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Abstract
A mathematical treatment is given for the transient behavior of a
disk electrode when the potential is varied. The characteristic time

constant for decay of the double-layér capacity is assessed.
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Introduction

The aufhors have recently treated the transient response of a disk
electrode to a step change in the applied current.1 The present paper
will report a mathematical analysis developed for the same model but
with the electrode potential put under control instead of the current.
The results could be relevant to some electfoanalytical applications of
the disk electrode; for instance,interruptef methods under potentio-
static control are already in common use.2

The problem was formulated with certain assumptions in the earlier
paper1 and will not be repeated here. The only difference in the present
formulation lies in the fact that the electrode potén%;al is set at zero
time as a step to a giveﬁ value V and maintained a?jtﬁét value thereafter.
Our purpose here is therefore to simulate the transient decay.of the cell
current from an initial value Io/cofresponding to the primary distributions’

to a final steady state'value'iw.

Analysis
The potential in the solution can be expressed in terms of a steady

state and a transient contrgggtion
i

"= 6%° - ot (1)

T

Detailed analyses for the steady state problem have been given elsewhere.l’5

Earlier treatment of the ideally polarizable electrode,1 however;\does not -
apply for the present situation; 8>° vanishes in the absence of an

electrode reaction since no net current is associated with the working

electrode at steady state when the potential is fixed.

'
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In terms of rotational elliptic cobrdinates3 n and £, the transient

part of the potential can be expressed as

oo

t Z _0(A.+J) | | | "
'Q—V = Y Cie * Ti(n:g) ‘ (2)

i=0

where Ti is a dimensionless potential independent of time, Ai is an eigen-

value characteristic of the potential Ti’ and 6 and J are the dimensionless

‘time and exchange current density,1 respectively. Since o' satisfies

Laplace's equation, the functions T, also satisfy

v2r, =0
1l

The boundary conditions associated with,Ti are

BTi \
'a—n—' =0 at n=20

(on the insulating portion of the disk) .

' S (4)

T,=0 as £+« (far from the disk) '
T.1 well behaved at n =1

(on the axis of the disk) )

and

aTi
;—)-E——+)\in'1‘i=0 at £=0 _ v (5)

(on the disk electrode) .
which is obtained by a direct substitution of Eq. (2) into the boundary

condition on the disk electrode.‘1




Equations (3) and (5) constitute a Sturm-Liouville system, which
can be solved in a straightforward fashion.1 The solution to Eq. (3)

satisfying the conditions (4) is

T, =§ By nPon MMy (€) (6)
n=0

where P2n(n) is the Legendre polynomial of order 2n, and MZn(E) is a
Legendre function With known properties.5 Substitution into Eq. (5)—for
each -1 and inﬁersion of the résulting set of’linear equations with the
normalization condition 131’0 = 1 yield- the numerical values of the
eigenvalues Ai and the-coefficients 1Si,n(see Table I).  The first four
.eigenfuncpions are plotted with respect to the radial position on tﬁe
surface of the disk in Fig. 1.

The functional behavior of Ti o has much the'éame significance as

H

the corresponding eigehfunctiong U, , of the galvanostatic problem1 in

s
\

depicting the non-uniform state of charge and the pattern of local

current flow on the surface of the disk during the transient process. -

One may note, in fact, that T, ;;in Fig. 1 are quite similar to the
S N o

corresponding curves for Ui Sigiven in refeéerence 1 fqr\i > 0. The
E

eigenvalues Ai also become more similar in numerical value to Ai of

‘the galvanostatic series with increasing i.

An important departure from the galvénostatic case is clearly that
o' does include a net current in the present situation. This additional
contribution is contained, for example, in the first eigenfunction‘To,
which unlike Uo is non-zero. Tﬁe fact that\To,b exhibits no extrémum

points nor any zeroes suggests that it persists the longest during the
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Fig. 1. Behavior of the flrst four eigenfunctions on the surface of
the disk electrode
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Table I. The first six eigenvalues and the related coeff1¢1ents13 of
the eigenfunctions.
AO Al Az AS A4 XS
1.15777 4.31680 7.46018 10.6023 13.7441 16.8858
n i=0 i=1 i=2 i=3 i=4 i=5
0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.39451 -3.30704 -3.20144 -3.08673 -3.00260 -2.94030
2 -0.01974  -3.00447 2.69232 3.87544 4.20749 4.29990
3 0.01259 -0.52802 6.45944 0. 65745 -2.15584 -3.53764
4  -0.00657 -0.10223 j?;64610 -8.32547 -5.09803 -1.69133
5 0.003&? 0.0Zéiaﬁr ‘\02637&7 -6.16121 7.06426 8.21141
6 50.00256155'—6.01843 0.035§; -2.27051 9.75697 -2.49615
7 0.00175" 0.01289 0.03502 -0.43176 5.33233. 11.5222
8 -0.00129 -0.00946 -0562056' -0.10618 1.62964 -9.36731
9 .00718 0 91605. 0.01863 0.40730 -4.07287
10 .00559 -Q.OlZSSY --0.02158 0.02998 -1.27763

\
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decay process and is therefore associated with the largeét time constant.

The eigenfunctions.Ti o satisfy the orthogonality relationship

’

(0 if i#j
1
J nTi,oTj.,o dn = ¢ ' (7)
o, M _(0)
0 Sl 2n 7 el if i=j
A, 4n+1 n,i
\ 1 n=
From the initial condition
=V at 0=0+, £=0 (8)
e ~;u.:;"’"'
i L
the coefficients z; can no;fg;'calculated from the equation
‘ A 2\, :
Kiz ) M'(()) . (9)
ST +J) 2n. _82
i 4n+l “n,i
n=
The current is given by
1
_ 0o
I =-27r k 1.135 £=0 dn
0 ;
- =0(A,+J)
¢§ e 1 (10)

where r, is the radius of the“§j§k electrode and k is the solution

conductivity. The ratio Iw/Io is a known quantity on%é‘

be value of J

is specified and can be obtained directly from the stéadsttate analysis.

Some calculated values are given in reference 1 (reciprocal of VSS/QS).




Figure 2 shows current versus time traces for various J values. Each

curve is characterized by a time constant for decay given by

1 roC
T = o —— (11)

1.16+4J «
where C is the double-layer capacity.
The analysis can be generalized by superpqsition to incorporate an
arbitrary time dependence of the applied potential V(6). The current is

then given by

> e, +0) P 8 (); +J)
E ﬁi(xiu)e o1 J' e V(6)de (12)
i=0 0

.
y

The present results should apply for large and moderately small

times without much difficulty in the,humerlcal calculations. For very

V i
e -} \.:

short tlmes, however, numerical d1fflcu1t1es are inevitable because the
current distribution is equal to the primary distribution everywhere on
the disk except in a small reglon near ihe edge. A large number of terms
are thus required in the summ5t1on in both Eqs. (2) and (6). The same
problem is encountered for large J values. 5 A separate treatment of

the edge region for short times or'large J values overcomes these.

difficulties. The authors have formulated this problem, and the results

should be published shortly.

\
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Fig. 2. Current traces at various J values for decay (or charging) of

the double-layer capacity.

times is related to Al + J.

-f/,_

N S
(SN

The slope of each curve at large

!



-10- -

Conclusions

The transient respcnse of a disk electrode to step changes in thc
appiied potential has been‘fofmulated to yield a well-defined Sturm- |
Liouville systen, wh1ch can readily be solved to give solutions in terms 1 - {/’
of a serles of characterlstlc potential funct1ons.c Each function is
‘related to a certain mode of decay of the double-layer capécity and is
associated with a characteristic time constaﬂt, the first being the
‘dominant one in detérmining the system behavior at lafge times. These -
time constants can acccratelyvﬁe célculated fromithe eigcnvalues of the
SturmaLiocville system. The resulfs.can be generalized‘for arbitrary'

changes in the applied potential w1th time by a stralghtforward appllca—

t10n of the superposition integral.
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Nomenc¢lature
coefficients in series for Ti
double-layer capacity-(f/cmz)

. . . . : t
coefficients in series for ¢

total current (amp)

total current at t = 0+(= 4KrOV)(amP)

total curreﬁt at t = (amp) .

dimensionless exchange current density = ioroF(aa+ac)/RTK(see Ref. 1)
Legendre function discussed in reference (5) |
Legendre polynomial of order én

radial position from axis of disk (cm)

radius of disk electrode (cm)

time (sec)

electrode potential (volt)

rotational elliptic coordinate

conductivity of the solution (ohm-l—cm—l)
eigenvalue

potential in the solution (volt)

steady state part of @(volt)

transient part of ¢tvolt)

rotational elliptic coordinafe
characteristic time constant for decay (sec)
roC/Kt,‘dimensionless tipe

eigénfunctions in séries for @t o ,

value of.Ti at the electrode surface
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