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Inorganic Materials Research Division,
Lawrence Berkeley Laboratory -

. ABSTRACT
This paﬁer'tr§ats thé statistiéé of thefmally activa£ed glide of a

dislocgtion,'modelled as a String of constant tensiqn; through an array
of randoml& distributed, identical, immobile point obstacles. Thé para-
meters goverﬁing thermally activated glide are defined and equations are
deVeloped»giving the expected value and variance of the time ﬁo activate
~through an obstacle érray or sequenée of arrays ig terms of the.proper—
ties of the obstac;e configurations eﬁéountered.. Th¢ proper statistical
"definition of the velocity of glide is discussed; It is shown that the
velpcity of-glide; as determined from the strain rate, is simply propor-
tional>£o the inverse of the expected time to transit'the array (or
sequence of arrays). Simplifying approximations‘éfe identified for use
at low'temperature br'high stress. We finally.diséuss how these statis-
tical;y relaﬁions and app?oximations may best be used in numerical simu-

vlationvof.fhermally activated glide.
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I.. INTRODUCTTON
 Thé mechanical.ﬁehéviof ofvabcrystalline‘sQiid:is ofteniinflﬁéﬁcedb.

by diélécation mot ion through avfiéld of obstaclé%,ifqr.éﬁample, forest
diélocations, s&lute atoms, or small prgcipitates;'wh;ch are.dispersed
in é mofe 5r less.random.féshion tﬁrough the crystél. The problem of
predicfing the rate of this diélocation gdtion is;formidable. We have
:_beén engagea in a study of one of:the simplest prgbiéms.of this.type:

. the thermally activéted glide of a dislocation, idedlized as a 1ine.of
‘constént tenéion,vthroﬁgh é‘randpm arfay of ideﬂticél, immobile boint
ébstaéles under constant Aﬁplied stresé.

‘The préblem may be described as follows (Figﬁr¢ 1).‘vCons§der a
crystal plane which is the glide plane of a dislbcétioﬁ...iefvif contéin
a random distribution of points which act as obspgcles to dislocation
glidé. iet an initially straight dislocation be introduced at one edge
of the pléne, and let this dislocatioh'glide into the piane under‘the act-
ibn of.arresolved éhear stress. The dislocation glides freely across the
empfy initial area of the plane. It may also mechanically pass ste of
the point obstacles, either by cutting.through_them‘ér folding around
fhem to close on itself. This‘glide'céntinues until'the dislocation
finds itself in a configuration in which it is pinhed along its vhole
length by obstacles which it cann§# pass mechanically. Sﬁch a configu-
ration ié illuétrated.in-figure l.v If the dislocétion is confinéd to the
glide plane and the stfess is held constant the dislocafion remains pinned
in this stable configﬁration uﬁtil thermal actiyatibn carries it past at

least 6ne'of the pinning obstacles.‘ It then glides until a second mechani-

~cally stable configuration is reached and the pchess of thermal activa-



- tion must be iepeated. The problem is to conpute‘the expeoted value of
tne velocity of dislocation.glide througn repeated tnefmal-ectiVation as
,_e funiction of the applied stfess; the tempereture,Jend tne nature and .
density of the point.obstacles. | ..

.‘ The solution of gnis-problem requires two t&pesuOf information;

, Flrst we need to know the relevant properties of the mechanlcally stable
configurations assumed by the dislocatlon as it glldes through the ob-

stacle field. VSecond,'we need the proper statistics of thermally acti-

vated glide thfough‘these_configurations. The present paper is princi-
pally‘devoted to tne Second'part of the problem. _ln the following sec-

tions wve identify,our essumptions aﬁa write the governing'equations of

'simple glide through a random array of point obstacles at'finite temper-

: Te obtain the distribution of line strengtns,we employ a computer
_ oddekﬁhich numerically simulates tnermally activeted-diSlocation glide;
‘The code,.its use,lend initial results will be discussed in the second
paper(l) of this series. |
II. ASSUMPTIONS AND BASIC EQUATIONS

- Let & random array of p01nts £il1l a square segment of a plane. The
anray is described by the'statement that its p01nts are randomly distri- |
‘buted and by a cheracteristic length

where a is the average area per point. The total area of the square

segment io
A=n (1)), B (2)



where n is the total number of points contaihed. In dimensionless form,

the area is ~

a¥ =7/1 )" =n - (3)
and‘the'dimensionless edge lengtn of the square Segment'is
. o ‘ _ | .
Cowe=nt? o (1)

Let a diSlocatiQn'be‘introduced into the squa:e‘segment. The dis-
. l§cati6n will be treated as a flexible;_exfensible_striﬁg characterized
by a line tension (T), its énefgy pér‘unit length, and by a Burgers vec-
for (n), éf magnifude b.  The line tenmsion is aséumed constant; we neg—.
lecf any dépéndence of T on the orientation of tﬁe line or on the mutual
inferéction-of'Segmenfs of the line; The Bﬁrgers véctorris taken to lie
in the blane;v-

- Let a stregs £ be_épplieavto'the dey containing‘this piaﬁe. If the
disloéation'moves so‘asto sweep out area A under fhe action of this 'stress
' tﬁe wofkvaghe is (2) | |

W = TbhSA - : o (5)
where T is fhe resolved shear sﬁress ;_ f _
| T=(R’R"‘Q\b-l-v o o (6)
and R'is‘the normal vectdr.to the plane. We assﬁ@gnthe dislocation
- glides freely unless pinned by obstacles. |
.Let fhé-glidiﬁgvdislbcation encounter two i@peneﬁrablébpoint ob-
staclés;, The disloca£ion'éégmentﬁﬁétweén the_obétacles bows out ﬁo.an
equilibriun radius(®) | |
R="/m ' (7)
if Lhe Qbstac1e separation is less than 2R.  If the obstacle separation

is greater than 2R the bowing segment is unStable,_the dislocation folds



e

around fhe obstacles.to close on itéelf (tﬁe Oroﬁan @echaﬁism(B)) and the
obstacles ar€ mechanlcally bypassed..'

Equatlon (T) suggests a useful non—dlmen51onal measure of the stress
1mpelllng gllde through an array of obstacles We oefine‘tﬁe non-dimen- *

51onal resolved shear stress

(8)

il
~
N
e

or .

. * S /2R %‘1/2R*' l o (9)

where R¥ is,theldimensionIESS bow-out radius. Given this measure of
}stress;‘at ¥ =.1.0 the dileCatioh will mechanically by-pass impenetrable
obstacles separated by l .oT¥ o= I 6bis the critioal.resolved shear stress
for . dlslocatlon gllde through a square array of 1mpenetrable p01nt ob-
stacles. | |

Now let the dislocation.be pressed egainst a line configuration of
point obstacles by the‘resolved shear stress_r* (as;'for example, isb
figure 1). Between each pair of adjacent obstaeles the dislocatlon bows
out to radius R¥. If the distance between any two adjacent obstacles
excee$:2R*v(= T* ) or if the dlslocatlon anywhere intersects 1tself
the particular configuration of obstacles is transparent to the disloca-
tlon and will be mechanically penetrated.

If the line conflguratlon of obstacles is not transparent at applled
stress 1%, the dislocation line forms an angle w(O £V < m) at each
pol;t obstacle (figure 2). Let w? be the angle fofmed at the kth point

obstacle in the izh-line configuration. The force which the dislocation

line exerts on this obstacle is, as shown in the. appendix,



' Tk o
F, =2r cos (Pisf2). - .- ' - (20)

Since T, the'line'énergy of the dislocation, is a constant, we define
the non—dimensioﬁal force
. . X |
k .
¢ g, = cos (Yi/2). D (11)

The force B? increases frOm 0 to 1 as the angle'wg decreases from m to

-zero. The mechanical force on the iEE-configuratioﬁ of obstacles is

¢ k»- v
. characterized by the set of dimensionless parameters.isig, where k takes

on Ni‘values, one for each of the obstacles in contact with the disloca-

.-tion‘ along the i-t--}l line. It is useful to order. the isfg ‘so that Bf.: de~

creases with the index k. Given {'Bi.{gthe line of bbs_tacles may or may

not be mechanically penetrated by the dislocation, depending on the

strengtn of the obstacles.

- The obstacles are assumed to be identical,'éircularly symmetric bar-

- riers to the dislocation. They. are point obstacles in the sense that

their range of effective interaction with the dislocation, of character-
istic length d, is small compared to the mean obstacle separation'ls.
AsAdiScussed in the appendix, the interaction of the obstacle with the

dislocation may be treated as a point force on the dislocaﬁion line which

. may be made dimensionless through division by 2T. The total interaction
is then represented by a force—disﬁlaeement relation giving the point

 force on the dislocation as it sweeps through the obstacle (in dimension-

lesé form, 8(*/a)). A force-displacement relation for a simple repulsive

interaction is drawn schematically in figure 3.
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‘The maxlmum (3 ) of the force—dlsplaceﬁent relation (8(*/4)) mea-
sures the effectlve mechanlcal strength of the obstacle.. The obstacle (k,1i)
w111 be cut by the dislocation 1f B sc. -Hence'the 1EE-line configu— -
ration of obstacles is & mechahically stable barrler to the dislocation
only ifvv _ : - . o ‘ _
- Comes e
-where Bivis the largest member of thg {B?} . Si'is the force applied at
thé minimum angle (wi) along the diélocation line.
If the inequality (12) is satisfied at every point along the ad
line configuration, and if we neglect the possibility of fhermally—acti-
vated bow;out‘between adjacent obstacles, the dislocation remains pinned
in this configuration until one obstacle is passéd-thfough thermal acti-.
#ation. Thé activation barrier which must be overcéme to pass
. obstacle (ﬁ, i) is simply proportional to the area under the force-dis-
placement curve (s(x/d)) and above a horizontal line of height B?
, (figure 3). If the function B(*/d) is monotonically”increasing between
the values 6? and 8 (we assume it is), the actiyatiqn energy may be

written in dimensionless form:

K _ k -

g = ulg,) - u(g)), (13)
where u(B8) is the dimensionless area under both thé force displacement

curve and a horizontal line of height 8. The activation barrier at 4 -

obstacle (k, i) is then

k k- - ’ L
¥ = . : .
AG*] 2rdg, . | _ (1k)
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" III. THERMAL ACTIVATiON PAST A.LiNE.OF OBSTACLES
‘ Givén the activation energy'(eQuationv(lh)).and neglécting any acti-
vation entfopy, tﬁe.étochastié pfébabilitj for thermal activation past |
the (i; k) barrier invone attempt is |
P? = exp (- Qgg) -‘. : o (15)
where g?“ié givep by equation.(iB) and o is a.diﬁensibniess reciprocal
temperaturé |

_ora
o =

/KT . (16)
The probébility that the barrier remains ﬁncut after j trials, given that
it was intact iniﬁially,is
k. K o
) =n-PY 2 (17)
i i’ : _

Let the dislocation attempﬁ the obstacle'with'mean frequency v,
taken to_bé the same for all obstacles.. Unless P? is very small the
activation probabiiities are sensitive to the physical intefpretation of

v. To be precise, let the activation trials occur randomly in time with
expectation’i per unit of ‘dimensionless time
t* = vt. , (18)

The probability of exactly J trials in time t¥* is then

- S PP :
CP(g,t*) = (Ef)e't*;- o (19)

“and the probability that the obstacle is uncut at time t¥*, given that it

wag uncut at time zero, is
P (t*) = & vy~ Lipxyd ot _pK1d
1v( j=olji) “(t*)Ye™ Ll P1Y

: p§ (t*) = exp [_p§ %] - (20)
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s e t ' . .
If the dislocation is pinned against the i—h-obstacle configuration
at t¥ =.0, then all obstacles (k, i) on i are known to be uncut at t* =0,
: :
and we may compute the probability for activation past i without consider-

ing previous configurations or previous attempts to cut the obstacles on

(5)

i (contrary to the statement of Argon(h), Arsenault and Cadman and

one of us in earlier work(s)). The probability that the izb-configura-
tion remains uncut after time t* is the probability that all obstacles on

i remain intact at t¥*:

. N, :
i
P, (t*) = = P? (t*) = e, (21)
k=1
where, from equation (20),
. ‘ N.
B : - , A
Ay =L P?. : Cl - (22)
k=1 * : ‘

The probability that the iEE configuration is cut in the time inter#al
(t*, t* + dt*) is

“At*

3, -A t* o -
(e75%) atx = nge” i at* (23)

* ¥ = —
P, (t*)at e

' ' . o .th . C
Hence the expected residence time in the i configuraetion is

o .
<t¥ > = _f t¥P_ (t*) dt* = p,7t (2k)
i 4 i i

and the variance of the residence time is

5 2 )
o, = <t}> - <td" = A (25)

or

of = <t¥%>° (26)
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The expected re51dence time <t*> is the mean tlme requlred for the
‘ dmslocatlon to pass one obstacle in the 132-conf1guratlon. ‘We may also
compute the probablllty P(k, 1) that the kr-r--H obstacle is the one passed.

" Let the 1EE-conf1gurdtxon be passed at tlme t¥. Then _
‘ | - tgl N, ; 5
i . %) = L . -
P(k,ll_t_ ) Pl e i . #‘ﬂ{ exp(—-P t*) ~(27)
where the first bracketed term is the probabll;ty that»obstacle-k is

passed ‘at time t* and the second bracketed term iS‘the probability that

all other barriers remain. It follows that
, . _ o

N * SAt% .k
P(k,1) = P; [ e 1T at* = Pi/A (28)
| J o

As is apparent from equations. (15) and (22)‘A~:will in‘general be a
‘rather compllcated functlon of temperature even 1f the applied stress
(and hence the {g%_i ) is-held constant. Barring the trivial case in
‘which the g? are identical, as for a straight.lime‘of equispaced obstacles,
it will generally not be possible to write A, in the form of a simple
Arrenhius equation with a constant activation energy. However, in the
limiting cases of small a‘(high temperature) emd‘large o (low temperature)
Ai does eimplify‘to an Arrenhius form.

As ﬁhe'temperature T:is made large o approeches iero. Hence there
ie a range of o such that

‘Ogil << 1 a _ (29)

R - - . . _

: wherevg.i is the largest member of { gig . This range of a will;however,

' N.

fall at UHICdJL tically hlgh temperatures - unless g5 i is small; «
(equation (16)) has a realistic minimum of about 10 at the melting point

of a typical metal. When the inequality (29) is satiéfied,
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i , -

L Qe ky o N e ’qgi (30)

- =

f'Ai.

a
=k

»

where gi is the average value of g?.v The mean residence time is then

as wouid ebtain from a.simple activation process with Ni paths in‘paralle;,
each of Wthh has dimensionless actlvatlon energy . g . The probability
vthat the k——-obstacle is the -one passed approaches (l/N ), consistent
w1th thls p01nt of view. -

As. the temperature is decreased o 1ncreases w1thoﬁt bound If N. is
finite and-if g2 - gl is non-zero (i.e., if the weakest p01nt in the
barrier conflguratlon is weaker than any other. by a finite amount) then

“there is a range of & so lgrge that

1n
az> 1/gi - &; (32)
When this condition obtains
~agl ~a(g" - vgl)-k Yoo -
Ay = e ,1[1+k___2=2e i 1_‘ (33)
Then . ' ‘
. . . 1 .
<t %>T ™81 IR ' - (34)

as expected for avsimple activation process with a single path having

actiiation energy gi. Consistent with this point of view

-

P(k,i) o8, (35)
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- and theiiiﬁ configuration is virtually certain to be passed at its weakest
point, i.e., whére the dislocation forms thebminimum angle, by

Flnally, when N is 1argé and'thc gg are densely distributed over
'the domain gl < 8 < gNl, we may define a den51ty functlon p. (g), the

fraction of the g? in dg at g and write

f e 28 pi(g)dg = NiLi(a')' : (36)

where Li(a),is the LaPlace transform of the density function pi(g).

Li(a) is the'average‘value‘of thévPE on i and is non-zero for finite a.
As N, becomes arbitrafil&_larée at fixed pi(g), Ay increases without
bound ‘and <t*> approaches zero. However, it does not follow that the
dlstlnctlon between obstacle conflguratlons is negligible when the number
of. obstacles on a line is large . Given two configurations i and J with

Ni 3 I\I‘j but pi(g) # F (g) the ratio of residence times is

%> LJ(G)/

Pyenes = L (a) . (37)

i
when Ni is arbitrarily large. Thls ratio may differ markedly from one.
IV. THE TRANSIT TIME FOR GLIDE THROUGH AN ARRAY OF OBSTACLES

Let a dislocation glide through a ficite array:of randomly distri-
buted p01nt obstacles at given values of ¥ and a. We assume the process
is controlled by thermal activation in the sense that the tlme required
for glide between mechanically stable configurations is negligible com-
pate to the time required for thermal activation.

The statistics of thermally activated glide are complicated by the

fact that, except in certain limiting cases discussed below, the sequence
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of stable coﬁfigurations encountered by the disiocatiop is not unique.
At fixed temperature and stress a dislocation pihned by the jzh-stable
configurationnny,activate at any one of the obstacles (k,3) on j. The
future pafh'of the dislocation will in general depend on whichvspecific
obstacle is cut. The problem is, howéver,_somewhat'simplified by the
fact that thg configurations assumeiin glide through a finite array form
an irreducible Markov chain (ref. T, Chapt. XV). .

Let the‘dislocation be in its jzh-stable cohfigﬁfation, and let
point (k,j) be cut through thermal activation. 'Thefsubsequent glide of
the dislocation is governed by its mechanical eguations of motion and
continues until a new stable configuration, the (j + 1)35, is reached.
The (j + l)EE-configuration is thus uniquely determined by the jEE-con—
figuration and by the activation site (k,j). Thglﬁrobability that a
particular configuration (i) will be the (J + I)EE;is known gnee the jEE
cbnfiguratiop is known, independéﬁt of‘previous evénts, and is simply the
probability that activation will occur at a point on J (there may be
several) which causes to'qvolve into i. Hence the ;ctivation process
in Markovian.

Let y be a path through the array, i.e., a possible sequence of con-
- figurations assumed as the dislocation glidés through the array. The
‘first member of y must necessarily be the first stable configuration en-
countered as the dislocation.moves into the array. Let {q}, with g
" elements, be the set of all stéble configurations which cen be reached
from this initial position by activating past obstacles in any sequence.

Since the array is finite, q is finite. . The elements of {q} form a
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Markov chain whicheis-irreducible siece any member of {q{ may be reached
- by thermal activatioh and hence may lie on the particular path taken by
the dislocation. Itvfollo;s from the ergedic property of such chains
(ref.b7, section XV. 6) that the probability PX ‘that the dislocation

takes path X is defined, and

€p¢=1 S (37)

The probability Pi that the dislocation encounters configuration i is the

sum of Pz, over all paths which contain i

=2 P | (38)
z ¥ o

and N ' é% 8
. . r = iv= 1 Pi ) (39)

A is the expected number of steble eonfigurations'encountered. Given
equation (28), however both %ﬂ and P, .may~be coméieﬁtfunctions of stress,
temperature, and the nature of the obstacles. The eet {q{ itself is a
function of dimen51on1ess stress, even 1f_the nature of the obstacles is
flxed |

Let the dislocation follow a partlcular path zthrough the array
and 1et;§ contain r conflguratlons hav1ng activation parameters Al
(i =1,...,r). The time t* required for gllde through the array is then
the‘sum of r random variables t? (i = 1,...,7) d’strlbuted according to
r density functions Pi(t*), where Pi(t*) is defined in equation (23).

It follows (ref. 7,'Chapt. IX) that the expected value of t* is

~

4



<t¥ = £ <t¥>= ; (Ai)_l : - (ko)
X i=1 1 i=1 .
and that the variance of 02.of t* ig
X
r ’ . r - ) V . . ' N
2 2 -2 o
'OX = 3 z 195 T é.l (Ai) o (b1)

The random variables ti‘may be shown to obey the coﬁditions of the
Lindeberg theorem (ref. T, p; 239). Hence as r becomes large the distri-
bution of t¥ approaches a normal distribution with the density function

kN8
p(t¥) = (216°)" M2 exp - (b - <t3>) , (42)
X —> :
20
X

giving the probability that t; lies in the range'(tf;‘t* + at*).

Using equations (L0O) and (41)

-'02/<t*> =4 1+ ]2 ;} (a1 ; I ) (43)
X X i<y = 1 i - .

Let Aé be the minimum value of Ay encountered aloné path x. Wheﬁ the
number ofvconfiguratéons having A; near A§ is 1a§ge.the ratio (h3) is
'sqall and the transit time t; for transit vie path x is very likely to
be ﬁithin_'a few percent of the expected value <t;>. As we shall illu-
strate in paper II this condition may fail when the stress t¥* is very
closé to fz, since r is then small, or when the reciprocal temperature

o is large, since the number of Ai near Az is then small. 1In either.of

these cases the scatter in t: may be large.

-
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Given equations (37), (38), and (hi) the time t¥* to transit a random

array is distributed according to the density function

»

p(t*) = & p plt*|x) | ‘ (44)

y X we o

with mean’ ' v B
<t¥> = 7 <t¥*> = p) . A, 5

x‘»_‘ px_ X L1 o= 1 P1 1

and variance

o = Ip, [P+ (st%> o t%>)°] (46)
R X '

X

The expected ?alue of thevtransit time is hence just the sum of the ex-~
pected waiﬁing times at the q possible configurations, weighted by the

- probabilities‘that they.will lie along the dislocation path, The variance
of the transit time is the weighted aﬁerage of the sum of two independent
varianneé; q2, due;tovsgatter in the waiting times for thermal activation

along path y, and [<t*> - <t*>]2, due to the variation in expected transit

X

time from one path to another. If the number of independent paths is
~large and the <t¥> ‘are nomally distributed about <t¥> the distribution of
ﬁf will approach a normal distribution. Equation (L4) may thén be re-
writteh in the form (L42) with mean <t¥> and variance oga Similarly, if
there is a unique path (Xo) éontaining a sufficiently large number of
configurations, the distribution of t¥ is normal with mean <t§> and

. 2
variance o _.

o _ ,
There are two limitihg cases in which one may reasonably assume &

uni@ue path for dislocation glide through the array. These cases are
of particular interest since the assumption of a hnique giide path greatly

simplifies the. activation process and makes it much more amenable to

theoretical attack. X becomes unique in the limit as a > ® or 1% > rz;
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Lef a be so large that the‘inequality (32) is séfisfiedvfor almost
every configuration in‘ id! . It is thenvalmostvceftain that the.iEE-
stable configuration will ;é passéQ‘at its weakest péint, where the dis-

) location_forms the minimum angle wi.- Since at given §tréss the (i +'1)£E,
configuration encountered along the glide path is:uhiquelyrdetermined by

the iig-and by point (k,i) at which activation occufé, the dislocation«
tends to fo11Qw a particular path xo, the "minimal-séquence",.obtained

by constraining the dislocation to cut each stablelconfigﬁration encountered
at its weakest point.

If‘we assume that the dislocation follows pathvxo.while always acti-
vating the minimum angle,.we obtain an app;oximatiqﬁ (the "minimum angle
approximatioh") which not only simplifies the problem but, as we have
found(l),_givés resulté which are reasonaﬁly accurate over a wide range
of o and ™ The simplifications obtained are two. First, in this approx-
imation the.operational vériables of the problem &ecouple. As follows
. from the discussion in Section II, the non-transpafént configurations |
.aloﬁg‘xb‘are détermiﬁed b& the applied stress T*.i Moreover, each of
.these iines is-subjected to a maximum.mechanical forte 6l'which also de-
pends on 1* only. The stable configurations along Xo at-given stress are
detgrmined by the obstacle strength Bc according Fo the stability condition
Bi < Bc' The activation energy for cutting the-izhfstable configuration
is gi, determined from the force—displacement.diagram by equation (13).
Temberature then enters only in determination dfithe transit time.

Assuming a large number (ro) of stable configurations along x , t¥* is

normally distributed with mean
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¥ = L s, ’ ‘

t*o= s e i o (47)
~ and variance . N
r .
o 1 B

P e % | (48)

o 1 T . .

Similar results follow in the limit o ’\'T: ir; this 1imit the
dislocation tends to foilow Xo indepéndent of tempéfaturef  As 1* increases
the number of sfable lines decreases_until evenpualiy'there ié
only.one stable configuratidn in the array, the éonfiguration which deter-
' mines‘T:. Bérring the posSibility of avseriogs qverlap of very strong
configurations thére will, therefore, be a stress f* so large that almost
call stable lines are spaﬁially séparatgd from one ahother in the sense
that they have no obstacle points in common. In ﬁhis limit every point
in the i stable linevconfigurétion will be passéd mechaﬁiéally‘("un—
zipped" in-the terminology of Dorn, et a1(8)) once any single point is
passédyby-thermal,activation. Since the dislocation can only pass a stable
configuration by thérmal éctivation, the (i + l)EB-configuratién.is uniquely
determined by the iEE-irrespective of the activatipn'site (k,i). The
diélocatibﬂ then follows the giide path xé.

Tﬁis limiting dase:suggests-an approximation (the "minimal sequence
approximation") - in which we constrain the dislocation to follow the path
| xo’ but employ statistically.correct activation'pa?ameters‘Ai. The
éperational variables again decouple. The stable configurations along
.Xo are determined by T*_and Bc as described abdve.: The activation energies
in the iﬁb-configuration,i.ggz,are determined frbm.the force displacement

diagram. The parsmeters Ai'are determined from the g? and o according

to equations (15) and (22). Assuming a large number of stable lines t*
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is normally distributed with.meaﬁ and variangé gifen in terms of the Ai
by_equations-(hd) and (41)..
o : » ) , '
The equations derived in this section show_that <t*>'is a complex

_function of o which cannot be obviously représented by an equation of the
Arrenhius form. The eQuation goverhing <t*§ may,_hbwever,_reduce to a
éimple Arrenhius form in the limits of largé_a (low_fémperature) and -
: sméll a (high tgmperature).

‘Let a be so iarge that the.mihimum angle app;oximation applies
(equation k7). 'Let~gbvand glbé respectively the 1afgést and second lar-
gest'members of igi; s énd aésume that they differ by a finite amount.
Since a increasés Vithout bound as temperature épproaches zero, there will

be a range of o over which

©>n (r Megg (49)
In this limit |
.<t;*> "" eago ' ' | (50)
‘én gguation of the Arrenhius form with activation‘éﬁéfgy go.'

Now, recalling equation (30), let @ be so small that aéiis much
less than one, and the condition (29) is»satisfied for every configura-
tion in iq; - In this limit all obstacles in a éiven configuration have
élm@st eéual probability of being passed, and PX édd<hence ?i approach '

limiting values. It then follows from equations (30) and (QS) that

< , <t*>:=‘Aoe g (51)
an equation of the Arrenhius form with

a p '
A =% i/Ni , (52)

o
i=1
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and

q

- -1
g = Ao .Z
1:

Fimye, (53)
1 i’ Pi
V. 'THE VELOCITY OF GLIDE THEOUGH A GIVEN_ARRAY OF OBSTACLES
As may be inferred from the equationsvpresented'in the ;receeding
~sections, and as we shall show through specific examples(l), the
glidewfa dislocation through a random array of obstaélesvis not smooth.
A dislocation spends a majority of its transit time'pinned byvthe stronger
obstacle configurations and jumps fapidly throﬁgh.weak intervening con-
figurations when it has activated past a strong stable configuration.
As a conseguence, the velocity of glide is defined 6hiy in a statistical
sénse. | |

‘ We define therexpected value of the velocity of glidevthrough a
‘given'arfay of obstacles in the following way.. Imégine a crystal made
up of an ensemble of parallel glide planes which fépliéa£e the given
array. Let.a distriﬁution of noh-interacting glidiﬁg dislocations be
distributed through the crystal. The expected value of the instantaheous
rate of strain of the crystal is
| 5= 2P o (sw)
wheré(?A/af7 is the expected total area swept per unit time and V is the
volume of the crystal. This equétion may be rewritten

Y =Lpb<vf? ST (55)

ﬁhére_g is.the density of dislocations and <v*>'is‘thé expected value of

the dimensionless velocity:

'<V*> = n_l/2

<a¥*> (56)
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1/2

where n is the number of obstacles in the array, n. is the dimensionless

edge length of £he array and <a¥*> is-thevexpected vélue of phe (dimen—~
4 : N
sionless) areal velocity per dislocaﬁion{ T<y¥> isfhence the-expected
value Qflthe area swept out'per dislocafion'per unit time.divided by the
projected iength of the dislocation.

The expected.value <4%> is easily found frém thé-equations of section
IV. The fraction (fi) of the dislocations in an efgodic distribution
positioned in configuration i at a given instant:of fime is equal to the
fraction of time a given dislocation spends in chfigurétion i during an
arbitrarily large number of sequeﬁtial passages thfoughbthe same array.
~From equatién (45) this fraction is |
£, = Pi)A.<£*> : e (57)
i i , ,

The probability that a dislocation will activate past configuration (i)

in incremental time 6t* is, from equation (23),
#) = * . :
Py (8t*) = A st . | (58)

Let a* be the dimensionless area swept out when the iEE-cohfiguratipn is

paséed. Then - g .
. : 1 |
<a> = 1lim -*i‘z r.P, (8t*) a*.*-g
St% 50 st =1 11 1
=1 ‘% Piai : : - {59)
<t¥*> i=1

If the array is large enough that we may neglect end effccts, the disloca-

tion sweeps out dimensionless area n in passing through the array. Hence,
|

the sﬁmmation in equation (59) is equal to n and

<a¥>= n/<t*>, _ (60)
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that is, <4¥> is equal to the area of the glide plane divided by the ex-
pected transit time. The - expected value of the'Velocity is-

e ,
<v¥> = [ <t®s> . o e (61)

the lengthvof the array divided 5y the éxpected-transif_time.

Eduatibns (60)'and (61) show that the expected value of the velocity
may be easily cdmputed from the expected Value_ofvtﬁe transitvtime. If
 the array is larée.and.wé;l;behaQed so that the:traﬂéit time t* is nor-
mally.disfributed and the ratio 02/<t*>2 ié small, the expected glider
velocity.may_be estimated from the actualvtransitvtime for a single
passage. Defining the apparent areal velocity

car o= U/ - (62)
and the paraﬁeter s, | |
5 = (é* - <é*>)/<é*>’ . '~: (63)
the fféctioﬁal deviation of &¥ from its expected“vélue; it follows from
the normal distribution of t* that values of ¢ near éerb are normally
'distributéd according to the density function |
p(8) = (2“)-1/2(<t*>/0) exp § - % (<t*;/05252 (64)
This distribution has mean zero and VariénCe 52/<t*>?. AAs 02/<t*>
approaches zéro a measured value é* is almost cerﬁaiﬁ to differ from

. <4%> Dby no more than a small fraction.

Given equation (61), it follows that <v¥> will obey an equation of

.

the Arrenhius form
<v¥> = Ae'_'_Olg B 4 (65)

ohly when <t*> does. Following the discussion of section IV when o is
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so large (temperature so low)that the condition (L49) is obeyed, <v¥>

1/2

obeys an Arrenhius equation with A = n and g ='g°. When a is suffi-
. ’ : ' ]
ciently small (temperature high), <v¥> obeys an Arrenhius equation with

A= nl/2 A, and g = g (equation 51). 1In general, however, an attempt to

fit <v¥> to an Arrenhius equation will result in parameters A and g

which are functions of a.

VI. GLIDE VELOCITY IN A SIMPLE"CRYSTAL

Subpoée a crystal is made up of a large humber of parallel glide
planes of equal-dimensionless area (n) which contaih»independent distri-
buéiéns of idential obétacleé. The expected glide'§elocity <v¥>, as
défingd by;equatioh (56), may vary from plane to plaﬁe. There are two
possible sources of variation: the number of obstacles in the plane,vand
'the distribution of these obstacles.

Given a stochastic disﬁribution of points o&er'a plane the probability

that a dimensionless area (n) will contain exacly j points is given by

"the Poisson formula ,

p(3) =(m741)e L (63)
The mean‘vuiue of J is n, but its variance is also n. Hencé, unless n is
-large,. the percenﬁage scatter in the nﬁmber of points from plane to planeb \

- will be appreciable. As follows from section II, a decrease‘ih-the num-
_ber of points randomly distributed over a planéfof‘fixed areé is equiva—‘
lent to an incfease in the dimensionless applied stress at éiven actual

st;essf Since the glide velocity depends on the dimensionless stress,

a scatter in the number of points per plane will induce a scatter in the

glide velocity per plane.
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Thé statistical scatter in the number of'pints-per plane becomes
less pronounced as the area of the plane increases.. When n is largé,
one may define the fractional deviation

§ = 'j"n/n S (64)
n
and use the normal approximation_to the Poisson distritution to show
that Sn is distributed according to the density function

Y et exp () 5 2 (65)

P(s,) .

The"Varianqe'of 65, nfl, approaches zerb with inéreésing n.

The Secqnd source'of scatter in <v¥> is the stochastic variation in
the precise distribtuion of points from plane té plahe. As shown in
section IV, except, possibly, in the high tempeﬁature limit <t¥> and 02
are‘sensitiﬁe to the disﬁribution of stable obstacle configurations, and
hencé-té tﬁe distribution of points over the plane. ‘In the second paper

(1)

of this sériés we shall show the plane—to-planevvariation of <v¥>
‘ using a particular model and fixipg the nﬁmber of.pqints per plane at 999.
‘In this case fhe scaitér in <v¥*> ﬁs noticeable. It séems plausible that
scatter. due to‘bbstacle'distribution will also vaﬁish as the area n is made
arbitrarily large; however, a proof rgquires a sound theory of obstacle
cqnfigurations, now unavailable. '

The avérage velocity of ‘dislocation glide in'the‘crystal may be de-
fined iﬁ either of two ways: (1) from the‘strain rate due to a distri-~
bution of gliding disloéations, as in equation (55), or (2) as the expected

velocity'for glide through a randomly chosen plane. If the planes are

finite these two definitions are not formally equiValent.



24

.First, let an ensemble of non-interacting dislocations be ergodically

distributed ﬁhrough the crystal. The expected fraction of these disloca-

i (
tions ‘fi, 1

instant of time is equal to the fraction of time a single dislocation

) located at the iih-configuration of the lEE-plane at a given

would spend in [i,1] if it sequentially traversed all planes a large

number of times. Using equation (57),

P

= 1 ¥ . -
| f‘i’l 1,1/Ai3131, (66)
where S is the number of planes and
- 1 S P
T* = 5 T <t,*>l . . (67)
1=1 :

,is_the.aVerage time to transit an array. It follows from a dérivation
identical to that giving equation (61) that
o= ga S (68)

where G*isfthe average velocity determined from the strain rate.
. -
Alternately, let v¥ be the average of the velocity of glide through

a randomly chosen plane. Then

ve = nl/2 (4x)-2 o (69)
where
-l 1 S -1 '
(t*)7" = 5 <g*> (70)
i |

is the average reciprocal transit time, which may differ markedly from

. - . : N
~ the reciprocal of the average transit time. Hence V¥ and v* are not

necessarily equivalent measures of the average velocity.
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The velocities v¥* and v¥ are nearly equal if almost all planes in
S have transit times very close to £*. Mathematically, v¥ 2 V¥ if the
variance 22 of t* for a randomly chqsén plané of.the crystal,

2

55 = % {62? (<t*> _5*‘)2§ | | (f2)

- 1

MW

1
-‘satisfies the constraint

B (g0)% < 1 N (73)
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VII. DISCUSSION

The relations developed in the proceeding sections significantly
reduce the theoretical or numerical work necessary‘to obtain a reason-
ably compléte solution for thermally acti&dﬁed glide through én arra&

- of idéntical point obstacles. The simplification is particularly great

when either the minimal sequence or minimum angle agprdximation is used.
Given_a numerical code which simulates dislocation glide one may proceed
as follows:

‘ The glide of an idealized dislocation through‘a given distributién
of point obstacles depends on three dimensionless pérameters: the re-
solved stress (t¥), the reciprocal temperature (a), and the dislocation
obsfacle interaction B(x/d). Given these parameters, let thé code intro-
duce a dislocation into the array and let the dislocation glide unﬁil
a mechanically stable configuration is‘found. ‘Let the code find the |
‘angle ¢§ at each point obstacle along this line éonfiguration. The forces
Bz, are tpen computed from equation (11) and the activation energies, g?,
afe found from the Biﬂand the diélocation—obstaéleuinteraction according
“to equation (13). Given a, the activation probabilitiéé, P?, are com-
puted from equation (15) and the activation parameter A, is found from
equation (22). Now let an activation éite be selected according to the
probability distribution (28). Whenvthis obstéclevis passed the dislo-
éation finds a new stable configuration (L + 1) Ai=+;l may be computed
and activation repeated to obtain (i + 2). Iteréiion.leads to glide ‘
through the array along a statistically chésen path (x). The expected

value <t;> of the transit time t* is given in terms of‘l\i by equation
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(LO) and the variance,'cig_of t;-is,detefﬁined by equation (41). If the
number of conflguratlons in x is large t:.ls normally distributed accord-
'1ng to equatlon (42). Hence the statlstlcs of thermal activation along
a gllde path X contalnlng a large number of conflgﬁratlons may be found
- from a 51ngle numerlcal experlment . | |

To obtain the complete statlstlcs of thermally activated glide
through the array, we! strlctly requlre knowledge of all paths X and their
fprobab111t1es P . HOwever, if the glide is well—behaved we should obtain
a reasonable estlmate of the dlstrlbutlon of the transit time t¥* by con-
ducting a-few'(say~h) independent experlments and computlng the mean, the
Variance,‘ahd the distribution of t¥ froﬁ the appﬁopriate modifications

of equations (45), (46), ana (Lb):

h
<t*> = l hX <‘t*>
. hx =1
. i h
p(t¥) = = % p(t*{x).

1

The expected'mﬂué of tﬁe glide velocity, {v*S, is then given in terﬁs of
;t*> and the arfay size n by equaﬁion (61). The'statistics of activatéd
,,gllde through a dlsurlbutlon of obstacle arrays may be estimated by re-
‘peatlng these numerlcal tr1als for a series of 1ndependently chosen ob-
stacle distributions. A

 ~ Much of the‘compiicafion faced in computipg ﬁhe statistics of glide
£hrough a given array comes from the inaéterminacy of.the élide path X
Vand the fact that thé probability 6f a particular path Aepends on all

three of'theoperationalparameters'of the problem. .This complication is
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removed Whenlthe.unique "mihihal path" xo'is'assumeu through use of
eithef the minimal sequence or minimal angle appfoxiﬁations discussed in
_ Section IV. Xo is a function of the stressvr*'oniy. ﬁehce in either
the minimal sequence or the minimum angle approxlmatlon the statlstlcs
of glide may be computed for arbitrary a and g(* /d) from the results of
a single.numefical'experiment at stress 1*..
“To use the minimal sequence approximation,:given T* set

Bc;=vl.0vand let the dislocation glide through the‘array under. the con-
_straint that activation aiways occurs at the miuimum angle ¥ along the .

dislocation line. This constraint generates the path xd. Let the forces

k o '
%i}be tabulated for each non-transparent line encountered along X

Nowvassume_an arbitary disloeation—obstacle interaction 8(*/d) having
.maximum Bc" The mechanlcally stable lines along X ‘are determined from
BC hy the Cond;tlon‘(l2) and the activation parameters {g?} for these
Stable 1iues are given in terms;of B(*/a) vy equation (13). Given an
arbitary value of o the Pﬁ-are computed from equation (15) and the Ai
from'eouation (22). The full statistics of thermally activated glide
through the array are then ea51ly found.
The average veloc1ty v* of glide through a dlstrlbutlon of S arrays
v’at given ¥, but arbitrary'a and'B( /d), may also be computed from a
51ngle numer1ca1 experlment when the minimal sequence approximation is
used Given.t¥*, one flnds the minimal path Xo for sequential gllde
through the S arrays in. random order  Once the: {85} have been tabulated v
for all non—transparent lines along Xo the expected time. (St*) to transit
x may be easily computed for given a and B( /d) - The velocity v¥* is

then glven by equation (68).
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";Computations using the minimum angle approximation are identical to
those using the minimal:sequence approximation with-the further simpli-.
fication that one need only tabulate the maximum (Bi)‘Of the&ﬁ?{fof each

‘non-transparent configuration in Xo’
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APPENDIX
While equation (10) appears frequently in the literature, its valid-

ity as a measure of the force exerted on a dislocation by a circularly
| (9)

symmetric. point obstacle has been questioned by.KoCks We append

the following derivation.

Let the dislocation—obstaclevinteraction~be circularly éymmetric in
the glidé-plané'and have an effeéti&e range (d‘) which is very small com-
pared to the characteristic length (15) of the array. Consider a portion
of a.disiocatidn preséed against a singlé obstacle_by an applied stress
. An equilibrium configuration of the dislocétioq line will appear
roughly‘és‘shown_in figuré Ai. The total energy éf this configuration

may be written

_E=frd14rbAL+w : - | (A1)
L | '
_wheré I' is the line energy of the dislocation and the integral is taken
¢fer th¢ portidn (L) of the dislocation line included in the figure; AL'
| is the area behind.L and TbAL measufes the poteﬁtial energy of L under

stress Tj and W is the total energy of the interaction of L with the ob-

stacle.

(10)

Using a.two dimensional form of Gibbs - construction (illﬁstrated'
ih figure Al) the obstacle may be formally reducéd tp a point and the

energy W localizedQ Given that d' is small we'enciése the obstacle in an
imaginary circle (D) of small radius d apprecisbly greater than ar. Only

the portion of L within D is perturbed by the obstacle. We then extra-

. .
polate the two arms of L into D until they meet at a point (x). Let the

I3



~32-

extrapolated lines represent the dislocation within D and let the point
of intérsection‘represent the obstacle. The total energy of this hypo-
thetical configuration (L') is

E'= Jrait+ oA, + W', ’ g (A2)

AN
X ke
- which is identical to E if

W' =W+ f%l‘(dl—dl') + b (aa-aa ) {0 (A3)
ot

vathe'dislocation>is in mechanical equilibrium} then there must be
,nd possiblé variation of L (or, equivalently, ofvt‘) vhich céuses the
enefgy to decreasé.- As may be easily.seen by considering variétions
vhich leave the position of the point (x) in L' unchanged, 1t is neces-
sary for eqﬁlllbrlum that W' have its minimum value, w'(x), con51stent
with the position (x) and the configuration of L éutsidg of D, and that
L' be symmetric about a line (1) through x and the physical center of the
bb;taclg. If L'.satisfies these conditions'and if it is in equilibrium
- with respect to all variations which carry x along 1l and constrain W' to
W'(x), then it is in equilibrium with respect ﬁo anyrvariation whatever.

Hence from equation (A2), L' is in mechanical equilibrium only if

GE' = [(F/R - Tb)éxn a1’ +(dw'/dxl - 2Tcos w/2)6x1=> 0 _ (Ahj A

L

In this equation R is the radius of curvature of ‘the element dl1' of L and

Gxﬁ is the qormal displaéément of'this element. The angle y is the angle

formed by L' at the intersection point x and the term involﬁing Y accounts
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- for the net'éhdnge'in liné lengfh L' due to the diéplacgment le of x
along 1. | |

vSince the infinitesimal displacemepts Gxnrapdigii‘are independent
and may'hafe either sign,_the inequaiity\(Ah) yieldéﬁtﬁd-necessary condi-
tions for‘GQuilibrium:

| | (1) = F/R - ,' | (A5)
everywhere’on L' and. | , .v . »
o (2) F= dw'/dxlé oreos’/2 (A6)
at thé inﬁerséCtion point x. Condition (1) is idénﬁical to equation (T)
';of.sectioh‘ii; coﬁditionv(Q) is identiéai to‘eqﬁation (10).
| The force F is giﬁen as a function of the qiéfénce xl.aiong the
'easiest'cutting direction by'equation (4A6). Thi§.equa§ion leads to the
obstacie forc5~displac¢ment relations discussed in section II. The mean-
: -

Aihgful values of xl:cover an interval of maximumjwidth 2d. The obstacles

are point obstacles in the sense that d is small compared to the charac-

teristic length ls.
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FIGURE CAPTIONS

Sequence of four possible configurations as a dislocation glides into

a random array of point obstacles. The activation site is indicated
'by the symbol (a).
. Detail of equilibriwm in the iZl configuration.

. A possible force-displacement relation, 8(*/d), for dislocation

passage through an obstacle which forms a simplevrepulsive barrier.
The shaded érea indicates the activation energy (g?) if the disloca-

exerts a_fOrce B? on the obstacle.

‘An illustration of the geometric construction used to define the

point properties of an obstaclevhaving a cifcularly symmetric inter-

action_with a dislocation.
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