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ABSTRACT

We examine the depéndence on orientation of the Guinier and the
asympototic approximations for ellipsoids of revolution. .By introducing
the assumption of random orientation into our results the known Guinier

and Porod formulae are easgsily derived.



-1-

1. INTRODUCTION

In this note we consider.the small angle scattering (SAS) from orien-

ted ellipsoids of revolution of uniform size and shape and with low

énough concentration.to scatter indépéndently of one another. We assume
that a large number of particles are irradiated by the incident X-rays
beam yet the beam can be likened to a single ray on the macroscale.
In Sectippi2 we. derive the electronic‘structure factor and the coherent
sgattering intensity, and Section 3 and.4 study the Guinier.and asymptofic
approximations respectively. All involved célculations are done iﬁ

Appendices A, B and C.

2. COHERENT SCATTERING INTENSITY
Let us fix the partiéle in a's&stem of three mutually perpendicular

axes. Ox, Oy,. 0z, where O is the center of symmetry and Oz the axis of

revolution. The space in which the particle is found is described by a

second set of three mutually perpendicular axes, OX, OY, 02 (Fig. la).

- The centers of these two systems of axes can be made to coincide without

loss of generality, since only relative orientafions ére of interest.
Euler's angles ¢, vy and ¢ mark the orientatiéﬁ-of the ellipsoid with re-
spect to XYZ. Let b be the scattering vector and 20 the scattering angle.
We arbitarily orient OZ along ﬁ; " For'an ellipsoid of axes 2a, 2a, 2b the

electronic structure factor is derived in Appendix A:

sin B -~ B cos B8

= ¢(B) ' (L)a
83

VF(h,¥) =3

“where o A A

1/2
;B =h (32 sin2 Yy + b2 COSQY‘) C S (1)
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and h is the modulus of h. By varying 6 the axis O0Z changes direction.

In SAS this variation of 0Z is small enough for éne to cénsider ¥ and h as .
independent variables. (The érror involved is of thé order of few per
thousand, O(%%ihl)).

We cgll Ie the intensity scat#ered by one elecfron, P the electron
density difference between the inhomogeneities and the medium and V the volume
of one inhomogeneity; ~ If N is the totel mumber of scatterers and P(Y)
their diStribution as a function of oriéntation, the coherent scattering

intensity is

I(n) = Ieszvz,%Lf“P(y) 2 (h,y) sin vy d v "~ (2)a
A _
whefe
1 ™
-§f P(y) sinyay=1 - | (2)v
(o]
8 B

A geometfical interpretatipn'of E-is that Z = ﬁ-is the equation of
the plane tangent to the ellipsoid and parallel to XOY. 1In the case of
common oriéntation, the lines of constant intensity are the lines of
constant B. These are ellipses similar to the ellipse intersection of the

ellipsoidal surface with the plane (z0Z) but rotated at 90° to the latter.
3. THE GUINIER APPROXIMATION

In the Guinier region we expand F(h,y)with respect to h. Follow-

ing Guinier we approximate the first two terms in the series by an
exponential to get F(h,y) = exp(—B?/lo), and
, 2,
F2(h small, y) = eB /5 (3)
For a single ellipsoid (of a given orientation, y) or many ellipsoids of

common orientation vy, the integration in equation (1) reduces to a single



where 8 is known. If we let R =J§- 8/h:

B

Lo od W B ou o sy /

term and the average structure factor is proportional to exp (-62/5)5

. -h°R '
F (h small, Y) =e 3 »_ (%)

?‘ormula (’4) is the same as for a sphere of radlus B/h For the two experi-

, mental 51tuat10ns descrlbed in Flgs lb and lc we get R -—Js JE a re-

spec‘tlvely.
For the random distribution case P(y) 1, we substitute (3) into (1)

and integrate (this is done in Appendlx B) and obta.ln

2.2 :
| o (5)a
"I (h smell) = INp Ve 3
where
: 2 2. : S
_2a_+b " : e :
R, = 3 . (5)v
is the formula for the radius of gyration. |
4. THE ASYMPTOTIC APPROXIMATION
In the asymptotic region:-
F2 (h large, y) = -ﬁ— cc'>32-8 S o (6)a

In Eq. (6)a the cosine term oscillates rapidly with h and can be replaced

by its average 1/2. Thus approximately.
F2 (n large, y) =% %— . - "~ (6)p
B

If we fix y for the éase of éingle oriented particle or for many parti-

"“cles of common orientation we get:

21rp £3(Y)
I (h large) = (I N) —r—- S (Ma



where S(Y) = lm(B/h)2 and

LY vy < b8y ,
Pap = ;?Y—) P ’,IV(Y) = 3 (h) - (T

The effectiye eiectronic density Per is obtainéd by uniformly disfribu—
- ing the total electrénic éharge of.the ellipsoid over the volume of a
sphere of radius B/h. Equation (75& thus contains the Porod formula and
the conservation of the total electronic charge of fhe eilipsoid.

It was shown by Bragg, et al.1 that SAS from pyrolitic graphite is.
caused by ellipsoidal véids. By applying formula (T)a to the two expefimental
situations described in oui Fig. 1b and lc and comparing with their results
in their Figs. la and 1b fof graphite we cdnclude that these volds are
elongated ellipsoids oriented in the direction perpendicular to the
depdsition plane. »

~ For the random distribution case we.substitute (6) ihto (2) and
derive the Porod formula; this is done in Appendix C.

In conclusion this work should be considered as an introductioﬁ into
the SAS of oriented particles. It is important to study cases involving
different sizesiand shapes of particles. Also, Eq. (2)a should be
calculated for physically meaningful distributions. This will.require

the use of numerical analysis.
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" APPENDIX A: THE ELECTRONIC STRUCTURE FACTOR OF AN
ORIENTED ELLIPSOID OF REVOLUTION
The axes of the ellipsoid are: 2a, 2e, 2b. In Fig. la, we let y,
<Y and ¢ represent the Euler's angles defined by the following three
rotations: J about the axis 0Z, Yy about the new axis OX(OK), and ¢ about

the new axis 0Z(oz). The structure factor F(h,y) is obtained from

FE(n,y) = £(n,y) £4(nY)  (ad)e

£(h,y) = { el® pay | e

where pdV is the probability of finding an electron (with a phase §) in
dv; and the integration is taken over the volume of the particle.
Roth.wellA'1 integrated Eq. (A-1)b in the reference frame Oxyz,

using an incorrect expression for §. The correct expression for 6 is:

§ = hz = h{(sin ¢ sin y)x + (cos ¥ sin y)y + (cos y)z]. 'AA(A-2)a
And by using cylindrical coordinates r, a, z: x =r cos 0, ¥y = r sin a:
§ = h[r sin vy sin(Y + @) + z cos Y] - " (A=2)b

. Teking Eq. (A-2)h for & the derivation of f(h,y) is identical to
" Rothwell's because: | . o -
fzwﬂb da'eiggina' _ j'?“ dqrelfsing' - oo 3 (8) . (A=3)
oo S 9
This also explains why Rothwell obtained the correct answer for f(h,Y). .
The first part of Eq. (A-3) is a consequence of the periodicity (of

period 2w) of the function exp[i & sin a'] with respect to a'.



In the foliom‘._ng we integrate Eq. (A-1)b in‘. the frame OXYZ. The
method is complicated but will give a simple geometrical interpretation
of the final results. In OXYZ: 8§ = hZ. Assuming a uniform electron
density pdVv = (aV)/V = (s(2Z,Y)/V)dZ. Here S(Z;Y) is the surface of the
ellipse intersection of the ellipsoida.l surface snd the plane Z = Z,

We need to determine s(Z,Y). We let M represent Euleif's matrix:

x X At- '
(y) =M (Y) . (A-k)
[/ . Z ' .

(We don't give the explicit expression of M. It can be found in many

references, for example Ref. A.2.) The equation of the ellipsoidal

surface is:

22 2 |
ke (8-5)
a b . .
And in terms of X, Y, Z:
X | |
(Xs _Y: Z) A‘ Yj=1 s (A"G)
. : 7 .

where A is a 3 by 3 matrix:

cos2, Y + cox2 Y si'n,2, ] . s‘in? Y sin2 1 (A-T)e

Axx._ . 2 2

a b

-

' __ 'sin2 Py + ,co_sz Y ,c,os? Y + sinzl c032 Yy (A-T)b
Ayy a 12

- sin? Y . cos® y
AZZ 2 2

(A-T)e
a b '
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Ayg = Bpx =

A

AYZ = Ay = sin Y cos Y cos w(l-z-

If we make the following

nar 3 -
" h - I
ol 53 i L

-T-
= s.in2 Y cos P sin ¢ (l-e-
2}

' . 1

= « gin Y cos Y sin 1])(-—5
8,

changes of variables:

(A-T)a

(A-T)e

(A-T)f

X'> - < cos ¥ sin ¢ "'<X ' (4-8)a
Y -sin ¥ cos P/ \Y '

sin Y cos Y (b’2'-— a2)

(A-8)b

n = Y'.. o+ A .
‘agsinz Y + ‘b20052 Y
Eq. (A-6) becomes:
2 2 ' -3
X! : n Z :
a.2 a2b2 aasing Y + bzcos2 Y '
azsinz Y + ‘b‘?cos2 Y

Equation (A-9) represents the equation of the ellipse intersection of the
"ellipsoidal surface and the plane Z = Z where Z is a parameter. To

clarify, we call:
. z2.
K=1-— R (A-10)

azsin2 Y + b2cos2 Y

thus the equé,tion- of the ellipse (intérsection) becomes:

2
Xt 2
Tk e =1 (A-11)
Ka.2 Kazb2
a2sin2 Yy + b2cos2 Y



From Eq. (A-11) ve get s(Z,y):

s(z,y) = K 2% _ ' , (A-12)a
(a2s1n2 Y + 02

cos® Y)

or, from Eqs. (A-10) and (A-12)a:
2

s(Z,y) = (mwab) %(l - 2‘—2-) ' (A-12)b
H _

where,

H = (azsinz Y + b2c032 Y)l/z

It is obvious that s(Z = H,Y) = 0, thus H represents the maximum
variation in Z. (As a verification of Eq. (A-12)b one can evaluate the
expression of the volume of the ellipsoid by integrating s(Z,Y)dZ over

[-H, +H]). The electronic structure factor, from Eq. (A-1l) and (A-12)vb,

equals: 4
s 22\ _inz
£(y) = / iE ( - —2) e dz = &(hH) (A-1k)
-H H
Beside the structure factor, the above derivation gives a simple inter-
pretation of B = hH = h(a?sinQ Y + bacos2 Y)l/e.

References to Appendix A:

A.l. Rothwell, J. of Math. Phys. L, 1334 (1963).

A.2., Corben and Stehle, Classical Mechanics, (Wiley, 1950) p. 177..
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APPENDIX B: THE GUINIER APPROXIMATION FOR RANDOMLY ORIENTED
' ' ELLIPSOIDS OF REVOLUTION - '

Letting P(Y) = 1, from (2) and (3) we get:

, .2 fm/2 ' _ : '
I(h small) = IéN02V2 {l + %— f (azs:in2 Y + h2c052 Yld cos y + . . . f
(B-1)
s .2 ., 2
By letting cos ¥ = x, sin”" ¥ =1 - x
| 2 2 2 12
[the integral in Eq. (B-1)] = a” + (b~ - &) f x dx
[e]
Thus | 5 o
2 h Ro
I(h small) = INp v 11 - 3t . g (B-2)
where
2 2
2 _2a +b
RO = I (.B"3)
Following Guinier we write Eq. (B-2) as
h2R2
_ 0
I(h small) = (IeNp2V2) e 3, (B-k)

This is the Guinier formula where R given in Eq. (B-3) is the expression

for the radius of gyration for an ellipsoid of revolution 2a, 2a, 2b.
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APPENDIX C: THE POROD FORMULA FOR RANDOMLY
ORIENTED ELLIPSOIDS OF REVOLUTION

By letting P(y) = 1 in Eq. (2) and substituting for the electronic

structure factor from Eq. (6) ve get: |

. w/2 |
I(h lerge) = IeN92V2 _9_5_ f — -d co; Y — (c-1)
2h” o [a®sin® ¥ + b cos” Y] '

Let cos Y = x, sin2 Yy=1 -x2

. 1 .
[the integral in (C-1)] = = _dx
: . 2 2,2 .2 2
(" -~ a%) 2 a
x + :
B2 - a2
(c-2)
= 1 > (2_"_&2 + v21etab £ -.-l b e) ,
~ lyad .
bz - a2 _ ' AN _
Where e = - is the eccentricity of the ellipsoid 2a, 2a, 2b.
b : ,
By exsmining Fig. 2, one can easily show that:
sinl e =T = tan™" % e (c-3)
From Egqs. (C-3) and (C-2): ‘
[the integral in Eq. (C-1)] = Bﬁg- (c-k)
. 9V
where V = gl a.2b is the volume of the ellipsoid and S = 2118.2 +
2n(a b/e) sin"Ye its surface srea. From Eqs. (C-L4) and (C-1) we get
the Porod formula:

-2 (c-5)
I(h large) = (I_N) gzggg .
h
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FIGUBE CAPTIONS
Fig. 1. Oriented ellipsoid in fixed frame of reference.

Fig. 2. A geometrical demonstration of the relation: sin_le
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Fig.2
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