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Abstract 
A simple theoretical study and numerical estimate 

is presented for the transverse amplitude growth of a 
nonrelativistic heavy ion beam in an induction linac, 
as envisaged for use in commercial power plants, due 
to the nonregenerative coherent beam breakup mode. 
An equivalent electrical circuit has been used to 
represent the accelerating induction modules. Our 
calculation shows that for the parameters of 
interest, the beam breakup amplitude for a heavy ion 
beam grows extremely slowly in the time scales of 
interest, to magnitudes insignificant for transport 
purposes. It is concluded that the coherent beam 
breakup mode does not pose any serious threat to the 
stability of a high current (kA) heavy ion beam in an 
induction linac. 

I. Introduction 
High current heavy 1on beams are being actively 

studied as potential drivers for inertial confinement 
fusion. Such high current nonneutral beams are 
subject to coherent and incoherent, transverse and 
longitudinal, collective instabilities arising from 
the beam space charge (self-force) and its 
interaction with the environment (external 
impedances, cavities etc.). In this paper, we study 
the growing coherent transverse motion of a high 
current (-kA) heavy ion beam due to an oscillatory 
transverse mode (analogous to TMjio mode of a 
pill-box cavity) excited by the beam in the 
accelerating modules. The subject has been studied 
extensively in connection with electron linacs by 
several authors!'-5), who computed the upper limit 
of transportable total charge set by the growth of 
beam breakup amplitude. However no such study has 
been reported for heavy ion beams transported by 
induction linacs. 

II. Model For Transport 
Our theoretical model of transport is a 

semi-infinite series of identical accelerating 
induction modules with identical focussing elements 
between them (see Fig. 1). If the beam centroid is 
off center (or if the beam is centered in an 
azimuthally asymmetric structure), it will excite a 
transversely deflecting nod* in the modules. The 
induced electromagnetic fields act on later parts of 
the beam, causing a transverse motion of the beam 
centroid. The amplitude of the coherent beam 
oscillation increases from head to tail in a bunch, 
the cavity excitation Increases in time at any 
location and increases In distance along the 
accelerator. 

Our analysis 1s based on the following 
assumptions: 

(a) Only one effective resonant mode of 
frequency Q and quality factor Q Is of significance. 
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Fig. 1 

(b) Focussing can be treated in the smooth 
approximation i.e. focussing fields of quadrupoles or 
interrupted solenoids can be replaced by their 
average values. 

(c) There is no acceleration. 
(d) The process is 'non-regenerative',i.e. there 

is no propagation of electromagnetic fields from one 
Induction module to the next and information is 
carried only by perturbations on the beam. 

(e) The rate of amplitude growth is small 
compared to Si. 

III. Induction Module Response 
An induction linac module differs drastically 

from an r.f. cavity in its response to excitation by 
a particle beam. There is no accelerating mode as 
such(6); the longitudinal interaction of beam and 
module is best represented by an equivalent circuit 
involving the external drive, corresponding typically 
to a frequency of a few megacycles and strongly 
overdamped by the low drive-impedance. For the 
asymmetric modes of Interest to the beam breakup 
phenomenon, the module looks like a pill-box with 
conducting end walls and a lossy outer wall traversed 
longitudinally by one or more conducting straps. 
Accordingly, we take as a model the excitation of the 
TMJJO mode of a pill-box cavity with a radius of 
about half a meter and a Q of about 10. 

The vector potential can be written as: 

.«<t)J,(£r) Cos o 
and A satisfies the differential equation: 

A + .A +fi'A . 
»cjj JQUJJJ^JJ) 

(1) 

where I is the beam current, £ ( T ) is the transverse 
beam displacement at time T following beam arrival at 
the module and the other s.iabols have their 
conventional meanings. In traversing the cavity, 
the beam experiences a change In slope (see Fig. 2) 
given by: 

a,._JMi..igL.«!A 



fiMtMt) Using inf1n1te,and binomial scries expansions for 
the cosine and («gz • iG/s) n respectively and 
making use of the Laplace inversion formula 

(£r)-*r 

Fig. 2 
where Z is the charge state of the ions, £ the 
effective cavity length (including a transit time 
factor) and mv 0 the particle momentum. Using the 
solution of eqn. (1), we then have: 

i§l - -iG p t .-<T-t> «t) [e 1*-" - ,-«^-*>] 
z r„* r in* 1 

where G »-rp-g- U j 
with r p » (ez/4«0mpCz)(class1cal proton radius), L 
the distance between modules, N the current in 
particles per second, and A,the atomic number. 

IV. Equation of Motion and Solution in closed Form 
In the approximation that both focussing and the 

. impulses from the modules can be replaced by their 
average values (smooth approximation), the transverse 
displacement is then determined by an 
integro-differentlal equation: 

we get an expression for X(z,t) involving a double 
sumover integers, one of which can be summed in 
closed form to give spherical Bessel functions. We 
finally get: 

After a few betatron wavelengths down the 
accelerator, u sz » 1 and we use: 

i, <V' > VTT C o s C V -I 1" 3 ( 5 ) 

Using (4), (5) and (2), we finally arrive at the 
expression for the transverse beam displacement 
5(Z,T) at location z and time T following the arrival 
of the front of the beam, in closed form, as follows: 

?(z.t) £e- T 
C 0 S ( V - « T ) I 0 ( ^ r ) 

• C o s ( V • * ) J 0 ( ^ ) 

(«jZ » 1) 

(6) 

[&•-/] *«•*>"«/ iG / dt e" «(T-t) 

where J 0 and I 0 are zero-order Bessel and modified Bessel functions respectively. 
We note that in the limit of no focussing at all 

(u( • 0), we have: 

:-" T[X( ! !,T)e 1' n T*X ,W)e- 1"« T] 

where u, is the coherent spatial betatron 
frequency. Then, with a change of variable, 

M Z . T ) 
e X(z,x 

arrive at the equation 

(I,T) 

xC(z,t)P<-)-e-(-)] x ^ - f ^ - i ) * ^ 

(2) 
where X(Z,T) is a slowly varying function of T, we 

nl'»: 

p f * "• | X(Z,T) - -16 fit X(z.t) 

We have neglected a rapidly varying term in e z l n T 

in arriving at eqn. (3). We now take a Laplace 
transform of eqn. (3) 1n T obtaining: 

with the immediate solution: 

,s) . i ( 0 , s ) C o s | ( . i

2 + - ^ y / 2 z l 

(3) 

so that the absolute square of the slowly varying 
amplitude grows as: 

2 5 <° 2n 
|X(*.T)| - f E ( G A ) 2 n E m ! ( Z m ) ! ( 2 n - m ) : ( 4 n - i » m ) ! 

n»» m*« 
in agreement with Panofsky and Bander(2) and hence 
is expected to scale similarly as 

|X(Z,T)|* with (6Z'T) 2T,l/3 

V. Numercial Estimates: 

x(z 
For an Initial displacement 

S(0,T) - d e"* T Cos !h 
we have x(0,t) - j and x(0,s) . y-

We observe from expression (6) that the beam 
displacement Is damped on the whole if a > (Gz/2»a); 
If « « (Gz/2.,), the maximum In T of the amplitude 
of displacement comes at T - (Gz/Za-n') and has a' 
magnitude: 

^ e6z/2- (« 

Thus: x(z,s) - J J Ces [(•.'•*)'"•] 

As a numerical example, we consider an induction 
D I M C that accelerates siafly charged Uranium ions, 
with a 30* phase advance between modules. Example 
*eam parameters*6' for tea significant cases and 
parameters ef equivalent Induction module cavities 
are listed in Table I tela*. 



Table 1 

Square Bucket - Transverse - 8F - 0.5 

A s 

g 4 - .0022 .1 .0036 

g 3 - .0022 .01 .0012 

g 4 - .0022 

g 3 - g 4 - .0022 

.01 .0015 g 4 - .0022 

g 3 - g 4 - .0022 .01 .0020 

9 , - 9 2 - 9 3 - 9 4 - .0022 .1 .0090 

9 T - 9 2 - 9 3 - 9 4 - .0022 .01 .0021 

Sinusoidal Bucket - Transverse 

i f s BF s 

g 4 - .0022 .015 .0022 

g 4 - .0022 .025 .0029 

g 4 - .0022 .0015 .00051 

9, - 9 2 - 9 3 - 9 4 -
9 1 ' 9 2 " 9 3 ' 9 4 ' 
9 1 * 9 2 " 9 3 " 9 4 " 

.0022 .015 

.0022 .025 

.0022 .0015 

.003 

.0045 

.00065 

Sinuso ida l -L ike Bucket - Longi tudinal - BF - .7 

Af s 
s 200 s 1000 

9, - 9 2 - 9 3 - 9 4 -

WW 
.0022 .15 .0096 .0065 9, - 9 2 - 9 3 - 9 4 -

WW .0022 .015 .0054 .0043 

Table 2 

Coasting Beam Theory - Transverse 

a s 

9 3 - .0022 .1 
.05 
.01 
.005 

.0038 

.0033 

.0013 

.00062 

9 , - .0022 
4 

.1 

.05 

.025 

.015 

.01 

.005 

.004 

.0035 

.0028 

.0022 

.0017 

.00088 

g « g » g » g 
" l s 2 M 3 s 4 

- .0022 

.1 

.05 

.025 

.015 

.01 

.005 

.014 

.011 

.0084 

.0059 

.0042 

.002 

g 3 - g 4 - .002 
e f fect ive .01 .0022 

9 , - 9 2 - 9 3 - 9 4 

ef fect ive .01 .0028 

harmonic are simply added. For a square bucket, 
Schottky signals 1 and m are coupled with a weighting 

i2 

For the square bucket, slitjle haraealc ( t - 3,4) 
rates coaaan remarkably wall tilth ceestlag beam 
vheery. Hawcver, whoa bach haraawves arc areseat, 
the ceelf*a rate Is significantly different fraa that 
•T ceastiaa. bean theory, where rates far each 

sin ( I - • ) • 
< a - «)•„ 

-it 

I (8) 

where » 0 is the half length of the bunch. Ine last 
entries in Table 2 give rates calculated with 
coasting beam theory, using an effective gain 

9« eff E sin {l-m)»0 

m L -
(9) 

to evaluate the e,. Agreement is good. These 
results clearly demonstrate the interference of 
neighboring harmonics; but for a long bunch, this 
interference does not totally cancel the effects of 
using neighboring harmonics in a cooling system. 

For transverse cooling in a sinusoidal RF bucket, 
cooling rates for a synchrotron oscillation spread 
sf s are comparable to coasting beam rates with a . 4f s. Again, with several harmonics simultaneously 
acting, there is a degradation of coasting beam rates 
by a factor of 2. It should be noted that the 
longitudinal random load provides a uniform 
distribution in phase space. 

Finally, the last entries in Table 1 are for 
longitudinal runs. Effective cooling rates/step are 
given after 200 and 1000 correction steps are given. 
The phase space orbits are elliptical with amplitude 
variation of synchrotron frequency. Cooling rates 
degraded as mixing lessens with higher phase space 
density. 
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Conclusions 
Synchrotron frequency spread provides the 

necessary mixing mechanism for bunched beam cooling. 
In addition, it appears that the natural 
nonlinearities of a single, long full RF bucket can 
provide mixing comparable to a coasting beam for 
harmonics of higher frequency than those associated 
with the gross bunch structure. However, as the 
bunch length decreases degradation of cooling occurs 
as the nixing mechanism couples neighboring Schottky 
bands. 6' 
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