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ABSTRACT 

We have investigated several new aspects of nonlinear or wave 

mixing spectroscopy, utilizing the polarization properties of the non

linear output field and the dependence of this field upon the occur

rence of multiple resonances in the nonlinear susceptibility. 

First, it is shown theoretically that polarization-sensitive de

tection may be used to either eliminate or controllably reduce the 

nonresonant background in coherent anti-Stokes Raman spectroscopy 

(CARS), allowing weaker Raman resonances to be studied. These new 

four-wave mixing techniques are called background suppression-CARS and 

optical heterodyned det^tion-CARS. These are experimentally demon

strated by studying the 992 cm Raman mode of benzene diluted in car

bon tetrachloride, with an attained detection sensitivity of 10G ppm 

of benzene- This corresponds to a ratio of resonant to nonresonant 
-3 

susceptibilities of about 4 * 10 . A discussion of experimental 

techniques, possible applications, and limitations of these techniques 

are also given. 

The features of multi-resonant fovr-wave mixing are examined in 

the case of an inhomogeneously broadened medium. It is found that the 

linewidth of the nonlinear output narrows considerably (approaching 

the homogeneous width) when the quantum mechanical expressions for the 

doubly- and triply-resonant susceptibilities are averaged over a Dop-

NTMWTION C* •-
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I. Introduction 

The primary goal of general spectroscopy is to provide informa

tion about the physical properties of materials through the use of ex

ternal probes. In particular, the interaction of natter and radia

tion, optical spectroscopy, has been extremely fruitful in obtaining 

data on material transitions and excitations. The development of the 

laser has further stimulated the growth of this area of spectroscopy, 

with such techniques as Raman scattering and Brillouin scattering be

ing commonly utilized. The demonstration of tunable dye lasers in the 

late 1960's has led to the development of yet another form of spectro

scopy — nonlinear or wave mixing spectroscopy. 

Four-wave mixing spectroscopy, one of the better known examples, 

involves the interaction of three optical fields within a medium to 

create a fourth coherent optical field. The coupling between these 

fields is embodied in the nonlinear optical susceptibility, which con

tains all pertinent information about the material system, e.g. the 

characteristic resonances. With frequency-tunable input fields it is 

possible to probe the material excitations through the resonant inter

action, thus observing resonant enhancement of the output field. In 

this way, four-wave mixing may be used as a form of spectroscopy 

which should be observable in media of any macroscopic symmetry. 

Wave mixing spectroscopy has many advantages over the convention

al forms of linear spectroscopy, e.g. spontaneous Raman scattering. 

First of all, the nonlinear techniques are coherent with the output 

field propagating in a well defined direction. Such collimated out

put allows collection efficiencies to approach unity and discriminates 
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against unwanted background fluorescence. This, together with the 

fact that the nonlinear signals are usually such stronger than spon

taneous signals, greatly reduces the time required to sake a spectrum 

(nonlinear spectra require only minutes compared to the hours neces

sary to make some spontaneous spectra). Also, in coherent forms of 

spectroscopy, the frequency resolution is determined by the linewidths 
-4 -1 of the input lasers (as low as 10 en ) , rather than the bandpass of 

the detection system as in spontaneous scattering experiments. Final

ly! using pulsed lasers, it is possible to obtain time resolved stud

ies of transient phenomena. Exploiting these features, four-wave mix

ing spectroscopy has been applied to many areas of research, including 

high resolution spectroscopy, combustion research, and studies on 

highly fluorescent biological samples. 

As the area of four-wave mixing spectroscopy matures, there are 

many variations of- the basic wave mixing concept which have developed. 

In Section II we review the general formalism used to describe these 

effects, with emphasis placed on the various methods of analyzing the 

nonlinear output beam, i.e. polarized and unpolarized detection. The 

processes are then further classified by the frequency mixing involved, 

with stimulated Raman scattering-type processes (output frequency de

generate with an input frequency, e.g. Stimulated Raman Gain Spectro

scopy, SRGS) distinguished from signal generation processes (output 

frequency distinct from the input frequencies, e.g. Coherent Anti-

Stokes Raman Spectroscopy, CARS). We then describe the theoretical 

analysis of two new forms of four-wave mixing: background suppres-

sion-CARS and optical heterodyned detection-CARS. Using these new 

techniques it is possible to produce spectra dependent upon either 
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|x R| , Im[xRJ» or Re[x R] (where x R is the resonant susceptibility) with 

the background nonresonant contribution to the signal either elimi

nated or greatly reduced. A formal signal to noise analysis of the 

various forms of CARS is performed to compare the techniques. 

Section 111 contains the experimental demonstration of these new 

CARS techniques. We first discuss the general methods and apparatus 

used in conventional CARS, then include modifications needed to make 

polatization-sensitive measurements. Experimental spectra are pre

sented of the 992 cm Raman mode of benzene diluted in carbon tetra

chloride, which confirm the expected llneshapes of the different tech

niques. Measurement of the ratio of resonant to nonresonant suscepti

bilities is analyzed and compared to previous work; and the minimum 

detectable value of this ratio is established. Possible applications 

and limitations of the polarization-sensitive CARS techniques are also 

discussed. 

In the first part of this thesis, we consider four-wave mixing 

processes with only a single resonance (the most interesting case be

ing two-photon resonances, e.g. Raman). In Section IV we include the 

possibility of multiple resonances in the nonlinear susceptibility, 

with explicit, quantur. mechanical expressions presented for several 

doubly- and triply-resonant susceptibilities. We then consider the 

consequences of inhomogeneous broadening on these multi-resonant sus

ceptibilities — the cases of Doppler broadening and strain broaden

ing considered as examples. After averaging over such broadening, it 

is shown that in certain cases four-wave mixing processes show a line-

width narrowing that approaches the homogeneous width of the transi

tion. Criteria are established to predict which processes will dis-
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play this narrowing effect. The effects of linear absorption on the 

nonlinear output signal are also important In Multi-resonant caaea and 

are considered here In detail. 

An experimental system used to examine the multi-resonant pro

cesses In the presence of strain broadening Is described in Section V. 
+3 Using the sharp electronic lines of Fr ions doped in lanthanum tri-

fluoride, the expected narrowing effects were observed (although the 

presence of "accidental degeneracy" broadened the nonlinear output). 

Measurements were also made to evaluate the strengths of the multi-

resonant susceptibilities associated with the H., H,, and P„ levels 
4 b U +3 of the Fr , from which the values of the dipole matrix elements and 

Raman polarizabilitv were determined. Although some values have 

large uncertainties, new experiments are proposed to improve the 

measurements• 
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II. REVIEW OF FOOR-WAVE HECIHG SPECTROSCOPY 

A. Semlcla3sical Vheory of Nonlinear Optics 

In the classical theory of radiation, the electromagnetic fields 

are governed by MasunJl's equations with the properties of the material 

system introduced through the constitutive relations 

8(u? - e (U)E'(U) and 5(u) - u(u)8(w) . 

In general, the Fourier components of the fields at frequency cu are 

coupled by electric and magnetic permeability tecors, e and u respec

tively, which are not only frequency dependent, but also field dependent. 

It is this nonlinear dependence of D on E which leads to the classical 

theory of most nonlinear optical phenomena (magnetic related phenomena 
2 will not be discussed here). In developing nonlinear optics theory, 

interest is usually focused on the polarization vector P * (D -

which contains the information about the material system and its nonlin-

earities. It is assumed that the nonlinear effects are small so the po

larization can be expanded in a power series in the electric field 

P"(u>) = x ( 1 ) (-">.") • E(M) +^2)(-a,t*a,ub):i(.ua)iimb) 

+ X t 3 )<-".*> a»"> b." c>:2Cu a)t(w b)2(£< i.J r . . . . (1) 

The first term of this expansion is the linear response of the medium to 

the electric field f(u). It is described by the first-order suscepti-
~(1) bility x , of which che real part contributes to the linear refractive 



index 2nd the loirginary part determines the linear absorption at u. The 

second-order term, restricted to OJ - u + u , describes nonlinear mixing 

processes involving two input fields, E(« ) and E(u. ) , such as sc*m-fre

quency generation or optical parametric amplification. The cubic fleXd 

dependence of the next term is coupled to the polarization by the third-

order nonlinear susceptibility x (-*'»u »«.i» ) where now u • u + u. 
a b c a b 

+ oi . This term characterizes the oarametric interaction of the "four-
c 

wave mixing" process and will be examined in detail in this thesis. 

Greater insight can be given to the susceptibilities if we regard 

the medium as a quantum mechanical system, although still treating the 

fields as classical quantities. This is the semiclassical treatment, 

which is sufficient to describe stimulated emission phenomena, however 

it fails to predict any spontaneous emission phenomena. Expressions for 

the susceptibilities can be found using the density matrix formalism ap-
2 plied to perturbation theory of the electromagnetic interaction. In 

**(3) 3 

particular the expression for x contains 48 terms. Fortunately in 

most spectroscopic applications the particular resonance of interest ap

pears in only a few of the possible terms, while the other terms remain 

essentially nondispersive. ^ften a formal separation of these terms is 

desirable 

; 0 ) - 2 . 3 ) + 2 » c« 

"*(3) **(3) where x p and x are the resonant and nonresonant susceptibilities 

respectively. 

The susceptibilities relate macroscopic fields, thus the quantum 

mechanical susceptibilities for individual atoms or molecules must be 
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suitably averaged over Che spat*?l arrangeaent of the atons or molecules. 

Therefore the tensor elements of x a r e constrained by the spatial 

symmetry of the macroscopic .nedium. Examination of all symmetries indi

cates that x is never necessarily identically zero* consequently 

"four-wave mixing" processes can occur in all materials. Since electric-

dipole second-order processes are forbidden in isotropic media, third-

order processes are the lowest order nonlinear effects observable in li

quids and gases. 

Returning to Maxwell's equations, we use the nonlinear polarization 

as a source term and write the driven wave equation for E(u>) as 

v2!<?.„) + H ! O ^ ! {(*,„, . . *HH! ?«) ( ? > W ) ( 3 ) 

where, fl3'(r,cu) = x (-w,ui .n. ,iu );S(r,u )£(r,u>. )2(r,w ) and all a D c a D c 
fields are assumed to be plane waves of the form 

ik -r 
£<r,m ) - £(r,ui )e 3 . 

The z-axis is chosen to coincide with k, the output wavevector. Assum

ing the rate of change of fc(r,o)) across one wavelength is small, we can 

write Eq. (3) as 

with Ak = k + k, -r k - k being the wavevector mismatch due m part to 
the linear dispersion of the refractive index and in part to the geome
try of the wavevectors. Integration of Eq. (4) with the boundary of the 
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nonlinear medium at z - 0 yields 

*<».«) -*{0,«> + i -|^- x ( 3 ) <-«.*.,«. ,o> )**(»>*( W.)£( W ) f e — ^ - = J J n(u)c a b c a b c ( ^ j . - J 

(5) 

&(0,u) is the field at u incident on the nonlicar medium at z - 0. 

Here we assume the small sigi:.?,l limit, i.e. there is no depletion or al

teration of the polarization state of the beams at u , to., ui as they 
4 

propagate through the medium, although these assumptions may be lifted. 

The importance of the wavevector mismatch is shown by the bracketed 

term in Eq. (5), which has a maximum value of z when Ak • 0 and falls to 

zero when Ak • z = 2IT. Thus we must ensure that Ak is minimized to have 

maximum output. In the normal experimental setup, one can usually con

trol the directions of the beams to achieve phasematching in many pos

sible ways. In some cases, the choice of four-wave mixing process gives 

automatic phasematching — independent of the beam geometry. More often 

though, the beam geometry determines both the phasematching and the in

teraction length, z, of the input beams. In the following discussion, 

it is assumed that phasematching has been achieved. 

The output field of a four-wave mixing experiment is thus described 

by 

£<z,co) * £(0,u) + iex(3)(-w»(iJa,ub,wc):^(ua)2'<wb)2'(a>c) (6) 

where we define B = , . . This result follows using infinite plane 

waves, but the use of other beam profiles only alters the form of (3. 

The analysis of this signal field depends only on the general form of 

Eq. (6), not the specific form cf 8, and is the subject of the next 
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part of this section. 

B. Physical Properties of the Nonlinear Output Field 

To begin the discussion of the analysis of the nonlinear output, we 

first enumerate the physical properties upon which this output field is 

dependent. In nonlinear optical experiments these are (1) the output 

frequency; (2) the polarization state of the output field; (3) the tem

poral behavior of the input beams ?nd the response time of the medium; 

(4) the momentum-space dependence of the output. The latter two ^-^per-

ties will not be considered here beyond the fact that we are concerned 

with steady-state> phasematched solutions to the wave equation as given 

in Eq. (6). Work In the time domain and momentum space can be found in 

the literature. * In this section emphasis will be placed on the spec

tral and polarization properties of the nonlinear output. 

In all spectroscopy experiments the output field £(z,u) is strongly 

dependent on the output frequency. It is this strong variation which 

allows these nonlinear techniques to be used as spectroscopic techniques. 

The spectral dependence of 6(z,w) is determined by the frequency depen

dence of the nonlinear susceptibility which is contained in the resonant 

part of x * It is informative to show explicitly one term from the 

quantum mechanical expression for x . One term of 

[xR 3 )<-".W" c>] i j k £
 = ^-! „ ^ g.n.n'n" ^3 

<g|r1|n"><n|ri|g><n'|rk|n><n"|r),|n,>p (0) 
(w -in -ir ) (a) , -(a) +w.)-ir . ) (w „ -w-iT „ ) ng a ng n'g a b' n'g' n"g n"g' 

(7) 
where, fiw = E - E is the energy difference and r the phenomenolo-

ng n g •" ng 
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gical damping constant between quantum states |n> and |g>, - e<n|r,|g> 

is thei th component of the electric dipole matrix element, p is the 

fractional population Initially in state |g>„ and N is the density of 

particles. Examination of Eq. (7) shows both one-photon and two-photon 

resonances are included in x D • Single photon resonances, e.g. u -»-
K a 

ui , also appear in the linear susceptibility and thus can b-J probed 

through linear spectroscopy. The major interest in four-wave mixing 

spectroscopy has been to examine two-photon resonances, e.g. u + ai, -*• 
a b u) . . Two-photon absorption (TPA) resonances occur when u > 0, u, > 0; n'g r r a * b 

and Raman resonances occur when oi > 0 and u. < 0. The output frequency 

in either case is still iu = a) + w, + ID , where u> can be independently a b c c r 

chosen. For example, choosing cu > 0 we can monitor an infrared (Raman) 

transition and have the output frequency In the visible (where photomul-

tipliers are more efficient). This is a very attractive feature of 

four-wave mixing spectroscopy. 

Of equal interest to the spectral variation of the susceptibility 

is a complete description of the polarization properties of the output 

field £(z,io). V show below that in general the polarization state of 

£(z,w) is also dispersive, i.e., explicit expressions for parameters 

describing the polarization state show resonance behavior, similar to 

the resonant susceptibility. This allows the added freedom of polari

zation analysis of nonlinear signals to determine spectroscopic informa

tion. 

To see that the output polarization state is dispersive we begin 

by rewriting Eq. (6) using the formal separation of Eq. (2) 

£(w) = £(0,oi) + i6x^(-u.ua>ub,ii) ):t(u> ^(u^^Cu ) cont'd 
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+ iBXp 3 )(-w,u a,u b,w c)i2( M a)2(u b)2(w c). (8) 

(The z-dependence of the output field will henceforth be suppressed.) 

We gather the first and second terms together and write Eq. (8) as 

S(u) - 2 L 0 ( D ) + SR(oi) (9) 

where 2 _(w) = 6(0,oi) + iBx™, (-u>»ui ,!u,,n> ):£(ui )£(ID )£(w ) and *_(u) = 
LU NK a D C A b e K 

to ) . bote that as the resonance is R a b c a b c 

scanned & {the so-called local oscillator field) is unchanging, while 

the resonant field £ will vary in magnitude and changes phase relative 

to «,«. The combination of these two fields leads to a total output po

larization state which is dispersive. Only if £ and *»._ are in the 

same polarization state will there be no dispersion in the output polar

ization state. 

Thus we see that there are two physical properties of the output 

which allow four-wave mixing to be used as a spectroscopic technique. 

One can find the dispersion in the nonlinear susceptibility by measuring 

the variation of the output field amplitude. Or one can obtain similar 

information by determining the change in the output field's polariza

tion state as the resonance is scanned. Detailed analysis of these 

techniques and possible hybrid techniques are discussed in section IIC. 

C. Analysis Techniques 

In this sub-section we consider four possible general forms of 

four-wave mixing spectroscopy experiments. Explicit expressions are 

given for the detected signal in each case, and the important features 
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of each technique are emphasized. The discussion begins with a descrip

tion of the detection system to be considered. 

In all of the experimental arrangements proposed, it is assumed 

that the optical detector, either photomultiplier or photodiode, is op

erated at light levels such that it is a perfect square-law detector. 

The important quantity is not the output field reaching the detector 

£ (w), but its square magnitude |& n| . As part of the detection system, 

we include the possible use of a general elliptical polarization analy

zer which transmits the polarization stace e to be described below. In 
a 

this case only the a-coraponent of output field actually arrives at the 

detector. It is assumed that the photocurrent is electronically pro

cessed and eventually displayed on a recorder versus the relevant fre

quency parameter. (In the last case considered below, we assume that 

the polarization analyzer is adjusted to give a null signal from the op

tical detector.) 

It is useful at this point to review and define some terms related 

to the general elliptical polarization state. Several sets of parame

ters are commonly used to describe the general polarization state. 

These are (1) the two components of the field along orthogonal axes, 

(2) the complex number which is the ratio of these two components and 

(3) the inclination angle of the semimajor axis and the eccentricity 

angle or the ellipse. Figure 1 shows the relationship between these 

pairs of parameters. A useful form for the general polarization unit 

vector is 

e = (cos8 coscj) + i sine sin^)x + (sin6 cos<f> - i cos6 sin<j»)y (10) 
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where 9 is the inclination angle of the semimajor axis relative to an 

arbitrary x-axis, 0 ^ 9 < ir; and <J> is the eccentricity angle, $ = ± 

tan (b/a) as in Fig. 1, - TT/4 ̂  <Ji ̂ T T / 4 . The sign of <|> is taken posi

tive for right plliptical polarizations, and negative for left ellipti

cal polarizations. For example, 0 = 0 , i> = n/4 represents the right 

circular polarization state (RCP), 0 = 0 , * = - ffh represents left cir

cular polarization (LCF), and states with <t> = 0 are linearly polarized. 

If e, is polarization state orthogonal to e , we have for unit vectors 

(11) 

(e , e„, z) fonn a generalized orthonorroal coordinate system to describe 

a vector field £ propagating in the z-direction. £ is separated into 

components as 

With this background we now return to the analysis of the four-wave mix

ing output field £(w). 

1. Amplitude Analysis 

Amplitude analysis is the simplest form of analysis technique, and 
S 9 is thus the most widely used method in four-wave mixing spectroscopy. * 

The simplicity of this approach arises because no form of polarization 

analysis is performed, so the typical apparatus needs only the minimum 

equipment with the detection system consisting primarily of the optical 

detector. This type of experimental arrangement measures |£(w)| . The 
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appropriate physical quantity for this discussion Is the optical inten

sity at the detector !„(<«>). Using Eq. (9), we have 

V"> -fvl 4LO ("> +V M )| 2 

c n I* I 2 J. c n I* 12 . en „ ,** It , 

" *U> + h + h ( 1 2 > 

where I = 7 ^ Re[* • * ] is the heterodyned intensity, L-. ( L ) is the 

Intensity at the detector if only *._ (*_) is present, and n is the in

dex of refraction at u. Of particular interest in spectroscopy is the 

lineshape of the output signal which depends strongly on the relative 

strengths of the three terns Ij«» I R> and !_,. We examine two extreme 

cases — I R > I L Q and I R < 1 ^ . 

If |»_| ̂  |&_ _ [ , the output signal shows a resonance proportional 

to the square magnitude of the resonant susceptibility, and so the 

strength of this resonance will increase quadratically with N, the den

sity of resonant batterers. The lineshape, in this case, is compli

cated by the presence of the local oscillator and nay show a relative 

minimum anywhere within the spectrum due to the interference effects of 

the heterodyne term, L . Unlike 3_ and L which represent the actual 

intensities of the separate fields, the heterodyne intensity, I , is not 

a true intensity and can take on either positive or negative values. 

Furthermore, when several closely-spaced resonances are involved, the 

lineshape is determined by |fî  + S(fi_) | with the sum over all reson

ances. Cross-terms between different resonant fields severely distort 
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the spectrum, limiting its usefulness for spectroscopy. 

At the other extreme, for a weak resonance with L - ^ L , the dis

persive signal is carried on the heterodyne term, I„ (assuming the com

ponent of * L_ along fi is much larger than |£R|)« The output signal now 

consists of the li.rge nondispersive off-set due to the strong local os

cillator upon which is superimposed the lineshape of a linear combina

tion of the real and imaginary parts of the resonant susceptibility from 

I„. The resonant signal will decrease linearly with N instead of quad-
H 

ratically, thus the sensitivity falls off in the same way as in linear 

scattering experiments. When several resonances are present, the signal 

term becomes T — E ^ et™ T i) * ^ D ^ W * S O a** contributions are linearly 

superimposed. In such a spectrum, it is relatively easy to separate the 

individual resonances. 

When dealing with the ultimate detection sensitivity of these non

linear techniques, this weak resonance limit is of interest. In parti

cular the modulation depth of the signal is important, as defined by 
,* 

„ = h . 2 R e t \ 0 • 2R' .... 
" A M P T — 1 " 3 > 

where we let £ _ = l&Trtl̂ Yrt* The condition of a weak resonance ensures 

that M.„_ *£ 1. This ratio of dispersive signal to nondispersive signal AMr 
will be useful in determining the detection limit as described in part 

E of this section. 

2. Polarization Analysis - Nulled Local Oscillator 

This technique of analysis requires the addition of a general po

larization analyzer in the detection system, * consisting of a quar-
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ter-wave plate followed by a linear analyzer. Adjusting the axes of 

thede two optical elements any pure elliptical polarisation state can 

be analyzed. Figure 2 shows the orientation of the axes to transmit the 

polarization state e as defined in Eq. (10). 

With the introduction of a polarization analyzer before the detec

tor we reduce the output field reaching the detector to 

*_. - (e* • m"(u»e. 

< • *u>+ s • Vv < 1 4 ) 

A particularly interesting situation occurs when the analyser exactly 

nulls the contribution to i . from the local oscillstor. This is the 

case when e • e ^ • 0. The intensity at the detector becomes 

Only the component of the resonant field which is orthogonal to the lo

cal oscillator contributes to the signal. There Is no nondisperslve 

contribution to the signal — the spectrum shows only resonances. 

The result given in Eq. (IS) is independent of the relative 

strength of i-L and 5^., but does depend on the square magnitude of the 

resonant susceptibility. Unlike the amplitude analysis case discussed 

above, with the local oscillator rejected the detected signal is always 

quadratic in the density N. Thus, a?-hough the constant background has 

been removed, the small signal from a weak resonance may *»e obscured by 

various noise sources, leading to reduced sensitivity (see section H E 



for the signal to noise analysis). 

We note that the detected intensity depends on e • & , where e is 

orthogonal to the local oscillator field. For a given resonant and non-

resonant susceptibilities and input field strengths, the magnitude of 

e • £ depends only on the choice of the polarization states of the in-

V-ut fields. Varying the input polarizations alters the direction of * 

and £__ (and thus e ), whiJ L the magnitude of £ (and the nonlinear por

tion of & i n) also changes. Thus the detected intensity in Eq. (15) can 

be optimized by the proper choice of input polarization states. This 

type of optimization applies to all forms of analysis discussed in this 

section, with specific examples given in subsection D. 

So far we have dealt only with the nulling of the nondispersive lo

cal oscillator, but this nulling technique can also be extended to in

clude cancellation of contributions from particular resonances. Consi

der, for example, two resonances separated in frequency by several line-

widths — one resonance greatly dominating the other. The total output 

field is 

£(ai) = £ L 0(w) + ̂ ( u ) + ^ R 2
( t J ) ) 

with & (*R2^ ̂ u e t o t h e s C r o n 6 (weak) resonance. In a limited spec

tral range around the central frequency of the weak resonance, the field 

ER.(to) will change only slightly in magnitude and phase. Thus the po

larization analyzer may be adjusted to nearly null the local oscillator 

and the strong resonance fields in this spectral region. In this case 

the output signal shows essentially only the component of £ R 2 orthogonal 
t o ^ LO + Rl^* This generalization may be useful to study previously 
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undetectable resonances. 

3. Polarization Analysis - Heterodyned Local Oscillator 

Another form of polarization analysis, the heterodyned local oscil

lator technique , ' combines the attractive features of the two pre

viously described Methods. £n this case, the polarization analyzer is 

rotated away fron the position of nulled local oscillator discussed 

above, allowing a small fraction of this field to be transmitted. The 

strength of this leakage local oscillator field can be adjusted ouch 

that it is dominant over the resonant field vhile still being much weak

er than the full local oscillator field. Thus, as In the nulled local 

oscillator case, the spectrum shows quite strongly the dispersive sig

nal, while this signal now ~omes from the heterodyning of "he leakage 

local oscillator and resonant fields and is linear In x B> as in the amp

litude analysis case. This polarization technique allows one to scale 

the strength (and to alter the phase) of the local oscillator so that 

the modulation depth of the resonant signal is fixed above the possible 

noise fluctuations of the leakage local oscillator. 

To formalize this discussion, we assume the polarization analyzer 

now transmits the polarization state e . which is close to the state e 
a a 

which exactly nulls the local oscillator field. He define a generalized 

complex small angle 0 between the polarization state e t and the local 

oscillator unit vector ^ ~ . 

"u> (16) 

The quantity 0 then describes the amount of local oscillator to Be al-
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lowed to leak through Che analy'"> The output f i e l d at the detector 

from Eq. (14) becomes 

, [ O l ^ l + e * - 2 R l e a . (17) 

where we have assumed that I 0 { ~* 1 so that e . • »„ = e • 8 _ , and the 1 1 a r R a R' 
detected intensity is 

I ° | 2 ILO + Ii + Xi < W ' 

where I _ is the iutensity at the detector due to the full local oscil

lator, I' is the resonant intensity at the de_ector as in the nulled lo

cal oscillator case, and 

^-f^^Xo^'V' 
•f ̂ N 3'^-*."- ( 1 9 ) 

Neglecting the term I' in the case of a weak resonance, Eq. (18) shows 

explicity the reduced local oscillator intensity and the heterodyned 

signal term. From Eq. (19) the complex nature of Q can be exploited to 

examine both the real and imaginary parts of e • £ . 
a K 

An informative expression for 0 can be derived when the state e , 
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is obtained from e by infinitesimal changes in the characteristic 
a 

angles 8 and $ of e . We have 

3e 3e 

V = S « + l f d e + l f d* 

e a + e* de - i e g d„ 

with e orthogonal to e . So, 

0 = e , CL0 

= (cos2$ d9 - i d+)(e& • e^) (20) 

where there is an overall phase factor e • e._ of the local oscillator 

state relative to polarization state e , de is the change in the inclin-
P 

ation angle of the axis and d$ is the change in the eccentricity angle of 

the elliptical polarization state. Relating these*, angles to rhe inclin

ation angles of the quarter-wave plate, n, and the linear analyzer, £, 

as in Fig. 2, we have 

0 = [- i dc; + {cos2(c - n) + !}*.](£* • ^ Q ) . (21) 

Simple cases occur when dp = 0, i.e., heterodyning by only uncrossing 

the linear analyzer (0 =-id^(eft • e T«) and when dn - d£, I.e., uncross

ing both quarter-wave plate and linear analyzer by the same amount (8 = 

cos2(£ - n)dc(e * e _)). Thus by proper choice of dn and dz the phase 

of 0 can assume any value and can be adjusted to display only the real 
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or the imaginary part of the susceptibility. This added flexibility 

over the standard amplitude analysis technique nakes this heterodyned 

local oscillator method more useful to sort out complicated spectra. 

Again, to determine the sensitivity and to compare this case with the 

amplitude case, we define the modulation depth as 

I' 2Re[0*<a* • *_)] 

M \ 0 |e|' l̂ ol 
(22) 

A crude comparison of this expression with Eq. (13) shows that the he

terodyne case improves the modulation by a factor of about [o| . Since 

—2 —3 
typically |o| ~- 10 - 10 , there will be two or three orders of magni
tude improvement in the detection sensitivity when using this polariza
tion analysis technique. This is born out in the more detailed signal 
to noise calculation of section H E . 

4. Polarization Analysis - Coherent Nonlinear Ellipsoraetry 
12 

An alternate form of spectroscopy, coherent ellipsometry, exam

ines explicitly the dispersion of the output field's polarization state. 

This can be done by measuring the angles <S, d> > describing the elliptical 

polarization as a function of the characteristic frequency parameter. 

As in normal ellipsometry, these angles are determined by varying both 

the quarter-wave plate and the linear analyzer to obtain a null of the 

nonlinear signal. In principle, one can then relate this dispersion of 

the polarization state to the dispersion of the resonant susceptibility. 

To begin this discussion, we introduce two angles (6'f<j>') which are 

easily determined from the components of the output field £(LO). 

The components are taken with respect to the orthogonal polarization 
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states e and e„, with e orthogonal to the local oscillator as before. 

2 " K • *RK + l% • *L0 + % • V SB " 'A + *BV 
The angles 6' and $' are given by the relations 

2Re[a*S ] 
tan29' „ ° 6 

2Im[6a ] 
sin2*' , " " , . (23) 

\&f + l 8
8l 2 

The definition of these angles is a generalisation of the inclination 

and eccentricity angles which are defined with Che same relations as Eq. 

(23) but with respect to the linear polarization states e and e . By 

using the "natural" polarization states of the problem, the interpreta

tion of the dispersion is clearer. For example, when the resonance is 

weak, we have |& | ̂  |fi
Ql = l e

a " inl a n a" 
Ct p p LU 

2Re[(e • « ) (e • S ) ] 
tan26' - 26' ^ — - 1 \ L 0 -le • £ I 2 

| eB LO1 

2Im[(e* - *-)*(£* - 1 )? 
sin2*« * 2*' = *+ \ L 2 ~ • <24> 

thus 6' is dispersive as the real part of an effective resonant field 

while $' shows the dispersion of the imaginary part of this field. 

These angles are both linear in the resonant susceptibility with all the 

advantages this entails. 

Of course, in any experiment the angles 0 and <f> describing the po

larization state are measured, but 6' and (ft1 can be deduced from the re-
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lations 

, = sin26 cos 2ft 
L sin2$ sin2$ + cos2$ cos2$ cos29 

sin2*' = cos2$ sin2<|i - sin2$ cos2$ cos2e. (25) 
a a 

These relations are derived using Eq. (23) with £ and £ written in 
a p 

terms of x,y coordinates. In Eq. (25), we have assumed that the state 

e is described by an inclination angle 8 chosen to be zero, and an ec-
ct a. 

ontricity angle equal to $ . 

Although coherenL nonMnear ellipsometry involves actual determina

tion of elliptical ;. )larization angles 6 and $» it is closely re'ated to 

the previously described polarization analysis techniques. In the 

nulled and heterodyned local oscillator techniques the analyzer is fixed 

at one polarization state as the frequency is scanned through the reson

ance, while in ell'.psometry the analyzer and frequency are simultaneous

ly adjusted. Th latter requires a point by point spectrum be taken, 

incrementing the frequency, then searching for the null. It is often 

easier to make a polarization-sensitive spectrum of intensity through a 

fixed analyzer versus frequency, as in the previously described tech

niques. Basically, the simplicity of the nulled or heterodyned local 

oscillator technique occurs because information is being determined 

about either Re(x R), Im(x R),or |x R| > whereas the ellipsometry tech

nique determines both Re(x n) and Im(x R) in the course of one spectral 

scan. 

Since an ellipsometry experiment searches only for a null, in prin

ciple it does not depend at all on the input beams absolute power or the 
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fluctuations in the power. This, together with the sample dependence 

on the resonant susceptibility, makes coherent elllpsometry a useful al

ternate form of nonlinear spectroscopy. 

D. Stimulated Raman Processes vs. Signal Generation Processes and S r -

cific Examples 

In the previous discussions of the theory of four-wave nixing and 

the various analysis techniques, the general frequency mixing case is 

used throughout. We now want to consider the further classification of 

these nonlinear techniques by the particular type of frequency mixing 
13 

that is involved. (This approach can be contrasted to that of Owyoung 

in which the frequency classification has primary importance.) A dis

tinction is made between stimulated Raman processes with the output u 

and k degenerate with one of the input beams, although the polarization 

may be different, and signal generation processes with a> being at a fre

quency not identical to the three pump frequencies. We consider briefly 

the general characteristics of these two types of processes, then more 

specific examples are detailed. Emphasis is placed on signal generation 

processes, which are demonstrated in the experimental section (section 

III). 

1. Stimulated Raman Scattering (SRS) Processes 

In the SRS processes we have 

iii =ai and k = k , (26) 
c c ' 

thus the Input field at to also serves as the linear local oscillator 
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field, &(0,<u). The nonlinear signal appears as a change in magnitude 

and/or polarization of this beam as It passes through the nonlinear mix

ing region. For energy conservation and phase matching, we require that 

a), = - w and k, = - k , b a b a 

which is simply satisfied by the presence of a single input beam, called 

the "pump" beam. In this case, phasematching is automatic, i.e., re

quires no special geometry. Another advantage of this type of process 

is that it is easily analyzed since one monitors induced changes *n the 

"probe" beam at u> . Typically, the probe beam is intense enough that 

detection can be done using high quantum efficiency photodiodes. A ser

ious difficulty with this SRS-type process is the need for a stable in

tensity probe beam when doing amplitude analysis, for the full intensity 

of the probe beam strikes the detector. In practical cases the detec

tion sensitivity in amplitude analysis will be limited by the intensity 

fluctuations in the probe laser. A second pro iem arises with the po

larization analysis techniques — linearly scattered light of the probe 

beam also strikes the detector. This problem can be minimized but it 

cannot be prevented, for there is no possibility of frequency discrimi

nation against this noise source. Thus, there are some disadvantaged to 

using the SRS processes as forms of nonlinear spectroscopy. 

Most experimental work which has been ('one using the SRS process has 

involved studies of Raman-type two-photon resonances. As each analysis 

technique has been established, it has been given a new name. For ex

ample, the SRS form of amplitude analysis has been highly developed by 
9 13 Owyourg and has the acronym SRGS, for Stimulated Raman Gain Spec-
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troscopy. The polarization analysis counterparts have been studied pre

dominantly by Levenson * under the acronyms HIKES (Raman Induced Kerr 

Effect Spectroscopy) and OHD-RIKES (Optical Heterodyned Detectlon-

RIKES). A brief description of typical experimental arrangements used 

in these forms of nonlinear spectroscopy is included below. 

As mentioned above, in SRGS the most serious problem is the stabil

ity of the probe laser, thus it Is very desirable to use a CW laser 

rather than a pulsed laser. It is found that the amplitude noise spec

trum of a CW laser using a commercial noise suppression system is great

ly reduced if one examines only the higher frequency components. This 

Is accomplished by modulating the pump beam (another CW larer) at 25kHz 

and using lock-in detection for signal collection (see Fig. 3). Since 

CW lasers are used for both pump and probe, very high resolution spectra 
-4 -1 (10 cm ) are obtainable. However, due to the low power level of the 

CW pump the gain coefficient, G, is quite small (G "" 10 have betn ob

served with the setup). This technique is used predominantly with lin

ear input polarizations in gaseous, and therefore isotropic, media. In 

this case, Eq. (1?) becomes 

I D(.) = I( B){l - ^ f Im[e* - X R;e ae*e c]I( U a)} 

= I(QJ){1 + G} (27) 

where l(w) is the intensity at the probe frequency, l(u> ) is the inten

sity at the pump frequency, e and e describe the polarization states 

of the probe and pump fields, respectively. If all fields are e:long the 

x-direction, SRGS examines the tensor element [x_(aj = U - W + U )],,,, 
A R a a c 1111 
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describing polarized scattering. With the pump beam along x and the 

probe along y, [ x n ( w = w - w + w ) ] 1 1 9 1 i related unpolarized scatter-K a a c J./ZJ. 

ing, is studied. 

The polarization forms of stimulated Raman scattering, RIKES and 

OHD-RIKES, involve slightly different setups as shown in Fig. 4 (also set: 

Ref. 15). The rejection of nearly all the probe (local oscillator) 

field makes these techniques much less sensitive to probe laser stabil

ity, so experiments can be done with either CW or pulsed probe lasers and 

pulsed pump lasers. The common setup uses a CW-probe laser at a fixed 

frequency and a tunable, high power, pulsed dye laser as the pump laser. 

The probe beam may be chopped to prevent sample heating. Gated detec

tion examines the signal only during the pulsewidth of the pump laser. 

In the nulled local oscillator technique, RIKES, we have from Eq. 

(15) 

!n(w> = (-8~-W2|e* * X D ( " = <*> - u + * )ie e*e ^ I 2 ^ )I(w ) (28) D \cn/ ' a ''R1 a a c a a c 1 v a c 

, A 
where e is defined such that o * e = 0 . The standard RIKES setup has 

a a c r 

e = x and e = — (x + y ) , so the effective susceptibility is 

*{[xR(a.c - * a ~ «a + - c ) l 1 1 2 2 + [X R(^ C - * a - * a + ^ c ) i 1 2 1 2 } ^ r an iso-

tropic medium. To date, a slight variation of this experiment has been 

performed — for convenience, only the linear part of the local oscilla

tor is nulled, i.e., the probe beam is nulled when the pump beam is not 

present. In this rase the nonresonant susceptibility must be included 

with the resonant susceptibility above. 

If the polarization analyzer is now adjusted such that dc = dn = 

8 , we have one possible heterodyned form of RIKES. For the same input 
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fields considered above, the OHD-RIKES intensity at the detector (Eq. 

(18)) becomes 

y.) - i(.e){e* - ̂ 6- e oimMtx R] 1 1 2 2 + (^WliC.)} (29) 

where the frequency dependence of the susceptibility has been suppressed. 

Comparing this to the SRGS expression, there is the expected reduction 

of the local oscillator and the improved signal modulation depth. One 

distinction in this case is that SRGS examines either E x R ] i n i or 

[ X R 1 1 2 2 1 while this case of OHD-RIKES involves [ x R ] m 2 + f x R ] 1 2 1 2 ' 

^ R ^ U l l ~ ^ XR^1221 ^ t h e l a s t e t J u a l i t v b e i n 8 t r u e i n isotropic media 

although not necessarily true for other material symmetries ) . There

fore, OHD-RIKES measures the difference between the polarized and unpo-

larized scattering while SRGS measures each separately. Further discus

sion of these SRS processes can be found in the two recent review 

2. Signal Generation Processes 

The second frequency mixing case considered here is the class of 

processes 1 aown as signal generation processes. In this case, the out

put frequency and wavevector are not identical to any of the three input 

pump fields. Furthermore, it Is generally true that there is no linear 

term in the expression for the local oscillator field. The principal 

advantage of the signal generation process is that the output is at an 

independent frequency, therefore frequency dispersive elements can be 

used to totally isolate the output signal from the pump frequencies. No 

linear background light from the input lasers should reach the detector. 
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In dispersive medic, there is the added advantage that the output wave-

vector is spatially separated from the others, due to the phasematching 

condition. In signal generation processes (without a linear local oscil

lator) there are also much less restrictive requirements on laser stabil

ity. In fact, we shall see below that the presence of the nonlinear lo

cal oscillator can be used to provide a nonlinear reference signal for 

normalization against laser fluctuations. 

On the other hand, the nonlinear nature of the output means that 

the signal is weak, requiring photomultipliers as detectors with their 

relatively low quantum efficiency and high shot noise. Another disadvan

tage is the lack of automatic phasematching. This has several ramifica

tions: (1) the linear dispersion of the medium must be known well enough 

to achieve phaseraatching, (2) once achieved, the phasematching must be 
18 maintained over the desired spectral range, and (3) the usual finite 

crossing angles of the input beams limit the interaction length and so 

limit the strength of the output signal. (In some studies requiring 

high spatial resolution within the medium, the latter point is consi-
19 dered an advantage. ) Often in signal generation experiments a double 

monochromator is needed to separate the signal from the pump lasers. It 

is then necessary to ensure that the monochromator is scanned synchron

ously with the changing output frequency. Even with these disadvantages, 

signal generation processes have become a popular form of nonlinear spec

troscopy. 

As with the SRS processes, Raman resonances have received the most 

attention for study by signal generation processes. In these experi

ments, the frequency difference, tu - OJ , of two of the input beams is 
a c r 

scanned near the Raman resonance frequency, ai . The most straightfor-
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ward experiments, involving only two input frequencies, u. - u or u. 

ID , mix one of the two input frequencies with this difference fre-
c 

quency. The resulting output frequency is at either 

(a) OJ = W +(o> - u ) » 2 i i ) - u - w +(»»« a a c a c a K 

(b) ii) = iij - (w - a) ) • 2u -ii> 

In the first case, the output is upshifted to approximately the anti-

Stokes frequency from to , while the second case downshifts the output to 

the Stokes side of u> . The nixing process expressed in (a) has been 
20 

dubbed: CARS for Coherent Anti-Stokes Hasan Spectroscopy. By analogy 

the second case is called CSRS (pronounced scissors) or Coherent Stokes 

Raman Spectroscopy. 

Next we consider the possible ways to analyze the output from these 

signal generation processes. With only two exceptions, the only analy

sis technique previously used is the amplitude scheme described in the 

first part of section IIC The two exceptions are the recent work of 
12 21 

Akhmanov, et al. on coherent Raman ellipsometry and Song, et al. on 

a specialized form of nulled local oscillator detection (background sup

pression) involving the use of three independent input frequencies. 

This thesis contaxns a complete discussion of ttu. polarization analysis 

techniques as they are applied to the signal generation case, and section 

III presents experimental work deomonstrating the usefulness of polari

zation-sensitive detection in a CARS experiment. 
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Before the new techniques of polarization analysis are described, 

we review the standard form of CARS (for example) in which only the 

litude of the nonlinear signal is measured. Figure 5 shows the normal 

CARS setup tn which two input lasers are used, with u - u and k. - k . 

The output signal Is linear in the intensity 1(d) ) and quadratic in 

I(o] ), thus pulsed lasers are often used. The angle between the two in

put beams is adjusted to achieve phasematching k = 2k - k , and the 

double monochromator is set to transmit the output frequency, u, * 2u -
a 

-) . As one of the input frequencies is scanned (usually u> ) , the output 

signal will show enhancement from the resonant susceptibility. The de

tected intensity is given by Eq. (12) 

V " > " ft B 2|x I B(-....- a.- c)*(. l l)*6. a)«*(- c) 

+ xD(~^»w »w »~w } ifi((ii )&(<D )» (w )| AR 

( £ ) 2 | ! llXwlllll + f X B l u l l l 2 l ' ( « a ) K - c ) . OO) 

The latter expression applies to the case of linear input polarizations 

parallel to the x-axis in an isotropic medium, a typical experimental 

situation. The interference effects between resonant and nonresonant 

susceptibilities are clearly shown in this expression. For this exam

ple the modulation depth of the resonant signal is simply 

2ReUx R ] u u > 
AMP-CARS [ X m ] l l u 

where we have assumed that the nonresonant susceptibility is a pure 
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real quantity. In aost experimental arrangement*, the Halting value of 

M i u n _,__ will be determined by the fluctuations In the laser intensl-
AMr—CARS 

ties, which cause variations in the strength of the relatively large 

nonresonant signal. We delay the formal signal to noise analysis until 

the new forms of polarization sensitive-CARS are described. 

It is natural at this point to describe two new forms of four-wave 

mixing spectroscopy — Background Suppression-CARS (BS-CARS) and Optical 

Heterodyned Detection-CARS (OHD-CARS). Within the framework established 

in section IIC, these two techniques follow logically as eptf.lfic forms 

of polarization-sensitive signal generation processes — direct ana

logues of the SRS techniques RIKES and OHD-RIKES. In fact, we can now 

establish the hierarchy of four-wave mixing Raman techniques as shown in 

Fig. 6. Each acronym thus has its own place within this general struc

ture. Of course, this framework applies equally well to the lesser stud

ied two-photon absorption resonances, only :he catchy acronyms have yet 

to be invented. 

For completeness, however, let us describe these new techniques and 

indicate explicit expressions for the output intensity at the detector 

and modifications in the experimental apparatus of Fig. 5. In the case 

of background suppression (nulled local oscillator), the polarization 

analyzer is adjusted to null the output signal with the frequency far 

from resonance. As one scans through the resonance the detected inten

sity as given by Eq. (15) is 

!**(«>) = 1 — ) 8 e • x-(u =(u + ID - ID ):e e e I (u )I((u ) D \cn/ ' a A R a a c a a c 1 a c 

where e is orthogonal to the polarization state of X™(w = UJ + o -
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ui ):e e e . As a concrete example, we return to the case of linear in-
c a a c 
put polarizations and an isotropic nediua. We choose the to beaa to be 

polarized along the i-axis and the <n beaa to be polarized at angle 6 

to the di beam. 

e = x e - cosfi x + sinfi v 

so tha t the e f f ec t i ve nonresonant and resonant s u s c e p t i b i l i t i e s are 

W V a e c = ' W i l l i 0 0 3 6 X + l x N R ] 1 2 2 1 s i n 6 >' 

* R U a V c = 'Villi"8 6 * + ( * R ' l 2 2 1 S l n 6 * 

- ' " N R ] 1 2 2 1 S l n 6 X + 'Willi"3' y 

| [ x N R ] l l l l C O s 2 6 + l W l 2 2 1 S l n 2 6 | ' 5 

(31) 

where tht frequency dependence of Che susceptibilities are suppressed. 

The total output signal becomes 

(cos 6 + pflR i.ni) 

2 2 2 
1'Villi1 l < u , a ) I ( u c ) ( 3 2 ) 

wherr p N R = [x S R) 1 2,i/[x N 1 !] l u l and p R - U R ] 1 2 2 1 / [ V m r U can be 
22 shown that p is the depolarization ratio for the Raman mode; p is 

similarly defined. As mentioned in the general discussion, one can 

optimize the output signal by choosing the proper input polarization 

states. In the exampls, we are free to optimize In(w) with respect to 
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die choice of 6. The signal is Maximized when 

tan6 - (P^)"1*- (33) 

23 
If the isotropic medium obeys the Kleinman symmetry, we have p - 1/3 
and 6 = 60°. For a strongly polarized Raman mode, p = 0, we can evalu

ate Eq. (32), 

This can be compared to the signal one would have if there were no non-

resonant term, i.e., this is in the limit of a strong Raman mode. In 

this case optimization occurs when all polarizations are parallel with 

the resulting idealized output 

.IDEAL- . _ /8n\2 D2 | r 1 ,2 2, , , 
h ( w ) = \«J 6 l[xR]lllll Z K ) I {"c }-

We see that the use of polarization analysis has reduced the signal by a 

factor of 16 (compare with Eq. (34)). In most cases, this loss in sig

nal can be either tolerated or overcome with increased input intensi

ties. Clearly, it is possible to take a background free CARS spectrum 

without sacrificing too much signal, thus eliminating the lineshape dis

tortions caused by the interference with the nonresonant term. 

On the other hand, in the limit of r weak Raman mode, we should 

compare the intensity in Eq• (34) with the intensity of the total signal 

one would measure in an amplitude CARS experiment, 
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T m -(f) 2B 2Ccos 26 + P^i n
25) lx N Rl^ uI 2(«. a)K« c) 

• ( s ) v ( i ) ^ 4 i i l 2 < - . > ^ c > < 3 5 > 

where 6 and p are evaluated at 60° and 1/3 as above. Forming the ra

tio of the signal transmitted through the analyzer (Eq.(34)) and the sig

nal incident on the analyzer i.j_ (which will be essentially totally re

jected) , we have 

j _ f t x R J Hll | ? 

1 6 I i W i m ] ' V W - & I'- r " / • »6, 

This expression shows two interesting features. First, the expected 

quadratic dependence on the ratio of resonant to nonresonant suscepti

bilities, which means the actual detected signal strength will become 

very weak for weak resonances. From this point of view, background sup

pression may not be the best technique to detect weak resonances. A se

cond point to be made is the independence of this ratio on the laser 

powers. If, as part of a background suppression setup, the rejected 

signal from the analyzer is also monitored, we have a "built-in" normal

ization signal to eliminate fluctuations in the BS-CARS signal due to 

laser power fluctuations. A general experimental arrangement is indi

cated in Fig. 7. 

Finally, let us compare this form of background suppression with 
21 

that proposed by Song, et al. Figure 8 shows the polarization arrange
ment suggested in their Letter. The frequency difference w - to drives 
the Raman mode. With this polarization arrangement the nonlinear local 
oscillator field is of the form 
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2L 0<",) = " < W ^ n t ' i a z i " ['<NR )1212> i + ! 5 ( l x N R ] 1 1 2 2 - 6 ( N R 1 l l l l ^ ) f i ( u a ) a ( u b ) 

» £(w ) 
c 

• «<- I [ V l l l l * ) S ( V S ( V 8 ( » c > 

where w = u + w, - w in this "four-color" CARS experiment and where 

Kleinman's symmetry is assumed. The orientation of the analyzer along x 

Is correct to suppress the nonresonant susceptibility contribution in 

this case. Hence, this is the first example of polarization analysis 

used for background suppression in a CARS experiment. Unfortunately, it 

requires the use of a third input frequency, not commonly available in 

most amplitude CARS setups. Furthermore, Song, et al. describe only 

minor variations in their technique to compensate for the fact the Klein-

man's symmetry is not precisely obeyed and do not address the more gen

eral polarization situation. The technique described in this section 

only requires the two input lasers normally used in CARS and can be used 

with general input polarization states. As such, the method described 

here is far superior to the previous techniques. 

The second form of polarization-sensitive detection in signal gen

eration processes is OHD-CARS, in which the analyzer is uncrossed to al

low heterodyning between the nonresonant and resonant parts of the sig

nal. Applying the general form of Eqs. (18) and (19) with w * oi + u 

- OJ to the example used in the description of BS-CARS above, the de

tected intensity is 
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h M ' | Q | 2 l L O + I H 

XL0 = ( c ^ ) 2 e 2 < C ° s 2 f i + 4 S l n 2 6 ) [ W l l l l l 2 K ) I ( w c > 

lH - ( f n " ) V < P R " p K R ) s l n 6 C O S 6 ^ N R l l l l l 2 R e ( 1 G * ^ R ] i m ) I 2 ( - a > I ( W c ) 

(37) 

where 0 is the generalized uncrossing angle, as defined in Eq. C21). 

The heterodyned term in this case is proportional to the product of the 

nonresonant and the real part oi a phased portion of the resonant sus

ceptibility. A more explicit form for 0 is needed before the lineshape 

of this heterodyned term can be established. We have from Eq. (31) 

~ _ - - 2 2 2 J § 
e = (cos5 x + p ^ s i n f i y ) / ( c o s 6 + P ^ s i " 6) 

Ko • ̂ W m i ' V 4 * ^ " 1*̂1 »*„>• <3« 

The angles of the quarter-wave plate and linear analyzer, n and £, re

spectively, which block the polarization state, can be found to be 

n = 5 = can"1/" . • I..X (39) (- P^tar.6) 

Therefore, the expression for 0 in Eq. (21) becomes 
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0 - (d£ - dn) + i dn (40) 

where di' is a small uncrossing of the linear analyzer alone and dn is 

similarly defined for the quarter-wave plate. Combining this with Eq. 

(37) the heterodyned term becomes 

h - ( f n f ^ R " pNR ) s i* 6 C° 3 6 t*NR ]llll 2 { d" R e < ^ R 1 l U l ) + ( d" " d e> 

* l m<[x R] u l l)>I 2(" a>I(u> c). <41> 

The simplest heterodyned spectra occur when either only the linear ana

lyzer is uncrossed or when both quarter-wave pJate and linear analyzer 

are uncrossed together by the same angle. In the first Instance we have 

dn = 0 =• 1^ * I"(Ix R] l l ui («a) 

and in the second case 

d n = d C - I^ « »e[(x R) l u l]- C42b) 

Thus, under easily achievable circumstances, either the real or the ima

ginary part of the resonant susceptibility can be displayed superimposed 

on the leakage local oscillator signal. The modulation depth for heter

odyned detection becomes 

cont'd 
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. < PR - P N R ) s i " 5 C O a S 2 I m ( [ i ( R 1 U l l > 
7 7 7 ft Tv 1 l**JJ 

cos * + o^sin 6 o l x N R J U l l 

where dn - 'J and d£ = 9 . The factor involving the polarization angle 6 

can be optimized by choosing tan6 = (p.T„) . For p._ = 1/3 and p = 0, 
NR NK R 

R U - ^ - . (44) 
0 H D " V W x l l l 

Comparing this to the modulation depth in the amplitude case, and assum

ing the Raman line is an isolated Lorentzian, we have an increase in the 

modulation by a factor of 6 when using the OHD technique. (Since che 

value of 6 is as yet arsitrary, this increase may become infinite as 

6 •+ 0, i.e., in the background suppression case.,) To confirm that this o 

improvement carries over to the detection sensitivity we now perform a 

signal to noise analysis for the various forms of CARS experiments. We 

shall also find that there is an optimum value for 8 , as discussed be-
o 

low. 

E. Signal to Noise Analysis 

In the previous section> the signal terms for the various forms of 

CARS experiments are written out explicitly for the specific case of 

linear input polarizations in isotropic media. We now want to consider 

the possible noise sources which cause fluctuations in this signal le

vel. Three major noise sources can be identified and characterized; 

these are (1) laser intensity fluctuations; (2) finite extinction ra

tio of polarization analyzer, and (3) shot noise. Other noise sources 
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briefly considered are dark current, electronic noise, and linear light 

scattering. After the signal to noise ratio is established, it is in

verted to give the limiting value of detectivity as determined by the 

ratio of the resonant to nonresonant susceptibilities. Typical numbers 

are then used to compare the techniques. 

Laser intensity fluctuations are almost always the leading source 

of noise, especially when pulsed lasers are used. To characterize these 

Fluctuations, the fractional mean square fluctuation is defined as 

e i s { ( I ( v ) 2 " (^J)2}^"*5?;2 ( 4 5 ) 

where the bar indicates averaging over many pulses. For pulsed laser 
-4 -1 systems this mean square fluctuation may range from 10 to 10 . The 

variation in the nonlinear signal can be calculated from 

(^)2 - ?(t^1(^v)2 

where the sum is over all independent frequencies involved in the non

linear mixing. 

The finite extinction ratio of the polarization leads to a leakage 

even in the null case. This leakage will show the same intensity fluc

tuations as the output intensity, but it is an incoherent form of back

ground. We define the extinction ratio in terms of an angle 9 , such 

that the fractional leakage of the imperfect polarizer is equal to a 

perfect polarizer rotated by an equivalent angle 6 . Common polarizers 

have extinction ratios between 10~ - 10" , so 0 ~ 10~ - 10" (1 to 10 
e 

mrad uncrossing angle). 
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The ultimate detection limit will be determined by the quantized 
24 nature of the output photons and is termed the shot noise limit. It 

is assumed that photons arrive at the detector in a random fashion, so 

that the mei.-< square fluctuation in the number of photons equals the 

numbPI of photons. The mean square current generated by a photodetector 

of quantum efficiency q, gain g, and area A is given by 

(^p-" t"y i ( ," t o <«> 
where e is the electronic charge, I is the optical intensity incident on 

the detector, flu is the energy of each photon, and Av is the bandwidth 

of the detection system. As the signal intensity becomes very small 

shoe noise will begin to dominate the other noise sources. 

Other noise sources (not considered in the following calculation) 

are the dark current, electronic noise, and linear light scattering. 

Dark current acts as an additional source of shot noise, but proper 

choice of photomultiplier and gaf.ed detection should minimize its con

tribution to the noise. Electronic noise (or thermal noise) is due to 

variations in the electrical signal introduced by the detection system 

itself, and should be made unimportant by the proper design of the elec

tronics. Light striking the photomultiplier from other than the nonlin

ear source constitutes another form of noise which is eliminated by pro

per spatial and spectral filtering of the output beam. 

1. Signal to Noise — Amplitude CARS 

Of the total intensity reaching the detector in this case, the re

sonance is carried on the heterodyned term, I , as defined in Eq. (12). 
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The signal current generated by the photodetector due to I„ is 

Next we evaluate the noise contributions. The predominant inten-

2 1 1 I (ai )I(a) ). Fluctuation in the intensities leads to a mean square a c 
fluctuation in the photocurrent of 

Kuct) - (^)2 &«-. + *c> <"> 

and the mean square shot noise contribution will be 

teJ-^W- (so) 
Thus, the signal to noise ratio is 

( S / N )AMP. CARS 
(( 4 ifluc t) +( 1shot)) ! S 

(£«•. • «c> *f*f) hof 
(51) 

In the limit of large fluctuations, this becomes 

, _ , _ , .-.• "AMP-CARS ^ ( [ x a ] u l l ) / [ x N R ] 1 1 1 1 ) 
( S / N )AMP. CARS ~ _,_ ,is ,, ^ ,% ( 5 2> 

(fluctuation) ( 4 t a + ec> ( 4 e a + ec> 

where M.._, ,nAIJC is the modulation depth and (4e + e ) is the rms 
AMr • LiAKo a C 
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fluctuation in the background signal. S/N = 1 when these quantities are 

equal. 

The shot noise limit will be reached when the fluctuations satisfy 

(4e + e ) < Ift/I,n where Irt - 2 h " A v . If we assume ha> « 3eV, Av - I0 6 

a C ^ Q LO Q qA 
Hz (1 psec gate time), q - .1 so that I_A ~ 10 m and that the nonres-

-14 onant susceptibility of ~ 10 esu and input powers of 1 kW lead to 

an output signal power of 10 W, we find (4E + £n) <. 3 * 10 . Thus, 

about .1% rms fluctuation in each input laser power will bring the sig

nal to noise ratio to the shot limit, which is given by 

( S / N W . CARS * V ' W 
(shot) 

T 2 , /R„\ /l(»)I(»)\' 
(53) 

2. Signal to Noise - Background Suppression-CARS 

In this case, the signal current is given by 

i = ̂ SA I (54) 

where I is the intensity In(w) from Eq. (32). There is also a nonlin

ear incoherent source which strikes the photomultiplier — the polariza

tion analyzer leakage intensity, I , 

h - 9e \o- < 5 5 > 

For weak resonances, this leakage intensity dominates the signal inten

sity, and fluctuations in I are an additional source of noise. We have 



44 

M 
(S/N) = L 'BS-CARS 

| (W4<- a - c > + 4 ^ *•<*«, *hJt 

" e I W Z ' 4 E a + EC) + ( e X o + W 
Considering again the two limits: 

( S / N )BS-CARS * .2 , 7 3" 
(fluctuation) e W a V 

.2 

• ( n ) A ' y 1 " 1 ' A <"> 

where we have used the same example to evaluate the ratio. One finds 
that ( S/ N' B S_CAHS ° P t i m i z e s when tan6 = ( P ™ ) , while the signal alone 
maximizes for tan6 - (p.™) • Upon evaluation, this results in only a 
25% change in the signal to noise ratio and is ignored in the present 
calculation. In the shot noise limit, we have 

i, ,o i / i 2 ( i u ) i ( u y\ 

(shot) V 4 ' 

Comparing bne shot noise limits for BS-CARS and AMP-CARS, assuming a 
Lorentzian lineshape so that the maximum value of 2Re(x„) equal the max
imum value of |xRl» w e s e e that there is only a factor of four differ
ence in the limits (AMP-CARS being more sensitive). Approximately half 
of this factor of four can be attributed to the difference in input po
larizations used in the two setups, while the other factor of two is due 
to the use of the polarization analyzer which rejects approximately half 
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of the signal intensity. 

3. Signal to Noise — Optical Heterorf*—ed Detection-CARS 

For OHD-CARS it is assumed that enough intensity is leaked through 

the analyzer such that the linear heterodyned term is much stronger than 

the term proportional to |x p| . Thus, the signal current is derived 

from the intensity lA of Eq. (41). We must consider all sources of 

noise — fluctuations in the background signal from the uncrossed ana

lyzer (see Eq. (37)), fluctuations in the background signal from the 

finite extinction of the analyzer (see Eq. (55)), and the shot noise 

from these backgrounds 

( S / N )OHD-CARS " 

\ ha) / X H 

[ ( W 8 ' 2 w 2 + <° 2v 2K • <c> + 2 # * {H\O • °2wf 
= 5 (5Q) 
[ ( l 0 | 4 + 9 e > I L O ( 4 E a + E c ) + ( l a | 2 + e e ) I L o V ! 5 ' 

Since the value of |o|, the polarizer uncrossing angle, is an indepen-
14 dent parameter, it is adjusted to give the best signal noise ratio. 

First consider the shot noise limit with ideal polarizer and no la
ser fluctuations, i.e., 9 = 0 and e = e = 0 . The signal to noise 

e a c ° 
ratio of Eq. (59) then becomes optimized at |G| = 0 (S/N •*• °° ) , but thid 

is simply an artifact of ignoring the |x R| terms. In fact, the optimum 

S/N is given by Eq. (58) of the previous section. 

In the limit of large fluctuations and non-negligible extinction 
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ratio, we have 

^ 
( S / N )OHD-CARS =

 ri„i4 t "4AT 0HD-UAK5 rlnl* j. o'l'r 11* j. » \* 
(fluctuation) t | S | + V W 4 ea + V 

J0j 1 ^"Vllll* ,,m 

( 0 r + O ' (4e + e ) ' 1*NRJ1X11 e a c 

where the last expression has been evaluated for the example discussed 

above. The signal to noise Is maximized when |o| * 9 and is given by 

1 I m C [ XR 1llll ) 

^ W c A R S " ( 2 ) W +*•}* 'Willi • ( 6 1 > 

4. Comparison of CARS Techniques 

To make a comparison of these CARS techniques, consider the detec

tion limit, defined as the ratio of resonant to nonresonant susceptibil

ities when S/N = 1. Solving Eqs. (52), (57), and (61) for XH/x«p» as

suming Lorentzian lineshapes for the resonant susceptibility and drop

ping the tensor subscripts, we have 

< V > W AMP-CARS = ( 4 E a + Zc)H 

(y /y ) = — 8 We + e )h 
"VNR'BS-CARS rr e V a V 

(x /y ) = >^6 (4e + e ) . 
UR'XNRyOHD-CASS V a V 

(62) 

In a typical experiment, each laser may fluctuate by 15% (rms) and the 
-4 extinction ratio of a moderate quality polarizer may be about 10 

2 -4 h Thus, e » e = (.15) , 9 = (10 ) and averaging over 10 pulses (1 sec 
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time constant) , we have 

*XR'XNR'AMP-CARS ~ 1 0 

fv /y ) « 8 x 10 lxR/xNR''BS-CARS 

<VXNR>OHD-CARS " 1' 6 " ̂  <"> 

Thus, in typical situations the best signal to noise occurs in the he

terodyned form of CARS. As one can see from Eq. (62), OHD-CARS is ap

proximately a factor of (9 ) more sensitive than amplitude CARS. 

Knowing the strength of x R f° r C n e bulk material allows one to pre

dict how small of concentration will be observable usinj; the CARS tech

nique. Naturally if the resonant material is strongly diluted in a se

cond substance, the nonresonant susceptibility is determined by the sol

vent. Ideally, one wants to use a solvent with a small % to increase 

the sensitivity. In a typical setup, it should be possible to achieve 

an extinction of 10~ under favorable circumstances, while little im

provement in laser stability can be expected (e = .05). With this im

provement, one speculates the practical limit of detection sensitivity 

to be 

-4 X R/x N R ~ 1° (practical limit). 

As an example, consider detecting benzene, using its strong 992 cm Ra-
-14 

man mode (xR ^ 30 x 10 esu for pure benzene), diluted Ir.to carbon 
-14 

tetrachloride (x™ ~" 1 x 10 esu). The practical detection limit is 
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reached after a volume reduction of 3 * 10 , or for concentrations of 

benzene less than 10 ppm. 

Before ending this discussion, it should be cautioned that this 

practical licit may not be achievable if the input laser powers are low. 

In a previous discussion it is shown that I A ̂ 10 W while I T« A " 
-6 -14 

10 W for 1 kW input beams and X™ « 10 esu. Using this information 

one can determine x™ when S/N = 1 in the shot noise limit from Eq. (53). 

One finds 

x ~ 3 x io" esu. 

-3 
The shot noise limit becomes XP/*MR ~ •* * 1 0 • T " 1 1 6 * t n e practical 

-4 limit of 10 in the benzene case is not attainable in this situation. 

Fortunately, it is possible to use higher powered laser systems which 
• 3/2 lower the shoe noise limit by (10) **" 30 for each order of magnitude 

increase in input laser power. Therefore, using 10 kW lasers the prac

tical and shot noise limits are identical, while at higher input powers, 

shot noise is no longer a limitation. 

As mentioned in the discussion of background suppression CARS in 

part D, there exists the possibility of monitoring the rejected beam 

from the polarizer and using it for normalization against laser fluctua

tions. The only noise sources in this case come from shot noise and 

electronic noise of signal processing, the latter being more important 

in the experimental setup described in the next section. Principal 

problems are the difference in response of the two independent optical 

detectors needed in this arrangement and the electronic signal process

ing which requires dual input channels and ratioing. With some effort, 
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photo tubes can be matched and a nlcroprocessor can process the data on 

a shot-to-shot basis, thus minimizing the electronic noise. To incor

porate this noise source Into the signal to noise analysis we assume 

that the electronic noise is proportional to the ratio being Measured, 

similar to the laser power fluctuation contribution of Eq. (45). In the 

limit of large electronic noise, we have the S/N * 1 limiting suscepti

bility ratio of 

( X R ' X N R * O H D - C A R S B 8 e ̂ electronic* 

where e , . is the mean square fluctuation in the ratio due to electronic 
electronic noise. This can be compared to the result in Eq. (62) for 

large intensity fluctuations. Using the proper techniques, 
U -2 -3 

(e - ) <, 10 - 10 , so increasing the sensitivity by one or 

two more orders of magnitude. 

To summarize, this section has presented a new perspective on non

linear spectroscopy. Two new techniques BS-CARS and OHD-CARS are ob

viously needed to complete the overall framework discussed. It is shown 

that these new arrangements theoretically lead to improvements in the 

detection sensitivity of two to three orders of magnitude over the usual 

amplitude CARS case. In the next section, experimental verification ot 

these results is presented. 
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Figure Captions 

1 Possible pairs of parameters used to describe a general polari

zation state. (S ,S ) , (£,6), or (9,+). 
x y 

2 Orientation of quarter-wave plate and linear analyzer to trans

mit the elliptical polarization state, e , defined in Eq. (10) ; 

a 

propagating along + z-axis. The fast axis of the quarter-wave 

plate makes an angle n with the x-axis; the transmission axis of 

the linear analyzer makes an angle £ with the x-axis. For 
transmission of e , n * 9 and z, = 6 + 6. a 

3 Typical Stimulated Raman Gain Spectroscopy (SRGS) experimental 

setup, using cw probe and amplitude modulated-cw pump beams and 

lock-in detection. 

4 Typical Raman Inducod Kerr Effect Spectroscopy (RIKES) experi

mental satup, using cw probe and pulsed pump beams with gated 

detection. Note polarization-sensitive detection. 

5 Typical Coherent Anti-Stokes Raman Spectroscopy (CARS) experi

mental setup, using pulsed probe and pump beams with gated de

tection. 

6 Hierarchy of four-iwave mixing spectroscopy techniques. 

SRS - Stimulated Raman Scattering Processes. 

SG - Signal Generation Processes. 

See text for explanation of acronyms. 

7 General polarization-sensitive CARS experimental setup. Compare 

with the CARS setup of Fig. 5, noting the addition of polarizers 

in the probe and pump beams and the signal beam analyzer (A/4 

plate and linear polarizer). The additional double monochroma-
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tor and PMT (photomultiplier tube), drawn with fine lines, are 

used in the ratioing scheme described in the text. 
21 Fig. 8 The polarization arrangement of Song, et al. for background 

suppression in four-color CARS experiment, w *= ai + oj. - u . 

This has been appropriately dubbed "asterisk." 
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Figure 1 
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Figure 4 
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Figure 8 
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III. EXPERIMENTAL DEMONSTRATION AND DISCUSSION OF BACKGROUND SUPPRES

SION-CARS AND OPTICAL HETERODYNED DETECTION-CARS 

The theoretical background for many forms of four-wave mixing spec

troscopy has been presented in the preceding section, with emphasis 

placed on the possible forms of coherent anti-Stokes Raman spectroscopy 

(CARS). Amplitude-CARS (CARS without polarization analysis) has been a 

well established technique and has become the most popular type of non-
2 linear spectroscopy. In Section II we have introduced two new methods 

of performing CARS experiments using polarization-sensitive detection 

techniques. With one polarization arrangement, the nonresonant back

ground may be eliminated leaving only the resonant spectrum — this has 

been called "background suppression"-CARS or BS-CARS. A modified polar

ization scheme may allow the examination of either the real or the ima

ginary part of the resonant susceptibility and has been named "optical 

heterodyned detection"-CARS or OHD-CARS. In both cases, it has been 

predicted that t'.iere should be an increase in the ability to detect weak 

resonances over the amplitude-CARS technique. In this section, we pre-
3 

sent the results of experimental studies made to demonstrate BS-CARS 

and OHD-CARS and to evaluate their detection sensitivity. 

We begin "his section with a description of the technique and ap

paratus used earlier in our laboratory to perform amplitude-CARS mea

surements. This was the basic nonlinear spectroscopy system which was 

later modified to make polarization-sensitive measurements, although 

many of its features remained unchanged. Next, the method to separate 

the resonant and nonresonant contributions to the CARS signal ±rj des

cribed in a form appropriate for the experimental work to be presented. 
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Included in this discussion are the explicit changes made in the aapli-

tude-CARS setup. This is followed by the experimental demonstration of 

B5- and OHD-CARS, including a discussion of the sample, the experinental 

spectra, the analysis of these spectra and the detection sensitivity of 

these techniques. This section concludes with £ discussion of the types 

of problems which can be studied with these polarization-sensitive tech

niques and their limitations. 

A. The Standard Amplitude-CARS Technique and Apparatus 

In the usual CARS setup two pulsed lasers with frequency separation 

equal approximately to a vibrational excitation of the sample are used 

to generate a nonlinear output beam at frequency w = 2u - u , where 

a) > a) are the two input frpquencies. As described in Section II, when 

u) -io matches a Raman-active excitation, there is an enhancement in a c 

the resonant susceptibility which enhances the nonlinear output (thus 

allowing CARS to be used as a form of spectroscopy). In this segment, 

we describe the experimental aspects of this technique. 

The primary parts of the CARS setup (and of .en the most expensive) 

are the laser sources. High peak power (> 1 kW) and narrow bandwidth 

(< 1 cm ) characterize useful laser systems for nonlinear spectroscopy, 

since the nonlinear output is strongly dependent on the input intensi

ties and typical Raman modes have widths from 1 to 10 cm . Furthermore, 

at least one of the laser sources must be tunable, so that the disper

sion of the susceptibility can be measured. Flashlar-.p-pumped dye lasers 

satisfy these criteria and were easily constructed for use in these ex

periments. (Details of this system can be found in Ref. 4), Tuning 

of the dye lasers 
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was achieved by either an interference filter/etalon combination or a 

telescope/grating combination, with each scheme giving a linewidth less 

than 0.2 cm" and peak power of 1-10 kW. Operating at 10 pps, this la

ser system has proven quite useful for CARS measurements. 

Another important experimental consideration, especially in disper

sive media, is the achievement of phasematching as described in Section 

H A . Essentially, this is a statement of momentum conservation among 

the four photons. Materials with normal dispersion ( -r- > 0) require 

the use of a noncollinear geometry to achieve phasematching. The usual 

arrangement for phasematching is shown in Fig. 1, with the angle ty be

tween k and k being about 1-2°. To calculate ib, precise information 

a c 

is needed about n(ai)» the linear refractive index. In many cases ^ can 

only be roughly estimated, thus the experimental setup must allow for 

the optimization of the phasematching by having i/> be easily adjustable. 

A convenient arrangement to bring the two input beams to a common focus 

while maintaining the flexibility in the phasematching angle is shown 

in Fig. 2. The two input beams are made parallel before they are 

brought to a focus by lens LI. The angle ty is determined by the spacing 

of the beams before the lens and the focal length of LI. The phase-

matching is adjusted by varying the separation of the beams through 

translation of mirror M2 normal to the axis of the lens. (This arrange

ment also allows easy alignment of the detection system along the ex

pected output beam path. The to beam can be translated to duplicate the 

direction of the output beam as shown in the insert of Fig. 2.) 

Figure 2 also indicates the other major part of a CARS setup — the-

detection system. A photomultiplier (PMT) is usually needed to detect 

the nonlinear output in experiments involving the generation of a new 



frequency (signal generation processes, section IID), such as CARS. The 

spatial separation of the beams after the sample (due to the phasematch

lng condition) aids in discriminating against the input beams, while the 

double monochromator further spectrally discriminates against linear 

scattering of the input frequencies. It is possible then to obtain a 

PMT signal dependent only on the nonlinear output and the ever-present 

dark current. The latter is minimized by using gated detection of the 

PMT signal. The present system included dual-channel gated electrome

ters (reference and signal channels) with the capability of outputting 

the analogue quotient of these signals onto a recorder. 

An amplitude-CARS spectrum is recorded by the following procedure: 

(1) input frequencies adjusted to the desired frequency difference, (2) 

the phasematching angle calculated and the appropriate separation of the 

input beams set, and (3) the detection system approximately aligned (as 

described above) and the double monochromator adjusted to the output fre

quency. The nonlinear signal will be present even if the frequency dif

ference does not match the Raman mode, due to contributions from the 

nonresonant susceptibility (Section IIA). Once the nonlinear signal is 

found and optimized, the dispersion of nonlinear signal can be recorded 

versus the difference frequency u - tu . The CARS system in Fig. 2 is 

capable of scanning over a range of approximately 100 cm while taking 

an undistorted spectrum. (Note: This scanning range requires that the 

double monochromator be continuously adjusted to match the changing out

put frequency.) For usual Raman resonances, 1-10 cm wide, this scan

ning range is adequate to record useful CARS spectra. 

The dispersion of the amplitude-CARS signal is a direct measurement 

of the square magnitude of the resonant and nonresonant susceptibilities 
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(see Section IID for details and Section IVC for the inclusion of linear 

absorption effects). The presence of the nonresonant background alters 

the linesbape of the resonant signal through interference effects and 

provides a nondispersive background whose fluctuations mask weak reson

ances. In spite of these problems, amplitude-CARS spectra are very in

formative and relatively easy to obtain (spontaneous Raman spectra re

quiring hours are being supplanted by CARS spectra taken in a few min

utes) . The principal information in these spectra are the frequency and 

strength of the Raman resonances. Because four photons are involved, a 

great deal about the polarization properties of the resonant suscepti

bility can also be extracted. As shown in Fig. 2, each input beam is 

polarized before entering the sample. The inclusion of a half-wave 

plate in the w beam allows this beam's linear polarization to be rota

ted to an arbitrary angle to the u beam's polarization. In isotropic 

media, we are generally only interested in two input polarization ar

rangements — a parallel to 10 or co perpendicular to u . From the 

c a c a 

strengths of f ^ ] , , . , and txR3i221* a 1 1 independent elements of x H can 
g 

be found. In crystalline media, there is a wealth of information to be 

learned using an oriented sample and different polarization combinations 
9 

— each case must then be considered separately. 

We end this section by briefly describing the limitations of this 

CARS setup. First of all, fluctuations in the laser intensity, includ

ing long term drifts, were uncompensated, since the use of nonlinear re

ference signal required additional detection equipment. Variations in 

the CARS spectrum from this source could be eliminated only by ensuring 

the stability of the input lasers (using new dye, flashlamps, etc.). A 

second source of distortion in the spectra results from a deviation from 
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perfect phasematching as the difference frequency is scanned. For 

small Raman shifts the phasematching angle <l> is linearly proportional 

to the Raman shift — typically «f *** 30 mrad for oi "*• 1000 cm and the 

phasematching peak has a half-width of about 1 mrad. Scans of 30 cm 

or more require adjustment of ty. Our CARS setup had no provision for 

such adjustments, except for manual changes made during the scan. Fi

nally, a nonlinearity in the electro-mechanical linkage which simul

taneously varied the w laser frequency and the double monochromator 

setting caused loss of signal during extended scans. It was empiri

cally determined that useful scans of ""* 200 cm could be made if the 

raonochromators were used at low resolution (AX * 20A, 500 urn slits) 

and if if* was tweaked during the scan. If reductions of the slit 

widths became necessary to eliminate unwanted signals, the .iseful fre

quency range was greatly reduced — in some instances scans had to be 

limited to ~~ 10 cm . However, being cognizant of these shortcomings, 

this system proved quite adequate to perform CARS experiments, includ

ing the polarization-sensitive measurements described in the next sec

tion. 

B. Polarization-Sensitive CARS Techniques and Apparatus 

To circumvent the basic limitations of the aroplitude-CARS tech

nique one needs to control the nonresonant contribution to the nonlin

ear signal, so the resonant part can be studied in more detail. The 

technique described here to raanip-jlate the nonresonant contribution is 

polarization-sensitive detection, i.e. the introduction of a polariza

tion analyzer into the nonlinear output beam before it reaches the de

tector. 
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The first use of such a detection scheme in a CARS system was by 

Levenson and Bloembergen in studies of Raman modes in benzene and 

diamond. They clearly demonstrated that near a Raman resonance the 

polarization state of the total nonlinear output is highly dispersive 

by measuring the variation with frequency of the angle of the semi-

major axis of the elliptically polarized output (see Fig. 6, Ref. 10). 

To observe this dispersive behavior, it was necessary to introduce an 

angle (other than 0° or 90°) between the linear polarizations of the 

input fields, £(w ) and £(ui ). Also included in this work were sever

al polarization-sensitive CARS spectra in which the signal intensity 

through a fixed polarizer was monitored versus w - u . Although one 

of the polarization arrangements used by Levenson and Bloembergen with 

benzene completely eliminated the resonant contribution to the output, 

the ability of the technique to discriminate against the nonresonant 

background was not discussed or demonstrated. 

The full utility of polarization-sensitive CARS was not under

stood until a simple distinction was made between the resonant and 
3 

nonresonant parts of the total nonlinear output field. In the simple 

case of benzene used in Ref. 10, we can write 

SR = B { I V l l l l C O s 6 X + [ xR 11221 s l n < 5 y ) 

V " B<IX H R] 1 1 UCOB« i + [X^l^sin* 9) CD 

where we have written the resonant (R) and nonresonant (NR) fields for 

an isotropic medium assuming the input fields to be polarized as 

£(u> ) = x and £(ui ) - cos<5 x + sin6 y. B is a nondispersive constant. 
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If we assume that the nonresonant susceptibility is also nondispersive 

and is a real quantity (away from any resonances), then *L^ is in a 

fixed linear polarization state and is constant in magnitude. On the 

other hand the resonant susceptibility is very dispersive in both mag

nitude and in phase (relative to £««)• I c is usually true however, 

that the ratio (XnJior/[XDIII-II i s r e a l a n d nondispersive for tens of 

wavenumbers, si that £_ is also in a fixed linear polarization state. 

Figure 3 shows one possible set of directions of the input and output 

polarizations using the strongly polarized 992 cm Raman mode of ben

zene as an example. 

With the separation of the resonant and nonresonant fields as in 

Eq. (1) it is immediately clear how polarization-sensitive detection 

can totally eliminate the nonresonant field leaving only a spectrum of 

resonances. We insert a linear polarization analyzer after the sample 

and adjust it to transmit the polarization state orthogonal to S-™-

(In Fig. 3 the transmission axis is indicated by c). Experimentally, 

this can be done by nulling the nonlinear signal when the frequency 

difference is far from any Raman resonance, then only the nonresonant 

field contributes. To achieve a good null (say reduction of the sig

nal strength by four to six orders of magnitude), a calcite Glan-

Thompson prism polarizer mounted on a precision rotational mount with 

3 mrad resolution should be used as the analyzer. (Similar polarizers 

should be used to define the polarization states of the incoming laser 

beams). In addition, one should expect £ to be slightly ellipci-

cally polarized, since there is nearly always a residual strain bire

fringence in the sample cell windows or in the other pieces of optics 

in the beam path. A quarter-wave pJate should help to eliminate this 
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slight ellipticity and can be as simple as a plastic-sheet wave plate 

or as sophisticated as a Babinet-Soleil compensator. Figure 4 shows a 

complete experimental setup to eliminate the nonresonant field — a 

technique we call "background suppression"-CARS. The only distinction 

between the setup in Fig. 4 and the standard amplitude-CARS setup in 

Fig. 2 is the addition of a collimating lens, a quarter-wave plate, 

and a Glan-Thompson polarizer. Thus only minor modificacions are nec

essary to make the conversion from amplitude-CARS to background sup-

pression-CARS. (See Section II for additional theoretical details, 

such as the optimal choice of the angle 6). 

The experimental apparatus for the second new variation of the 

CARS technique* optical heterodyned detection-CARS, is identical to 

that used for background suppression — only the technique is alter

ed. The basic idea is illustrated in Fig. 5(a), where the transmis

sion axis of the linear analyzer, £, is rotated by a small angle 6_, 

The intensity transmitted through the anal>zer becomes 

I C C l 90 6NR +V i n a| 2 

" Bo«m + 2 9 o S N R s l n a R e [ V ( 2 > 

where (Qp®™) ^ s t n e amount of the nonresonant amplitude allowed to 
leak through the analyzer; (£ sina) is the component of £ which is 

R R 
normally transmitted by the analyzer (even in the null position).. In 

the second line of Eq. (2) we assume a weak resonance so the only 

dispersion is linear in the real part of £ . Since Re[£_] a Re[xR]» 

uncrossing the linear polarizer yields a spectrum displaying the real 
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part of the resonant susceptibility. [Note: if a quarter-wave plate 

is present, it toe must be rotated by the same angle 6 so that its 

axes match the axes of the polarizer, thus introducing the same phase 

shift to the total transmitted field]. 

An alternate form of OHD-CARS involves the intentional inclusion 

of a fixed quarter-wave plate with fast axis n along the direction of 

£ as shown in Fig. 5(b). Again the linear analyzer ia rotated by 6_ 

with the resulting transmission becoming 

I , x l- l eoV + V i n a l 2 

" 6 0 S L + 2 9 0 £ N R S i n a R e [ - i V ( 3> 

where now the quarter-wave plate has phase-shifted the nonresonant 

contribution by -ir/2 relative to the transmitted component of £ . 

Since Re[-i£_] - Im[£ ], this arrangement displays a spectrum of the 

imaginary part of the resonant susceptibility. The ability to display 

either the real or the imaginary part of x n *-s very useful in spectro

scopy, especially when the spectrum contains many closely spaced 

lines. 

As pointed out in Section IID, we have a "built-in" nonlinear 

reference signal which can be used to eliminate power fluctuations in 

the BS- or OHD-CARS signal. As shown in Fig. 7 of Section II, the 

rejected signal from the Glan-Thompson (GT) polarizer is monitored for 

this purpose, since it depends predominantly on the nondispersive, 

nonresonant signal (at least in the weak resonance case). Although 

conceptually correct, the apparatus described in this figure is some-
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what impractical, since it requires the >.: e of a second double aono-

chromator. Two alternative systems using one double monochromator are 

shown in Fig. 6. In part (a) of this figure the GT polarizer is held 

in a fixed position after the double monochromator, while a half-wave 

plate is used to rotate the output from the quarter-wave plate. Ro

tating the half-wave plate is the equivalent to a rotation of the GT 

polarizer. This setup was used in the experiment, but was found to 
-3 

have poor extinction (nulls of only 10 could be obtained), since the 

double monochromator altered the polarization state of the signal beam 

before it reached the GT analyzer. The arrangement shown in Fig. 6(b) 

is proposed to allow the polarization analysis before the double mono

chromator. In this case the signal beam transmitted through the GT 

polarizer and the redirected reffl^Sce (rejected) beam are passed 

through the same monochromators but at different heights — and then 

sent to different photoraultipliers. Such a scheme thus eliminates any 

polarization distortion occurring within the monochromators. 

In conclusion, we have described the experimental techniques and 

apparatus to be used in BS- and OHD-CARS. In addition we have indi

cated futher modifications to the experimental setup to use the built-

in reference signal rejected by the polarization analyzer. Thus we 

have seen how to control the nonresonant field ^ M B , allowing normal

ized spectra proportional to either |x«l > Re[x„]» or Imfx-jJ to be 

taken. The experimental confirmation of these ideas is demonstrated 

in the next section. 

C. Background Suppression- and Optical Heterodyned Detection-CARS: 

Experimental Measurements and Analysis 
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This section provides experimental verification that polariza

tion-sensitive CARS techniques can yield additional information about 

the resonant susceptibility, beyond that attainable from amplitude-

CARS experiments. We present spectra demonstrating the suppression of 

the nonresonant background and the exhibition of the separate real and 

imaginary parts of x R- Futhermore, it is shown that both BS- and OHD-

CARS have much improved detection sensitivity over the previously used 

CARS technique. The specific techniques and apparatus are described 

in the two preceding parts of this section. We begin this segment 

with a characterization of the sample and laser sources used in this 

study. This is followed by a presentation of the experimental spectra 

and an analysis of these measurements, including a comparison with 

earlier work and an estimation of the detection sensitivity. 

1. Sample Selection 

Although many materials exhibit Raman resonances, it was impor

tant to choose a well characterized sample for demonstration purposes. 

The Raman modes of benzene have been well studied, especially the 

992 cm mode (the symmetric stretch mode, v„) which has been exam-
11 12 

ined in both linear and nonlinear spectroscopy. Spontaneous Raman 

spectra show that in addition to the strong mode v at 992.2 cm 

there are four weaker modes nearby. The strengths, widths, and fre-
12 quencies of these five modes have been measured by Lynch and Lotem 

and a table of their results is presented in Fig. 7. The assumed form 

of the resonant susceptibility is a sum of individual complex Lorent-

zians. We write 
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'Vim - £—— . < V j <*> 3 <Vj " <"a " »c> " ^ V j 

It has also been established that these modes are very strongly pol-

pointed out in Section II, p R can be written as the ratio of [X^Ljoi 

t o [ xR 3llll' S ° E xR 11221 ** ° f o r t h e s e m o d e s * 

To control the strength of the resonant susceptibility, increas

ingly dilute solutions of benzene in carbon tetrachloride were pre

pared — from 10% to 0.1% by volume. Carbon tetrachloride was chosen 

as the solvent because it is known to be nondispersive in this fre

quency range and is readily available in high purity. Furthermore, 
13 

Levenson and Blcembergen have previously made a direct comparison of 

the resonant susceptibility of benzene and the nonresonant suscepti

bility of carbon tetrachloride, which can be used for comparison with 

the result determined here. As shown in Section II, it is this ratio 

of XD^X.™ which determines the signal to noise ratio for CARS; and it 
is X-nlXtm which can be measured from the CARS spectrum. A discussion R NR 

of the results Ref. 13 will be included with the analysis of the pre

sent experimental determination given below. 

2. Lasers 

The general characteristics of the flashlamp-pumped dye lasers 

used in the experiment have already been discussed. For the Raman 

mode in benzene, the frequency separation of 992 cm required the use 

of two different laser dyes. For the UJ -laser (upon which the signal 

was quadratically dependent) we used Rhodamine 6G tuned to A «* 
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5950A (16805 cm " * ) . The w -laser was operated at a frequency of about 
—1 —1 

u - 992 cm or 15813 cm corresponding to 6323A (Kiton Red dye). 
-4 Both dyes were used at 10 M concentrations in 1:1 water to methanol 

solutions. During the course of the experiment the Rhodamine 6G laser 

remained fixed at X , while the Kiton Red laser was tuned. A hand-held a 

viewing etalon (Molectron) with a free spectral range of 1.1 cm al

lowed frequent observation of the lasers' linewidths, ensuring narrow

band operation (< 0.2 cm ) . 

The lasers had pulse d: rations of about 1 usee and operated at 10 

pulses per second. For these experiment, the output powers were 7 kW at 

in and 3 kW at iii in beams that were "~ 2 mm in diameter with a full a c 

angle divergence of "~ 1 mrad. Both beams were predominantly linearly 

polarized with multi-mode transverse profiles. Throughout these experi

ments, laser characteristics remained stable. 

3. Experimental Spectra 

Using the experimental setup indicated in Fig. 4 (with an angle of 

~" 71.5° between the input polarizations), initial observations were made 

of polarization-sensitive spectra using a 10% solution of benzene in 

CC£,. Background suppression was achieved by nulling th' lonlinear sig

nal with the frequency detuned aproxiraately 40 cm below the.expected 

Raman resonance. The scanable laser was then tuned through the reson-

ance, giving the spectrum proportional to \x-ol with a very high signal 

to noise ratio. The concentration of benzene was further reduced to 

0.1%, and the spectrum repeated. The result is displayed in part (a) of 

Fig. 8 T which shows the "CARS" signal of the 992 cm Raman mode of ben-
i 2 zene free from any nonresonant contribution. t is «ell known that 

file:///x-ol
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this mode of benzene is very nearly Lorentzlan (as given in Eq. (4))» 

therefore |x R| a (Aw + I* ) where Aw « <u - (w - w ;. Although this 

spectrum of |x R| is noisy, it has the general shape of a Lorentzian 

without the distortion apparent in the usual amplltude-CARS spectrum. 

In fact, a conventional CARS spectrum of this resonance with 0.12 ben

zene would have a resonanc signal strength of only about 3% of the non-

resonant background, which is more difficult to detect than the BS-CARS 

signal in Fig. 8(a). 

Using the heterodyning techniques described in part B, we have also 

displayed the imaginary and real parts of this resonant susceptibility, 

as shown in Figs. 8(b) and (c), respectively. These spectra were made 

using the experimental apparatus of Fig. 6(a), which provides a normal

ized output signal. To obtain the heterodyned spectrum of Im(x R), the 

quarter-wave plate and Glan-Thompson analyzer were first set to the same 

positions used in background suppression case discussed above, then only 

the Glan-Thompson was rotated by an angle 8 = 2.7° or 47 mrad (see Eq. 

(3)). The dispersion of Re(x R) was recorded by rotating th^ analyzer to 

about 8° or 140 mrad (see Eq. (2)) without including the quarter-wave 

plate in the apparatus. Again, assuming a complex Lorentzian form for 

X R, the frequency dependences of the imaginary and real parts are: 
2 2-1 2 2 Im(x„) a (Aw + r ) and Re(x„) a Aw/(Aw + r ) , which are approximate-It K t R 

ly conf;rme*l by the experimental spectra. 

In Fig. 8 we have plotted the "relative" signal strength versus the 

Stokes shift, w - w , of the input frequencies. The relative signal 

strength Si is to be defined as the ratio of the intensities derived from 

the output field components parallel to the transmission axis of the 

analyzer (£„) and orthogonal to this axis (fii). Formally, 
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« = —2-, = -J- (5) 
lfil|2 h 

In this way the spectra in Fig. 8 are Independent of the absolute sig

nal strengths. 

The heterodyned signals were taken already incorporating this 

normalization, with the scales for these signals determined by the 

height of the off-resonant (background) signal. The amount of the 
2 nonresonant signal leaked through in this case was 6- times the total 

2 

signal before the analyzer, so that ft = 8 for the background level. 

<K = (.047) = 2.2 * 10 for the imaginary spectrum and <R = (.140) = 

20. * 10 for the real spectrum (see the vertical scale of Fig. 8). 

The background suppression spectrum, however, was not taken with 

the normalization setup, and therefore required an independent meas

urement of I. to determine the relative signal strength. This meas

urement was performed in the following way: (1) at the peak of the 

JXnl spectrum, the height of the resonant signal was noted, (2) go

ing far off resonance the analyzer was then uncrossed until the signal 

level matched the resonant signal level, and (3) the uncrossing angle, 
2 7, was noted, y became a measure of the ratio of resonant to non-

2 
resonant signals, or (ft = y • For the 0.1% benzene in carbon tetra
chloride solution, we found y = 1.1° (19 mrad) ± 15%. Thus the peak 

2 -3 
height of Fig, 8(a) was scaled to "R = (.019) = 0.36 * 10 . From 
the information of the relative strengths of L. and I. we can deter-

detection sensitivity of these new techniques. 

As a final note on the methods used to obtain the spectra in 
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Fig. 8, it should be noted that even in the null position th«s nonres-

onant signal was never totally extinguished by the polarization ana

lyzer. Therefore, each spectrum had this residual background which 

was subtracted front the signal before the relative scale was marked 

on the vertical axir For the background suppression case, this re

sidual background is indicated by the height of the zero level above 

the baseline of the figure. 

A. Analysis and Discussion 

Using the information provided in the preceding section, we first 

determine our experimental value of X R / X ™ f ° r t n e benzene-carbon te

trachloride solution, then compare this result with that obtained by 
13 Levenson and Bloembergen. As we will see, additional information 

about this sample is obtained upon examining these spectra and making 

this comparison. Also we estimate the limiting value of Xp/x™ ob

servable with this experimental setup and indicate what this limiting 

value will be for other samples. 

In the preceding section we have described experimental measure

ments to determine the relative signal strength <R, defined *-\ Eq. (5) 

and used in Fig. 8; now we relate in" to the fields and susceptibilities 

involved in this sample. For example, in the background suppression 

case we have (from Fig. 3) the field parallel to the analyzer axis 

given by £ since, while the orthogonal component is dominated by ft™. 

Therefore, 

|a„| 2 lysine. | 2 | X R | 2 

A 3 — ^ = — o S^-j (6) 
M I £NRI 2 *I*NRI 2 
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where we hrve taken a = 45 as in Fig. 3 and used the expressions for 

the fields given in Eq. (1), which matches our experimental situation. 

On the other hand, for the heterodyned cases, £II can be deduced from 

Eqs. (2) and (3), while the rejected intensity is still predominantly 

due to the nonresonant field. For the real part of x R we have 

< ; _ ' ° 0 S N R + V l n a | 2 

is | 2 

1 NR 1 

* °0 + V^R'NR ( 7 ) 

which clearly shows that away from resonance, we have the background 

value of "ft = 0 as discussed previously. A similar expression can be 

derived for the imaginary part. (Here we have assumf-d 9 is a small 

angle, but this restriction can be removed by proper consideration of 

Fig. 5). 

The best measurement of & (as it depends upon the resonant sus

ceptibility) comes from the background suppression case, Eq. (6), 

since this value is quadratically dependent on x p/ X M R * From the 

measured value of ^ at the resonance peak, we have 

2 ' XR' Y = —I 71 " V V = 2 Y ( 8 ) 

4|xNRl 

for t'ne reduced concentration, we have 
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K R W K B R W ' V - 38- C 9 ) 

where X R(C,H,) is the peak value of the resonant susceptibility for 

pure benzene and X N R(CC£ ) Is the nonresonant susceptibility of pure 

carbon tetrachloride. The angle y was only measurable to ±15% (this 

corresponds to the 3 mrad accuracy of the rotation mount used in mak

ing the measurement of the 19 mrad angle), thus this ratio may also be 

in error by this percentage. Of course, the measurement accuracy of 

Y would be much improved if we had chosen to perform the calibration 

with a 1% solution, where y would be an order of magnitude larger. 

Let us now compare this value of Xp/x*™ with that obtained by 
13 

Levenson and Bloembergen (LB). In their case the ratio was meas
ured by finding the frequency separation between the maximum and min-

14 

imum of an amplitude-CARS spectrum. To predict the frequency sepa

ration, Ay (cm ) , they first had to assume a form for the resonant 

susceptibility — the Lorentzian form of Eq. (4) being their choice, 

XR(Au>) = XT.*1 /(Aw ~ i rTj)* Since a conventional CARS signal is pro

portional to IXMTJ + XT,(AOJ)| , we can predict the frequency separation 

(max to min) to be 

Av- V W 2 + 4 ' 1 / 2 

inverting, we find 

V * N * = [<4'«"'V2 - * i 1 / 2 

(iv/r )[i - 2(Wr R)" 2] (10) 



where T is also measured in cm ..he latter expression applying tor 

Av/T » 1 ) . Thus the frequency separation explicitly determines the 

ratio of the susceptibilities. Since measurements of frequencies can 

be made quite accurate, this approach is a potentially precise method 

of finding X R / x N R . 

LB have performed two measurements of Av f<r samples of interest 

here: the first for a spectrum of 50% benzene and 50% carbon tetra

chloride, the second for a spectrum of pure benzene. From the former 

we have a measure of x„(C,H,)/[xM„(C,H,) + x„„(CCH,)] and from the K o b NK b b NK H 

latter just X„(C,H, )/x,.m(C,H,). In particular, Av = 15.5 cm~ for the 
K O D NK O b 

mixture and 27.5 cm for neat (pure) benzene. LB also give the Raman 

linewidth of the 992 cm mode with more precision than that given in 

Fig. 7, r = 1.15 cm . Therefore we have, 

V W 
WW + W C CV 

V W 
W W 

(11) 

From which we find x „ (C, H, ) /x..„(CCJ.,) = 30.1. K. b b MR t 

Comparing the two values of X R ( C 6 H A ^ X N R ( C C ! 1 , ) , 30.1 and 38., we 

see a large discrepancy — even more than the estimated 15% error 

which would lead to 38. + 6. We must look elsewhere to find the rea

son for this significant difference. 

Careful examination of the experim tal spectra in Fig. 8 reveals 

an important new feature overlooked in our previous work. Although 
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these spectra have the general forms associated with a Lorentzian 

lineshape, the linewidths do not match the expected width r = 1.15 

cm" . In fact, the experimentally determined linr;width from the spec

tra of the 0.1% benzene solution is V = 0.8 cm-' (HWHM). Such a re

duction in r will strongly influence the peak magnitude of x„» which 

may be written as x p
 = \/^ f° r a simple Lorentzian. In this case 

let us reexamine the determination of the ratio of the resonant sus

ceptibility of pure (100%) benzene to the nonresonant susceptibility 

of pure carbon tetrachloride. 

From Eqs. (6) and (8) we actually determine that the ratio 

X (0.1%C.H ) / x (99.9%CC«.,) = 0.038, where we have explicitly included 

the concentration of each species. Since the 992 era mode has been 
12 

well characterized as a Lorentzian, we can write (at the peak) 

XR(O.I%C6H6) = ^(o.i%W/rR(o.uW (12) 

where A^(0.1%C6H,) and T (0.1%C,H6) are the Raman amplitude and line-

width evaluated for a sample of 0.1% benzene. Normally we can assume 

that ^he Raman amplitude is linearly proportional to the density of 

benzene molecules and that the linewidth is independent of concentra

tion, so that x n * s aJ- s 0 linearly dependent on concentration. In ben-
R 

zene, we still expect the usual dependence of the Raman amplitude: 

^ ( 0 . 1 % ^ ) = (0.1%)AR(100%C6H6) 

since, apart from the usual factor of the density, A- contains only 

dipole matrix elements and nonresonant energy denominators which are 
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quantities dependent on the internal structure of the benzene molecule 

— not on the density of molecules. The Raman linewidth, on the other 

hand, is dependent upon both thj internal structure of the molecule 

and the molecule's interaction with its enviroment. This latter ef

fect can lead to a dependence of T upon the density through colli

sion processes as 'we will see below. In benzene wc have observed 

0.8 cm" 1 \ 
_ _ j r R ( i o o r c 6 H 6 

1.15 cm / 
rR(o.i%c6H6) - { _ x rR(ioozc6H6) - 0.70 r R ( i o o % W 

Using these relationshins between parameters measured at 0.1% and at 

100% benzene, we can determine the value of x„ (100%C,H, )/v„„(100%CCjl,) 
R o o NR 4 

in terms of the experimentally determined value of this ratio for 0.1% 

benzene given above (0.038). One has 

X R(100%C 6H 6) A R(100%C 6H 6)/r R(100%C f )H 6) 

x N R d°°*ccy 

[A^o.imc^/io 3]/[rR(o.i%c6H6)/o.70] 

x N R(ioo%c« 4) 

(7.o x i o 2 ) X R ( O . I % C 6 H 6 ) / X N R ( I O O % C C J I 4 ) 

(13) 

where the 0.1% difference between x N R ( " • 9%CC!l ) and x ™ (100%CM,) is 

neglected. 
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Having made the correction we see that the value of the ratio has 

been substantially reduced and the agreement with LB is somewhat bet

ter. Of course, since we know the linewidth is concentration depend

ent, we require that the value of X^/x^™ o f L ^ similarly be corrected 

for the reduced linewidth which should have been present in their 

spectra of the 50% benzene solution. Unfortunately, there were no 
13 

published plots of the CARS spectra used to determine the ratio of 

susceptibilities, so the linewidth of the resonance at this concentra

tion cannot be directly determined. 

To estimate the Raman linewidth at 50% benzene concentration we 

refer to the work of Griffiths4 et al. who have examined this prob

lem using spontaneous Raman scattering and who offer a pausible ex

planation of the effect. They point out that at high concentrations 

of tcnzene, there are a large number of collisions between benzene 

molecules during which it is energetically possible to undergo nonra-

diative transitions. The most favorable transition being an excita

tion of the nearby 983.5 cm mode with the additional 8.7 cm of 

energy going into kinetic energy. As the concentration is decreased, 

the number of collisions and nonradis.tive transfers decrease — lead

ing to increased lifetime and decreased linewidth. Their data indi

cates a limiting liuewidth of 0.75 cm , which is in good agreement 

with our measured value of 0*8 cm . Furthermore, the concentration 

dependence of the linewidth is fairly linear with a value of 0.95 cm 

for a 50% solution of benzene. 

Using this value of T , we can now correct the measured X n / x ™ 

of LB. Again, their ratio was x R(50%C 6H 6)/x N R(CCfc 4) = 30.1 and after 

performing the corrections as in Eqs. (12) and (13), we find 
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X.dOOZ C,H ) 
— = 24 9 (141 
X M ( 1 0 0 % CC4 4) U * > 

Which is in excellent agreement with our value of 26. determined using 

the polarization-sensitive detection techniques. As a further indica

tion of the quality of this measurement, we show in Fig. 9 computer gen

erated plots of the expected ratio signal strength I.. /X, vs. Stokes 

shift (.assuming a Lorentzian resonance with T = 0.8 cm and Y _ ( 0 . 1 % 
K. K 

C£H,)/xn.,T>(CC£.) = .038). The computed lineshapes are also in good agree-b o NK 4 

ment with the experimental ones of Fig. 8. 

To conclude the discussion of the work on the 992 cm mode of ben

zene, we consider what the experimental limits of detection arc. The 

analysis has shown that the ratio of XT,/X™ is the important parameter 

proportional to the number of resonant scatterers while x is due only 

to the solvent (for dilute solutions), the ratio Xn/X™ is a direct mea-
-3 sure of concentration of the resonant species. For 10 (by volume) 

_2 
C,H, in CCl , we have found Xr,/X™ *** 3.8 * 10 . Consider now the sig-

nal to noise ratio, S/N, of Fig. 8(a) — the background suppression 

spectrum — roughly S/N ~ 10, in this case. However, since the spectrum 

is quadratic in the ratio of susceptibilities, we estimate a limiting 

(S/H = 1) value of Xr>/x*TO to be 3.8 * 1 0 _ 2 / ( 1 0 ) ' S ^ 1,2 x 1 0 - 2 or a ben-
-4 zene concentration of 3 * 10 

The advantage of heterodyning becomes clear by examining Fig. 8(b), 

which displays the imaginary part of x R> Here again S/N "" 10, but this 

1 fo r x K/ X ™ = 3.8 x 10 or a benzene concentration of 10 . This 



86 

concentration would correspond to 100 ppm of benzene in carbon tetra

chloride and is approximately two order of magnitude better than the de

tection sensitivity of the conventional CARS technique. 

D. Applications and Limitations of Polarization-Sensitive CARS Tech

niques 

1. Applications 

There are several interesting applications of these new techniques 

which are discussed below. First, though, we will briefly summarize the 

two applications emphasized in the experimental section — namely, the 

measurement of relative susceptibilities and the detection of weak con

centrations. 

As demonstrated in part C, making a measurement of the relative 

signal strength of the transmitted and rejected signals (as suggested in 

Fig. 6 ) , is in effect making a measurement of XT,/x»ro* I n t n e present 

work we have only studied benzene diluted *n carbon tetrachloride» but 

this is not an isolated example. Using other liquids with Raman modes 

(either strong or weak), we can measure the ratio of their resonant sus

ceptibility to X»jp(CC£,) and so have a relative measurement of the re

sonant susceptibilities. Similarly, different solvents may be used with 

benzene to establish their relative nonresonant susceptibilities. 
14 This technique is superior to that proposed by Levenson and used 

in the above determination of Xn(CcH,)fxvm{GCs't) by Levenson and Bloem-
K O U MK. 4 

13 

bergen. Although it is true that their technique involves only mea

suring the ratio of Av/T (the frequency splitting of the maximum and 

minimum of the CARS signal over the Raman linewidth - HWHM), the depen

dence of XO^XMD o n A v ^ r R ^ o r a particular concentration can only be de-
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termined by assuming that the resonance has a particular lineshape. On 

the other hand, the polarization-sensitive technique presented here does 

not rely on the lineshape of the resonance but only requires information 

about the angle between 6 and £._ which can be found experimentally, if 

necessary. 

At the end of the last section we established that the detection 

limit of our apparatus was 100 ppm of benzene in CCt/ or Xo/x*™ *= 4 * 
-4 10 , It is this latter number which should be emphasized. Consider, 

as an illustration, an experiment involving the detection of low concen

trations of hydrogen in a nitrogen atmosphere, such as exists in a meth

ane flame. It is known that the 0- Raman mode of H„ at STP has a re

sonant susceptibility approximately 4 * 10 stronger than the nonreson-

ant susceptibility of nitrogen at STP. Using the polarization-sensitive 

CARS techniques, the expected detection limit would be XTJCH-JVXVJDCNO) = 

-3 4 x 10 , the same as before. In this illustration, however, the large 

strength of the resonance implies a miniumum detectable concentration of 

tl2 in N 2. -3 5 4 x 10 /4 * 10 or 10 ppb H. in N_. Previous measurements using ampli-

tude-CARS were limited to 1-10 ppm. 

Another application of the polarization-sensitive detection schemes 

was briefly discussed in Section IIC. The situation considered was a 

weak resonance in the wing of a stronger resonance. It was described 

how the polarization analyzer could be adjusted to null both the strong 

resonance and the nonresonant background fields over a limited spectral 

range. This allowed the weak mode to be more readily observable. We 

have been able to experimentally demonstrate this application using the 

Raman modes of benzene listed in Fig. 7. An approximate null of the 

background and the strong 992.2 cm mode was obtained near 975 cm 
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(Raman modes appear at 983.5 and 979.3 cm ) , then the polarizer was 

slightly uncrossed (by 2°) to allow for some heterodyning of the weak 

resonance. The resulting spectrum is shown in Fig. 10. The upper spec

trum is the usual amplitude-CARS spectrum of the 4% C.Rv in CCS.,, show

ing the weak Raman mode at 983.5 cm on the shoulder of the stronger 

992,2 cm mode. The lower spectrum (using the polarization analyzer) 

shows much more clearly the 983.5 cm , even the measured width of 0.7 
-1 12 

cm is in agreement with Lynch and Lotem. It is also apparent in Fig. 

10(b) that the weaker mode at 979.3 cm is now observable, whereas it 

was lost in the noise of the amplitude-CARS spectrum. Of course, the 

polarization analysis of this form is useful only over a limited spec

tral range, thus no attempt was made to examine the weak resonances on 

the high frequency side of 992 cm . This would require a different po

larization adjustment. 

Finally, as a word of caution, there will always be some amount of 

distortion of the weak signal lineshape as we scan across the weak-re

sonance frequency. This is due to the slow variation with frequency of 

the nonlinear output field associated with the strong Raman mode located 

many linewidths away. Since the polarization analyzer is fixed during 

the scan, varying amounts of this strong-resonance fiel̂ i will pass 

through the analyzer and be detected along with the rapidly changing 

field due to the weak-resonance under examination. 

Yet another application of these techniques is to separate Raman 

modes of different symmetries. The basic idea here is to set the polar

ization analyzer to purposely discriminate against Raman modes for a 
13 

particular symmetry. Levenson and Bloembergen first did this when 
they presented a CARS spectrum of benzene with the analyzer set ortho-
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gonal to the resonant field, e.g. along y in Fig. 3. In their case, 

only the nonresonant signal remained. A much more interesting situa

tion has been recently presented by Rahn et al. in which it is pointed 

out that the degenerate vibrational and rotational transitions in gases 

have a different symmetry from the symmetric Q-branch modes. (The form

er are anisotropic, p_ = 3/4, while the latter are isotropic, p = 0.) 

It was then possible to produce spectra showing Q-branch modes but not 

rotational modes and vice-versa. Discrimination such as this can be 

quite useful in spectroscopic studies. 
18 In related work, Koroteev et al. have used polarization-sensitive 

CARS to study the broad, featureless Raman mode of water from 3200 cm" 

to 3600 cm , Making a series of spectra with differing polarization 

arrangements, they have been able to partially resolve several lines of 

different symmetries within this band. They also point out techniques 

which can be used to separate closely spewed modes with differing depo

larization ratios. Thus, polarization-sensitive detection has many pos

sible uses, especially in the area of nonlinear spectroscopy. 

2. Limitations 

In this segment, we discuss the limitations of polarization-sensi

tive CARS, i.e., the factors which can improve and/or degrade the useage 

of these techniques. We begin by considering possible improvements in 

the previously described experimental setup. 

Two features of the apparatus used in the demonstration of BS- and 

OHD-CARS which can be improved are: the polarization optics and the data 

acquisition system. The importance of quality polarization components 

cannot be overly emphasized, since these techniques rely on the electric 
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fields being in nearly pure polarization states. With the simple setup 

used in the background suppression case (Fig. 4) it was possible to 

achieve an extinction ratio (for tha nonlinear signal) of about 2-5 x 

10~ , but with higher quality components it should be possible to obtain 

an extinction of a few tines 10~ . (This Unit being due primarily to 

scattering from the surfaces of the analyzer.) This would lead to about 

one order of magnitude improvement in the detection sensitivity, when 

using the heterodyning techniques. 

Further increase in the signal to noise ratio would occur if the 

data acquisition system were modified to a shot-to-shot, digital data 

processing system. Such a system would perform the ratio of I» to 1^ 

after each shot, then evaluate the average ratio of some specified num

ber of shots. The present system instead performs an exponential aver

age of each input channel over a specified time constant, then outputs 

the analog ratio of the averaged signals. This type of system leads to 

an unequal weighting of the pulses coining in during the time constant 

and thus has additional electronic noise. The actual Improvement in the 

CARS signal to noise ratio to be expected by the use of the proposed 

data processing system may be a factor of four or more. With these two 

changes, the expected minimum detectable ratio of resonant to nonreson-
-3 -4 

ant susceptibility would be reduced from 4 x 10 to 2 * 10 . Any lar

ger decrease in this ratio would be experimentally very difficult. 

Thus, we may claim that the practical detection sensitivity of these po

larization-sensitive forms of CARS is 

x R / x N R ** 2 * 1 0 ~ 4 (P^tic 3! i**it, p R = 0) 
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which for benzene implies a concentration of about 5 ppm or for hydrogen 

about 1 ppb. 

At this point, we must also indicate that there are factors which 

will cause a loss of sensitivity and, in effect, raise the practical 

limit proposed above. One source of this degradation is noise in the 

CARS spectrum which may make the small signals of the weak resonances 

difficult to observe. As described in Section HE, laser intensity 

fluctuations are one source of noise in a spectrum without normaliza

tion , and electronic noise in the detection system plays a similar role 

for intensity normalized spectra. Quantum fluctuations in the photon 

field, i.e., shot noise, can also be an important noise source in mea

surements involving small numbers of photons. To formalize the signal 

to noise considerations, we draw on the analysis given in Section II. 

In particular, Eq. (62) of that section gives the limiting value of x p/ 
2 X™ in terms of 6 , the finite extinction ratio of the polarization 

analyzer, and e and e , the fractional mean square intensity fluctua
tions on the input beams at UJ and u . For the case of OHD-CARS we have 

< X R / x N R ) m l n = •* «.<*«. + 'J* (") 

applying in the limit that fluctuations are dominant over shot noise. 
2 Assuming e = e = (0.15) (15% rras laser intensity fluctuations), and 

2 -4 9 = 10 , we found that averaging with a one second time constant gave 
-3 

p. limiting value of X R/X™ ~" 2 * 10 for the detection sensitivity, 
which compares reasonably well with the experimentally determined value 

For the present discussion we want to generalize Eq. (15) to in-
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elude the shot noise contribution. This can be easily done starting 

from Eq. (59) of Section II as before, but keeping the extra t e n des

cribing the shot noise. The resulting expression is 

VWmin " •* V* + ^ P ^ <"> 

where N' is the product of N p, the number of photons incident on the de

tector through the analyzer, and q, the detector's quantum efficiency 

(i.e., N' is the number of photoelectrons produced at the photocathode). 

Here we have written £ for either the total fluctuations due to the la

ser intensities (4e + e ) when no intensity normalization is used or 

a c 
for E _ , when intensity normalization is included. Also in Eq. electronic ' ^ 
(16), the increased sensitivity derived from averaging over,/f measure

ments of the same signal it. explicitly shown. 

Several features of Eq. (16) are important for the determination of 

the limiting value of Xp/Xwp- As indicated previously, using a better 

analyzer (reducing 8 ) or less fluctuating laser sources (reducing e) 

help to decrease (x R^X™) ^ • However, upon reducing e, the shot noise 

term (N') becomes increasingly important. In particular, consider the 

case of an ideal laser system which has no shot-to-shot power fluctua

tions, i.e., e = 0 (or an ideal data acquisition system if normalization 

is used). We can then show that the minimum detectable value of v.B Is 

determined — independent of x ™ ( a s shown at the end of Section H E ) . 

Bascially, we have for e = 0 

( Y / Y ) « 8 N ^ <* B (6 2Y 2 V *"XR' xl«r min e P e ̂  e xNR' 
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where the latter proportionality uses the fact that N_ (the number of 

photons after the analyzer) Is determined predominantly by the leakage 

of the nonresonant signal through the analyzer, so H_ is proportional to 
2 the extinction ratio times the nonresonant signal (which goes as Xup)* 

2 2 or 6 X«T,- Rewriting the above, we see that e us. 

*XR'%rmin * XNR 

so, in this limit, the value of ( x R ) ^ is actually determined, not the 

ratio of resonant to nonresonant susceptibilities. In other terms, the 

limiting detectable value of x B is determined only by the shot noise 

fluctuations of the leakage signal through the analyzer — the smaller 

N p , the larger ( x ^ ^ ^ becomes. 

Although the ideal case of no laser or electronic noise (e - 0) is 

not attainable in practice, we can encounter the same problem, if (N^)~ 

*̂ c. This can happen if we are in a situation with weak signals. To 

avoid this limitation of the detection sensitivity, it is advisable to 

use higher-powered laser systems to ensure that (N') not dominate the 

fluctuation (e) term. Even though we have discussed the effect of shot 

noise for the case of OHD-CARS, the conclusion of this analysis applies 

equally well to both background suppression- and amplitude-CARS. In all 

cases, we have maximum detection sensitivity by increasing the nonlinear 

signal strength until e > (N') 

For the present system (without normalization) £ * ,1 so we require 

N p £, 10* With a typical quantum efficiency of 10%, we need at least 100 

photons after the analyzer (or 10 -10 photons in the signal after the 

sample). One often overlooked advantage of this form of nonlinear spec-
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troscopy is that the nonlinear nature of the process can be used to en

sure that the shot noise contribution to xD/Xwt> i s alnimized. (Of 
K HK 

course, when such high powered lasers are used, other nonlinear ef

fects, such as ellipse rotation or self-focusing, may become impor

tant.) On the other hand, if the number of photons does decrease into 

the shot noise regime, we can further improve the detection sensitiv

ity only by averaging over many shots — the same technique used in 

linear spectroscopy. 

Also, it should be realized that the practical limiting value of 

Xn/X™ depends upon the symmetry of the Raman mode, i.e. upon the de-
R Hft 

polarization ratio, p . In fact, using the formalism defined in Sec

tion II, we can include this dependence by the inclusion of a simple 

multiplicative factor. In general, 

x R / x N B = ( 2 X 1 0 ~ * > / 1 3 P R " 1| (Practical limit) 

where we have assumed Kleinman's symmetry (p._ * 1/3). We note that 
NK 

as the depolarization ratio approaches 1/3 the sensitivity decreases 

rapidly (x R/X™ •* °°)> but this is to be expected since £ R becomes more 

nearly parallel to £ (making polarization separation increasingly 

difficult). Fortunately, there is very little difference in the limit 

for an isotropic mode with p = 0 and an anisotropic mode with p = 3/4 

(see Ref. 17). 

Finally, the detection sensitivity may also depend upon the qual

ity of the sample. Although a general elliptical birefringence in the 

sample, e.g. optical activity in certain liquids or crystalline aniso-

tropy in solids, complicates the interpretation of the nonlinear output 
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field, it does not destroy the purity of the output polarization state. 

(The presence of such birefringence nay preclude the possibility of 

phasematching, however.) If there is an inhomogenelty in this bire

fringence, such as from macroscopic strains in solids, the output 

field will leave the sample in a nonuniform polarization state. It 

will then be impossible to null the output over the entire beam pro

file, i.e. there will be poor extinction and, consequently, poor detec

tion sensitivity. 

In summary, this section has described the techniques and appara

tus used in making polarisation-sensitive CARS measurements. Two new 

techniques — background suppression- and optical heterodyned detec

tion -CARS — have been experimentally demonstrated using the 992 cm 

Raman mode of benzene diluted in carbon tetrachloride, and the ratio 

of resonant to nonresonant susceptibilities has been measured and com

pared to other work. We have estimated the minimum detectable concen

tration of benzene observable with this apparatus and suggested what 

the practical limit might be. We also indicate the limitations of 

these techniques and possible interesting applications. 
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Figure Captions 

Fig. 1 Standard phaseaatching geometry in normally dispersive aedia. 

The angle t|j between the two input wavevectors, k and k t is 

greatly exaggerated; typically ty ** 1-2° . Note $> is deter

mined in the medium of refractive index n. 

Fig. 2 Amplicude-CARS setup used in the laboratory. Half-wave plate 

Wl and polarizer PI allow rotation of u polarization; P2 de

fines polarization of u . Fixed mirror Ml, translatable mir

ror M2, and lens LI determine the phasenatching angle. S -

sample, DM - double monochromator. Insert shows positioning 

of M2 for alignment of detection system. 

Fig. 3 Unit vectors showing directions of the input fields * and 

S and Che resonant and nonresonant output &_ and &„_• re-
C K HK 

spectively. A strongly polarized Raman mode and Kleinman's 

symmetry are assumed. 6 « 71.5 , a * 45 . 

Fig. 4 Basic polarization-sensitive CARS setup used for background 

suppression and heterodyning, showing the alterations in tne 

detection system. Compare with Fig. 2. 

Fig. 5 Polarization arrangements used in OHD-CARS. (a) To display 

the spectrum of Re(x„)» (b) to display the spectrum of Im(x„). 

q - transmission axis of linear analyzer, n - fast axis of 

quarter-wave plate. 

Fig. 6 Fcssible detection systems for normalized polarization-sensi

tive detection. (a) Setup actually used, with fixed Glan-

Thompson analyzer after the monochromator and separate PMTs. 

(b) Proposes* setup with Glan-Thompson before monochromator, 



with separated beams going in at different slit heights. 

7 Table of Raman parameter for benzene near 992 cm . w - cen

tral frequency, A_ - strength, T - linewidth (HWHM), and 

(x D) - maximum resonant sjsceptibility (A_/r ) for each Rait max R R 

man mode. 

8 Experimental spectra of 992 cm mode of 0.12 benzene in carbon 

tetrachloride (a) using background suppression-CARS, (b) and 

(c) using different arrangements of optical heterodyned detec-

tion-CARS. The vertical scale - relative signal strength III/II* 

the horizontal scale - Stokes shift in cm . 

9 Theoretical plot of polarization-sensitive CARS spectra in Fig. 

8. We assume Lorentzian lineshape with I* = 0.8 cm and 

X R(0.1% c
6

H 6 ) / x N R < C C V = 3.8 * 10" 2. Compare with Fig. 8. 

10 CARS spectra of 4% benzene in carbon tetrachloride in the vi

cinity of 980 cm . (a) Unpolarized detection, (b) transmitted 

signal through a quarter-wave plate and a slightly uncrossed 

polarizer — arbitrary scale between (a) and (b). 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
Raman Parameters of Benzene3 

"R 
(cm ) (esu - cm X> 

FR 
(cm - 1) 

" R ' D S X 
(esu) 

979.3 1.47 2.0 0.74 

983.5 1.46 0.7 2.1 

992.2 35.84 1.2 30. 

998.4 1.92 1.5 1.2 

1006.4 0.29 0.8 0.36 

From R. T. Lynch, Jr. and H. Lotem, J. Ghem. Phvs. 66_, 1905 (1977). 
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Figure 8 
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Figure 9 

985 990 995 1000 
Stokes shift (cm"') 
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Figure 10 

975 980 985 
Stokes shift (cm"') 
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IV. MULTI-RESONANT FOUR-WAVE MIXING IN INHOMOGENEOUSLY BROADENED MEDIA 

— THEORY 

In Sections II and III we have discussed one method to study two-

photon transitions and to improve the detectivity of these single reson

ances using polarization-sensitive detection. We now consider another 

form of four-wave mixing spectroscopy which uses double or triple reson

ances to yield additional spectroscopic information and also improve de

tection sensitivity. As each additional resonance is approached the 

strength of the resonant susceptibility increases dramatically, as has 
2 been recently demonstrated experimentally. It has also been recently 

3 
shown by Druet, et al. that it is possible to obtain Doppler-free spec
tra with multi-resonant four-wave mixing. 

In this section, we give a more complete discussion of doubly and 
L triply resonant processes along the lines of Oudar and Shen. We begin 

by deriving the forms of particulai multi-resonant nonlinear suscepti

bilities far processes such as CARS, GSRS and RIKES (see Section II for 

a description of these mixing processes). Of interest here is the non

linear response of a medium showing inhomogeneous broadening, thus ex

plicit expressions are derived to characterize this situation. We will 

see that the singly-resonant susceptibility is always dominated by the 

inhomogeneous broadening, while in some cases double and triple reson

ances show considerable narrowing. The measured strength of x can be 

used to determine matrix elements involved in the process. The discus

sion here centers on studies of rare-earth ions in solids, but the Dop-

pler broadened case is also included. Since real absorption can occur 

in multi-resonant processes, the nonlinear susceptibilities involve not 
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only the transverse (off-diagonal) damping terms, but also longitudinal 

(diagonal) damping. The effects of this linear absorption upon the non

linear output are also considered. (The following section contains ex-
+3 perimental work performed on Pr :LaF_.) 

A. Multi-Resonant Nonlinear Susceptibilities 
As pointed out in Section IX, the density matrix formalism can be 

**(3) 
used to find x when the radiation fields are treated as a perturba
tion. In general, there will be 48 terms in the third-order nonlinear 
susceptibility. Recently, a diagrammatic technique has been utilized in 

nonlinear calculations (Yee and Gustafson ) which allows one to easily 
**(3) write out all terms in x * The following discussion makes use of this 

technique without further explanation. 
We are specifically interested in terms of the nonlinear suscepti

bility which show double or triple resonances. The damping terms in
cluded in the resonance denominators then take on great importance. The 
relaxation of off-diagonal elements of the density matrix is written as 

\ at A = - r ,p , (l) 
damping nn nn 

where r , is the phenomenological damping constant with I* . = T .. nn* r ° r o n i n n n T 
The transverse relaxation time (T„) , = (r ,) describes t*-* dephas-

2 nn nn 
ing of transitions between |n> and |n'>. The damping of on-diagonal 

elements of the density matrix is given by 

\ 3t /, A , = £ w „ ( P „ „ - P ( ! ,
1 , ) - E B , ( P - P ( 0 )) (2) damping *-f, nn n n n n , n n nn nn 
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where W fl is the transition probability of going from state |n"> to nn 
state |n> and p „ „ is the equilibrium population of state jn">. In a 

simple two level system there is only one time, (T ) » (W t ) , which 

describes the decay of the population. However, in more complicated 

systems, one cannot use the concept of a longitudinal relaxation time, 

T , unless simplifying assumptions are made. If we assume there is no 

pumping into the state |n> from the decay of higher levels, the first 

sum on the right side of Eq. (2) can be neglected, leaving an effective 

damping constant r given by £ W t . Me then have 
n 1 

f 9 Pnn\ m (OK , 
V 8t /damping " nn^nn Pnn '* l * 

In our derivation of nonlinear susceptibilities, we assume that the 

damping is adequately described by the terms r . and V 
nn nn 

We consider four particular examples of multi-resonant four-wave 

mixing of interest for our experimental studies. In each example, we 

assume that only two input frequencies, w. and u>_, are involved. Fur

thermore, the material system is assumed to be initially in its ground 

state |g>. A Raman-f.ype, low-lying level is designated | g* >, while ex

cited states are |n> and |n*>. 

1. Doubly-Resonant Processes 

The doubly-resonant processes of interest have a single-photon re

sonance and a two-photon resonance. The firs': .- sample is double reson

ance CARS which involves <D being resonant with the transition |g> •+ |n> 

while to, - Wo l s resonant with |g> -*- |g*>, as shown in rig. 1(a). From 

the diagrams we find 
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, (3), + w . "^ii'VA^C 
1 ng ng 1 2 g'g g'g' 

(4) 
with 

(V>iJ 
: lyf ^ g m V ^ i + ^.l<"•»•>! ] 

+ terms with j and I interchanged 

where we have used \i = - er for the dipole moment and have defined the 

Raman polarizability a ,. Damping terms are shown explicitly only in 

resonant denominators. Only transverse damping factors are necessary 

since the CARS process cannot result in any population changes. This is 
2 the familiar form of resonant CARS that is analogous to resonant Raman 

scattering. The lineshape of this process in homogeneously broadened 

media is discussed by Bloembergen et al. . 

Another type of CARS has the Raman resonance replaced by an upper 

state resonance as depicted in Fig. 1(b). The frequency difference 

id- - £i)„ is equal to the splitting between states |n> and Jn'>. The most 
4 strongly resonant terms of this susceptibility are 

,., N(a , ) . (u , ).(p ),p ( 0 ) 

r < 3 ) / J. M - n n l n'g'i^gn k Hgg 
f, ( U i - „ 2 - V n + i r n , n ) 

(di, - <u , + ir , ) (u_ - in - ir ) 
L n'g n'g 2 ng ng'J 

+ terms with j and I interchanged (5) 
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, , = i v _ ^ 2 i ^ » _ 
l n n , ; i £ n * - (2 U, - w, - m , ) 

ii i £. n in 

Although the frequencies w. = 2u- - a)„ and to- - w- appear in the reson

ant denominators, this process requires both w. and a>_ to be tuned to 

one-photon absorption transitions. The lineshape of the output must 

then be corrected for the effects of these absorptions in both input 

field strengths (see Sectirn IVC). 

CSRS (Coherent Stokes Raman Spectroscopy) is a technique very 

similar to C\RS, except its output is at the frequency w, * 2to2 - w_ 

(as discussed in Section II?. We consider a two-photon Raman reson

ance as before, while ui, is resonant between the excited stete |n> 

and the Raman level |gf> (Fig. 1(c)). The resonant susceptibility is 

[X<3>(U - - + - ) ] - ' V B y i V j i 
LXR IK> 4 o>2 ™ i 1 - w 2 J J l j k l 2 , . . . . , . . . 

4 n g ' n g ' 1 2 g ' g g ' g 

+ terms with j and £ interchanged (6) 

As we will show below, this process and the upper state resonance CARS 

process have a feature which distinguishes them from other forms of 

resonant CARS or CSRS. Even though we have examined only three doubly-

resonant possibilities, all other cases are easily managed with the 
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4 diagrammatic technique. 

2. Triply-Resonant Processes 

We now consider what happens when all three denominators approach 

resonances. As before, w° consider the case of only two independent 

input frequencies, w. > w_. The process of interest here is a RIKES-

type process involving w„ a m. - u. + oi,, thus only a three level sys

tem need be considered (as shown it. rig. 2). The three principal dia

grams yield 

, (3 ) , _ + „ - • (Vn->i (v, )

J

(y->k<v, t-v£ > 

! (w- - u t - ir , ) (tii_ - oj_ - a) , - ir . ) 
• 1 n'g n'g' 1 2 g'g g'g' 

w . + ir , ) 
n g n'g 

(iT , .Ku- - u , - ir , ) n n 1 n g n'g J 
(7) 

This resonant susceptibility shows both coherent an*J population-change 

terms; the former involving only off-diagonal damping, the latter 

showing explicitly the lifetime dependence of the level jn*̂ -. 

The multi-resonant susceptibilities derived above have assumed 

that each scatterer is in exactly the same environment, thus only 

homogeneous broadening was considered. We now examine the effects of 

inhomogeneous broadening on these susceptibilities. 



116 

B. Inclusion of Inhomogeneous Broadening 

When the local environment of each resonant scatterer Is not uni

form, there is the possibility that the resonant energy levels of each 

scatterer are also not identical. This leads to a distribution of 

resonant frequencies for each state, dependent upon some physical 

parameter of the local environment. For example, the apparent reson

ant frequencies of molecules in a gas are deter^.i-^d by the longitu

dinal velocity due to the Doppler shift effect. In solid state 

physics the local crystal field causes a distribution in the transi

tion frequencies. In general, we assume that there is a distribution 

function, g(a,6,...). dependent on the physical parameters a,8, etc., 

which describes the probability that a particular resonant frequency 

will occur. Any physical property of the system dependent on the 

transition frequencies, such an X™ > must be averaged over this dis

tribution. For example, 

< X R 3 > > = /(dadS...)g(c.,8,...)x*3>- (8) 

Ue now examine more closely this general expression by consider

ing first the case of Doppler broadening in gases and then strain 

broadening in solids. 

1. Doppler Broadening 

The best characterized form of inhomogeneous broadening is that 

due to the Doppler effect in gaseous media. In this case there is es

sentially only one physical parameter — the longitudinal velocity v, 

and the functional form of the distribution is a simple Gaussian. 
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We consider a simple geometry in which the optical fields propa

gate along one axis •— either co-propagating or couuter-propagatitig. 

A molecule with a velocity v along this axis (as seen in the lab 

frame) will see a Doppler shifted optical field of frequency a>' = tu -

k-v, where k is the wavevector of this field. The nonlinear sus*~ pti-

bility associated with this particular molecule must involve this sâ ie 

Doppler shifted frequency. For example, the resonant denominators of 

the doubly-resonant CARS susceptibility in Eq. (4) should be trans

formed as 

(u. - u> + iT ) (w. - k *v - ID + ir ) 1 ng ng 1 1 ng ng 

(9) 
<wl " "2 " V g + i r 8 , g ) (U,1 " "2 " ( k l - k 2 > " V - V g + i rg*g } 

where the small frequency shifts in the nonresonant denominator can be 

neglected. 

The distribution function of velocities is given by the well 

known Maxwellian distribution 

g(v) = ( A ) " 1 a-^'o' (10) 

where v is the component of the velocity along the axis of propagation 

and v in the characteristic temperature dependent velocity describing 

the halfwidth at the e point of the velocity distribution. The ex

plicit expressions in Eqs. (9) and (10) can now be used in Eq. (8) to 

determine the effective nonlinear susceptibility In a Doppler broad-



118 

ened medium. 

In the case of co-propagating beans we take k. and k_ along the 

+ z d i r e c t i o n so thac the Dop Pler s h i f t s in Eq. (9) become 

k, »v = at. (v /c ) Si OJ (v /c ) 1 1 ng 

( k l " k 2 ) , v * ( t u l " w 2 ) < v / c ) " V g ( W c ) ( 1 1 > 

where the fact that w and QJ - w„ are very close to the transition 

frequencies has been used. An alternative viewpoint is to assume 

that, instead of the fields shifting frequency, the transition fre

quency of the molecule has changed. Thus we ca^ write for co-propa

gating beams 

li) = CD (1 + v/c) 
ng ng v 

Vg = V s c i + v / c ) ( 1 2 ) 

where OJ and u , refer to the central (v = 0) transition frequencies ng g'g 
and effectively each energy level of the molecule is shifted by the 

same fractional amount (1 + v/c). 

For counter-propagating beams this alternate point of view is 

not valid, for in this case Eq. (9) becomes 

k l " V * u i ^ c ^ 

( k l " k 2 ) > V " (t°l + w 2 ) ( v / c ) ( 1 3 ) 
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where k_ is assumed to be counter-propagating (k - - a , 9 ^ c * V I n 

this case the Doppler shift of the two-photon transition cannot be 

written as a> , (v/c) as before and the idea of a molecule with uni-
g & 

formly shifted levels is incorrect. However, this only slightly co«n-

plicates the evaluation of the averaged susceptibility of Eq. (8). 

As we will see, there are some four-wave mixing processes in which the 
3 Doppler broadening is eliminated. For the rest of this discussion, 

we consider only the co-propagating beams case. 

First consider the general double-resonance term of x„ so that 

only two resonant denominators are present. The averaged value of 

this term is of the form 

r s ( v ) 

V - CD i d v
 K - U l J(v) t ir^H-g - U l a<v> * ir k l) <"> 

where OJ. . and UJ, . are general transition frequencies (w. .(v) = u, . * 13 k£ ij ij 

(1 + v/c)), co and w are general combinations of the input frequen-

cies, and C contains all factors independent of v. The plus and 

minus signs are to be chosen to conform to the particular term under 

scrutiny. Defining, 

v = v/v 

C 0 = Va + it 
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we rewrite Eq. (14) as 

(' 2 \ f -k-v2 

o ij™k*' 

The integration of products of Lorentzians and Gaussians can only be 

performed numerically arid is related to the well known plasaa disper

sion function. O'sing the properties of this function described below 

we can further reduce Eq. (15) to a more useful form. 

Definitions of the plasma dispersion function are 

Z(0 = iT*5 j dt - j ^ - - for Im<<;) = C > 0 

Z U ) = 2ie" C f dt e _ t for all c" 

with the following properties: 

z(e*) = z*(c) + 2 i A " u ) 

z(-c) = -tz(?*)]* 

Z"(c) = d 2 Z/dC 2 = -2(Z + XX') (16) 

With these properties we can define a function F(C) as 
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F(C) = *~Hf dt ^ 
Z(0 for ?" > 0 

Z(c.) - 21.% <" fcr c" < 0 (17) 

In order to complete the transformation of Eq. (15), we realize 

that 

(x - C )(v - ;„) = L - d(v - r - v - cj (18) 

so <x n
> can be written as the sum of two terms, each involving F(0. 

The exact form of this expression depends upon the relative signs of 

the damping terms which are proportional to C" and C". If both are 
a p 

positive, we find 

- [F««> - F ( V l 

fz(c ) - z(c_)l (<L-0 
-«„[—-,^rf\ - s—^ V z '« 0 >] <»> 

where 1C = C c /(v''co. .<u ). This expression is slowly varying as { •* 
D D O 1J Kx Cl e o and has a width approximately equal to the sum of the Doppler width P 

of the two transitions. Similar features occur when Cf ard C" are 
a (S 

both less than zero. Thus, in these cases, the nonlinear signal also 

shows the inhomogeneous broadening. 

If one considers the cases with S" and £'' being of opposite signs 
a p 

the resonant susceptibility shows a sharp narrowing on resonance. 

Consider explicitly 5" > 0, t," < 0. Eq.(15) becomes 
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2 

In the limit as c ^C f l» the first term approaches the first derivative 
a p 

of Z(C Q) and is the usual Doppler broadened profile, while the second 
D 

term shows a sharp Lorentzian resonance with a width of £ H - c" * 
a 0 

(c/tf )(F /ID + r. ./u.*). It the Doppler width is much broader than 

the homogeneous widths, the resonant susceptibility contains a term 

which is essentially "Doppler-free". We note that reversing the signs 

of £," and 5" amounts to an exchange of a and 0 in Eq. (20), thus this 
a fs 

case will also show that same characteristic narrowing. Examining the 

doubly-resonant susceptibilities given in Eqs. (4) - (6), we find that 

the normal resonant CARS provides a Doppler broadened spectrum, where

as the upper state resonance CARS and the particular form of CSRS both 

will yield "Doppler-free" spectra. 

It is straightforward to extend the above discussion to the trip

ly-resonant case. Using the same procedure as in Eq. (18), the triple 

product in the denominator may be written as a sum of three single-

resonance denominators, each of which is related to Z(c) using Eq. (17). 

For the general triply-resonant case we find 

\ r(s a ) g<c8> m Y > 1 <v - %,-v ( v< >+ <v w v + v w vJ(21> 

whe- v K is a constant (independent of v) and them's are defined as in 
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the text above Eq. (15). The Interesting cases of "Doppler-free" 

spectra are determined again by examining the combinations of positive 

and negative damping constants. If all imaginary parts are positive, 

such that F(c) * 2(5), and we approach resonance such that £ •*• cQ •*• 

t , then the combination of terms in Eq. (21) approaches Z"(£ )/2 
Y o 

which is again slowly varying like the inhomogeneous lineshape. If 

any one of c", £«» C" has a different sign from the other two, there 

will be narrowing similar to that shown in Eq. (20). Examining the 

triply-resonant susceptibility of Eq. (7) for the RIKES-type process, 

it can be seen that the coherent term (involving only off-diagonal 

damping) will show narrowing. The population-change terms involve 

a zero-frequency resonance from the denominator (w, - u_ - w , , + 
l 1 n n 

IT . ,) = ir . . . This denominator can then be removed from the in-n n n n 
tegral, leaving only two resonance denominators to be averaged, which 

is the case described in Eqs. (19) and (20). Examination reveals that 

one of these population terms also shows narrowing, while the other 

does not. Thus the total lineshape of this triply-resonant suscepti

bility is the sum of a broad Doppler background and a combination of 

narrower Lorentzian lineshapes. 

The spectral narrowing described here can appear in any four-

wave mixing process which satisfies the criteria related to the rela

tive signs of the damping factors. Narroving in the stimulated emis

sion (gain) process has been known for some time, and the spontaneous 
9 analog, fluorescence line narrowing, is an established technique. 

The preceding theory points out the extensions of this narrowing ef

fect to other wave mixing processes — even some second-order proc

esses, for example quadrupole difference frequency generation , can 



124 

show similar narrowing effects. 

2. Inhomogeneous Broadening in Solids 

We focub our attention on rare-earth ions in solids. It is 

well known that the local crystal fields at the ionic sites act as weak 

perturbations, slightly shifting levels and making allowed previously 

forbidden transitions. At low temperatures these inner shell transi

tions (e.g. 4f -> 4f) can have extremely narrow homogeneous llnewidths 

12 

(widths of 15 kHz have been reported ). However, due to random mi

croscopic strains, the local fields at structurally identical sites 

take on a spread of values, which leads to a distribution in the ener

gy levels of the ions. It is generally assumed that there is a Gaus

sian distribution of random strains, leading to a Gaussian profile 

for the inhoracgeneous broadening. In the simplest case we assume that 

there is only one crystal field parameter which effects ell levels 

proportionately, i.e. all levels of each ion are shifted by the same 

fractional amount. In this way, we treat the strain broadening in a 

solid with the same formalism as Doppler broadening in a gas (as des

cribed above). 

At best this is only an approximation since there are often many 

crystal field parameters (especially if the lattice site has low sym

metry), each with its own strength and spatial symmetry. Futherroore, 

the coupling between an ion and a given crystal field will depend upon 

.the symmetry of the particular ionic level being considered. The net 

result is that the crystal field perturbation may cause an "accidental 

degeneracy" of ionic levels. By "accidental", it is meant that dif

ferent ions may have the same transition frequency within the inhomo-
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geneous profile even though these ions do not interact with the exact 

same crystal fields. Thus, there are several possible combinations jf 

the crystal fields which will result in the same transition frequency. 

This is indicated schematically in Fig. 3. Although all of these ions 

will absorb the photon m, * u> , the transition frequency to , to r 1 ng* ^ J ng* 

level jg'> need not be the same, since the different crystal field? 

at the different sites may interact differently with the level |g'>. 

Therefore, a two-photon transition from |g> to |g'> will show a reson

ance width of Av as ID. is scanned through the resonance. This is to 

be compared to the homogeneous width of V , which would occur if only 

a single parameter determined the energy levels. One can use the de

viations of the measured width from the homogeneous width to probe the 

extent of this "accidental degeneracy". Even with this "accidental 

degeneracy" width, if Av n is much less than the Doppler width, there 

should still be considerable narrowing in the four-wave mixing spec

tra. 

C. Effects of One-Photon Absorption 

When considering multi-resonant processes, the effects of one-

photon absorption become very important. To incorporate linear ab

sorption into the theory of the nonlinear output signal, we define a 

complex wavevector, k = k' + ik", to describe propagation in an ab

sorbing media. Then, for example, the output field is of the form 

E(u>) = I(w) e i k ' Z e k " Z 

|E(a>)| * |«0a)| e k " Z . (22) 
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Eq. (4) of Section II describing the growth of the signal amplitude 

£(iu) is generalized by including the imaginary parts of all wavevec-

tors in the expression for Ak 

Ak = (k* + k> + it* - k') + i(k" + kV + k" - k") (23) a t> c a b c 

Again assuming plane wave inputs, we have the output amplitude £(a]) 

proportional to an effective interaction length, £, given by 

iAk (24) 

for propagation along the z-axis. When absorption is negligible and 

phasematching is achieved, this expression reduces to £ = z. In gen

eral however, Ak" =£0, so £ < z. In the limit of very strong absorp

tion (Ak"z » 1 ) , we find £ ^ (Ak") which implies that the signal 

is produced only within about one effective absorption length. 

Consider a typical experimental situation in which one frequency 

(normally ui.) remains fixed, while the other frequency (w_) is scan

ned. Suppose there is linear absorption at w Then as this frequen

cy passes through resonance, x H will be enhanced while the effective 

length X will decrease. The enhancement increases the strength of the 

output field amplitude while the smaller effective length decreases 

this amplitude. The resulting lineshape will thei. be distorted by 

the one-photon absorption and will require correction to determine 

the resonant susceptibility lineshape. If sufficient information 

about the linear absorption is known, we may compensate for £ at each 

point in the spectrum. As displayed in Eq. (22), linear absorption 
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at Che output frequency also appears in the field amplitude (Eq. (22)) 

and must be taken into account. Absorption at the output frequency 

should then be avoided, since it both limits the phasenatchlng factor 

X and results in the exponential attenuation of the output field. 

An alternative to the above procedure is found in the polariza

tion-sensitive techniques described in the first part of this thesis. 

In Section IID we described that a polarizer placed in the output 

beam could be used to essentially separate the resonant and nonreson-

ant contributions to the output signal. Futhermore, it was described 

that if the ratio of the transmitted and rejected signals was formed, 

it could be used to normalize the signal against laser intensity fluc

tuations. In the present case this same technique could be used to 

remove the effects of linear absorption on the nonlinear signal. If 

the resonance under examination is weak compared to the strength of 

the nonresonant term, :he rejected beam will be made up of the non-

resonant signal which will be nondispersive, except for the effects of 

linear absorption. Forming the ratio of the transmitted resonant 

signal and the rejected nonresonant signal, we normalize against the 

absorption and determine the dispersion in the signal due only to the 

resonant susceptibility. 

In concluding this section, we have considered multiply-resonant 

susceptibilities in inhomogeneously broadened systems. Explicit ex

pressions for certain doubly- and triply-resonant susceptibilities 

have been given using a diagrammatic technique. It has been shown 

that specific four-wave mixing processes have spectral widths much 

narrower than the inhomogeneous widths and the means to identify such 

processes is described. The effects of linear absorption on the non-
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linear output signal have been considered, allowing the distorted out

put to be corrected for the linear effects. It has also been shown 

that the use of polarization-sensitive detection techniques can pro

vide a nonlinear reference signal to normalize out the effects of lin

ear absorption. Thus, multi-resonant four-wave mixing has potential 

to become a useful and informative form of nonlinear spectroscopy. 
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Figure Captions 

1 Diagrams used in determining double resonance susceptibili

ties, (a) CARS with w, = w and iu, - QJ„ -~ w . Cw_ = 2ui, -
l n g I Z g g j 1 

UJ„) ; (b ) CARS w i t h OJ, - ui , and UJ_ = oi s u c h t h a t w, - io„ = 
2 1 n ' g 2 n g 1 2 

u , ( u p p e r s t a t e r e s o n a n c e . a)„ - 2u , - u „ ) : <c) CSRS w i t h 
n n 3 1 2 

ui„ - uj and Li), - w„ = ID . (OJ, = 2dj_ - w, ) . 2 n g 1 2 g ' g 4 2 1 ' 

2 Diagrams used in determining the triple resonance susceptibil

ity for the HIKES process, u)- - w, - w, + QJ-» with u>_ - u , 
i i 1 I 1 n g 

and a- = (i) , , 2 n'g'. 

3 Schematic diagram showing the possibility of "accidental de

generacy" in a medium in which .several parameters contribute 

to the inhomo[»eneous broadening, as in the case of the crys

tal fields ~n. a solid. 
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Figure 3 

fO 

«»• 
in 
in 

o 
CO 
_ J 
CD 
X 

CM 

c o 

fJ 



135 

V. MULTI-RESONANT FOUR-WAVE MIXING IN INHOMOGENEOUSLY BROADENED MB£IA 

— EXPERIMENT 

The theory of multi-resonant four-wave mixing described in the 

previous section indicates several interestlag features to be examined 

experimentally. Most notable among these are the lineshapes of the 

processes which should show the narrowing well below the inhoraogene-

ous width (assuming the homogeneous width is much smaller). Also it 

should be possible to determine dipole matrix elements and Raman po-

larizabilities betw>Rn various levels of the material system using 

these nonlinear techniques. As mentioned in Section IV, ions in con

densed matter can provide sharp electronic transitions that show in-

homogeneous strain broadening, and so are nearly ideal to demonstrate 

the features of the multi-resonant susceptibilities. Furthermore, the 

four-wave mixing techniques can be used to study the physical param

eters of the ions, which to date have been studied mostly by absorp

tion and fluorescence techniques. 

In the first part of this section we describe the sample used in 

this work, while the second part deals with the relevant linear opti

cal properties of the sample. The next segment discusses a triple 

resonance RIKES-type measurement made to observe the predicted nar

rowing and to further characterize the ionic system. This is followed 

by a description of a double resonance CARS experiment performed on 

the same electronic levels. The last part of this section discusses 

an attempt to observe tae form of double resonance CARS involving an 

upper state resonance. 
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+3 
Sample — Pr :LaF, 3 

Of primary Importance in the choice of the sample for use in 

these experiments is the location of the electronic energy levels. It 

is most desirable to have the transitions from the ground state acces

sible to ordinary dye lasers operating in the center of the visible 

spectrum. It is also desirable to have electronic Raman levels only a 

few thousand wavenumbers above the g,rou:.d state to facilitate phase-

matching in the CARS experiment. Finally, the spectroscopic and linear 

optical properties should be reasonably well known to allow estimation 

of the strengths of the nonlinear effects. Many of these requirements 
+3 are fulfilled by praseodymium-doped lanthanum trifluoride, Pr :LaF,. 

The host crystal LaF„ has a space symmetry D,. with a bimolecular 

basis. Optically, lanthanum trifluoride is transparent with no lin-
2 

ear absorption until below 2000A; however, it is birefringent with 

n = 1.597 and n = 1.603. The linear dispersion of the refractive 
3 

index is known from the work of Wirick, and wil 1 be used to deter

mine the phaseraatching angle in the CARS work. The crystals of LaF 

can be easily grown of good optical quality, and are insoluble in wa

ter (this is Important since this work requires low temperatures). 

The choice of praseodymium as the dopant was made for several 
+3 reasons: (a) Pr has electronic levels accessible to blue and red 

2 
dye lasers; (b) these levels have been partially characterized by 

+3 the relatively large amount of experimental work performed en Pr : 
4-7 +3 LaF-; (c) Pr is very soluble in LaF„ and shows no clustering 

even at high concentrations; and (d) the crystals are readily avail

able in a wide range of concentrations (up to 20%) and in specific op-
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tical orientations from Optovac, Inc. 
+3 Fig 1(a) indicates an approximate term scheme for the Pr ions 

in the LaF\, uost. There are two electrons in the 4f shell which re-
3 8 

suit in a H, ground state using Hund's rules. Since the site sym

metry of the praseodymium ions is known to be relatively low (C_ ), 

the crystal field splits each state into the 2J + 1 substates of each 
3 manifold. Thus there are a total of 9 states in the ground ( H,) man-3 3 ifold. The two nearest manifolds are the H_ and 1L with the lowest 5 6 

lying states at 2179 cm and 4222 cm respectively. The important 

excited states are 3P at 20925 cm - 1 and 1D_ at 16872 cm"1. Most of 
3 3 3 the experimental work has involved the H,, H,, and Prt states which 

*i O U 
are designated |g>s |g'>, and (n^ in Fig. 1(b). 

+3 As the temperature of the Pr :LaF_ is lowered, the thermally 
4 broadened lines of the ions narrow. At liquid helium temperatures, 

however, the spectral lines show the inhomogeneous broadening due to 

the microscopic random strains. It is reported that the inhomogene-
3 ous widths of the P. state are about 30 GHz for 5% Pr (by number) and 

about 1.3 GHz for 0.2% Pr. On the other hand, photon echo experi-
9 

ments, used to determine the homogeneous linewidths of states con
nected to the ground state, find a natural linewidth of 3 MHz for the 
3 3 P_ -*• H, transition. Furthermore, this homogeneous width is strongly 

temperature dependent, due to phonon relaxation processes as described 

by Yen, et al., and increases to about 1 GHz at 20°K. Thus we choose 

to use a sample of 1% Pr at temperatures below 20°K, so that the homo

geneous width will be about an order of magnitude less than the in-

homogeneous linewidth. 
+3 Since any transition between the levels of Pr ions are allowed 
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only through the perturbation mixing of the crystal field, all oscil

lator strengths are quite small, typically f < 10 . Another char

acteristic to be expected is the long lifetimes of these states — 
3 1 

47 ysec for the P level and 520 usee for the D_ level. Another 
+3 

feature of the Pr :LaF- system is a strong anisotropy in the transi
tion probabilities — only E 1 c-axis transitions are allowed. A fi-

3 
nal characteristic worth noting is the lasing action between the P-

3 10 
and H, states which can occur when population inversion is achieved. 

+3 The preceding information provides an overview of the Pr :LaF_ 

sample used in these experiments. In order to calculate the various 

resonant susceptibilities, more specific information is needed about 

the matrix elements. We consider here the doubly-resonant CASS and 

triply-resonant RIKES processes involving the dipole matrix elements 

|< 3 P . | ] J | 3 H 4 > | and |< 3H 6|'u| 3P 0> | and the Raman polarizability |< 3H,| 
** 13 i 

a J H.>|. The dipole matrix elements are found from linear absorption 

and fluorescence measurements or, in this case, from measurements of 

the stimulated emission. ' The only experimental work on electronic 

Raman scattering in this sample was done by Hougen and Singh (using 
3 3 pure PrC£_) with only qualitative measurements regarding the H,, H,-» 

3 
and F_ levels of Pr. Observation of multi-resonant nonlinear pro
cesses in this sample will provide additional information about the 
values of these quantities, (in addition to testing the theoretically 
predicted lineshapes for these processes). 

3 3 B. Linear Absorption: H. •+ P. <• 4 0 
+3 

The initial experimental work performed on Pr :LaF_ was a simple 
linear absorpt^cn measurement from which the matrix element, u . -

n g 
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< F/JM H,> and the inhomogeneous linewidth, y ? , are determined. 

This also provided the exact location of the resonant frequency. 
12 The experimental apparatus consisted of a narrow-band (FWHM -̂  

4 GHz) pulsed dye laser beam passing through the cooled sample and 

monitored on a photodiode with a gated-electronic detection system, 

see Fig. 2. In this case the flashlamp-pumped dye laser was operated 

with Coumarin 480 laser dye in methanol to obtain lasing near the 
-1 +3 

4777A (20925 cm ) absorption line of Pr . The maximum output of 

1 kW in a 0.4 ysec pulse was attenuated to less than 1 W and then sent 

unfocussed into the sample (spot size ^ 2 mm diameter). The 1% Pr-

doped sample with the c-axis in the face was placed on the cold fin

ger of an Air Products, Inc. liquid helium cryostat. Sample tempera

tures of ** 15°K were routinely obtained as monitored on a chromel/gold 

-iron (.07%) thermocouple epoxied to the sample holder. The absorp

tion was monitored using the dual-channel, gated electrometer/analog 

divider described in Section III. A beamsplitter before the sample 

provided a signal for the reference photodioue. The transmission was 

normalized to unity with the laser tuned far off-resonance, then the 

frequency was scanned stepwise through the absorption. Care was taken 

to adjust the input polarization so as to maximize the absorption. 

3 3 

Figure 3 shows the absorption spectrum of the H, -*• P_ transi

tion for this 1% sample with E(w_) i c. The measured half-width at 

half-maximum of this absorption is about 11 GHz which is due entirely 

to inhomogeneous broadening. The maximum absorption coefficient for 

this transition is 19 cm at line center. For simple linear absorp

tion, the peak absorption coefficient, a , is related to the dipole 
max * 

matrix element by 
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411 yivsi (cO (i) n he " t e 1 " ! 

where V , was defined above, N is the density of Pr ions, n is the n'g 
index of refraction at co , and g(w ) is the normalized lineshape func

tion. From Fig. 3 we see that the absorption spectrum does not fall 

off as rapidly as the anticipated Gaussian profile, although the fit 
4 near line center is good. Yen, et al. have made similar observations 

3 3 
on the P •* H, fluorescence spectrum and it is believed that the de
viations from a Gaussian profile are due to small macroscopic strains 

13 
within the sample. 

k -1 We take g = (£n2/Tr) v ( for a simple Gaussian lineshape and max u g 
use Eq. (1) to calculate the strength of the matrix element. With us./ 

2TTC = 20925 cyf1, n = 1.60, and N(Pr) - IX N(La) = (.01) (1.81 * ?0 2 2 

-3 20 -3 
cm ) - 1.81 x 10 cm , we have 

l V g | = 2.2 « 10 2 1 esu (\ - 3P Q) 

which implies an oscillator strength of"2 x 10 

In the previous discussions of multi-resonant nonlinear suscep

tibilities it was assumed that only the ground state was populated. 

However, when one of the input laser frequencies is tuned to a one-

photon resonance, there will be population redistribution resulting 

in a reduction in the population difference, p - p , ., and a satur-
gg n'n1 

ation broadening of the absorption linewidth. These effects both re

duce the nonlinear output and are minimized by keeping the input in

tensity or energy below a certain saturation level defined below. 
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To discuss saturation we consider a simple, nondegenerate two-

level system with an inhomogeneous -'"th y (HWHM). For simplicity 

we assume the input intensity, I(w ) , is uniformly spread over the 

laser bandwidth, r„, and that y » T » y (the homogeneous width). 

The number density of absorbers within the bandwidth of the laser is 

taken as N , and the number density in the ground state is N and in o g 
the upper state is N , such that N = N + N . The upper state densi-rt^ u o g u 
ty then satisfies 

dN N a (a, ) I (*. ) 
dt T , g u M h» 

where the first term on the right describes the normal decay of the 

excited population with a lifetime of T ., while the second term in-
n 

creases the excited population through absorption. In Eq. (2) a(w ) 

is the average absorption coefficient over the laser bandwidth. Note 

that the bracketed term in this equation represents the probability 

that one ground state ion will absorb a photon and thus be excited. 
We discuss saturation of this transition in terms of the popula

tion difference, N - N , and choose to define "saturation" to occur 
V. " 

when N - N = *sN i.e. when the population difference equals one-g u o 
half of its initial value (all ions in the ground state). This will 

be the case when we have N = 3/4 N and N = 1/4 N . g o u o 
We consider two limiting cases: steady state (with the laser 

pulse length, T , much longer than the upper state lifetime, x ,) and 

the transient regime (with T << T , ) . In the steady state case we 

have no change in the upper state population, so dN /dt = 0. Using 

Eq. (2) we can then define a saturation intensity when N = 1/4 N . 
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We have I == N hoi /(2at , ) , in this case. In the physical situation 

studied here, we have the laser pulse length of 0.4 usee and the upper 

state lifetime of 47 usee, so we are clearly in Lhe transient regime. 

In this case we discard the decaying population term and integrate the 

expression for dN /dt directly to find 

>{w^r) - \44[ l d t" kfcl (3) 

2 
where F is the energy fluence tJ/cm ) of the incoming beam. At satur
ation we have the saturation energy fluence F as 

F = N hhjn ln(2)/(2a) s o I 

3 3 -1 To evaluate this for the H. -* P. transition, we have a = 19 cm , 4 0 
-19 haj = 4.2 x 10 J, and N (the number density within the laser bandit o 

width) is given approximately by the product of the total number den

sity of ions over the whole inhomogeneous profile and the ratio of 

the laser bandwidth to the full inhomogeneous width, or N = N* [4 GHz/ 
o 

22 GHz] = 0.18 H = 3.3 * 10 cm" 3. Thus we find F - 0.3 J/cm2 for 
s 

the energy fluence to saturate this transition with a laser of 4 GHz 

bandwidth. This is only a crude estimate however, since we fave not 

considered any depletion of the incoming beam as it passes through the 

sample. In our case the absorption is fairly strong (only 15% trans

mission at the peak), so actually we should solve Eq. (2) coupled with 

an equation describing the decrease of the laser intensity at a depth 

S. within the sample, e.g. 
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. T N (I) - H (J) 

o 

which includes the effects of reduced absorption due to saturation. 

Solving these coupled differential equations will normally require 

numerical computation beyond what is necessary for this discussion. 

We may assume (.hat the saturation energy fluence is of the order of 
2 

1 J/rm and use this number as a rough guide to avoid saturation ef
fects. 

In nonlinear processes (such as CARS) which scale either linearly 

or quadratically with the input intensity, the restrictions placed on 

the input energy fluence by saturation greatly limit the strength of 

the nonlinear output. This can be overcome to some extent b/ going 

to yet shorter input pulses, while keeping the energy fluence near the 

saturation limit. We shall return to this point in our discussion of 
i 

double resonance CARS below. 

C. Triply-Resonant RIKES 

The fiist nonlinear process to be considered here is four-wave 

mixing with d>- = OJ_ - w- + to_, involving the RIKES-type triply-reso

nant susceptibility described in Section IVA. [We now identify the 
3 +3 state |g'> with the H, level of Pr .] After integration over the o 

inhomogeneous distribution of resonant frequencies (as is approxi

mately valid for strain broadening in solids), the most strongly reso

nant tarms of Eq. (7), Section IV become 
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( x ) .J'K-^v'Tf—-"> 
n'g' * n'g" n'g' n'g" 

[r , + (u , /u , ,)r , ,] r , , 
g'g g'g n'g" n'g" n'n' 

(5) 

where all input frequencies are assumed to be exactly on resonance. 

Examining this expression for (x R) we see that on resonance it is a 

negative imaginary number. From Section II we found that 

d£(ui2)/dz - ± » X ( 3 > |*C«X> | 2«C« 2> 

which, with x = —i|Cx R) |» becomes 

dS(a)2)/dz = +P| < X R > M I !&<»!> I *<» 2> 

Since B is a positive, real parameter, this expression describes the 

exponential growth of the ui. field, i.e. gain. Also note that (x„) 
£• R max 

is made up of contributions from both coherent processes, involving 

the off-diagonal damping parameters, T , and r , ,, and a population 

term, involv. ng the lifetime of the excited state T . — I* . . . Be-
n n n 

low, we will compare the strengths of these two contributions. 

The expression in Eq. (5) is written for the case of Doppler 

broadening with the parameter (v /c)w , describing the inhomogeneous 

width of the transition from |g> to ]n'>. More precisely, when v = v , 

the frequency shift from line center is equal to the inhomogeneous 

width d-fined with respect to the e point of the profile. Using 
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instead the inhomogeneous width Y t with respect to the half maximum 

(HWHM), we have 

ui°, (1 - v /c) - a", - y , muzj* n'g v o n'g 'n'g y 

We generalize Eq. (5) by rewriting (v /c)u°, as Y t /(*n2). Further-
o n g n g 

more, in the present case the laser linewidths (r » 4 GHz) greatly 

dominate the homogeneous linewidths, which can be neglected in com

parison. Finally, as pointed out above, we are in the transient re

gime (T << T t ) so the laser pulse length must replace the uppc-.r 

state lifetime. Thus Eq. (5) can be rewritten, 

^ . ^ ^ ^ . , j . w 

Let us now compare the coherent and population contributions, the 

former is proportional to (r ) and the latter is proportional to T . 

For the flash lamp-pumped dye laser system, we have r T ** 2TT(4 GHz) * 

(0.4 ysec) ~" 10 (which is to say that this system is very far from 

the Fourier transform limit). Thus the coherent term will be negli

gible compared to the population term. 

The only unknown parameter in Eq. (6) is the dipole matrix ele-
3 3 ment Iu . . I, connecting the P and H- states. Fortunately, the fact •n'g ' 0 6 

that the crystal will lase on this transition allows us to make a 

crude estimate of the susceptibility for this RIKES process. 

We consider the simplest model of this lasing: all photons at u). 

0 
3 

which are absorbed populate the P state, providing a number density 
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3 ,Ar . of excited ions which can enit to the H, level. The gain coef-n 6 ° 

ficient per unit length, G, defined in analogy with the absorption co-

efficie. *" of Eq. (1), can be estimated from the lasing threshold con

dition. Assuming the feedback for lasing comes only from the 5.3% re

flection at the LaF - air interface of the 0.1 cm thick sample, this 

threshold condition becomes 

e G £ - R _ 1 - G = 30 cm"1 

where R is the reflectivity at the interface and £ is the sample thick

ness. To estimate the number density of ions which give rise to this 

gain, we have measured the amount of energy absorbed from the pump 

beam at w.. This is then a direct measure of the number density .A^ , 

in the upper state. The energy absorbed per unit volume was the ener-
2 gy fluence at lasing threshold (0.7 J/cm ) times the fraction of the 

beam which was absorbed (85%) divided by the sample length (0.1 cm). 
3 19 

This leads to about 6 J/cm energy dem tty or about 1.4 * 10 photons/ 
3 19 3 cm absorbed, thus J\f, = 1,4 * 10 excited ions/cm within, the laser n 

bandwidth of 4 GHz. 

Using Eq. (1) we can evaluate the gain coefficient, instead of 

the loss or absorption coefficient. With the above infonnation we 
3 3 

roughly estimate the matrix element |<H. IM| P0>| as 

'Vg'l ** 7 X L ° ~ e s u 

This should be considered as only an order of magnitude calculation, 

due to the simplicity of the argument presented here, but can be used 
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to estimate the strength of (x„) 
K max 

20 -3 

Recall that N - 1.8 x 10 cm for the total number density of Pr 

ions >|i , I ** 2 x lo" esu and kj , ,[ * 7 x io~ esu for the dipole 

matrix elements, y » — 1 1 GHz for the inhomogeneous width, and T. = 

0.4 usee and r = 4 GHz for the laser parameters. Evaluating the sus

ceptibility from Eq. (6), we find 

I V m a J ~ 2 x l T 8 . B U 

This is to be compared to the typical singly-resonant CAR*"- suscepti-
-13 -1 

bility of 3 x 10 esu as for the 992 cm Raman mode of benzene. 

Since real population changes are occurring, x R is much larger in this 

multi-resonant case. Instead of a RIKES-type susceptibility, it would 

be more appropriate to call this a stimulated emission susceptibility, 

since in this case it is actually a population change effect. In any 

case, such a strong resonance should be easily observable. 

The experimental technique to measure x« directly was quite simi

lar to the RIKES setup described in Section II (see Fig. 4 of that 

section). In this case we used the fact that the stimulated emission 

rules of the Pr in the LaF_ host. The fiela at to, — w . was set per-3 1 n'g 
pendicular to the crystal optic axis (and so was strongly absorbed) 

and the field at oj_ — OJ^, , was at approximately 45° to this axis. A 

polarization analyzer was placed after the sample to null the probe 

beam (uu) when the pump beam (oi ) was not present. The probe field 

experienced gain for the component along the pump field and no gain in 

the other component. Ideally, light at the probe frequency will only 
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be detected through the analyzer when the pump field Is present. In 

reality the finite leakage of any polarizer (see discussion of polar

ization-sensitive CARS) will lead to a background signal which can be 

used to measure the relative strength of the gain signal. The ratio 

of the signal due to the gain process and that due to the leakage is 

given by 

3t = « 2/ee 2 (8) 

2 

where # is the exponential gain factor in the low signal limit and 6 

is the extinction ratio of the polarization analyzer. Figure 5 in

dicates a typical spectrum taken with u>. exactly on resonance and OJ_ 
3 3 

scanned across the P_ -*• H. transition frequency. Theoretically an 

expression for the gain factor 9 can be derived using the plane wave 

approximation discussed in Section II, as in £q. (27) of that section. 

The result given there is 

* = 2 B I ( * R W I E M 2 

n cX 

where I(u>,) is the intensity at u_, £ is the effective length describ

ed in Section IVC, n and X are the index of refraction and wavelength 

for a mean frequency of the input frequencies. (An expression for # 

derived for Gaussian transverse profile beams is given in Ref. 16.) 

The maximum observed exponential gain factor was # = 0.27 (for the 
2 

spectrum shown in Fig. 5) with an intensity 1(a).) * 100 kW/cm (de

rived from a power of only 20 W) and an effect length of 0.05 cm. 
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From Eq. (9) we find 

(X n) « 4 . 8 x 1 0 - 8 eeu A R max 

with an estimated error of about ±30% due to the errors in measuring 

the intensity at u and the only approximate plane wave beam profiles. 

From this value of I(v„) I we can now use the expression in 
3 3 

Eq. (6) to determine the matrix element between the P n and H, states 
— the result being 

K v i *9-7 x 10"21 e s u • 
-21 

which compares favorably with the value of 7 * 10 esu determined 

from the lasing threshold measurements, even though that derivation 

was somewhat crude. 

Of interest also in this triple resonance case is the predicted 

lineshape of the susceptibility — b o t h as a function of to- and w_. 

Let us first discuss the dispersion of the peak value of y_ a s the 

frequency w. is stepped across the absorption line. A series of scans 

— similar to that presented in Fig. 5 — were made to determine the 

lineshape of the RIKES susceptibility. After accounting for the chan

ges in the linear absorption, the relative dispersion of (x„) is 

displayed in Fig. 6. The expected lineshape in this case can be found 

from the theory of Section IV. 

Noting that we have found the most strongly resonant term of the 

unaveraged susceptibility to be (from Eq.(7), .Section IV) 

/"vJ 2"w' 2 

ti3r , , 
n n' 

(w, - ui , - ir , ) (u, - u , , + ir , J 1 n'g n'g'* 2 n'g' n'g' 
(10) 
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we see this shows the form of a doubly-resonant susceptibility, with 

the extra resonance being the zero-frequencv resonance previously des

cribed. Averaging over the assumed Gaussian distribution function, we 

find from Eq. (20) of Section IV, 

» k . j V . . . | 2 1 2(.ta2>* .-*"lta2'^'g 
'8' 'r°'li' 

R = _ 1 h 3r , , n n V g I " ; T f v V + l ( r
B v + W » 

(11) 

where the assumed Gaussian distribution manifests Itself in the factor 

exp[-Au>.S,u2/y , ] with Aui- = w - w , and in Y i the inhomogeneous 

broadened width (which is assumed characteristic of the inhomogeneous 

widths of the transitions). From Eq. (11) we see that the magnitude 

of x„ Is maximized when u)_ - a>_ = w , , and then we have R 1 2 g g 

(Vmax " «Vl-*l**hlg] 

which implies (x D) has the same form as the linear absorption line-R max 
shape (assumed to be Gaussian in this case). 

In Fig. 6(a) we have fitted the experimental data to a Gaussian 

profile and, like the linear absorption data, the fit is poor in the 

wings. In Fig. 6(b) we show a fit of the same data to a Lorentzian 

for comparison (Fig. 3(b) shows a similar fit for a(ai-)). The approx

imate halfwidth from this data is about 11-12 GHz, in good agreement 

with the expected width (y , ) . 

that as we scan w for a fixed frequency UJ-, the expected lineshape 

is a simple Lorentzian with a width determined by the sum of the homo-
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geneous widths. As described earlier, these widths are dominated by 

the laser bandwidths, so the sum is replaced by r , the total laser 

bandwidth (each homogeneous halfwidth being replaced by a laser half-

width) . The scan in Fig. 5 with u. on line center shows a halfwidth 

of approximately 4 to 5 GHz as expected; however, scans made with u. 

detuned from line center show haIfwidths of up to 8 GHz. This addi

tional broadening is attributed to the "aicidental degeneracy" effect 

discussed in Section IVB. Similar measurements made with narrower 

bandwidth lasers (r = 1 GHz) show that even for Aw = 0 there is an 

additional width of 1 to 2 GHz, beyond that attributable to the lasers. 

There is no clear explanation why the accidental width should become 

larger in the wings of the absorption line. 

In summary, the triply-resonant RIKES process does show the nar

rowing below the inhomogeneous width as predicted by the theory of 

Section IV. The nonlinear susceptibility in the case of Pr is domin

ated by a population term and has a peak value of ^ 4.8 x 10 esu. 

From this value we have estimated the dipole matrix element of the 
3 3 -21 

P •* H, transition to be 9.7 * 10 esu. To complete the descrip

tion of the observed spectra, we must include the presence of acciden-
+3 tal degeneracy in the Pr :LaF_ system, which causes an additional 

broadening of the resonances. 

D. Doubly-Resonant CARS — Raman Resonance 

la Section IV we presented the form of the doubly-resonant CARS 

susceptibility and indicated that no narrowing below the inhomogene

ous width Is expected for a Raman-type resonance. However, the line-

shape of the CARS signal does change dramatically as the input fre-
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quency u>1 is varied from below the resonance Co above resonance. The 

variations of the resonant CARS lineshape for homogeneously broadened 
17 18 

systems have been observed and fully explained. Let us briefly 

review these results before discussing the inhomogeneously broadened 

case. 

For simplicity, consider a Raman susceptibility which is weak 

compared to the nonresonant background CARS susceptibility. As shown 

in Section II, the CARS lineshape (i.e. the CARS signal versus w,) will 

be carried on the cross term of hu™ + X D| > that is on the 2x.roRe[x„] 
HK K UK R 

term. The dispersive part of the CARS signal is then directly propor

tional to the real part of x B- For doubly-resonant CARS we have from 

Eq. (4) of Section IV, 

*R a ( ul-V, + " n V V " -2 - Vg + l r g ' g r l 

1 n'g n'g' 
and, 

Re[x R] <* f(uj_) Re[i?] + g ( U l ) Im[j?l C12) 

where we have written if for the usual Lorentzian lineshape associated 

with the two-photon resonance of standard CARS, and we define f(ii>_) 

and g(u-) to be R e [ ( U l - u , + i r . )~ ] and -Im[ (in, - u , + i r . ) " ], l i n g n g X n g n g 

respectively. T.r. the limit of ta. well below resonance with u , , we 

have jgCaj.) | « |f(u>i) | and the spectrum of Re[Xp] closely follows 

Retif], as in Fig. 7(a). As a. •* in , there is increased mixing of 

Re[,2*] and Im[.SP] until exactly on resonance we have 
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Re[x R] a Im[.S?I 

as illustrated in Fig. 7(c). Hudson, et al. have demonstrated ac

tual CARS spectra which closely match those shown in Fig. 7. 

In the case of an inhomogeneously broadened system we must first 

average the susceptibility as in Section IVB, with the resulting line-

shape determined by the function Z(c)» the plasma dispersion function 

(which is only available in tabulated form). The general variation 

of the CARS lineshape with to is still roughly the same as in the 

homogeneous case described above, except the homogeneous width is re

placed by the inhomogeneous width (11 GHz) and the dispersion is some

what more like a Gaussian. See Fig. 8(a) for the CARS linechape de

rived from the plasma dispersion function, when u = w , and compare 

with the pure Lorentzian lineshape for the homogeneously broadened 

system exactly on resonance in Fig. 7(c). 

To estimate the strength of the averaged doubly-resonant CARS 

susceptibility, we evaluate x„ et its peak (io = w , and OJ - d)_ = K i n g 1 t. 
u> , ). The result is 

AR'max ,.2 | 2 J VLalf <XJ„„ - - S S n 8 " S | ^ | (13) 

where a , is the Raman polarizability defined in conjunction with 

Eq. (4) of Section IV and Y T is taken as the typical inhomogeneous 

width - 11 GHz. The other parameters in Eq. (13) have been defined 

and evaluated earlier in this section; only the Raman polarizability 

is unknown. 
3 3 

We may crudely estimate the value of a . for the H. to H, 
g g 6 4 
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transition by assuming all matrix elements have a typical value of 
-21 3 3 2 x 10 esu, like the H, •*• P„ transition, so the factor u u , 4 0 gm mg 

may be removed from the summation. The sum over the energy denomina

tors can then be explicitly calculated from the known energy levels 
2 of the Pr ions given by Karnall, et al. This sum has a value of 

-2 -l -1 1.3 * 10 (cm ) , indicating the effective energy difference of 

- ^ v i n " 2 8 a , *- J x iu esu 
6 8 

in this case, which leads to a resonant susceptibility of 

<X»> * 3 x 10 1 6 esu . 

Although this has been only an order of magnitude estimation, this 

value is very small compared to the familiar singly-resonant CARS sus-
-13 

ceptJbility, e.g. the value of 3 x 10 esu for benzene. Of course, 

it must be kept in mind that this calculation is for a 1% doping level 

of Pr. Tf we try to use a higher concentration of Pr, the strength 

of (x D) will actually decrease, as follows. The resonant suscepti-

bility in Eq. (13) is proportional to N/y , and y shows a depen

dence upon concentration which is roughly linear (see Ref. 5). Thus 
we find the strength of (v ) decreases as l/N, so we should actual-R max 
ly go to lower concentrations. However, if we attempt to use a lower 

concentration than 1%, the inhomogeneous width vill quickly become 

comparable to the laser bandwidth (4 GHz), in which case the suscepti

bility will be limited by r instead of y . Thus, for the present 
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laser system, the choice of a 1% Pr doping level is nearly optimal. 

As a final comment on this estimated strength of (x„) for CARS, 

we note that the doubly-resonant CARS susceptibility is about eight 

orders of magnitude lower than the triply-resonant RIKES susceptibil

ity. This large factor is due almost entirely to the extra resonance 

in the triple resonance case, which leads to an enhancement factor of 

AWT (compare Eqs. (6) and (13) with Aw being the effective frequency 

denominator in the Raman polarizability). With AW/2TTC — 77 cm and 

i — 0.4 [jsec, we have AOJT * 10 , with the extra order of magnitude 

coming from the different matrix elements and resonance linewidths in

volved in the two processes. 

To complete the description of the expected CARS lineshape, it is 

necessary to determine the strength of the nonresonant CARS suscepti-

parison of the nonresonant CARS signals for LaF and carbon tetra

chloride, we find X u n ^ ^ i ) * l/J-5 X N R( C C i-/) • Levenson and Bloember-
19 -14 

gen have assigned a value of 1.1 * 10 esu to \ in CCc,, so we 
have 

X N R(LaF 3) * 7 x 10 1 6 esu 

This rather small nonresonant susceptibility can be attributed to the 

rather distant uv absorption bands in the LaF_, which begin about 

2000A. Comparing this to the estimated resonant susceptibility, one 

finds 

which would result in a CARS signal variation of about 2x B/x> J P °r 80%. 
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The experimental resonant CARS spectrum as shown in Fig. 8(b) and 

shows a modulation depth of about 20-30%, corresponding to XD(Pr)/x»ro 

(LaF„) *= 0.1 - 0.15. From this measured value of the ratio of sus

ceptibilities, we can establish the experimentally derived value of 

the Raman polarizability. Using Eq. (13) we find 

JO 
1. x 10 z o esu 

with an error of about ±50% due to the poor signal to noise of the 

resonant CARS spectrum. Considering the gross approximations used to 

estimate the strength of a , , the factor of three difference between 
8 6 

theory and experiment is somewhat fortuitous. Unfortunately the spec

trum is quite noisy making it difficult to confirm many details of the 

lineshape. Other data at different Aw. frequency detunings also had 

noise which obsured the lineshapes. We now consider the sources of 

this noise and discuss an improved experimental apparatus to increase 

the signal to noise ratio. 

As set forth in Section H E , the formal signal to noise analysis 

gives the following result for conventional (amplitude-) CARS, 

V W i » • t E + " V ^ ( 1 4 ) 

where we have included the shot noise term as discussed in Section H I D 

(e defined as the total mean square fluctuation due to either the la

ser fluctuations or the electronic noise; N' defined as the number of 
P 

photoelectrons produced pe~ shot, N 1 = qN = quantum efficiency times 

the number of photons incident on the detector; *Af is the total number 
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of shots over which the signal is averaged). We evaluate Eq. (14) for 

the parameters relevant to the CARS system and laser system used in 

this measurement, in order to indicate which parts of the system need 

improvement before undertaking more accurate experiments. 

The mean square fluctuation, e. given by the weighted sum of the 

two input lasers' fluctuations (4e. + E _ ) , is rather large in this 

case since the shot-to-shot variations of the laser intensities were 

greater than 30% for the u beam and about 10% for the w_ beam. The 

large fluctuations of the ai beam were attributed to the fact that the 

laser could not be perated too far above threshold with the laser dye 

Coumarin 480 used in the wavelength range around 4778^. We take e = 

4(.30) 2 + (.10)2 = 0.37. 

To evaluate the shot no-.se ter.a in Eq. (14) we need an estimate 

of the total number of photons striking the detector, N . Directly 

terminating the PMT signal into 50Q, only a random series of spikes 

corresponding to the CARS signal could be seen from which it was dif

ficult to determine the average photoeurrent. Rather than using pho

ton counting equipment to determine N , we chose to use the known 

dependence of the CARS signal strength upon system parameters to ex

trapolate N in this situation from a known set of parameters taken 

with the CCi, sample. The system parameters spoken of here include: 

strength of the nonresonant susceptibility, the input intensities of 

the lasers, and the effective interaction length within the sample. 

The necessary information to determine N (CC£.) jnd N (LaF,) is given 

below: 
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-14 A - 1.1 x 10 esu •* For LaF_: 

P x - 1 kW •+ 

A x = A 2 = 2 x 10 4cm2-+ 

JC = 1.0 cm -

T = 0.6 usee ->• 

XNR " 7 « 1 0 ~
1 6 esu 

h' 1 kW 

V2~ 10 kW 

A l = A 2 = 2 x 10" 4cm 2 

£ = 0.1 co 
T* = 0.4 usee 

with the dependence of N being 

Np " "NR2 h2 h *2 T* 

where we have I = P /A . 

In the case of CCZ., we have measured a signal of 0.4V terminated 

into 50fi with a photomultiplier of quantum efficiency of 15% and gain 
6 5 

of 2 x 10 , which leads to N (CCJt.) = 1.0 * 10 photons/pulse. 

Using the above information to evaluate the expected number of 

photons in the LaF~ case, we have 

N (LaF.J p 3 
= M ( c c t )!/ 7xl0-^esu\YlQMy0Ucm\2/0^u^\[ 

P IVl. lxlO esu / \ lkW/\ 1cm/ \0 .6usec/ j 

-4 3 x 10 4 N (CCH ) « 30 photons 

With the quantum efficiency of 15%, this corresponds to about 5 photo-

electrons, N r , to be used in Eq. (14). There is perhaps a factor of 

two uncertainty in this value of N' due to the large amount of infor

mation used in its determination. 



159 

With e « 0.37 and (N 1)" = 0.20, we can evaluate the minimum de-
P 

tectable ratio of resonant to nonresonant susceptibilities. Previous 

experimental spectra were taken with 10 Hz laser repetition and 10 sec 

time constant, so -A?' = 100. We find 

V x a U a i o ' 3 7 + 0'20',(uo,J| 

0.08 

which would imply that the measured value of 0.1 - 0.15 would involve 

a signal to noise of ~ i - 2, in agreement with the spectrum of Fig. 8. 

To improve the minimum detectable value of (Xp/x^rj)» w e should 

certainly try to reduce the laser fluctuations (decrease e) by using 

a more stable laser system; however, even if E -*• 0, the shot noise 

contribution described above still limits detection tt (x„/x„„) . 
R NR mxn 

0.04. To futher reduce the minimum detectable ratio, we must reduce 

the shot noise by increasing the number of photons over whicii we aver

age the signal — either by increasing the number of photons/pulse or 

by increasing the number of pulses averaged. This is shown explicitly 

in Eq. (14) which we rewrite here with E = 0, 

W m i n " (0V°^ 

Thus, to improve the detection limit by a factor of 10, we can, 

for example, either increase N or./^by a factor of 100. Averaging 

over 100 times more pulses is straight-forward but requires 100 times 

longer to make one spectrum, and so may be undesirable. As pointed 
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out in Section III, we ca.i utilize the nonlinear nature of the output 

to fairly easily increase the number of signal photons. For example, 

the hundred fold increase in N requires an increase of a factor of 
1/3 only (100) * 5 in each of the input lasers* intensities. A factor 

which can be accomplished either by increasing the pulse energy, focus

sing more tightly, or using a shorter input pulse length. 
+3 In the case of Pr :LaF , the restriction on the energy fluence 

due to saturation indicates that the best choice is to go to a shorter 

input laser pulse. If wi assume that we are inputting the same pulse 

energy into the same area (i.e. the same energy fluence) as in the 

flashlamp-pumped dye laser case, then we require the pulse length to 

be decreased by a factor of 10 (down to 40 nsec) to achieve the desir-
-2 ed two orders of magnitude increase in N . [Note: N a T. , not 

+3 The best choice for this Pr :LaF„ CARS experiment is to use a 

Nd:YAG-pumped dye laser system which can give comparable pulse ener

gies (and bandwidths) to the flashlamp dye system, but has a pulse 

length of 4 - 5 nsec. This factor of 100 in pulse length will lead 
4 to a 10 increase in N and will make the shot noise contribution to the P 

noise very small. Typical fluctuations for such a dye laser system 

l + £ 2 
_2 are quoted as 8% (Ref. 20^, and lead to £ = 4 E. + £, = 3.2 x 10 . 

Thus, averaging over 100 p'lses, we find 

W m i n " 2 * 1 0 " 2 

with this result dominated by laser fluctuations. With such a laser 

system we expect a signal tc noise for the spectrum of Fig. 8 to be 
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10 - 15 as evaluated from Eq. (52) of Section II. With this system 

we should be able to not only make a more accurate determination of 

X_/x M R in this double resonance experiment, but also to do the line-

shape studies of interest in this case. 

E. Doubly-Resonant CARS — Upper State Resonance 

Recently it has been pointed out that there should be another 

type of resonance in the four-wave mixing susceptibility — one invol

ving the splitting of two excited states. This has been discussed 

theoretically in Section IVA in Lne context of an inhomogeneously 

broadened system and was found to show the "Doppler-free" narrowing 

below the inhomogeneous width. We consider here the determination of 
+3 

the resonant susceptibility for this process in Pr :LaF_ using the 
3 1 

P state previously described and the lowest lying level of the D^ 

manifold (16872 cm ). We then describe a brief attempt to observe 

this "apper state resonance" process and suggest modifications to im

prove the experimental setup. 

To estimate the peak strength of x D * n t f i i s case we utilize the 

formalism of Section IV fo write an expression for the peak, averaged 

susceptibility. 

Nu . p a , 2(T?B.n2)^ n g gn n n (15) 

where one resonance denominator has been replaced by the typical in-

been replaced by the larger of either the homogeneous width or the 
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laser linewidth (here the laser width is much broader). Also needed 

to evaluate Eq. (15) are the dipole matrix elements u , » < PQ\v\ H.> 

and v = < H.|u| D > and the Raman polarizability between the excit-gn 4 2 
ed states a , as defined with Eq. (5) of Section IV. We have already n n 
determined u , earlier, and can estimate u from the linear absorp-n'g gn 

21 tion data given by Erickson. The peak absorption coefficient of 

2.6 cm for the 16872 cm line in a 1% doped sample indicates a val
ue of |u |— 0.9 x 10~ esu. Th<i Raman polarizability is again un
known and can be estimated in the same manner as in the previous seg
ment. We find, z , "• 2 * 10 esu. Evaluating Eq. (15) the peak 

n n 
resonant susceptibility becomes 

( V m a x ~ X - 2 ! < 1 0 " 1 7 e s u 

so that the ratio of resonant to nonresonant susceptibilities is ap

proximately 0.2. This is on the same order as in the Raman resonance 

case discussed in part D, but is again only an approximation due to 

the uncertainty in the estimation of a , . To experimentally deter

mine this ratio we must investigate the dispersion of the nonlinear 

signal. 

The simplest method of performing lineshape studies of the CARS 

spectra is to fix w, near w , and to scan u:_ around w . The expec-1 n'g 1 ng K 

ted lineshape for the resonant susceptibility is a Lorentzian invol

ving the frequency offset of oi from m ana a width determined by the 

laser bandwidth (in the present case). With x»TT)
 > > X™ t n e spectra 

NR R 
will display the cross term proportional to Re[x„] which (for the up

per state resonance process) involves the imaginary part of the Lorent-
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zian. 

The nonlinear signal lineshape will also depend upon the varia

tion of the effective interaction length £ defined in Section I V C 

Considering the most strongly resonantly enhanced case — w- exactly 

on resonance — the length £ will be determined by the strong absorp

tion at w and shows only a few percent variation due to the absorp

tion at w„. Thus, in this case, the dispersion in the CARS signal 

comes only from the spectral variation cf Re[x„]. 

The experimental arrangement used in this CARS measurement was 

identical to that used in the previous section, except that shorter 

pulsed Nd:YAG-pumped dye lasers were used for the input brams. As we 

have seen above, the minimum detectable ratio of susceptibilities for 

such a system (with 8% laser fluctuations) is expected to be (x«/x™) 4 
R NR min 

** 0.02. This leads to an anticipated S/N * 10 if the estimated value 

of the y /v ratio is 0.2 for the upper state resonance in Pr. V XNR H H 

Regrettably, the first attempts at developing the Nd:YAG-pumped 

dye lasers did not yield as stable of system as is commercially avail

able. In fact, even after averaging over 100 pulses, the CARS output 

signal still showed a fluctuation of 5%. Thus the value of (X D/XXT») J 

K NK min 

for this system was ^O.OS, which implies the expected signal to noise 

ratio was reduced to about 4. A brief attempt to observe such an up

per state resonance signal did not reveal any resonance above the 

noise; therefore, we conclude that XTJ/X HD ^0.05 for this particular 

set of transitions. 

Several improvements have been made in the experimental setup 

since the time of this attempt. Dye laser fluctuations have been 
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reduced by a factor of three using a more carefully optimized design, 

and a new computer-based data acquisition system has been developed 

which allows shot-to-shot data analysis. In addition, the larger 

laser intensities may allow either the use of an independent refer

ence cell to normalize the nonlinear signal or the use of the polari

zation-sensitive techniques discussed in Sections II and III. With 

these improvements, it should be possible to detect a minimum ratio of 

X / x M R
 o f 0.02 and perhaps see the theoretically predicted upper state 

resonance in CARS. 

To summarize this section, we have presented experimental proof 

that certain four-wave mixing processes can lead to a linewidth nuch 

less than that due to inhomogeneous broadening. This was demonstrated 
+3 

using the triply-resonant RIKES process In a study of Pr :LaF . Us
ing a combination of linear and nonlinear spectroscopic techniques, we 

have evaluated the dipole matrix elements involved in this RIKES sus-
3 3 —21 

ceptibility. In particular, we found < P_|p| H,> ** 2.2 * 10~ esu 

and < H 6|p| P Q> * 9.7 x 10 esu. From the strength of a doubly-re

sonant CARS spectrum, involving the same levels, we have found the 
3 3 Raman polarizability between the H, and H, states to be ^ Hproximate-o H 

ly 1. x 10 esu. We have also included several suggestions about 

improvements which could be made (and some of which have already been 

made) to make these measurements more precise. 
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Figure Captions 

+3 1 Level diagrams for Pr :LaF~. (a) Approximate energies of 

various manifolds ( S_ at 46986 cm not shown); (b) levels 

studied in this work. 
3„ 3„ 2 Linear absorption measurement setup to study H, -*• P_ tran

sition. BS beamsplitter, HDF neutral density filter, PD photo 

diode. Electric field polarized perpendicular to the c-axls 

of sample. 

3 Experimentally determined absorption lineshape. (a) Gaussian 

fit to central part of the profile; (b) Lorentzian fit to same 

data — both with peak height of 19 cm" and HWHM of 11 GHz. 

(See text for discussion of lineshape.) 
3 3 4 RIKES setup used to study the P_ •+• H. transition. PI and P2 U o 

polarizers, P3 linear analyzer (polarizer), Ll and L2 lenses, 

S sample, D diaphragm, Wl quarter-wave plate, F color filter 

(to block fluorescence from sample), PD photodiode. 

5 RIKES spectrum with ui, exactly on resonance. Plot of output 

signal through crossed polarizer as ai„ is scanned. 

6 Peak RIKES susceptibility as UJ, is scanned across the one-

photon resonance. (a) Gaussian fit to data; (b) Lorentzian 

fit to same data. (See text for discussion and compare to 

Fig. 3.) 

7 Resonant CARS lineshapes as w. is tuned through a one-photon 

resonance (for homogeneously broadened system). (a) Aw. = 

(J. - oj , = -100 T , ; (b) Aw. - - r , ; (c) Aw, = 0; (d) Aw, ± n g n g i n g 1 1 
= + r , . Vertical scale arbitrary; each plot with different n g 
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baseline. | X R | « U N R | assumed. 
+3 

Fig. 8 Doubly-resonant CARS spectra for Pr :LaF_ system, involving 
3 3 3 the H,, P„, and H. levels. (a) Theoretical curve derived 4 0 6 

using the tabulated plasma dispersion function and assuming 

X_/x H R = 0.15 with u exactly on resonance; (b) experimental 

curve also with w.. exactly on resonance; (c) experimental 

curve with w about six inhomogeneous halfwidths below reson

ance (the latter is included to indicate the noise level in 

the otherwise nondispersive nonlinear signal). 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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