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MAGNETIC FIELD, CLOSED ORBIT, AND ENERGY MEASUREMENT
IN THE BEVATRON

<enneth C. Crebbin

This report provides the information necessary for a better evaluation of
particle energy in the Bevatron. Previously, the nominal magnetic field value
and radius were used to calculate the value for the kinetic energy of the
particle. This value was good to a few percent. Today, more and more experi-
menters would 1ike to know the energy to a more precise value. To this end,
corrections to the measured magnetic field values and the radial closed orbit

are provided.

[.  BEVATRON MAGNETIC FIELD

A.  Basic Field Shape

The radial field shape of the Bevatron is described by:
_ n,pn
B = B, R/R" , (1-1)

where: B is the field value at radius R;

By 1s the field value at radius R,; and

n is the field index.
Whenever a field value is specified for Bevatron operation, it is the value
Bys which is the value at a radius of 599.375 inches. The magnetic field
value used to calculate the energy of the particle is then given by Eq. (1-1)
for the specific operating radius of the beam. Details of the calculations
are given in another report.1 There are tables of the results in the MCR of
the Bevatron, and there is a computer program, PAM, in the MDDCOMP that can be

used to calculate values for each specific case.
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B. Monitoring of Magnetic Field

The original magnetic field measurements were done in 1953-1954. The
results are summarized in an engineering note.2 The magnetic field values
as originally measured are referenced to what is called an I-pip. The I-pip
system is a set of pulses that are generated from a current transformer on the
main conductors to the Bevatron magnet windings. Each I-pip pulse corresponds
to a specific current in the main Bevatron coil windings. This current is
then related to a specific field value as measured in 1953-1954. This is the
primary standard for field measurements in the Bevatron.

The Bevatron main field windings are bi-filar. There are therafore two
I-pip systems, called the East system and the West system. East-West is the
location of the current transformers in the shunt house and does not indicate
current in the cast or West half of the Bevatron magnet. Both sets of winding
go through all four guadrants in series.

There are three sets of windir~s on the face of the pole tips. There is
a set of 21 windings at 3-inch spacing radially across the aperture. These
are called pole face windings (PFW) and are used to shape the Bevatron guide
field by changing the field index n [Eq. (1-1)]. Windings number 1 and 21
were 1n the stanchions. These were removed in 1962. The remaining windings
are numbered 2 through 20. Winding number 11 is on the gap renterline at a
radius of 599.375 inches. Parallel to PFW 2 and 20 are two additional
windings used to control ripple in the main guide field during beam spill.
These are called ripple reduction windings.

Midway between PFW 6, 7, and 8 and PFW 14, 15, and 16 are two :ts of
windings called B-dot windings. The winding between PFW 6 and 7 crosses over

at the end of the quadrant and returns between PFW 14 and 15. This forms a



-3-

1cop around the center 21 inches (radially) of each quadrant. This loop is
used to measure the change of magnetic flux in tnat part of the aperture.
Similarly, the winding between PFW 7 and 8 returns between PFW 15 and 16.
There are four sets of loops, two on the lower pole tips and two on the upper
pole tips. The loops can be wired in series to provide a complete loop around
the Bevatron or brought out on a quadrant-by-quadrant basis.

The voltage across this coil from the rate of change of magnetic flux
within the loop can be integrated to provide a signal that is proportional to
the dynamic magnetic field. This is called the B-dot integrator. Tha output
from a B-dot integrator has been used since 1962 to program the rf oscillator
during particle acceleration in the Bevatron. In 1969, the output from a
B-dot integrator was used to provide a set of marker pulses at each kiiogauss
level of magnetic field in the Bevatron. These pulses were distributed to the
operations and experimental groups at the Bevatron in place of the old I-pip
system. Special pulses can be provided from the system in steps of 0.01
gauss. A digital readout is provided to monitor the value of the magnetic
field on a flat top.

Because the value from the B-dot integrator is proportional to the
dynamic field, there are several problems. The value does not include the
remnant field in the Bevatron, which is typically Ltetween 35 and 40 gauss. It
also has to be calibrated to read the correct valu2 of the field. In addi-
tion, the radial shape of the field changes as the pole tips saturate at hiqgh
field. Therefore, the integrated valua from the B-dot loop does not have a

constant relationship to the value at gap centerline.
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The remnant-field value can be provided in two ways: a constant value is
simply added into the starting value of the B-dot integrator; or a
remnant-field magnetometer can be used to dynamically read the remnant field
and provide that value as a starting point for the B-dot integrator. At
present, the former method is normally used.

The basic calibration was done by setting the remnant-field value at the
start of the Bevatron pulse and then adjusting the B-dot integral value to
read the tabulated value for B-field at some I-pip. In 1975, the I-pip chosen
was [-27. However, in a recheck of calibration in June 1977, the calibration
was changed to give the tabulated field value at I-26. The reason for making
this change and the consequences of the change will be discussed later, after

some of the field variations are examined.

C. Variations in Magnetic Field

In the early days of proton running at tne Bevatron, the values for the
particle energy were taken as a function of I-pip from Engineering Print
9v7083A.3 Extrapolation in time between !-pips was done in the table to
determine particle energy. When the B-dot integrator system was installed,
the calibration was done using the tabulated values for B-field and I-pips in
the above print. The energy was then calculated using the value of the
B-field read by the B-dot integrator.

The original Bevatron magnetic field measurements are summarized in
Engineering Note UCID-599 (MT-87).2 1In using this note's azimuthal
variation of magnetic field, as given on page BFS-20, to calculate the radial

closed orbit, I noted that there were no values plotted for the entrance



-5-

and exit sectors of each quadrant. [ discussed this with Glen Lambertson, and
he said the values for those sectors wcre included in a table giving the
effective length of each quadrant. These measurements were made using a long
coil covering the end sector and well into the straight section. These values
are given on page PFS-4 of MT-87.2

There are two things of interest in this table: the increase in effec-
tive field length of the quadrant causes a substantial shift in the closed
orbit {over 13 inches}; and the tabulated values of magnetic field as a func-
tion of I-pip are different from the values tabulated in 9Y7083A. In fact,
the values in 9Y7083A are tabulated as "effective flux density at marker."

In MT-87, the -‘ues are tabulated as "average total flux density."

From discussion of this with Glen Lambertson, it appears that the field
and energy values tabulated in 9Y7083A were corrected for the effective
quadrant length. The magnetic field values tabulated are the effective field
that would exist in a 90-degree quadrant to give the correst energy consistent
with the shifted closed orbit. The magnetic field that one would measure at
some sector at any I-pip are those values tabulated in MT-87 page BFS-4. The
values in both reports are listed in Table 1. The effect on the closed orbit
and particle energy will be discussed later. First, I will examine in more
detail the calibration of the B-dot integrator, in light of this information
on tabulated values for magnetic field as a function of I-pip.

The B-dot integrator calibration in May 1975 is reported in a memorandum
dated June 24, 1975.3 The values of B from the B-dot integrator are tabu-
lated in Table 1, along with the values of B from 9Y7083A and MT-87. A plot

of the differences for the values for the B-dot integrator and 9Y7083A is
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shown in Fig. la. The calibration point here was 1-27, with a dynamic reading
for residual field added into the value from the B-dot integrator.

In June 1977, another calibration was done. At that time, the calibra-
tion was shifted tn I-26 to provide a better fit to the values tabulated in
9Y7083A. The values from the B-dot integrator for this calibration are also
shown in Table 1 and plotted in Fig. Ib. This was an unfortunate change, as
it lowered the Bevatron field by 27 gauss at I-26 with a corresponding
decrease in kinetic energy of the particles. In addition, the value for B at
1-26 seems to be one of several original measurements that are in error.

This will be shown in the following analysis.

The values for B from the B-dot integrater are replotted as (Bjn¢-B)/B,
where B is the value given at each I-pip from 9Y7083A. This is shown in Fig.
2a; Fig. 2b is the same curve using the values of B given in MT-87. Compare
these curves to the calculated curve for aB/B. The calculated curves were
determined by computing the value of B enclosed by the B-dot loop reiative to
the central value of B at a radius of 599.375 inches using the radial field
plots of B in MT-87. This the curve plotted as Fig. 2c. The B-dot loop
connected to the B-dot integrator is on the lower pole tips between PFW 7 and
8, and returns between PFW 15 and 16.

kL second correction wae mada by assuming that all the additional flux
from the effective quadrant length change was included in the B-dot Toop.

This correction is added to the above radial calculation (Fig. 2c) to give the
calculated curve for the B-dot integrator curve Fig. 2d.

In Fig. 1la and Fig. 2a, we see that the B-dot integrator gave a value for
B lower than those tabulatea in 9Y7083A for lower values than the calibration

value. This was the reason for the change in calibration point in 1977--to
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AB = [ B - B, where B is the values tabulated in 9Y7083A.

(a)
(b}

[e]
A

1975 calibration, AB = 0 at I-27.

1977 calibration, AB = 0 at I-26.
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Fig. 2. Plot of aB/B vs values of By

(a) o 1977 data 8B = [ B-B values from 9Y7083A.
{b) O 1977 data aB = [ B-B values from MT-87.

(¢} @ 2B = B(calc)-B(MT-87)B(calc) from radial shape integrated
over radial area of B dot loop, normalized to field at
Rg = 599 3/8 inches.

{d) & 4B = B{calc)-B{(MT-87)B(calc) from c above plus magnetic
field from quadrant length extension assuming all the flux
is contained within the B-dot loop.
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get a better fit, as shown in Fig. 1b. Note that below 6,000 gauss the values
do not follow any smooth curve. If we Took at graph 2b, where the field
values given in MT-87 are used, we see a more reasonable fit to calculated
curve 2d. Note that the value at 10,948 gauss, chosen as the 1977 calibration
reference, is below the smooth curve and appears to be an incorrect measure-
ment in the original field calibrations. There are also a few variations in
the lower field values at 3,832 gauss and at 1,727 gauss. If one put *0.3%
error bars on these values, most of the points would fall within this range.

The conclusions to be drawn from these graphs are that the original basic
field measurements are not accurate enough for precise particle energy
measurements. Also, the B-dot coil in the Bevatron does not measure the field
at gap centerline. In addition, the amount of flux integrated relative to the

jux at gap centerline changes as a function of field so that no simple
calibration at one value of B can be scaled to another field value with the
accuracy dasired by some experimenters. In general, the particle energy
determined by the field value from the B-dot integrator and the particle
radius is good only to a few percent.

A more accurate value can be calculated by making the appropriate field
corrections, using the curves of Fig. 2b to determine the value for B. An
additional correction for the extra quadrant lengths must be made. This can
be as much as a 1.5% correction in the value of the kinetic energy. From
Fig. 2b and 2d, it is apparent that part of the fringe field is included in
the integral value of B, so thel a complete orbit correction, as given in

Section II-B, will be an overcorrection.
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II. CLOSED ORBIT

A. Calculations for Normal Azimuthal Variatior »f Magnetic Field

There are several reasons for wanting to know the closed orbit of a
particle in the Bevatron. The one we are concerned with is to determine the
path length. Then, knowing the time it takes to go once around the Bevatron,
we can determine the kinetic energy of the particle by time of flight. Any

closed orbit can be described by Fourier analysis in the form:

R = R, + I [ali}eos(ie) + b(i)sin{ie)] . (2-1)

A detailed report on the harmonic analysis cf the vertical closed orbit is
given in a Bevatron report.5 It needs only a minor change to use it tc
calculate the radial closed orbit.

I have a computer program that calculates the closed orbit by averaging
a general betatron oscillation over many turns. It gives essentially the same
results as the harmonic analysis calculation and is simpler to use.

Let us now see what we can determine about the path length of the
particle around the Bevatron without knowing the exact closec orbit at each
sector in the Bevatrun. From £q. (2-1), we see that the clio-ed orbit can be
represented by a series of sinusoidal oscillations, all ar integral multiple
of 2n once around the Bevatron.

Let us now examine the path length of a sinusoidal oscillation around a

uniform orbit.
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R = Ry +asin(ie) ,
de = Rge , (2-2)
2n/i 2w/i
Jde = [ Rde = [ (R, +asin(ie)) de ,
0 0
L = (2n/i)Ry for a single oscillation around the closed orbit.

Twe extra path length traveled by the sinusoidal oscillation just cancels, and
the path length is equal to the fixed orbit path length Rye. In Eq. (2-1},

we can see that the harmonic parts average out to zero in each cycle of
oscillation, and the path length is just equal to 2nR, plus the straight
sections.

At the Bevatron, the closed orbit is measured using radial probes. A
U-shaped target is flipped up inte the beam. The target is adjusted radially
to give maximum beam survivai. The center of the U target is at the center of
the beam. This is repeated at each target position. We have target positions
in each straight section, so we have four measurements 90 degrees apart.

Substituting in Eq. (2-1) for J measurements and summing, we have:

n n

nRy+ Foalilcoslisw) + ) blilsin{is{3}l .
=1 j=1 J=1

~1 3
o
n

~ 3
=
n

nR0 + n(a(n) + a(2n) + a(3n) . . .) ,

n
R, = & 7 Ry - [alm) +a(zn) +a(3n) .. .] . (2-3)
j=1
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That is, we know the value for R, to within the error of the amplitude of
the nth + 2nth + . . . harmonic for n azimuthally equidistant measurements of
radial position. For measurements at each straight section, the error in the
measured value for R, is the amplitude of the 4th, 8th, 12th . . . harmonic.
The question is, can we put an upper limit on the ampliiude of these harmonic
oscillations without knowing the exact closed orbit?

An upper limit can be caiculated for the case of a systematic fourth-
order perturbation in the field value of each sector. The coefficients for
the ith harmonic are derived by substituting Eq. (2-1) into the second-order

differential equation for radial betatron oscillations. This yields:

z 2n

ai _ k“(1-n) 1 f A(:”cos(ie)
Vo= - — 2> )

bi K2(1-n) - i2 7o / sin{i3)

where: k = 1+4L/2«R = 1. 53,
L = T1ength of straight sectionms,
R = radius of curved sections,
A(j) = shift in equilibrium orbit position from the reference

orbit position, in the jth sector, for a change in magnetic

field value in the jth sector from the nominal value.

The integral is over both curved and straight sections. As we are
interested in the approximate value of a fourth harmonic, we can ignore the
slight correction contributed by integrating over the straight saction.

The major correction to amplitudes from the straight section is included in

the k term.
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Set A equal to 18 inches (1% perturbation) for each sector, with a sign

chanqe always additive for the sin i9 term. The cosine term then sums to

zero.
2 5/4
b(8) = ——21‘—(-1‘—"’—- 1 A, 8/ sin 4o de
k%(1-n)-16 ]
. t20-m 8, [-cos 4n]"--’4

kZ(1-nj-16 " °L 0
K(i-n) 8 , 1

k2(1-n)-16 " ©2

Substituting for k = 1.255, n = 0.66, Ay = 18,

(1.255)2 (0.34) 4 x 18
(1.255)% (0.3¢) - 16 "

b(4) =

. 0.53  4x18

. m

= 0.035 x

4 x 18
™
b{4) = 0.794 inches.

A highly systematic perturbation of 1% at each sector of the Bevatron thus
produces a closed orbit distortion of only 0.8 inches.

Another wavy of examining the fourth-harmonic problem is to consider the
Bevatron as being made up of 144 perfect sectors plus 144 local perturbations
centered at each sector. The variation of the magnetic field at each sector
can be considered as a radial bend or kick Tocalized azimuthally at a point.
For a perfect machine, we know what the orbit is with such a localized radial

kick; we haye simply a sin v8 curve which closes at the perturbation, has a



-15-

maximum radial displacement 180 degrees from the perturbation, and is
symmetric about the point 190 degrees from the perturbation. This is shown in
Figs. 3 and 4. The closed orbit is then the sum of the 144 terms.
The detailed derivation is given in the Appendix. There, the closed

orbit is given by Eq. (A-5):

R(i) = Ali) cos [ve(i) + D(i)] (2-4)
where A{i) and D(i) are slowly varying functions. The basic closed orbit is
therefore a distorted first harmonic.

The change in R from phase shift and amplitude changes due to the

perturbation is given by Eq. {A-11) in the Appendix:
AR(1,i+1) = 2A(i) sin {vr) vae . {2-5)

To evaluate A(i) for a perturbation of 1%, we proceed as follows.
Consider Eq. (2-4) cescribing a single perturbation path so that A and D are

constants. The perturbation will be just 2 times the dR/de at the perturba-

tion.
At 8 = 0, R = =A{i) ,
<A{i) = A(i) cos {v0 + D), therefore b == ;
R = A(i) cos (ve + n) ,

R LA v sin (ve + )

de ?

%% = -A{i) v sin (vn + @)

= ~A{i) v sin (vr) cos {r) + cos {vn) sin (m)

1 dR _ ; .
S HC A1) sin (vn)

R ., R _2v]dR
Rde

v ds °
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Fig. 3. Closed orbit through perfect machine with perturbation at ej, for
case 8 > 6j.
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Fig. 4. Closad orbit through perfect machine with perturbation at 8, for
cast: 6 < Bs.
J
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For a 1% perturbation,

P = 0.0lae ,

where: A8

2v

2.5° (angular bend of one sector),

1 dR

0.01 A8 = T ]

A1)

Substitute in Eq.

sR{1,i+1)

1]

aR(1i,i+1)

Besides this

2v
=

[A(1) sin (vm}] ,

0.01 Ae6R
7 v sin {vm) °

{2-5), for R = 604 irches; v = 0.667;

0.01 aeR

.
ST ToeT SiN tvr)vae

0.01 R{40)2

1.15 x 10°% inches/sector .

change in R from the local perturbation, there is the change

in R due to the change in 8 for a constant amplitude and phase. This is given

by:
R
drR

The maximum value

dRm =

&R, =

A sin {(ve + D) ,

= Av cos (v + D) de ,
for this is:

2.5°

A x 0.667 x 1 x fg— 7w

A x 0.029 .

For a 1-inch ampiitude of first harmonic distortion,

dR =

0.029 inches per sectar.
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For a 2-inch amplitude,
dRp = 0.058 inches per sector.

A fourth harmonic oscillation covers nine sectors; therefore, for the
case of the 2-inch first harmonic amplitude plus the change in R per sector

from the perturbation, the maximum disp acement is:

AR

[0.058 + 0.115] x9
AR = 0.63 inches .

This is about the same value as calculated for a systematic fourth harmonic
around the entire machine using harmonic analysis.

Both of these analyses assume 2 very systematic perturbation. If 20% of
this perturbation is undetected in our closed orbit measurements, we would
kave an cvncertainty in Ry of *0.16 inches from the undetected fourth-order
harmonic.

Closed orhit measurements at the four straight sections give a good
estimate of the average value of the closed orbit R, without our having to
know the actual path of the closed orbit for normal sector perturbations.

B. VYariation of Effective Quadrant Length

As mentioned earlier, the major perturbation to the closed orbit is from
the variation of the magnetic field involved in the change in effective length
of the quadrants. The easiest method of studying particle trajectories is
with the concept of betatron oscillations. Implicit in the derivation is the
assumption that the particles are bent through an angle of 2n in following the
closed orbit. If the effective magnetic field length is less or greater than

2n, then the difference must be handled as a perturbation superimposed on a

normal betatron path.
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For a perturbation that is the same for each quadrant, this orbit is a
section of betatron oscillation symmetric about the center of each quadrant.
The extra bend at the end of the quadrant is considered a localized
perturbation just equal to the derivative of the betatron oscillation at that
point (see Fig. 5). If the quadrant is longer than 90 degrees, the deflection
is radially inward. If the quadrant is less than 90 degrees, the deflection
is radially outward.

The displacement r is given by;

r = Asin(/T-n+ 0+ D) ; {2-6)

at e = 0, r =-A(1) ,

-A(1) = A sin (D).
Therefore:

- 3 ., -
D = 5= 5 A = A,

r = A(1l} sin (/'I-‘ns+%1] = -A(1) cos YI-n o ,

R = RE + A(1) cos (/I-n 8) .

For n = 0.688, YI-n = v1-0.668 = 0.576.

The perturbation a = DL/R = dR/ds; therefore:

R - _0.056 A(1) sin (0.576 n/4) at the perturbation,

R 2',3 -0.576 A(1) sin (0.576 =/4)
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Fig. 5.

XBL 824-435

Rg is the radius for the energy of the particle for a normal
magnetic field. Ry is the reference closed orbit at the straight
section with end perturbation DL to just remove a at the straight
section. A(2) is the amplitude of the betatron oscillation at the
straight section relative to Rg. A(l} is the maximum amplitude of
the vetatron oscillation at the center of the quadrant relative to
Rg -
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. -0l
M) = garEsTR USSR AT

A(1) = -3.969 DL ,
A(2) = r = -A(1)} cos {0.576 n/8) ,
A{2) = -3.9692 DL cos (0.576 =/4) ,
(2-7)
A(2) = -3.57 DL .

For a quadrant increase of 7.5 inches, L = 7.5/2 = 3.75 inches. Therefore,
A(2) = -13.39-inch displacement of the closed orbit at the straight section.
At the center of the auadrant, the orbit is shifted
A(l) = -3.97 x 3.75 = -14.9 inches.
This is a substantial shift, equal to a change of about 1.3% in en .gy at 40C
MeV/amu.

At high field, the quadrants are less than 90 degrees. The effect is the
same, but the orbit is moved outward. At a 12.5 kG field, DL is 0.5/2 = 0.25
inches.

The scallop in ihe quadrant is just the difference between A{1) and A(2)

above:

A -(3.97 - 3.57) DL,

aA = -0.40 DL.

For the high field case, this is:

AR = -0.40 x (-0.25) = +0.1 inches .
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The measured difference is about 0.5 inches, as shown in a plot of closed
orbit through quadrant III measured in 1968 during resonant extraction studies
(Fig. 6). This was done using the travel through target. This 0,5-inch off-
set was measured from a straight-1ine extrapolation between the West and North
straight sections. There is an obvious closed-orbit distortion in addition to
the scallop shown in the measurements. If a calculated closed orbit that
approximates the position in the Morth and West is examined, the offset is
about 0.25 inches. A complete closed-orbit measurement at high field is not
at present available.

Graphical integration of some field datab at the 2xit of the Quadrant
IT region for the last 12 degrees of the quadrant and into the straight sec-
tion gives a shortage of fiux equal to about 0.47 inches of a sector. This
raises a question as to what is the correct value. The effect of this correc-
tion will be discussed later, when the energy evaluation is made. There is a
gap-mounted target at the center of Quadrant III, and a single-pcint quadrant
measurement is planned to check the displacement at intermediate fields.

I have a computer program to calculate closed orbits by summing values
over a number of turns around the Bevatron for a small betatron cscillation
and printing out average values at a number of orbit positions. Both the
sector perturbations and the quadrant-end effects can be put in. It gives the
same values for closed-~orbit calculations for sector perturbations as the
harmonic analysis. The results for quadrant-end effects agree with the above
half-sector calculation. The computer program is also easier to use,

particularly for nonsymmetric effects.
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Fig. 6. Measured closed orbit through Quadrant III.



A small change in the quadrant-end perturbation in the North compared to
the other straight sections provides a reasonable fit to the measured closed
orbit at 600 MeV/amu. It is not an unreasonable assumption, as the presence
of substantiai iron in the extra concrece shicvi. 'ng on top of the nortn
tangent tank could easily cause a srall change in the fringe-field flux in
this area. Overhead cranes increase the field in the sectors underneath by
about 5 gauss at high fields. The effect appears to be caused by the extra
iron in the fringe-field flux above the magnet.7

One additional potential source of field asymmetry is from the modified
leg slabs at the exits of Quadrants II and III. The leg slab reluctance was
maintained the same as the standard leg slabs. I am not aware of any measure-
ments to check the variations in the quadrant length. The original leg slabs
are being reinstalled prior to the uranium-beam modifications. This may cause
some changes in the closed orbit, and measurements will “ave to be made. The

corrections to the path length measurement required by these quadrant length

variations will be discussed in Section III.

I11. PARTICLE ENERGY

A. Time-of-Flight Measurement

The variations of magnetic field on a sector-by-sector basis, as well as
the large quadrant-end effect, make it very difficult to provide a precise
evaluation of the particle energy from a known radial position and the value
of the magnetic field in the Bevatron. However, for heavy ions it is possible
to make a time-of-flight measurement within the Bevatron to provide a more

precise value for the particle energy. We must now determine how wel! we need
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to know the path length and transit time to establish a better energy measure-
ment.

As we are working with particles i the relativistic region, we must
determine the relationship betwren changes in kinetic energy and changes in

B. We can derive the relationship as follows:

m
n

2,-1/2
s (1-8%)

E = E + KE .,

where: E = total energy,
Eq < rest energy,
KE = kinetic energy.

Substituting and solving for KL gives:
ke = £, [1-sHVE o) . (3-1)

Taking the derivative of Eq. {3-1) and dividing by KE gives:

dKE 52 dp
= = . (3-2)
KE (1-82) - (1-82)3/2 B

Substituting 8 = [1-(Eo/E)2]1/2, we have:

2
RS SHE
o o

For a time-of-flight measurement in the Bevatron, the velocity is given

by:
v = sf (3-4)

where: f = frequency on the acceierating electrode,

w
)

equivalent path length.
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The er.or in v for errors in s and f is given by:

av

;- el

The frequency is measured with an HP-5360A frequency counter to 1 part in
106 for the measurements routinely made. By increasing the measurement

time, it can read to 1 part in 1010, Therefore we have:

o B ' .
N (3-5)

The error in the velocity is essentially determined by the error in the

path length. The path len~th in the Bevatron is given by:

S = 2n Ry + aL (3-6)

where: R, is the mean value of the closed orbit; and

L is the length of each straight section.

The error in S is given by:

dR
ds 9 (3-7)
S RO+ 42

The error in v is therefore:

dr
dv 0
=5 - Ro+ 77 - (3-8}

To determine how well we must know the closed orbit dR, for an energy
variation of 0.5%, we proceed as follows. From Eq. (3-3) for a value of 500

MeV/amu, we have:

®E - 3.90 9 (3-9)
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dv _ ds _ dKE
&= 8- 0w Gy

& - 0.256 x 0,005 ,

@ - .28 x103 .

l

Substituting in Eq. (3-8) yields:
_ 4L -3
dRo = (Ro + 2;) 1.28 x 10

4 x 20 x 12 -3
(604 + __2“__) 1.28 x 1073

dRo = 0.97 inches .

Therefore, if we measure R, to 0.5 inches, we can determine the KE to

0.25% at 500 MeV/amu.
B. Path Length Correction for Scalloped Orbit from Quadrant Length

Correction

We can calculate the path lTength carrection for the scalloped orbit as
follows. As the radial beam positions are measured at the straight sections,
we can take the closed orbit radius Ry as going through position A(2} in
Fig. 5. We want to calculate the difference in path length between the
scalloped orbit and the straight orbit R,. From Eqs. (2-2) and (2-6) we

have:
d. = Rde = [Re + A sin (ve +D}] do ,
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L = [ (R, g+ Asin{ve+D)]de ,
0

- L) n
L = R g+ 5cos (vo+ D) g »
where:
A=A, D =3 = osTs
L = R, 7 - 227z 0L [0.4371-0] , (3-10)

= m
L = Re 3" 3.013 DL .

The path length difference between the circular orbit and the above path

length for one-half of a quadrant is given by:

= no_
AL = R0 T L .

By substituting Eqs. (2-7) and (3-10) in the above for R, = Ry + Ay,

we have the path length difference in half a quadrant:
AL = 0.209 DL .

The fractional path length change, including the straight section, is:

& - i - (3-11)

For Ry = 604 inches we have:

% = 351 x 1074 0L . (3-12)

This is the path length correction for the scalloped orbit relative to

the measured closed orbit at the straigi.c sections through the radius Ry.
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C. Correction to Measured Radial Position for Fringe-Field Effect

The probes used to measure the radial position of the beam are in the
field-free regions of the straight sections. The particle energy is deter-
mined by the radial position in the quadrants. A correction must therefore be
made for the outward radial drift of the orbit when passing through the fringe
field.

A plot of the calculated orbit, using the fringe-field data of MT-87 for
the Quadrant II exit, is shown in Fig. 7. The measured value was about 0.25
inches using the travel target in Quadrants I1 and III. This agrees with the
calculation in Fig. 7.

D. Errors in Kinetic Energy Measurement

In Section III-B, we determined that the error in Bevatron time-of-flight
measurements 1s essentially from the error in the path length. [ will now
evaluate the error in the kinetic energy measurement as a result of the errors
in the radius measurements and the uncertainty in the closed orbit distortion
as a result of the variation in quadrant length of the magnetic field.

The radial position of the circulating particle beam is measured with
radial clipper probes in the four straight sections. In the South, West, and
North straight sections, these are vertical bars of aluminum 1 inch thick in
the azimuthal direction, 1/8 inch thick in the radial direction and 8 inches
in the vertical. The North and West clippers are flipped up from below in
about 100 msec. The clipper on the south probe is plunged radially outward
from the inner radius in about 200 ms.

The East probe is a U-shaped target or harp and is used in two modes.

The first mode is to flip the harp up with the beam positioned near the center

of the U (Fig. 8). The radial position of the harp is adjusted for maximum
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Fig. 7. Fringe-field orbit trajectory.
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beam survival. The radial centerline position of the harp is then the radial
position of the center of the circulating beam at that probe.

The second mode is used to measure the relative radial position. The U
probe i< moved radially inward so that it clips the beam on the inside radius
only (Fig. 9). The results of these measurements can then be compared to the
other three probes, which are finger probes. By comparing the radial probe
position for the same beam survival, relative radial beam positions are deter-
mined.

The charge of the circulating beam is measured by a capacitive pick-up
system called the Beam Induction Electrode (BIE}. The BIE value is read just
before and just after flipping the probe into the beam. In recent measure-
ments, a voltmeter read the two values and then provided a signal that was the
ratio of the two BIE levels. This signal was set to read 1.000 for no probe
in the beam. For each Bevatron pulse, the value was printed out on a paper
tape. The MODCOMP computer was set up to give a pulse-by-pulse read-out of
the magnetic field value and rf freguency for the pulses and this read-out
was then printed as a hard copy. The BIE ratio and field and frequency hard
copies were manually synchronized during data taking. Runs were made by

adially scanning with the probes in 0.2-inch steps for 5 to 6 steps. Data

for the finger-probe scans at each straight section are shown in Fij. 10.
This gives the relative beam Tocation at each section. Fiqure 11 shows date
for the harp scans with the East probe for the radial position measurement.

From Fig. 10, we can determine the relative radial positions to about
+1/16 inch and the closed orbit radius in the east to *1/8 inch. The shaft
end play on the probes and the absolute radial position calibration are both

about * 1/16 inch. From Section II-A we have an estimate of about 0.16 inches
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for a possible undetected fourth harmonic. This, then, gives an error in R
of:
AR

1/2
:+ [0.062% + (0.1251% + (0.06212 + 0.062) + (0.16)7 ]

AR = £ 0.24 inches .

From Eq. (2-3),

2
[}
&
—_
e~
1]
-+
=
wl
+
-
EA
-+
e
=
~—
-

e (e (e
{(A%)Z 4]1/2

. AR _ . D.24
pi3 AR

TS
o0
g\/

"
[}
-

S

£2.02 x 107% .

)
‘R rms

The path lerigth error is given from Eq. (3-7):

dg R &R 1
s g+ A Ro 1+%%
0 2n 2t 0
dR
= 0.798 x ﬁ—Q ,
[+

=S - 16l x 107 .
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The path length correction for a scalloped orbit from the quadrant length

carrection was given by Eq. (3-12):
8 -+ 3.5 x 10%oL .

At the region of maximum coerrection, if the error in the quadrant length
correction was a factor of Z, the error in DL would be 1.5 inches. The error

in path length would then be:

AC -4

< = *+ 3.51 x 1077 x 1.5

= £5.27 x 104 .

The error in the path length for this carrection and the error in Ro 1S

given by:

-4,2 -4

1/2
2+ thsnaoh?]

- [(5.27x10

-
Ol
()
~——
~
3
n
"

= %527 x 1074 .

From Eq. (3-9), we have for 500 MeV/amu particles:

AKE) _ dg . AS
= 3.90 x = = 3.90
(_KE rms ] 3

$3.90 « 5.51 x 1074

u

AKE) - . -3
T = = 2.15 x 10
( rms

That is, we know the kinetic energy to about *0.25% with the above

errors.
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If we double the error in R, we increase AKE/KE to 2.41 x 1073, e
can see that the major error is from the uncertainty in the value for the

quadrant length correction.

The value of AKE/KE for various values of KE are tabulated in Table 2 for
the above values of error, taking the error in DL as one-half of the value

tabulated in Table 1.

E. Calcuvlation for Time-of-Flight Measurement

The radius of the closed orbit is determined from the radial probe
measurements, as discussed in Section III-D. from Eq. (2-3) in Section I,
we have:

= 1
Ry = g [Rg+ Rg *+ Ry + Rn] :

From orbi”’. eccentricity measurements we have:
RS = RE-‘-ARS R

= R+ oR, ,
RN = RE + ARN .
Substituting in the above equation and subtracting 0.25 inches for the

fringe-field correction (Section III-C) yields:

ARS AR AR

- W N 1
R = RE+—4—+T+T-I . (3-13)

The path length is given by:
S = 2nR +4L . (3-14)

The correction to the path length for the quadrant length correction from

Eq. (3-12) is:

A{. = - 3.51 x107% DL
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Table 2. AKE/KE vs. B, for a factor of
2 uncertainty in quadrant length
correction for time-of-flight
measurement in the Bevatron.

B0 KE AKE/KE

(kG) (MeV) (%)
1 28 0.13
2 106 0.16
3 225 0.19
4 373 0.23
5 543 0.27
6 726 0.31
7 920 0.33
8 1120 0.30
9 1327 0.23
10 1537 0.21
11 1750 n.20
12 1965 0.21
13 2182 0.25
14 2401 0.28
15 2621 0.30




Therefore, we have:

S = 2R+ 4L - 3.50 x 1070

DL (2n R, + &L} ,
S = (2nR + 4L) (1-3.51 x 104 . (3-15)

8 is Jiven by:

Sf

8 = T >
where: f = measured frequency of rotation,
C = velocity of light,
- f -4
8 = ¢ [anO +4L] f1-3.51 x 1077 DL} . {3-15)

From Eq. (3-1) we have for the kinetic energy of the particle:

2 -1/2
KE = E, [(1-8%) - 17 . (3-17)

To determine the particle energy in the Bevatron, proceed as follows. If
the orbit eccentricities are known from previous measurements (ARg; 4Ry
ARy), then only the radial position in the east and the frequency of the rf
system are needed. Equation (3-13) gives Ry from the radial position
measurements. DL is given in Table 1. .ubstituting in Egs. (3-16) and (3-17)
gives the value for KE. The typical values for AKE/KE as a function of KE are

given in Table 2.
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APPENDIX

The following derivation calculates the closed orbit in terms of a
summation of simple betatron oscillations, based on the assumption that the
Bevatron is composed of a perfect machine plus 144 perturbations, one at each
sector.

From Fig. 3 for o > 6y we have:

= N .
ep BJ L [}

The displacement Ra at op from a perturbation at 6y is:

= i 3n -
Re AJ. sin [—2 vep]

- 3 _ 37 s
A (sin =7 c0s v, - cos 25 sin vep] ,

Re = -AJ- cos vep

= -Aj cos v(ej + - 9)

Re = -A; cos [vr - v(e-aj)] . (A-1)

From Fig. 4 for o < 8; we have:

0, = m-(85-0) ,

Re

A s1n(—-2+ve) .

By expansion as above we have:

Re = -A; cos [vr - v(ej -0)] . (A-2)
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For the ith position, where 8 = 6;, the displacement R; is the sum

over j of all the individuai displacements:

144

1
Ry = A cos [un-v(ej-61;J - A cos [vn-v(ei-ej)] .
j=1 j=i+l
Separating out the 8; term gives:
i 144
Ry =-1 Aj cos [(vn-vej) +ve] - ] A cos [(vw+vej) - ve;] .
J=1 j=i+l
Expanding gives:
= s - 3 1
R, = -7 Aj [cos v(n-Bj) cos ve;-sin v{n ej) sin ve, ]
j=1
144
- 7 A [cos v{m+8;) cos ve;+sin v(n+ej) sin ve,] .
j=i+l
Factoring gives:
i 144 7
R, = =-coswve;| T A; cos v(n-ej) + 7 Az cos v(n+6j)
j=1 =i+l
i 144 ]
+ sin v, T Aj sin v(w-ej) - 7 Aj sin v(w+9j) .
i=1 j=i+l
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Expanding again gives:

i
Ry = = cosvey ) Aj (cosvm coswj + sinur s1nvej)
j=1
144
+ 5 A; (cosvm cosvey - sinvn sinvej)
j=1+1

i
+ sinve; A, i P i .
sinve | ] 5 (sinvr cosve; ~ cosvr s1nveJ)
j=1
144
- AJ. (sinvm cosv; + cosvm sinuej) .
J=i+l

Factoring yields:

i i
Ri = - cosvB; [cosvr 5 Aj c05uej + sinuvn § Aj 51nvej
j:l j:l
144 144
; ; - si . sinvb,
cosvr A; cosvey - sinve ) A; sinve;
J=itl j=i+1
i
+ sinve, | sinve Aj cosvey = cosvr ) A; sinve;
=1 i=1
144 144
- sinvm ) Aj cosve; - cosur YA, sinvey

J
j=i+1 j=i+l
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i 1 144
Ne = - cosve; |cosvr Aj cosve; + sinvyg A; sinve; - 7oA, sinvej
=1 =1 j=ivl J
[ i 144 144
+ sinve; [sinvn < ) A cosve; - ) A cosve;) - cosvr ¥ R cosve;
j=1 =1 i=1
This can be rewritten:
i 144
. = - +s3 T . j . - . si N
R; cosve; [cosvr Sy+sinva( T Aj sinvey ) AJ s1nveé>
J=1 j=itl
-
i 144 \
+ sinve, S1nvﬂ< ) Aj cosve; - ) A; cosve; - cosum 52/ s
j=1 j=itl
{A-3)
where:
144
S = 1 Aj cosve;
J=1
144
S» = 1 Aj sinve;
j=1
Equation (A-3) can be written in the form:
Ry = B(1) cosve; + D{i) sinve; (A-4)
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where:
i 144
8(i) = - sinvr < ) Aj sinvej - 3 Aj Sinv6;> - §; cosvs s
j=1 J=i+l
i 144
D(i) = sinve ( ) Ay cosvey - T A c05ve;) - S, cosvr .
J=1 j=1

Equation {A-4)} can be put in the form:

R, = H(i) cos (ve; + (1)) . ' (A-5)

Equation (A-5) is a first harmonic betatron oscillation with sliowly
varying amplitude and phase to provide a closed orbit.

To examine the change in R between Rj and Rj4+), we can use Eq. (A-4):
Ris1 - Ry = B(i+1) cosvey,) + Ni+l) sinvey,,

- B{i) cosve; - D{i}) sinve; . (A-6)

B(i+l) is given by:

i+l 144
B(i+l) = - sin\nr< ) Ay sinve; - 5 As sinve%) - Sy cosvn .
3=1 j=1+2
Factoring out the A; term yields:
i-1
B(i+l) = - sinvr ( ) Ay sinvey + Ay sinve; + Ay sinvey,
J=1
144
- 7 Aj sinvej + A; sinve; + A, Sinvei+;>
j=1

- S1 cosvr .
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Collecting terms:

i-1 184
-sinvs ( Y A sinve; - ) Ay sinvej> - S cosvn

B(i+l) = 5
j=1 j=1
-sinvn ZAi sinve,; + 2 A1 sinvei+1 ,
BIi+1) = B(i-1) - sinve (2A; sinve; + 2 Ay, sinve;, ) (A-7)

Similarly for the D(i+l1) term:

J J

i+l 144
D(i+1) = sinvn < ) Aj cosve; - TOA; cosve; | - S, cosvr .
j=1 j=1+2

Factoring out the A; term:

i=1
sinun ( ) Aj cosve; + A; cosve, + A; . cosve,

D(i+1) =
j=1
144
-y Ay cosvey + A; cosve; + A, c05vei+;>
J=1
- S, cosvn .

Collecting terms:

i-1 144
D(i+l) = sinunm < ) Aj cosve; - ) A; c05v9j> ~ 5, cusvn

j=1 J=1

+ sinvn ZAi c05vei + 2A1-+1 c05vei+1) ,

—_

D(i+1)

D(i-1) + sinvn (28 cosve; + 2Ag,) cosver,) - (A-8)
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B{i) is given by:

i 144

B(i) = -s1nwr< ¥ Aj sinve; - ¥ Aj s1nvej> - 5 cosvr .
=1 j=itl

Factoring out the A; term:
i-1 144

i = ~gj . si .+ A, i 2 - . si .

B{1i) s1nw< ¥ A; sinvey + A, sinve, ) AJ sinve;

J=1 j=i

+ Ai s1nvei) - S1 cosvn

J

i-1 144
= - sinwr< ) Aj sinve; - ) A sinvej) - §q cosvr
j=1 j=1

- 2 sinvn Ai sinvn
B(i} = B(i-1) - 2 A; sinve; sinvr .

Similarly for the D(i) term:

i 144
n(i) = -si : . - . ) - .
n(i) 51n\)11( ) AJ cosve; ¥ AJ cosv%) S, cosvm
j=1 j=i+l

(A-9)
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Factoring out the A; term:

i-1 144
D{i) = sinvn{ ¥ Aj cosve, + A; cosve; - 5 A cosvey
j=1 J=i
+ A; cosve; | - S2 cosvn
i-1 144
D(i) = sinvn| ¥ Ay cosvey - ) Ay cosves) - S, cosvn
j=1 j=1
+ 2 Ai cosvoy sinur
= D(i-1) + 2 A; cosve; sinvn . {A-10)

Substituting (A-7), (A-8), (A-9), and (A-10) in Eq. (A-6) gives:
Ripp = Ry = {Bli-1) - sinvn [2A; sinve; + 2A;,) sinve,,, ]} cosveyy)

+ {D{i-1) + sinurn [2A; cosve; + 2A; ) cosve;,q ]} sinve;,

- {Bli-1) - sinvn 2A; sinve;} cosve,

{D(i-1) + sinvm 2A; cosve;} sinve; .

Collecting terms yields:

Risp = Ry = B(i-1) (cosvey  -cosve;) + D{i-1) (sinve,,,-sinve,)

- sinvn [24; sinve; cosvey g + 2A;,; sinve;, cosve;
- ZAi cosvo; sinve,, - 2Ai+1 cosvb; g Sinve;
- 2A; sinve; cosve; + 2A; cosve; sinve;]

Riyp-Ry = Bli-1) [cosvey, -cosve;] + D(i-1)[sinvey, -sinve;]

-sinun 2A; [sinue; cosve;,, - cosve; sinve; ] .
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Substituting 0844 = 01*+A8 gives:

R B(i-1) [cos(vo +vae) - cosve,]

i+1 - Ry

+

D(i-1) [sin(ve +van) - sinve,]

- 2A; sinvr [sinve; cos{ve;+vae) - cosve; sin(vo;+vas] .

Expanding:
Risp - Ry = Bli-1) [cosve; cosvae - sinve; sinvae - cosve, ]
+ D(i-1) [sinve; cosvag + cosve; sinvag - sinve; ]

~ 2A; sinvr [sinve; (cosve; cosvap - sinve; sinvae)

- cosve; (sinve; cosvae + cosve; sinvae)]

- Ry = B(i-1) [cosve;~ sinve; vAs-cosve, ]
+ D(i-1) [sinve;+cosve; vad - sinve, ]
; ; .2
- 2A; sinvm [s1nvei cosve;-sin® ve, vag]

- cosve; sinvei - cos2 ve; vas] ,

- R, = -B(i-1) sinuei vae + D(i-1) COSve; vAB

2 2

+ 285 sinun [sin ve; + cosve,] vae

1- R = -B(i-1) sinvei vAp + D{i-1) cosve; vAb

+ 2A; sinvnr vae . {A-11)

The first two terms of Eq. (A-11) are the derivative of Eq. (A-4) with
constant coefficients B and D evaluated at i-1. The third term is the
contribution from the changing coefficients and is just equal to twice the

derivative of the ith perturbed orbit at the ith position (see Fig. A-1).
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Fig. A-1. Closed orbit at ith sector with and without perturbation.
(a) Summation of all terms;

{b) actual path of ith orbit at ith perturbation.



