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MAGNETIC FIELD, CLOSED ORBIT, AND ENERGY MEASUREMENT 
IN THE BEVATRON 

\enneth C. Crebbin 

This report provides the information necessary for a better evaluation of 
particle energy in the Bevatron. Previously, the nominal magnetic field value 
and radius were used to calculate the value for the kinetic energy of the 
particle. This value was good to a few percent. Today, more and more experi­
menters would like to know the energy to a more precise value. To this end, 
corrections to the measured magnetic field values and the radial closed orbit 
are provided. 

I, BEVATRON MAGNETIC FIELD 
A. Basic Field Shape 

The radial field shape of the Bevatron is described by: 

B = B Q P.£/Rn , (1-1) 

where: B is the field value at radius R; 
B 0 is the field value at radius R Q; and 
n is the field index. 

Whenever a field value is specified for Bevatron operation, it is the value 
B 0, which is the va^e at a radius of 599.375 inches. The magnetic field 
value used to calculate the energy of the particle is then given by Eq. (1-1) 
for the specific operating radius of the beam. Details of the calculations 
are given in another report.1 There are tables of the results in the MCR of 
the Bevatron, and there is a computer program, PAM, in the MODCOMP that can be 
used to calculate values for each specific case. 
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B. Monitoring of Magnetic Field 
The original magnetic field measurements were done in 1953-1954. The 

results are summarized in an engineering note.' The magnetic field values 
as originally measured are referenced to what is called an I-pip. The I-pip 
system is a set of pulses that are generated from a current transformer on the 
main conductors to the Bevatron magnet windings. Each I-pip pulse corresponds 
to a specific current in the main Bevatron coil windings. This current is 
then related to a specific field value as measured in 1953-1954. This is the 
primary standard for field measurements in the Bevatron. 

The Bevatron main field windings are bi-filar. There are therefore two 
I-pip systems, called the East system and the West system. East-West is the 
location of the current transformers in the shunt house and does not indicate 
current in the East or West half of the Bevatron magnet. Both sets of winding 
go through all four quadrants in series. 

There are three sets of windirts on the face of the pole tips. There is 
a set of 21 windings at 3-inch spacing radially across the aperture. These 
are called pole face windings (PFW) and are used to shape the Bevatron guide 
field by changing the field index n [Eq. (1-1)]. Windings number 1 and 21 
were in the stanchions. These were removed in 1962. The remaining windings 
are numbered 2 through 20. Winding number 11 is on the gap renterline at a 
radius of 599.375 inches. Parallel to PFW 2 and 20 are two additional 
windings used to control ripple in the main guide field during beam spill. 
These are called ripple reduction windings. 

Midway between PFW 6, 7, and 8 and PFW 14, 15, and 16 are two >ts of 
windings called B-dot windings. The winding between PFW 6 and 7 crosses over 
at the end of the quadrant and returns between PFW 14 and 15. This forms a 
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lcop around the center 21 inches ( r a d i a l l y ) of each quadrant. This loop i s 

used to measure the change of magnetic f l u x in t ha t par t of the aperture. 

S i m i l a r l y , the winding between PFW 7 and 8 returns between PFW 15 and 16. 

There are four sets of loops, two on the lower pole t i p s and two on the upper 

pole t i p s . The loops can be wired i n series to provide a complete loop around 

the Bevatron or brought out on a quadrant-by-quadrant bas is . 

The voltage across t h i s c o i l from the rate of change of magnetic f l ux 

w i th in the loop can be in tegrated to provide a signal t ha t i s proport ional t o 

the dynamic magnetic f i e l d . This i s ca l led the B-dot i n teg ra to r . The output 

from a B-dot in tegra tor has been used since 196Z to program the r f o s c i l l a t o r 

during p a r t i c l e accelerat ion i n the Bevatron. In 1969, the output from a 

B-dot in tegra to r was used to provide a set of marker pulses at each ki logauss 

level of magnetic f i e l d i n the Bevatron. These pulses were d i s t r i bu ted to the 

operations and experimental groups a t the Bevatron i n place of the o ld I -p ip 

system. Special pulses can be provided from the system in steps of 0.01 

gauss. A d i g i t a l readout is provided to monitor the value of the magnetic 

f i e l d on a f l a t top . 

Because the value from the B-dot in tegra to r i s proport ional to the 

dynamic f i e l d , there are several problems. The value does not include the 

remnant f i e l d in the Bevatron, which i s t y p i c a l l y between 35 and 40 gauss. I t 

also has to be ca l ib ra ted to read the correct value of the f i e l d . In addi ­

t i o n , the radia l shape of the f i e l d changes as the pole t i p s saturate a t high 

f i e l d . Therefore, the in tegrated value from the B-dot loop does not have a 

constant re la t ionsh ip to the value a t gap cen te r l i ne . 
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The remnant- f ie ld value can be provided i n two ways: a constant value is 

simply added in to the s t a r t i ng value of the B-dot i n t eg ra to r ; or a 

remnant- f ie ld magnetometer can be used to dynamically read the remnant f i e l d 

and provide that value as a s t a r t i n g po in t fo r the B-dot i n teg ra to r . At 

present, the former method i s normally used. 

The basic ca l i b ra t i on was done by se t t i ng the remnant- f ie ld value a t the 

s t a r t of the Bevatron pulse and then adjust ing the B-dot in tegra l value to 

read the tabulated value fo r B - f i e l d at some I - p i p . In 1975, the I -p ip chosen 

was 1-27. However, i n a recheck of c a l i b r a t i o n in June 1977, the c a l i b r a t i o n 

was changed to give the tabulated f i e l d value at 1-26. The reason f o r making 

t h i s change arid the consequences of the change w i l l be discussed l a t e r , a f t e r 

some of the f i e l d var ia t ions are examined. 

C. Var iat ions in Magnetic F ie ld 

In the ear ly days of proton running at tne Bevatron, the values for the 

pa r t i c l e energy were taken as a funct ion of I -pip from Engineering Pr in t 

9Y7083A.3 Extrapolat ion in time between I-pips was done in the table to 

determine p a r t i c l e energy. When the B-dot in tegra tor system was i n s t a l l e d , 

the ca l i b ra t i on was done using the tabulated values fo r B- f ie ld and I-pips i n 

the above p r i n t . The energy was then calculated using the value of the 

B- f ie ld read by the B-dot i n teg ra to r . 

The or ig ina l Bevatron magnetic f i e l d measurements are summarized in 

Engineering Note UCID-599 (MT-87). 2 In using t h i s note's azimuthal 

va r ia t i on of magnetic f i e l d , as given on pagp BFS-20, to ca lcu la te the rad ia l 

closed o r b i t , I noted that there were no values p lo t ted fo r the entrance 
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and e x i t sectors of each quadrant. I discussed t h i s with Glen Lambertson, and 

he said the values fo r those sectors were included in a tab le g iv ing the 

e f f ec t i ve length o f each quadrant. These measurements were made using a long 

co i l covering the end sector and wel l i n t o the s t r a i g h t sec t ion . These values 

are given on page PFS-4 of MT-87.' 

There are two things of i n t e r e s t i n t h i s t ab l e : the increase in e f f ec ­

t i ve f i e l d length of the quadrant causes a substant ia l s h i f t i n the closed 

o r b i t (over 13 inches); and the tabulated values of magnetic f i e l d as a func­

t i on of I -p ip are d i f f e r e n t from the values tabulated in 9Y7083A. In f a c t , 

the values in 9Y7083A are tabulated as "e f f ec t i ve f l ux density at marker." 

In MT-87, the ''ues are tabulated as "average t o ta l f l u x dens i ty . " 

From discussion of t h i s wi th Glen Lambertson, i t appears tha t the f i e l d 

and energy values tabulated in 9Y7083A were corrected fo r the e f f ec t i ve 

quadrant length . The magnetic f i e l d values tabulated are the e f f ec t i ve f i e l d 

tha t would ex is t in a 90-degree quadrant to give the cor rec t energy consistent 

wi th the sh i f ted closed o r b i t . The magnetic f i e l d tha t one would measure at 

some sector at any I-pip are those values tabulated in MT-87 page BFS-4. The 

values in both reports are l i s t e d in Table 1 . The e f fec t on the closed o r b i t 

and p a r t i c l e energy w i l l be discussed l a t e r . F i r s t , I w i l l examine in more 

de ta i l the ca l i b ra t i on of the B-dot i n teg ra to r , i n l i g h t of t h i s informat ion 

on tabulated values for magnetic f i e l d as a funct ion of I -p ip . 

The B-dot in tegrator c a l i b r a t i o n in May 1975 i s reported in a memorandum 

dated June 24, 1975.^ The values of B from the B-dot in tegrator are tabu­

la ted in Table 1 , along wi th the values of B from 9Y7083A and MT-87. A p l o t 

of the di f ferences fo r the values fo r the B-dot in tegra tor and 9Y7083A i s 
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shown in F ig . l a . The c a l i b r a t i o n point here was 1-27, wi th a dynamic reading 

fo r residual f i e l d added i n t o the value from the B-dot i n teg ra to r . 

In Oune 1977, another c a l i b r a t i o n was done. At tha t t ime, the c a l i b r a ­

t i on was sh i f ted to 1-26 to provide a be t te r f i t to the values tabulated i n 

9Y7083A. The values from the B-dot in tegra to r fo r t h i s ca l i b ra t i on are also 

shown in Table I and p lo t ted in F i g . l b . This was an unfortunate change, as 

i t lowered the Bevatron f i e l d by 27 gauss a t 1-26 w i th a corresponding 

decrease in k ine t i c energy of the p a r t i c l e s . In add i t i on , the value fo r B a t 

1-26 seems to be one of several o r i g i na l measurements tha t are in e r ro r . 

This w i l l be shown in the fo l lowing ana lys is . 

The values fo r B from the B-dot in tegra tor are rep lo t ted as (B- j n t -B) /B , 

where B i s the value given at each I -p ip from 9Y7083A. This i s shown in F ig . 

2a; F ig . 2b i s the same curve using the values of B given in MT-87. Compare 

these curves to the calculated curve fo r &B/B. The ca lcu lated curves were 

determined by computing the value of B enclosed by the B-dot loop r e l a t i v e to 

the centra l value of B at a radius of 599.375 inches using the rad ia l f i e l d 

p lo ts of B in MT-87. This the curve p lo t ted as F ig . 2c. The B-dot loop 

connected to the B-dot in tegrator i s on the lower pole t i ps between PFW 7 and 

8, and returns between PFW 15 and 16. 

A second correct ion wa<_ made by assuming that a l l the addi t ional f l ux 

from the e f fec t i ve quadrant length change was included in the B-dot loop. 

This correct ion i s added to the above radial ca l cu la t i on (F ig . 2c) to give the 

calculated curve for the B-dot in tegrator curve F ig . 2d. 

In F ig . la and F ig . 2a, we see that the B-dot in tegrator gave a value fo r 

B lower than those tabulateo in 9Y7083A fo r lower' values than the c a l i b r a t i o n 

value. This was the reason fo r One change in c a l i b r a t i o n point in 1977—to 
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10 li i2 13 

B 0 (kG) 

XBL 824-434 

Fig. 1. AB = / B - B, where B is the values tabulated in 9Y7083A. 
(a) O 1975 calibration, AB = 0 at 1-27. 
(b) A 1977 calibration, AB - 0 at 1-25. 
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F ig . 2. Plot of flB/B vs values of B 0 

(a) O 1977 data AB = / B-B values from 9Y7083A. 

(b) a 1977 data AB = / B-B values from MT-87. 

(c) • AB = B(calc)-B(MT-87)B(calc) from radia l shape in tegrated 
over radial area of B dot loop, normalized to f i e l d at 

(d) A AB = B(calc)-B(MT-87)B(calc) from c above plus magnetic 
f i e l d from quadrant length extension assuming a l l the f l ux 
is contained w i th in the B-dot loop. 
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get a better fit, as shown in Fig. lb. Note that below 6,000 gauss the values 
do not follow any smooth curve. If we look at graph 2b, where the field 
values given in MT-87 are used, we see a more reasonable fit to calculated 
curve 2d. Note that the value at 10,948 gauss, chosen as the 1977 calibration 
reference, is below the smooth curve and appears to be an incorrect measure­
ment in the original field calibrations. There are also a few variations in 
the lower field values at 3,832 gauss and at 1,727 gauss. If one put ±0.3% 
error bars on these values, most of the points would fall within this range. 

The conclusions to be drawn from these graphs are that the original basic 
field measurements are not accurate enough for precise particle energy 
measurements. Also, the B-dot coil in the Bevatron does not measure the field 
at gap centerline. In addition, the amount of flux integrated relative to the 
flux at gap centerline changes as a function of field so that no simple 
calibration at one value of B can be scaled to another field value with the 
accuracy desired by some experimenters. In general, the particle energy 
determined by the field value from the B-dot integrator and the particle 
radius is good only to a few percent. 

A more accurate value can be calculated by making the appropriate field 
corrections, using the curves of Fig. 2b to determine the value for B. An 
additional correction for the extra quadrant lengths must be made. This can 
be as much as a 1.5% correction in the value of the kinetic energy. From 
Fig. 2b and 2d, it is apparent that part of the fringe field is included in 
the integral value of B, so thcL a complete orbit correction, as given in 
Section II-B, will be an overcorrection. 
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II. CLOSED ORBIT 
A. Calculations for Normal Azimuthal Variation if Magnetic Field 

There are several reasons for wanting to know the closed orbit of a 
particle in the Bevatron. The one we are concerned with is to determine the 
path length. Then, knowing the time it takes to go once around the Bevatron, 
we can determine the kinetic energy of the particle by time of flight. Any 
closed orbit can be described by Fourier analysis in the form: 

R = R Q + z [ad)cos(ie) + b(i)sin(ie)l . (2-1) 

A detailed report on the harmonic analysis cf the vertical closed orbit is 
given in a Bevatron report. It needs only a minor change to use it tc 
calculate the radial closed orbit. 

I have a computer program that calculates the closed orbit by averaging 
a general betatron oscillation over many turns. It gives essentially the same 
results as the harmonic analysis calculation and is simpler to use. 

Let us now see what we can determine about the path length of the 
particle around the Bevatron without knowing the exact closet! orbit at each 
sector in the Bevatron. From Eq. (2-1), we see that the closed orbit can be 
represented by a series of sinusoidal oscillations, all ar integral multiple 
of 2TT once around the Bevatron. 

Let us now examine the path length of a sinusoidal oscillation around a 
uniform orbit. 
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R = R 0 + a s in( ie) , 

41 - Roe , (2-2) 

2ir/i 2ir/i 
/dn = J Rde = / (R + a s in ( i e ) ) de , 

o o 

L = (2ir/i)R0 for a single oscillation around the closed orb^t. 

"Pie extra path length traveled by the sinusoidal oscillation just cancels, and 

the path length is equal to the fixed orbit path length R 0e. In Eq. (2-1), 

we can see that the harmonic parts average out to zero in each cycle of 

oscillation, and the path length is just equal to 2nR 0 plus the straight 

sections. 

At the Bevatron, the closed orbit is measured using radial probes. A 

U-shaped target is flipped up into the beam. The target is adjusted radially 

to give maximum beam survival. ThP center of the U target is at the center of 

the beam. This Is repeated at each target position. We have target positions 

in each straight section, so we have four measurements 90 degrees apart. 

Substituting in Eq. (2-1) for J measurements and summing, we have: 

n n n 
T R, = nR Q + V a(i)cos(i8u) + Y b(*)s1n[i 9(J) 1 . 

j=l j=l j=l 

This reduces to: 

n 
Y R, = nR Q + n(a(n) + a(2n) + a(3n) . . .) , 

j = i 
n 

Ro = \ ^ \ ' I3'"1 + a ( 2 n ) + a ( 3 n ) ' • •' ' (2"3) 

j=l 



-13-

That is, we know the value for R 0 to within the error of the amplitude of 
the nth + 2nth + . . . harmonic for n azimuthally equidistant measurements of 
radial position. For measurements at each straight section, the error in the 
measured value for R 0 is the amplitude of the 4th, 8th, 12th . . . harmonic. 
The question is, can we put an upper limit on the amplitude of these harmonic 
oscillations without knowing the exact closed orbit? 

An upper limit can be calculated for the case of a systematic fourth-
order perturbation in the field value of each sector. The coefficients for 
the ith harmonic are derived by substituting Eq. (2-1) into the second-order 
differential equation for radial betatron oscillations. This yields: 

2 2n 
ai _ k (1-n) 1_ f . m c o s ( i e ) 
b i " kZ(l-n) - i 2 '0 J0

 A l J ,s1n<i 9> ' 

where: k = 1 + 4L/2nR = 1. i, 
L = length of straight sections, 
R = radius of curved sections, 

A(j) = shift in equilibrium orbit position from the reference 
orbit position, in the jth sector, for a change in magnetic 
field value in the jth sector from the nominal value. 

The integral is over both curved and straight sections. As we are 
interested in the approximate value of a fourth harmonic, we can ignore the 
slight correction contributed by integrating over the straight section. 
The major correction to amplitudes from the straight section is included in 
the k term. 
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Set A equal to 18 inches (IS perturbation) for each sector, with a sign 

change always additive for the sin ie term. The coiine term then sums to 

zero. 

2 V 4 

b(4) = , k ( 1 " n ) r A Q 8 / sin 4e d8 
k2(l-n)-16 o 

k 2 (1 -n ) 8 „ f -cos 4n~T / 4 

k2(l-n)-16 ' ° L _ T ~ J o 

k 2 Q - n ) 8 , 1 
k 2 ( l - n ) - 1 6 7^-~ ? \ ? 

Subst i tu t ing for k = 1.255, n = 0.66, AQ = 18, 

b(4) (1.255) 2 (0.34) 4 « 18 

(1.255) 2 (0.34) - 16 

0.536 4 x 18 

0.035 * I J L i B 

b(4) = 0.794 inches. 

A highly systematic per turbat ion of 1% at each sector of the Bevatron thus 

produces a closed o r b i t d i s t o r t i o n of only 0.8 inches. 

Another way of examining the fourth-harmonic problem is to consider the 

Sevatron as being made up of 144 per fect sectors plus 144 local perturbat ions 

centered at each sector. The var ia t ion of the magnetic f i e l d at each sector 

can be considered as a radial bend or kick loca l ized azimuthal ly at a po in t . 

For a perfect machine, we know what the o r b i t i s wi th such a loca l ized rad ia l 

k i ck ; we have simply a sin u9 curve which closes at the per tu rba t ion , has a 
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maximum radial displacement 180 degrees from the perturbation, and is 
symmetric about the point 190 degrees from the perturbation. This .is shown in 
Figs. 3 and 4. The closed orbit is then the sum of the 144 terms. 

The detailed derivation is given in the Appendix. There, the closed 
orbit is given by Eq. (A-5): 

R(i) = A(i) cos [v0(i) + D(i)] (2-4) 

where A(i) and D(i) are slowly varying functions. The basic closed orbit is 
therefore a distorted first harmonic. 

The change in R from phase shift and amplitude changes due to the 
perturbation is given by Eq. !A-11) in the Appendix: 

AR(i,i+l) = 2A(i) sin (vir) vA8 . (2-5) 

To evaluate A(i) for a perturbation of 1%, vie proceed as follows. 
Consider Eq. (2-4) describing a single perturbation path so that A and D are 
constants. The perturbation will be just 2 times the dR/de at the perturba­
tion. 

At 9 = 0, R = -A(1) , 
-A(<) = A( i ) cos (\>0 + D), therefore D - n ; 

R = A( i ) cos (vB + Tt) , 
dR 
de ^ = -A ( i ) v s in (v9 + ir) 

dR 
l e -A ( i ) v s in (VTT + TT) 

-A ( i ) v s in (VTT) cos (n) + cos (vn) s in (») , 

I dR . A ( 1 ) s i n ( w ) 

B _ , dR = 7 dR = 2v 1 dR 
v dT MS R v de 
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Fig. 3. Closed orbit through perfect machine with perturbation at Bj, for 
case 9 > 6;. 

Fig. 4. Closed orbit through perfect machine with perturbation at Bj, for 
case a < e,-. 
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For a 1% perturbation, 

P = O.Olae , 

where: 49 =• 2.5° (angular bend of one sector), 

= p. [A(i) sin («»)] , 

, , . . _ 0.01 &9R 
A m " 2 v sin (VTI) 

Substitute in Eq. (2-5), for R = 604 inches; v = 0.667; 

a R » . 1 + 1 > " 2 Z v'sinTw) s i n >'">*»> 

= 0.01 R(AB) 2 

_9 
AR(i,i+l) = 1.15 x 10 inches/sector . 
Besides this change in R from the local perturbation, there is the change 

in R due to the change in 6 for a constant anrolitude and phase. This is given 
by: 

R = A sin (v8 + D) , 
dR = A« cos (ve + D) de , 

The maximum value fo r t h i s i s : 

2 .5 J 

= H x u . o n / x i x 
m 

dR_ = Ax 0.667 x 1 x . . . v 

d\ = A x 0.029 . 

For a 1-inch amplitude of f i r s t harmonic d i s t o r t i o n , 

dR = 0.029 inches per sector . 
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For a 2-inch amplitude, 

dR m = 0.058 inches per sector. 

A fourth harmonic oscillation covers nine sectors; therefore, for the 
case of the 2-inch first harmonic amplitude plus the change in R per sector 
from the perturbation, the maximum displacement is: 

AR = [0.058 + 0.115] x 9 , 

&R = 0.63 inches . 

This is about the same value as calculated for a systematic fourth harmonic 
around the °ntire machine using harmonic analysis. 

Both of these analyses assume a very systematic perturbation. If 20% of 
this perturbation is undetected in our closed orbit measurements, we would 
have an uncertainty in R 0 of ±0.16 inches from the undetected fourth-order 
harmonic. 

Closed orbit measurements at the four straight sections give a good 
estimate of the average value of the closed orbit R 0 without our having to 
know the actual path of the closed orbit for normal sector perturbations. 
B. Variation of Effective Quadrant Length 

As mentioned earlier, the major perturbation to the closed orbit is from 
the variation of the magnetic field involved in the change in effective length 
of the quadrants. The easiest method of studying particle trajectories is 
with the concept of betatron oscillations. Implicit in the derivation is the 
assumption that the particles are bent through an angle of 2TT in following the 
closed orbit. If the effective magnetic field length is less or greater than 
2n, then the difference must be handled as a perturbation superimposed on a 
normal betatron path. 
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For a perturbation that is the same for each quadrant, this orbit is a 
section of betatron oscillation symmetric about the center of each quadrant. 
The extra bend at the end of the quadrant is considered a localized 
perturbation just equal to the derivative of the betatron oscillation at that 
point (see Fig. 5). If the quadrant is longer than 90 degrees, the deflection 
is radially inward. If the quadrant is less than 90 degrees, the deflection 
is radially outward. 

The displacement r is given by; 

r = A sin (/T:n'+ e + D) ; (2-6) 

at e = 0, r = -A(l) , 
-A(l) = A sin (D). 

Therefore: 

3n 
T A(l) 

r = A(l) sin (/Inn e + |l) = -A(l) cos /Iwi e 

R = R £ - r 

R = R E + A(l) cos (/TTrT 8) 

For n = 0.688, vT^n = /1-0.668 = 0.576. 

The perturbation a = DL/R = dR/ds; therefore: 

ijR = R dR = .Q.056 A ( 1 ) s i n (0.576 n/4) at the perturbation, 

R ^ = -0.576 A(l) sin (0.576 n/4) , 
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Fig. 5. Rg is the radius for the energy of the particle for a normal 
magnetic field. R 0 is the reference closed orbit at the straight 
section with end perturbation DL to just remove a at the straight 
section. A(2) is the amplitude of the betatron oscillation at the 
straight section relative to R^. A(l) is the maximum amplitude of 
the oetatron oscillation at the center of the quadrant relative to 
R E. 
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A ( 1 ) = U.b/b sin (U.h/b v/l) , 

A(l) = -3.969 DL , 

A{2) - r = -A(l) cos (0.576 ir/4) , 

A(2) = -3.9692 DL cos (0.576 it/4) , 
(2-7) 

A(2) = -3.57 DL . 

For a quadrant increase of 7.5 inches, DL = 7,5/2 = 3.75 inches. Therefore, 
A(2) = -13.39-inch displacement of the closed orbit at the straight section. 

At the center of the quadrant, the orbit is shifted 
A d ) = -3.97 x 3.75 = -14.9 inches. 

This is a substantial shift, equal to a change of about 1.3% in en . gy at 400 
MeV/amu. 

At high field, the quadrants are less than 90 degrees. The effect is the 
same, but the orbit is moved outward. At a 12.5 kG field, DL is 0.5/2 = 0.25 
inches. 

The scallop in the quadrant is just the difference between A(l) and A(2) 
above: 

AA = -(3.97 - 3.57) DL , 
AA = -0.40 DL. 

For the high f i e l d case, t h i s i s : 

AA = -0.40 x (-0.25) = +0.1 inches . 
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The measured d i f ference i s about 0.5 inches, as shown in a p l o t of closed 

o r b i t through quadrant I I I measured in 1968 during resonant ex t rac t ion studies 

(F i g . 6 ) . This was done using the t ravel through t a rge t . This 0.5- inch o f f ­

set was measured from a s t r a i g h t - l i n e ext rapo la t ion between the West and North 

s t r a i gh t sect ions. There i s an obvious c losed-o rb i t d i s t o r t i o n in addi t ion to 

the scal lop shown in the measurements. I f a ca lcu lated closed o r b i t tha t 

approximates the posi t ion in the North and West i s examined, the o f f se t i s 

about 0.25 inches. A complete c losed-orb i t measurement a t high f i e l d i s not 

at present ava i lab le . 

Graphical in tegra t ion of some f i e l d data^ a t the 2 x i t of the Quadrant 

I I region for the l a s t 12 degrees of the quadrant and in to the s t ra igh t sec­

t ion gives a shortage of f l ux equal to about 0.47 inches of a sector. This 

raises a question as to what i s the correct value. The e f fec t of t h i s correc­

t ion w i l l be discussed l a t e r , when the energy evaluat ion i s made. There i s a 

gap-mounted target at the center of Quadrant I I I , and a s ing le-po in t quadrant 

measurement i s planned to check the displacement at intermediate f i e l d s . 

I have a computer program to ca lcu la te closed o rb i t s by summing values 

over a number of turns around the Bevatron fo r a small betatron o s c i l l a t i o n 

and p r i n t i ng out average values at a number of o r b i t pos i t i ons . Both the 

sector perturbat ions and the quadrant-end e f fec ts can be put i n . I t gives the 

same values for c losed-orb i t ca lcu la t ions fo r sector perturbat ions as the 

harmonic analys is. The resul ts for quadrant-end e f fec ts agree wi th the above 

ha l f -sec tor ca l cu la t i on . The computer program is also easier to use, 

pa r t i cu l a r l y for nonsymmetric e f f ec t s . 
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Fig. 6. Measured closed orbit through Quadrant III. 
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A small change in the quadrant-end per turbat ion i n the Morth compared to 

the other s t ra igh t sections provides a reasonable f i t to the measured closed 

o r b i t at 600 MeV/amu. I t i s not an unreasonable issumption, as the presence 

of substant ial i ron in the extra concrete s h i t ' , ng on top of the north 

tangent tank could eas i ly cause a small change in the f r i n g e - f i e l d f l ux i n 

t h i s area. Overhead cranes increase the f i e l d in the sectors underneath by 

about 5 gauss at high f i e l d s . The e f fec t appears to be caused by the extra 

i ron in the f r i n g e - f i e l d f l ux above the magnet. 7 

One addi t ional potent ia l source of f i e l d asymmetry i s from the modif ied 

leg slabs at the ex i t s of Quadrants I I and I I I . The leg slab reluctance was 

maintained the same as the standard leg s labs. I am not awe^e of any measure­

ments to check the var ia t ions in the quadrant leng th . The o r ig ina l leg slabs 

are being re i ns ta l l ed p r i o r to the uranium-beam modi f i ca t ions . This may cause 

some changes in the closed o r b i t , and measurements w i l 1 'lave to be made. The 

correct ions to the path length measurement required by these quadrant length 

var ia t ions w i l l be discussed in Section I I I . 

I I I . PARTICLE ENERGY 

A. Time-of-Fl ight Measurement 

The var ia t ions of magnetic f i e l d on a sector-by-sector base's, as well as 

the large quadrant-end e f f e c t , make i t very d i f f i c u l t to provide a precise 

evaluation of the pa r t i c l e energy from a known rad ia l pos i t ion and the value 

of the magnetic f i e l d in the Bevatron. However, fo r heavy ions i t i s possible 

to make a t i m e - o f - f l i g h t measurement w i th in the Bevatron to provide a more 

precise value for the pa r t i c l e energy. We must now determine how well we need 
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to know the path length and transit time to establish a better energy measure­

ment. 

As we are working with particles fri the re la t iv is t ic region, we must 

determine the relationship betwen changes in kinetic energy and changes in 

B. We can derive the relationship as follows: 

E = EQ ( 1 - B V 1 / 2 , 

E = E 0 + K E . 

wher r: E = total energy, 

E 0 - rest energy, 

KE = kinetic energy. 

Substituting and solving for Kl£ gives: 

KE 

Faking the derivative of Eq. (3-1) and dividing by KE gives: 

E Q [ ( 1 - B 2 ) 1 / E - 1] ( 3 - D 

dKE dp 
(1-B Z ) - (1-8*13/2 8 

Subst i tu t ing 3 = [ l - t E o / E ) 2 ] 1 / 2 , we have: 

\2 dKE j£f + 3KE + 2 
0/ 0 

ds 
e 

(3-2) 

(3-3) 

For a time-of-flight measurement in the Bevatron, the velocity is given 

by: 
v = sf (3-4) 

where: f = frequency on the accelerat ing e lec t rode, 

s = equivalent path length . 
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The er.'or in v for errors in s and f 1s given by: 

ll/2 - • [d)M# 
The frequency 1s measured with an HP-5360A frequency counter to 1 part in 

10° for the measurements routinely made. By increasing the measurement 
time, it can read to 1 part in 1 0 1 0 . Therefore we have: 

* $ - * ! • (3-5) 

The error in the velocity is essentially determined by the error in the 
path length. The path length in the Bevatron is given by: 

S = 2TT R Q + 4L , (3-6) 

where: R 0 is the mean value of the closed orbit; and 
L is the length of each straight section. 

The eTor in S is given by: 

d s - d R ° «, 7, 
"T " R Q+ 4L/2* • ( 3- 7 ) 

The error i n v i s there fo re : 

dv . d R o 
v R 0 + 4 L / 2 T I * (3-8) 

To detennine how well we must know the closed o r b i t dR0 f o r an energy 

va r i a t i on of 0.5%, we proceed as fo l l ows . From Eq. (3-3) fo r a value of 500 

MeV/amu, we have: 

dKE . , Q f l de 
T£ .90 S | , (3-9) 
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dv „ dB = n , E C dKE HI = i £ = Q.256 "KF 

^ = 0.256 x 0.005 

^ = 1.28 x 10" 3 

Subst i tu t ing i n Eq. (3-8) y i e l d s : 

d R

0 • ( V s r ) 1 - 2 8 " 1 0 " 3 

= f 604 + 4 x \ x U ) 1.28 x 10-3 , 

dRQ = 0.97 inches . 

Therefore, i f we measure Rg to 0.5 inches, we can determine the KE to 

0.25% at 500 MeV/amu. 

B. Path Length Correct ion fo r Scalloped Orb i t from Quadrant Length 

Correct ion 

We can ca lcu la te the path length cor rec t ion fo r the scalloped o r b i t as 

fo l l ows . As the radia l beam posi t ions are measured at the s t r a i gh t sect ions, 

we can take the closed o r b i t radius R0 as going through pos i t ion A(2) in 

F i g . 5. We want to ca lcu la te the d i f ference in path length between the 

scalloped o r b i t and the s t ra igh t o r b i t R 0 . From Eqs. (2-2) and (2-6) we 

have: 
dl. = Rd8 = [R + A s in (\>e + D)l de , 
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L = / [R

P I + A s i n < v 9 + D)] de . 

where: 

o * " 

L = Re J + * cos (ve + D) J , 

A = A 1 , D = - 5 j , v = 0.576 , 

L = Re I " TO75 D L [ ° - 4 3 7 1 - ° ] - (3-10) 

L = R 5 - 3.013 DL . e 4 

The path length d i f ference between the c i r c u l a r o r b i t and the above path 

length fo r one-half of a quadrant i s given by: 

4L - RQ | - L . 

By subs t i tu t ing Eqs. (2-7) and (3-10) in the above for Re = R0 + A2, 

we have the path length d i f ference in ha l f a quadrant: 
AL = 0.209 DL . 

The f rac t iona l path length change, inc lud ing the s t r a i g h t sec t ion , i s : 

fiC a L /•> 111 

^ = -3.51 x 1 0 ' 4 DL . (3-12) 

This is the path length correction for the scalloped orbit relative to 

the measured closed orbit at tha straig!.<. sections through the radius R 0. 
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C. Correction to Measured Radial Position for Fringe-Field Effect 
The probes used to measure the radial position of the beam are in the 

field-free regions of the straight sections. The particle energy is deter­
mined by the radial position in the quadrants. A correction must therefore be 
made for the outward radial drift of the orbit when passing through the fringe 
field. 

A plot of the calculated orbit, using the fringe-field data of HT-87 for 
the Quadrant II exit, is shown in Fig. 7. The measured value was about 0.25 
inches using the travel target in Quadrants II and III. This agrees with the 
calculation in Fig. 7. 
D. Errors in Kinetic Energy Measurement 

In Section III-B, we determined that the error in Bevatron time-of-flight 
measurements is essentially from the error in the path length. I will now 
evaluate the error in the kinetic energy measurement as a result of the errors 
in the radius measurements and the uncertainty in the closed orbit distortion 
as a result of the variation in quadrant length of the magnetic field. 

The radial position of the circulating particle beam is measured with 
radial clipper probes in the four straight sections. In the South, West, and 
North straight sections, these are vertical bars of aluminum 1 inch thick in 
the azimuthal direction, 1/8 inch thick in the radial direction and 8 inches 
in the vertical. The North and West clippers are flipped up from below in 
about 100 msec. The clipper on the south probe is plunged radially outward 
from the inner radius in about 200 ms. 

The East probe is a U-shaped target or harp and is used in two modes. 
The first mode is to flip the harp up with the beam positioned near the center 
of the U (Fig. 8). The radial position of the harp is adjusted for maximum 



-30-

End of pole 
tip iron 

6° 5° 4° 3° 2° 
— Quadrant — 

0 10" 20" 30" --lO" 50" 60" 
-\ Strcight section •— 

600.0 

Fig. 7. Fringe-field orbit trajectory. 
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Beam £ y//^ Area shows beam lost. 

XBL 824-440 

Fig. 8. Beam clipping with harp. Shadowed areas sho'.n portions of aam that 
are lost . 

Area shows beam lost. 

" ig . 9. Beam clipping with finger target. Shadowed areas show lost portions 
of beam. 
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beam survival. The radial centerline position of the harp is then the radial 
position of the center of the circulating beam at that probe. 

The second mode is used to measure the relative radial position. The U 
probe is moved radially inward so that it clips the beam on the inside radius 
only (Fig. 9). The results of these measurements can then be compared to the 
other three probes, which are finger probes. By comparing the radial probe 
position for the same beam survival, relative radial beam positions are deter­
mined. 

The charge of the circulating beam is measured by a capacitive pick-up 
system called the Beam Induction Electrode (BIE). The BIE value is read just 
before and just after flipping the probe into the beam. In recent measure­
ments, a voltmeter read the two values and then provided a signal that was the 
ratio of the two BIE levels. This signal was set to read 1.000 for no probe 
in the beam. For each Bevatron pulse, the value was printed out on a paper 
tape. The MODCOMP computer was set up to give a pulse-by-pulse read-out of 
the magnetic field value and rf frequency for the pulses and this read-out 
was then printed as a hard copy. The BIE ratio and field and frequency hard 
copies were manually synchronized during data taking. Runs were made by 
adially scanning with the probes in 0.2-inch steps for 5 to 6 steps. Data 
for the finger-probe scans at each straight section are shown in Fig. 10. 
This gives the relative beam location at each section. Figure 11 shows date 
for the harp scans with the East probe for the racial position measurement. 

From Fig. 10, we can determine the relative radial positions to about 
±1/16 inch and the closed orbit radius in the east to ±1/8 inch. The shaft 
end play on the probes and the absolute radial position calibration are both 
about t 1/16 inch. From Section 11—A we have an estimate of about 0.16 inches 



-33-

8 0 0 

599 600 601 602 603 604 

Probe radius (inches) 

XBL 824-431 

Fig. 10. Scan with finger probes; B 0 = 5315 gauss. 
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Fig. 11. Scan with harp; B 0 = 5315 gauss. 
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for a possible undetected fourth harmonic. This, then, gives an error in R 

of: 

AR = ± [(0.062) 2 + (0.125) 2 + (0.062) 2 + 0.062) 2 + (0 .16) 2 ] 

AR = ± 0.24 inches . 

From Eq. ( 2 -3 ) , 

m 
R o * W * R < J ' • 

j=l 

Ro = 5 ( R e + R s + \ . + R n ) • 

i w >r 
AR _ + 0.24 
7R- " - 7~"~5U4" ' 

*4) = ± 2.02 x 10" 4 

V R / rms 

The path length error is given from Eq. (3-7): 

d s d R o d R o 
R o 

1 
s R „ * f 

0 C7T 

d R o 
R o 

2TT 0 

d R o = 0.798 * -5-5 
R o 

) 

d5 -4 -i = ± 1.61 x 10 . 5 
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The path length correction for a scalloped orbit from the quadrant length 
correction was given by Eq. (3-12): 

££ = ± 3.51 x 10" 4 DL . c 

At the region of maximum correction, if the error in the quadrant length 
correction was a factor of 2, the error in DL would be 1.5 inches. The error 
in path length would then be: 

££ = ± 3.51 x 10" 4 x 1.5 

= ± 5.27 x 10" 4 . 

The error in the path length for this correction and the error in R 0 is 
given by: 

) = ± r<5.27xl0"4)2 + U.61xlO~4)2J 
' rms 

= ± 5.27 x 10~ 4 . 

From Eq. (3-9), we have for 500 MeV/amu particles: 

'^|) = 3.90 x ifi = 3.90 ^| 
' 'rms 

= ±3.90 x 5.51 x 10" 4 , 

^ L s = +-2-15 * io"3 • 
That is, we know the kinetic energy to about ±0.25£ with the above 

errors. 
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I f we double the error in R0 we increase AKE/KE to 2.41 x 10" 3 . We 

can see that the major error is from the uncertainty in the value for the 

quadrant length correction. 

The value of aKE/KE for various values of KE are tabulated in Table 2 for 

the above values of error, taking the error in DL as one-half of the value 

tabulated in Table 1. 

E. Calculation for Time-of-Flight Measurement 

The radius of the closed orbit is determined from the radial probe 

measurements, as discussed in Section I I I -D. From Eq. (2-3) in Section I , 

we have: 

Ro = | f R E + R S + RW + R n l • 

From orb-*', e c c e n t r i c i t y measurements we have: 
Rs = R E t ARj 

Rw = RE + &RW 

RN = R £ + ARN 

Substituting in the above equation and subtracting 0.25 inches for the 

fr inge-f ie ld correction (Section III-C) yields: 
l \ ARU ARN , 

R

0 • R E + - r + T + - r - T • ( 3 - 1 3 ) 

The path length i s gT'ven by: 

S = 2* RQ + 4L . (3-14) 

The correction to the path length for the quadrant length correction from 
Eq. (3-12) is: 

AL _ o ci .. in"" "T 3.51 x 10"' DL 
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Table 2. AKE/KE vs. B 0 for a factor of 
2 uncertainty in quadrant length 
correction for time-of-flight 
measurement in the Bevatron. 

Bo KE AKE/KE 
(kG) (MeV) (%) 
1 28 0.13 
2 106 0.16 
3 225 0.19 
4 373 0.23 
5 543 0.27 
6 726 0.31 
7 920 0.33 
8 1120 0.30 
9 1327 0.23 
10 1537 0.21 
11 1750 n.20 
12 1965 0.21 
13 2182 0.25 
14 2401 0.28 
15 2621 0.30 
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Therefore, we have: 

S = 2TIR 0 + 4L - 3.51 x 10"* DL (2* KQ + 4L) , 

S = (2nRQ + 4L) (1-3.51 x 1 0 " 4 DL) . (3-15) 

6 i s given by: 

» - % • 

where: f = measured frequency of rotation, 
C = velocity of light, 

B = £ [2nR0 + 4L] fl-3.51 x 1(T 4 OL] . (3-16) 

From Eq. (3-1) we have for the kinetic energy of the particle: 

9 -1/2 
KE = E Q [(1-8*) - 11 • (3-17) 

To determine the particle energy in the Bevatron, proceed as follows. If 
the orbit eccentricities are known from previous measurements ( A R S ; A R W ; 
aRfj), then only the radial position in the east and the frequency of the rf 
system are needed. Equation (3-13) gives R 0 from the radial position 
measurements. DL is given in Table 1. substituting in Eqs. (3-16) and (3-17) 
gives the value for KE. The typical values for AKE/KE as a function of KE are 
given in Table 2. 
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APPENDIX 

The following derivation calculates the closed orbit in terms of a 
summation of simple betatron oscillations, based on the assumption that the 
Bevatron is composed of a perfect machine plus 144 perturbations, one at each 
sector. 

From Fig. 3 for e > 8j we have: 

e p - 6 j + IT - 8 . 

The displacement Re at 9 p from a perturbation at 8j is: 

R8 = Aj sin (3* - v6 p) 

= A. [ s i n - ^ cos ve_ - cos ^S s in v e l , 3 ^ d P Z P J 

Re = -A., cos ve 

-A^ cos v(e.j + 

Re = -A, cos [VTT - v ( e - e . ) ] . (A - l ) 

From F ig . 4 fo r 9 < 8-j we have: 

e p = T - (e. - e) , 

Re = A. s in ( 5 j + vB ) . 

By expansion as above we have: 

Re = -A, cos [vm - v(e, - e)] . (A-2) 
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For the ith position, where 9 = 8-j, the displacement R,- is the sum 

over j of all the individual displacements: 

i 144 

R, = [ » ; COS [ v n - u ( 8 . - e . / j - £ A- COS [ v n - v ( 8 , - 9 j ] . 

j = l j = i + l 

Separating out the 8,- term gives: 

i 

R- = - I A i COS [ (vu-v8. ) + vO. ] - J A. COS [(vir+v8.j) - v8,-' 

Expanding g ives: 

144 

I 
j=i+l 

R - = -J. A i [ c o s v( i r -e.) cos v9 . -s in u(n-9. ) s in v8 - j 

j=l 

144 

y A. [cos V(TI+8. ) COS vB.+sin vdi+e.) s in «e. ] 

j = i + l 

Factoring gives: 

R̂  = - cos \J8 

i 144 
y A, COS v U - 9 . ) + I A. COS v(ir+8.) 

j=l j=i+l 

144 

I 
j=i+l 

y A. s in v( ir-e.) I A. s in v(n+e,) 

j = l 
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Expanding again gives: 

R. = - cosve^ J A. (cosvn cosvB. + sinvit sinvB.) 

144 
+ y A. (cosvn cosvB. - sinvn sinvB.) 
j=l+l 

J A. (sinvn COSVBJ - cosvn sinvB.) 

144 
7 A. (sinvn cosvB. + cosvir sinvB.) 

j= i+ l 

Factoring yields: 

R. = - COSV6.J 

i i 
cosvir y A. cosve. + sinvit )" A. sinve. 

j = l j = l 

144 144 
cosvn y A. cosve.. - sinvit y A. sinvB. 

+ sinve. 

j = i + l 

i 

j= i+ l 

i 
sinvit y A. cosve. - cosvn V A. sin ve ; 

j=l j=l 

144 144 
- sinvn y A. cosve^ - COSVT y Â  sinve. 

j= i+ l j=i+l 
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Col lect ing terms: 

COSvB; 

+ sinve,-

144 
cosv, y Aj cosvej • slnvW I Aj s i n v 6 j - j A s i 

j=l \j=l j=i'+l J J . 

/ i 144 v 144 
s inv i t l J A , COSVB* - I A- cosus.) - cosvu J A., cosve^ 

^0=1 j - 1 ' 1=1 

This can be rewr i t t en : 

R. = - cosvB-

+ s1nv6,-

cosvir S,+si nvn I V A. 

\ j = l 

144 

I 
j=1+l 

sinve. - y A- sinvB. 

144 
s invu l y A., cosvB- - I A. COSVBJ - cosv* S 2 

j = l j = i + l 

where: 
144 

s l " 5- A i c o s v 8 i > 
0=1 

144 

S 2 = y A i sinve^ 

0=1 

Equation (A-3) can be wr i t t en i n the form: 

Rj = B( i ) cosve i + D( i ) sin\>81 , 

(A-3) 

(A-4) 
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where: 
144 / i 144 \ 

B(i) = - sinvn I A. sinve. J A. sinve.,) - Sj cosvn 
\ j = l J j = i + l ' 

/ i 144 v 
D(i) = stnvTr I I A. cosve., - I A, cosve.,] -

\ j = l j = l / 

So COSVTt . 

Equation (A-4) can be put in the form: 
R1 = H(i) COS (v6 i + 5 ( i ) ) . (A-5) 

Equation (A-5) is a first harmonic betatron oscillation with slowly 
varying amplitude and phase to provide a closed orbit. 

To examine the change in R between R̂  and R-j+j, we can use Eq. (A-4): 

R 1 + 1 - R 1 = B(i+1) cosv8 1 + 1 + n(i+l) sinu8 i + 1 

- B(i) cosve- - D(i) sin\)6i . (A-6) 

B(i+1) is given by: 

/ i+1 144 » 

B(i+1) = - s invn l J A. sinve., j A: s inve - j - Sj cosvn . 

\ j = l j= l+2 / 

Factoring out the A-j term y i e l d s : 

, 1 - 1 
B(i+1) = - sinvn I A. s inve, + Â  s inve, + A i + , s i n v 8 . + 1 

144 
I A, s inve. + A. sinve- + A . + , s i n v 8 . + 1 \ 

j = l / 

S , C0SV1T 
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Co l lec t ing terms: 

, i - l 144 
B(i+1) = - s i 

/ 1 - 1 1HH \ 

nvu I I A. s inue. - )> A. s inve*) - S^ 

\ j = l j = l ' 

- s i n w (2A. s inv8 i + 2 A ^ + 1 s i n v e i + 1 

B(i+1) = B ( i - l ) - sinvu f2A i sin\>6 i + 2 A i + 1 s i n v 8 1 + 1 ) . (A-7) 

S im i la r l y fo r the D(i+1) term: 

/ i + 1 144 \ 
D(i+1) = s invn l J A- COS«6J I A. c o s v 8 - J - So cosvn . 

\ i = l J=l+2 

Factoring out the A,- term: 

, i=l 
D(i+1) = sinvTrl I A. cosve. + A. cosve. + A. +1 cosve i + 1 

144 
- V A. cosve. + A. cosve. + A . + , c o s v e i + , 

j = l 
- Sn COSVlt . 

Col lect ing terms: 

/ i - 1 144 

D(i+1) = sinvwl £ A. cosvflj - I A. cosvS^ 1 - S, cosv 

V l j=l 

+ Sinvn (2AJ C0SV9- + 2A- + j C0Sv9- + j ) , 

D(i+1) = D ( i - l ) + sinvTi (zfi.^ cosve^ + 2 A 1 + 1 c o s v e 1 + ] \ . (A-8) 



-47-

B ( i ) i s given by: 

144 
I 

j=l j=i+l 
3( i ) = -s inv i t l I A. sinvBj I A. s i nve . ) - Sj JOSVH 

Factoring out the A,- term: 

/ i - 1 144 
B( i ) = -s inv i r l I A. s inve. + A. s inve. - j A. s inve. 

I J J I 1 J J 
Vi=l i=i j=l j=i 

+ A- sinve. ] - S, cosvir 

/ i -1 144 . 
- sinvnf I fi.. sinve- - I A- sinve- | -

Vj=l j=l / 
S i COSVTT 

- 2 sinvn A. sinvit , 

B( i ) = B ( i - l ) - 2 A i s inv9 i sinvn . (A-9) 

S imi la r ly fo r the D(i) term: 

/ i 144 v 
n ( i ) = -s invn I A. cosvej - J A. cosvBj ] - S, cosvn . 

\ j=l j=i+l / 
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Factoring out the Â  term: 

/i-1 144 
D(i) = sinvTJ j A. cosve. + A. cosve. - £ A. cosve. 

1 J J ' ' J J 
\j=l J-1 

+ Â  cosve,- \ - S 2 cosvn , 

/ i - 1 144 \ 

D(i) = sinvit f J A. cosve. • I A. cosve,] - S2t.'osv7t 

\ j = l j = l / 

+ 2 A, COSVB- Sinvir 

= D ( i - l ) + 2 A. cosve- sinvn . (A-10) 

Subst i tu t ing (A-7) , (A-8) , (A-9) , and (A-10) i n Eq. (A-6) g ives: 

R, + , - R, = f B ( i - l ) - sinvn [2A i sinve^ + 2A n- + 1 s i n v e i + , ] f c o s v e ^ . 

+ ( D ( i - l ) + sinvn [2A, cosve. + 2 A , + 1 c o s v 9 i + 1 ] ) s i nv9 . j + 1 

- ( B ( i - l ) - sinvTf 2A, s inve-} cosve, 

- | D ( i - l ) + sinvTt 2A, cosve.} s inve. . 

Col lec t ing terms y i e l d s : 

R , x i - R< - B ( i - i ) (cosve,. ,-cosve^) + D ( i - l ) (s inve, - . , -s inve. ) l + i i i + i I I + I i 

- sinvn [2A- sinve- cosve- + i + 2A, + , s i n v e , + , c o s v e 1 + 1 

- 2A- cosve, s i n v e - + , - 2A- + , cosv8- + , s i nv8 - + ^ 

- 2A, sinve- cosve,- + 2A- cosve^ sinve,-] , 

R i + l " R i = B(1- l ) [cosve^j -cosve,- ] + D ( i - l ) [ s i n v e i + 1 - s i n v e i ] 

-sinvn 2A- [sinve- cosve, + , - cosve- s i n v e - + i ] . 
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Substituting e,-+i = BI+AB gives: 

R i + l " R i = B ' 1 _ 1 * [cosfvB^+viB) - cosve^] 

+ D( i - l ) [sinfve^vAe) - s inve^ 

- 2A.j sinvir [sinve i coslve^+vAe) - COSVB^ sin(ve.+uAe] . 

Expanding: 

R i+1 " R i = B ' i ~ * ' [cosve^ cosvAB - sinvfl^ sinvAB - cosvS-] 

+ D( i - l ) [sinve- cosvAe + cosve. sinuAe - sinve.] 

- 2A., sinvit [sinvB- (COSVBJ COSVAB - sinve. sinvAB) 

- cosvBi (sinvB- cosvAe + cosvB- sinvAe)] , 

R i+1 " R i ~ " ( i -1) [cosvB^- sinvBj vAB-cosve.. ] 

+ D(i- l) [sinv8-+cosv8. vAB - sinvflj] 

- 2A. si'nvii [sinve. cosve.-sin ve. VAB] 

p 
- cosvB. sinvB. - cos vs.. VAB] , 

R-+, - R. = -B( i - l ) sinve. vAB + D(i- l ) cosvB, vAB 

+ Ik. sinvn [sin vs. + cos ve.] VAB , 

R i+1 " R i = -B( i - l ) sinve. vAB + D(i - l ) cosve., vAB 

+ 2Â  sinvn vAB . (A-11) 

The first two terms of Eq. (A-11) are the derivative of Eq. (A-4) with 
constant coefficients B and D evaluated at 1-1. The third term is the 
contribution from the changing coefficients and is just equal to twice the 
derivative of the ith perturbed orbit at the ith position (see Fig. A-1). 
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144 
2RB-. 

J=l J 

i = l i+l 
a. Summation of all terms 

/Section of unperturbed i curve 

2Ai siniv vAB 

Actual path of i t h orbit 
at i t h perturbation 

i-l 

b. Rj term at i t hperturbation 

XBL 824-432 

Fig. A-1. Closed orbit at ith sector with and without perturbation. 
(a) Summation of all terms; 
(b) actual path of ith orbit at ith perturbation. 


