaE'

Proposition 5.2.5.

On divergence free anti-hermitian tensor fields, including
those 1in HA.

Ap 20 (5.2.12)

with equality only for 'akbc - 'bkac'

A, 2 -2(a + L) (5.2.13)

with equality only for 'F’a = 0, and

b
A, > 6 (a - L) . (5.2.14)

p_

with equality only for vak.bc + vbk‘:B + 'ckab = 0.
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The Jochner estimates are ucw used to eliminate the possibility of
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rne loop infrared instability for the known (~) and (0) type Linstein
metrics. Propositions 2.4.8-9 imply that for these metrics the only
aignificant nonpositive eigenvalues of Aﬂ' if any, occur ian its
action on l{n-

Recall that, given the restriction to compact or homogencous
spaces, the only known (-) type Einstein mevrics are the locaily sym-
metric manifolds of noncompact type (which can be compact manifolds) and
the Kahler<Einetein metrics of Yau. The next two results, on the
lo:ally symmetric manifolds, can be found in {29]. The p- functiom
for Riemannian manifolds which are locally the product of Riemannian
manifolds is trivially determined from the @- functions for the fac-
tcrs, 50 it 1s assumed here that the Riemannian wanifold M is locally

irreducible.

Proposition 3.2.6.
For M & locally irreducible, iocally symmetric manifold (and
therefore necessarily Einstein with a = %1),

a <€ L < =~a if a = ~1 (5.2.15)

-a < L < a 1f a= 1. (5.2.16)

Theorem 5.2+7.

1f M 1s a compact manifold which is locally irreducible,
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locally symmetric of ..oncompact type (a = -1), and of dimen-

sior greater than two, then AF on HTT is positive.

A metric which is locally equivalent to an Einstein metric is obvi-
ously Einstein, so theorem 5.2.7 implies that the metrics to which it
refers have no locally equivalent metrics infinitesmally close. There-
fore the obstruction to renormalizabilicy of equivalence relacions dis-
cussed in section 6.5 of Part I cannot occur, even though nl(.‘i) is not
necessarily finite.

The remaining known (-} or (D) type Einstein metrics are Kahler.
The following result is an immediate comsequence of (5.2.10) aud

(5.2.17),

Theorem 5.2.8.

For M an Einstein-Kaller manifcid of (-~) or (9) type,
> .
AP 2 0 on Hy,

It will be shown below that, in the Einstein-Kahler cases, AP
does in general have zero modes in HTT' For a complete portrait of the
renormalizaion group action near a fixed point with one loop marginal-
ity (zero modes), a better than linear approximatizn to the one loop
p— function is needed, in addition to higher order corrections. The
next section will identify the zero modes, but the discussion will not
be carried further.

It is suggestive that the (-) type fixed points, which occur in

dimensions 2 + « < 2 =and which are the only known fixed points for
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which perturbative renormalization csnnot be relied on to renormalize
equivalent models equivalently, show no infrared instability at all in

the one loop approximation.

5.3. Zero modes for known (-) and (0) type Eiunstein metrics

By theorem 5.2.7, only the Kahler-Einztein metrics of Yau among
known (-) and (0) type Einstein metrics can have zero modes. By pro-
positions 5.2.4-5, the zero modes consist of: (1) the symmetric antf-
hermitian tensor fields k sstisfying

ab

-k - 0, vakbc = vk

a ab b ac 5.3.1)

and, for (0) type Einstein metrics only, (2) the hermitian tensor

fields kab' satisfying

kK- = 0, vks = 0, and 'akb?: = 'hka?: . (5.3.2)

Proposition 5.3.1.
The number of independent hermitian zero modes for (0} type
’

Einstein metrics is pl 1. the primitive Hodge nunber of

degree (1,1).

The anti-hermitian zero modes for both types of metric are related

to the deformations of complex gsrructure. Inequivalent infinitesmal
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changes in complex structure on M are represeanted by harmouoic (0,1)~
forms with values in the complex tangent bundle, i.e. the k; satisfy~-

ing

c c
vikﬁ - vsk; = 0, ¢ k- = 0. (5.3.3)

These can be regarded as anti-hermitian two tensors, not necessarily

symmetric.

Proposition 5.3.2.
For Einstein-Kahler metrics, the space of inequivalent defor-
mations of complex structure split into two subspaces: (1)
the symmetric anti-hermitian tensors kab satisfying (5.3.1),
and (2) the harmonic (0,2)- forms. The latter exist only for

(0) type metrics, and then are actually covariant constant

(0,2)~ forms.

Let T be the natural map from Hl(T), the deformations of complex
structure, to Hz(g), the second cohomology of the sheaf of holomorphic

functions. (See [31] for definitions.)

Proposition 5.3.3.
For (-) type metrics, T= 0. For (0) type metrics, T is
surjective (omto}, and Hz(g) is represented by the covarijant
constant (0,2)- forms. The number of anti-hermitian zero

modes for (=) and (0) type Einsteln metrics is twice the
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complex dimension of the kernel of T.

In the case of the (~) type metrics, the total number of zero

modes
2 ding(ker D = 2 dim (8'x)) (5.3.4)

1s a local constant. The space of complex structures or. M is 2 wani-
fold.[31) Yau’s theorem{16,17} guarantees exactly one Kahler-Einstein
metric for :ach complex structure. Therefore the zero modes are Langeot
to a true manifold of one loop fixed points.

In the case cf the (0) type, or Ricei-flat, metrics, the zero

modes are counted by
amolly - 1+ 2 dimc(lil('l‘)) - atm 8%% ) . (5.3.5)

They include infinitesmal inges ir the cohomology class of t ‘e funda-
mental form and infinitesmal chanres in the complex structure. Small
perturbations of the complex structure remain Kahlerizable.[31] Yau's
theorem guarantees existence of a unique Ricci-flat Kahler metric for
each cohomology class of the fundamental form and for each Kahlerizable
complex structure. But it is not known, in general, 1f all infinitesmal
changes of complex structure can be extended to finite changes, i.e.
whether the zero modes are actually tangent to a manifold of one loop

fixed points. 1If there is a nontrivial space of one loop (0) type
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fixed points, then to find the true fixed points it is necessary to
solve the auxiliary fixed point equations which arise from projecting
the two loop term in the p— function onto the space of one loop fixed

points. (See section 2.1.)

3.4. (+) type Einstein metrics

The general results on instabilities and zero modes for (+) type
Einstein metrics are meager. In this eection only the simplest examples
=re discussed.

The one loop unstable and marginal directions are: (1) the func—
tions on which -r:—l < —v:'.v1 < 2, and (2) the symmetric tensors in

H‘TT rn vhich O < A The marginal directions are those for which

6

equality occurs. By proposition (5.2.1), there are no instabilities of

the first kind for Kahler-Einstein metrics.

Proposition 3.4.1.

For Kahler-Einstein manifolds of (+) type, the dimension of
the eigenspace of real valued functions on which
-vvo- 2 1is the complex dimension of the space of holo-

morphic vector fi.ids on M.[32]

Of Kahlecr-Einstein fixed point metrics, only the (+) type can have non-
trivial holomorphic vector fields. Those that do automatically have the
one loop marginal directions described in proposition 5.4.l. hen

€ = 0, as discussed in section 2.1, these are true marginalities.
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Proposition Je4.2.

For locally symmetric (+) type Kahler Einstein manifolds with
nonzero holomorphic vector fields, the two loop contribution
to the P~ function, projected onto the space of zero modes
described in the previous proposition, gives infrared stabil-

ity when <« > 0.

This i{s a direct calculation.
A manifold of constant sectional curvature is a Riemannian manifold

with curvature tensor

Rygpg " EOeTT GBipfyq " By ¢ (3-4-1)
The sectlonal curvature is positive if R > 0, in which case I 1s the
sphere s"  divided by a discrete group of isometries. M is automati=~
cally (+) type Einstein.

A Kahler manifold of constant holomorphic sectional curvature is a
Kahler manifold for which the non-vanishing part of the curvature tensor

is

2R
Riebd ™ mimr2) BapBcd t 85cEnd ¢ (5:4.2)

The holomorphic sectional curvature is positive if R > 0, in which

/2

case M 1s the complex projective space CP“ divided by & discrete

group of isometries. M is automatically (+) type Einstein.
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Proposition 5.4.3.

For manifolds of constant positive sectional curvature,

AP > 0 on HTT'

Proposition 5.4.4.

For Kahler manifolds of constant positive holomorphic sec-

tional curvature, AP > 0 on erT.

Proposition 5.4.5.

For M = Sn, the laplacfan on functions has eigenvalues

r(r+n-1

i1 n-1 r=20,1,2,c-- . (5.4.3)

There are no eigenvalues in the the range ﬁ < A <2

which would provide unstable or marginal directions.

n

Therefore the S fixed point is unstable in the T- direction and

stable in the rest.[27)

Proposition 5.4.6.

For M = CPn/Z, the laplacian on functions has eipenvalues

sz, - 2D L0, . (5.4.4)

In particular, 2 is an eigenvalue. (See proposicion 5.4.1.)

The CP"/Z fixed point is therefore unstable 4n the T- directien,
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marginal in the directions of the forma f 31.1 for f an eigenvector of
the laplacian with eigenvalue 2, and stable in all other directions.
By proposition 5.4.2, the marginality is present only when <« = 0. The

functions £ giving the marginal directious are of the form

(o) = £g 2" 20 (5.4.5)

for fEb some hemitian form on C(MZ)/Z.

Finally, some information ie given on the spectrun of the laplacian
for the homogeneous (+) type Einstein amanifold
M = SO(N) = SO(N)XSO(N)/SO(N). The functions on M deconpose into
irreducible SO(N) representations on which the laplacian is propor-
tivnal to the quadratic Casimir operator. Each representation cccurs

with multiplicity equal to its dimension. Direct calculation gives

- - M-l
A a2y °° the spinor representation, (5.4.6)
-ww, = 2B=L o the standard representation (5+64.7)
174 (N=2) ’

and larger eigenvalues on the rest of the representations. Since, in
this case, the dimension of M 1is n = N(N-1)/2, the spinors represent

directions of inatability when N = 5 and 6.
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5.5. Quasi-Einstein metrics

=

The quasi-Einstein metrics are the solutions of

3‘.“ - g“ . 'lvj 1-vjv1 $# 0. (5.5.1)
By propositions 2.2.1-4,
R > 0 (5.5.2)
and
-vjvjvi-nijvj -0, wvlyo. (5.5.3)

Whether there exist any quasi-Einstein manifolds 18 unknown. Equations
(2.3.2) and (2.4.15) showv that infipitesmal variations of a (+) type

Einstein metric of the form f gu with (- w v, - 2)f = 0 are quasi-

i
Einstein. Proposition 5.4.1 and the comments on the group manifolds
50(5), S0(6) at the end of section 6.4 indicate that such infinitesmal
deformations do exist. There is no reason to suppose, however, that
there are finite guasi-Einstein deformations corresponding to the infin-
itesmal ones; the quasi-Einstein equation might not be solvable at sone
order beyond the first. In any case, these iInfinitesc:al deformations

all have vi a gradient, while the principal interest is in the cases

in which vi is not a gradient.



The final propositions give elementary general inforwation on

Kahler quasi-Einstein manifolds.

Proposition 5.5.1.

vi is thie real part of a holomorphic vector field.[32)

Proposition 5.5.2.

The first Chern class is positive and the fundamental form

belongs to it.

Proposition 5.5.3.

The first betti number is zero.

Proposition 5.3.4.

There exists a complex valeed function F on M such that

'a'b F = 0 {5.5.4)
v = 1 v F Ve = lv-E (5.5.5)
a 2 a’ H 2 °a’

Rib - 8 T Y% {Re F) . {5.5.6)
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