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NUCLEAR DOUBLE RESONANCE STUDY OF lili
2

Po4 

Per ... Erik Nordal 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Physics; University of California 

Berkeley, California 

ABSTRACT 

NMR pulse methods are used to study NMR/NQR spectra and relaxation 

phenomena in· single crystals of KH
2

Po4 (KDP). The main emphasis is on 

elucidating the lattice dynamics at the ferroelectric phase transition 

via the temperature dependence of the ferroelectric-mode induced spin

lattice relaxation of K39 . K39 spin-lattice relaxation time measurements 

are perfor.llied with a new high-s~nsitivity muclear double resonance method 

which empJ.oys an unmodulated radio-frequency (r.f.) field at the "rare 

spin" frequency. The method is developed and evaluated theoretically,, 

and verified experimentally on K39 . In addition to being applicable in 

cases with very short spin-lattice relaxation times, the method yields 

double resonance lineshapes with structure which depends critically on 

spirt reservoir parameters. Instead of exhibiting an increasing line 

depth as the line center is approached, there are typically 2 line depth 

maxima symmetrically located about the line center, with a minimum line 

depth exactly on resonance. 

The K
39 

relaxation rate is found to .increase rapidly with the 

temperature above approximately 200°K, and a strong increase in 1 the~ 

relaxation rate is also detected as the Curie temperature T is approached. 
c 

The increased relaxation rate at T is attributed to spin~phonon coupling 
c 

to the ferroelectric mode, and in a temperature range extending from the Curie 

point to approximately l55°K the ferroelectric-mode induced relaxation 
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rate can be described well by a ferroelectric-mode response function of 

diffusive or heavily damped harmonic.:..oscillator type. The data tend to 

favor a logarithmic singularity in the relaxation-rate in this temperature 

range, indicating strong anisotropy in the ferroelectric quasi-dipole 

interaction. 

The proton relaxation time following adiabatic demagnetization in the 

rotating frame (ADRF) is measured as a function of temperature. Above 

250°K, H
2

Po4 rotations about a single axis are observed, characterized by 

an activation energy of 0.5 eV and a correlation time of approximately 

1 sec at 250°K. In the region l00°K to 250°K the relaxation rate remains 

essentially constant, but has a slight increase in the vicinity of the 

Curie point. Proton relaxation measurements in the laboratory frame do not 

exhibit this anomaly, which may be linked to proton motion. 

Conventional ADRF double resonance methods were used to study the 

39 41 . spectra of K and K and thelr temperature dependence. The results 

agree with those of other authors. Double resonance data on other spin 

species in KDP are also presented. 

Expressions for the effective gyromagnetic ratio in the rotating 

frame are derived for spin 3/2 particles in a strong, resonant r.f. field. 

For the first time, this problem is treated with no restrictions on 

the relative magnitudes of the quadrupole and Zeeman interactions in' 

the laboratory frame, in the case where the static field H is per-
a 

pendicular to the e.f.g. tensor principal axis. The results are 

verified for ~9 in KDP. At a given temperature, the numerical values 

of the effective gyromagnetic ratios corresponding to the allowed 

laboratory frame transitions are found to vary by an order of magnitude; 

depending on which transition is excited. 

l 

.... 

... 
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Theoretical expressions for quadrupolar spin-lattice relaxation times 

in the spin-lock state are derived for the case of spin 3/2 particles with 

I 
'-' laboratory frame quadrupole and Zeeman interactions which may be of the 

same order of magnitude. The results are applied to the general problem 

of ferroelectric-mode induced spin-lattice relaxation. 
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I. INTRODUCTION 

Phase transitions are of fundamental importance in nature, and one 

class of phase transitions that is currently being intensively and 

successfully studied by. NMR methods is the transition in ferroelectrics 

between the unpolarized (para-) and the spontaneously polarized (ferro-) 

phase. 

Early descriptions of ferroelectric phase transitions were 

. 1 2 
formulated in terms of equilibrium thermodynamics.' During the last 

few years, however, it has been realized that an adequate description· 

of microscopic and macroscopic aspects of the phase transition can be 

obtained by dynamic models involving the elementary excitations in the 

crystal lattice. Several theoretical works on different types of 

ferroelectrics have been published, and reviews are found in references 

3, 4, and 5. Using a slightly simplified picture, the ferroelectric 

transition can.be described in terms of lattice dynamics by a specific 

vibration mode, the "ferroelectric" or "soft" mode, whose characteristic 

frequency approaches zero as the transition temperature Tc is approached. 

At T , the mode becomes unstable, and in the ferroelectric phase below 
c 

T an atomic displacement pattern is "frozen in" with a symmetry equal 
c 

to. that of the ferroelectric mode above T . In contrast to the thermody
c 

namic treatment of the phase transition, the description in terms of the 

ferroelectric mode allows studies on the relationship between microscopic 

parameters of the ferroelectric solid and macroscopic ferroelectric 

properties. 

Experimental studies on the ·nature of the ferroelectric mode in 

the vicinity of the Curie point have been reported for a variety of 
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of solids, using Raman- and Brillouin-scattering, neutron scattering, 

ultrasonics and NMR methods. The total amount of experimental data in 

this field. is still relatively small, however. A main objective of this 

thesis has been to exploit the advantages of a high-sensitivity nuclear 

double resonance method to obtain experimental data on the ferroelectric 

mode in KH
2

Po4 (common abbreviation: KDP) which are not obtainable by 

direct NMR methods. To achieve this goal it was necessary to derive 

new theoretical results and develop experimental procedures which should. 

be of more general interest in NMR. 

Traditionally, NMR/NQR techniques used to study lattice dynamics 

and structural changes in solids include measurements of linewidths and 

of the temperature dependence of quadrupole coupling parameters. Recently, 

it has been demonstrated that it is possible to extract qualitative 

and quantitative information pertaining to the ferroelectric mode from 

measurements of the nuclear spin-lattice relaxation rate in a temperature 

interval around the Curi~ point. The basic argument can be summarized 

as f'ollovs: Th.e spectral density of the stationary random fluctuations 

in the electric field gradient tensor components, due to lattice 

vib.rati.ons in a ferroelectric at thermodynamic equilibrium, can be 

related analytically to the imaginary part of th~ generalized dielectric 

6 
susceptibility by means of the fluctuation dissipation theorem. Close 

to the Clli~ie point the dominant contribution to this susceptibility will 

come from the ferroelectric mode, which is strongly excited as the 

temperature 'l, approaches T . Thus, by the Kra.mers-Kronig relations, 
c 

the total ferroelectric mode response function (susceptibility) in the 

temperature region around T can be related to the spin-lattice relaxation 
c 

... 
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time T
1

, if the functional form of T1 in terms of spectral densities 

of the e.f.g. tensor .fluctuations is known. One finds that the ferro-

electric-mode induced spin-lattic relaxation rate should exhibit a sharp 

ma.Ximum at Tc, with diminishing magnitude as IT- Tel increases. This 

temperature dependence around T is expected to depend sensitively on the u . . c 

ferroelectric mode response function and on the nature of the interactions 

:in the ferroelectric which precipitate the transition, In practice, the 

relaxation rate that is measured contains contributions from sources 

such as spin diffusion to paramagnetic impurities and migration of 

nuclei in the lattice, in addition to the ferrelectric-mode contribution 

of interest. Since the ferroelectric-mode induced relaxation rate 

·diminishes as jT- Tel increases, it will ultimately be masked completely 

by the other relaxation contributions. Therefore, the spin-phonon coupling 

must be sufficiently strong such that the ferroelectric-mode induced spin-· 

lattic;e relaxation rate can be extracted from the total relaxation rate 

with small relative error in a temperature range around T large enough 
c 

to allow reliable determination of the. temperature dependence. The 

·strength of the spin-phonon coupling may vary greatly for different 

nuclear species in the same ferroelectric. Nuclei prossessing a quadrupole 

moment can interact strongly with the lattice vibrations through the 

coupling to the local electric field gradient, while spin 1/2 nuclei and 

other purely magnetic nuclei (protons, f.ex.) generally experience much 

weaker spin-phonon coupling via magnetic dipole interaction with the 

local magnetic field from paramagnets or local charge transport in the 

crystal. 

The work reported here is a geared primarily towards determination 
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f h f . d . d . d . . l . l . . t f K39 
o t e erroelectrlc-mo e ln uce spln- attlce re axatlon ra e o 

in KDP as a function of temperature, and analysis of these data in terms 

of ferroelectric-mode response functions. In light of what was written 

. above it is now apparent why K39 nuclei, which are unobservable by 

conventional NMn, are more interesting as microscopic probes than the 

easily detected H1 or P31 : K
39 has a nonzero quadrupole coupling con

stant, while H1 and P31 are spin l/2 particles with zero quadrupole 

coupling. The consequences of this for the ferroelectric-mode induced 

spin-lattice relaxation rates are quite dramatic and will .be shown later. 

KDP is representative of a family of hydrogen-bonded ferroelectrics. 

.. 7 
The following list is from Landolt-Bornstein tables: 

Table I.l. KDP isomorphs (deuterated analogs in parentheses). 

Substance T [°K] c Ferro-/Antiferroelectric 

KH2Po4 ( KJ.l;:_lo 4 ) 123 (213) Ferroelectric 

I\bH
2
Po

4 
(RbD

2
Po

4
) 147 (218) " 

CsH
2
Po4 159 " 

KH
2

Aso 4(KD
2
Aso

4
) 97 (161-159) " 

RbH
2

Aso4_ (RbD
2

Aso4 ) 110 (173) " 

CsH
2

Aso
4 

( CsD
2

Aso4 . 260 {212) " 

NH4H
2

Po
4

(ND
4
D

2
Aso

4
) 148 (242) Anti ferroelectric 

NH4H2Aso
4

(ND4D
2
Aso

4
) 216 (304) rf 

. The crystal structure of KDP in the paraelectric phase is shown on 

Fig. I-1. Paraelectric KDP belongs to the tetragonal space group l42d. 

The Po
4 

groups are connected by a network of 0-H . . . 0 hydrogen bonds 

such that the two oxygen atoms on the upper edge of each oxygen 
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o--·--

0 K 0 

l~ 
a :b= 7.43 A 

PO~, 
0 

c = 6.97 A 

·-~- H 

XBL 723-449 

Fig. I.l. Structure of KH
2

Po4 in the paraelectric phase. 

(after J. West9Cl). 



-6-

tetrahedron are linked to two oxygen atoms on the lower edge of two 

separate neighborin_g Po4 groups. "Up" and "down" are the directions 

parallel and antiparallel to the c-axis. The hydrogen bonds are within 

1/2 degree of being perpendicular to the c-axis and are mutually parallel 

or perpendicular. Potassium atoms and Po
4 

groups alternate along lines 

parallel to the c-axis. In the ferroelectric phase, the crystal structure 

is orthorhombic Fdd2. Relative to their positions in the paraelectric 

phase, the potassium atoms and P04 groups are translated in opposite 

directions along the c-axis. Neutron scattering studies of KDP in the 

paraelectric phase reveal a proton distribution smeared out along the 

bond, symmetrically about the bond cente.r. In the ferroelect:ri c phase, 

the protons become localized toward one end of the bond, such that each . 

phosphate group has protons adjacent to it on the two upper bonds and 

distant from it on the two lower ones, or vice versa, depending on the 

direction of polarization. Substitution of protons by deuterons not 

only increases the transition temperature, but also changes other ferro-

electric parameters. 

In principle, NMR methods should be especially well suited to the 

study of KOP, since there are paramagnetic isotopes at all nuclear sites: 

Table 1.2, Magnetic nuclei in KDP of natural isotopic composition. 

Isotope Abundance 
% 

Hl 1.19·10-2 

. H2 1.56·10-2 

K39 93.08 

K 40 . -2 
1.19·10 

K41 6.91 
017 3.7•10-2 

p31 100 

Larmour Frequency 
(MHz/lOK Gauss) 

42.576 

6.536 

1.987 

2.470 

1.092 

5.772 

17.236 

Spin I 
Mult. ofh 

1/2 

1 

3/2 

4 

3/2 

5/2 

1/2 

Quad . Mo:tnent Q 
e · 1o-24 cm2 

2.77·10-3 

.• 07 

1 
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In practice, experimental sensitivity problems limit the isotopesob-

1 . 31 
servable by conventional NMR to H and P. Despite high abundance, 

39K requires high-sensitivity detection methods due to its low gyromag~ 

netic ratio and moderate quadrupole coupling to the local electric field 

gradient. Because of this, the only spin-lattice relaxation studies 
. 8 

on the ferroelectric mode in KDP reported so far have been done 

on P
31 

in KDP. Due to weak spin-phonon coupling, and proton inter- and 

intrabond jumping, P31 and H1 are poorly suited for this application. 

Some KDP isomorphs do contain quadrupole coupled nuclei that are ob-

servable by direct methods, and data on the temperature dependence of 

the spin-lattice relaxation in the vicinity of the transition point 

2 . 75 87 133 . 
have been published recently for D , As , Rb and Cs 1n some 

isomorphs (cfr. Chapter XI). Data obtained on isomorphs do not 

necessarily apply to ~P however. Deuteration alters the intrinsic 

ferroelectric properties greatly, and different masses and coupling 

strengths of nuclei at K and P sites may lead to qualitative 

differences in lattice dynamics. It is therefore of interest to 

obtain spin-lattice relaxation data on each isomorph separately and then 

compare results. At present, KDP is by far the most extensively studied 

of the isomorphs; and this provides richer material for comparison of 

data on the ferroelectric mode obtained by different methods. 

The concepts and experimental procedures involved in high-sensitivity 

nuclear double resonance are reviewed in Chapters II and III. Nuclear 

double resonance should in principle make it possible to do spectroscopy 

on all magnetic isotopes' in KDP listed above. As far as studies of 

ferroelectric properties are concerned, considerable information on 
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lattice dynamics and structural changes can be gathered from spectros.copy 

on quadrupole-coupled nuclei like K39 at various temperatures. Such data 

for K39 and K41 are presented in Chapter X. As will be described in 1 

Chapters II through V, double resonance methods have a wide range of 

applications in addition to pure spectroscopy, and in certain cases it 

is possible to measure the spin-lattice relaxation times of nuclei that 

require high-sensitivity methods for detection. For K
39 

in KDP, however, 

the spin-lattice relaxation time was so short that no method.existed 

that was capable of measuring it, and a new method was devised.
9 

The 

method involves a very simple form of double resonance which has not 

previously been analyzed carefully or exploited experimentally. The 

analysis is presented in Chapter IV, and it is shown how spin-lattice 

relaxation times can be determined experimentally for nuclei like K39 

in KDP. According to results in Chapter IV, the double resonance method 

also yields an unusual double resonance lineshape and can give information 

on parameters of general interest in double resonance (thermal reservoir 

heat capacity ratios and cross relaxation rates). The analytical results 

of Chapter !V are compared with experimental data on K39 in Chapter IX, 
i 

and good agreement is found, both qualitatively and quantitatively. This 

has been taken as. sufficient justification for using the method to 

determine the K39 apin-lattice relaxation times at various temperatures. 

In order to.obtain sufficient information for analysis, it was 

necessary to measure the K39 spin-:-lattice relaxation rate throughout a 

large temperature range. A potentially important parameter, the strength 

f th + f' ld th K39 t . t. f . t d b o e r. ~·. le at e ransl lon requency, was monl ore y 

audio resonance 10 ,ll (rotary saturation) so as to obtain the necessary 
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consistency between data at all points throughout the temperature range. 

Here one encounters the problem that the only studies on the relationship 

between the audio resonance frequency and the r.f. field strength 

(expressed in terms of the "effective gyromagnetic ratio") have been 

made for the two limiting cases where the nucleus has either zero quad-

rupole or zero Zeeman interaction. The measurements reported here were 

performed on a nuclear species (K39) with quadrupole and Zeeman inter-

actions of the same order of magnitude, and with the quadrupole inter-

action dependent on the sample temperature. In Section V.A, the effective 

gyromagnetic ratio is computed for the general case of spin 3/2 particles 

with quadrupole and Zeeman interactions of arbitrary relative magnitudes, 

since the analysis might be of interest beyond the present application. 

Th.e somewhat surprising results were verified experimentally on K39 

in KDP, as described in Section IX-B. 

Before the spin-lattice relaxation data can be used to study the 

ferroelectric-mode response function, it is necessary to obtain an 

analytic expression for the spin-lattice relaxation rate in terms of 

spectral densities of the lattice vibrations; or, more specifically, 

of the fluctuations in the different electric field gradient tensor 

components. No such expressions applicable to the present case of K39 

iri KDP is to be found in the literature. This probleEl is therefore 

treated in some detail in Section V-B, for the case of a spin 3/2 particle 

with quadrl..lpole and Zeeman interactions of arbitrary relative magnitude. 

Expressicns for the quadrupole spin-lattice relaxation rate in the 

spin-lock state (i.e. in a strong resonant field) are derived. 

All the necessary theoretical foundations and experimental procedures 
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have thus been established, and the experimental results on the K
39 

spin-lattice relaxation rates are presented and analyzed in Sections 

XI-A and XI-B. The final results on the ferroelectric mode are compared 

with data from neutron, Raman and Brillouin scattering studies. 

It is expected that other, more conventional nuclear double resonance 

methods could be helpfUl in the study of structural changes and micro-

scopic motion in IillP, and preliminary work on double resonance spectro

scopy ahd transient oscillations in the ( K39) rotating frame 11 is 

presented in Chapters X and XII. Of special interest is spectroscopy 

on 17o and 2H, since both are quadrupole coupled to their local electric 

field gradients and thus provide information on static and dynamic 

changes in their local environments. The double resonance sensitivity 

for detection of deuterium provided to be much poorer than expected, 

except for double quantum transitions. A similar effect has previously 
lr) 

been observed in gypsum, '- and measurements on KDP enriched in deuterium 

were performed to determine whether a mechanism like the "spin quenching" 

G . l t l 13 . "bl s t• f f th described by abr~e , e a • ~s respons~ e.. ugges lons or ur er 

work are made at the end of Chapter XII. 

The. preparation of the samples used is described in Chapter VII. 

Since KJ)P is piezoelectric, special care had to be taken to suppress 

mechanical ringing after the strong r.f. pulses. 

In Chapter VI the experimental apparatus is reviewed briefly. 

Of greatest interest here is possibly the NMR r.f. equipment, which 

was of the single-coil, pulsed type, with r.f. power at two generally 

quite different frequencies alternately being applied to the same coil. 

The system offered a wide choice of r.f. pulse sequences and field 
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modulation (phase and amplitude), and pulsed audio fields could also 

be applied from a second coil. The transient signal from the r. f. coil 

was amplified, phase sensitively detected, and captured by a boxcar 

integrator. Special problems arose due to the finite time required 

for the receiver to recover from the strong transmitter pulse. A brief 

description is given of measures taken to protect the receiver and 

reduce the recovery time, including a transmission line arrangement 

with cables of specific lengths in relation to the r.f. wavelength. 
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II. SOME CONCEPTS AND TECHNIQUES IN PULSED NMR 

Below is a short review of subjects of specific pertinence to 

the present work. In this chapter, emphasis is on a single spin species, 

while coupling between different spin species is considered in more 

detail in the next chapter. 

II-A. Spin Temperature 

'l'he concept of spin temperatures distinct from the lattice tempera-

ture is essential in the present work, and accounts for much of the 

success achieved in applications of pulsed NMR. Consider f.ex. a spin 

system characterized by the hamiltonian 

JC=J( +JC 
0 1 

where J! represents a sum of Zeeman and quadrupole interactions, either of 0 . 

which can be zero, and JC1 represents magnetic dipole-dipole interactions 

between the spins. R.f •. fields are assumed absent. In solids, motional 

narrowing is generally not capable of causing large reductions in the local 

fields, and in many important experimental applications. situations arise 

where ( JC
0

) ~ < J{~ >.A quantum mechanical description of the coupled spin 

system then represents a many-body problem of great complexity, but it 

lends itself ideally to treatment by thermodynamics and statistical 

mechanics, which does not depend on a detailed knowledge of the structure 

of the system. 

An extensive literature exists on the subject of spin temperatures, 

and in addition to references given in this ch_apter, discussion will 

be found in the article by Jeener14 and in Goldman's book. 1 5 
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Single nuclear species in .high_ field: <X
0 

> >> <X1 > 

In high fields, the spin system can be viewed aS' individual spins 

with energy levels defined by X
0

, while X1 causes the spin system to 

come into internal equilibrium. The spin-lattice relaxation time T1 

will be assumed along compared to the spin-spin relaxation time T2 . In 

thermal equilibrium with the ia:ttice, the macroscopi.c observables of 

the system can be computed by the density matrix 

where T
1 

is the lattice temperature. Populations of the X eigenstates 
0 

with energies Ei will be, f.ex.: 

Pi(T1 ) a: exp(-Ei/kT1 ) 

If the spin system is irradiated by a CW r. f. field causing transitions 

between energy levels E. , the system is still describable by a spin 
l. 

temperature if the energy levels are equidistant,16 •17 •18 and the new 

density matrix is 

(II-1) 

where T
8 

is different from T
1

, ru;d can be interpreted as the temperature 

of a spin system in internal equilibrium, weakly coupled to the lattice. 

The process of energy transport within the spin system (spin diffusion) 

18 is reviewed by Abragam. Equation ( II-1) also applies when strong 

r.f. pulses a.re applied to the sample, after the spin system has been 

allowed to attain internal equilibrium. Population inversions, caused 

by a TI pulse, f.ex., are described by negative spin temperatures, which 

stand on the same f'ooting as positive spin temperatures in this 
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formalism. 17 Equidistance of energy le_yels i.s not sufficient for the 

spin temperature concept to be meaningful during r . .f. irradiation, and 

one must also require that off-diagonal elements of p be zero. This 

follows from the time independence of macroscopic observables in thermal 

equilibrium. The spin temperature concept does not apply, therefore, 

during free induction decay .following a 'IT /2 pulse, wh.en a rapidly decaying 

transverse magnetization exists. 

16 
In an analysis of the spin temperature concepts Abragam and Proctor 

concluded that it is convenient but dispensable in the high-field case 

with equidistant energy levels. If energy levels are non-equidistant 

due to quadrupole interaction, mutual spin flips are restricted from 

taking place due to energy conservation requirements, and the spin system 

can in general not reach internal equilibrium describable by a spin 

temperature different from that of the lattice, if originally in a non-

equilibrium state. In low fields, however, the spin temperature 

approach yields results that are definitely non-trivial and not attainable 

by alternative me.thods. 

Single nuclear species in low field < J( 
0

) :::;; < XJ? 

Assllilie for simplicity that J( includes only magnetic interaction 
0 

with a magnetic field which is lowered towards zero. When the external 

field approaches the local dipolar fields in magnitude, the simple 

Maxwell-Boltzmann approximation of coupled spins with individually 

defined energy levels breaks down. In low and zero applied field 

the Gibbs. description in terms of eigenstates and energy levels of the 

whole spin system must be used, and although the .formal description 

in terms of spin temperature is unchanged, the correctness of the spin 
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temperature ass:umptton is- not self eyidEmt. 
18 

Abragam has reviewed 

experiments which. demonstxate clearly the inadequacy of the Maxwell-

Boltzmann description at low fields, and also the viability of the 

spin temperature concept down to zero applied field. He discusses 

these results in terms of the ergodic theorem. 

Analogies with the low-field results in the laboratory frame can 

be drawn in the cases of low effective fields .in coordinate systems 

rotating in synchronium with the precessing spins, cfr. below. 

Spin temperatures in the rotating coordinate system 

~0 19 
Redfiela found that the BPP theory · does not apply when the 

rotating r.f. field component H1 applied at the spin resonance frequency 

is so strong that the transition is saturated (i.e., y2H~T1T2 >> 1). 

He showed that his results were consistent with the assumption of a 

spin temperature in the rotating frame (i.e., the coordinate system 

where the r.f. field vector rotating in the same sense as spin precession 

is stationary). In support of this assumption, he argued that the 

spin system will evolve towards the most probable state, which is 

characterized by a Boltzmann distribution between energy levels in the 

rotating·frame. Abundant experimental support for·his hypothesis has 

20 21 
since been accumulated, and Goldburg and Slichter and Holton have 

extended his results to apply in cases where r.f. field amplitudes are 

considerably lower than the local fields. In adiabatic de:magnetization 

22 
experiments in the rotating frame, Anderson and Hartmann have shown 

that the spin temperature assumption applies even in~ applied r.f. 

field. Since the ·applied static field H disappears in the rotating 
0 

23 
frame on resonance' th.e only remaining fields in the latter case 
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are the local dipole· fields, and the rotating ;frame temperature is 

defined by the state of the dipole-dipole system, in analogy with the 

zero field case in the laboratory frame. Thus, in high fields and with 

no r.f. irradiation, the total spin system can be described by two spin 

temperatures which ma:y be quite different, one pertaining to.the Zeeman 

and one to the dipole-dipole subsystem. This aspect has been studied 

in detail by several authors, 24- 27 who also treat the case of several 

spin species with weak mutual interaction. In strong r.f. fields one 

can similarly define two Zeeman subsystems, and in the spin lock state 

described bel.ow one ma:y have a lab frame Zeeman subsystem at infinite 

temperature ru1d a rotating frame Zeeman subsystem at very low temperature. 

After all this, it is somewhat alarming that Waugh, et al. recently 

have performed experiments
28 

which demonstrate violation of the spin 

temperature concept. Their experiments exploit microreversibi1ity in 

the spin system, however, corresponding to fine grain averaging in 

phase space, whereas the double resonance applications in this work and 

all other experiments quoted above depend on coarse grain averaging. 

So far, onlymutually isolated or weakly interacting spin species 

have been treated. The important case of strongly coupled 9pin species 

will be discussed separately in connection with double resonance applica-

tions (cfr. Section III-B). 
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II~B. Spin Locking and Adiabati.c Denia,netization 
in the Rotating Frame CADRF . 

The procedures of spin locking and ADRF are used extensively in 

obtaining the low spin temperatures in the rotating frame which are 

necessary in Idgh-sensitivity nuclear double resonance and in studies 

of ultraslow motion by the ADRF technique described beloy. 

The spin-lock state can be produced several ways, and will depend 

on whether the laboratory frame spin hamiltonian is Zeeman or quadrupolar 

Consider for simplicity pulsed spin locking in the pure Zeeman case 

(I = 1/2 or cubic crystal), which is of specific interest here. Only 

a qualitat.ive description will be given, but a. quantitative analysis of 

spin locking and adiabatic demagnetization in this case will be found 

22 
in the paper .by Anderson and Hartmann: 

The procedure is most easily understood when viewed in the rotating 

frame shown jn Fig. TI-l. Starting out with a thermal equilibrium 

magnetization M along the laboratory frame magnetic field H II Z, an 
0 0 

r.f. field is applied on resonance at time t = 0. In the rotating 

frame, the r.f'. field vector H
1 

is stationary along the z-axis and will 

be assumed much larger than the local fields H1 . (A more stringent 

definition of H1 will be given later.) M
0 

will precess about H1 , and 

after a time t = _1T_ it will point along the y-axis. y is the 
w 2YH1 

effective gyromagnetic moment in the rotatingframe, which is equal 

to the one in the laboratory frame when the laboratory frame hamiltonian 

is purely Zeeman. At timet =·t , the phase of the r.f. field is switched 
w 

by 90°, and H1 becomes parallel with M
0 

If the r~f. is left on, the 

magnetization will decay only slowly (time constant ~1 ), and one may 
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Fig. II-1. ADRF process viewed from a frame rotating 
at the A spin Larmer frequench (after 
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say that toe magne.tization i~ "locked'' to H
1

. Since H
0 

and H1 >> H
1

, the 

initial magnetization in the spin-lock state will differ only little 

from the original laboratory frame magnetization, and the process is 

· essentially isentropic. Th.e initial spin temperature in the spin lock 

state is then: 

Hl 
'l' (t ) = T • H S w L ( II-2) 

0 

and a cooling has been effected. Suddenly turning off the r.f. results 

in a free induction decay, since the spins then are free to dephase. 

The free induction signal amplitude will be o:T-l 
s 

Adiabatic demagnetization in the rotating frame, or ADRF, proceeds 

exactly as describ~d above, but instead of suddenly cutting off the 

r.f. powe~ after the spin-lock state has been obtained, the amplitude 

is smoothly reduced to zero in a time much longer than T
2

. Thermal 

equilibri'!k>n within the spin system is then maintained during demagnet-

ization, which is isentropic, and the spin temperature will be proportional 

22 
to the instantaneous effective field in the rotating frame: 

T8 = T1(:~ : ~ )l/

2 

After demagnetization, the temperature is (H
0 

>> H
1

): 

H 

T S ~ T L • H~ >> T L 

The explicit form of H
1 

follows from the quantitative treatment 

leading to Eq. (II-3): 

? I') 0 
H'- = '1' r{Jf ' } /'l'r {M"-} L d . . z 

( II-3) 

(II-4) 

, (II-5) 
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Here Jed is the usual two-particle dipole.....dipole coupling hamiltonian, 

and the dash indicates that only secular terms are to be included (due 

to thei.r rapid time dependence in the rotating frame, the nonsecular 

terms effectively average to zero} . In Eq. ( II-5) , one also has: 

M - yi 
z z 

The demagnetization process is shown in Fig. IIb: Due to the finite 

linewidth, individual spins experience off-resonance fields in the 

rotating frame, w1d in Fig. lib are shown examples of spins with 

resonance frequencies slightly higher or lower than the center frequency. 

During demagnetization preferential alignment along H
1

(>>HL) is thus 

converted to preferential alignment of individual spins along their 

local fie.+ds (corresponding to the secular parts of the dipole interaction). 

Since the local fields are random, the net magnetization is zero even 

though this "dipolar" state is highly ordered. The initial dipolar 

order after ADRF will decay slowly, and one can define a dipolar spin 

lattice relaxation time Tldip which is distinct from the spin lattice 

relaxation times in the spin-lock state, TlS.L. and in the laboratory 

frame: T1 . 

The spin temperature in the dipolar state can be sampled by: 

l) Adiabatic remagnetization to an r.f. field H
1 

>> H
1

, followed 

by suddenly cutting off the r.f. field. A free induction signaJ...ensues, 

in analogy with the sampling of the spin-lock state temperature. The 

. ..:.1 
maximum signal amplitude is «T

8 
· 

2) Application of an r.f. 8 pulse, where n/4 < 8 < n/2, cfr. Anderson 

and Hartmann. 22 The 8 pulse stimulates a free induction signal 

{i' 
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which starts from zero immediately .following the e pulse, grows to a 

maximum, and- decays. This "dipolar signal" lasts a time ~2 , and the, 

maximum signal amplitude is ~ T;
1

. The qualitative shape of the dipolar 

signal and its phase relationship to the applied r.f. follow from 

simple pbys.ical arguments, but space does not allow further discussion 

of this subject. 

A common feature of the free induction decays derived from_the 

spin-lock and dipolar states is that th.e precessing magnetization is 

in phase with the r.f. that precedes the free induction decay. This 

.is in cont:rast to the free induction decay .following a 'IT /2 pulse applied 

to a spin system in thermal equilibrium in the laboratory frame ("Zeeman 

signal"),, where the magnetization is in exact quadrature. This feature 

allows disc:rimination between "Zeeman'' and "dipolar" signals by using 

phase sensitive detection. 

Finally, it should be mentioned that alternative methods of spin 

' 29 
locking and ADRF have been demonstrated, based on adiabatic fast 

passage. A spin system in a strong resonant field can also be brought 

into a spin lock state by exchanging energy with another spin system 

which is at low temperature. An example of this is the double resonance 

method outlined in Chapter· IV. The pulse procedures described above 

have also been applied to pure quadrupole systems: X= XQ + X
1

, 

(< JCQ) >> <JC
1

)). XQ represents the quadrupolar interaction of the 

nucleus with the local electric field gradient, while X
1 

represents 

the coupling between spins (e.g., dipole~ipole). Spin locking in 

the pure quadrupole 'and pure Zeeman cases differ in some respects. In 

the quadrupole case wi.th I= 3/2, n = 0, f.ex., the effective gyromagnetic_ 



-22-

ratio in the rotating .frame is ./3 y, vhe.re y is the gyramagnetic ratio 

in the laboratory frame. This implies that the 90° pulse duration will 

be 

t = w 
7T 

In the spin~lock state, there will be 2 counter-rotating frames, with 

' 
a magnetization in each that couples to the r.f. field component that 

is stationary in each frame. Such differences have no import on practical 

applications, however, and as has been shown explicitly
30 

for spin 1 and 

3/2, the procedures apply equally well to Zeeman or quadrupole systems. 

II-C. Detection of Vltraslow Atomic Motion 

Motion of nuclei or groups of nuclei leads to two types of detectable 

effects in NMR, which have been used to great advantage in the study 

of microscopic dynamics in liquids and solids: 

First, rapid motion leads to an effective averaging of local 

dipolar fields, and the linewidth is reduced to 

( II-6) 

where (flw
0

) is the rigid lattice linewidth and T is the correlation 

line for the motion ("time between jumps"), Narrowing becomes effective 

. -1 
when T << (flw

0
) · = (T2 2R.L., where (T2 )R.L. is the rigid lattice 

spin-spin relaxation time (typically ::::::100 Jlsec). 

Second, fluctuations in the local field seen by the moving nuclei 

leads to spin-lattice relaxation, as described by the following 

expression due to Bloembergen, Purcell a~d Pound19 (BPP): 

(II-7) 
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where (T
1

}.-lt. is tne motional contrihution to the. total spin ..... lattice 
· mo ~on 

-1 relaxation rate CT1 1 , and w
0 

is the Larmour frequency ~Zeeman systems). 

The temperature dependence of T can be inferred from Eq. (II-7} by 

. -1 
measuring T.

1 
as a function of temperature, if the rate (T1 ) t· is the . mo lOn 

dominant contribution to the relaxation: 

(Tl)-1 ~ (T )-1 + (T )-1 . 
l motion l other 

( -1 ( -1 
.Tl )motion >> Tl) other 

( II-8) 

From Eq. (II-7), the maximum relaxation rate occurs when T::::: 1/w , which 
0 

-7 -8 . 
is 10 - 10 . sec in usual NMR applications. 

Thus, conventional NMR methods can be used to detect motion with 

T < sec. In contrast, ultraslow motion techniques allow detection 

of motion where T ~ T
1

, where T
1 

may be minutes or hours. Below is 

given a qualitative introduction to the physical principles behind the 

ultraslow,motion methods. For a recent review of this subject, the 

reader is referred to the article by Ailion _3l 

The trick used in all ultraslow motion techniques is to reduce 

the spin transition frequency w
0 

in Eq. (II-7) to very low values. 

As w decreases, the maximum in (T
1

)-1t. will shift to longer T's, 
o · mo lOn 

and contributions from slow motion will be more pronounced. 

To date, all ultraslow motion experiments have been performed in 

the rotating frame: In pulsed spin-lattice relaxation measurements, 

one starts out with a spin system which is far from thermal equilibrium 

with the lattice. Since low fields are necessary in the ultraslow 

motion measurements, spin system cooling by adiabatic demagnetization 

is indicated. This is more quickly and efficiently performed in the 
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rotating frame, where very low effective fields can be obtained 

(cfr. ,Section II-B}. At the same time, one retains good detectabili ty 

of NMR signals due to the nigh laboratory frame transition frequencies. 

The BPP expression (.Eq. (II-7)) was derived under the assumption 

of high""'field conditions (.w >> !:..w ) • When w -+ !:..w , the description 
0 0 0 0 

of the spin system in terms of coupled individual spins with well-

defined energy levels breaks down and the relevant eigenstates will 

be those of the entire coupled spin system. A more correct description 

is then obtained by replacing w with !:..w in Eq. (II-7). Combining 
0 0 

Eqs. (II-7} and (II-8), one then finds that the relaxation rate 

contribution due to motion will dominate the other contributions if 

(t:,wo)2 
T < - (T ) ~ w l other o· 

(II-9) 

in the slow motion limit (w T >> 1). This is the fundamental condition 
0 

for the applicability of ultraslow motion methods. 

Some reservations must be made on results derived from the BPP 

expression (Eq. II~7), however. Not only was Eq. (II-7) derived for 

the high-field case, but it also describes a situation where perturbations 

due to the motion are inefficient in relaxing thespins, such that many 

juinps are required for complete loss of order ("weak collisions"). The 

weak collision theory applies when T << T
2

, both in high and low fields. 

In situations where T :>> T
2 

and w
0 

~ 6w , however, few jumps are 
0 

sufficient in destroying spin order, since the dipole-dipole interaction 

no longer can be considered as a perturbation term in the total 

hamiltonian of the spin system ("strong collisions"). It follows that 

in the limits of weak or strong collisions, one will have T << (T
1

) ti 
mo on 

and T ~ (T1 ) t· respectively. 
mo 1on 

I, 
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A ('ltrong collis.ion theory for ultras:low motion in vea.k fields 

was first proposed by Slichter and Ailion ~32 who applied their theory 

to vacancy diffusion and molecular reorientation. (Later theories 

involving weak arid strong collisions are reviewed in the article by 

Ailion31 .} Slichter and Ailiqn used an approa~h leaning heavily on 

the spin temperature concept in the rotating frame. The requirement 

of thermal equilibrium within the spin system between each jump then 

limits the region o;f validity of their results to T >> T
2

. They also 

assumed that the jumping time is much. less than a Larmour period, 

which mea11s that spins retain their original orient13.tion during jumps 

("sudden approximation"). In practice, jumping times are of the 

-12 order o:f 10 sec. Slichter and Ailion found that in the case of 

molecular reorientation, the spin-lattice relaxation rate due to 

motion can be written 

= l - p 
T 

where p is a measure of the change of local field seen by a spin in 

(II-10) 

a single jump, i.e., of the "strength" of the collision. If the field 

after the jump is completely random compared to the original field, 

p=Oand(T1 ) t• !:::T. mo lon 

Several experimental methods can be used to detect ultraslow 

. 31 
motlon, and two procedures that are much used are spin locking and 

ADRF, which create low temperature spin states in weak fields ·(cfr. 

Section II-B): Slow motion and other mechanisms, such as spin diffusiqn 

to paramagnetic impurities, cause irreversible loss of order in the 

spin lock and dipolar states. This leads to a gradual increase in the 
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rotating frame spin temperatures, whi.ch. are easily sampled (in relative 

units) by one of the methods outlined in Section II-B. The rate of 

change of tb.e spin temperatures defines the spin lock and dipolar state 

spin-lattice relaxation times, which can be measured by repeating 

the spin lock or ADRF cycle with different time spans between preparation 

and sampling of the spin system order in the rotating frame. 

Si.nce slow motion contributions to the relaxation in low fields are 

strongly dependent on low-frequency perturbations, discrimination 

between relaxation rate contributions due to slow motion and other 

mechanisms can be achieved via the dependence of the relaxation rate on 

the transition frequency. The transition frequency can be varied by 

adjusting the r.f. field strength H
1 

in the spin lock state. Alternatively, 

one can compare rotating frame and laboratory frame relaxation rates as 

a function of temperature, cfr. Section VIII-C. Strictly speaking, one 

must know how the two relaxation rates depend on the relaxation pertur-

bations in the latter case. In cases where the classical spectral 

density analysis applies, 33 however, flu?tuation frequency components 

at low frequencies (~&D or yH) are effective in causing relaxation 
. 0 

in the rotating frame only, while perturbations with flat fluctuation 

spectra at NMR frequencies cause relaxation in both laboratory and 

rotating frames (see f.ex., tbe article by Leppebneier and Hahn34 ). 
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III. NUCLEAR DOUBLE RESONANCE 

Many elements have isotopes which. possess a nonzero nuclear magnetic 

moment and thus are potential candidates for NMR studies. Due to low 

isotopic abundance or low transition frequencies (weak quadrupole interaction 

or low gyromagnetic ratio), however, many such isotopes cannot be detected 

by standard NMR techniques. NMR spectra or relaxation characteristics of 

such hard-to-detect nuclear species may often yield information which 

is unobtainable from studies on more easily detectable nuclei in the sample 

under study, and considerable effort has been spent on schemes to 

enhance NMR sensitivity. 

One standard approach for detection of nuclear species with weak 

NMR signals is to use coherent signal averaging by electronic means, in 

conjunction with pulsed (Fourier transform) or CW spectroscopy. Here 

one will review an entirely different method, namely high-sensitivity 

nuclear double resonance, which represents one of the most striking 

and elegant applications of the spin temperature and spin subsystem con

cepts introduced in the previous chapter. In addition to yielding 

high detection sensitivity, double resonance makes possiblea wide 

variety of studies on spin dynamics in solids. 

- In this chapter, emphasis will be on qualitative physical understanding 

of the phenomena involved. Lack of rigor or completeness is sought 

compensated for by the literature references. A general description· 

of basicprinciples in nuclear double resonance is given inSection III-A. 

In Section III~B, attention is focused on the specific double resonance 

method used in this work (douple resonance after adiabatic demagnetization 

in the rotating frame). A transient double resonance phenomenon of interest 
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in a later chapter (cfr. Section X-C) , is reviewed in Section III-C. 

III-A. General 

The theory of high-sensitivity nuclear double resonance was first 

. 35 
developed and verified experimentally a decade ago by Hartmann and Hahn, 

and many nuclear· double resonance methods based on the same fundamental 

principles have been developed since. In its simplest form, nuclear 

double resonance involves two spin species in a given sample: 

An abundant spin species which is easily observed by standard NMR 

techniques, henceforth called "A" spin species. 

The spin species to be studied, which is undetectable by conventional 

methods. Henceforth called "B" spin species. 

The basic principle in nuclear double resonance is to study the B 

spin species indirectly, by monitoring their effect on the easily 

obs:eryable. A spins when the sample is irradiated near a B spin transition 

frequency. Resonantly absorbed energy in the B spin system must be 

transferred to the A spin system, and the necessary A-B coupling is 

obtained by proper adjustment of external radio frequency (r.f.) and 

DC magnetic field parameters. 

The do'.lble resonance analysis of Hartmann and Hahn was based on 

the assumption that the A and B spin species can be treated as separate 

thermal reservoirs with well defined temperatures, also during A-B 

energy transfer. This assumption is not trivial, in light of the non-

equilibrium nature of the problem and possible low B spin diffusion 

rates, but it has proved valid in all double resonance investigations 

to date, and the thermal reservoir model will be used extensively in 

the following. In Fig: III-I, the A .and B spin species are represented 
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by thermal reservoirs with temperatures T A and TB. The thermal links 

to the lattice represent A and B spin-lattice relaxation, and the 

thermal link between the A and B reservoirs can be opened or closed 

at the discretion of the experimenter (by adjustment of external field 

parameters such that A-B spin flip-flops induced by magnetic dipolar 

coupling terms. of the type SA+ · SB- conserve enegy). 

A double resonance cycle starts by adiabatic demagnetization of 

the A spins, which brings the A reservoir to a low temperature (a few 

mdeg K). In the absence of coupling to other spin reservoirs, TA will 

approach the lattice temperature with a time constant TlA, the A spin

lattice relaxation time. In spin calorimetry, the lattice can be 

considered a thermal reservoir of infinite heat capacity, and the 

lattice temperature will remain constant. While the A reservoir is 

still at low temperature, the thermal switch between the A and B reservoirs 

is closed, and a strong, oscillating magnetic field is applied to the 

sample. If the frequency is well separated from the A transition 

frequencies, but matches a B transition frequency, energy will be absorbed 

in the B reservoir and transferred to the A reservoir via the A-B 

coupling. A more rapid rise.in the A reservoir temperature TA results, 

as long as the B reservoir is kept ''hot". T A can easily be sampled 

(cfr. specific examples given in Chapter II), and the B spin resonance 

can be detected by monitoring TA at a fixed time tb after initiation of 

each double resonance cycle. When the B search field is far off resonance, 

no B reservoir h.eating will take place, and TA will be the same at the 
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moment of temperature sampling (t = tb) whether the B search field is 

on or off. 

· Instead of continuous. B reservoir heating during the. double 

resonance process, the B reservoir may be repeatedly be heated and 

brought in contact with the A reservoir. Due to the low B spin abundance 

and/or transition frequencies, the B reservoir heat capacity is usually 

much less than that of the A reservoir, and the increase in TA will 

. . ( 3 4) be small during each. A-B contact. In practice, a large number 10 -10 

of thermal contacts with B reservoir re-heating can be made during 

each double resonance cycle, and a detectable heating effect on the 

A reservoir results. 

Nuclear double resonance owes its high sensitivity to the integration 

effect obtained by the gradual transfer of energy from the B to the A 

system, wi:th acclUnulation in the A system. One important parameter 

for the obtainable sensitivity is obviously the maximum length of time 

that can be allowed for B-A energy transfer, which is of order TlA, the 

A s,pin-lattice relaxation time. (If sampling of T A is made at a 

time tb >> TlA, spin-lattice relaxation will have brought TA close to 

the lattice temperature, which.is very high in this context. Conse

quently the A spin signal SA cr TA-l wi~~ be very small or unobservable.) 

Clearly, very long TlA' s are desired for high double resonance sensi ti vi ty. 

On the other hand, the preparation of the low A spin temperature at the 

beginning of each double resonance cycle then becomes very time con-

suming, since one must allow the A spins to polarize before the adiabatic 

demagnetization process. A spin cooling can be speeded up f.ex. by 

using a :;:;uperconducting polarizing magnet or by cross-relaxation between 

the A reservoir and a third, pre-cooled reservoir. 
35 

Hartmann and Hahn 
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have estimated the detection sensitivity that can be achieved by nuclear 

double resonance. Using typical parameter values for solids, they 

find an ultimate sensitivity capable of detecting spins in concentrations 

. 13 3 . down to approximately 2 10 ]JB/cm . Ih practice, sensitivities of 

lo
14-lo16 ]JB. /cm3 h.ave b h · d t · · t f 3 een ac leve , represen lng lmprovemen s o 

to 5 orders of magnitude over conventional NMR. 

Compared to alternative methods, double resonance suffers certain 

drawbacks: It requires the presence in the sample of a nuclear species 

with a strong NMR signal. Also, interpretation of the double resonance 

lineshape is complicated, and it may under certain circumstances be 

impossible to establish the A-B coupling, due to so-called "spin 

. " 13 ' 36 . f . quenching . When the method does apply, however, it offers specl lC 

advantages: 

The ini'ormation gathering rates in rare spin spectroscopy can be 

several orders of magnitude higher than those obtainable by signal 

averaging. 

Loll-field double resonance methods have been developed which are 

capable of measuring weak quadrupoles couplings in amorphous or powdered 

samples. Sensitivity-enhancement by the high fields obtainab},e in 

superconducting magnets cannot be used in such cases. 

Double resonance methods can be used to obtain information about 

rare and abundant spin species in solids extending far beyond their 

spectra. Examples are measurements of B spin transverse and longitudinal 

relaxation times, T2B and TlB' and fluctuation spectra of the A:-B dipolar 

coupling h_amiltonian (cfr. Ref. 11). 

The proliferation of double resonance methods has been more than 

matched by a proliferation of acronyms; a few of those most commonly 

• 
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encountered are listed: 

SEDR: Spin Ech.o Double Resonance. A precursor of th.e Hartmann 

and Hahn method. Essentially different in princip~e from methods 

reviewed in thischapter, and not as sensitive in solids. 

SLDR: Spin Lock Double Resonance. The· original Hartmann and Hahn 

method. 

ADRF-DR: Double Resonance after Adiabatic Demagnetization in the 

Rotating Frame (cfr. Section III-B). 

LOWDOR: Low Field Double Resonance. A-B coupling is established 

in low or zero external magnetic field and zero electric field gradient. 

EncompasRes LNDRF (Low Field Nuclear Double Resonance via :Rotational 

Frames) and LNDLF (Low Field Double Resonance via Laboratory Frame). 

In connection with SLDR, ADRF-DR and LOWDOR, one may encounter 

RSDR (Rotary Saturation Double Resonance), whlch is usually termed 

audio resonance in thls work, and the general RFDR (Rotating Frame 

Double Resonance). 

III-B .. Nuclear Double Resonance Following Adiabatic 

Demagnetization in the Rotating Fr~e (ADRF-DR) 

The ADRF-DR method was used extensively in this thesis. Much of 

the di.scussion below also, applies to SLDR and LOWDOR. 

The ft~RF-DR pulse sequence in one double resonance cycle is shown 

in Fig. IIl-2: First, th.e A reservoir is brought to a low temperature 

through ADRF. While the A reserv6ir is still at low temperature, a 

sear.ch radio-frequency (r.f.) field is applied to the B system, and 

finally the A spin temperature is sampled by the application of a 

8 pulse. For a qouble resonance heating of the A reservoir to take 

place, one can li.st tb.e following requirements wbicb will be treated 
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Fig. III-2. ADRF doubl~ resonance pulse combinations. 
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separately below: al Energy must be c_onserved during the A-B s.pin 

flip-flop which constitutes th_e A-B cross-coupling mechanism. b) A 

nonzero time averaged coupling must exist between the A and B spin system. 

c) The B spin system must be kept disordered ("hot") during the double 

resonance process. 

a. A~B Energy Conservation 

In spin flip processes where one A and one B spin is involved, 

one must create A and B spin system states with common transition 

frequencies, so that net energy absorption in a flip-flop is zero. 

This. is. easily achieved in the rotating frames· by adjusting the strengths 

of the applied resonant r.f. fields. In the A rotating frame after ADRF 

the A system will have a spectrum of tnansition frequencies determined 

by local magnetic dipole fields. The spectral width can be described 

by the local dipolar field HLA, which was defined in Eq. (II-5). In 

the B rotating frame, the B transition frequency is (assuming the B r.f. 

field applied on resonance WB = WB
0

): 

UL = y · H 
~,rot. frame eff,B 1B 

where Yeff,B is the effective gyromagnetic ratio in the rotating frame 

(cfr. Section V-A), and H
1

B is the strength of the B r.f. field 

component, which is stationary in the B rotating frame. Thus, by 

adjusting the magnitude of HlB' one can satisfy the matching condition 

(Hahn condition): 

( III-1) 

If the B r.f. is applied off resonance, H
1

B must be substituted by the 

effective field 



( III-2) 

b. Strength of A-B Coupling 

A and B spins couple by magneti"c dipole-dipole interaction. Since 

the coupling proce$s takes place in the A and B rotating frames, it is 

necessary to transform the dipolar interaction hamiltonian into the 

proper interaction representation and there determine the effect of 

those A-B coupling terms which do not average to zero. The f_ollowing 

12 
is a brief outline of McArthur's treatment of the cross-relaxation 

problem. 

Assume for simplicity that the A and B spin species possess no· 

quadrupole moment, and neglect A and B spin-lattice relaxation. The 

high teinperature approximation 

will always apply in the following. 

In the laboratory frame, the total hamiltonian during the application 

of the B r.f. search field is: 

J(lAB = ~ + ~ + ~ + ~~ + ~ r. f. (III-3) 

where 0 and xB are the A and B spin system interactions with the static 
·z z 

magnetic field H
0

• ~ ari.d ~ are the magnetic dipolar A-A and A-B 

interactions (in high-sensitivity nuclear double resonance, B-B 

interactions can be neglected), and~ r.f. is the interaction of the 

B spin system with the applied r.f. field, assumed near the B transition 

frequencies. R.f. interaction with the A system will be negligible, 

since A and B laboratory frame transition frequencies are assumed 

widely different. 

.. 

•• 
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The standard techniquJ-1 •35 is to transform the laboratory frame· 

. density matrix pLAB into the double rotating-frame representation, 

which is accomplished with the operator 

( III-4) 

where UJ3 j s ·the angular frequency of the B r . f. In the following, I 

and Swill be A and B spin operators; respectively. The new density 

matrix in the rotating frame will then evolve as determined by the 

approximate Liouville equation: 

dp I 

R 
dt 

I 

= -i [JC 
R 

The approximation involved is that only the secular parts of the 

transformed hamiltonian 

( III-5) 

have been included. The discarded parts have a rapid time dependence, 

and their effect averages to zero (here assuming slowly varying spin 

temperatures) . One finds 

Jf
1 

= xB' + J23' + xAAdd(s) + xABdd(s) R z B r.f. 
( III-,.6) 

xB' I where the s in parentheses indicate secular parts. ·. B .and J(B f r .. 

represent the B spin interaction with the effective magnetic field in 

the B rotating frame, and ~(s) and ~(s) are the secular parts of 

the A-A and A-B magnetic dipolar interactions. Equation (III-6) can 

be simplified further by applying the rotation R(8) = exp(-i8Sy), 

which tilts the coordinate system in the B rotating frame such that 
I 

I 

the new z-axis coincides with the effective magnetic field vector 
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ReB (cfr. Fig. III-3}. In this new coordinat·e system one finally has: 

dpR 
--= 

dt 

where 

'JC = 0(s) + ;nAB + JC'?B. + Jt3 · 
R d dz dx e 

with. ( III-7). 

~ =- (I: A~ I Szk) cos8 = cos8 'JClz zi 
i,lt 

~ - - (I: A~ I . s.xk) sin8 = -sin8 J( 
Zl. lx 

i,lt 

Jt3 = -w S = -y · H • S e eB z eff,B eB z 

AB 
The Aik are standard A-B dipolar coupling coefficients. 

In Eq. (III-7), u!Cs) represents the A dipolar reservoir, the 

temperature of which is monitored to detect double resonance, and 

x! represents the B Zeeman reservoir in the B rotating frame. ~and 

X: are obvious . candidates for providing A~B coupling, but JC~ commutes 

with ~· One finds that AB coupling is provided by ~, while ~ is 

coupled to the A dipolar reservoir only, and can be lumped with it in a 

single dipole-dipole reservoir. wa .. th spin temperature T arid hamiltonian ss 

'JC ::: ~d(s) +;0Bd (III-8) ss . z 

37 
As discussed by McArthur, it is reasonable to assume that. the B system 

is describable by a spin temperature TB during cross-relaxation, at 

le-ast when the B r.f. is applied on resonance (wB = ~0 ), and the 

density matrix for the ensemble of A and B spins can be approximated by 



.. 
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= exp I- h(Jf B ( t ) + Jf B. • f3B{t ) )J /Tr { 1} 
ss ss e 

s (t) ss . 
1 = -K-T-=. -( ...... t~) 

. ss 

In order to calculate the effect of the cross relaxation term ~ on 
.. I 

the dipolar reservoir temperatUre T , it is. convenien~ to transform 
ss 

into a new interaction representation by applying 

The new density matrix will then have the equation of motion 

where 

and 

* d{) • r"fl>*c ) p· *J dt = -1.."" t ' 

x*(t) =-sine LA~ Izi(t)(sxk cosweBt + Syk sinweBt) 

i,k 

. ( III-9) 

(III-10) 

* The time evolution of Tss is linked to that of p (t) = pR(t). From 

* Eq. {III-9) it is apparent that Jf ( t) must be static or slowly varying 

* in order to c.ause a slowly varying p ( t). This is possible if I .(t) 
Zl. 

(which represents the fluctuating dipolar fields at the. B spin sites, 

due to the A spins) has Fourier frequency components at weB· 

Using the master equation and second order perturbation theory, 

it can be shown that : 37 
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. ' t 
d 1-

09 * * 
dt ('J{si "' - Tr{l) f dT Tr I ;J(ss ;J( (O j • [ ;J( ( -T l • 

0 . 

This can be related to the rate of change of T ss 

d . h _2 d 1 ' 
- ( hJC ) = - { } Tr {JC } dt ( T- } dt ss kTr 1 ss ss 

to yield the AB cross-relaxation time TAB in terms of the correlation 

function (for definition of JClx, See Eq. (III-7): 

(III-12) 

TAB is defined by 

(III-13) 

where£ is the ratio of the Band A reservoir heat capacities: 

€ = ( III-14) 

C A and CB are the nuclear Curie constants. 

11 
McArthur, Hahn and Walsted foundfor Ca-F in CaF2 that a gx(T) 

proportional to the Lorentzian 

(III-15) 

gave a very good fit to the experimental data, and simil.ar results have 

since been reported38 for the Li-F coupling in LiF. With the form 

(Eq. (III-15)), the cross relaxation rate becomes: 

-1 rr . 2 2 -weBTc(a) 
TAB= 2 SJ..n 8 ( 6.wB)BA Tc(8) e · (III-16) 

where e is the angle between HeB and the laboratory z-axis {cfr. Fig. 

III-3) and < 6.w; >BA is the VanVleck second moment due to AB-coupling. 

•. 
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Fig. III-3. Definition of the B s~in eff~ctive field in the 
rotating frame, HeB, viewed from a frame rotating 

at the B r.f. frequency wB; the z' ~:Uis :is the frame 

in which the zero'-order B Hamiltonian' is diagonal 
(after D. A. McArthurl2) . 

.• 
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c. l!eating of the B Reservoir 

Imagine that a "cold" A dipolar reservoir and a "hot" B Zeeman 

reservoir Cin the rotating frames) are brought in thermal contact. 

During A~·B cross relaxation, order which originally resided in the 

alignment of A spins along their local dipolar fields will be transferred 

into the B system, and the B spins will be preferentially aligned along 

the effective magnetic field vector ReB in the B rotating frame. Thus 

a low temperature B spin lock state results, and if the B r.f. is 

sustained CW, th.e low B spin temperature will persist for a time of 

order TlS.L. which is comparable to the high-field B spin-lattice 

relaxation time. This was discussed in Section II-B. Although B 

system heating via B spin-lattice relaxation can be used to advantage 

in certain applications ( cfr. Chapters IV and XI), a much higher heating 

rate is required to obtain optimal double resonance sensitivity. 

B reservoi.r heating is achieved by saturation of the B rotating 

frame Zeeman transitions. This can be done by sudden application of 

the B r. f. , or by one of several resonant methods, as described below. 

The corresponding pulse sequences are shown in Fig. III-2. 

Audio resonance (rotary saturation): This method was first 

10 
demonstrated by Redfield and has been analyzed in detail by McArthur, 

Hahn and Walstedt. 11 An oscillating magnetic field HlA d" (t) is 
. U l.O 

applied to the sample at the B rotating frame transition frequency 

weB (typically 0-20 kHz) • The configuration of static and oscillating 

magnetic fields (H
0

, H1B(t), HlAudio(t)) is chosen such.that nonzero 

audio field perturbation matrix elements exist between the B rotating 

frame (B interaction representation) eigenstates. Usually, one has 

.... 
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the linearly polarized fields, 

(III-17) 

In ADRF-DR, the audio field does not destroy the A dipolar order 

directly when the A spin s·pecies has a purely Zeeman laboratory frame 

hamiltonian. With the configuration (Eq. (III-17)), the A spin 

interaction with HlA a· (t) is still directly proportional to I when 
U lO Z 

transformed into the A rotating frame, where one has 

[ x (e) , I J = .o 
ss z 

A qualitative definition of JC ( 6) was given above. Accidental audio 
.ss 

field components along the x- and y-directions will not affect the A 

dipolar reservoir, since only high-frequency (i.e.·>> yAHLA) field 

components result after transformation into the A rotating frame. 

Audio saturation is inapplicable or poorly suited in SLDR and 

LO\IDOR, however, since direct destruction of A dipolar Order is possible 

in those cases. To get around this problem, the method of' frequency 

.modulation was. devised: 

Frequency modulation: 39 This method is similar to audio· saturation 

in many respects. If the B r.f. frequency wB differs from .the B laboratory 

frame transition frequency wBo' there will be an off-resonance field 

in the coordinate system rotating at wBo' If wB is modulated sinusodi~lly: ' 

.where w ·B is the rotating frame tr~nsition frequency, then till will 
I e 

oscillate along the z axis in the rotating frame (cfr. Fig. III-3) at 
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the frequency weB. C'iwB can he chosen large enough such that saturation 

of the B rotating frame Zeeman levels then results, in analogy with audio 

resonance saturation. This nai'e picture is verified by formal trans-

f t . . .t th B . t t" t t" 30 orma 1on 1n o e 1n erac 10n represen a 1on. Obviously, selective B 

reservoir heating is possible with this scheme,. if the A and B laboratory 

frame transition frequencies are widely separated (frequency separation 

>>A dipolar linewidth). 

Pulsed B r.f.: Consider for simplicity the case where the B r.f. 

field is applied on resonance (wB = wB· ) at a moment when no phase memory 
0 . 

from previous r.f. pulses exists in the B system. If the B r.f. is 

turned on in a time much shorter than the B precession period 2n/wBo' 

the net magnetization along H
1

B in the B rotating frame will initially 

be zero, cqrresponding to an infinite B reservoir temperature. If conditions 

for double resonance are met, A-B thermal equilibration will take place 

in a time of order TAB; leaving the B reservoir at a low temperature. 

Re-heating of the B reservoir is accomplished by suddenly turning off 

the B r.f., allowing the B spins to lose phase coherence (i.e., waiting 

a few B spin-spin relaxation times T
2
B)' and then suddenly turning the 

B r •. f. on again. Apart from the slightly increased A reservoir temperature, 

the situation is then analogous to that at the start of the previous 

B r.f. pulse. The B heating/A-B thermal contact/B spin de-phasing can 

be repeated a large number of times (-1o3-1o4) in a single double resonance 

cycle by applying a string of B r.f. pulses to the sample, and a cum-

ulative heating of the A reservoir results. 

Phase shifting:
35 

After the initial A-B thermal equilibration has 

taken plase, the B Zeeman system in the rotating frame is a state of low 
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spin temperature' manifested by the net magnetization 

where CB and TB are the B system nuclear Curie constant and spin 

temperature, respectively. If the B r.f. is suddenly phase shifted 

by 180°, the vector ii
1

B will be inverted in the rotating frame. The 

magnetization MB cannot follow, however, if the phase shifting is 

fast (i .t::., in a time <<J../wBo), and a negative spin temperature TB 

results immediately after the phase shift. If phase shifting is 
• 

repeated at intervals ~TAB' which is roughly the build-up time for MB, 

the B reservoir temperature will fluctuate through infinity between 

high positive and negative values, yielding high double resonance sensi-• . 

tivity. Phase shifted B r.f. is not as well suited as pulsed B r.f. 

for quantitative measurements (of TAB' T2B, etc), however. 

III-C. Transient Oscillations in the Rotating Frame 

When strong B r.f. pulses are applied in double resonance, the 

energy associated with the A-B dipolar coupling XAB will oscillate for 

a time of order T
2
A, the A spin-spin relaxation time, and the effect 

can be picked up by nuclear double resonance with pulsed B r. f. As 

shown in ReL 11, the effect is due to transient oscillations of the 

B spin magnetization MB in the rotating frame, with associated oscillations 

in the A-B dipolar coupling energy represented by the hamiltonian ~(s) 

in Section II-B. 

A qualitative understanding of the transient oscillations is most 

easily obtained by considering separate B spins in the reference frame 

rotating at the B resonance frequency wBo (cfr. Fig. III-4): In the 
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Fig. III-4. Precession of two different B spins in their 
instantaneous effective fields, at beginning 
of the B r.f. pulse (~V}B = 0) (after 
D. A. McArthu~l2). 

.. 
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absence of applied r .f .. f:i:.elds, A..-B and A-A dipolar couplings will 

quickly (_in a time of order T
2

A) lead to a s.ituation where B spins 

are preferentially aligned along their local fields. HLB, which by 

hypothesis are chiefly of A dipolar origin. If a strong B r.f. field 

is: suddenly applied on or near the B frequency wBo (ClwB = ~0 - wB "" 0) , 

the effective field for each spin K in the B rotating frame will be the 

vector sum of the applied field H
1

B and the dipolar field component 

(H
1

B)K. Each spin K will then precess about the local effective field 

(HeB)K, as shown on Fig. III-4. No macroscopic B magnetization exists, 

however, due to the random distribution of the H
1

B. 

< -1 
If the precession frequency (weB)K = (yeff B · HeB)K is -~2A' then 

' 
(H

1
A\ will change little during a precession period, and the total 

A-B dipolar coupling energy will be modulated at the frequency weB" 

Detection: The A-B dipolar reservoir is strongly coupled to the 

A dipolar reservoir (cfr. Section II-B): 

[~(s) ,~(s)]#O. 

If the B r. f.. is suddenly cut off, the total coupled reservoir represented 

by 

Jess = u!cs) + ~(s) 

canbe described by a common spin temperature T after a time Of order 
ss 

T2A. Tss will depend in part on the energy <~(s)> at the moment when 

the B r.f. was cut off, and by varying the length T of the B r.f. pulse 

and monitoring the A reservoir temperature Tss' one could map out the 

oscillations in principie. Since < ~(s )> !< u!> << 1, a string of 



identical B r.f. puls:es, spaced by a time >>T2A' T2B' is required . 

in practice to yield an observable effect on the A reservoir temperature. 

In their' theory of transient oscillations in the rotating frame, 

11 
McArthur, Hahn and Walsted calculated the quantity o(T), defined by 

(III-18) 

where SA(n) is the A signal strength obtained if the A reservoir tempera

ture is sampled after n B r. f. pulses (sampling time tb fixed), and T 

is the length of each B r.f. pulse. If the A signal strength with no 

B r.f. applied is normalized to one, Eq. (III-18) yields: 

1 
o(T) ~ N ' ln SA (n) (III'-19) 

where N is the total number of pulses applied. The experimentally 

obtained O(T) as determined by Eq. (III-19) can be fitted with the 

theoretical expression: 

0 ( T) = 
NB. Tr{Jt? } 

ss 
( 1 -. F ( T)) 

where NB is the B spin concentration and 

F( T) = g ( T) cos ( WlB T ) - 2 f T dt 1 

0 

( t I') dg ( t I ) 
cos wlB . . dt I . 

cos(w t") . lB 

( III-20) 

(III-21) 

d
2 (t") 
g 
dt" 

Here, g(T) is the A-B dipolar coupling correlation function introduced 

in Section III-B. 



IV. NUCLEAR DOUBLE RESONANCE WITH .A SINGLE, 
UNMODUL.ATED B r . f. PULSE 

In this chapter, it will be assumed that the B spin species has 

high abundance, but requires double resonance methods for detection 

because of low gyromagnetic ratio and small quadrupole coupling con-

stant. As will be shown, it is then possible to create a B spin 

reservoir with sufficiently large heat capacity so that a single heat 

contact between the "cold" A system and a "hot" B system, with no re-

heating of the B system, produces an observable change in the A spiri 

temperature. Since this double resonance method yields much information 

in addition to the B spin transition frequencies, it will be treated in 

detail belo·w. 

IV-A. Th.ermal Reservoir Model f'or ·the Double Resonsnce Process 
With No B Spin Saturation in the Rotating Frame 

The r.f. pulse sequence is shown in Fig. III-2: The time scale is 

·chosen so that the B r.f. pulse starts at t=O, stops at t=tB r.f' a:n,d 

the A r .f. 8-pulse is applied at t=tb. 

Immediately after low A spin temperature has been obtained through' 

ADRF, an unmodulated square B r.f. pulse is applied, not necessarily on 

exact resonance. The final A spin temperature is measured by sampling 
. . 

the remaining A-spin dipolar order with a 8(=1T/4) pulSe. 

In the following, we will assume that the A spfn system, B spin 

system, and lattice can be described by separate, uniform temperatures 

TA, TB and T
1 

t. (spin temperatures were discussed in II-A) and that 
at J.ce 

there is thermal contact between the three systems. The lattice heat 

capacity will be assumed infinite. 

The problem can then be treated as a simple example of calorimetry, 

cfr Fig. III-1. 
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The A and B spin systems and the lattice are thermal reservoirs 

characterized by their heat capacities and temperatures. If the temper-

atures are not all equal, heat will flow between the lattice and the 

A (B) reservoir at a rate proportional to the thermal coupling constants 

l/T1A (l/T
1

B). A similar heat transfer at a rate proportional to 1/TAB .~ 

will take place between the A and B reservoirs when the thermal switch 

between them is closed, i.e. when the B r.f. pulse is on. Actually, the 

B reservoir in the form treated here exists only when the B r.f. field 

is applied, but this will not affect the following analysis. The heat 

capacity of the A reservoir can be defined by 

( IV-1) 

where EA(TA) is the thermal energy in the reservior. CB(TB) can be 

defined analogously. 

The parameters in this model must be properly identified and 

described in terms of spin resonance language. As described in Chapters 

II and III, the thermal reservoir model for coupled spin systems has 

been extensively analyzed in connection with studies on double resonance 

dynamics, and the results carry over as follows in the present case: 

1) EA and EB are the A and B spin system energies· in the interaction 

representation: For the A spins after ADRF this is the dipolar energy, 

for the B spins it is the Zeeman energy in the B rotating frame. Even 

at the lowest spin temperatures obtained following ADRF, the high temper~ 

ature Curie expressions for the energies are valid (hw = kT for w/2n = 
-4 ) 100 kHz, T = 4 xlO °K : 

lj 
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+ 1) 

(IV- 2) 

Here, NA and NB are the number of spins per unit volume; yA and yB are 

the A and B spin gyromagnetic ratios in the A and B rotating frames, 

respectively; I and S are the A and B spin quantum numbers; TA and TB 

are the spin temperatures in the A and· B interaction representations. 

HLA is the local field at A-sites: HLA 
2 = Tr{~(s) 2 }/Tr{~

2

}. HeB 

is the effective field in the reference frame rotating at the B r.f. 

frequency wB, which may differ from the B resonance frequency wB0 . In 

this rotating frame, the applied B r.f. field corresponds to a static 

magnetic field HlB' and HeB is the vector sum of HlB and the off:.. 

(JJBo - ~ = ../H ·. + (Lili ) 2 resonance field llRB = (cfr. Fig. III-3): HeB lB B YB 
Throughout this chapter, it will be assumed that HlB is much stronger 

than the local dipolar fields at the B spin sites. 

With EA and~ defined as in Eq. (IV-2), it is apparent that the heat 

capacities CA(TA) and CB(TB) may be strongly temperature dependent. 

Also;, with these definitions, infinite spin temperature corresponds to 

zero energy, while low spin temp. corresponds to a large, negative energy. 

2) TlA and T1B are the rotating frame spin-lattice relaxation 

times for A and B spins, and are generally different from the laboratory 

spin-lattice times. This definition of the thermal coupling constants 

1/TlA and 1/TlB applies to the rate equations for the spin energies in 

the case where the thermal coupling between the A and B systems is zero 

(1/T AB = 0): 
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(IV-3) 

Here, EA and EB relax toward zero. Strictly speaking, EB will relax 

toward zero only when the B r.f. pulse is exactly on resonance: w = w B Bo. 

For off-resonance pulses TB will approach a value Tlattice or higher, 

depending on wB. Since EB (Tlattice) is negligible in this context and 

the lattice heat capacity is vastly larger than CA and CB' it will lead. 

only to insignificant errors to assume in the following that the lattice 

has constant and infinite temperature during the relaxation process. 

· 3) TAB is the cross-coupling time constant for energy transfer 

!Jetween the A and B systems during double resonance. It is defined by: 

(Heat flow between A and B reservoirs)=- _l._ (EB(TB)- EB(TA)); 
TAB 

( IV-4) 

Thus the B reservoir energy relaxe.s toward EB(TA), the energy it would 

have had at the instantaneous A reservoir temperature, with a rate 

constant 1/TAB. Here and in the following it is assumed that the reser

voir temperatures are the only parameters in Eq. (Iy-2) that change 

during cross-relaxation. From one pulse cycle to the next, however, 

HLA and HeB may change if the sample temperature varies, and HeB will 

also depend on the B r.f. field strength. These and related effects 

will be treated in the next section. 

One can now proceed to set Up the thermodynamic equations for the 

system in Fig. III-1. The A.and B reserviors gain or lose energy in two 

ways: . First, if one disregards the cross-coupling, ( 1/T AB = 0) , spin

lattice relaxation will generate heat flows as given by Eq. (IV -3) 

'1': 
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between each reservoir and the lattice. Second, if the A and B reserviors 

are assumed decoupled .from the lattice, (1/TlA = 1/TlB = 0), cross relax-

ation creates an exchange of energy between the reservoirs. Then, by 

Eq. (IV-4): 

which can be rew:d tten: 

_L .(E (T ) - £ E (T ) ) 
T B B' · A A 

AB 
(IV- ~) 

where 

.E is the ratio of the heat capacities of the B and A reserviors at the 

instantaneous temperature TA. In the present case: 

£ = 
2 w· 
eB ( IV-6) 

and £ is therefore independent of the instantaneous temperature TA during 

cross-relaxation. However, a change in the sample temperature or B r.f. 

field strength will alter E through its dependence on weB and wLA. In 

double resonance work on rare spin species, E is usually very small 

( -2 -4 typically 10 to 10 ). In order to make use of the results derived 

in this chapter for quantitative measurements, one typically needs 

£30.1 corresponding to an A spin signal to noise ratio of -50. A 

lower signal to noise ratio would require a proportionately larger £ 

for the same application. Since S(S + 1) and l(I +-1) are of approxi

mately the same magnitude and w~B ~ w~ (cross relaxation condition), 
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E > 0.1 will correspond to NB :> 0.1 NA' Therefore, the B spin species 

must be fairly abundant, and the methods of this chapter apply to B 

spins species that require double resonance methods for detection due 

to low gyromagnetic .ratio and/or weak quadrupole interaction with the 

lattice. If no energy exhange with the lattice takes place during the 

A-B cross relaxation, one has by energy conservation: EA(TA) =- EB(TB)' 

and EA (TA) is immediately given by Eq. (IV- 5). 

One can now combine the contributions of energy flows into each 

reservoir. After the thermal switch between the A and B reserviors has 

been closed, the A and B reservior energies will evolve as described 

by the following homogeneous differential equation system: 

{rv-7) 
--= 
dt 

where 

cl __£_ + 1 
c2 

1. 
= = 

TAB TlA TAB 

(IV-8) 

c3 
E: 

c4 
1 1 = = --. + 

TAB TAB TlB 

The temperatures in the arguments of EA(t) and EB(t) have been omitted, 

since they, from now on, are always the instantaneous temperatures of 

the A arid B reserviors respectively: EA(TA,t):: EA(t), EB(TB,t)- EB(t). 

The general solutions of Eq. (IV-A-7) are of the form, 

(IV-9) 
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E:B (t) 
-A t e + + E (-) 

B 
-A t 

e (IV-10) 

where 

(IV-11) 

The constants EA(±) and EB(±) are determined by the initial conditions. 

The time reference is as shown in Fig. ( III-2) : At t=O the B r. f. is 

turned on, and the A and B spin reservoir energies are EA(O) = EAo and 

EB(O) = EBo' respectively. The set of Eqs. (IV-7), (IV-9) and (IV-10) 

then yields , 

( Cl - A _)EAo - C E (A - Cl)EAo+ C2EBo 
EA(+) . 2 Bo E (-) + 

= = A. - A. A A.+ A. + 
(IV~l2) 

-c E + ( CJ:i - A. )E · C3EAo + (A. - C4 )EBo 
EB(+) 

3 Ao - Bo E (-) . + = = 
A+ A B A - A + 

Immediately after ADRF, the A spin temperature is very low, and there-

fore EAo is large. The B spin temperature immediately after the B r.f. 

is turned on, will generally be high, and depends on. the frequency wB 

of the applied field. This probletn is discussed in Appendix B, under 

the assumption that the B r.f. field is turned on so rapidly that the 

B spin quantum states at the beginning of the B r.f. pulse are identical 

to those immediately preceding it ('sudden approximation). In the 

remainder of this section, it will be assumed that the B r. f. is exactly. 

on resonance, while the off-resonance case is discussed in Section IV-B. 

On resonance, EBo = 0 or TBo = oo, according to Append:lx B, and the 

general solution for EA ( t) simplifies to: 
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r.f.) 
at t = t i.e., at the end of the B r.f. pulse. 

B r.f.' 

We are interested in the value of EA ~t the time t = tb when the 

A syst~m order is :sampled ( cfr. Fig. III-2). After the B r. f. pulse 

is turned off, the A and B systems are decoupled and the A spins 

undergo spin-lattice relaxation at the rate I/TlA during the time from 

t - t_ 
- '"B r.f. to t = tb. Thus one can write: 

E (w =w ·t ) ~ 
A B Eo' b 

(IV-13) 

A -c + l 
A -A 
+ 

e - lA B r.f. 1 + 1 - e + - B r.f. 
- (A -1/T ) t ( C -A.. - (A -A ) t ) 

A -C 
+ l 

The reason for arranging the expression for EA(tb) in this fashion will 

become apparent after we analyze the physical significance and the 

relative magnitudes of the quantities involved. Substituting for the 

C's in A±~ one obtains: 

(IV -14) 

l -

So far, no approximations have been made. 

The expression simplifies considerably if 

(IV-15) 

Then, Eq. (IV-14) yields the approximate expressions: 

"'·. 
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A + 

A"" l(e:+l) 
e: + l TlB TlA 

(IV '-16) 

The relationships Eq. (IV -16) are exact for TAB/T1A = TAB/T1B = 0. 

In what follows, it will be assumed that the approximate expressions , 

Eq. (IV -16), are valid. One can now go back to the expression, 

Eq. (IV -13), for the A reservoir energy EA (tB r .f.) at the end of 

the·B r.f. pulse. The second term in the parenthesis has a time depen-

dence essentially governed by A+' since A+- A "" A + 
This 

time dependence reflects the strength of the A-B coupling through TAB' 

and also .describes a relatively rapid (compared to TlA' T
1

B) transient, 
TAB 

since the tc~rin disappears for t · >> .. . . B r.f. 1 + E • Physically, this 

describes the initial equilibration of TA and TB as the A and B reservoirs 

are brought into thermal contact with each other. If no heat exchange 

with the lattice takes place during this process, ( T1A; TlB >> TAB), the 

A reservoir energy after complete· equilibration ( tB f >> 
1 

T ~ · . ) will 
r. . e: 

be determined 'l30lely by e:, given the initial conditions on. EA and EB. 

This result is given by the term 

e: + 1 e: l --.--
TAB TAB TlA l 

"" ~ 

e: + l e: + 1 

TAB 

for 
T 

. AB << l 
TlA 
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.,..). .. t 
The other variation with tB r. f. comes from the factor e · _ B r. f. , 

and is much slower, since A+ >> A_: (cfr. Eq. (IV '-16)). A. in Eq. ( IV-16) 

-.A · t 
depends on £, TlA and TlB' and the factor e - B r.f. reflects the 

transfer of' heat from the lattice to the A system by two routes: Direct 

A-spin-lattice relaxation; and B-spin-lattice relaxation with transfer of 
TAB 

energy from the B to the A system. For t >> and with assump-B r.f. 1 + £ 

tions on TAB' TlA and TlB as above, the expression for EA(\) can 

be written to a good approximation as: 

(IV- 17) 

E · exp - . -- - -- t - t 1 . ~ £ (1 1) 1 f 
Ao £ + 1 £ + 1 TlB TlA ~ r.f. TlA b 

Assume now that tB r.f. is varied, while tb is kept fixed. 

Then, after the initial rapid equilibration of A and B spin temper-

atures , there will be -an exponential decay a.t the rate- -- - --£ ( 1 1 ) 
1 + £ TlB TlA . 

When T1B < T1A the slope will be as shown; when T1B > TlA the spin energy 

will decrease rapidly to a maximum, then slowly increase, and for the 

special case T1B = TlA one expects that EA(tb) will decrease exponentially 

with a rapid time const "LAB to a level which then remains-unchanged. 

It is easy to explain this dependence of' the A spin heating rate 

-on the relative values of' T1A and T1B by considering the coupled thermal 

reservoirs shown in Fig. III,-1: If the thermal contact is broken immedi-

· ately after initial equilibration of the A and B temperatures, the A 

reservoir will heat up at a rate determined by TlA' and at t=tb the 

energy EA(tb) will have reached a certain value. Keeping the thermal 



#. 

.'ffr 

.. 

-59-

connection with the B reservoir on after equilibration mey increase or 

decrease EA(tb) relative to this value, depending on which wey heat 

flows between the reservoirs. 

When the A and B reservoirs heat up at the same rate (TlA = T1B), 

the reservoir temperatures will remain equal after equilibration. Thus, 

no A-B heat transfer takes place even if the thermal contact is left on 

and EA(tb) will be independent of tB r.f •• 

If TlA > TlB' the B reservoir heats up faster than the A reservoir, 

and heat will flow from the B to the A reservoir as long as the thermal 

coupling remains on. At tb, the A temperature will be higher (i.e., 

EA(tb) smaller), the longer the coupling time tB r.f .. 

For T1A < TlB' heat flows out of the A system via the thermal A-B 

coupling during tB f . As tB f increases, the A reservoir will be r. . r .. 

progressively colder at t = tb, compared to the case where no A-B heat 

transfer takes place after initial equilibration. The resulting positive 

·f does not mean that the A reservoir is cooling down, of 
r .. 

course, but rather that the rate of heating has been reduced . 
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IV-B. Double Resonance Lirieshape With arid Without 
B Spin Saturation in the Rotating Frame 

So far, the influence of' the B r.f'. frequency on the double resonance 

process. has not been considered. There are three main effects of' specific 

importance in the present case. Two of them stem from the same cause, 

namely the increase in weB = yBHeB off resonance. The third is due to 

the frequency dependence of the B spin temperature at the beginning of 

the B r.f. pulse. 

1) 
-1 . TAB depends on the B r.f. frequency. If the A spin correlation 

time Tc is<< TAB (which should apply to most cases of' interest here), 

the cross coupling rate will be (cfr. Section III-B): 

-1 
TAB (IV-18) 

Here, 8 is the angle in the B rotating frame between z-axis and the 

HeB vector: 

sine = = 

J(w) is the spectral density of the local field fluctuations at the B 

spin sites, due to the A spins. In the fast correlation case it is a 

t ' 11 d • f t• f 2 - . 2 ~(A ,2 mono on~ca y ecreas~ng unc ~on o w. Since weB - w
1

B .... LlWBJ , where 

t..wB = wBo ~ wB' weB will always increase as jt..wBI increases, while J(eileB) 

will decrease. -1 
Therefore, the cross coupling rate TAB will decrease as 

wB goes off resonance in either direction. 

2) For constant HlB' e::(wB) increases off resonance. From Eq. (IV-6): 
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' const
2 

(IV-19) 

wLA will be unchanged as long as the sample temperature is constant (wLA 

will be essentially independent of the B spins in all experiments where 

double 1·esonance methods are necessary to stuw the B spin species, since 

then the.B spins haye either low gyromagnetic ratio, low abtmdance, or 

both). Therefore, the increase in e:(wB) off resonance reflects directly 

the increase in the rotating-frame effectiYe field HeB off resonance. 

· H determines the B reserYoir heat capacity, which increases symmetrically eB 

arotmd wBo as 16~1 increases. 

3) When the B r.f. pulse is applied suddenly, it creates a B thermal 

reserYoir at a temperature which depends on wB. .If the B reserYoir is at 

thermal equilibrium with the lattice before the pulse, the B reserYoir 

energy immediately after the pulse starts will be (cfr. Appen~ix B): 

(IV-20) 

where K is a constant. Thus, wB is an important parameter in de-

termining the initial conditions for thr thermal relaxation process 

between the A and B reserYoirs and the lattice. When it does hot appear 

explicitly in this and following formulas, one should bear in mind that 

EBo, £and TAB are not fixed parameters, but depend on WB in the manner 

described aboYe. 

Before treating the lineshape obtained after the ADRF....,double .. reson-

ance sequence in Fig. III-2,using a single, unmodulated B r.f. pulse, it 

will be of interest to see what the predicted lineshape will be if the 

B spin reservoir is kept at infinite temperature during the double 
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resonance process. This can be done in practice by continually heating 

it, using one of the methods outlined in Chapter III. By the definition 

(Eq. IV-2)) , EB = 0 for TB = oo , and the rate equation for EA simplifies 

to 

dE A 
-- = d t 

-c E 
lA , where 

With EA(t = 0) = EAo as before, the solution for EA is: 

If the A reservoir energy is sampled 

- --+-- t 
( 

E l ) 
TAB TlA B r.f. 

at a time t=t0 , 

( tb - tB r. f. ) 

TlA 

the result is: 

= 

_E_t 
e. TAB B r.f. 

The B spin double resonance lineshape is recorded experimentally with 

constant tb, tB r.f., T1A and T1B. Eq. (IV-21) then shows that the 

lineshape is determined by the dependence of E on wB. From Eq. (IV·-18) 
TAB 

and ( IV-19) : 

const
3 

• 

Since w1B and wLA are constant during a sweep through the B line, one 

has: 

-const 5 · J (w ) • t - (IV-22) 
EA(~, tb) = const4 · e eB ·B r.f. 
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J (weB = ~ w~B + CwB - wBo) 
2
1 is a maxi.Io.um for wB = wBo and decreases 

off resonance. From Eq. (IV -22), then, it is i:riunediately clear that 

this yields a double resonance line with maximum depletion of A f?pin 

energy for wB = wBo' and gradually reduced depletion to either side of 

resonance. 

For the case where no reheating of the B spin reservoir takes place 

after it has been brought into contact with the A spin reservoir, i.e. , 

when an unmodulated square B r.f. pulse is applied with no audio reson-

ance heating, the lineshape can be had from the expressions in 

Eqs. (IV-9) , ( IV-11) and ( IV-12). EA ( wB, tb) can be written in the form: 

EA(wB;tb) = 

(IV-23) 

where all parameters are defined in section IV-A. Exactly on resonance, 

EBo = 0, and one recovers Eq. (IV-13). As wB is swept through the line 

at ~0 , the parameters will change, and if tB f 
is considered as a 

r .. 

fixed parameter, Eq. (IV-23) yields the lineshape directly. However, 

TAB varies over a wide range of values throughout the line and it is not 

permissible to make assumptions on the relative magnitudes of TAB' TlA 

and T
1

B to obtain a simplified formula describing the whole line. Since 

the physical meaning of Eq. (IV-23) as it stands is obscure at best, it 

might be helpful to consider the two limiting cases TAB<< TlA' T1B and 

TAB >> •rlA' 'l'lB: 
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1) 1 << 'J' . 'l' AB lA' lB" As is apparent from Eq. (IV-1.8) this would 

correspond to the region around wBo' if at all. (In double resonance 

work in solids, TlA and T
1

B are generally at least an order of magnitude • 

larger than TAB on exact resonance.) If the assumption on TAB holds, 

one obtains from Eq. (IV-16) and (IV-23): 

EBo ) e- 1 ~£ ( T~B - T~) tB r. f. 

EAo 
(IV-24) 

which describes both the thermal equilibration between the A and B 

reservoirs and the slow spin-lattice relaxation heating of the coupled 

A-B reservoir. If one is only interested in the slow heating of the 

coupled reservoir, one can make the additional assumption that the 
1 

A-B thermal 'equilibration transient has died out: t B r.f. 
>> AB 

l+€ ' 

which leads to: 

EA (wB ,tb) , (EAo + EBo) £~1 x exp {- £~1 ( T~B - T~) tBr .f. - T~ , tb} 

(IV-25) 

This differs from the on-resonance formula in that EAo has been sub

stituted by EAo + EB
0

. This form is expected, since after the initial 

transient, the two strongly coupled reservoirs behave as a single thermal 

reservoir with initial energy EAo + EB
0

. The only quantities that will 

vary as wB is swept through the line will be E and EB
0

• The dependence 

of TAB on wB does not show up here since the assumption tB r.f.>>TAB/(l+E:) 

was made. From Eqs. (IV-19) and (IV-20) one obtains expressions for 

e:(wB) and EB
0

(wB)' which substituted into Eq. (IV-24) yield: 
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( rv-26)) 

exp 1- _· -'E-'( ~-=-=o'-')_w.;;;.!=B--:--
( ). 2 + 2 

e: wBo weB wlB 
(T ~B -T ~A) tB r · f · 

_ __L·tl T b lA 

The value of EA(wB, tb) when the term K · L\wB is ignored will 

be defined. as EA(wB, tb)symmetric· One observes that for T
1

B ~ TlA, 

E (w t ) · 
A B' b symmetric is depleted the least for wB = wBo' and increases 

symmetrically about wBo as wB goes off resonance in either direction. 

Instead of a minimum signal at wBo' as was the case with continuous B 

saturation, one here has a local maximum! This paradoxical result is 

only valid as long as the condition TAB<< TlA' T1B is fulfilled, of 

course. 

EA(.wB, tb) t . by adding the symme r1c · 

the obviously antisymmetric term K • L\wB • EA (wB, tb )symmetric/EAo · 

for wB > wBo' L\wB is negative and EA(wB' tb) will be depleted more 

rapidly on the high..:frequency side of wB , ,less rapidly on the lowa . 

frequency side as compared to EA(wB, t ) . t . . 
·. b · symme r1c 

Thus, 

As jL\.wBj increases, TAB will increase, and the condition TAB<< TlA, 

.· T
1

B will be· progressively poorly satisfied. Physically, the A-B heating 

transient will take longer time when TAB increases, and when the transient' 

no longer has died out at t = tB r.f .. the depletion of EA(wB, tb) will. 

be reduced compared to the case TAB << TlA, -~lB · 
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2) TAB >>TlA' T1B. Since TAB-+ oo as 6wB-+ oo, it is always possible 

to satisfy this condition by going sufficiently far into the wings of the 

line. l 

TAB 

l r 
<< ~ means that the thermal coupling between the A and B 

lB 
reservoirs is much weaker than the thermal coupling of the B reservoir 

to the lattice. Therefore, the B reservoir temperature TB will relax 

toward T at a rate much greater than the rate at which it relaxes lattice 

toward TA. Starting now at the time t=O immediately after ADRF, TA will 

be very low, corresponding to the energy EA
0

• The initial TB will be 

very high., corresponding to a low energy EBo. Because the B reservoir is 

strongly coupled to the hot lattice, EB will always be close to zero, 

but as long as the A reservoir is at a low temperature so that heat is 

flowing from the B to the A reservoir, EB will depart slightly from zero, 

since _!_is finite. 
TlB 
This can be cast in a semi-quantitative form. Since the equilibrium 

value of EB at the lattice temperature is negligible in this context, it 

is sufficient to treat the case where ~0 = 0, and EB relaxes toward zero 

in the rotating frame. Then, according to Eq. (IV-10) and (IV-12): 

c ( -~ t . -~ t ) _ _,3:;::-- + B r.f. . - B r.f. 
X -~ -e + e 

+ - . 

(IV-27) 

~ ± as given in Eq. (IV-14} can be expanded to first order as a good 

approximation if 

(IV-28) 

.. 
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which is valid in the present case (TAB>> TlA' T1B), provided TlA is 

not~ T
1

B. ·rn the case of interest here, E: is not necessarily negligible 

compared to 1. Assuming that Eq. (IV-28) is satisfied, one finds: 

A 1 
~ 

+ TlA 
(IV.,-29) 

A 1 
~ 

TlB 
(IV-30) 

In the special case where T
1
A = TlB' one obtains the exact expressions: 

A E:+l = --+ 
+ TAB 

1 = --= 
TlB 

When Eq. (IV-28) is satisfied, Eq. (IV-27) takes the form: 

E . 
Ao ( 

1 
--. t 

E · TlA B r.f. 
· 1 1 · e · 

TAB(rlB - TlA) . 

- e 

1 -.-t 
TlB B r.f) 

(IV-31) 

The temporal behavior of EB in Eq. (IV-31) is just as predicted by the 

qualitative arguments above: At t = 0, the energy EB(O) is zero in 
Br.f. 

this approximation. It grows to a maximum value and then decays to 

zero. One has for the maximum value of EB: 

E < EE ' 
B ,max. Ao ( 1 1 ) 

TAB TlB - TlA 

1 (IV-32) 

If Eq. ,(IV-28) is valid, this means that: 

(IV-33) 

{· 
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E +E 
By Eq. (IV-25), · A~+£ Bo • £ is the energy in the B reservoir after 

equilibration of TA and TB if there is no heat transfer to the lattice, 

Thus 

In the wings of the line where TAB -+ oa, the B reservoir energy therefore 

always remains very low, corresponding to a high spin temperature, and 

one has a situation similar to the one with continuous B reservoir 

heating. 

From the behavior of EA(wB) in the two regions TAB~ TlA' TlB' 

it is now possible to describe the whole lineshape. For simplicity, 

some special cases possible when ( T~B - T~) tB r. f. < 1 will 

not be considered. In the far wings of the line, TAB>> TlB' and TB ~ oo, 

EB ~ 0. Thus all relevant parameters are almost identical to the ones 

in the case where the B reservoir was kept at infinite temperature by 

continuous saturation. The lineshapes will overlap and are described 

by Eq. (IV-21). As IL1wBI decreases, the depletion of EA(tb) ("line 

depth"), will be less when the square, unmodulated B r.f. pulse is applied 

than in the case with continuous saturation in the rotating frame. This 

is because the B reservoir temperature becomes lower as TAB increases 

towards TlB' and the heat transfer from the B to the A reservoir is 

reduced relative to the case with saturation, since TAB is the same in 

both cases. Approximately in the regions on both sides of w_ where 
. J::So 

TAB~ TlA, TlB' there will be a maximum in the depletion of the A reservoir 

energy. For lower values of I L1wB I ' the depletion will decrease as I [1~ I 

decreases, and reach a minimum at [1~ = 0. Between the points of maximum 

depletion, an asymmetry in the line will be evident. The depletion on 

... 
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the high-frequency side of wB will be largest, and this also applies to 
0 . 

the two depletion maxima. 

It is apparent from Eq. (IV -24) that the strength of the B r. f. 

field, i.e. the magnitude of wlB' is an important parameter in determining 

the lineshape in the region wB ~ wBo' Increasing w1B will depress the 

peak in EA(~, tb) at ~0 , and also the curvature at the peak will be 

reduced, since a relative change in E due to a given change in llwB will 

be less for a larger w1B. 

IV-C. Applications 

The r~sults derived in EJections IV-A and IV-B have some obvious 

applications which can be grouped into two classes: 

First, one can devise eXperimental techniques that provide data 

on material or double resonance parameters that may or may not be obtain-

able by alternative methods. Of special interest here is the B spin 

rotating-frame spin-lattice relaxation time TlB' which can be measured 

by a technique described below. It will also be shown how the ratio e: 

of the A and B reservoir heat capacities and the A-B cross-relaxation 

time TAB can be measured. The method is eXperimentally simpler than 

others used to measure these parameters previously, and it is the only 

method developed so far, to this author's knowledge, that is capable of 

measuring short B spin-lattice relation times. 

Second, one has at one's disposal a new set of phenomena that can 

provide a sensitive test of the thermal reservoir model for the double 
• 
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resonance process. The experimental procedures developed in this chapter 

for measuring E: , TAB and T1B cannot be applied with confidence before 

the validity of the thermal reservoir model has been established for each 

specific case. Also, the importance of such a test extends beyond the 

scope of double resonance with unmodulated B r.f., as will be discussed. 

IV-C-1. Measurement . of. E, 'T:AB and T1B 

Consider first the case where the B r.f. is applied on resonance: 

wB = wB6 . The A reservoir energy at time tb is then expected to depend 

on the parameter tB . f as given by Eq. (IV -17 ) . Experimentally, this 
r .. 

can be verified by repeating the double resonance cycle several times, varying 

tB r.f. by steps through the range from zero to a time slightly less 

than tb, and keeping all other parameters constant from one cycle to 

the next. The cycle repetition time must be larger than T1A and T1B to 

allow the A and B reservoirs to come into thermal equilibrium with 

the lattice before each pulse sequence, unless a correction term is 

introduced into the equations above. If the thermal reservoir model 

for the double resonance process as described above applies (cfr Section 

IV-C-2), experimental curves of the type shown in Fig. IX-4 should be 

obtained, and extrapolation of the straight portion of the semilogaritmic 

graph to t.B = 0 yields: r.f. 

1 E (t ) = E e 
A b extr • Ao £ + 1 (IV-34) 

Equation (rV -34) was obtained from Eq. (IV -17 ), which describes that 

part of EA(tb) which has exponential dependence on tB r.f., by formally 

setting t = 0. B r.f. The true value of EA(tb) when noB r.f. is applied, 

is of course: 



tb 

EA(tb; tB f = 0) = E · e TlA r. . Ao 

Taking the ratio between EA(tb)extr. and EA(tb; tB r.f. = 0), on:e finds: 

and£ can be determined from the graph as: 

£ = 
EA(tb; tB r.f. = O) - EA(tb)extr. 

EA(tb)extr. 
(IV-35) 

Once £ is known, it is simple to measure TAB. Making a new plot with 

all parameters unchanged, except that now the B system is kept at infinite 

temperature (by B r.f. phase-shifting, f.ex.) one obtains a straight line 

falling off steeply from EAo at tB r.f. = 0, as described by Eq. (IV-21): 

__ E_t _ _Lt 

E ( t ) TAB B r.f. TlA b 
A WB' b = EAQ . e (IV-36) 

The slope £ , combined with £ determined from Eq. (IV- 35) , gives 
TAB 

Going back to the original curve which yielded £, one can determine 

T1B as follows: The slope A of the straight portion of the graph is, 

according to Eq. (IV~l7): 

and therefore 

slope .:: A - - E (_L - _L) · 
E + l TlB TlA 

l --= 

With E determined from the same curve, as described above, and T
1

A 

(IV-37)· 
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obtainable .from a direct measurement on the A spin species, T
1

B can be 

calculated. Equation (IV- 37) applies for both A ~ 0. In the special 

case where A = 0,. T1B = T1A and it is not necessary to determine E. 

A modified version of the experimental procedure is possible, where 

tb is allowed to vary from cycle to cycle such that tb = tB r.f. + ~t. 

~t is a fixed time interval which is much shorter than tb. The equations 

for E A ( tb), etc, will change slightly, but the same information on E, 

TAB and T1B can be obtained and no additional physical insight is gained 

from the method. 

Retm·ning now to Eq. (IV- 37) and the procedure for measuring T lB, 

it is apparent that with the e4ception of TlB >> TlA, the method can 

be applied for a wide range of T1B values, and is especially well suited 

in cases where T1B is short (but still>> TAB). In this respect it com

plements very well the method used by McArthur, Hahn and Walstedt,11 which 

can be briefly described as follows: The B reservoir in the rotating 

frame at e ~ 45° is first cooled by cross relaxation with an A reservoir 

which is at low temperature after ADRF. After the B coupling pulse 

is turned off, the laboratory frame B system will be in a state of low . . 

spin temperature since the B r .f. was applied off resonance. The B 

system heats up by lab. frame spin-lattice relaxation, and after a suit-

able time the B reservoir temperature is sampled. This is achieved by 

first bringing the A dipolar reservoir to infinite spin temperature 

with a series of saturating pulses, and then applying an off resonance 

B r.f. coupling pulse similar to the first one. If the B reservoir 

still retains a low temperature, the A system will be cooled down during 

the contact, and a dipolar signal will be stimulated.by thee pulse. 
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Compared with the method based on Eq. (IV- 37), this method is 

poorly suited to measure short B spin-lattice relaxation times unless 

TAB is very short; Since the coupling puise is applied off resonance, 

TAB will be longer than in the on-resonance case, with a correspondingly 

longer coupling pulse for complete A-Bthermal equilibration. For good 

definition of T1B, the coupling pulse length should be much smalier 

than T1B. This method is well suited in cases where T1B is long, how

ever, where the method developed in this chapter fails. Thus the two 

methods together cover the whole range of T1B values f~om approximately 

TAB to infinity. 

It should be mentioned that the method developed here measures 

a rotating-frame spin-lattice relaxation time, while_ the other measures 

relaxation times in the lab. frame. If the relaxation is induced by 

a randomly fluctuating hamiltonian via direct processes, the laboratory 

frame spin-lattice relaxation time can be written as a sum of spectral 

densities involving various components of the fluctuating hamiltonian 

at the laboratory frame transition frequency wB . As will be demon-
. 0 

strated in section V-B for a srecific field configuration, the rotating-

frame spin-lattice relaxation time will iri addition depend on the 

spectral densities at.the rotating~fra.me transition frequency called 

weB above, and at the sum and difference frequencies wBo ±weB: In certain 

cases, this will be of no fUndamental importance, but it may also 

prove to.be very useful: If T1B is of such magnitude relative to other 

relevant parameters that both methods can be used, it may be possible 

to combine the two sets of data to pick out specific spectral density 

components or combinations of these that would be inaccessible from each 

data set separately. 
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Finally, one should consider the case where the B r.f. in applied 

off resonance. All equations in this section will remain unchanged, 

but the parameters EBo and TAB will vary with wB' as discussed earlier. 

Nothing new needs to be added to the discussion of the on-resonance case, 

but one can note the following: 

The rotating-frame effective field is: 

HeB =I HlB2 + (wBoy:2 "'B)2 r/2 = 

By varying the frequency wB and the B r.f. power level, one obtains a 

rotating-frame transition frequency that varies over a wide range. As 

described above for the case wB = wBo' the rotating-frame T1B will in 

certain cases be sensitive to the spectral density component of the 

fluctuating hamiltonian at the frequency weB' Here one has the oppor

tunity to vary weB throughout a range at the very low end of the fre

quency spectrum, and record the corresponding variation in T1B. 

IV-C-2. Test on the Thermal Reservoir Model 

The main underlying assum~tions for the thermal reservoir model 

analyzed above were briefly outlined at the beginning of this chapter, 

and have also been discussed in a general manner in Chapters II and 

III. They can be spelled out as follows: 

In the absence of applied resonant r.f. fields, the A spins after 

ADRF are strongly coupled mutually in the rotating frame, weakly coupled 

to the lattice, and completely decoupled from other spin species in the 

sample. The macrostate of the coupled A spins can be described by a 

temperature TLATTICE ~ ~ whe~ thermal equilibrium with the lattice 

has been achieved. If a strong r.f. field is applied at a B spin 

transition frequency, the B spins will experience a strong mutual 

.... 
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coupling, a weak coupling to the A spins and the lattice, and no coupling 

to other spin species. The B rotating frame macrostate is describable 

by a temperature. The r.f. field affects the A spin species only in

directly through the A-B coupling, which is assumed weak compared to the 

mutual interaction between the A spins. If the A-B coupling could be 

severed without destroying the B reservoir, the A and B reservoir tem

peratures would relax exponentially towards TLATTICE, vri th time constant;s 

T1A and TlB' respectively. 

As described in Sections II-A and III-B, these assumptions may be 

rendered invalid by a number of complicating factors in a given substance. 

Since the B spin abundance will be fairly high in the cases that apply 

here, spin diffusion and thermal gradient problems may not be as important 

as interactions with other nuclear spin species in the sample and slight 

overlap between the lowest B spin lab. frame frequencies and the high 

frequency tail of the A spin dipolar spectrum. Also, careful experimentai 

tests on the thermal reservoir model have so far centered on the special 

cases of pure magnetic or pure quadrupole laboratory frame hamiltonians. 

The model analyzed in this chapter will be assumed applicable to cases 

of mixed quadrupole-zeeman hamiltonians, and it is not trivial that 

confirmations of the thermal reservoir model in the pure magnetic or 

quadrupole cases apply in the mixed case, with B r.f. applied on/off 

resonance. 

The analytic results of this chapter, and by inference the 

thermal reservoir model, were tested experimentally for a specific 

A-B system, as described in the next chapter. One determined whether 

the experimentally determined parameter values £, 'LAB, TlA and TlB' 
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combined with the exact analytical expressions based on the thermal 

reservoir model, can describe the observed A~B spin relaxation behavior 

and the double resonance lineshape quantitatively .. In these tests, 
. . 

all parameters in the theory are uniquely determined by the experimental 
I 

data, at each value of wB: 

Parameters that govern T
1

A (sample temperature, f.ex.) are 

independent of wB .. As mentioned in the preceding section, T1B may 

in certain cases, depend on wB, but this case will not be treated here. 

At the center of the line, LAB will be a minimum, and the condition 

(Eq. (IV-15)) will be closest to being satisfied. Therefore, if the 

expression for EA(tb) applies in the range around wBo' which can be 

ascertained experimentally, then it should certainly apply at w with Bo 

a sufficiently high accuracy so that reliable values of E and TlB can 

be obtained at that point by the methods described previously. If 

E(wB
0

) is the value of £ at wB = wBo~ then dwB) will be given by 

Eq. (IV-19). An analytical relationship between TAB and weB with 

general applicability to different samples is not available, and it 

is therefore necessary to determine TAB(wB) experimentally for each 

value of wB. How this is done was described above in connection with 

Eq. (IV-36). One should bear in mind, however, that LAB is obtained 

from the line with continuous B reservoir heating, while it is applied 

to the case with unmodulated B r.f. where the ~ineshape, relaxation 

rates, etc .. are generally quite different. 

Since these are effectively no adjustable parameters, a critical 

test on the internal consistency of the theory is obtained, and a good 

theoretical fit of experimental data will be taken as sufficient 

justification for the model in subsequent applications. 
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V. SPIN 3/2 PARTICLE IN A STRONG, RESONANT r.f. FIELD. 
CASE WHERE QUADRUPOLE AND ZEEMAN ENEEG IES ARE OF ARBITRARY 

RELATIVE MAGNITUDES 

Although this problem is of special interest in nuclear double 

resonance, the nuclear species under study will be treated as isolated 

from other spin systems in this chapter. In Section A, the effective gyro-

magnetic ratio in the rotating frame, (as measured by rotary saturation 

(audio resonance)), is derived for a given field configuration. For the 

same field configuration, the quadrupolar spin-lattice relaxation rate 

is calcul~ted in Section B, as a function of the spectral densities 

of the stationary random lattice vibrations. 

V-A. Transformation into the Interaction Representation. 
Effective Gyromagnetic Ratios in the Rotating Frame 

To the author's knowledge, the only explicit computations of effective 

gyromagnetic ratios made so far have pertained to one of two special 

cases: 

1) Quadrupole interaction negligible or zero compared to the 

Zeeman interaction in high field. This yields a rotating-frame effective 

gyromagnetic ratio equal to the laboratory frame yLAB.10 

2) Zeeman-interaction negligible or zero compared to the quadrupole 

interaction; For a spin 3/2 nucleus in zero field one can define two 

colinter-rotating frames of precession. A resonant circularly polarized 

r.f. field couples to the magnetic moment in the frame rotating in the same 

direction with an effective gyromagnetic ratio /3 yLAB.
36 

In the following, no restrictions will be placed on the relative 

magnitudes of the quadrupole and Zeeman interactions, which means that 

perturbation treatments cannot be used. The experimental configuration 
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will be assumed as follows: The principal e.f.g. tensor symmetry 

axis is along the z-axis, and the asymmetry parameter n is taken as 

zero. The main laboratory field H is along the x-axis. Two oscillating. . 0 . 

fields are applied to the sample: A linearly polarized r. f.· field of . 

peak magnitude 2H
1 

parallel to the z-a.xis, and a linearly polarized field 

at audio frequencies and of peak magnitude 2HAud parallel to the x-axis. 

The hamiltonian for the nuclei being studied is: 

where (h = l ) : 

J('Q is the quadrupole hamiltonian with n = 0: 

2 
j( = e qQ ( 2 ( )) 

Q . 4I(2I ~ l) 3Iz - I I + l 

Jfz is the Zeeman hamiltonian in the laboratory frame: 

Jf - - yH I 
Z 0 X 

Jf is the interaction with the r.f. field oscillating at a r.f. 

frequency w: 

Jf = -2YH I cos wt r.f. l z 

w is not necessarily equal to one of the transition frequencies. The 

peak field strength has been defined as 2H
1

, to give a rotating-frame 

field strength Hl 

JfAud is the audio resonance hamiltonian: 

X includes interactions not mentioned above, specifically the 
l 

(V-1) 

randomly varying component of the quadrupole interaction due to lattice 

vibrations. 
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Since the laboratory frame energy level$ are defined by 

j( =JC +JC 
0 Q z 

where the quadrupole and Zeeman interaction$ may be approxi equal, the 

rotating-frame picture doe$ not apply in the conventional $en$e, and 

what ha$ been loo$ely termed "in the rotating frame" above $hould properly 

be termed "in the interaction repre$eritation of JC ". 
- 0 

It might be helpful to outline briefly the $Cherne that will be 

followed: Fir$t, we $hall perform a tran$formation into the interaction 

repre$entation of JC , which yield$ an interaction repre$entation Hamiltonian 
0 

X* = exp ( iJC t) JC exp ( -iJC t) - :JC 
0 . 0 0 

=JC *+JC *+JC* 
r.f. Aud 1 (V-2) 

JC *will be important in the next section (V-B), but will be dropped here. 
1 

Second, the eigenvalues o.f the secular part o.f JCr.f.* will be computed, 

which yields the rotating frame energy levels. Finally, matrix elements 

o.f JC * between the eigenstates of JC .f * will be computed, to .find Aud r .. 

which transitions are being observed. Knowledge o.f the rotating frame 

transition frequency as a function of the rotating-frame field strength 

H1 then yields the effective gyromagnetic ratio. 

The transformation operator L into the JC i.nteraction representation . . q 0 

is obviously no simple rotation operator: 

One way to make 1 more tractable is to try to expand the exponential 
q 

in a spin operator power series, but although this is possible with 

(V-3) 



-80-

exp(ii~t) and e.Xp(ilxt) separ~tely, f.ex. by using the Pauli spin operator 

34 
formalism of Leppelmeier and Hahn, it is not feasible in this case since 

2 the operators Iz and I do not commute with each other nor with their . X 
2 39 

commutator [Iz, Ix]. Successive transformations into the JCQ interaction 

representation and then the JCZ interaction representation is not feasible~ 

Since the quadrupole and Zeeman energies may be of comparable magnitude, 

it is not legitimate to discard time dependent terms after the first 

transformation, and the large number of resulting terms in JCz* which do 

not commute makes the next transformation exp(iJCz*t) even more difficult 

than the original one: exp(iJC t). 
0 

It is still possible to perform the transformation into the JC 
0 

interaction representation, but one must forgo the convenience of a 

representation-independent description. By first transforming the total 

hamiltonian JC into a representation where JC is diagonal, called the 
0 

B- or eigen-representation in what follows, the transformation operator 

L becomes trivially: 
q 

exp(iE
1
t) 

exp(iE
3
t) 

where the E 's are the energy eigenvalues of JC . 
i 0 

(V-4) 

The diagonalization procedure becomes less laborious if one writes 

the hamiltonian JC with yH as. energy units; 
0 0 

JCO ' ·2 
1\ ( 12) . 

yH = 2 3 Iz - 4 - Ix 
0 

(V-5) 
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where 

is defined so as to conform with Parker' sl.() definition. Thus, in the 

limiting cases where 

one has. 

. . 

-+ 00 

quadrupole interaction/Zeeman interaction 
-+0 

-+ 00 

A-+0 

respectively. It is convenient to divide up the analysis which follows 

into two parts, corresponding to the cases 0 ~A~- 1 and 0 ~ ~ ~ 1. 

Consider first the case 0 -~ A ~ 1. In the representation where I 
z 

is diagonal, call~d the A representation in the following, one obtains 

the secular determinant: 

I 3 A - T. 2 1 

13 
2 

13 
2 

3 --A -2 

-1 

T. 
1 

-1 

_.lx-T 
2 i 

13 
2 

corresponding to the usual I eigenvectors, in roV{ form: 
z 

' 6 

13 
2 

A 

= 0 

Here, the eigenvalues T. yield· the JC eig.envalues E. = yH T. . The secular 
1 0 .1 01 

equation is: 
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T~- 1
2 (9>.2 + 5)T~ + 3.A.T. + _2. (9>.

4 + 2>.2 +1) = 0 
1. . 1. 1. 16 

or, in factored form: 

The roots are 

T1 , 2 = ~ ( -1 ± V 4 + 6>. + 9A 
2 

) 

T3 ,4 = ~ ( 1 ± ...)4 -6>. + 9~>2 ) 

Root 1: + Root 2: 

Root 3: + Root 4: -

(V-7) 

In the A representation, the eigenvectors corresponding to these roots are: 

I E.> 
1. =(~~) 

o. 
1. 

A 

For A * 0, the states are generally nondegenerate. We define the quan-

tities: 

3 3 A =-.A-T· B =-.A+T 
i 2 i' i 2 i 

(V-8) 

In terms of these, the eigenvector components are: 

B. = _g A.a. 
1. ~ 1. 1. 

y. = (-
2 -~~ A.B.)a. ; o. = (- 2i - B.)a. = 2~~ Yi (V-9) 

1. /3 1.1. 1. 1. i 1. 1. 1. 

where a. may be adjusted to give the eigenvectors IE) unit length. As 
1. . 1. 

shown in Appendix A, one has for arbitrary A : 

(:3 = y . ~ = - 03,4 1,2 1,2 ' ~3,4 

for components of the same vector, and 

for components of different vectors. 

This reduces the number.of independent components to four, which will 

be defined as: 
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a - al = 62 = y2 = 01 b - a2 = -s = -y = 02 l l 
(V-10) 

c = a3 = 64 = -Y4·= -<5 d - a4 = -s = y3 = -64 3 3 

The eigenvectors IE}. corresponding to eigenvalues T. , E. are: 
l l l 

IE > = ( - ~ ) IE > = .( ~ ) 
l -b 2 a 

a A b A 
( c) ) - -d 

IE3 ~ -~ 
. A 

These define the orthogonal (since lEi real) matrix 

(V-12) 

which generates the transformation from the A to the B representation. 

Transformation of X f 
r .. 

tion is now straightforward. 

and XAud into the J(
0 

interaction representa

j{' f will be treated first ; since it defines 
r .. 

the energy levels in the interaction representation: 

Transformation into the B representation yields: 

· u.,...1 x u 
( 

. 0 
3ac + bd 

3bc - ad 

AB r.f. AB 
= -2yH

1 
cos cut 3ac + bd 3bc - ad 

3ad - be 3bd + ac 

E).nd in the X interaction representation one finally has 
0 

X · * = L U -l X U . L -l = - yR ( e i wt + e- i wt ) x 
r. f. q · AB r. f. AB q -l .. 

0 

(V-13) 

3ad - be 

3bd + ac \ 

0 ~ 

(V-14) 

B 
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If the energy levels E1 are well separated from ea.ch other (i.e. by 

more than a few linewidths), the nonzero elements in the matrix will be 

· .(eiwt -iwt) highly time dependent before multiplication by + e . By 

adjusting the frequency w of the r.f. field so that it matches one of 

the transition frequencies IE. - E. I, however, one pair of symmetrically 
~ J 

located matrix elements in X f * can be made secular while the others 
r .. 

remain highly time dependent. It is assumed here that the transition 

frequencies corresponding to different sets of energy levels are separated 

by at least several linewidths. 

Let us assume that the r.f. is applied on resonance for one of the 

transitions, say w = IE1 - E4l · The secular part of X f *,which 
r .. 

determines the audio resonance frequency and the effective gyromagnetic 

ratio, is (the dash indicates that only secular terms are included): 

0 
0 1 

c 0) 0 
J( *' = ..,.y~ (3ad-bc) r.f. 0 

0 
1 0 

B 

The eigenvalues of X f *' yield the rotating frame .energy levels: 
r .. 

(V-16) 

The corresponding eigenvectors are: (V-17) 

~~(D = ~~0) C) ~~(J) IEl *') IE2*) 
1 1 

IE4*> = ; IE *) = -::· = 
· 3 I -l 

. 2 Q 
B 0 B B 

It now remains to determine which transitions are excited by J(Aud' 

In order to compute matrix elements between the states IE.*>, the audio 
1 

B 
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hamiltonian is transformed into the X interaction representation by a 
0 . 

procedure analogous to that used to find X f * above: r. . 

ciro 
II 

J{ * -1 J{ -1 
- yHAud cos wAud t 

IV 
= Lq UAB Aud UAB L = Aud q V O VI) 

VII VIII B 

(V-18) 
Here; 

I = -4/3. ab+~b2 

T:::' 2 2 III = (2t3 (a -b ) 

II = (2/3 (a2-b 2 ) - 4ab)ei(El-E2)t 

IV = 4 /3 ab + 4a 2 

. ·- . 2 
V = -413 cd - 4d 

VII= (2/3 (c2-d2 ) + 4cd)ei(E4-E3)t VIII = 4/3 cd - #d
2 

Formally~ the matrix above can be written 

where now the JC eigenstates i'-n the B repFesentation are just: 
0 

01 . 

IE.). = ( 02. ::) 
~ B o

3
. . 
.~ 

. 0 . . 
4,i B 

where a .. = l if i - J, and zero otherwise. The matrix elements of 
~ ,J 

interest here are: 

Expanding: 

= L < 11<:• *I Ei) B< Ei IXAud *I Ej) B( Ejl ~* >:s 
i ,j 

(V-19) 
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MK' ,K = ~ cK'i* cKj < EiiJ{Aud*IEj)B 
i ,j 

Finding the expansion coefficients cKj is trivial in the B representation: 

I E *) = __! ( I E ) + I E4)B ) 
l B l2 l B 

I E * ) = __! ( I E :) + I E_j )B) 
2 B /2 2B 

IE *> = __! ( IE ) ..., IE ) ) ; I E4*) = __! ( IE ) - I E4) B) 
2B 12 2B 3B B 12·lB 

To save writing labor in the following, one can define: 

(V-20) 

The matrix elements MK' K can now be written out from Eqs. (V-17), (V-18) 
' 

and (V-19) by inspection (all c .. 's real): 
l.J 

Ml,4 = ·~ cl,i* c4,j (i,j) 

i ,j=l 

l = 2 {(1,1) - (4,4)} 
(V-21) 

l ~ 2 ~ 2 = - 2 yHAud cos WA t {(-4v3 ab + 4b ) - (4v3 cd- 4d )} 

= 2 'YHAud cos WA t {-/3 (ab + cd) + b
2 

- d
2

} 

Ml,2 = - 'YHAud cos wA t {(13 (a2 - b2) - 2ab)ei(El - E2)t 

+ (13 (c2 - d2 ) + 2cd)ei(E4 - E3)t} 

Ml,3 = - yHAud cos wA t {~ (a2 - b2) 2ab)ei(El - E2)t 

- (/3 (c2 d2) + 2cd)ei(E4 E3)t} 

M2,4 = -yHAud cos wA t {(/3 (a2 - b2) - 2ab)ei(E2 - El)t 

- (13 ( c2 - d2 ) + 2cd)ei (E3 - E4 )t} 

M3,4 = -"YHAud cos WA t {(/3 (a2 - b2)ei (E2 - El )t 

+ (13 (c2 - d2 ) + 2cd)ei(E3 - E4)t} 
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Here, one notes that all matrix elements are generally nonzero, but 

all elements except M
1 4 contain a high-frequency time dependence cor-

' 
responding to a perturbation hamiltonian which is strongly off-resonance 

·and thus does not affect the rotating-frame population levels. 

The transition being excited by the audio field is therefore between 

states I E
1 

*) and I E4 *) , and the effective gyromagnetic ratio is 

Yeff = 
E * - E4* l .. 

= 2(3ad - be) · YLAB 

in the rotating frame of an r.f. field vector oscillating at the transition 

frequency between X
0 

eigenstates IE
1

> and IE4>. The effect of audio field 

components along the y and z-axes can be evaluated by the same method. 

One finds that all matrix elements are either zero or highly time depen-

dent, and accidental misalignment of the audio field will therefore not 

affect the results derived above. 

So far, it has been assumed that the r.f. was applied at a frequency 

matching the transition energy between the two laboratory frame eigen-

states IE1 > and IE4>. For spin-~ nuclei in the case with 4 rtondegenerate 

laboratory frame eigenstates there are in general 6 distinct transition 

frequencies. Each transition can be treated in the same manner as for 

IE1 > # IE4>, and for the field configuration assumed in this chapter the 

effective gyromagnetic ratios are given in the following table: 
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Table V. L Effective gyromagnetic ratios in the rotating frame. 

Lab. Frame 
Transition (Def.) 

3 

4 

l 

6 

2 

5 

Lab. Frame 
Transition Energy 

El - E2 

El - E3 

El - E4 

E2 - E3 

E2 E4 

E3 - E4 

Effective Gyromagnetic Ratio 
in the Rot. Frame 

Forbidden Transition 

2(3ac + bd) · yLAB 

2(3ad be) y LAB 

2(3bc ad) YLAB 

2(3bd + ac) · YLAB 

Forbidden Transition 

So far, only the case 0 <A..;;;; l has been covered. The range 

0 < l..;; l can be treated in a manner analogous to the above. To avoid 
A. 

singularities when Xz ~ 0 (i.e. f~ O), it is appropriate 

the main h8Jili1tonian 'JC in terms of the quadrupole energy 
0 

to define 

e2qQ 
term 4T(2I-l) 

With this modification and A. defined as before, the expressions for 

a.(A.) and T. (A.) leading to the transformation matrix UAB will be different 
l l 

from those given for the case 0 <A..;;;; l, but the elements of UAB remain 

the same when expressed directly in terms of the parameters appearing 

in X . Thus one finds for the whole range 0 < A. < oo that the effective 
0 

gyromagnetic ratios are as given in Table V.l. 

Some caution is in order, however, when taking the limits A.~ 0 

1 
·and I~ 0, corresponding to pure Zeeman, respectively pure quadrupole 

laboratory frame hamiltonians. In these special cases, the values of 

Yeff are already known, and one may compare with results derived in 

this chapter. Obviously, one must use the proper expressions with 

e2qQ 
YLAB · H

0 
or 4I( 2I-l) as energy units to avoid singularities, as mentioned 

previously. ·More interesting, perhaps, are the following two pitfalls: 

First, when the limits of pure quadrupole or Zeeman laboratory 

frame hamiltonians are approached, all the transition frequencies w. 
l 
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will no longer be well separated, and the overlap leads to additional 

elements in the r.f. hamiltonian matrix Jf*'f . This in turn changes 
r. . 

the rotating frame eigenstates, and thus it is necessary to go back. to 

the secular r.f. hamiltonian in order to obtain the effective gyromagnetic 

ratios. The procedure is identical to the one outlined above, and 

leads to the expected result yeff. = yLAB in the case where A= 0. 

Second, laboratory frame states may arise which are not connected ., 
by the r.f. perturbation. This is illustrated in the pure quadrupole 

case ( ~ = 0) , where the quadrupolar hamiltonian JCQ = 4I (~£~1 ) ~ 
(ei

2 
I(I + 1)) obviously commutes with the.r.f. hamiltonian JC f = 

.z r. . 

2YHliz cos wt. One may still find effective gyromagnetic ratios for 

the pure quadrupole case by assuming that the r.f. field is applied 

in another direction, say the x direction, and using the same methods 

as outlined above. In this manner, one finds that the ratating frame 

eigenstates are doubly degenerate with a level separation Y LAB H1 /3. 

The corresponding effective gyroniagnetic ratio in the rotating frame 

is therefore /3 yLAB' which is the value already Cited for this special 

case. 

Comparison with Eq. (V-13) shows that for a given transition 

between two laboratory frame eigenstates, there is a direct propor-

. tionality between the JCr.f. ~atrix elements of those eigenstates and 

the effective gyromagnetic ratio in the rotating frame. Formally, 

therefore, one can define the effective gyromagnetic ratio of a for-

bidden transition to be zero. As the field configuration is gradually 

changed so that the matrix element of JC for the forbidden transition 
r.f. 

goes from zero to a nonzero value, the effective gyromagnetic ratio 
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will also increase from zero. For an allowed transition with a small 

effective gyromagnetic ratio 0ne would expect a weak double resonance 

line. 

The special case of an e.f.g. tensor with n = 0 and the principal 

axis perpendicular to the static magnetic field has been treated here, 

since it will be of interest in a later chapter. A more general case 

with an arbitrary angle 0 between the principal e.f.g. axis and the 

magnetic field, and a nonzero asymmetry factor can be treated by a 

straightforward, but laborious application of the technique shown 

above. In the special case where n = 0, 0 = 0 one has [JCQ, JCZ] = 0, 

and derivation of the effective gyromagnetic ratios in the rotating 

frame can be performed entirely in operator form. 

Finally, it is easy to show that the rotating frame transition energy 

yeff. · H1 determined by audio resonance is the same one which is in

volved in cross-coupling processes with other nuclei in the crystal, a 

fact which is important in nuclear double resonance, f.ex. Cross-

coupling comes about by perturbation of the rotating frame eigenstates 

due to interaction between the spin magnetic dipole moment and the 

fluctuating local magnetic fields, and the interaction hamiltonian can 

be written on the form: 

JCint = A(t) · Ix + B(t) · Iy + C(t) · Iz 

A(t), B(t) and C(t) can be treated as c-numbers in this context. To 

see how JC. t affects the rotating frame populations, one can proceed 
1n • 

in direct analogy with the audio saturation case, but now weighting 

·matrix elements with the spectral densities of A(t), B(t) and C(t) at 
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the rotating frame transition frequencies. As was the case with audio 

resonance, one finds that regardless of which laboratory frame transition 

is being excited by the r. f. field, Hint. can only cause transitions 

between the two most widely separated rotating frame energy levels. Thus, 

the same two levels are involved regardless of whether energy exchange 

takes place due to flipping neighboring dipoles or to externally generated 

fields, and one has effectively a 2-level system in the rotating frame. 

V-B. Quadrupolar Spin-Lattice Relaxation in 
the Spin-Lock State 

It is well known that the spin-lattice relaxation time for a given 

nuclear species in a solid can only be a uniquely defined quantity of 
~ 

one specifies the states between which the relaxation takes place. The 

reason for this is as follows: By suitable preparation of a given spin 

system 'it is possible to define several sets of spin system eigenstates 

(in appropriate reference fr~es) where the state of the system and its 

evolution.in time is describable by a spin temperature. Each set of 

eigenstates will generally be different, and the perturbation hamiltonian 

which causes relaxation will not transform into each reference frame 

in the same manner, leading to fundamentally different spin..;lattice 

relaxation times. 

This has been demonstrated by Leppelmeier and Hahn34 in the case of 

a system with pure quadrupole interaction in the laboratory frame, with 

special application to c135 in chlorate salts: In zero magnetic field, 

35 ' . 
Cl has two doubly degenerate levels in the laboratory frame, and 

relaxation between these levels in described by a single relaxation time 

T1 ,LAB. Another relaxation time can be defined if the c135 system is 
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subjected to a spin lock sequence followed by continuous irradiation 

by a strong r. f. field at the c135 laboratory frame transition fre-

quency. The macroscopic magnetization along the rotating-frame magnetic 

field vector will then decay with a characteristic time Tl,S.L. Finally, 

if one performs adiabatic demagnetization in the rotating frame (.ADRF) 

on the c1 35 system which leaves the spin system in a dipolar state 

( Cfr. TI-B ),then the spin order evolves towards its final thermal equili

brium value at a rate 1/Tl.ADRF. For the same nuclear species, c135 , 

Leppelmeier and Hahn found that the three relaxation times Tl.LAB' Tl,S.L. 

and Tl,ADRF were different in their analytical dependence on the relax

ation perturbation and had numerical values that were different, although 

of the same order of magnitude. 

The same three relaxation times may be defined and analyzed in an 

analogous manner for nuclear species with pure Zeeman hamiltonians in 

the laboratory frame, although the perturbation hamiltonian may be 

different (magnetic dipole instead of quadrupole interaction). This 

leads to the familiar Tl,LAB for the equidistant laboratory frame Zeeman 

levels. Relaxation in the spin-lock state (i.e. described by T
1 

) 
,.p 

10 21 ,34 h"l 1 t" ft ADRF has been studied by Redfield. and other, w l ~ re axa lOU a er 

for the strong •collision case first was analyzed by Slichter and Ailion.
32 

The case with mixed quadrupole and Zeeman laboratory frame hamiltonians 

of arbitrary relative magnitudes is more difficult. Apart from increased 

analytical complexity, there are two reasons for this: First, since there 

now are in general several distinct laboratory frame transition frequencies, 

mutual spin flips will no longer contribute towards establishing a 

Boltzmann distribution between the laboratory fr.ame energy levels and 
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it may not be possible to define a spin-lattice relaxation time. For 

the spin temperature description to be valid, it is then necessary to 

postulate that other mechanisms, like coupling to other spin species, 

maintain a Boltzmann distribution, or that the system is initially in 

a state d~scribable by a spin temperature, and that changes in popu-

lations. caused by the relaxation perturbation are such that the Boltzmann 

distribution is conserved during the time evolution of the system. Second, 

a mixed Zeeman-quadrupole system will permit transitions characterized 

41 
by dii'ferent relaxation rates . An example of this is a Zeeman system 

with a quadrupole perturbation (static). The perturbation causes an 

admixture of the pure Zeeman states, and as a result relaxation tran-

sitions with ~ = 2 become allowed in addition to the ~ = 1 transitions 

allowed in the pure Zeeman case. The transition rates will be different 

for &n = 1 and &n = 2, and the relaxation behavior of the system cannot 

he descrihed by a single time constant. A similar result applies for 

the Zeeman-perturbed quadrupole levels in the laboratory frame. 

Below, the spin-lock state relaxation time Tl,S .L. will be computed 

for spin 3/2 nuclei with no restrictions on the relative magnitudes of 

the Zeeman and quadrupole laboratory frame hamiltonians. Tl,S.L. was 

chosen since it is of interest in the experimental part of this thesis, 

but there are also more fundamental reasons why Tl,S.L. may be preferred 

for study rather thi:m Tl,LAB or Tl,ADRF: As was described at the end 

of Section V-A;, the spin system in the spin-lock state can be treated 

as a two-level system, and one thus avoids the problems of non-Boltzmann 

population distributions and of non-exponential relaxation that were 
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·involved in the analysis of T1 LAB' Expressions for spin-lattice relax-
' 

ation times in the dipolar state (Tl,ADRF) cannot be written with as 

much_ generality as in the spin-lock case, since the dipolar state spin-

lattice relaxation time will depend strongly on the lattice symmetry 

and-parameters. 

Before plunging into the computations necessary for extracting 

Tl,S.L., it might be a possible motivating factor to eonsider what 

additional information, if any, may be obtained by extending an inves-

tigation to include, say, spin-lattice relaxation times in the spin-

lock and dipolar states in addition to the laboratory frame relaxation 

time. One obvious illustration of this appears in the experimental part 

of the thesis, where Tl,S.L. was the only relaxation time which was 

experimentally obtainable at all for K39 in KDP! More generally, however, 

one can exploit the fact that Tl,LAB' Tl,S.L.· and Tl,ADRF depend on the 

symmetry components of the lattice vibrations (or microscopic motion) 

in different ways, and also will exhibit different sensitivity to the 

various parts of the fluctuation spectrum of the relaxation perturbation. 

Thus, one can to some extent selectively study specific modes of motion, 

and perhaps the most striking example of this is the use of T l. ADRF-, 
measurements in investigations on ultraslow motion. Also, given a 

set of analytical expressions for Tl,LAB' Tl,S.L. and Tl,ADRF in terms 

of spectral densities of latti_ce fluctuations (see f .ex. Leppelmeier 

and Hahn
34 ), it is in principle possible to express the spectral densities 

. or linear. combinations of these in terms of the spin-lattice relaxation 

times. Experimental determination of Tl,LAB' Tl,S.L. and Tl,ADRF would 

· then yield considerable information on the state of motion of the lattice. 
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V-:B-1. Quadrupole Relaxation· General 

The physical ba.ckground of quadrupolar relaxation can be sketched 

as follows: The relaxing nucleus, which must necessarily possess a 

quadrupole moment, can be in one of the energy eigenstates of a time 

independent hamiltonian. This static hamiltonian may be purely magnetic, 

arising from interaction with an externally applied magnetic field, it 

may be purely quadrupolar and due to interaction with the local electric 

field gradient, or a mixture of both. These energy levels are perturbed 

bJ· a time-dependent interaction which causes relaxation~ ·and in quadru-

polar relaxation, lattice vibrations cause the perturbation by altering 

and redistributing the charges that are the sources of the electric 

field gradient at the nucleus. The·nuclear quadrupole moment couples 

to this time varying electric field gradient, and this will still be, 

the case when the static (unperturbed) hamiltonian is purely magnetic, 

f.ex. when the nucleus occupies a site of cubic symmetry with a resulting 

zero static quadrupole interaction. A detailed analysis will be given 

below. 

The quadrupole interaction can provide a strong spin-phonon coupling, 

and i.n pure insulating solids at lattice temperature ;:::.qp. b , quadru
~e ye 

polar relaxation may dominate over other contributions to the nuclear 

s.pin-lattice relaxation rate. Relaxation can come about by either a 

direct Erocess where a·single phonon at the nuclear transition frequency 

is absorbed, or by one of several indirect processes, of which the two-

phonon Raman process is the most important. A Raman process involves 

a.nnihilation of one phonon at a frequency w. and creation of another at wj, 
l. 

such that wi - wj is equal to the nuclear transition frequency; In the 
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high-temperature region, T ~(u) b , the two-phonon process will generally -ne ye · 

be by far the most important one, since the direct process only can take 

place in a very narrow region at the extreme low-f~equency end of the 

lattice fluctuation spectrum, while the Raman process ranges over all 

frequencies in the fluctuation spectrum. Since the direct process 

depends on the spectral density of the lattice fluctuations at the nuclear 

transition frequency, the direct process relaxation time will in general 

be a function of the transition frequency. This is in contrast to the 

indirect case, where integration of relaxation contributions from all 

parts. oi' the fluctuation spectrum leads to a frequency-independent relax-

ation time. 

'l'he .:first detailed analysis o:t' indirect process quadrupolar relaxation 

42 
was made by Van. Kranendonk. Using a model with ionic point charges as 

sources of the fluctuating electric field gradient (e.f.g.), and with a 

thermally generated acoustic-mode disturbance of the lattice, he found 

the Raman process relaxation very inefficient at temperatures much 

lower than the Debye temperature on b . At lattice temperatures . ~e ye 

T ~ l/2f:H) b , the leading term in the relaxation rate was found to "4)e ye 

vary as T
2

, a typical feature of Raman relaxation. Later theories 

on Raman process relaxation have extended the Van .Kranertdonk theory 

to incluCI.e other sources of e. f .g. modulation, such as fluctuations in 

electronic bonding ,43 •44 and lattice vibrations of both acoustic and optic 

41 . 
type. The results did not depart dramatically from those of VanKranendonk. 

In a few, but important cases, the direct process can be dominant, 

namely when the spectral density of the lattice fluctuations in the nuclear 

transition frequency region (i.e., at very low frequencies compared to 
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average phonon frequencies) becomes very much larger than predicted by 

the standard Debye spectrum. Ultrasonic techniques ~ay be used to 

generate such high phonon densities, but of more interest here is the 

existence of' highly excited low frequency lattice modes, or so-called 

"soft modes" in f'erroelectrics near the Curie temperature T . As T -r T , 
c c 

the spectral density of' these modes increases enormously in the low 

frequency region, and sufficiently close toT the direct process relax
c 

ation may become very rapid. 

V-B-2. Computation of' Spin-Lock State Relaxation Times 

In this section, analytical expressions will be obtained for direct 

process quadrupolar spin-lattice relaxation times in the spin-lock state. 

'l'h.e relaxing nuclei will be assumed to have spin 3/2, and their static 

magnetic and quadrupole interactions in the laboratory frame can be of' 

arbitrary magnitudes. Crystal orientation, field configuration and 

hamiltonian parameters will be assumed identical to those in Section v,.,A, 

and the results derived there can be used directly. Results for other 

field configurations and crystal orientations are obtained by a straight-

forward extension of' the procedure outlined below. 

The spin lock state was discussed in Chapter II, and Ref'ield's 

hypothesis of' a spin temperature in the rotating frame was presented. 

Abundant experimental verification of the hypothesis has been reported 

in the literature, and in the following, it will be assumed that the 

behavior of the spin system in the spin-lock state can be described by 

a spin temperature. This must be verified in each specific case, f'.ex. 

by making experimental comparisons with the results in Chapter IV. The 

assumption will also be made that the rotating frame effective field, 
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i.e., the r.f. field strength H1 on resonance, is much larger than local 

dipolar fields. This simplifies the analysis in that the energy reservoir 

of the .dipole-dipole couplings can be ignored, and there will be only 

one thermal reservoir of purely Zeeman character in the rotating frame. 

The spin-lattice relaxation time can be defined as the spin temper-

ature decay time, if the spin temperature varies exponentially in time 

towards a value corresponding to thermal equilibrium with the lattice. 

The expectation value of any traceless operator will decay at the same 

rate as the spin temperature, and thus the spin-lattice relaxation 

process in the spin-lock state can easily be visualized by considering 

the magnetization: Immediately after spin locking, the spin temperature 

is generally low, corresponding to a large magnetic moment aligned along 

the effective field in the rotating frame. Spin-lattice relaxation will 

cause the. rotating frame spin temperature to increase, and the magnetization 

vector shrinks, while always being parallel to the effective field. The 

final magnitude of the magnetization depends on the equilibrium value of 

the spin temperature. 

The spin-lock state spin-lattice relaxation time will be determined 

here by computing the exponential rate of change of the rotating-frame 

spin temperature towards equilibrium, using the master equation in 

operator form for the density .matrix. 45 The density matrix approach 

is essentially equivalent to conventional time dependent perturbation 

theory, but yields the perturbation results in a more useful form, since 

the density matrix and the spin temperature are very simply related 

when the systeni is describable by a spin temperature. Consider now the 

mixed quadrupole-Zeeman system described in Section V-A. The description 
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of the spin system given there was incomplete, since the quadrupole 

interaction was treated as time independent. Now, the total quadrupole 

hamiltonian will be divided up into a static part corresponding to the 

time averaged interaction XQ and a time dependent part X1 (t) which 

represents the instantaneous difference between the total quadrupole 

hamiltonian and the time averaged one: 

(V-22) 

XQ' combined with the Zeeman hamiltonian XZ' defines the energy levels 

of the nucleus in the laboratory frame, which are eigenvalues of the 

time independent main hamiltonian: 

(V-23) 

The total laboratory hamiltonian can then be written 

(V-24) 

where xr.f. (t) respresents the interaction with the strong r.f. field, 

as given in Eq. (V-1). 

X1 (t) represents a stationary, random perturbation which causes 

transitions between eigenstates in the reference frame of interest. 

Bearing in mind that the master equation is a perturbation result , one 

I I· 

must require that < X
1 

(t r> << < JC* > ·; where X*, is the static hamiltonian 

which defines the energy levels between which relaxation takes place. 

In the semiclassical treatment of the problem, X
1

(t) can be expanded as 

(V-25) 
q 

Here, F(q) C.t} are expectation values of lattice operators, and appear 

in the formalism as stationary random functions of time representing 
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the random lattice fluctuations coupling to the spin system. A(q) are 

spin operators, not necessarily Hermitian, and in order for X1 (t) to be 

Hermitian it is usual to make tne convention 

t 
F( q) ( t) = F ( -q) c. c. and A ( q) = A ( -q) 

where the c.c. superscript indicates complex conjugate. In the case 

of quadrupolar relaxation, X
1 

( t) can conveniently be expanded in the 

form (Eq.(V-25)), with: 

A(o) = 3I2 - I(I- 1) 
z 

A(±l) = 16 (I I +I I ) 
2 z ± ± z 

(V-26) 

{V-27) 

where, as usual I+ = I ± ii . The F(q) defined by this expansion represent 
- X y 

the stationary random fluctuations in electric field gradient tensor com-

ponents of JC
1 

( t}, and will not be specified explicitly. 

Master equation in operator form. Laboratory frame. 

The master equation in operator form can be written 

* dcr ( t) 
=-

dt 
l L J ( w ( q) ) [ B ( -q ) 
2 q p p 

q,p 

[ B (q) 
p 

* cr (t)J] (V-28) 

45 
This expression is well established in the literature and will not be 

derived here, but it is necessary to define its scope of applicability 

and the various quantities involved. First, it must be noted that 

(Eq. (V-28)) as it stands applies to the case with no strong r.f. fields 

applied to the crystal. The laboratory frame hamiltonian of the system is 



-101-

where JC
0 

is the time independent main hamiltonian and JC1 (t) a stationary 

46 
random perturbation. As shown by Leppelmeier, however, the master 

equation that applies to the spin lock state can be derived using Eq. 

(V-28) as a starting point. 
. * ( ) ( ) 

Thequantitiescr(t),J(w q)andB q 
q p p 

will therefore be considered in some detail: 

o(t) is the "reduced" density matrix defined by 

cr(t) = p(t) - p(~) (V-29) 

where p ( t) is the standard laboratory frame spin system density matrix, 

and p(oo) is the density matrix at t~ . As the spin system approaches 

thermal equilibrium with the lattice, one therefore has cr(t)-+o. If the 

spin system is in internal equilibrium at a spin temperature T , the s 

density matrix operator can be written 

where .Ss _ 
1 

kT 
s 

In the high temperature approximation one may write 

6 

(V-30) 

s 
p = - · 3C (V-31) Trl o 

if all spin operators involved in the analysis are traceless. As in 

Section V-A, a star denotes a quantity in the interaction representation, 

and thus in the present case: 

6 ( 00) ) ·JC 
s 0 

(V-32) 

Thus, the master equation (V-28) has been derived in the interaction 

.representation, which is frequently used to simplify the problem by 

getting rid of the large static interaction 3C • The right-hand side of 
0 

the master equation then depends only on the perturbation hamiltonian 

* JC1 (t) in the interaction representation. 
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The B (q) in Eq. (V-28) arise when the perturbation hamiltonian 
p 

JC1 (t) is transformed into the interaction representation: 

= .E F ( -q) e iJCo t A (q) 
q 

....:iJC t 
e o 

(lattice and spin operators commute). One mey define 

A(q)(t) _. iJC t A(q) -iJC t = e o e o 

which can be expanded as 

A(q)(t} = l:B (q) eiwp(q)t 
p p 

where w (q) are transition frequencies between Jf eigenstates, and 
p 0 

B (q) are operators connecting the same eigenstates. This can be seen 
p 

by taking matrix elements of A(q)(t) between eigenstates of Jf. The 
t / 0 

condition A(q) = A(-q) mentioned above imposes the requirement 

l:B (-q)t e-iwp(-q)t =I: B (q) eiwp(q\ 
p p p p 

and one choice compatible with this is 

t 
B (-q) =:s (q) and - w (-q) = w (q) 
p p p . p 

In the semiclassical case (infinite lattice temperature), and 

assuming that the random phase approximation applies. for the F(q) 's, 

one can writeto a.good approximation: 

(V-33) 

(V-34) 

(V-35) 

and J ( w ( q) ) is therefore the spectral density of the lattice fluctuation 
q p 

parameter F(q) (t) at w (q). 
p 
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Master equation in operator form .. Rotating frame. 

Consider now a spin system with a total laboratory frame hamiltonian 

(V-36) 

where the r. f. field interaction Jfr. f. ( t) ( Cfr. (V-1)) has been included. 

It will be assumed that the r .f. frequency is exactly on resonance for 

one of the laboratory frame transitions. JC
0 

and JC
1 
(t) are as before. 

Transforming into the JC interaction representation, one is left with: 
0 

* * * JC( t ) = JC r . f. ( t ) + Jfl ( t ) (V-37) 

* *' As noted previously, only the secular part of Jfr.f. , denoted by Jfr.f., 

needs be retained, since it defines the rotating frame (or interaction 

representation) energy leveis. The nonsecular part represents a negligible 

perturbation. In the rotating frame the relevant hamiltonian is therefore: 

* *' JC(t) = J( · Truncated r. f. 

•• * 
where JC now is time independent, . while the fluctuating JC

1
,( t) causes r.f. 

' * relaxation between rotating frame eigenlevels. Note that x
1 

(t) has picked 

up a coherent oscillation in addition to the stationary, random fluctuations, 

which is due to the transformation into the rotating frame. 

Assuming that the spin lock state can be described by a spin temperature 

T (S.L. stands for spin lock) in the rotating frame, the reduced rotating S.L. 

frame density matrix can be written in analogy with Eq. (V-32): 



* ·a (t) 1 
Trl 

*' 
CSS.L.(t))- 6s.L.(oo))Jfr.f. (V-38) 

Comparing now the hamiltonians pertaining to the spin system in the 

rotating frame with those given above in the laboratory frame with no 

r.f. field interaction, oae sees that the two cases are fundamentally 

equivalent, and complete analogy exists at each step in the derivation 

of the master equation. This implies that the master equation in the 

spin-lock state should have the form: 

** do (t) 
dt 

l E J (wp (q) IB (-q)* IB (q)* , o **n 
2 q s » s 

q,B 
(V-39) 

where 

*' *' o**(t) = eiJCr.f.t o**(t) e-iJCr.f.t = o*(t) (V-40) 

J (wp(q))is defined as before, but the spectrum of frequencies 
q 

w (q) is different, cfr. B (q)* below. 
s p 

( )* . ( ) 
The B q appear in analogy with the B q when transforming the s . p . 

*' perturbation hamiltonian JC.
1
(:t )* into the JC f interaction representation: 

r .. 

*' iw (q\ *' 
** L:'-F(-q) iJC f t (q) -iJC t 

J(l ( t) = e r .. B e p e r.f. p 
p,q 

where one mey expand 

*' *' E B(q)* iw (q)t (V.,..41) 
B {q)(t) iJf . t (q) -iJf f t = e r - e r.f. B e r .. pr s . p r 

Here B(q)* and w (q) are new quanti.ties defined by Eq. (V-41). Since pr r · 
. ** 

JC1 (t} is hermitian, one can write in analogy to Eq. (V-33): 

** ( q ) ( q. ) * 1· ( w ( q ) +wr ( q ) ) t 
JC

1 
(t } . = "' F - B LJ pr e p 

qpr 

- E F(-q) B (q)* 
s 

(V-42) 

qs 

•. 
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where B (q)* = (B (-q)*)t:: B(q)* and w (q) = - w (-q) =: w (q) + w (q). 
s s pr s s p t 

w (q) and w (q) are typically level separations in the laboratory and 
p r 

rotating frames, respectively. 

From Eq. (V-39) it is seen that if the double commutators yield some 

number times a**Ct) for all B (q}*, then the spin-lattice perturbation 
s 

** will only cause an overall scale factor change in a , and in a given 

representation, no new elements will be introduced into the density 

matrix where only zero elements existed before. If the density matrix 

is initially of the form (Eq. V-38)) with a spin temperature TS.L. (t=O), 

then Eq. (V-39) shows that TS.L. (t) will decay exponentially towards an 

equilibrium value TS.L. (t~). The exponential time constant can be 

defined as the spin-lattice relaxation time in the spin lock state: T 
l,S.L. 

The master equation (V-39) can now be applied to the case of a mixed 

Zeeman-quadrupole laboratory frame hamiltonian, with a strong r. f. field 

applied to the sample. The procedure is quite simple in principle: 

*' ** 
1. Compute JC to find 0' ( t) . 

r.f. 

the master equation. 

In practice, however, one immediately runs into trouble, because the 

transformation operator eiJCo t = ei (JCQ+JCZ )t cannot be expanded directly in 

spin operators. This problem is circumvented, as in Section V-A, by going 

into eigenrepresentations and expressing spin operators explicitly in 

matrix form. 

*I 
Results for JCr.f. were already obtained in Section V-A. Depending 
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on which of the four allowed laboratory frame transitions was driven by 

JC r.f. (t), one obtained (Cfr. (V-14)): 

* 
*' -yH1 (3ad- bc)·r1 

wl 
Transition at wl = El- E4: JC . = - -r .f. ,1 2 

* 
*' ac). r 2 

w2 
w2 = E2- E4: JC = -yH1(3bd- = -2 r.f. ,2 

* 
*' w4 

w4 = El - E3: JC = -yH1 (3ac + bd)·r4 = - 2 r.f. ,4 

* 
*' ~ JC 6 = -yH (3bc- ad)·r

6 
=- 2 r.f., 1 

* 

·r 
1 

·f 2 

·r4 

·f 6 

Here, one has defined w. as the transition frequency in the rotating 
~ 

f~a.me corresponding to the laboratory transition at w. , and made use of 
. ~ 

th.e rotating frame effective gyromagnetic moments derived in Section 

V-A. Also, it proved convenient to introduce the definitions: 

(V-43) 

. It is assumed that all transitions w. ( i = 1, 2, 4, 6) are well separated 
1 

so that the lines do not overlap, and the reason for this was discussed. 

*' at the end of Section V-A. Substitution of the different JC ·f . (i -
r ..• ~ 

1, 2, 4, 6) into. Eq. (V-38) yields four expressions for the reduced 

density matrix which can conveniently be written: 

with 

1 
Trl · yH

1
(3ad- be) , etc. 

(V-44) 

.. 
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It might seem alarming from a spin-temperature standpoint that the r 
i 

** given by Eq. (V-43) and thlls cr. (t) are non-diagonal, but it should be 
l. 

noted that the r. are expressed in the B representation. In the repre
l. 
*' sentation where J( f .. are diagonal, the r. will be so also . . r .. ,l. l. 

JC
1

(t)** is computed in two steps, starting with Jf
1

(t) as defined 

by Eq~ (V-25) and (V-27). First an expression for JC
1 

( t) in the JC
0 

. * 
interaction representation, Jf

1 
( t) , is d.eri ved, which is coiijlllon to all 

* transitions w.. Second, JC
1

(t) is transformed into the interaction 
l 

representation of the secular r.f. hamiltonian in the rotating frame. 

** Four different expressions for Jf
1

(t) are thus obtained, depending on 

*' which JC i' . is used. 
r. • ,l. 

First interaction representation. 

The operators A(q) are first written out explicitly in matrix form, 

in the usual representation where I and I 2 are diagonal (denoted by z 

subscript A). They are then transformed into the Jf eigenrepresentation 
0 

(denoted by subscript B), using the transformation matrix U AB derived 

in Section V-A. In the JC eigenr.epresentation the transformation matrix 
0 

'JC t 
(el. o )B is diagonal (cfr. (V-4)), and one now finds easily: 

with 

" (-q) ( iJC t) -1 ( (q)) ·( -iJC t) = L...J F . . e o B UAB A A UAB e o B = 
q 

(a2-b2) 

= 6 ( 2ab"e -iw3t 
2 2 

- (a -b ) 

L: 
q 

0 
2cd·e-iW5t 

F ( -q) (A ( q) *) . 
. B 

(V-45) 



0 . 2 2 iw t 1 ( i~ t -(a ~b )e 3 - bc+ad)e 
. t 

(ac-bd)el.W1 

( ( 2 2) -i"'Jt ( ) iw t (bc+ad)eiw2t ) (+1)* (-1)* t - . a +b e ... 0 ac-bd e o 
(A. )B = (A )B = 3 12 _ 

( -i~t -iw t -( c2+i)eiw5t . - bc+ad)e · (ac-bd)e o 0 

l ) -iU)_t -iw t (c2+d2)e-iw5t ac ..... bd e (bc+ad)e 2 0 
B 

-2ab ( a2 -b2 )eiw3t ·w t 
-(bc+ad)e~ 4 iW t 

( ac-bd)e 1 

(' 2 2) -iW t ·w t 
·w t ) 

I 

· ( +2 ) * . ( _2 ) * t a - b e 3 2ab (ac-bd)e~ 6 (bc+ad)e~. 2 I-' 

(A· ) = (A ) = 3 /2 0 
co 

· B B · t -iw t - ( /-d2 )e~w5 t 
I 

(bc+ad)e -~~ -(ac-bd)e 6 2cd 

( . ) -iUJ_ t . . t 2 d2) -iw
5
t - _ac+bd e -(bc+ad)e -~w2 -c - e . -2cd. B 
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Second interaction representation 

* ' ** Given X1 ( t) , the desired X1 ( t) is found for the transition w. of 
~ 

interest by evaluating (in matrix form): 

*' *' 
, c ) ** ) c iX . t l < c· ) * ) c· - iX t ) \_J{'l .t · B = e r. f •• ~ B x

1 
t B e r. f. ,i B 

which yields: 

** *' * *' 
(A (±q) ) ( iX .t) ( (±q)) ( -iX .t) 

B = e r.f. ,~ B A . B e r.f.,~ B 

Since. the procedure is identical in all four rotating frames, it will be 

** sufficient to outline the derivation of X
1

(t) for one transition, say 

the one at w
1

: 

*' Using the expression Eq. (V-43) for J{'r.f. ,l' the transformation 

operator is 

*' iJ{' 
e r.f. 

B,y noting that the matrix f 1 in the B representation satisfies 

r 3 = r 
1 1 

the expansion of the exponential can be brought to the form: 

* 
+" 

wl 
(-l)R. 2rlt 00 -~ 

r2 e = E (2JI.)! 1 
0 

* wl 
cos -.-t 2 . 

=( 0 

0 

* 
±i s.in 

wl 
-t 2 

··(wl * )2JI.+ .; 
'· 2 t - ... 

0 0 ±i sin 

0 0 

0 0 

(t 
wl 
-t 2 

0 

0 

* 
0 0 cos 

wl 
-t 

2 

) 
B 
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Computation of the (A ( q)**}B is then straightforward but somewhat 

tedious, and the different B (q} can easily be picked outs keeping in 
p 

:mind that w (qJ = - w (_-q) (q) * 
s s , and checking that B = (-q)*t B . • Nonzero 

B (_q} are found for 
s 

q = ± 1 : 

± 2 w 
(±2) 

q = s 

q = 0 

w 
(±1) = ± 

s 

= 0 ' ± wl 

s s 

w (o) = 0 ± 
s ' 

* * *' 
wl + (wl + wl ) ± (w -- wl ) (V-46) , - ' 1 

* * * ± wl ± (wl + ~ ) ' 
± (wl - wl ) 

According to the master equation (Eq .. V-39), for each ws (q) the spectral 

( (q)) [ (-q)* [ (q)* **< )]] density Jq ws is weighted by the magnitude of Bs , Bs ,cr t . 

The double commutators can now be worked out, and choosing as an example 

* q = 2, ws = w1 + w1 , one has: 

[ B ( -q} * , I B ( q) * , cr ** (t ) ] ] 
s s 

={ 3 /2(ac-bd)}- 2 ((3 _ (t)-(3 (oo))C ~(-;~~-0
1

) ~(-;~~;) (~~~ r S.L. S.L. 1 0 0 0 0 ' · 0 0 0 0 , 0 0 0 
- 1 0 0 1 B -1 0 0 1 B 1 0 0 

2 ( - 2 ** = 9(ac-bd) _6S.L. (t)-Bs.L. (oo))c1r 1 = 9(ac-bd) cr1 (t) 

Here it is worth noting that the double commutator does indeed lead to 

** cr (t) times a number, which is important for reasons discussed above . 

. Analogous results are obtained for all B (q) (in some cases the double 
p 

commutator is zero), and plugging the results into the master equation, 

one bbtains: 



-111-

1 . ·{ 2 2 2 2 
2 

- c r (S . (t)-S (ao)) 36(a -b +c -d) X 
2 1 1 S.L. S.L. 

Obviously, a solution 

t 

(SS.L. (t) - SS.L. (ao)) = (SS.L. (0) - SS.L. (ao)) e 
T 
l,S.L. 

exists, with 

where Tl,S.L. can be identified as the spin-lattice relaxation time in 

the spin-lock state of transition w
1

. 

Results for the thre~ other allowed transitions are obtained in the 

same manner, and may be summarized as follows: 

Table V. 2. Spin-lock state spin-lattice relaxation rates. 

Laboratory Frame Relaxation Rate 
Transition 

w.(i = 1,6) 
l. 

· wi(i = 2,4) 

w.(i = 3,5) 
. l. 

1 .. 2 2 2 2 2 * 2 * 
-T-

1
-- =l8(a -b +c -d ) J

0
(wi)+72(ab-cd) J 2 (wi) 

,S .1. 

1 
T 
l,S.L. 

2{ * * * * } +18(ac-bd) J
1

(w.+w. )+J
1

(w.-w. )+J
2

(w.+w. )+J
2

(w.-w.) 
l. l. l. l. l. l. l. l. 

. 2{ * * * * } +l8(ab+cd) J
1

(w.+w. )+J
1

(w.-w.)+J (w.+w. )+J
2

(w.-w.) 
.. · l. l. .l. l. 2• l. l. l. l. 

not defined. (Forbidden transition) 
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For reasons of comparison, one may apply the method outlined above 

to the case of a pure quadrupole laboratory frame hamiltonian, where an 

analytic expression already has been obtained by Leppelmeier and Hahn, 34 

using an operator formalism where higher order spin operators are 

represented by Pauli matrices. 

Pure quadrupole interaction corresponds to the limit 1/"A-+ 0, i.e., 

a= c = 1/12 and b = d = 0. In this limit, the r.f. perturbation will 

not connect the doubly degenerate laboratory frame energy eigenstates, 

with the field configuration assumed in this chapter, and the results 

presented in Table V.2 cannot be used (cfr. comments at the end of 

Section V-A). An r.f. field applied in the x-direction, with the 

experimental configuration otherwise unchanged, leads to nonzero 

transition probabilities, however, and the procedure outlined above 

applies. In this cas.e the r.f. hamiltonian matrix contains twice as 

many elements as in the nondegenerate case (cfr. Eq. (IV-14)). One 

obtains: 

1 * * * * * ____.;;;;,..__ = 18 J ( w ) + 9 [ J
1

( w
0

+w ) + J ( w -w ) + J ( w +w ) + J ( w -w ) ] 
T l SL o 1 o 2 o 2 o . 

' 

where w 
0 

= 3e2qQ/2I(2I - 1) is the laboratory frame transition frequency 

* and w = 13 YLAB HI is the transition frequency in the rotating frame. 

This result is identical to that of Leppelmeier and Hahn. 

.. 

.,. 
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VI. EXPERIMENTAL CONSIDERATIONS 

A pulsed, single-coil NMR spectrometer was used in conjuction with 

a Varian 12-inch magnet and Varian gas flow sample temperature control 

system. Parts of the electronic system, especially gate circuits and 

transmitters, were the same that have been described in detail by 

12 
McArthur, and·will only receive a brief treatment here. 

VI-A. Puls.e Sequence and Timing 

In the double resonance experiments of interest here, magnetic 

fields were applied to the sample at three different frequencies: 

"A spin" transition frequency in the laboratory frame: 11.011 MHz (fixed) 

"B spin" transition frequency in the laboratory frame: Apparatus tunable 

from ~60 kHz to -3.25 MHz 

"B spin" transition frequency in the rotating frame: Audio range 

The fields·had to be accurately modulated in phase and amplitude; an 

example is the ADRF double resonance cycle shown in Fig. III-2. A 

master time unit (Digital Pulse Generator--Model I") initiated each 

cycle of pulses and controlled the sequence of events through a series 

of pulse delay units and gated pulse generators, cfr pulse steering 

shown in block diagram of the apparatus in Fig. VI-1. The master time 

unit contained a crystal oscillator for time reference, and digital logic 

circuits which controlled start and stop times for three separate gates. 

Using the start of one of these gates as time reference, the starting 

times of the two others could be delayed up to 99.9 msec in steps of 

0.1 msec. Gate stop time for all three channels could be set individually 

from 0.001 sec· to 999.999 sec in steps of 1 msec. In addition, short 

trigging pulses were provided, marking the leading and trailing edges of 
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the pulse in each channel. The cycle repetition rate could be set from 10 msec 

to 999.99 sec, in steps of 10 msec. The master time unit and the pulse 

delay units providing gates for signal sampling (boxcar gates) were 

designed arid built by the Physics Department Electronic Shop. No circuit 

description of these units will be given here. The rest of the pulse 

delay uni~s and pulse generators were Tektronix 160 series modules, 

triggered and gated directly from the master time unit via pulse amplifiers, 

or cascaded. 

Five different subsystems which required timing control will be 

described separately below. They are: 

"A" transmitter system 

"A" receiver system 

"B" transmitter system 

Audio system 

Signal sampling system 

As usual, A and B pertain to abundant and rare spin species, respectively. 

VI-B. Cable and Coil Arrangement 

A single coil served both as A and B transmitter coil and as A 

receiver coiL Partly, this was possible due to the difference in A 

and B frequencies, and partly because B r.f. was only app~ied when A r.f. 

was neither transmitte.d nor received. The reley circuit disconnecting 
I 

the A system during B r.f. irradiation is shown in Fig. VI-2. In order 

to avoid reley contact ageing or damage due to the high current levels 

during the A r.f. transmitting period, and especially to ensure low 

contact resistance and noise during the receiving period, mercury 

wetted contact releys were used (C. P. Clare Type HG1003). The A 

tank circuit tuning capacitor was located in the relay box. The 
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distance between the capacitor and the A coil was approximately l m, 

compared to th.e free space wavelength of 27 m at ll MHz. 

Sample coils were made of #16 insulated Cu wire, reinforced with 

epoxy •. Approximately a third of the windings in the center of the coil 

made up the A coil, which was connected by wires soldered to the side of 

the coil. The total· length of the coils, i.e. ,_ the B portion, was from 

4 to 8 em, with 30 to 40 windings. Typical inductances were l. 3-2.6 )JH 

and 4.7-5.7 )..lH for the A and B portions of coil, respectively. The B 

coil was approximately twice as long as the samples and thus provided 

a homogeneous B r.f. field at the sample, which is necessary for 

sharply defined energy levels in the rotating frame. The relatively 

short A part of the solenoid might have resulted in some loss of A 

signal, since a varying A r.f. field strength over the sample volume 

leads to different ~/2 pulse requirements and poorer spin locking 

efficiency. 

Since the same coil connections were used both in transmitting 

and receiving at the A frequency, special care had to be taken to keep 

r.f. power from leaking into the receiver during the transmitting period. 

A scheme ciescribed by Lowe and Tarr 47 was adopted, .where one made use of the 

impedance transformation properties of a ~/4 cable, cfr. Fig. VI-3: 

Connecting cables were made of such length that the electrical 

distance at ll MHz was A./2 along the cables from transmitter to sample 

tank circuit, and A./2 from the sample tank circuit to the receiver 
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input. As shown in Fig. VI-3, a bank of series crossed diodes were 

interposed in the transmitter arm close to point A; and a bank of 

crossed di.odes led to ground at the receiver input (point B). Six to 

eight pairs of IN 604 were used at both points. The dista.rice A-B was 

)./4. 

The diodes have low forward· impedance at the high· v'ol tage and 

current levels during transmitting, and high impedance at the low voltage 

levels (<l mV) during receiving. Thus, when the r.f. power is applied, 

the diodes at A pass the current with little attenuation, while the 

heavily conducting diodes at B keep the voltage at the receiver input 

clamped at a low level and effectively constitute a short on the line. 

This short transforms to an open ended circuit as seen from the distance 

A/4 at A, and ideally all power flows from transmitter to tank circuit, 

which should be matched to the line when on resonance. In the receiving 

period~ all diodes have high impedance. The series diodes at A isolate 

the transmitter from the tank circuit and receiver, while. the diodes 

at B have regligible effect, and the receiver is mat.ched to the tank 

circuit. .The electrical distances along the cables·. from the tank circuit 

and to the transmitter and receiver were each chosen equal to a half 

wavelength. These lengths are irrelevant when perfect matching to the 

line obtains, but make matching requirements l'ess cri'tical. One may 

note here that the distributed A tank circuit with tuning capacitor at 

a distance from the coil provided stable capacitance values and ease 

of tuning~ but might have had some adverse effect on the impedance 

matching to the cable. 
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As pointed out by Lowe and Tarr, the single-coi.l design outlined 

above is very efficient in its use of r.f. power to produce a large 

rotating .field component at the sample site. It does not involve the 

critical balancing of a crossed coil or bridge circuit, and features 

short recovery times. 

The A/B coil axis was vertical, i.e., perpendicular to the magnetic 

field H , and the sample was inserted from above at the end of a mounting 
0 

rod. The. internal coil diameter was 13.5-14 mm, and a good filling 

factor was obtained with 12-13 mm ¢cylindrical samples. The lower part 

of the mounting rod was of teflon to reduce thermal conduction from 

the sample and possible disturbance o.f the r.f. field pattern in the 

coil. The sample axis was parallel to the magnet pole faces within 1°. 

Samples could be rotated about the vertical axis by turning the sample 

rod which extended out of the sample Dewar, and angles of rotation 

could be measured and reset within ±0.5°. 

A Helmholtz coil pair with the coil axis parallel to H was used 
0 

to create homogeneous audio fields at the sample. · 

VI-C. The A System 

Both the A transmitter and receiver systems are shown in the block 

diagram on Fig. VI-1. In the ADRF operating mode, a single trigger 

pulse .from the master time unit starts the ADRF pulse sequence by 

triggering the .first.of three connected pulse delay units. A long 

(several seconds} gate pulse .from the master time unit then activates 

the releys which disconnect the A coil during B r.f. irradiation. After 

the relays have returned to resting position, a single trigger pulse 
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from the .mas.ter tilne uni.t causes t.ransmi tting of the e sa.Illple pulse' 

and at the same time starts the pulse generators which provide sampling 

gates for the receiving system. By blocking the ADRF and 90° phase 

shift gates, the zero reference for dipolar signal could be obtained, 

and the gate pulses could easily be modified to yield TI/2- TI/2 sequences, 

etc. 

A free-running crystal controlled ll MHz oscillator provided 

cw' r. f. to the A r. f. gate and a phase sensitive detector in the receiver 

system, crf. schematic on Fig. VI-4. The oscillator frequency ll. 0119 MHz 
6 . 

was stable to 1:10 over periods of weeks. 

VI-C-1. Transmitter 

The electronics in the A R.F. GATE AND 90° PHASE SHIFTER, and the 

MODULATED A R .F. POWER AMPLIFIER have been described in detail by 

12 
McArthur, and only a functional description will be given here. 

Schematics. are shown in Figs. VI-5, VI-6 and VI-7. R. f. from the ll MHz 

oscillator will only pass through the A r.f. gate as long as the gate 

pulse is on. The r.f. will be phase shifted by 90° whenever A r.f. gate 

and phase shift gate pulses are supplied simultaneously. The TI/2 pulse 

spin locking waveform is thus obtained by delaying the phase shift gate 

by t , the TI/2 pulse width. The gated and phase shifted A r. f. then 
w 

passes into the first stage of the modulated A r. f. power amplifier, 

which consists of an ADRF wave shaper and cathode follower, a preamplifier; 

a driver, pulse tail damping circuits and finally a power amplifier. 

Application of the ADRF pulse .leads to a smooth turn~off of the r. f. , 

with a time constant less than 1 msec. The A r.f. gate, 90° phase shift 

gate and ADRF gate were chosen considerably longer than this (typically 

4.4 msec, 5.2 msec and 5.2 msec, respectively) to ensure that the 
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adiabatic turn-off he complete. The pulse tail damping circuits 

suppressed ringing in the 11 MHz turned transmitter circuits when the 

driving pulse was turned off. An 813 class C amplifier driven at 

1300-1500 volts was,used in the final power stage. The system produced 

an 11 MHz rotating field component of 8. 4 gauss peak in the sample coil. 

Tuning of the transmitter system was done successively at the 

sample tank circuit and at the output of the transmitter. A leakage 

monitor signal from the power stage and the Zeeman free induction 

signal after a ~n/4 pulse were maximized. 'l'he 90° phase shift adjustment 

was monitored by leaking part of the output from the A r.f. gate and 

phase shifter directly into the phase sensitive detector signal input. 

VI-C-2. Receiver 

The receiver was of the wideband type. With a preamplifier 

recovery time <4 ~s, the total system recovery time (<14 ~s) was 

determined by the sample tank circuit at 11 MHz. 

Signals from the sample first. passed through the PREAMPLIFIER and 

PHASE SENSITIVE DETECTOR. The detected signal was amplified further 

in the VIDEO AMPLIFIER, and could then be monitored on an oscilloscope 

or captured by the BOXCAR INTEGRATORS. The boxcar output was recorded 

continuously on a MOSELEY 680 CHART RECORDER. 

Unity signal to noise ratio for the total system was obtained at 

0. 4 p V RMS, referred to the preamplifier input , and at a detected signal 

frequency of 120 kHz. A receiver gain and linearity check was made at this 

frequency by feeding a calibrated low-level signal from a Hewlett-Packard 

606B oscillator into the preamplifier input. The 607B frequency was set 

to give beats at 120kHz, wQich was well within the preamplifier and 
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phase sens,iti.Ye detector bandwidths, and beat am;pli tudes were measured 

as a function of input slgnal. Voltage gain was found to be 3 • 10 
4 

and was linear within measurement erro.rs (2%) in the input signal range 

0-50 JJV, which covers the range of signals from the sample. 

The PREAMPLIFIER was designed by Dr. M. Schwab and co-workers at 

LBL, Livermore and featured short recovery time (2-4 ]Js), wide bandwidth 

(5 MHz at 6 db and 11 MHz) , and a voltage gain of approximately 7QO at 11 MHz. 

As shown on Fig. VI-8, the preampli.fier consisted of three equivalent push-

pull stages coupled by Relcom wideband transformers. Transistors in 

each stage were thermally balanced by a common heat sink. The crossed 

diodes at the input were in addition to the bank of crossed diodes 

before the receiver input, and therefore not essential. Special care had 

to be taken in the ·lay-out .to avoid instability. 

The amplified 11 MHz signal was fed to the PHASE SENSITIVE DETECTOR, 

along with a reference signal from th.e PHASE REFERENCE UNIT, as shown 

on Fig. VI- 9 : The 11 MHz CW signal {rom the crystal controlled oscillator 

could be phase delayed by slightly more than 360° in the AD-YU 505B 

delay line. Phase shifted r. f. was then amplified and limited to make 

the reference output stable and insensitive, to delay angle, and a 

cathode.follower provided low impedance output. During early experiments, 

phase drift due to temperature variations in the delay line W?-S a problem. 

The delay line and connecting leads were therefore encased completely in 

molding styrofoam, with some improvement in signal.stability. The phase 

reference output into 50 Q could be varied up to approximately 0.4 VRMS' 

.Phase sensitive detection was achieved with a Relcom double balanced mixer 

type M6D, which has a flat frequency response from 50 kHz to 200 MHz: The 
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reference supplied at th.e L port was at least an order of magnitude 

above the s.ignal level. Current direction in the diode bridge would 

then be such that th.e effective ground potential created by voltage 

division in the bridge was switched once every half period from one end 

of the signal transformer secondary to the other. If a CW signal of 

the same frequency as th.e reference is supplied at the R port, a voltage 

with fixed polarity relative to ground will appear at the output port I, 

'since the ground reference is switched in step with the current direction 

in the signal transformer secondary. The output signal will vary 

sinusoidally about zero as the relative phase between reference and 

signal is changed. 

The detected output was amplified in the VIDEO AMPLIFIER, which 

was built by the Physics Department Electronic Shop. As shown on Fig. VI-10, 

the unit consisted of a DC-coupled operational amplifier with stabilizing 

feedback; Voltage gain was approximately 50 at DC, and dropped by 7 db 

in going to 250 KHz. (Rise time of typical signals from the sample was 

approximately 10 ]Js. ) 

Signals were recorded with a double BOXCAR INTEGRATOR system 

as shown on Fig. VI-1. The box cars were designed and built 

by the Physics Department Electronic Shop, and operated in twG modes: 

When a gate pulse was supplied, the transient signal would charge up 

an RC-circuit to.a voltage depending on the signal level and the adjustable 

Rc time constant. In the holding mode, this voltage was kept constant 

by a circuit which compensated for leakage currents. Minimum holding 
I 

time, defined by 1% deviation from initial voltage, was 10 seconds. In 
• t-" 

practice, the chart recorder could be run continuously from the boxcar. 
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output with. no detectable. dri.ft, even vben time between samplings was 

several minutes. In order to eliminate slow drift. in the background 

level due to variations in r.f. leakage or thermal drift in the receiver, 

two boxcars were run in parallel. One: boxcar sampled a portion of the 

transient signal about its peak value, while the other sampled the 

background level after the signal transient had died out. The background 

sampling gate was made very wide (200 JJs-2 ms) to reduce contributions 

to random noise from the background sampling. The background was sub

tracted from the sample signal in a DIFFERENTIAL AMPLIFIER of Physics 

Department Electronic Shop_ construction. The output from the differential 

amplifier was recorded continuously on a MOSELEY 680 CHART RECORDER. 

In a check on the differential amplifier and chart recorder linearity 

and chart recorder hysteresis, one found that the response for the 

differential amplifier/chart recorder combination was linear within 0.5% 

at DC signal levels 0-0.5 V. Signals from the sample were usually in 

this range. 

Finally, a word about r.f. leakage into the receiver, which was 

one of thE: most serious headaches experimentally. Space does not allow 

a description of shielding arrangements, but one can mention that 

leakage from units fed by the ll MHz master oscillator ~esulted in a 

slowly varying DC bias at the detector output. Heavy low-pass filtering 

at the preamplifier DC power connections was essential to block this 

kind of r.f. pick-up from the power supplies and power lines. R.f. pick

up from autonomous osci.llators resulted in beats at the detector output, 

which were recorded as noise or cyclical variations on the chart recorder, 
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depending on relative .frequency difi'e:rence.:;; and phase stability between 

the 11 MHz oscillato,r and the r.f. pick-up source. An example of this 

was~ pick-up from the 100 kHz oscillator in the master time units. The 

r.f. leaked into the receiver via the line to the relay coils in the 

relay box where switching between A and B coils operation was done. 

A low-pass filter was interposed between line and relay box. A third 

kind of pick-up resulted in random noise at the detector output. As 

an example, th_e thermocouple leads seemed to act as receiving ant ennaes , 

and especially the leads to the junction on the sample were effective 

in injecting noise into the receiver. This problem was sought overcome 

by shielding the th_ermocouple leads, with only scant success. 

VI-D. The B System 

The B r. f. system was operated in one of three pulse modes: 

a) A sq_uare pulse lasting from 0.1-0.2 sec and up to 15-20 sec b) Same 

as a) but with sudden 180° phase shifting at intervals of approximately 

1 msec c) A train of eq_ual pulses lasting from a few ~sec to several 

msec, and spaced by time intervals of comparable magnitude. 

A Hewlett-Packard 606A oscillator provided CW r.f. at the B system 

freq_uency. The r.f. was gated, phase shifted and amplified by the units 

shown on F:igs. VI-11, VI-12 and VI-13. 

Gate pulses for the B r .f. phase shift and B r. f. gate were generated 
I 

in two ways: A digital logic unit connected with the master time unit 

could be triggered to deliver.from l to 999 pulses of given length and 

mutual spacing. Repeated triggering yei~ded multiples of this pulse number. 

Alternatively, several gated Tekt_ronix 160 Series pulse delay units 

could be combined to produce the pulse train. 
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The B r .f. gate and pb.as.e shift circuits will not be described 

12 
here (cfr. McArthur }. Note, however, that the sharpness of the 

H30° phase change and symmetry between 0° and 180° phase pulse envelopes 

could be controlled to some extent by adjusting the B r.f. phase shift 

gate pulse a.mpli tude (nominally +25 V) and the bias pot. meter. Smooth. 

shifting is desirable to reduce sideband content in the B r .f., but 

too slow shifting results in reduced B spin reservoir heating. The 

driver stage tuning range was from 265 kHz to 3.15 MHz. 

Power was supplied to the B coil from the TUNABLE B R.F. POWER 

AMPLIFIER, which was an 829B Class C amplifier with the B coil in a 

tuned plate circuit. Since pulse power stability was important in 

many of the experiments, KEFCO 815B regulated power supplies were 

used instead of the internal plate and screen voltage supplies. B r.f. 

power dr'op during long pulses was less than 1%. 

Frequency components at 11 MHz in the B r.f. power amplifier output, 

in practice higher harmonics of the B frequency, were effective in 

d~stroying the proton signal and could create a false '1double resonance" 

s.ignal. To avoid this, traps tuned to 11 MHz were inserted into the 

li.ne leading to the B coil, cf'r. Fig. VI-14. With the. traps, no 

direct depletion of proton signal due to harmonics was observed. In 

measurements on KDP, sign8J. depletion was observed when.h!U"monics hit 

31 . . 
the P reservoir, however. The proton and phosphorous reservoirs are 

strongly coupled and exchange energy rapidly. This effect was no serious 

problem in the experiments described here. 
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B r. f. power during long pulses was measured at the moni t·or point 

shown on Fig. VI-14, with a Hewlett-Packard 410B VTVM. Using rotary_ 

saturation on ca43 in CaF
2

, the VTVM reading was related to the rotating 

B r.f. magnetic field component at the sample sits. With the coil 

' used in most of the experiments, one found 

VRMS. (Volt) 
HlB(gauss} = VB (kHz) . (140 ± 2) 

Depending on frequency, plate and screen voltages, etc. the B r.f. system 

could deliver pulses lasting several secondswith H
1

B up to 30-50 gauss. 

After the strong A r.f. pulses, ringing was observed at the receiver 

output. The oscillations were traced to the B circuit, but it was not 

determined whether the ll MHz power pulse excited the B tank circuit or 

the ll MHz traps. Since ringing occurred during the signal sampling 

period after the 8 pulse, the line to the B r .f. transmitter was severed 

by a relay during the A transmitting and receiving periods. The relay 

was a Potter and Brumfield 11 DG 2~ VDC relay with two 10 Amp contacts 

in parallel, and with diode and resistor protection for the +DC pulse 

amplifier driving the relay. Thus two sets of relays were activated 

during the B r.f. pulse: One set switched the receiver cable leads 

from the A coil connections to ground, while the other connected the 

B coil to the B r.f. transmitter. 
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VI-E. 'Audio System 

Pulsed audio power was generated as follows: The CW output from 

an AUDIO OSCILLATOR (Hewlett-Packard 202C) passed. a RELAY GATE which 

was driven ·in parallel with the B r.f. gate. The gated audio wave 

was amplified and fed to a Halmholtz coil pair in the magnet gap 

by a 100-WATT AUDIO POWER AMPLIFIER, which had a flat frequency 

response throughout the audio range. 

12 
The system is described in more detail by McArthur. 

VI-F. Electromagnet and Field Stabilization 

A Varian 12-inch magnet in connection with a Varian V 2100 power 

supply provided the magnetic field, which was monitored by an NMR 

proton probe at a fixed position in the magnet gap. 

The magnetic field was set so that the proton Larmour frequency 

at the sample sit€ was equal to the frequency of the 11 MHz master 

oscillator ((11011.65 ± 0.05) kHz, long term). When this condition 

obtained, no beats between free induction signals and the 11 MHz 

reference would be generated during phase sensitive detection. Accurate 

field setting was obtained as follows: 

The rr/2 pulse proton free induction signal at the output of the 

video amplifier was monitored on an oscilloscope. The phase reference 

for the phase sensitive detector was adjusted to yield zero signal 

during the .initial parts of the free induction decay, and the magnetic 

field set at a value where no beats in the free induction signal was 

observed. The signal was then zero during the entire free induction 

decay period, and both phase and field setting were optimal for the ADRF 

cycle (Zeeman and dipolar r .f. signals are in quadrature). In this wey, 

.. 
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the magnetic field could be adjus.ted to giye a beat frequency of less 

than 300 Hz, as. compared to th_e 11 MHz Larmour frequency. 

Given the field setting, the measured field at the monitor probe 

position was used to maintain the magnetic field at its initial set 

value.. Due to field gradients in the gap, the proton Larmour frequencies 

at th.e sample and in the monitor probe differed by approximately 2 kHz, 

and a separate r.f. source with continuously variable frequency was 

required to excite the probe. At the same time strict stability 

requirements had to be imposed on this r.f. source, since the long-term 

field stabilization is limited by the relative frequency stability of 

the monitor system. A Hewlett-Packard 606B oscillator phase locked 

to a crystal oscillator controlled Hewlett-Packard 8708A Synchronizer 

was used. This combination had a frequency stability better than 

2 · 10_7 -per 10 min (manufacturer's specifications). The 606B output 

was fed into the reference signal path in a Varian F-84 Fluxmeter after 

a bypassed internal oscillator. The Varian F-84 Fluxmeter excited 

the monitor probe MNR head and field sweep coils, compared the probe 

Larmour frequency to the reference,frequency and provided an error 

signal which could be. fed directly to the Varian V2100 magnet power 

supply for automatic field regulations. Alternatively, the error 

.. signal could be used for manual regulation of the field . 

Due to the near coincidence of the Larmour frequencies at the sample 

and probe sites, r.f. leakage from the monitor system led to 2kHz 

beats on the signal at the receiver output. Shielding and low-level 

operation;• of the monitor system reduced the beat am:pli tude to a few 

percent of typical signals from the sample. Due to phase drift between 
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the two oscillators. be.tween samplings, th.e beats were· detected on the 

chart recorder as additional noise. In e.xperiments where a .maximum signal 

to noise ratio was important, the probe was not excited during signal 

sampling, and manual adjustment of the field was made periodically 

(every 1/4-1/2 hour). Because of the high inherent stability in the 

magnet and power supply system, periodic control was fully adequate, 

but substitution of the original proton sample in the Fluxmeter probe 

by a sample containing other nuclei (F19 , P31 ) was considered as an 

8lternative. 

VI-G. Temperature Control System 

The sample temperature was controlled by a Varian Variable Temperature 

Control system Type V-4257, which consisted of a Dewar gas flow conduit 

and an electronic control unit: 

Pure, dry N2 gas from pressure bottles passed through a spiral heat 

exchanger in a liquid N
2 

bath. The cooled gas entered at the bottom 

of the Dewar containing the sample and r.f. coil where a hot filament 

brought the gas temperature to the desired level. The gas then passed 

a Pt resistance wire which served as feedback temperature sensor for 

the electronic control unit, before flowing over the sample and 

exhausting into the air through a vent at the top of the Dewar. During 

operation at low sample temperatures, condensation at the exhaust vent 

and on the electrical feed-throughs into the Dewar was a .problem. The 

whole volume between th.e magnet pole faces was therefore enclosed in 

a plastic bag which was slowly purged with dry N
2 

gas, and exhausting 

N2 from the Dewar was led out of the bag with a 2 foot piece of plastic 

tubing. 
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In the electronic control unit, the desired sample temperature could 

be set continuously on a dial. According to manufacturer's specifications, 

the temperature range was -185°C to +300°C, with a temperature resettability 

of ±2°C (at sample) and temperature control ±l°C (at sensor). Throughout 

the range of temperatures of interest here, our measurements with liquid 

N2 as a coolant and N
2 

gas flowing in the system indicated a temperature 

resettability within ±l°K and temperature control within ±0.5°K, both 

referring to the sample site. 

Sample temperatures were measured with Cu-constantan thermocouples, 

using ice water or liquid N
2 

as references. Thermovoltages were 

measured on a Hewlett Packard VTVM type 425A in the early stages of 

this work. The bulk of the i39 spin-lattice relaxation time measurements 

were done with thermovoltages being measured on a Keithley Digital 

Multimeter Model 160. With_ an average thermocouple response of 28 ].lV /°K 

. in the range 80°K to 280°K, the maximum voltmeter error (Keithley 160: 0.1%

of range) corresponds to less than 0.2°K temperathre error in all cases. 

In prder to eliminate errors due to thermovoltages at the voltmeter 

input connections, measurements were checked by switching the connectors. 

Two sets of thermocouples were used: In one set, the sensing junction 

was permanently mounted 1 em above the top edge of the sample r.f. coil, 

i . e. , approximately 6 em downstream in th_e N 
2 

flow c'ompared to the 

sample center. Calibration curves at 10, 20 and 30 SCFH gas flow rates 
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were used to determine sample temperatures from readings obtained at 

this junction. The other thermocouple set had the sensing junction 

in a groove in the sample crystal. Sample and junction were wrapped 

in teflon tape and fitted into a thin-walled teflon tube. Thermal 

insulation provided by the teflon increased the time constant for heat 

exchange bet~een the N
2 

gas and the sample, which is desirable for good 

sample temperature stability, but might have accentuated the r.f. sample 

heating during long, powerful B r.f. pulses. Due to r.f. heating in 

the junction itself, the sample temperature rise could not be measured 

directly, but from the observed thermocouple readings during and between 

r.f. pulses, one can infer that the sample temperature rise due to r.f. 

heating always was <o.5°K. Another consequence of the thermal insulation 

of the sample could have been reduction of thermal gradients across 

the sample, since heat fluxes into and out of different portions of 

the sample is reduced. 

The major reason for temperature gradients in the sample seemed 

to be that the cold N
2 

gas gradually warmed up on passing downstream. 

To check on this, measurements were made on the axial thermal gradient 

in a teflon cylinder at the sample site. The cylinder was 38 mm long 

and with 12 mm diameter (typical KDP sample size), and had thermocouple 

junctions lodged in small bore holes, approximately 7 mm inside each 

end surface. Both thermocouple wires were led close together and 

entered at the upper end surface. Thermal contact at the junctions 

was sought improved with GC #8101 Transistor Z-5 Silicon Compound. 

Connecting the two junctions, the temperature differences between the 

... 
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two $ites were obtained at different gas flow rates. As expected, the 

gradient increases as the sample temperature and gas·flow rate are 

lowered. In the region around the KDP Currie temperature T = l23°K, 
c 

the temperature difference between top and bottom ofthe teflon cylinder 

is 2°K at 40 SCFH and 3°K at 30 SCFH. Measurements on K39 transition 

frequencies close toT , however, showed that the gradient must be less 
c 

in the KDP samples, with l°K as an upper limit at T = T , and 30 SCFH 
. c 

flow rate. This could be due to the difference in thermal conductivities 

and the teflon thermal shielding of the KDP sample, as mentioned above. 
\ 
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VJ.J., CRYSTAL GROWING .AND SA}4PLE PREPARATION. 
PIEZOELECTRIC SIGNAL SUPPRESSION 

The KDP samples used in this investigation were si:q.gle crystal 

cylinders of diameter 10-13 mm and length 25-30 mm. They were of 

optical quality, but with roughly ground surfaces. There were three 

sources of crystals: 

(a) Crystals used in proton spin-lattice relaxation and most 

double resonance measurements: These were grown by Dr. D. A. McArthur 

and Dr. R. E. Walstedt and this laboratory by the method described 

below. High-field T
1 

for these crystals was approximately 33 sec 

( cfr. VIII-B). A specific sample with the crystallographic Z-axis parallel 

to the sample cylinder axis will be termed the Vstanda.!'d .. sample" .in the 

following. It was used extensively throughout this investigation, and 

specifically in the measurements of the K39 spin-lattice relaxation times. 

(b) Twenty-five percent deuterated crystals: These were supplied 

by Isomet Corp. , Palisades Park, N. J. According to Isomet , they were 

made from analytical grade raw material. High-field T1 was initially 

longer than necessary for double resonance applications, and the samples 

were therefore y-irradiated from a co60 source. A dose of 4.78 x 10
4 

Rads 

brought the high-field T
1 

down to approximately 52 sec. 

(c) Other KDP samples of natural isotopic composition and deuterated 

by 4% were prepared as described below and had initially very long 

high-field T1 values. Measurements on the samples of natural isotopic 

composition showed that even a ·dose 10 t.imes that given the 25% 

deuterated crystals did not bring the high-field T1 below 200 seconds, 

although a reduction in T
1 

was detect~d. Irradiation caused no visible 
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discolor~tion of the samples. The samples, especially those with 4% 

deuteration, were prepared for applications of the type described under 

Section XII- C (Suggestions for Further Work). Further irradiation of 

the samples was not done, since it was decided that these applications 

would carry outside the scope of this work. 

Crystal Growing 

KDP single crystals were grown from an aqueous solution by the 

cooling method. Analytic grade KH
2
Po4 granules were dissolved in a 

glass vat containing approximately 8 liters of ·distilled H2o, so that 

the solution was saturated at 70°C. Where partial deuteration was 

desired, D
2
o was added to the solvent, and the degree of deuteration 

was estimated from the initial D2/H1 proportion in the saturated 

solution. Theoretically, the deuteron/proton signal strengths should 

also indicate degree of deuteration. From KDP crystals at hand, seeds 

were cut in the fo~m of slices approximately 4 em x 5 em x 0.7 em 

perpendicular to the crystallographic Z-axis. The seeds were fastened 

on a special mounting rod ("spider") so that ·when the rod was immersed 

in the solution and rotated about its axis, liquid flowed perpendicular 

to the 001 surfaces. For a brief period after immer~ion, the solution 

temperature was raised 3~5°C above the saturation temperature to 

dissolve away unwanted KDP microcrystals. A motor continuously 

rotated the mounting rod throughout the growing process, the direction 

of rotation being reversed every 15 sec or so. This provided mixing 

of the solution and even growth of the crystals. The temperature 

of the solution was controlled by a balanced bridge circuit with a 

temperature sensor (thermistor) in one arm of the bridge and ,a reference 
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resistor in another. Bridge unbalance voltage was fed into the power 

amplifier providing heating current to the glass vat. The reference 

resistance was slowly varied by a motor to lower.the temperature by 

approximately 2-3°C in 24 hrs, and the system provided temperature 

control within 2°C. The glass vessel containing the solution was 

thermally insulated on its lower half only. On the inside walls above 

liquid level and lid water condensed and dripped down, which might 

have helped avoid spurious ·seeds from forming at the liquid surface. 

The seeds quickly formed 101 pyramids on the 001 surfaces, and 

grew as straight prisms capped by pyramids in the (001)-direction. 

At approximately 40°C the sides of the prisms started to curve away 

from the Z-direction, and this became more pronounced as the temperature 

was lowered further. A similar effect has been reported earlier 

on adjusting the solvent P.h. The crystals obtained were large (typically 

5 em x 6 em x 12 em; weight 600g), of optical quality and with well

defined surfaces. 

Sample Cutting 

The KDP single crystals were very sensitive to mechanical and 

thermal stresses and precise cutting and grinding of samples without 

creating internal cracks was not quite straightforward. The method 

finally adopted was string-saw. cutting by dissolving. The string was 

a taut rubber 0-ring that was wetted by a sponge and driven through 

pulleys and guides by a motor. Final rounding of. the samples was 

made by careful grinding on a sharpening stone, using water paste and 

grinding powder. 
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After final mounting in the NMR coil, the sample alignment 

deviated less than 1-2° from the optimal, as eviden-ced by rotation 

. 39 41 ( ) patterns of the K and K spectra cfr. X-A . 

At the end of this investigation, it was also demonstrated that 

a disc saw with diamond powder could be used to obtain precise cuts 

with little or no damage. The crystal was then glued to the saw table 

and the saw advanced very slowly, with no coolant. 

Piezoeiectric Signal Suppression 

KDP is piezoelectric, and special preca).ltions had to be taken to 

avoid "ringing" after application of the strong r. f. pulses. Peak-Peak 

voltages across the sample coil reached very high levels (:~(lOOV)) 

during the pulses, and the oscillating electric fields would set up 

electromechanical vibrations in the sample. These vibrations could 

persist after the r.f. had been turned off, and were observed as a 

strong, damped oscillation superposed on the _NMR signal. 

It is interesting to note that straight, cylindrical samples 

with end surfaces perpendicular to the axis were less prone to ring 

than samples with more irregular shapes. The latter were straight 

cylinders with the lower end surface at an angle to the axis, or with 

slices taken off two opposite sides of the cylinder. 

Several methods are known to get rid of piezoelectric ringing, 

and the methods are based on introducing either mechanical or electrical 

losses. 

Effective mechanical damping (good impedance match) can be 

obtained by immersing the crystal in a liquid, but this was impractical 

in the present case, both because of space limitations and because 
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measurements were made down to low temperatures (approximately 99°K). 

No proton-free liquids with suitable melting and boiling points were 

available. An adhesive tape wrapped around the sample is a trick that 

was not tried, but it seemed that gluing the end surface of the sample 

to the mounting rod helped. 

The chief means of suppression were electrical, however. A 2 mil 

Mylar film with a lOoA Al layer was wrapped around the sides of the 

sample. To avoid eddy current damping of the r.f. pulse, thin strips 

of Al were removed parallel to the cylinder axis and at intervals 

of approximately 0.5 mm. Since the ski.n depth of Al is ~1o 5A at 11 MHz 

and 99°K, the Al did not provide appreciable shielding of the r.f. 

fields, but would cause damping of the free vib~ation of the crystal. 

The sample with the Mylar Al foil and teflon mount were enclosed in a 

cage of insulated #39 Cu wire at ground potential, which shielded from 

the r.f. fields. The wires were glued side by side at maximum density 

and parallel to the sample cylinder axis. Electrical connections to 

the wires were made so that the shielding should create low losses 

and disturbance on the applied r.f. field. 

These precautions proved sufficient to eliminate ringing in all 

cases. The most dramatic improvement was in the region frorn the 

ferroelectric Curie temperature T and up to approximately T + 8°K. 
c c 
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VIII. MEASUREMENTS OF PROTON SPIN-LATTICE RELAXATION 
TIMES IN KDP. ULTRASLOW MOTION 

VIII-A. General Considerations 

Proton spin-lattice relaxation measurements were made partly because 

of their intrinsic information on the state of motion in the crystal, 

partly because protons were used as abundant (A) spin species in double 

resonance experiments: As was discussed in Chapter III, the A spin-

lattice relaxation times pertinent to the specific double resonance 

method to be used are essential to both the maximum double resonance 

sensitivity and information gathering rate which is possible with a 

given experimental set~up. The proton relaxation data presented here 

pertain to relaxation in the laboratory frame and in the rotating 

frame after ADRF, and are thus relevant to ADRF double resonance. 

In this and later chapters, it is necessary to specify the direction 

of the applied static magnetic field H relative to the KDP crystal 
0 

axes. Figure VIII-1 shows a convenient convention 
48 

for cases where 

the magnetic field is perpendicular to one of the crystallographic axes 

(x,y,z), Except for accidental misalignments, this will always be the 

case in the work reported here. The structures of KDP in the para-

and ferro-phases were described in the Introduction, where the X. ,y.,z 

(a,b,c) axes were defined, In the para-phase, rot~tion about· 

the z axis by 90° reproduces a given field/crystal structure config-

uration, and also there are in general two sets of equivalent protons. 

These corre:spond to hydrogen bond directions nearly parallel to either 

the x- or y-axis (called x- andy-bonds in the following). In the 

special case 8 = (45° ± n•90°, n =integer number), all protons are 
z 

equivalent. 
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l 
As described in Chapter VII, several KDP crystals were available 

with widely varying laboratory frame, high-field spin-lattice relaxation 

times. The data in this chapter were obtained with different cuts from the 

' crystals gr9wn by McArthur and Walstedt. These were the samples with 

the highest impurity contents, as indicated by their short laboratory 

frame spin~lattice relaxation times. 

VIII-B. High-Field Spin-Lattice Relaxation Times 
· in the Laboratory Frame 

The relaxation times were measured by conventional pulse methods 

throughout a temperature range extending from room temperature and 

down to 92°K. The bulk of the measurements were made by saturating 

the laboratory frame transition by a strong (rotating.frame field H
1 

~ 60 

gauss) burst of resonant r.f.' field and recording the recovery of 

laboratory frame magnetization by applying a TI/2 pulse at various times 

after the saturating pulse. 

The relaxation curves thus obtained proved to be non-exponential 

in various degrees, with steeper initial slopes. Relaxat·ion times 

determined from the lowest slopes on the relaxation curves were from 

5% to 30% longer than the ones determined from the initial slopes . 

Since the scatter in the data points on the relaxation curves was 

relatively larger at long t;unes, the largest discrepancies reported 

above need not have been entirely due to non~exponential relaxation. 

The following checks were made to eliminate certain trivial explanations. 

for the non-exponential behavior: 

Nonlinear receiver response: Direct measurements of receiver 

linearity as described in VI- C-2 showed that the :receiver could not 
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be the source of the non-exponential relaxation curves. This was 

confirmed by two additional measurements: Before entering the pre-

amplifier, the signal from the coil was attenuated by 10 dB, arid 

relaxation curves were recorded. When renormalized, the new curves 

coincided (well within the experimental scatter) with the curves 

obtained with no attenuation. In the other test , tap water was used 

instead of the crystal sample, and exponential relaxation curves obtained. 

Experimental technique: The Zeeman signal after complete saturation 

evolves as 

e
-t /T 1. LAB) 

S(t) = s(oo) (1 -

where t is the time elapsed between the saturating pUlse and the n/2 

sampling pulse, and S(oo) is the maximum proton signal, obtained for 

long times t. Since relaxation curves were derived from 

[S(oo)- S(t)]/S(oo), an error in S(oo) will lead to apparent non-

exponential relaxation. To avoid systematic errors in S(oo), the longest 

times t that were used in recording each relaxation curve was typically 

240 sec, corresponding to 6-9 times the average lab .frame spin-lattice 

relaxation times that were measured. The difference in signal from 

the case where t -+ oo is then O(lo-3 ), which is negligible compared 

to the noise, at a signal to noise level of approximately 50. Another 

possible source of error is detection of dipolar signal components due to 

order accidentially being created in the dipolar reservoir during the 

saturating pulse (as described below, the dipolar T
1 

is much shorter 
. d 

than Tl.LAB). The reference phase for the phase sensitive detector 

exhibited both short-and long-term drift, which would have led to 
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detection of possible dipolar signal components and to variable gain 

for the Zeeman signal. It seems improbable that such effects should 

yield reproducible data of the type observed, but to check whether the 

non-exponential behavior was related to the experimental method used, 

several alternative saturating pulse sequences were tried: a) A long 

(approximately 20 ~sec) square r.f. pulse. Since the proton T
2 

as 

determined by free induction decay measurements was approximately 40 ~s, 

the spin temperature at the end of the pulse should effectively be 

infinite, both in the laboratory and rotating frame. b) A single rr/2 

pulse gave poorer saturation than in a), but the relaxation behavior 

was the same. c) A comb of 10 11/2-pulses gave a high degree of saturation, 

but unchanged relaxation behavior. d) Inverting the lab frame population 

with a TI pulse yielded the same curve shape as before, when renormalized. 

As mentioned in Section VIII-A, there are two sets of equivalent 

protons in· KDP for e :f: ( 45° + n •90°) , which correspond to the two ' 
z 

different angles between the static magnetic field H and the hydrogen 
0 

bond direction. To check whether there were two sets of protons which 

relaxed at different rates, measurements were made to determine the 

relaxation behavior at 8z = 45°. The relaxation time Tl.LAB was found 

to be longer than at e = 90 °, but the non;_exponential behavior was 
z 

the same. 

Crystal imperfections could lead to different relaxation rates, 

but such perturbations were not observed in the electric field 

gradient data for K39 (Cfr. Chapter X). 

The main object of the Tl.LAB measurements was to establish the 

maximum permissible double resonance cycle repetition rates at different 
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temperatures. No further experimental or theoretical attempts were 

therefore made to determine the reason for the non-exponential behavior, 

and one made no special effort to obtain a large body of accurate 

Tl.LAB-data. 

Sine~ the slopes of the relaxation curves were relatively constant 

during the first 15-20 seconds of relaxation, these were used in 

defining the relaxation time. Most of the relaxation times were 

recorded with the crystal orientation e = 9(ft(z 1 H II ;x). This was 
z 0 

the orientation used in the T
1 

(K39 ) - measurements, and the results 

in Fig. VIII-2 were obtained with the same sample called the "standard 

sample" in the following. Also shown in the figure are T l. LAB values 

obtained with e = 45° and at two different sample temperatures. 
z 

The results in Fig. VIII-2 are consistent with a nearly temperature 

independent relaxation time Tl.LAB throughout the temperature range 

from roam temperature to 99°K. In the· paraelectric phase (T > 123°K) 

and for e =90° 
z ' one found Tl.LAB ~ 33.3 sec. Below approximately ll0°K 

one found Tl.LAB = 37.5 sec. At ez .= 45°, Tl.LAB ~ 39 sec in the 

paraphase. With the estimated error limits indicated in Fig. VIII-2, 

one should not pay much attention to minor temperature trends in the 

data, but Tl.LAB appears to be slightly longer at low temperatures, 

and any anomaly at the Curie temperature must be weak. The longer TLAB 

at e = 45° is pos3i>bly due to different spin diffusion rates at the 
z 

two orientations. The temperature dependence of Tl.LAB indicates 

that the dominant relaxation mechanism is spin diffusion· to paramagnetic 

impurities. This affords one possible explanation to the non-exponential 

relaxation behavior, namely inhomogeneous distribution of the paramagnetic 
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impurities which act as relaxation centers. Clearly, if measurements 

of Tl.LAB are to yield information on lattice motion in the crystal, 

a much higher degree of sample purity is required~ Measurements of 

this type have been made by R. Blinc, et al.49 

VIII-C. Rotating-Frame Spin-Lattice Relaxation 
Times After ADRF. Ultraslow Motion 

As described in Section II-B, the ADRF sequence preferentially 

aligns the protons along their local fields in the rotating frame. We 

shall assume that dipole-dipole couplings rapidly establish a state 

for the whole proton system which can be described by a spin temperature 

which initially is very low. Due to spin-lattice relaxation, the spin 

temperature will evolve towards the lattice temperature at a characteristic 

rate which will be defined as the dipolar spin-lattice relaxation time 

T since it pertains to the dipole-dipole coupled system. T · l.dip l.dip 

is generally different from Tl.LAB' 

Dipolar spin-lattice relaxation times were measured by applying 

an ADRF pulse sequence to the sample and. recording the decay of the 

dipolar signal as the time separation tb between the ADRF sequence and 

the n/4 sampling pulse was increased. In contrast to the measurements 

of Tl.LAB' one here had to allow the protons to come into thermal 

equilibrium with the lattice before each pulse sequence. Typically, 

the protons were allowed to polarize at least 120 sec after the n/4 

sampling pulse, before the next ADRF sequence was applied. For the 

KDP standard sample (z 1 H ) this led to proton signals that were 
0 

slightly lower (~%) than would have been obtained from a proton system 

is equilibrium with the lattice. This discrepancy was less than typical 

.. 
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measurement errors due to drift and noise, however. 

Relaxation curves (proton dipolar signal vs tb) were obtained with . 

the standard sample and other samples from the same crystal batch. 

These curves also exhibited deviations from exponential behavior, but 

here the shape of the curves depended on the temperature in a very 

interesting manner: At sample temperatures below approximately 210°K 

the curves were close to exponential throughout the range of tb-values 
I 

used, which generally was 0.2 sec ~ tb ~ 15 sec. For tb longer than 

this, a tendency towards a more shallow slope was o1.Jserved. At high 

temperatures a steeper initial slope becomes evident, and above 

approximately 250°K one can clearly resolve two exponential decay curves. 

At temperatures 300°K and above the data are uncertain,·but indicate that 

the twq relaxation times approach each other so that there is only a single 

averaged relaxation time at high temperatures. These results are 

typical for all samples that were studied in this way. In Fig. VIII-3 

are shown T
1 

d' values obtained with the KDP standard sample at H II x • 
• l.p 0 

The relaxation times in the high temperature region are plotted 

separately in I;ig. VIII-4, where data obtained with another<· crystal· 

(H · II z) are also included. 
0 

Before going on to a physical interpretation of the T
1 

d' -data, 
• l.P 

one can now assess how well protons in these specific samples are 

suited for use as indicator spins ("A" spins) in ADRF double resonance 

applications. Since the dipolar signal decays due to spin-lattice 

relaxation, T1 d' will define an upper limit for how long the time tb 
• l.p 

can be, and thus also for the time the double resonance A-B coupling 
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can be maintained. The choice of tb depends on the signal-to-noise 

ratio required, but tb = 'I' can be used as a rough guide. The data 
l.dip 

in Figs. VIII-3 and VIII-4 show that Tl.dip is nearly constant and 

equal to approximately 14 sec at temperatures below 240°K. Assuming 

typical cross-relaxation rates, etc, this should be adequate for high-

sensitivity detection of all rare nuclear species in KDP, given a 

signal/noise ratio of 50 at tb = 10 sec. As the temperature is increased 

above 2$0°K, however, T1 d' rapidly becomes shorter, which ultimately 
. lp 

makes the A-B coupling time too short for detection of the rare spins. 

The temperature where this occurs, depends on the abtindance of the 

rare spin species, the A-B cross-coupling time, apparatus parameters, 

what type of meusurements are being made, etc, but for K39 and K
41 

in 

KDP one found that double resonance spectroscopy could be done up 

to 290-300°K. Quanti.tative measurements of double resonance signal 

amplitudes required lower temperatures, however. The T1 .LAB-data 

indicated that quantitative signal amplitude measurements could be 

done with cycle repetition times as short as 120 seconds, and one can 

conclude that protons are well suited as double resonance indicator 

spin in these samples. 

As described in Section II-C, a temperature dependent T1 d' 
. lp 

combined with a nearly temperature independent Tl.LAB indicates that 

ultraslow motion is taking place. Both the present results and data 

published in the literature establish clearly that this ultraslow 

50 
motion in KDP can be linked to the protons. Schmidt and Uehling 

have studied the dynamics of deuterous in the deuterated isomorph 

and were able to show that two distinct types of deuteron motion takes 

• 
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place: A rapid intrabond motion, where deuterons jump between two 

adjacent equilibrium positions on a given hydrogen bond, and a much 

s'lower interbond motion, where deuterons jump from one bond to a 

neighboring one. Schmidt and Uehling used electrical·· conductivity and 

NMR data, and later measurements with similar methods have established that 

protons in KDP behave in the same manner, cfr. below. It is reasonable that 

large-scale low-frequency motion in the temperature range of interest 

would be linked to the protons which are bound by the relatively weak 

hydrogen bond, rather than the stronger covalent an~/or ionic bonds 

of the other nuclear species in the crystal. 

Turning now to Fig. VIII-3, it is. evident that one must consider 

several different contributions to the total relaxation rate l/T1 d' : 
. lp 

a) A nearly temperature independent contribution from paramagnetic 

-1 impurity relaxation with an average value 0.068 sec ' corresponding 

to a relaxation time 14.7 sec. b) A contribution at high temperatures 

(T 5 230°K). c) A contribution which has its maximum .at or close to 

the Curie temperature T = l23°K. b) and c) are treated separately 
c 

below: 

b) Relaxation at high temperatures (T > 230°K) 

Details of the relaxation behavior in this temperature range are 

shown.on Fig. VIII-4 for two samples with x II H and z II H , respectively. 
. 0 . o . 

Subtracting the impurity relaxation contribution, one obtains relaxation 

rates that clearly are governed by an activation energy E , as shown. . a 

This is evident for both the fast and slow relaxation rates observed 

simultaneously in this temperature range. For the slow relaxation com-

ponent, one found E = (0.51 ± 0.05) eV for the x II H sample, with 
a o 
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E 10% smaller in the z II H sample. These results are typical for 
a o 

measurements on other samples also. Within experimental uncertainty, 

the same activation energy was found for the rapid relaxation component 

in samples of both orientations. The data spread does not allow a 

quantitative comparison of activation energies in the two orientations 

for the rapid relaxation component. 

After these data had been recorded, similar results for KDP and 

two isomorphs were published by Eline and Firs. 51 Their data on 

KDF, obtained with z II H
0

, were essentially in agreement with those 

presented above, but they do not report dual relaxation rates in the 

high temperature region, nor an increase in relaxation rate at T The 
c 

activation energies measured by Eline and Firs were: In KDF:(0.64 ± 0.1) eV 

(single crystal) , in RbH
2

FO 
4

: ( 0.82 ± 0. 03) eV, {Ix:Jwder sample) , and in 

CoH
2

Fo 4 :(1.4 ± 0.4) eV (powder sample). Eline and Firs concluded 

that the relaxation was due to hindered rotation about a single axis, 

and that it is the size of the cation that controls the rotation and 

not the hydrogen bond energy, which is roughly the same in all three 

isomorphs.· From these data and spin-lattice relaxation measurements 

in the spin-lock state, they also found that the rotation correlation 

time had a temperature dependence 

T = T exp(E /KT) 
c o a 

. -3 
where T = 1.2•10 sec at 300°K and rapidly decreases at higher c 

(VIII-1) 

temperatures. Our data agree well with this, and from the relaxation 

rate one may roughly estimate t ~ 1 sec at 250°K. Using the value 
c 

E = 0.51 eV, Eq. (VIII-C-1) then yields a pre-exponential factor t a o 

.. 
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-10 of the order of magnitude 10 sec. These results apparently contradict 

the measurements of Schmidt and Uehling 5° of deuteron interbond jump 

times 1 , which are so long that they cannot be reconciled with the 
xy 

correlation times above. As pointed out by Eline and Firs, however, 

the discrepancy can be resolved by taking into account that T pertains 
xy 

specifi~ally to motion between x- andy-bonds, while T is sensitive 
l.dip 

to jumps between two x-bonds or two y-bonds as well. 

It is interesting to note that the observed activation energies 

are the same, within experimental uncertainty, as those ootained from 

deuteron and proton conductivity data. 50 •52 This demonstrates that 

proton transport by H
2

Fo4 rotations defines the rate of change transfer 

and thus the electrical conductivity in KDF. 51 Also, the observed 

activation energy of 0.5 eV is in itself a strong indication that the 

proton motion is rotation of H
2

Do4 groups, i.e. ,,a cooperative process, 

rather than proton interbond jumping: 51 •53 Single..-proton diffusion 

or interbond jumping requires the breaking of a hydrogen bond of energy 

5 eV, which is roughly ten times the observed activation energy. 

One may now list some possible explanations for the double exponential 

relaxation observed in the dipolar state at high temperatures. Clearly, 

imperfect samples is a possibility, but nontrivial explanations cannot 

be ruled out. Eline and Firs did not report double exponential relaxation 

in th.eir . paper, 
51 

but according to Eline, 54 such behavior was observed in 

some cases. Also, as was especially evident in some cases, we observed 

two well defined relaxation rates, rather than the continuous distribution 

which one would expect due to random perturbations from crystal imperfec-

tions or an inhomogeneous impurity distribution. A striking feature 
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of the double exponential relaxation rates is that both relaxation rates 

exhibit a temperature dependence corresponding to the same activation 

energy. This suggests that also the fast relaxation is related to 

hindered rotation of H
2
Po4 groups. One possibility is that x-bond and 

y-bond protons relax at different rates, depending on the angle between 

each bond and the magnetic field H . In that case, a single relaxation 
0 

rate would be observed in the z II H orientation, where all bonds are ·-· 
0 

equivalent. _This was not found to be the case experimentally. Before 

leaving the subject of the double relaxation rates, one should mention 

that the protons after ADRF are coupled by mutual dipole-dipole 

interactions to the other nuclear species in KDP, of which the most 

important are P31 and possibly JC39 • It is conceivable that the cross-

relaxation and spin-lattice relaxation rates could depend on the 

temperature in such a w~ that they would lead to the observed proton 

relaxation behavior. 

c) Relaxation rate anomaly at T ~ T . 
c 

As is evident from Fig. VIII-3, there is a small, but definite 

increase in the relaxation rate close to the Curie temperature, with 

an apparent maximum at T • A somewhat similar anomaly at T has been 
c c . 

reported by Blinc and Zumer,8 who measured high-field spin-lattice 

relaxation times for P31 in very pure KDP samples. Blinc and Zumer 

concluded that the perturbation mechanism responsible for the relaxation 

anomaly at T was proton-phosphorous magnetic dipole interaction, c 

modulated by a specific low-frequency lattice mode, the "ferroelectric 



mode". This mode, which is discussed further in Cha!lter XI, becomes 

strongly excited and lower in frequency ("goes soft") as the Curie 

point is approached. The same explanation probably does not apply 

in.the present case, since the correlation frequency is restricted to 

the kilohertz range, as indicated by the absence of an anomaly in the 

Tl.LAB data. All experimental evidence obtained on the ferroelectric 

mode iri KDP so far, shows that the ferroelectric-mode fluctuation 

spectrum is essentially white throughout the frequency range of interest 

here (a few kHz to 11 MHz), even within milli.degress K of the Curie 

point. Also, a comparison with the Eline and Zumer results suggests that 

the impurity level in our samples was so high that relaxation by phonon-

modulated magnetic dipole coupling would be too slow to be observed. 

As was described above, however, ultraslow proton motion can be 

effective in relaxing protons in the dipolar state after ADRF. A 

possible perturbation mechanism at T ~ T is proton interbond motion 
c 

either by single-proton jumping or rotation of H
2
Po4.groups. (The 

correlation time of intrabond motion is too short, cfr. Ref. 49.) ·This 

is supported by Schmidt and Uehling's measurements of the x-y bond jumping 

•t 50 . h . . rae whlc 1nd1cate an anomalbus rate increase as T -+T . 
c 

In connection with the relaxation rate anomaly at Tc one should 

mention that Eline, et al. have found a different type of anomaly in 

high-field laboratory frame proton relaxation times for very pure 

samples of KDP. 49 These results show a EPP~type relaxation rate 

maximum below T . With the low purity crystals used in the work reported 
c 

here, the relaxation anomaly reported in Ref. 49 would be small compared 

to the relaxation rate due to paramagnetic impurities. Still, it is 
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disturbing that no such anomaly was detected either in our Tl. LAB or 

T
1 

d. data even though few data were obtained in the temperature region 
• l.p 

in question. Later measurements by R. Eline, et al. have thrown doubt 

54 on the data in Ref. 49, however. The more recent data yielded a 

protion relaxation rate maximum at T = T which is interpreted as being c 

due to the slowing down of the proton motion in the hydrogen bonds. 
--- --- - -~ - -

To conclude, then: Protons are well suited ~s-A- (or indicafor )-

spins for ADRF double resonance in the KDP samples investigated. In 

addition, the following items can be listed which suggest further 

experimental investigation: 

'l'he difference in activation energy for H2Po4 -rotatiens in the 

orientations z 1 H and z II H . 
0 0 

The two relaxation rates observed in the high temperature T -l.dip 

relaxation curves. 

The anomaly in T at the Curie temperature. l.dip 

Although these phenomena might yield valuable information on KDP 

lattice dynamics, a main goal in this investigation was to develop and 

apply alternative methods capable of supplementing information of the 

type shown above. Thus, time did not permit more careful and 

encompassing measurements of the type presented in this chapter, and 

work on proton relaxation in KDP was not pursued further. 
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IX. TEST ON THEORIES DEVELOPED IN CHAPTERS IV 
AND V: PROTON K39 SYSTEM IN KDP 

In Chapter IV, explicit expressions were obtained that apply to 

double resonance with a single, unmodulated B r.f. pulse, and in 

Chapter V effective gyromagnetic ratios in the rotating frame were 

computed for the case where laboratory frame quadrupole and Zeeman 

interactions are of arbitrary relative magnitudes. 

Here, experimental verification of these results will be sought by 

double resonance in KDP. H1 and K39 are used as A and B spins in double 

resonance with unmodulated B r.f., and effective gyromagnetic ratios in 

the rotating frame ~e measured directly for K39 by audio saturation 

double resonance. These spin systems offer,specific advantages, to be 

listed below, but it is necessary to investigate the effect of a third 

spin species, P31 , on the double resonance mechanism described in 

Chapter IV. Also, the analysis in Chapter V applies for a single spin 

species, and the effects of double resonance detection must be taken 

into account. 39 4o 41 . 17 2 Other interactions between K , K , K , 0 and H can 

be neglected, due to low abundances or low gyromagnetic ratios. For 

the purposes of this analysis, the total spin hamiltonian during B r.f. 

irradiation can be written: 

Jf xB + 0 + xdd + r.f. (IX-1) 

where 

'ff'dd = JcAA + .:...AR + -~B 
<'l dd J{dd J{dd 
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A, Band C represent protons, K39 and P31 , respectively. Furthermore, 

Jt. 
0 

JiB 
0 

j( 
dd 

~ 
r.f. 

:If 
0 

1 
are H and P 

31 
Zeeman hamiltonians . 

is the K39 mixed Zeeman-quadrupole hamiltonian. 

represents the magnetic dipole interactions within the coupled 

A, . B, C system. J<!_~ has been omit ted due to the low K
39 

gyromagnetic ratio. 

is the K39 interaction with a strong r.f. field which is 

assumed on resonance for one of the K39 transitions. The 

r.f. frequency is assumed for removed from A and C transition 

frequencies. 

As indicated in Chapter III, the coupling and energy transfer 

between the A, B and C spin systems is analyzed by transforming the 

hamiltonian into the rotating frames of the spin systems involved. The 

appropriate transformation operator in the present case is: 

L = exp[i(0 + J(B+ xC)t] 
q 0 0 0 

Only secular terms in the interaction representation hamiltonian 

need be considered, since these terms contribute to A-B-C energy transfer 

in the rotating frames and define the energy levels in the B rotating 

frame 

(IX-2) 

Here, 

_..AA* _..AC* _.CC* _..AB* · _F.B* 
= xdd (s) + xdd (s) + xdd (s) + xdd (s) + xdd (s) 
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Stars indicate interaction representation, the s in parenthesis indicates 

secular part. The AA, CC and AC couplings are very strong in the present 

case due to the large H1 and P31 gyramagnetic ratios, and one can define 

a single thermal reservoir for the A and C spins, with one spin tempera-

ture. This reservoir is represented by 

~* CC* ~C* . dd ( s ) + j( dd ( s ) + dd ( s ) (IX-3) 

In the double resonance applications below, the coupled spin system 

H1-P31 can therefore be treated as a single thermal reservoir, where the 

heat capacity now is determined by the hamiltonian Eq. (IX-3). For 

simplicity, the coupled H1-P31 system will be termed the "A system" in 

Sections IX-A and IX-B below and in subsequent chapters. 

The effective gyramagnetic ratios in the B(K39 ) rotating frames 

are affected by magnetic dipolar couplings to the A(H1 ) and C(P31 ) nuclei, 

represented by the hamiltonian terms: 

~* CB* 
dd (s) + JCdd (s) (IX-4) 

The appropriate hamiltonian for calculations of B rotating frame 

eigenlevels is a sum of xB*f (s) and those parts of Eq. (IX-4) which do r. . 
not commute with ~~f. (s). As the B r.f. field strength is reduced, 

the dipolar field interaction will gradually become more important, and 

ultimately the calculations of yeff in Chapter V will no longer apply. 

Static dipolar field components in the B rotating frame are of order 

l gauss in the present case (cfr. f.ex. Tsutsumi 55 ). If the B r.f. 

field component H1B is not much larger than this, the rotating frame 

transition frequencies will be higher than those computed from Table V-1 

in Chapter V, and will not be proportional to H
1

B. 
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In this chapter, a detailed knowledge of the K39 transitions 

involved is not necessary, and the transitions will simply be identified 

by a number, as defined in Chapter X. Also, the center frequency and 

the crystal orientation relative to the static field H are sufficient 
0 

for identification. 

IX-A. Verification of the Thermal Reservoir Model for Double 
Resonance With Unmodulated B r.f. 

As was stressed in Chapter IV, the analysis is only relevant to 

double resonance applications where the B spin species has high abundance, 

and yet requires double resonance methods for detection. This applies 

ideally to K39 , which has a natural isotopic abundance of 93.08% and 

weak quadrupole and Zeeman interactions in the laboratory frame ( cfr. 

data in Chapter X). 

Below, the internal consistency of the results in Chapter IV will 

be tested quantitatively. Theoretical and experimental dependence on 

specific parameters appearing in the theory will be compared by curve 

fitting. Data sets of two main types were recorded: 

a) The B r.f. irradiation time was varied stepwise through a certain 

range, typically from 0 to approximately 10 sec, keeping all other 

parameters constant. This yielded the time variation of the proton 

energy'due to proton and K39 spin-lattice relaxation. Curves were 

obtained for different values of wB, wlB' ~lA and TlB" ~ 

b) In another series of measurements, the Br.f. frequency was swept 

stepwise through the K39 line, with all other external parameters kept 

constant. This was done for different values of w1B and tB · and r.f.' 

thus families of characteristic line shapes were obtained. 
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The experimental procedure is perhaps most easily understood by 

referring to Fig. III-2, which shows the r.f. pulse requence. In both 

recording modes mentioned above, the double resonance cycle would 

typically be repeated at intervals of 120 sec, i.e., 3 to 4 times the 

proton laboratory frame •r
1

. This allowed the protons to reach nearly 

(> 95%) equilibrium polarization along the applied field H before 
0 

each cycle. The sweep in wB or tB r.f. was obtained by varying the 

relevant parameter in steps from one cycle to the next. A typical 

cycle would be initiated with proton ADRF, followed after 0.1 sec by a 

square, unmodulated r.f. pulse at the K39 transition frequency. The 

irradiation time tB f was essentially limited by the proton spin-
r. . 

lattice relaxation time after ADRF, since the relaxation gradually 

destroys the proton signal. Depending on the signal to noise ratio 

that was required, maximum irradiation times were·usually in the range 

from 8 to 18 seconds. In the recording mode where the duration of 

the B r.f. field was the parameter being varied, the proton TT'/4 sampling 

pulse was applied at a fixed time tb for all values of tB r.f. in a run, 

after the Br.f. field had been turnedoff. (With time origin at the 

be-ginning of the Br.f. pulse, one used: tb = tB r.f.(max) + 0.1 sec). 

In the line shape recording mode, both tb and tB r.f. were constant, 

with tb = tB r.f. + 0.1 sec. Baseline measurements of zero proton 

signal were usually made at least once before and after each sweep of 
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either WB or tB r.f., by the following procedure: During the 

ADRF-sequence, the spin-lock phase shift and adiabatic turn-off 

of the B r.f. was omitted, with loss of the ordered dipolar state. As 

a check, runs were made periodically both with noB r.f. applied and 

with saturation of the K39 system. No residual dipolar order was 

detected either by this indirect saturation or after direct 'IT/2 pulse 

saturation of the proton system. Unit amplitude for the normalized 

proton signal would then correspond to: 

1 = (proton signal with noB r.f. -proton signal with 

disrupted ADRF) 

It is convenient to look at data obtained in .the two recording 

modes separately: 

IX-A-1. 39 Time Variation of the Proton Energy During Proton-K 
Coupling 

The proton energy as a function of B r.f. irradiation time was 

given by the exact expression Eq. (IV-23 ). Exact in this connection 

means that no assumptions were made on the relative magnitudes of the 

parameters involved. Equation (IV- 23} is difficult to interpret 

directly, however. Since the measurements described in this paragraph 

were not done in the wings of the line where TAB is largest, the 

approximate formula (Eq. (IV- 24)) which requires TAB/TlA' TAB/T1B << 1 

might apply. Below, both exact and approximate formulas have been 

used for comparison with experimental data, and where the approximate 

expression proved valid, the data confirmed very well the intuitive 

picture of the double resonance process which can be based on Eq. (IV-24 ). 

To recapitulate, Eq. (IV- 24) predicts that: 
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Immediately following contact with JC39 reservoir, the proton 

reservoir energy drops rapidly towards a value corresponding to thermal 

equilibrium between the two reservoirs. The equilibration is exponential, 

with a time constant 

After thermal equilibrium has been established between the two reservoirs, 

the proton energy will vary exponentially in time; and the normalized 

proton signal is (cfr. Eq. (IV-25)): 
E 

l+Bo 
EAa 

1 + £ 
. exp 

(- -1-!"--£ ( T ~B - T ~ )tB r. f.) 
If the i39 re"servoir is kept hot by saturation' the normalized proton 

signal during thermal contact between the reservoirs is expected to 

vary exponentially as described by Eq. (IV- 21): 

S = exp (- _s_ 
A £AB 

. t ) 
B r.f. 

Here, the proton signal decay time is T = TAB/£, and the initial slope 

of the proton signal decay curve is steeper than in the case with no 

B r.f. phase shifting. 

A large amount of experimental data has been obtained which verifies 

quantitatively the behavior described above. Statistically significant 

deviations from the theory were not observed. Some typical experimental 

data are presented in the figures below, where solid lines correspond 

to best fit theoreticai curves {Eq .. (IV--24)). Experimental conditions 

were adjusted so that parameters in the theory were varied in different 

ways: 
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wB = ~0 • Sample temperature constant. w1B (i.e. B r. f. field 

strength) varied 

The results are shown on Fig. IX-1. Two B r.f. power levels 

were used: ~B/2n = (4.35±0.05)kHz and ~B/2n = (7.2±0.2)kHz. The 

curves clearly have the expected qualitative behavior, with an initial 

rapid decay of the proton signal due to thermal equilibration between 

the proton and K39 reservoirs, followed by an exponential decay 

(straight line in the logarithmic graph) due to spin-lattice relaxation 

heating of the coupled reservoirs. 

By fitting with the expression (Eq. (IV-24)), one can construct 

the two theoretical curves shown in the figure. The parameter 

values used are shown beside each curve. The T
1

B values were determined 

by using the value TlB = 14.7 sec obtained from a separate measurement. 

As a quick check on the internal consistency of these results, one can 

form the ratios of the squared rotating frame transition frequencies 

and of the heat capacity ratios: 

According to Eq. (IV -19) the ratios should be equal, which they certainly 

. are within the experimental errors . The error limits on the £ 's are the 

same as were obtained in the approximate treatment below. ~w1B/2TI~ 0.15 kHz. 

Least squares fitting of the same data with the approximate 

expression (Eq. (IV- 25)) yields: 

w1B/2TI = 4.35 kHz' : £(4.35 kHz) = (0.29±0.05); TlB = (3.9±0.6) sec 

w1B/2TI = 7.2 kHz : £(7.2 kHz)= (0.61±0.10); T1B = (3.7±0.7) sec 
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Fig. IX-1. Double resonance with unmodulated B r.f. at two different B r.f. 
field strengths. Curves were computed from Eq. (IV-24), with 
parameter val~es as shown in the figure and with T

1
A=l4.7 sec 

Ep =0. 
ro 



-178-

With the obs.erved error limits, the expression (Eq. (V-24)) must 

be used to obtain a correct £-value for the 7.2 kHz curve, while 

Eq. (IV-25 ) is sufficiently accurate for analysis of the 4.35 kHz curve. 

This is not surprising, since the approximation error is expected to 

increase with £. If data precision were increased substantially, f.ex. 

by data accumulation, the exact expression should also be used in 

t.UJalyzing tlle 4. 35 kHz curve. 

Figure IX-2 shows how the proton signal decays when the K39 

reservoir is kept hot by phase shifting the B r.f. field by TI once 

every millisecond. Curves are shown corresponding to the two B r.f. 

power levels w
1

B/2TI = 1.28 kHz and 7.2 kHz. The decay is clearly 

exponential. Using £-values obtained from separate measurements and 

assuming that Eq. (IV-21 ) holds, i.e., TAB= T·£, one obtains 

Curve A: TAB(l.28 kHz) = (0.10±0.03) sec 

Curve B: TAB(7.2 kHz) =(1.0±0.2) sec 

Thus TAB increases with wlB' as anticipated in Section IV-B. According 

to Eq. (IV -24), the cross relaxation terms in the expression for the 

proton energy can be obtained by subtracting the spin-lattice relaxation 

term (straight line in Fig. I X-1) from the experimental data. This 

was done for the 7.1 kHz curve in Fig. IX-1 which due to the slow 

cross relaxation is best suited for analysis. Normalizing the difference 

to one at tB f = 0, curve C on Fig. IX-2 was obtained. Assuming r. . 

an exponential time constant T = TAB/(1 +'£),one finds: 

Curve C: TAB(7.2 kHz) = (1.1±0.3) sec 

.. 
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Due to the uncertainty in the data used for constructing curve C, this 

result can only serve as a rough check on the theory. Also, Eq. (IV- 24) 

is based ori the approximation TAB<< TlA'.TlB. For the 7.2 kHz curve, 

which in relation to the criterion above represents one of the worst 

cases in the work reported here. 

It is interesting to note in this connection that a best 

fit of expression (Eq. (IV-24)) to the 7.2 kHz data in Fig. IX-1 

yields TAB= (1.0±0.1) sec. Thus, one can conclude that the three 

methods used in determining TAB for the 7.2 kHz case yield mutually 

consistent results. 

w1B constant. Sample temperature constant. wB varied. 

In Fig. IX-3, two curves are shown which were recorded at the 

same temperature and with the same B r.f. field strength. One was 

obtained with the B r.f. 2kHz below, the other 5 kHz above the line 

center 1'requency wB
0

/21T = 1331 kHz: wB/2'1T = 1329 kHz and 1336 kHz. 

The curves look different in several respects. The initial thermal 

equilibration is obviously slower for the 1336 kHz curve, which is 

farthest from resonance. This is expected due to the larger weB and 

-2 
the smaller value of (sin e) ' where e is the ReB tilt angle in the 

rotating frame, cfr. Eq. (IV- 18 ) . As before, the curve with the larger 

weB' i.e., the 1336 kHz curve, has the steepest slope in the 

. I 
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39 .K double resonance with urunodu1ated l3 r. f. and at different 
degrees of resonance. Curves show best fit of Eq. ( IV-24) 
with: 
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TAB 39 
t >> regime, reflecting the larger K reservoir heat capacity. Br.f. l+E 

Extrapolation to tB f = 0 yields 
r .. 

= 0.149 
0.235 

= 0.64 

According to Eq. (IV- 19) this ratio should be the same as the squared 

ratio between the weB's. On resonance (wB = wB
0

) one found by audio 

0 2 2 . 2 
resonance: w1B/2n = 5.2 kHz. Us2ng weB= w1B + (~wB) , one has 

(
weB(l329 kHz))

2 
( 5 · 6 kHz)2 

weB(l336 kHz) = 1.2 kHz = 0 · 60 

which agrees well with the value 0.64 above. 

The K39 spin-lattice relaxation time is readily determined from 

the two curves. With TlA = 14.5 sec determined by an independent 

measurement, one finds by Eq. ( IV-B-8) : 

wB/271 = 1329 kHz: (1/TlB 1/TlA) = 0.180; TlB = 4.0 sec 

WB/2TI = 1336 kHz: (1/TlB 1/TlA) = 0.187; TlB = 3.9 sec 

'l'he data derived from Fig. IX-3 for the crystal orientation H II z 
0 

and. 

for the K39 ®transition are of course not immediately comparable with 

the other results obtained in this section for the case H II z and K39 Q) 
0 

transition. 

•· 
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wB = wB
0

• weB= w1B = cons.t. Sample temperature, i.e. (t- ~)varied . 

. If one assumes that the theory developed in Chapter IV is valid, then 

data to be presented in Chapter X shows that T
1

(K39) varies over a wide 

range as the sample temperature is brought from room temperature to below 

the Curie temperature T = l23°K. By comparisonwith the proton relaxation 
c 

results in Chapter VII, it becomes clear that one can make (_l-_ - _l-_) ~ 0 
. TlB TlA 

by adjusting the sample temperature. According to Eq. ( IV- 2 5 ) , the 

proton energy during double resonance with unmodulated B r.f. should 

vary as exp (- 1 ! £ (T~B- T~ )tB r.f.) for tB r.f. >> TAB/(1' + £). 

This behavior is borne out quite clearly in Fig. I X-4, where data 

recorded on the K39 G)-line at different temperatures are presented. 

The data obtained at the lowest temperature T = 99°K are especially 

.striking. There TlB >TlA, and the proton signal increases after thermal 

equilibration between the two reservoirs has been achieved. In this 

low temperature range, the slopes are very shallow. This is partly· 

due to the small spin~lattice relaxation rates, but also to the near-

equal values of TlA and T1B. Curve Bin the figure has zero slope, 

and one therefore immediately knows that T
1

B = TlA. As will be shown 

in Section IX ... B, this feature can be used to advantage in certain cases. 

IX-A-2. Double Resonance Lineshape 

The two approximate expressions (Eqs. (IV-24) and IV-25)) 

shouldalso describe the double resonance lineshape, since the lineshape 

recording mode only corresponds to a different choice of parameters 

being varied. In order to compare with theoretical lineshapes, two 

sets of experimental double resonance lines are shown in the following. 
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Fig. IX-4. K39 double resonance with unmodulated B r.f., at four different 

sample temperatures. The curves were computed from Eq. (IV-24) 
with parameter values as shown in the figure. 
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In one s,et, four lines were recorded with different values of the B r. f. 

field strength w l:i/Y eff, but with tB r. f. constant. In the other set, 

four lines were recorded with different tB r.f. but the same w1B/yeff' 

tB r.f. constant, w1B varied. 

It is of interest to check lineshapes predicted by both the 

approximate and exact expressions (Eqs. (IV- 25) and (IV-: 23 ) ) . The 

same set of experimental data was used in both cases, and the results 

are shown on Fig. IX-5. By inspection, it is immediately clear that 

~several of the salient features of the lines are as predicted by the 

theory: The lines have a double mi.nimum with the on-resonance maximum 

depressed more and more as the B r. f. field strength, i.e. , the B 

reservoir heat 9apacity, is increased. The curvature of the line at 

~ = ~0 decreases as the B r.f. field strength is 

the reduced sensitivity to the off-resonance field 

increased, reflecting 
6wB 
----.· in the rotating 
yeff. 

frame as H.1B increases. The line depth is slightly larger on the high-

frequency side of wB
0

; corresponding to the large initial B reservoir energy 

(negative spin temperatures) when the B r.f. pulse is turned on suddenly. 

First, the quantitative analysis will be done for the approximate 

expression (Eq,. (IV- 25)). Since the approximation is better, tl~e shorter 

TAB' the approximate lineshapes should give the best fit to experimental 

data close. to the line center. This is borne out clearly in Fig.IX...:.5, 

where the broken line curves were obtained from Eq. (IV- 25) by plugging 

in appropriate values for £, TlA, T · E and tB· f at each frequency WB '· lB' Bo r .. 

cfr. Eq. ( IV-26). The parameter values used are listed in Table IX-.1. 
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Table IX.l. Parameter sets used in computing theoretical 
line shapes by the approximate formula (Eq. (IV- 25) ) . 

Curves drawn with broken lines in Fig. IX-5. 

wlB/2TI c (wBo) TlA TlB Asymmetry Const. c 
[ -1 

A symm. 
[kHz] [sec] [ secJ rad sec] 

l. 30 0.022 14.7 3.3 0.0015 

2.68 0.095 14.7 3.7 0.0015 

4.35 0.250 14.7 3.3 0.0015 

7.20 0.685 14.7 4;1 0.0015 

Here, t;6 r. f. was measured directly, and TlA was found by a standard 

proton relaxation time measurement after ADRF. E was determined from 

on-resonance curves like .those on Fig. IX-1, using Eq. (IV- 25). In 

order to test the theory as severely as possible, the E-values at all 

frequencies and for all four curves were computed from a single 

measurement of the on-resonance E(~ ) at wAd" /2n = 4.35 kHz. In 
.JjO U lO .. 

each curve, the off-resonance values of E were related to the on-resonance 

one by Eq. (IV- 19). TlB was meaf:)ured separately for each line from 

proton signal decay curves like tho~e on Fig. IX-1, and was taken as 

constant throughout each line. The assumption of a constant T1B is 

partly justified below by the measured small dependence on E within the 

appropriate E-ranges. 

The asymmetry constant C deserves a closer description. The 
Asymm. 

frequency dependence of the initial B system rotating frame energy EBo 

is derived in Appendix B, and was indicated by 

E = K • t:.w Bo . B 
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in Section IV-B. With 

the relevant parameter describing the degree of lineshape asymmetry 

in both the exact and approximate expressions (Eqs. (IV-23) and (IV~26)) 

becomes 

c Asymm. 

Explicit expressions for EBo and EAo are obtained from Eq. (B-9) in 

Appendix Band from Eq. (II-4). Since the temperature in question 

here is the lattice temperature, the high temperature approximation can 

be used: 

c 
Asymm. 

NB h AwB(E4 - Et 
4kT 

3kT 1 

6wB 

All quantities appearing in this expression were defined in connection 

with Eq. (B-9) and Eq. (II-4). In the present case, one has I= 1/2, 

and one may write : 

where 

c 
Asymm.. = 

NB/NA = 0.93/2 = 0.47 (K39 /proton abundances) 

WBo ~ (E4-E1 )/h = 748kHz (line ~enter frequency K39 Q)) 

w · = y H = 11 MHz (proton Larmour frequency) 
L A o 

wLA ~ YAHLA = 3.2 kHz (proton Larmour frequency in local dipolar 

field HLA = 0.73 G). 
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With these values one obtains 

C = 0.0015 (rad sec-l)-l 
Asymm. 

This may be compared with computer best fits to the experimental curves 

which yielded values in the range 

0.0010 (rad sec-l)-l S CA $ 0.0016 (rad sec~1 )-l 
symm. 

One may now return to the broken curves in Fig. IX-5. For 

the lines with low B r.f. power, the agreement between experimental 

data and theoretical curves is very good in the frequency region about 

wBo' and significant errors only start to develop as the lineshape 

minima on either side of ~0 are approached. At the highest B r.f. 

power level, TAB is larger and the agreement is poorer. It is interesting 

to note that the theoretical curves generally lie b~low the experimental 

ones. This is expected, since the theoretical curves do not include 

the off-resonance increase in TAB' which gives a bottleneck effect in 

the depletion of the proton signaL 

Lineshapes generated from the exact expression (Eq. (IV- 23)) are 

shown in Fig. IX-5 (full drawn lines). The same experimental data 

were used as above, with the addition of data points obtained with 

phase shifted Br.f. The curve fitting was done by the procedure 

outlined in Section IV-C. E and T1B at ~ = wBo were determined by 

the exact expression (Eq. (IV- 23)), and TAB(~) was determined from 

computed values of £(~) and the lineshape data obtained with phase 

shifted B r; f. 'l'he parameter sets are given in the Table IX-2: 
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Table IX.2 • Parameter sets us~d in: computing theoretical 
lineshapes by the exact formula (Eq. (IV- 23)). 

Curves drawn with full lines in Fig. IX-5. 

wlB/2rr £(wBo) TlA TlB Asymmetry Canst. c 
-1 Asymm. 

[kHz] [sec] [sec] [rad sec] 

1.30 0.024 14.7 3.3 0. 0015 

2.68 0.102 14.7 3.7 0.0015 

4.35 0.270 1~.7 3.3 0.0 015 

7.20 0.740 14.7 4.0 0.0,015 
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For each curve there is good agreement in the regions around the line 

center and in the wings of the line. In the regions about the line 

minima, the theoretical curves tend to lie too high. One possible 

explanation for the discrepancy is that the cross coupling times TAB(UB) 

used for computing the theoretical curves were too long: Around the 

line center and the wings of the line the lineshape is almost insensitive 

to variations in TAB· At the line center this is because TAB there 

has its minimum value, and also tB f was chosen so long that the 
r .. 

thermal equilibration transient had died out. In the wings of the line 

the B reservoir energy is onlyperturbed very little by the slow A-B 

energy exchange. Consequently, errdrs in the determination of TAB 

would show up mainly in the regions where discrepancies were observed 

in Fig •. IX-5. 

The method of determining TAB used here is convenient and fits smoothly 

into the theoretical framework that -was built up in Chapter IV, but it 

is vulnerable to systematic errors. Two effects will be mentioned in 

particular, both of which lead to too long TAB-values. First, there is 

the effective reduction of the B r.f. amplitude during phase shifting. 

During each phase cycle, the B r. f. power envelope went from zero to .a 

maximum and back to zero again. As described in Chapter XI, the turn-on 

and turn-off was made smoothly in order to avoid sidebands, and as a 

consequence-the mean B r;f. field strength was roughly 3% lower during 

phase shi-fting. The power reduction was monitored on a VTVM in each case, 

and the curves in Fig. IX-5 obtained with phase shifted B r.f. have'been 

corrected for this by a slightly increased depth. Instead of trying to 

do the correction analytically on the basis of Eq. (IV-18) which requires 
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knowledge of J(weB) that is not available. in the present c:a,se, the 

slight correction was made by interpolation and extrapolation of 

data obtained from the phase shifted lines in Fig. IX-5 at each '%· 
For each line the VTVM power readings with and without phase shifting 

of the B r.f. were used. The second source of systematic errors in TAB 

is. that the B r.f. phase shifting may not have kept the B reservoir 

at an infinite temperature. The. phase shifting method was described 

in Section III-B, where one assumed idealized conditions (instantaneous 

phase shift by exactly n radians, etc). Unfortunately, it is difficult 

to make even a very rough assessment of the degree of saturation attained 

in the current experiment. The results above do establish that each 

,phase cycle was much less than all TAB's in question, andthus lowering 

of the B reservoir temperature by cross relaxation cooling should be 

negligible. 
. . 39 

Information on the K T
2 

in the rotating frame is lacking, 

however, and one can therefore not rule out possible phase coherence 

effects. The details of the phase shifted B r.f. wave, f.ex. with 

respect to harmonic content and the phase behavior during each phase 

cycle, are not accurately known. In .addition to this there are uncertain 

points regarding the saturation efficiency for different values of wB 

off' resonance. 

w1B constant; tB r.f. varied. 

As was shown above, the approximate formula. (Eq; . (IV- 25 ) ) gives 

a good qualitative description of the center ridge in the double 

resonance line obtained with unmodulated B r. f. .It can be written 

.;· 

•. 
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t -+ t . + /":,., one has 
B r.f. B·r.f. 

Since f 2 ( ~) is a positive, monotonously increasing function in ~, an 

increase in tB f tends to decrease the overall signal level and thus 
r .. 

ultimately the curvature of the center ridge in the line. On the other 

hand, as /":,.increases, the off-resonance signal is reduced relatively 

more than the on-resonance one. The net effect is that the central 

ridge in the line remains quite pronounced even for long tB f. where 
r. . 

the depletion of the proton signal is large. This behavior was indeed 

verified experimentally, as shown on Fig. IX-6. The qualitative 

dii'ference in saturation behavior from the case where the B r.f. field 

strength was varied, is quite clear. 

IX-A-3. Conclusion 

For the case of ~9 in KDP, and for a wide range of experimental 

conditions; excellent agreement has been found between the thermal 

reservoir theory developed in Chapter IV and experiment. As discussed 

in Section IV-C,. comparison involves no adjustable parameters, since . 

ali parameters are uniquely determined from experimental data. On the 

basis of this, one can conclude that tne theory applies to K39 in KDP 

within the range of experimental parameters that appear in the analysis 

above, at the very least. Experimental data have been: obtained;. moreover, 

' indicating that the theory applies to other lines and field configurations 
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as well. Also, the de;riyation of the theory was q:uite general, and 

one can expect that the results shquld apply equally well to other 

nuclear species and other substances. The amount of experimental 

evidence obtained so far thus adds another element to the mass of 

evidence supporting the thermal reservoir model fer double resonance 

in general. 

The simplified expressions derived in Chapter IV were shown to 

approximate the experimental data with the expected degree of precision. 

Experimentally, parameter sets were encountered above where the approximate 

theory introduced errors into E: that were comparable to the experimental 
.• 

errors. For high-accuracy measurements, therefore, the exact version 

of the theory must be used unless the ratio of the cross-coupling times 

TAB to TlA and TB are much smaller than in the case above. The approximate 

expressions are valuable in making quick estimates ·of E: and TlB' however. 

Also, the approximate expressions provide intuitive understanding of 

experimental results like those presented above, and of how the parameters 

in the theory influence those results. 

IX-B. Measurements of Effective Gyromagnetic 
Ratios in the K39 Rotating· Frame 

IX-B-1. Introduction 

JC39 in KDP is well suited for testing the results in Chapter V, 

since Zeeman and quadrupole interactions which define the laboratory 

frame eigenlevels are of comparable magnitudes and yield a wide range 

of transition frequencies vBo in the laboratory frame. As will be 

shown in Section X-A, the K39 quadrupole coupling constant in KDP is 

a function of temperature, and it is therefore possible to vary A, 

defined by: 



2 .. ·. 
A = e gQ/2I(2I ~ 1) 

yLABHo 

without altering the static magnetic field strength H . 
0 

Thus the 

dependence of yeff on A can be measured without the need to retune the 

A system at each value of A. Finally, K39 yields a strong double resonance 

signal, and the rotating frame transition frequencies can easily be 

determined by audio saturation double resonance, as described in Chapter III. 

IX-B-2. Experimental Results and Discussion 

A single crystal KDP sample was used (the "standat-d sample" described 

in Chapter VII). The field configuration was as assumed in the cal-

culations in Chapter V, with the crystallographic x-axis parallel to 

the static magnetic field H and the audio.field vector direction, and 
0 

the z-axis parallel to the axis of the B r .f. coil. 

Measurements of Yeff were made by ADRF double resonance, with protons 

as A spins and ~9 as B spins. The results reported here were all 

obtained with the B r.f. exactly on resonance for each K39 transition, 

and with proton Larmour frequency equal to 11 MHz. The magnitude of 

the B r.f. rotating field component H
1

B was determined by measuring 

the RMS voltage across the B coil and using calibration data from 

· C 43 · CaF l f Ch t VI W'th aud1o resonance on a 1n a 
2 

sa.mp e, c r. ap er . 1 a 

rotating frame trans~tion _frequency v,Audio measured by.audio resonance, 

the .,experimentally determined y eff then is by definition: 

' ' 
( . 

VAudio 
Yeff = H . , lB 

t. 

(IX-5) 

• 
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Two series of measurements on yeff will be described: a) At a fixed 

temperature, the yeff corresponding to all observable K39 laboratory 

frame transitions were determined. b) For a specific transition, y eff 
r 

was measured as a function of temper attire (i.e. , as a function of A) • 

a. Fixed Temperature, Different Transitions 

The experimentally determined values of y /y at T = 158°K · eff LAB 

are shown in Table IX.3 (yLAB = 0.1987 MHz/k gauss). Also listed are 

theoretical values eomputed from the expressions in Table. V.3. Yeff for 

forbidden transitions have been set equal to zero, cfr. the discussion in 

Section V-A. The transition numbering was defined in Section V-A. 

Table IX.3. Effective gyromagnetic ratios in the ~9 rotating 
frame (e = 90° X , A = 0.513, T = 158°K. 

Transition 
VBo \)Audio HlB (yef/YLAB) 

Number [KHz] [KHz) [Gauss] .. EXperimental Theoretical 

1 742 4.40 15.7 1.41 ± 0.08 1.462 ± 0.007 

2 838 3·70 14.7 1.26 ± 0.07 1.294 ± 0.005 

3 1580 Not Observed 0 0 

4 190 Uncertain 2.483 ± 0.006 

5 932 Not Observed 0 0 

6 1770 0.5 9.5 0.26 ± 0.13 0.146 ± 0.002 .·· 

The agreement between theory and experiment is very good,with the possible 

exception of yeff at transition 4. Indicated error limits in the experi.,.. 

mental Yeff reflect an estimated 4% error in H
1

B (\~VM-reading and cali

bration data)., and indiyidually determined measurement uncertainties in 

VA d" . Relative errors in VA d" were large at low frequencies, due 
ll l.O U l.O · 

to linewidths up to approximately 1kHz. Sources of error in the 

theoretically determined yeff stem from measurements of sample temperatures: 
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and K39 laboratory frame transition frequencies v · 
Bo 

. l dA 
A dv 

-3 2 • 10 at A = 0.513 , ~v = 1kHz 

Possible error due to sample misalignment has been neglected, since 

discrepancies between all observed and theoretically computed vBo were · 

less than 0. 6 
< . 

kHz, and thus -measurement errors. In connection with 

the data in Table IX.3, one may note specifically! 

Transitions 3 and 5 are forbidden (cfr. Section V-A) in the present 

field configuration. A slight misalignment causes sufficient admixture 

of states for the transitions to be observed, however, and weak lines 

at the 3 and 5 transition frequencies were observed on several occasions. 

The data in Table IX. 3 were· obtained with a z-rotation sample, and while 

the 3 transition was not detected, a weak line at the 5 transition 

frequency was observed at certain z-rotation angles. In order to check 

that the lin~ was observed due to sample misalignment, the line depth 

was monitored during a full 2rr rotation of the sample about an axis 

1 H 
0 

If the crystallographic. z..:.axis did not coincide with the rotation 

u.xis, there ::;lwuld be two angles of rotation, separated by "TT, where 

z 1 H ; yielding zero line intersity. This was indeed observed experio 

mentally. As shown in SeCtion V-A, a direct proportionality exists 

between the matrix elements of the B r.f. hamiltonian between B spin 

laboratory frame eigenstates, and effective gyromagnetic ratios in the 

corresponding rotating frames. Forbidden transitions are thus represented 

by Yeff = 0. It is interesting to note that at the angles where the 

• 
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5 transition was observed, the corresponding yeff/yLAB was very low, of 

order 0.1. 

'l'ransi tion 4 has a: large \;ff' and should have been observed. 

Unfortunately, .the transition frequency of 190 kHz was well below the 

lowest tuning frequency (approximately 265kHz) for the B driver amplifier; 

and it was necessary to do the measurements off resonance for this unit. 

This might have affected the B r .f phase shifting which was used for 

B reservoir heating. A weak line. seemed to be indicated at 190kHz, but 

the signal to noise ratio was so close to 1 that no definite conclusions 

could be drawn. An audio resonance search at 190 kHz was negative, 

but the HlB calibration data available were dubious in this low fre

·quency range, and the audio frequency sweep might not have been extensive 

enough. Even though the off-resonance transient response ofthe B r.f. 

system is not known, pulsed B r.f. saturation might have been more 

suitable than phase shifting or.audio resonance in the present case. 

This was not tried. 

b. Fixed Transition, D;ifferent A 

Experjmental conditions were as under part a. before, but now with the 

sample temperature as a variable parameter. Measurements were made 

in the temperatlire range from l25°K to 246°K, where A varies nearly 

linearly from 0.504 (at l25°K) to 0.533 (at 246°K), in a field 

H = 2590 G. Transition l was chos~n, mainly because it was used in 
0 

the K39 spin-lattice relaxation time measurements described in 

Chapter XI. 

Experimental and theoretical values of yeff/yLAB are shown. in 

Fig. IX-7, as a function of temperature .. All data were recorded with 
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\!Audio= 4.4 kHz and on resonance\!B = \!B
0

(T). Errors in single

measurement experimental and theoretical yeff/YLAB - values were as 

shown for transition l in Table IX.3. As is apparent from Fig. IX-7, 

the temper!:l.ture dependence of Yeff/YLAB is small, but is borne out clearly 

by the experj_mental data, and experimental and theoretical values .agree 

within the established error limits. 

As mentioned at the beginning of this chapter, local dipolar fields 

cause deviations from proportionality between the transition frequency 

and B r.f. field strength H1B in the rotating frame, when H1B is small. 

A rough check .to eliminate this source of error in the measurements 

described above was made by measuring Aeff/A.LAB for transition 1 at 3 

values of H1B. For H1B = 31, 19 and 9 gauss., one found A.eff/A.1AB = l. 393, 

l. 415 and l. 404, respectively, indicating; no systematic trend. This is 

as expected at these relatively large fields! 
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X. DOUBLE RESONANCE STUDJ:ES ON i39 AND K
41 

IN KDP 

X-A. Spectroscopy, Conventional Double Resonance Methods 

The spectra of i39 and K
41 

in KDP were already published 56 during 

the early phases of this investigation, and will therefore only be 

given a brief treatment here. Knowledge of spectra and quadrupole 

coupling constants is necessary in the present context to identify 

transitions and to compute quantities of interest, such as the effective 

gyromagnetic ratio in the rotating frame. 

The ADRF double resonance meth:xls described in Section III-B were 

used, with protons as A spins and K39 or K41 as B spins. The P31 will 

affect heat capacity ratios and possibly cross-relaxation rates, but 

can be ignored in the following analysis. Other nuclear species have 

t~o weak interactions .with i39 and K
41 

to be of importance. 

We recall that K39 and K
41 

are both spin 3/2 particles with natural 

isotopic abundances 93.08% and 6.91%, respectively. K39 requires 

double resonance methods for detection, despite high abundance, due to 

its weak quadrupole and Zeeman interactions. 

X-A-1. Speetral Rotation Patterns. Sample Alignment 

Both K39 and K
41 

are quadrupole coupled to the local e. f .g., and 

will in general have six allowed transitions. The hamiltonian defining 

the laboratory frame eigenlevels is 

J(:J( +Jf 
z Q 

where M' is the usual Zeeman interaction: 
z Jf = -Y hi H . z B z o J(Q represents 

the quadrupole interaction. Since the crystal structure changes on going 

through the Curie point. J(Q will have two forms, correspond:ing to the 

para- and ferroelectric phase, and the two cases will be treated separately. 

•. 

... 
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39 41 . 
For both K and K · in KDP, the quadrupole and Zeeman interactions 

are of the same order of magnitude, and perturbation treatments cannot 

be used. 

Paraelectric Phase 

As demonstrated in Ref. 48, crystal symmetry considerations show 

that.the e.f.g. tensor at the potassium site is axially symmetric about 

the crystallographic z-axis and that all four potassium atoms in the 

~it cell are equivalent. Thus, a single set of resonance frequencies 

is expected for both K39 and K
41

, and energy eigenvalues are defined 

by the hamiltonian · 

4o 
The energy eigenvalues have been computed numerically by Parker for 

several different crystal orientations and for several different 

values of the parameter A: 

A = e 2
qQ/2I(2I - l) 

:yhH 

'I'his quantity is identical to A as defined in Chapter V. 

The spectra were recorded at various crystal orientations relative 

to the magnetic field H . Typically, one of the cryallographic axes 
0 

was kept perpendicular to the magnetic field vector, while th~ sample 

was rotated stepwise about this axis. Depending on the axis of·rotation, 

the spectra will be referred to as x-, y- and z-rotation patterns, 

cfr. Fig. VIII-1! 

In Fig. X-1 are shown the observed x-rotation transition frequencies 

for K39 and K
41 

at 240°K. (Due to the symmetry of the e.f.g. tensor in 

the paraelectric phase, the y and z rotations yield no additional 

information). The curves show theoretical transition frequencies 
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--~9 41 corresponding to A = 0. 532 for K""' and A = l. 32 for K , With H ~ 2586G, 
0 

one has for the quadrupole coupling constants: 

~9 : Je
2
qQ/hl = (1.64 ± 0.01) MHz 

K
41

: je
2

qQ/hj = (2.24 ± 0.01) MHz 

at 240°K. As will be shown explicitly below, the strength of the quadrupole 

coupling varies with temperature. 

The laboratory frame energy level scheme is shown in Fig. X-1, where 

the different transitions are defined by a number. At a general angle 

8 , the eigenstates are linear superpositions of several Zeeman 
X 

eigenstates lm.> , but at 8 - 0°, one has H II z and thus 
. l X 0 

[JCQ,JCz] = 0 

At this angle, the lm.> will be eigenstates of the total hamiltonian 
l . 

Jf = JC
2 

+ JCQ, and the energy eigenvalues are: 

2. 
'"' · · e qQ ( 2 ( ) Em - -,._.Hom + 4I(2I - l) 3m - I I + l 

One can identify: 

Since no mixing of Zeeman eigenstates is present at 8 = 0° and the 
X 

selection rule 6m = ±1 applies, it is clear that the only allowed 

transition~ are@ , G) and®. Experimentally;, the lines@, G) and @were 

not observed at 8 = 0°, cfr. Fig. X-1. Only a slight rotation away 
X 

from 8 = 0° was sufficient for the lines to be observed, however. 
X 
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Ferroelectric Phase 

In the temperature range below the Curie point (T = l23°K), the 
. c 

crystal symmetry is orthorh.ombic Fdd2. The e.f.g. tensor at.theK39 

sites has a nonzero asymmetry factor n in the ferroelectric phase, and 

as pointed out in Ref. 48, this implies that there are two nonequivalent 

potassium sites in the unit cell (when a magnetic field is applied at 

an angle to the z axis). These sites will be called A and B. In the 

ferroelectric phase, domains exist with polarizations either parallel 

or antiparallel to the z-axis. Denoting the A and B sites in the two 

types of domains as A, B and A' , B' respectively, one finds that there 

are in general four nonequivalent potassium sites in the unit cell 

corresponding to A, B, A' and B'. Thus four sets of transition frequencies 

are expected at a general orientation, for both K39 and K
41

. The set 

ez = 0° + n '·90° (n =an integer) represents an exception, since 

A, B' arid A' , B become equivalent at these angles. In the x-rotation, 

only two sets of transition frequencies are observed, since A and B' 

are equivalent at X 1 H , and likewise A' and B. 
0 

Even though symmetry considerations show that the z axis is a 

principal axis of the e.f.g. tensor, the asymmetric e.f.g. components 

and number of nonequivalent potassium sites make the extraction of the 

quadrupole coupling constant and asymmetry parameter somewhat involved. 

The procedure of Brown and Parker 57 was used in Ref. 48 to determine 

all relevant quadrupole coupling parruneters for K39 at 770°K, and the 
. . 58 . 

data were later extended to cover the temperature range from 77 °K 

and up to room temperature. In light of this, no systematic effort 

was made to obtain quadrupole coupling parameters in the ferroelectric 
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phase. Partial z-rotation spectra were recorded however, both in order 

to identify transitions used in Chapter XI, and to check on sample 

alignment.. In Fig. X-2 are shown transition frequencies obtained in 

the z-rotation, as a function of sample temperature. In the ferroelectric 

phase' all data were recorded with e = 90°. 
z 

Significant line broadening was observed in the ferroelectric phase 

above approximately ll8°K. The broadening can be explained by large-

scale atomic fluctuations which lead to a time dependent quadrupole 

hamiltonian. If the fluctuation correlation time T is short compared 

to the inverse static linewidth, the motional narrowing formula yields: 

( f:::.W) a: ( ~( t )) T 

where XQ(t) is the difference between the instantaneous and the time 

averaged quadrupole hamiltonians, and Tis the fluctuation correlation 

time. If this formula applies, line broadening can come about both by 

increased fluctuation amplitudes and by slower fluctuations. No attempt 

was made to obtain quantitative line broadening data for a thorough 

analysis, however. 

z-rotation samples were used extensively in the<measurements of 

K39 spin-lattice relaxation, and the spectra provided a quick procedure. 

for checking on the sample alignment in situ: 

In the paraelectric phase, the e.f.g. tensor is axially symmetric about· 

the z-axis, and the energy levels are unchanged when the sample is 

rotated about this axis. Thus all K39 and K
41 

transition frequencies 

should be stationary under the z-rotation. If the angle between the 

magnetic field and the crystallographic z-axis is different from 90°, 
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the transition frequencies will oscillate two full periods about their 

values at 90° as the sample i.s rotated once about the z axis. As an 

example, the G) li.ne at 240°K shifts by approximately 2 kHz when the angle 

between the z-axis and the magnetic field is changed from 90° to 

(90 ± 1) 0
• In the ferroelectric phase, the transition frequencies 

depend strongly on the z-rotation angle. At 8 = 0° + n · 90° (n = z 

integer) the transition frequencies pertaining to A, B' sites and 

A', B sites are equal and the z-rotation transition frequency pattern 

is symmetric about the 8 - 0° + n · 90 points. · For certain transitions, 
z 

only a slight rotation away from e = 0° + n . 90° is sufficient to .. z 

split and shift the lines substantially, crf. Fig. · X-3. In practice, 

the z-rotation spectra .could be used to determine the x(y) axis 

orientation with an accuracy better than 1°. 

X-A-2. Temperature Dependence of K39 Quadrupole 
Coupling Constants 

Since the Zeeman interaction was the same at all temperatures, 

Fig. X-2 demonstrates that the quadrupole coupling energy changes with 

temperature. In the paraelectric phase, the only hamiltonian parameter 

which varies is the e.f.g. parameter q in the quadrupole coupling 

constant. Using the observed transition frequencies, one can determine 

e
2

qQ as a function of temperature, as shown in Fig. X...;4. The results 

' 8 
are consistent with similar data reported previously. 5 The quadrupole 

coupling constant increases linearly with temperature from 1.555 MHz 

at l24°K to 1. 670 MHz at 291 °K, corresponding to a relative slope 

at mid-range (l90°K). 
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The increase in the quadrupole coupling constant with increasing 

temperature is contrary to what·is usually observed, and thermal expansion 

ld 1 1 d t · t t t t d Measurement S9 •60 ' 61 
wou a so ea o an opposl e empera ure ren . ~ 

. 87 
on Hb quadrupole coupling constants in the KDP isomorphs RbH2Aso 4 

and RbH
2

Po 4 have yielded an anomalous temperature behavior of the same 

type. This problem has been discussed at some length in Ref. 59 and 60 , 

and it seems clear that the anomalous e.f.g. temperature dependence in 

the paraelectric phase is linked to the collective atomic fluctuations 

which trigger the phase transition at T . No quantitative verification 
c 

of specific dynamic models has been obtained so far for the K39 and 

87 Rb data (the long range ionic origin of the e. f. g. at the cation 

sites makes analysis difficult). As shown in Ref. 60, however, experi-

75 mental As e .i' .g. data for CsH
2

Aso4 demonstrate that a strong proton-

lattice coupling exists. In this model, As nuclei take part in the 

. collective atomic fluctuations, and the temperature dependence of the 

e.f.g. tensor reflects the dynamic proton, disordering between the six 

possible Slater configurations (cfr. Ref. 62). The model also yields 

correct qualitative temperature dependence for K39 and Rb87 quadrupole 

coupling constants. 133 The Cs quadrupole coupling constant in Cs H
2

Aso4 

was found63 to be temperature ind~pendent in the paraelectric phase, 

in strong contrast to the K39 and Rb 87 results. This can be compared 

with a qualitative difference in cs133 and K39 spin-lattice relaxation 

temperature dependences in the paraelectric phase. A further discussion 

will be given in Chapter XI, where experimental data on K39 spin-lattice 

relaxation times are presented. 

•.. 
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X~B. Spectroscopy on K39 With a Single, Unmodulated B r.f. Pulse 

The thermal rese.rvoi.r model for double resonance with a single, 

unmodulated B r.f. pulse was introduced in Chapter IV and verified 

experimentally in Chapter IX. It is elear that information can be 

extracted from the spectral lines obtained in this double resonance 

mode, which is not available by the usual double resonance methods 

with B spin saturation. Double resonance spectra of K39 in KDP and at 

high temperatures demonstrate.this clearly: 

As the sample temperature was increased from 152°K to 287°K, one 

observed the dramatic. change in line structure which is shown in 

Fig. X- 5:. In addition to the overall shift towards higher frequencies, 

due to the change in the ~9 quadrupole coupling constant, the character:-

istic center ridge was gradually smeared out and disappeared completely. 

At the same time, the line narrowed and the depth at the line center 

increased. 

Explanation of this behavior is straightforward with the aid of 

the thermal reservoir model: The fact that the line depth at the center 

of the line increases with increasing temperature, while the curvatur.e 

of the center ridge becomes less sharp, implies unambigously that the 

heat capacity ratio 

NBS(S + 1) 
E: = 

NAI(I + 1) 

•· increases at higher temperatures. The K39 system heat capacity was 

kept constant by monitoring the K39 rotating frame transition frequency 

and consequently the local dipolar field HLA in the proton rotating 

frame must decrease at high temperatures. This is consistent with the 
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observed line harrowing at high. temperatures, which. implies an increase 

in the A-B cross coupling time TAB. As demonstrated in Chapter IX, 

TAB increases as the.B r.f. power is increased, which is related to 

the requirement of energy conservation during A-B cross relaxation: 

As the sharply defined yBHeB is increased, matching to the quasi-continuous 

proton dipolar spectrum, represented by yAHLA, becomes poorer (cfr. 

Section III-B). Equivalently, in the present case yBHeB is constant 

at a given frequency offset from the· line center, while the dipolar 

spectrum becomes narrower as the temperature is increased. 

The lineshape is thus consistent with a narrowing of the proton 

dipolar spectrum at high temperatures. A plausible mechanism for this 

is thermally activated motional narrowing, and one can now turn to the data 

presented in Chapter VIII· on proton spin-lattice relaxation times iri 

the dipolar state. Comparing Figs. VIII-4 and ~5 , one notes that both 

the proton relaxation and K39 lineshape data start to exhibit the 

motional effect at approximately 240°K. Thus it is highly probable 

that the change in the K39 lineshape is caused by ultra.Slow rotation 

of H
2

Po4 groups. It is interesting-to note that in the onset region 

39 the change in the K lineshape appears to be an even more sensitive 

indicator for such motion than the proton relaxation rates. One potential 

application of the thermal reservoir model in this -context is to determine 

how the fluctuation correlation time T of the local fields vary with 

temperature. £can be measured by the methods described in Chapter IV, 

and thus one obtains a measure of the relative change in ~A as a function 
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of temperature. In cases "ltlb_e;re th.e local fi.elds. seen by the moving 

nuclei are modulated within a fixed range, such as in rotation, the 

motionally narrowed linewidth 

. 2 
( (yAHLA t t• ) ) . T ,s a 1.c 

. -1/2 
will have a temperature dependence governed by T, and since 1'1wAcx~cx e: , 

one has 

T(T) IX e:(T)-l/2 

These formulas apply when 2TI/T >> yAHLA,static" Unfortunately, motionally 

induced reduction in TlADRF made it difficult to measure e: accurately 

at temperatures above 270-290°K, while T only reaches the kilohertz 
. 51 

range at approximately 300°K. This does not rule out the feasibility 

of this method iri applications to other substances, however. 

Finally, it should be mentioned that the K39 line structure changed 

when approaching T . In the temperature region from approximately 150°K 
c 

to l25°K, the center ridge in the .line gradually smoothed out and 

almost disappeared at 125°K. Separate measurements d:irl not 

reveal any change in E in this region, but T
1

(K39 ) decreased rapidly 

on approaching T , which is evident from the overall increase in line . . c . 

depth. The short '1'
1 

(K39) caimot explain the smoothing out of the center 

ridge, however, which was.not explained. 

.. 
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X-C. Transient Oscillations in the Rotating 
Frame: Proton-K39 System 

A brief description of transient oscillations in the rotating 

frame was given in Section III-C. This effect was studied in KDP with 

protons as A spins and ~9 as B spins, and qualitatively different 

results were obtained in the para- and ferroelectric phases. 

X-C-1. Experimental Results 

Measurements were made with the crystal x-axis parallel to the 

magnetic field H . The pulse sequence was identical to the one used 
0 

in ADRF double resonance with pulsed B r.f., but here the B r.f. w~ 

always kept on resonance ( wB = wBo) , while the proton dipolar signal 

amplitude SA was mea!5ured as a function of the puls·e length ( cfr. 

Fig. X-6.). The total number of pulses, n, and the time between the 

start of successive pulses was kept constant in each run. 

Some results obtained in the para- and ferroelectric phases are 

shown in Fig. X-6: 

At T = l64°K are shown two runs with HlB.= 31 gauss and 48 gauss. 

The oscillations are quite prominent, and the oscillation period at 

each H
1

B is """ 2
1T 

wlB 

At T = ll9°K a single run at H = 33 gauss is shown. lB 
There is 

no clear evidence of oscillations at all. Pulse trains at higher power 

· had to be kept short to avoid heating the sample towards the Curie 

point, arid therefore yielded low double resonance sensitivity. No 

transient oscillationswere observed at H1B =56 gauss. 
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X-C-2. Discussion 

There is little doubt that the observed oscillations ih Fig.·x-6 

(para-phase) are of the type described in Section III-C. At all HlB' 

the oscillation frequency agreed within experimental error with w1B as 

measured by audio resonance, and o(T) as computed from experimental 

data by Eq. ( III-19) exhibits a transient oscillatory behavior com-
. ' 

patible with Eq. (III-20) and Eq. (III-21), cfr. Ref. ll. By adjustment 

of parameter values, Eqs. (III-20) and (III-21) can also yield a behavior 

qualitatively similar to that observed in the ferro-phase. 

A quantitative analysis of the transient oscillations is of interest; 

expecially as it pertains to the fluctuation spectra of the A-B coupling 

hamiltonian. Unfortunately, no concrete information is available 

on the A-B dipolar coupling correlation function g(t') in the present 

case, and thus transient osc~llation data must be supplemented by 

careful experimental studies on double resonance cross relaxation rates 

as described in Ref. ll, f.ex. A possibility in the absence of such 

hard and fast data is to try. data fitting with a plausible g(T). Here 

one will only call attention to some qualitative physical arguments 

which might help explain the observed data in Fig. X-6. 

The theory in Section III-C was derived under the assumptions 

of "extreme narrowing" (Tc <<TAB) and T <<TAB. At the B r.f. field 

strengths of interest here, TAB= 0(1 sec), while T = 0(1 msec). 

- T is typically of order 10-100 ~s and the assumptions on T, T and TAB c ' c 

are well justified.- The presence of a third interacting spin species 

(P31 ) is a complication which should be considered more closely, but 
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as discussed· in Chapter IX, the proton-phosphorous coupling is so 

strong that it seems justified to treat both H1 and P31 as a composite 

A spin species here. 

A rough picture of. parameters which influence the oscillatory 

behavior can be had by assuming for g(T) a Lorentzian (Eq. (III-15), 

. . 43 19 ll 
as observed by McArthur, Walsted and Hahn for the Ca -F system. 

Differentiating Eq. (III-21) twice with respect to T and combining 

with Eq. (III-20) obtains: 

d2o~T) 2 g(T} 
dT2 ex: wlB cosw1BT 

2 (l + -1 
« wlB T/T ) cosw1BT c 

which indirectly exhibits the damping out of the oscillations in o(T) 

as T increases. According to Eq. (X-1) , strong B r. f. fields 

(21T/w1B << Tc) should be used to observe clear oscillatory behavior. 

Given a Lorentzian g{T) and w1B ~ const., the disappearance of 

· oscillations on going from the para- to the ferro-phase can thus be 

interpreted as a reduction of T in the ferrophase. This is not 
c 

·implausible in light of the change in crystal structure at the Curie 

point, and the ordering of protons on the hydrogen bonds in the ferro-

phase. 

Another factor which will affect the transient oscillations results 

is the effective halving of the number NB of K39 spins participating in 

the A-B coupling in the ferro-phase, as compared to the para-phase 

. (at the field configuration of interest here: H II x) • 
0 

This is due to 

the increased number of non~equivalent potassium sites in the ferro-

phase, cfr. Section X-A. As is evident from Eq. (III-20), o(L) cx:NB 

,.. 

... 
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as a first approximation, and the halving of NB will thus lead to a 

weaker double resonance signal, but no qualitative change in the 

·oscillatory behavior. 

Other factors which will not be considered here are: a) Effective 

K39 gyromagnetic moment in ferro-phase. b) Effect of ferroelectric 

mode close to T . c) Possibility of inhomogeneous broadening (magnetic . c 

or quadrupolar). d) Possible A-B decotipling mechanisms in ferro-phase. 

Finally, it should be pointed out that no systematic measurements 

have been performed on the temperature dependence of the transient 

oscillations. Such measurements should be made throughout the para-

and ferroeiectric phases. Parallel rigid-lattice calculations of 

Tc and experimentally determined proton spin-spin relaxation times 

might then help identify the mechanism responsible for the disappearance 

of the transient oscillations in the ferro-phase . 
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XI. MEASUREMENTS OF i39 SPIN-LATTICE RELAXATION 
TIMES IN KDP. THE FERROELECTRIC MODE 

In Gha:pter IV, a new method was introduced which makes it possible 

to measure spin-lattice relaxation times of nuclear species that require 

double resonance techniques fo:r detection. The spin-lattice relaxation 

time being measured is pertinent to the spin-lock state, and describes 

the rate of decay of a magnetization locked to the stationary r.f. field 

vector in the rotating frame. As was demonstrated in Section X-A, 

the method can be used on K39 in KDP, and in Section XI-A.below, it is 

used to determine K39 spin-lattice relaxation times in KDP as a function 

of sample temperature. These data contain information on the state 

of motion in the crystal, arid an analysis of this is made in Section XI-B, 

with special emphasis on a relaxation rate singularity at the Curie 

point. 

The K39 spi~-lattice relaxation time in .the spin-lock state will 

be written ~1 (K39 ) in the following. Protons will be referred to as 

A spins, K39 nuclei as B spins. 

XI-A. K39 Spin-Lattice Relaxation Times in the Spin-Lock State 

As is evident from the analysis in Chapter IV, the double resonance 

cross-relaxation time TAB must be so short that the A-B thermal equilibration 

transient is over in a short time compared to the total time of contact 

between.the A and B reservoirs. This 13uggests that one should use a 

weak r .f. field at the K39 transition frequency. On the other hand, 

the heat capacity of the B reservoir should be large to ensure an 

easily detectable depletion of the A reservoir energy, which indicates 

that a strong r.f. field be used. In the present case, TAB= 0.3 sec 

... 

.. 
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was chosen as a suitable compromise. The corresponding B r.f. field strength 

as determined by the transition frequency in the rotating frame of the 

K39 Q) transition (Cfr. IX-A}, was weB/21T = 4 ._4 kHz. Measurements on 

TAB at fixed B r.f. field strength revealed no temperature trend, and the 

observed relationship between weB and TAB is consistent with a TAB of 

the form 

T et exp(..,.w · const) AB. eB · 

. . . . ll 43 19 
This is the same as has prev1ously been found for Ca ·F cross-

relaxation i CaF
2

. 

All T1 (K39 ) data in the series were taken on exact resonance for 

the K39 (D line, and with the crystallographic x-axis parallel to 

the magnetic field H . The maximum A-B thermal contact time was typically . 0 

8-10 seconds,· at temperatures below approximately 210°K. Since the 

proton relaxation time Tldip decreases rapidly as one goes tohigher 

temperatures, the maximum thermal contact times were shorter there, a 

typica], value at 240°K was 5 seconds. 

Evidently, there is a maximum temperature above which measurements 

cannot be made by the method used here: On raising the sample temperature, 

the proton dipolar order after ADRF ultimately decays ~so rapidly that 

the proton dipolar signal falls below the detection limit by the time the 

A.:...B thermal equilibration is completed. The practical limit for application 

of the method is at temperatures.well below this, and was at approximately 

240°K in the present case. There is, however, one special case where 

qualitative measurements of the proton energy decay curve during A-B 

thermal contact is sufficient. If Tldip = T
1

(K39):: T
1 

at some temperature, 
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one finds from Eq. (IV- 24 ·} that th.e proton signal should vary as 

regardless of the relative magnitudes on TAB and T1 . Thus, the proton 

signal is independent of the thermal contact time after the initial 

transient. Conversely, if one can find a sample temperature where the 

proton decay curve has zero slope after the initial transient, one can 

conclude t:rLB.t '1'1 (~
9 ) = ·Tldip, and a direct measurement of Tldip is 

sufficient to determine both. An example of this is shown in Fig. IX-4. 

39 £and T1 (K ) were calculated from the data using the exact formula 

(Eq. (IV- 13 )) for the on-resonance case and Tldip -data from Chapter VIII. 

T (K39 ) as a function of temperature is shown in Fig. XI-1. The exact 
1 

formula was used, due to the relatively long cross-relaxation time 

TAB' arid the short T1 (~9 ) in the.high temperature region and at T ~ 

T (K39 ) data in Fig. XI-1 were extracted from raw data as follows: 
1 

1) First£ arid T1 (K39 ) were adjusted simultaneously to yield a 
. . 

least squares fit in the logarithms of the proton signal levels. 

T . 
c 

39 . 
This resulted in a large number of £, T

1
(K ) sets. A salient feature 

of the e-data was that £ had two distinct values in the temperature 

T<T: c 

T < T ;S 240°K: 
c 

£Average 

€ Average 

= 0.185 ± 0 .. 015 

= 0.279 ± 0.002 

At the highest temperature in the series, T ~ 246°K, a higher value of£ 

was found: 

£ = 0.330 ± 0.020 Average 
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The uncertainties represent one standard deviation on the average in 

each group. Within each group, no temperature trend in£ could be 

detected. 

This result is not surprising. The heat capacity ratio was defined. ~ 

by Eq. (IV~6) as: 

£ = 

where 

w1B = yeff,B H1B on resonance: 

and 

In the expression for E, the .quanti ties NB, weB and wLA mey change on · 

going from the para- to the ferrophase: 

NB: As described in Section X-C-2, the increased number of non

equivalent potassium sites in the ferro-phase effectively halves NB in the 

present case. 

weB: The B r.f. field strength was checked by audio resonance during 

each run. iUl para-phase data were recorded at w eB/27T = 4. 4 kHz. In the 

ferro-phase, one had weB/27T = 4.6 kHz; Line broadening could have increased 

the B reservoir heat capacity, since w:B - w:B 2: 0, but such an effect must 

be small, as indicated by lineshape data. 

Before taking possible changes in wLA into accot.mt, these values for 

NB and weB would yield a ratio 
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£ ( ferro~phas e) 
E(para-phase) = 0 · 55 ± 0 · 05 

as compared to the observed ratio 0.66 ± 0.06. 

wLA is determined by the trace of the secular part of the dipolar· 

hamiltonian. Dipolar coupling is chiefly proton-proton and proton-

phosphorous. Since the crystal structure changes in going from the 

paraelectric to the ferroelectric phase, a change in the average local 

dipolar fields is expected, but no attempt at quantitative assessment of 

this effect will be made here. Motional narrowing is a potentially 

important factor at high temperatures, where thermally activated proton 

interbond motion takes place "( cfr. Chapter VIII) . Narrowing of the 

proton dipolar spectrum was indicated by the high temperature K39 lines 

in Fig. X-5, and might explain the high values of E recorded at T ~ 246°K, 

. > -2 
but since -r ~ 10 sec. even at 273°K the effect should be quite small. 

One can conclude, then, that both experiment and theory indicate 

a constant E throughout each range: T < T and T < T :S 240°K. 
c c 

'l'his suggests the next step in the data analysis. 

2) Using a fixed E equal to the average measured in the pertinent 

temperature range, the least squares fitting was repeated,with only 

T ( K39 ) as the variable parameter. These are the data shown in Fig. XI-1. 
. 1 

3) In addition to the data at randomly chosen temperatures, several 

data sets were accumulated at each of a series of temperatures. At 

each of these temperatures, simultaneous least squares fitting was 

performed with respect to all data at that temperature to yield a single 

This was done both with E and T (K39 ) as variable 
1 

parameters, and withE fixed at the average value for the appropriate 

temperature range. The two methods yielded T
1

(K39 ) values that agreed 

very well mutually (within 0.3 sec at most temperatures). 
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4) As is evident from the large experi:t~ental scatter at 246°K, the 

highest temperature in the series, this temperature represents an upper 

limit for the practical applicability of the method. In the special case 

h Tl.(.K39 ) T h ·th t . al ft A B th al were = ldip' owever,. e pro on slgn a er - erm 

equilibration will be independent of the B r.f. irradiation time (cfr •. 

. Section IV-C-1 and the ll8°K curve on Fig. IX-4), which can be ascertained 

by a qualitative measurement. As one may recall from Chapter VIII, Tldip 

starts decreasing rapidly at temperatures above approximately 250°K, and 

if the decrease is more rapid than that in T
1

(K39 ), a temperature exists 

39 where T1 (K ) = Tldip An experimental search up to 270°K established 

that T1 (K
39 ) < Tldip up to this temperature, and this has been indicated 

in Fig. XI-1 by a portion of the 1/Tldip curve at high temperatures, 

. 39 
which represents a lower bound on l/T

1 
(K ) . 

Finally, it should be mentioned that an attempt was made at measuring 

the laboratory frame T1 (K39 ) by the McArthur, Hahn and Walstedt method11 

which is described briefly in Section IV...:c-1. This proved impossible 

with the present apparatus, since the maximum proton signal obtained . 

had a signal to noise ratio in the range 1:1 to 2:1. This result is 

not unexpected: The method requires off-resonance B r.f. irradiation 

at a high level, which in this specific application leads to so slow 

cross~relaxation (TAB? 1 sec, cfr. Chapter X) that spin order is 

destroyed by proton and K39 spin-lattice relaxatiop before samplirig can 

be performed. 
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XI~B. Analysis· of 1(39 Spin-Lattice Relaxation Data. 
The Ferroelectric Mode. 

XI-B-1. Spin-Lattice Relaxation by the Ferroelectric Mode 

During the last decade, it has been established that amicroscopic 

description of ferroelectric phase transitions can· be obtained in terms of 

specific lattice modes of vibration. Due to lj,Illm:rmonic phonon inter-

actions, these modes becoi:ne unstable at a critical temperature TC, 

where the mode frequency goes to zero, accompanied by a strong increase 

in amplitude (hence the term "soft modes"). Below TC' the atomic dis

placement pattern corresponding to that of the soft mode above TC 

is "frozen in", leading to a spontaneous dielectric polarization, which 

is defined as the transition order parameter. This soft mode picture 

was originally applied to "displaci ve" transitions , but has also been 

applied with considerable success to describe transitions of the 

"order~disorder" type, cfr. below. In certain cases, it is necessary 

to consider several modes which couple close to 'I'C' and the c;:ritical 

temperature corresponding to a given soft mode therefore does not 

necessarily coincide exactly with the phase transition temperature. 

The current theoretical description of-soft mode lattice dynamics 

can be traced back to several papers published. about 1960 ,64 ,65 ,66 

where transitions in displacive-type ferroelectrics were linked with the 

softening of a long-wavelength T.O. mode near TC. Later extensions 

of the lattice dynamic approach include quasi-spin-wave descriptions of 

d d . d t 't" 67,68 . ~ or er- ~sor er rans~ ~ons · and the _quas~-sp~n-wave phonon modes 

discussed by Kobayashi. 69 The latter are of specific interest in 
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the present context, and wi.ll be descri.bed briefly in Section XI-B-2. 

Recent reviews on the dynamic description of ferroelectric phase 

transitions are found in Ref. 3, 70 and 71. 

The slow, large-a;mplitude soft mode atomic displacements close to 

T perturb the nuclear energy levels by modulating the magnetic dipole
a 

dipole intP.ractions or the nuclear quadrupole moment interaction with 

the local electric field gradient. In certain cases the soft mode 

contribution may dominate the total spin-lattice relaxation rate due 

to all relaxation mechanisms, in a temperature region around Tc which 

is sufficiently large so that the temperature dependence of the soft-

mode relaxation contribution can be determined. This temperature 

dependence can be related to specific models for the interaction between 

microscopic polarizable units in the ferroelectric (e.g. quasi-spins) 

which triggers the phase transition. Several theoretical and experimental 

NMR studies of this type have recently appeared in the literature, 

and a brief sketch of the underlying theory for the method used here 

is given below. The presentation follows that of Ref. 72, but emphasis 

is on ultimate application to the case of spin-lattice relaxation in 

the spin-lock state for K39 in KDP: 

The ferroelectric will be represented by interactirig.dipoles on 

a lattice. The interaction may be isotropic or anistropic, and the 

dipoles will be assumed to have 2 allowed orientations. This model 

is not unreasonable for KDP, in light of the proton tunnelling between 

2 equilibrium sites on each hydrogen bond, and the K-Po4 dipoles that 

flip along the crystal z-axis (cfr. Section XI-B-2). To simplify the 

analysis, the soft mode will be assumed overdamped, which should apply 

for KDP .71 ' 73 
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The dominant spin-phonon relaxati.on process in the case of heavily 

damped phonon modes is direct. 72 The expressions for spin-lattice 

relaxation rates obtained by the spectral density approach in Section V-B 

should therefore apply for the ferroelectric-mode contribution to the 

K39 spin-lattice relaxation rate in KDP (quadrupolar spin-phonon coupling 

is dominant here; cfr. Ref. 74). These relaxation rates can be written 

on the form ( cfr-. Table V·• 2) : 

.1 ~ T = £J C. ,J . ( w ) 
·~n ~ . n 

1 S .L. nlJ 

where T
1 

S.L. is the spin-lattice relaxation time in the spin-lock 

(XI-1) 

state, C . are constant coefficients (at a given. temperature), and 
~n 

J (w ) are spectral. densities at the different nuclear transition ·. ]..1 n 

frequencies w : 
n 

J (w ) 
}.1 n 

_ Joo exp( ... iW T} (F (t) F (t- T)) dT 
n· Jl Jl. 

Here F Ct 1 are the lattice fluctu. ation ,parameters introduced in . . ]..1 

(XI-2) 

Section V-B, representing the time dependent electric field gradients 

at the nuclear sites. (lJ rather than q Will be used as a labelirig · index 

. .-+ 
here, to avoid confusion with the wave vector q) •. 

In the model· introduced above, one can write: 

F ( t) = 1, I: Ai o. (t) 
ll 2 i ll 1 

(Xi;3) 

where summation .over i represents contributions from all N.dipoles in 

the sample; cr. = ±1; and Ai is the difference caused in ~,(t) when 
. 1 1-' 

dipole no. i flips between its 2 positions. ~and oi(t) can be expressed 

in wave vector space by their Fourier transforms o(q,t) and A (q) 
. ll 
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a.{t) = L ""'a(q' ,t) exp(-iq'F.) 
~ /N LJ ~ 

q' (XI-4) 

Ai =L ""'A
11

(q') exp(-iq'F.) 
ll IN LJ ~ 

q' 
In the random phase approximation, substitution of Eq. (XI-4) into 

Eq. (XI-2) yields: 

00 

J~ (wn} = ~ ~A~ (;j) A: ((i} J exp( -iwn T )< a(q,O) a(-<i, T )> dT 

q _oo 

Explicit evaluation of the autocorrelation function (a(q,O) a(-q,T)) 

for the polarization fiuctuations can be avoided by resorting to the 

fluctuation-dissipation theorem, which relates the spectral density 

of a(q,t) to the imaginary part of the generalized dielectric susceptibility 

X· Thus, in the high temperature approximation: 

Joo exp(-iw.nt) <a(q,O) a(-q,t)> dt 2kT -)i:l!l ( q ,wn) Nw ·n 

Equation XI-1) can then be written: 

1 --=--= 
Tl. L s. . 

E All(q) A:(q) x."(q,wn) 
q 

(XI-5) 

Here, the spin-lattice relaxation rate depends on whether the fields 

creating the local electric field gradients are long- or short-range, 

which determines the q-dependence of \/q). The e.f.g. from point 

-3 charges or dipoles fall off as r or faster.. It is therefore reasonable 

i -to assume a short-range form for All , and thus an A (q) which is nearly 
ll . 

independent of q. In ferroelectric transitions the long-wavelength 

modes get strongly excited near Tc, and the dominant contribution to 

the sum in Eq. (XI-5) comes from terms with q ~ 0. As a result, one 

can write 

• 
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kT 
clln 2w 

n 
(XI-6) 

Equation (XI-6) can be evaluated explicitly for specific models by 
' 

approximating the sum over all q' s by an integral over the Brillouin 

zone. Two models are o.f relevance here, in light of Kam.inow and 

73 Dam.en's results: 

75 One is the purely relaxational or diffusive mode, characterized 

by the response function: 

where 

x(q,w) = · x(Ci,ol 
1 + iwT(q) 

- . T 
- N . .!..l9.l_ . ( - o 

x(q,o) = k'T · TCOT ; T q) = 1 - J(;i)/kT 

(XI-7) 

J(q) is the Fourier transform of the dipole~dipole interaction between 

the Ising spins, while T is the relaxation time with the dipole-dipole 
0. 

interaction turned off. For ferroelectrics where the lattice instability 

occurs at the r point in the Brillouin zone, the general form of J{q) 

will be 

(XI-8) 

. where ct and o are constants, and 8 is the angle between q-:vector and 

the axis of ferroelectric polarization. 

The other soft mode model is that of the generalized damped 

76 oscillator, where the response .function is similar in form to that 

of a single-particle damped oscillator, but with a q-dependent 

resonance frequency, due to the interaction between the polarizable 

microscopic units in the ferroelectric. In the limit where the mode 

frequencyw(q) always is much higher than the frequencies w , one may 
n 
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W!"ite the generalized.damped oscillator response :function 

x(q,w) = _ x(q,o}w
2

(g) 
2 - 2 w (q) - w + i2fw 

-
w <-< w(q} 

x(q,o) 
(XI-9) 

1 
. 2f + J.W -,.-.--

W2(q) 

with 

r is the soft mode damping constant, and>.. is a material constant. The 

2 soft mode frequency w (q), defined as the poles of the response function, 

can be written on the general form 

2 - . 2 2 
w (q) = a(T- T ) + y +c: cos 9 (XI-10) 

0 q 

where anisotropic interaction is introduced through the E:-term. a and 

yare constants, and T is the critical temperature 
0 

T ·2:: J(O)/k 
0 

Comparison between Eqs. (XI-9) arid (XI~7) shows that for w <<w(q), 

xCCi,w) has the same qualitative form for both the diffusive mode 

and the generalized damped oscillator soft mode, arid evaluation of 

Eq. (XI-6) yields the same type of temperature dependence for the 

relaxation rate~singularities in the two cases. This applies both 

for isotropic and anisotropic interactions: 

Isotropic interaction: T-l cx (T.- T )1 / 2 · (T - T ) -+ 0 
1 s.L. o ' o + 

(XI-11) 

Anisotropic interaction: T
1 

. lX ln(T - T ) + canst s .. L. o 
(T - T ) -+ 0 

0 + 

(XI-12) 

• 
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-1 In the theory outlined here, the expression for T1 S.L, in the 

.·case of isotropic interaction, as given in Eq. (X I-ll), always applies 

sufficiently close to the Curie- point (for criteria on applicability, 

see f,ex. Ref. 77 ). A more general expression for the isotropic 

case is 

-1 n 
T « (T - T )-

1 S.L, c (XI-13) 

where 0.5 ~ n ~ 2, depending on the distance bet~een the ferroelectric 

d.. 1 d th B "11 . . 77 ,78 lpo es an on e r1 ouln zone s1ze. 

One must keep in mind that these results pertain to short range 

source fields for the e.f.g., and should therefore apply well for 

covalently bonded nuclei. When the e.f.g, is of ionic origin, 

however, the A {q) terms in Eq. (XI-7) may have to be retained in 
l-1 

the q-sum, leading to a weaker sine!:ulari ty at T 
0 

In the ferro-phase, an analysis similar to the one outlined above 

leads to an expression for the relaxation rate siflgularity at Tc 

which contains the factor (1- p2). pis the order parameter, where 
- .--.=-...-

p ;::; 0 and p = 1 correspond to complete disorder and complete order, 

respectively. 

XI-B-2. Analysis of the K39 Spin-Lattice Relaxation Data. 

A salient feature in the spin-lattice relaxation data. in Fig. XI-1· 

is the strong relaxation rate increase as T ~ T . This increase can.· 
c 

be related to the ferroelectric mode, and a brief recapitulation of 

current knowledge about the lattice dynamics in KDP near the Curie 

point is in order: 
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Th.e importance of the protem dynamtc~ was recognized early, 

due to the strong shift in Curie temperature on deuteration· 

( 
0 0 ) al . ·t· t" . 67,79,80 123 K ~ 213 K . Th.eoretical and experiment 1nves 1ga 1ons 

have demonstrated that the protons tunnel between two potential wells 

on each. hydrogen bond, and via their mutual couplings, a quasi-spin wave 

can be set up which exhibits an instability at a critical temperature. 

Other degrees of freedom for the soft mode atomic displacements must 

be incll.!ded, however. The hydrogen bonds are nearly perpendicular to 

the direction of spontaneous polarization (crystal Z-axis), and protons 

+ 5+ contribute much less to the ferroelectric polarization than the K , P . 

and o~2 ions which in the ferrophase are displaced along the polarization 

direction~1 Also, proton ordering cannot explain the magnitude of 

the isotope effect on the saturated polarization upon deuteration. 

An optic-mode model involving displacements of K and Po4 ions 

in opposite directions along the Z-axis has also been shown to lead 

. . 82 
to a· .phase trans :I. tJ.on, but experimental evidence se-ems to favor a 

coupled mode model, where a phonon mode and a proton tunneling mode 

83 69 
i.nteract to bring about the instability, Cochran and Kobayashi 

have disc11ssed the case of strong coupling between the modes, and 

found that the frequency of the ferro.electric mode (Cochran w -mode , 

cfr. Fig. XI-2) varies· as 

in their model for the transition in KDP (cfr. Eq. (XI-10), The 

same relationship has been found to apply in displacive ferroelectrics. 

The KDP ferroelectric mode model above leads to a mixed order-disorder 

and displacive transition; 

.•. 
" 
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·6K 

B-site 
A-site 
~ 

Fig. XI-2. The ferroelectric mod~ 
(w ) (after K. K. Kobayashib9). ·-
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Also~ theories have been proposed which take into account a 

temperature dependent decoupling of the phonon and proton tunneling 

modes at '1.' t T • Thus, the anomalous increase in the e~f .g. at the 
c 

K39 sites as the temperature is increased (cfr. Fig. X-4) can be 

explaineQ by a gradual increase in phase coherence between the motion 

of potassium nuclei and protons as T + T , in analogy with the results c 
59 if Bliric, et al. on RbH

2
Po4. 

73 
Finally, the Raman scattering experiment of Keminow and Damen 

should be mentioned, since it is of particular relevance for the 

following analysis. Kaminow and Damen found the ferroelectric mode 

in KDP to be overdamped~ with a spectral density distribution which 

peaks strongly around zero frequency as T + T . In the range of 
c 

temperatures and frequencies of interest here (T- T .::_ 2°K; w _::: 11 MHz.), 
c n 

the spectral density distribution is essentially flat, however. These 

84 
results have been corroborated by others, and the assumptions made 

in deriyir.g formulas (XI-11} above should therefore be valid for KDP. 

Below, an attempt will be made to extract from the relaxati.on 

data on ;Fig, XI-1 contributions due to different relaxation mechanisms. 

At least 4 temperature ranges with different temperature dependences 

can be singled out: 

T .:S ll0°K: Relaxation rate nearly temperature.:independent. 

T ·~ T : Relaxation rate peaks strongly at T . 
c c 

160°K ~ T ~ 200°K: Relaxation rate nearly temperature independent. 

T ~ 200°K: Relaxation rate steeply increasing with temperature. 

• 

,., 
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It seems easi.est to separate out th.e di,fferent contributions to the 

total relaxation rate by starting in the region: 

< .,.1 T ~ :j..00°K; where the relaxation rate is .small (~0.04 sec ) and 

nearly temperature independent. This contribution appears due to 

paramagnetic impurities, in which case a constant relaxation rate 

contribution is expected throughout the temperature range covered by 

the p~~sent investigation. -1 The rate of 0.04 sec seems high compared 

to the proton relaxation rate T~1ADRF -1 = 0.05 sec in the same temperature 

range, in light of the large proton gyromagnetic ratio: Y /y 39 ~ 21 proton K ' 
2 . 

(Roughly speaking, the theoretical rate is proportional toy , cfr. 

Ref. 85). A direct comparison is not strictly relevant, however_ 

From the discussion in Section V-B, one may anticipate that relaxation 

of K39 in the spin-lock state and of protons in the dipolar state 

after ADRF will depend differently .on the spectral density of the 

perturbing impurity dipolar fields, arid different spin diffusion rates 

mey also yield different overall relaxation rates. Comparison with 

the high-temperature relaxation rates suggests that spin-phonon 

relaxation below ll0°K must be small, and one can at the very least 

4 -1 . 
establish the rate o •. o sec as an upper limit for paramagnetic 

impurity relaxation. This rate is small relative to the total 

relaxation rates observed above T , and the following analysis is 
c 

relatively insensitive to fractional changes in a background level 

-1 
~o.o4 sec • Regardless o:f. the relaxation mechanism below ll0°K, 

extrapol~tion to the region T ~ T and immediately above should not 
c 

introduce serious errors, due to the steep increase in relaxation 

rate on approaching T from below, which leads to a short extrapolation 
c 

range, 



-240-· 

. 9 < < 110 K '""' T .,..., T A relaxation ra.te singularity at Tc iS clearly 

indicated, but the data in this temperature range do not warrant a 

quantitatiye analysis. The relaxation rate falls off much more 

steeply below T than above, which might reflect the increase in the 
c . 

order parameter in the ferrophase (cfr. the temperature dependence 

of the spontaneous polarization in the temperature region immediately 

86 below T , and the comments at the end of Section XI-B-lL. 
c 

T · ~ T ~ 160°K: The relaxation rate increase as T approaches 
c 

T from above suggests that relaxation by the ferroelectric mode is 
c 

an important or dominant relaxation mechanism in this temperature 

range. 

In order to establish the net relaxation rate due to other 

mechanisms than paramagnetic impurity relaxation, a constant rate 

1 -l = 0.01 sec was subtracted from the observed ra.tes .. throughout the 

_paraelectric phase, on the implicit assumption that the observed 

rate below 110°K is due to paramagnetic impurity relaxation which 

· is temperature independent in the region of interest. 

Th.e temperature dependence of the net relaxation rate close to 

T was then compared with those predicted by the expressions c 

Eqs. (XI-l2) and (XI-13). The results are shown in Figs. XI-3 and 

XI-4, where the net relaxation rate (T1 (K39 )-l - 0.04) [sec-1] is 

plotted vs temperature, with scales chosen so as to reveal a 

logarithmic or a power low singularity at Tc• respectively; In both 

representations a sharp change in temperature dependence is evident 

at 150-160°K. This can be explained as follows: 150°-160°K constitutes 

the transition between temperature regions where different relaxation 
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XBL 735-6022 

Fig. XI-3. T1 (K39 )-
1

- 0.04 sec-1 (from Fig. XI-1) plotted in a 
semilogarithmic representation. The straight line represents . J:i-39 -1 -1 1 c ) the_function:. T1(K· )\ -0.04 sec. =\0.131ln ~+ 0.09 
sec 1 . Funct1.0ns AT 1/((T-Tc))l/2 w~th A adjusted c for·best 
fits at 125°K and 1488~ are represented by dashed curves. 
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XBL 735- 6023 
( 39 ~l -1 . Fig. XI-4. T~ K ) - 0.04 sec plotted to reveal possible power law 

s~ngularity (T-Tc)-n, where l/2 ~ n ~ 2. Dashed lines 
represent the limiting cases n = l/2 and n = 2, fitted to the 
l25°K data. 
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. mechanisms are dominant: Below, th.e largest contribution to the 

relaxation rate is spin-phonon relaxation by the ferroelectric mode, 

Above approximately 160°K, other relaxation mechanisms become important, ,, 

as evidenced by the steep relaxation rate increase at high temperatures. 

Evaluation of the ferroelectric-mode contribution to the relaxation 

rate was therefore restricted to the temperature range T ~ T ~ 160°K. c 

From Fig. XI-3 it is seen that the fo'llowing expression yields 

avery good fit to the data in this temperature range: 

-1 sec (T~1 (x39 - 0,04) sec-l = (0.13 ln(Tc/(T - Tc)112 
+ 0.09) 

(XI-14) 

The dashed curves in Fig, XI-3 represent a.power law dependence as 

giveh by Eq,(XI-13) with n = 0.5, and with parameters adjusted for 

optimal fit at 125°K and 148°K, The experimental data indicate a 

:ruuch weaker singularity at T c than the weakest one compatible with 

Eq. (XI-13) , which corresponds to n = 0. 5. This is borne out clearly 

by the slopes of the straight lines in Fig. XI-4. The data fit 

indicated by the solid line yields ann ~ 0.24, i.e,, well outside 

the range of n-values compatible with Eq. (XI-13), and the fit is 

somewh&t p~orer than that .obtained with the logarithmic expression 

Eq. cxr..;14) . 

Within the framework of the theory outlined above, one can thus 

conclude that the observed relaXation rates definitely indicate a 

logarithmic singularity at T , corresponding to the heavily damped 
c 

·or diffusive ferroelectric 1node model with anisotropic interaction 

between the ferroelectric dipoles. 

r 
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T ;:. 160°K: Here, the relaxation ;rate is. nearly temperature 

independent up to 210-220°K, and increases sharply at higher temperatures. 

The increase at high temperatures is in striking contrast to spin-lattice 

. . . .133 ( 8 ) relaxation results obtf~:ined on Cs - in CsD2Aso4 cfr. Ref .. 7 

and on Rb85 in RbH2Po4 (Ref. 54). These nuclei are located at 

lattice sites equivalent to those of 129 in lillP, and also posses a 

quadrupole moment. 

Analysis of the relaxationbehavior at high temperatures was 

made difficult by the short proton T1 ADRF' which set an upper limit 

for the temperature at which data could be recorded, and led to the 

large data spread at 246°K, Another factor is the ferroelectric mode 

' ' 
relaxation rate contribution, which is weakly temperature dependent 

in the model used here, and cannot be neglected in the high temperature 

region. (With the high-temperature relaxation models considered 

below, the latter complication was not encourttered in extracting the 

ferroelectric-mode relaxation contribution close toT ). Extrapolating c 

the lo.gari tb:ri:tic temperature dependence in Fig. XI- 3 to teznperatures 

higher than 160°K, one finds a ferroelectric-mode contribution to the 

relaxation rate at 240°K which is approximately 0.9 sec-1 . This implies 

that a correction for the ferroelectric-mode contribution must be made 

throughout the high-temperature range, when trying to determine the 

relaxation mechanism which dominates in that region. The logarithmic 

dependence indicated by the straight line in Fig. XI-3 will be used 

here, since it yielded a good fit with experimental data below approximately 

160°K, Other models yielding fits to the experimental data in the range 

T ~ T ~ 160°K are only expected to lead to significantly different 
c 

.. 
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ferroelectric-mode relaxation rates at temperatures >>160°K, where 

the ferroelectric~mode contribution to the total relaxation rate is 

small. 

The net high temperature relaxation rate was obtained by sub~ 

tracting the paramagnetic ~purity contribution (0.04 sec-1 ) and the 

ferroelectric mode contribution (as given by the straight line in 

Fig. XI-3) from the observed relaxation rate. As shown in Fig. XI-5, 

and Fig. XI-6, the net rate is negligible below approximately 160°K and 

increases strongly at higher temperatures. The spread in experimental 

data is large, and no positive identification of the dominant high 

temperature relaxation .mechaniSlll is attempted on the basis of data 

available at present. Some possibilities are listed below. 

a) Two-phonon Raman process: Experiments have demonstrated that 

nuclei possessing an electric quadrupole moment in many cases experience 

a strong spin7 phqnon coupling via the fluctuating local e.f.g., leading 

to spin-lattice rel.a:X:ation rates that may dominate over those due 

to other relaxation mechaniSllls. Quadrupolar relaxation by the 

direct process was discussed in Section V-B. In the absence of 

condensation into low frequency modes of the type encountered at 

T ~ T in KDP, however, the dominant high_;temperature·spin-phonon 
c 

. 42 
relaxation mechanism will be a two-phonon Raman process. Van Kranendonk 

found the following temperature dependence for Raman quadrupolar 

relaxation by acoustic modes in ionic solids: 

(XI-15) 

where a and b are constants. . Equation (XI-15) applies at temperatures 
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XBL 735-6024 

Fig. XI-5. Analysis of K39 high temperature spin-lattice relaxation 
rates , derived from Fig. XI-1 as shown in drawing at 
upper leftr The straight line represents the function . 

(0.16 x l0-4T2- 0.63) sec-1 (cfr section on Raman relaxation). 
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ACTIVATION ENERGY: 

3.1 K CAL/MOLE = 0.13 eV 

TOO 

XBL 735-6025 

.Fig. XI-6. Analysis ·Of K39 high temperature spin-lattice 
relaxation rates derived from Fig. XI-.1 as shown 
in Fig. XI- 5. The straight line represents possible 
motional relaxation with activation energy E ~0.13 eV. 

a 
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T ·~ l 8 . . An induced dipole relaxation mechanism by long-wavelength 
2 Debye 

optical modes was later analyzed by Wikner, Blumberg and Hahn~1 At high 

temperatures, their results deviate little from Eq. (XI-15) when the 

degree of bonding covalency is low. Yosida and Moriya have considered 

43 the case of quadrupole relaxation in the case of covalent bonding, 

which is of little interest.in this context since the e.f.g. at the 

potassium sites in KDP mainly is of ionic origin. 

In Fig. XI-5, the experimental results are compared with the 

relaxation rate temperature dependence in Eq. (XI-15). · The net high 

temperature spin-lattice relaxation rate, defined as {total relaxation 

rate - r~laxation rate due to paramagnetic impurities -.ferroelectric 

2 
mode induced relaxation rate}., is plotted vs. T A best fit to the 

data above 200°K is obtained with a function of the type in Eq. (XI-15), 

and with parameters a= 0.16 · 10-4 [sec-l °K-2 ] and b = 0.63 [sec-1 ]. 

b) Hindered motion: The net high temperature relaxation rate 

as defined in a) and Fig. XI-5 increases from zero at temperatures 

where proton relaxation rates T1-d1 . and ~9·lineshapes with unmodulated 
~p . 

B r,f. indicate the onset of slow hindered proton motion. If the 

K39 spin-j_attice relaxation rate at high temperatures is dominated 

by this or some other hindered motion contribution (proton inter

bond migration or ~9 jumping between quasi-stable sites along the 

z-axis, f.ex.), then the motional correlation time and thus the 

spin-lattice relaxation time will depend exponentially on the activation 

energy E in the slow motion regime 
. a 

w.T >> 1 (w.: nuclear transition 
~ ~ 

frequencies, T: motional correlation time) :. 

(XI..;l6) 
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The observ'ed net high temperature relaxation rates should thus lie 

along a straight line in the plot on Fig. XI-6. As is evident from 

·Fig. XI~6 , a good fit to the experimental data is obtained with a 

function cf the type in Eq. (XI-16) 'and E = 0 .13 eV. 
a 

XI-C. Discussion 

Interest will be focused on the mechanisms respons.ible for the 

obseTVed strong K39 relaxation rate increase at T ~ T and T ~ 180°K. 
c 

XI-C-1. Relaxation rate anomaly at T . 
c 

As shown in Figs. XI-3 and XI-4, the ferroelectric-mode induced 

spin-lattice relaxation rates clearly. exhibit a logarithmic ( cfr. 

Eq. (XI-12)) rather than a power law ( cfr. Eq. (XI-13)) temperature 

dependence at T and above. Experimental data on spin-lattice relaxat. ion . c 

rate anomalies in ferroelectrics near the Curie point T are still 
. c 

relatively scarce, but available data generally exhibit logarithmic or 

weaker relaxation rate singularities at T . Eline and ~er have 
c 

observed a logarithmic singularity for P31 laboratory frame spin-

lattice relaxation in KDP, and attribute the singularity to magnetic 

d . 1 1' t th f 1 t . mode. 8 •88 The . t·· a· 1 1po ar coup 1ng o e erroe ec r1c magne 1c 1po ar 

interaction yields a weak spin-phonon perturbation, .and in order to 

observe the P31 .relaxation rate anomalies at T , exceptionally pure 
c 

crystals and stable apparatus are required (P31 and J?- are spin 1/2 

nuclei, and quadrupolar spin-phonon coupling is absent). In this 

connection, it is instructive to compare Figs. VIII-1, VIII--2 and XI-:-1, 

which show proton relaxation rates· in the laboratory frame and in the 

dipolar state arter ADRF, and K39 relaxation rates in the spin lock 

states, respectively. As expected on the basis of the K39 quadrupole 
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coupling to the local e.f.g., the ferroelectric-mode induced spin

lattice relaxation rate is much larger in the K39 case, and this was 

one of the motivating factors for the work presented in this thesis. 

KDP does not contain any quadrupolar nuclei which are easily 

accessible to spin-lattice relaxationmeasurements by conventional 

NMR methods, but several isomorphs do. Measurements have been made on 

deuterons in lill*P, lill*A and CsD
2
Aso4, and on Cs133 in CsD

2
Aso 4, As 75 in 

· 87 . PO. 54 , 7 8, 87, 89, 90 Th lt KH
2

Aso4 .and CsH
2

Aso4, and Rb 2n RbH
2 

. 4• e resu s are 

generally similar to those for K39 above, with logarithmic or near-

logarithmic ferroelectric-mode relaxation rate temperature dependences at 

Tc. For cs133 in CsD
2

Aso4 a relaxation rate singularity somewhat weaker 

than logarithmic has been reported87 which .was attributed to the ionic 

' character of the sources of. the local e.f..g. tensor at the Cs sites 

(cf.r. remarks at the end of. Section XI-B-1). 

Having established tb,e logarithmic relaxation rate singularity 

at T , indicating strongly anisotropic interaction between the "ferro.-c . 

electric dipoles", ·a logical next step would be to relate it to the 

microscopic structure and atomic motion in lillP. This will not be · 

attempted her.e.. Several possible extensions of the K39 spin-lattice 

relaxation measurements will also have to be left undone due to time 

and space limitations. Some examples: 

39 a) The theoretical dependence of T1 SL (K ) on rotating and 
' 

laboratory frame transition frequencies was given in Table V-2, fQr 

the different allowed transitions. The parameters a, b, c and d can 

be computed in each specific case, and thus in principle a qualitative 

measure of' the ferroelectric mode spectral density in the low frequency 
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regibn could be obtained.by varying the rotating frame (or laboratory 

frame) transition frequencies. This would provide a check on the 

assumption implicit in the analysis above, of a relaxation perturbation 

with "white" spectral density at NMR frequencies. This assumption was 

. 73 
based on the Raman scattering results of Kaminow a.Iid Damen, who 

found a large and constant ferroelectric mode damping, and a characteristic 

ferroelectric mode frequency 

W /2fT = (99 em -l) [ (T -. T )/T]l/2 
0 . . 0 

Thus, the ferroelectric mode frequency should be much higher than 11 MHz 
. . -4 . .. 

down to approxiinately T + 10 °K, and combined with the large damping 
c 

this leads to an essentially ''white" spectral density at all NMR 

transition frequencies of interest. A check of this type was made by 

Bonera, Borsa and Rigamonti
72 

on the spin lattice relaxation rate 

of Na23 in NaN0
3 

at 8 MHz and 84 MHz. They found no clear temperature 

dependence, indicating that the ferroelectric mode frequency was much 

higher than the Na 23 Larmour frequency at all temperatures included 

in their,data. 

b) The fluctuating e.f.g. tensor whichis responsible for the 

ferroelectric mode induced spin-lattice relaxation does not necessarily 

have the same synnnetry as that of the static e.f.g. tensor. One 

. possible consequence would be an anisotropic relaxatiein rate in the 

Z rotation. Such an anisotropy should be most pronounced close to 

T , where relaxation by the ferroelectric mode dominates over other, c 

isotropic relaxation mechanisms, and the temperature dependence of the 

anisotropic could be an aid in extracting the ferroelectric-mode 



-252-

induced relaxation rate from the total observed rate. Given relaxation 

rate expressions of' the type presented in Table V-2, anisotropy data 

could be u.sed to determine the symmetry and parameter values of the 

fluctuating e.f,g. tensor, cfr. Ref. 72. 

XI-C-2. Relaxation Rate Increase at High Temperatures. · 

To the author's knowledge, no relaxation rate increase at high 

temperatures has been reported for any other heavy nuclei in KDP or 

its isomorphs. Protons (deuterons) represent a special case, since 

they participate in the hindered rotation of H
2
Po4 groups. The 

qualitative difference between the K39 high temperature relaxation rate 

reported here and data reported on Rb89 and Cs133 in the isomorphs 

RbH
2

Po4 and CsD
2Aso4 is surprising view of the similarity in crystal 

structure, ferroelectric properties, etc. 

A weak link in the analysis of the high temperature K39 relaxation 

behavior is the subtraction of the ferroelectric-mode induced spin-

lattice relaxation rates, as represented by the extrapolated curve 

in Fig. XI- 3, from the total observed rate. Estimated extrapolation 

errors have been included in Figs. XI-5 and XI-6 below, but these 

errors do not reflect thepossible systematic errors which would be 

introduced. if the ferroelectric-mode induced relaxation rate has a 

temperature dependence different from logarithmic in the extrapolated 

region. Some specific high temperature relaxation models are discussed 

below: 

a) Quadrupolar two-phonon spin-lattice relaxation. As is .apparent 

from Fig. XI-5~ the relaxation data above approximately 200°K can be 

described by an expression o.f the Yan K.ranendonk form (Eq. (XI-15)) 
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with parwnetgr values as shown, but a separate mechanism must be inferred 

to. explain the data below 200°K. In principle, the ·parameter values 

can be computed theoretically, but only a qualitative discussion seems 

warranted at this stage. The large data spread permits wide l.ati tude 

in interpretation of the data, and a quantitative analysis would require 

an effort outside the scope of this work. 

The discrepancy between the K39 ·relaxation data of high temperatures, 

and the cited data for Rb87 ·and Cs133 ought to be explainable by 

qualitative arguments, however. One may note that the K39 data pertain 

to spin-lattice relaxation in the spin-lock state, while the Rb87 

and cs133 relaxation rates pertain to the laboratory f~ame. Raman 

relaxation rates are insensitive to NMR transition frequencies w., 
l 

however, and in the high temperature approximation (h w. /kT << 1) , the 
l 

temperature dependence of the Raman relaxation rate enters only through 

th.e equilibrium phonon occupation numbers, yielding the general high-

-1 cc T2. temperature results T1 
This would indicate that the laboratory 

frame T
1 

(K39)-l also should increase rapidly at high temperatures, in 

. .· 87 133 qualitative disagreement wlth the Rb and Cs results. A possible 

explanation is that Rb87 and Cs133 exhibit the same qualitative 

relaxation behavior as K39 , but that the high-temperat'ure relaxation 

rate increase is either much weaker or appears at high temperatures 

where no data are available, due to weaker spin-phonon couplings 

(quadrupolar Raman relaxation rates are cc I Q 12 , where Q is the nuclear 

.quadTupole moment}. Straightforward comparison or· quadrupole moments 

is not sufficfent for estimates of the relative relaxation rates, 

however, due to antishielding effects. No estimates of relative 
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quadrupolar Raman relaxati.on rates for ~9 , Rb 87 and Cs133 in KDP, 

RbH
2
Po4 and CsD2Aso4 will be attempted here. 

b) Spin-lattice relaxation by hindered rotation of H2Po4 groups 

has already been identified as the mechanism responsible for the rapid 

increase in the proton relaxation rate in the dipolar state and at 

high temperatures (Section VIII-C), and it is interesting to note that 

the observed onset of the relaxation rate increase occurs at roughly 

the same temperature for protons and K39 (-200°K). An explanation 

close at hand is to attribute K39 slow motion relaxation to hindered 

H2Po
4 

rotation, since protons contribute to the e.f.g. at the potassium 

sites. Assuming that an activation energy governed slow motion is 

responsible for the rapid K39 high temperature relaxation rate, one 

finds an activation energy E = (0.13 ± 0.04) eV. This is much lower 
a 

than the activation energy E - (0.51±0.05) eV deduced from the 
a 

proton relaxation data in Fig. VIII-4, which again is much lower than 

the 5 eV required for proton interbond diffusion. Proton slow motion 

by H
2
Po4 rotation or interbond diffusion therefore seems unable to 

account for the observed K39 relaxation rate increase at high temperatures. 

One possibility is motion of the potassium nuclei themselves. 

Blinc and Mali have discussed59 the motion of Rb nuclei in the KDP · 

isomorph RbH
2As04 , where Rb occupy sites equivalent to those of K in 

KDP. They observed a Rb87 quadrupole constant which increased with 

temperature, and showed that this could be attributed to Rb jumping 

along the crystal Z axis between close-lying equilibrium positions. 

Associated with the Rb motion they postulated a coupled proton motion 

along the hydrogen bonds., the degree of Rb and proton motional correlation 
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being temperature dependent with complete decoupling at high temperatures~ 

An increasing ,quadrupole coupling constant with increasing temperatures 

was also observed for JJ9 in KDP (cfr. Section X-A) , and K39 motion is 

indicated~ in analogy with the Rb motion in RbH2Aso4. If the motional 

correlation time T is long in the temperature region of interest, than 

very simple arguments based on the BPP (Bloembergen, Purcell and 

Pound, cfr. Ref. 19 ) formula 

T _( wd)2 . 1. 
W · T 

0 

(XI-17) 
l + W2T2 (w t>>l) 

0 0 

offers a straightforward explanation of the differences in high temperature 

relaxationrates observed for K39 on the one hand and Rb87 and cs133 

on the other. In Eq. (XI-17), wd is a measure of the strength of the 

perturbation causing the relaxation; while w is the NMR transition 
0 

frequency: 

K39 spin-lattice relaxation rates were recorded in the spin-lock 

4 4 87 133 state, with w = , kHz, while Rb ·and Cs laboratory frame rates 
~ 0 

were obtained with w in the MHz range. In the case of slow motion, 
0 

2 . 
relaxation rates are inversely proportional to w as is evident 

0 

from Eq. (XI-17), and this- is the basis of the slow motion methods 

discussed in Section II-C. 

Equation (XI-17) also suggests a possible method of discriminating. 

between slow .motion and Raman relaxation, since the latter should be 

independent of w
0

• If slow .motion relaxation is dominant at high 

' . 39 -1 
temperatures, T1 (K ) is expected to be increasingly dependent on 

w from approximately 190°K and upwards, A syst~matic check on the 
0 

frequency dependence was not made, but spot checks at 200°K and 238°K 
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did indicate a frequency trend in rough agreement with Eq. (XI..-17) . 

Thus, at 238°K, the net high temperature relaxation rate increased 

from (0.36 ± 0.15) sec-l to (0,67 ± 0,3) 

4.15 kHz to 1.9 kHz. The observed ratio: 

-1 
sec on lowering w /2~ from 

. 0 
. . 1 

(1.90 kHz)/T~ (4.15 kHz) = 
(2.1 ± 1.3) may be compared to the value predicted by Eq. (XI-17): 

(4.15 kHz/1.90 kHz) 2 = 4.8. A close quantitative agreement cannot be 

expected with the data uncertainties here, but the trend is clear. 

XI-D. Concluding Remarks 

Within the framework of the theory reviewed in this chapter the analysis 

of the ~19 spin lattice relaxation data close to T is unambiguous and 
c 

reveals a ferroelectric mode which is diffusive or heavily damped, and 

with anisotropic interaction between the ferroelectric dipoles . 

. ~erimental data on the strong relaxation rate increase at high 

temperatures are difficult to interpret, mostly due to large data 

scatter, and both Raman spin-phonon and motional relaxation are· 

compatible with the data at high temperatures, but the Raman mechanism 

yields a poor fit below approximately 200°K. Some simple extensions 

of the present measurements can be made, however, to aid in a positive 

identification of the dominant relaxation mechanism at high temperatures: 

The T
1

(K39 )-l data in Fig. XI-1 should be supplemented with similar 

* data obtained at different rotating frame transition frequencies w . . 
. l 

* A relaxation rate dependence on w. could then be interpreted as being 
l 

due to motional relaxation~ 

Measurements of spin lock state relaxation rates for Rb87 in 

RbH2Po4 a.nd Cs133 in CsH2As04 should be performed to check whether the 

high temperature relaxation behavior is similar to that reported here 
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for I29 in .lillP. If so, slow moti.on is strongly indicated, which would 

explain the difference between.our T
1

(K39 )-l results and those cited 

. . . 87 133 
above for Rb and Cs spin-lattice relaxation in the laboratory .frame. 

Several other highly speculative relaxation models might be con-

sidered, but sufficient space has already been devoted to the presently 

available high temperature data. 
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XII. DOUBLE RESONANCE SPECTROSCOPY ON·VERY LOW ABUNDANCE 
NUCLEAR SPECIES IN KDP. PRELIMINARY 

RESULTS AND SUGGESTIONS FOR FURTHER WORK 

The high-sensitivity double resonance methods described in Chapter 

III should in principle allow detection of all nuclear species in 

KDP that possess a magnetic moment, as listed in Table !.2 in the 

Introduction. Detection of rare spin species was not of primary interest 

1 31 39 K41 in this thesis, but several transitions not due to H , P , K or 

were observed during the experiments. Parts of these results are 

presented here, and may serve as starting points for further investigations. 

XII-A. Deuterium 

Deuterium h~s a natural isotopic abundance of 1.56 • 10-2%, and 

cannot be detected by conventional methods. The data that exist on 

spectra of deuterium in natural abundance are scarce, and mostly limited 

to organic substances. As of this writing, no detection of deuterium 

in natural abundance in KDP has been reported, but numerous deuterium 

magnetic resonance studies have been made on the fully deuterated 

isomorph KD*P. 50 ' 9l-95 Deuterium has a nonzero quadrupole moment, and 

deuterium spectra therefore contain information about the local 

electric field gradient tensor. The spectra of deuterium in low 

abundances are of specific interest in light of the pronounced 

ferroelectric isotope effect on deuteration. 

The first deuterium magnetic resonance study on. KD*P was made by 

. 91 
Bjorkstam and Uehling. Some of their results o;f' particular relevance 

here, will be summarized briefly. Only the paraelectric.case will be 

discus.sed: 
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Deuterium has spin 1 and therefore 2 transitions which are rendered 

non-degenerate by the quadrupole interaction. As will be shown in the 

present case, the quadrupole interaction can be treated as a perturbation 

on the magnetic dipole interaction with the static field H ~ and to . . 0 

first order the frequency splitting of the degenerate Larmo~ lines is: 

(XII-1) 

in the Z rotation (cfr. Fig. VIII-1). X, Y and Z denote the crystaJ. axes 

a, b, c shown in F:j..g. I-1, 8Z is the angle between H
0 

and the.x axis, and 

C/l •• (i,j = X,Y,Z) are the electric field gradients at the center of the . ·~ ,J . 

hydrogen bonds. K is defined by 

K = ~ 
. - 2h 

Expressions for the X- and Y.;...rotations are obtained from Eq. (XII-1) 

by permuting the subscripts. 

The hydrogen bonds are nearly parallel with the crystal X- and 

Y-axes, and will be classified as X- or Y-bonds. The bond angle with 

respect to the XY plane is 0.5°. Crystal SYmmetry considerations show 

that theY (or X) axis is a principal axis for the e.f.g. tensor at the 

center of X (or Y) bonds. Experimental data revealed that the bond 

direction is a principal axis, and the third principal axis makes an 

angle 0.5° with the Z axis. For a general direction of themagnetic 

field H relative to the crystal axes, there are 4 non-equivalent 
0 

deuterons in each unit cell, and thus altogether 8 transitions. In 

-+ 
the special cases where H is in the XY, YZ or XZ planes, some of the 

0 

lines coalesce. Thus, in the Z rotation deuterons on the two bonds 

parallel tp the X-axis have common transitions. The same applies for 
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the two Y-bond deuterons, and 4 transitions. are observed in all. In 

the X- and Y-rotations, deuterous on the bonds parallel to the axis of 

rotation have common transition frequencies, and there are in general 

6 transitions. With the crystal axes defined by X, Y, Z and the e.f.g. 

tensor principal axes by~' y, z, Bjorksta.m and Uehling found the 

following X-bond deuteritim coupling constants in the fully deuterated 

isomorph KD*P: 

K¢xx = 179.2 kHz k¢yy = ~85.2 kHz ; k¢zz = -94.0 kHz 

or 

jeQ¢ /hi = 2 
K¢ = 119.5 kHz zz . 3 zz 

The largest e.f.g. tensor component is thus along the bond direction, 

and the e.f.g. is slightly asymmetric about that direction. These 

e.f.g. t·ensor components represent the time average "seen" by the 

deuteron during intrabond jumping. 

It is now possible to check on the perturbation approach, which 

only included first order terms. The second order correction is 

A ( 2) ~ ( 2/::.\J) 2 
LNm ~ 12 vL(H2) ~ 0.45 kHz and thus negligible. Here (2/::.v) = 

k¢zz is the maximum splitting between the quadrupole satellites on either 

I 2) side of VLtH . 

Turning now to deuterium in natural abundance, the symmetry 

arguments quoted above should apply, assuming no clustering of deuterium. 

As will be shown below, the change in deuterium spectra was small in 

going from 100% to 25% deuterium abundance, with all transitions 

contained in the range -1600 ·kHz to -1780 kHz, in the present field 

H
0 

= 2590 G. Several double resonance sweeps were made in the range 

.. 
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-1590 kHz to -1800 kHz on KDP of natural isotopic composition, and 

some sweeps with H 1 Z are shown in Fig. XII-1. The transition at . 0 

1769 • kHz can be readily identified as K39 ([}, but the remaining line 

patterns are not consistent with the observed deuterium line patterns in 

KD*P. A weak line was observed at the deuterium Larmour frequency 

VL(H2 ) R:.l690 kHz. The line was only observed at high B r.f. power 

levels, and its center frequency did not depend on the crystal orientation 

or sample temperature (T ~ T ), which would be typical characteristics 
c 

of a deuterium double quantum transition m = -1 + m = +1. To check on 

this, the magnetic field H was varied within the limits set by the 
0 

A r.f. system, and the line shift was recorded. The results, shown in 

Table XII-1, are consistent with the assumption of a deuterium double 

quantum transition, and reflect no magnetic dipole interaction shift 

from nearest neighbors. 

Table XII.l. Check on field dependence of line 
at the deuterium Larmour frequency. 

Proton Larmour Deuterium Observed 
Frequency Lartnour Freq • Line Freq. 

[kHz] Orientation [kHz] [kHz] 

10985.4 H II z 1686.4 1687.3±1.0 
0 

10998.4 H II z 1688.2 1688.4±1.0 
0 

11011.7 H 1 
0 

z 1690.·4 1690.0±1.0 

In Fig. XII-2 is shown a recording of this line in the orientation 

H II Z. The signal to noise ratios were approximately 10:1 at high 
0 

B r. f.· levels (rotating frame field components H
1

B !::o 14 gauss) ~ and it is 

puzzling that the direct deuterium transitions apparently were not 

observed. To clarify this problem, double resonance measurements were 
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Fig. XII-2. Line at deuterium Larmour frequency, on KDP sample 
of natural isotopic composition. ·The broken line 
shows the flank of the K39 ®transi tibn in the 
ferroelectric phase. 



...:.264-

made on KDP samples with deuteriUm in 25% isotopic abundance. Very 

strong lines which could readily be identified with deuterium were 

observed even at low B r.f. power levels (signal/noise 10:1 to 20:1 at 

H1B ~ 1.2 gauss). The Z-rotation pattern is shown in Fig. XII-3, where 

the theoretical curves have been fitted according to Eq. (XII-1). High 

B r.f. power was still required in order to observe the transition at 

the deuterium Larmour frequency. The Z-rotation in Fig. XII-3 must be 

supplemented by another rotation pattern in order to determine all 

three quadrupole coupling parameters K<P . . (i = x,y,z), but this was l,l 

not of specific interest here. The deuterium transitions at the various 

angles 8z in Fig. XII-3 have been indicated in Fig. XII.,-1, for reference. 

One may now try to establish why the double quantum transition 

was observed for deuterium in natural abundance, while the direct 

transitions were not. It should be mentioned that a similar case has 

been reported for naturally abundant deuterium in gypsum, 12 and there is 

a possibility that a double resonance "quenching" mechanism is respon

sible. Here, one might recall the "spin quench" effect, 13 where 

as.ynunetric field gradients. at the deuterium sites lead to expectation 

value zero for the deuterium angul~r momentum components and thus no 

double res:onance coupling. Since a magnetic field lifts the quenching, 

this mechanism cannot be responsible here, however, and the.strong 

deuterium lines observed in the 25% deuterated sample also indicate 

. . l 2 . . 
that no effective H - H · decoupllng lS present. 

It is possible to determine the expected intersi ties of the direct 

transitions (m = ±l ¢ m = 0) on the basis of the data above: A rough 

12 
estimate shows that the double quantum and direct transitions should 

be of equal intersities when the rotating B r.f. field component is 

.. .. 
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2 
H1B ~ 97 (~ - l) gauss 

where ~ is the cosine of the angle between the z principal axis of the 

e.f.g. tensor and the magnetic field H • Thus, for H II X, Y, direct 
0 0 

transitions should be observed with a signal-to-noise ratio at least 

equal to that of the double quantum transition, which was 5:1 to 10:1 

in samples of natural isotopic composition. One must, however, take 

into account that· the direct transitions have linewidths double that 

of the douole quantum transitions. Also, all deuterium nuclei contribute 

to the double quantum line, while there are up to 4 non-equivalent 

-+ 
deuterium sites for a general direction of H with respect to the crystal 

0 

axes. In the Z-rotation, there are 2 nonequivalent sites for ez :J: 45°, 

and including the line broadening effect one arrives at an anticipated 

signal to noise ratio for direct transitions equal to 1:1 to 3:1. This 

is so close to the detection limit that it might explain why the tran-

sitions were not observed~ A more careful investigation is required, 

however, in order to resolve this problem. Further discussion is 

deferred to Section XII-C (Suggestions for Further Work). 

XII-B. Unidentified Transitions. K40 
and o17 

By elimiriatiop, the observed transitions not due to.H1
, H2 , p

31 , 

K39 , K41 or higher harmonics of' the transitions frequencies of these 
' 

nuclei should be due to either o17 (spin I = 5/2, abundance 3.7 x l0-
2%) 

4o ( 4· · -2%) or K spin I= , abundance 1.9.x 10 • . Detection of impurities 

or crystal imperfections is also a possibility. Since no systematic 

17 4o search was made for 0 or K , the results reported here are not complete, 

but indicate the existence of hitherto undetected nuc~ear species in 

KDP which yield easily observable double resonance lines. Some uni-

dentified transitions that were observed are listed.in Table XIL2. 

• 
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Higher harmonics of the proton and phosphorous Larmour frequencies have 

been excluded . 

Table XII . 2. Unidentified transitions observed at H II Z; 
H = 2583 gauss; T = 240°K. 0 

0 

Center Frequency Line Halfwidth Comments 
[kHz] [kHz] 

1100 40 Strong 

·1216 6 Weak 

1224.5 6 Weak 

1278 8 Strong 

1553 20 Weak 

177'0 4 Weak 

1844 32 Strong 

1879 70 Possibly Several Transitions 

It is easy to compare these data wit~ the expected K
40 

transition 

frequencies at this field configuration, since the z principal axis 

of the e.f.g. tensor at the K39 and K41 sites is parallel to the crystal 

Z axis and thus H • Assuming that the e.f.g. symmetry to the same at 
0 

all potassium sites, the energy eigenvalues. are: 

2 
E = -yhH m + e gQ (3m2 - I(I + l)}_ 
m o 4I(2I - l) 

when~ m is the magnetic quantum number, Using the ratio96 

Q4o - = 1.244 
Q39 

f · d • K40 · t · f · h · h b, one 1.n s the follow1ng set of · transl 1on requencJ.es w l.C can e 

compared with the data in Table XII.2: 
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Table XII. 3. Th · t· 1 K40 t ·t· f · eore 1ca rans1 1on requenc1es in KDP. 
H II 4; H = 2583 gauss; T = 240°K. 

0 0 

\)Bo \)Bo 
[kHz] [kHz] 

256 693 

365 802 

474 911 
583 1020 

These frequencies do not match any observed transitions. A more 

systematic and careful search is necessary, however, before it is possible 

to exclude the possibility of K40 detection under the experimental 

40 
circumstances in question. Double resonance lines for K are expected 

t b ak d t th f K39 K41 
d t th 1 b o e we compare o ose o or , ue o e arge num er 

of K
40 

transitions (spin I = 4 leads to 8 allowed transitions at H II Z), 
0 

and the lower abundance. 

The only isotope in KDP that remains for identification with the 

transitions in Table XII.2 is o17 . Unfortunately, the large number of 

-+ 
non-equivalent oxygen sites for a general direction of H relative to 

0 

the crystal axes complicates the interpretation of observed spectra. 

No attempt at analysis will be made here. One may note, however, that 

if the deuterium quadrupole coupling undergoes no dramatic changes from 

25% to natural isotopic abundance, then none of the transitions in 

Table XII.2 can be due to deuterium. Also, in Fig. XII-1, the 

asymmetric line pattern about the deuterium Larmour frequency cannot 

be due to deuterium alone. K40 is also ruled out, since the transition 

frequencies shifted in the Z-rotation (cfr. Fig. XII-1). 

• 

. ., 
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xn-c. suggestions for Further Work 

The preliminary data above demonstrate the possibility of obtaining 

the spectra of spin species not detected before in ImP, which is of 

some interest ih itself. More accurate and complete data complementing 

those pres.ented above are desirable for more fundamental reasons, however, 
··"-' 

and a few comments and suggestions are made below in this connection. 

2 
H : It is still not quite clear why the direct transitions 

were not observed in the sample of natural isotopic composition. A 

KDP sample with deuterium in 4% isotopic abundance was prepared in order 

to study the deuterium spectra at this concentration, but time did not 

allow this project to be carried further. If necessary, one could 

prepare several samples with deuterium abundance between 25% and the 

natural abUndance, and monitor the deuterium lines as the abundance 

was lowered.· One important parameter, the deuterium linewidth, could 

then be monitored as a function of deuterium cqncentration. Some line 

broadening is expected due to the increased local dipolar fields as 

the proton concentration increases (y(H1 )/y(H2 ) = 6.5), and in certain 

cases this may be important for the deuterium detectabili ty. 93 A 

possible shift in e.f.g. parameters with the degree of deuteration might 

also be of interest (f.ex. with respect to deuterium/proton dynamics) . 

The slight discrepancy between the e.f.g. tensor components forth~ 

25% deuterated sample (above) and in the fully deuterated case (Ref. 91) 

could thus be an isotope effect, but further measurements are required 

to establish a possible trend. 

K
40

: .No new information about e.f.g. symmetry or strength at 

potassium sites is expected from the K40 spectra, but data on the 
f· ': . 

. 40 
·qu~drupole moment Q(K ) are sparse, and an independent determination 
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of e
2

qQ(:K
40

)/e2q(K39 ) would be of interest. 

o17 : Apart from impurities, o17 is the most likely candidate for 

explaining the unidentified resonances. The first detection of o17 

in natural abundance was made recently97 in various quinones, and few 

data on o17 quadrupole coupling parameters exist so far. In KDP, e.f.g. 

tensor data for oxygen sites would have a bearing on the degree of 

distortion of Po4 tetrahedra, and the contribut:i.on to the e.f.g. tensor 

from the hydrogen bond is also of interest. The large number of o17 

-+ 
transitions for a general direction of the magnetic field H relative 

0 

to the crystal axes makes interpretation difficult;. as long as all 

observed transitions·cannot be possitively associated with o17 • Several 

simplifying considerations can be made, however. In the special case 

17 where H II Z, f. ex., all 0 in the unit cell yield the same set of 
0 

transitions. 40 Discrimination against K transitions can easily be made 

by checking whether the frequencies shift in the Z-rotation. An example 

of this is shown in Fig. XII-1, where· the K39 ©transition is stationary 

at 1769 kHz, while the other transitions shift with 8z. An additional aid 

in identifying transitions is the use of audio resonance saturation once 

all transitions have been localized: Overlapping transitions are more 

easily resolved by audio resonance than f.ex. by phase shifted B r.f. 

due to the narrow audio resonance lines. Discrimination can also be 

made in certain cases when the effective gyromagnetic ratios in the 

rotating frames differ significantly. 



• 

-271-

ACKNOwLEDGEMENT 

The author would like to express his sincere appreciation to 

Professor E. 1. Hahn for his continuous encouragement and guidance. 

Doing physics in Professor Hahn's group has been a stimulating and 

.colorful experience, and I am indebted to many members of the group, 

past and present, for the benefit I have reaped from discussions and 

for help and advice. in experimental matters. 

Most particularly, I wish to thank Dr. D. Stehlik for his active 

interest and helpful suggestions throughout this work. I am grate'ful 

to Dr. R. Hilt for experimental help and enlightening discusaions. 

I am indebted to Shirley Ashley and J.ean Wolslegel at the LBL 

Inorganic Materials Research Division, who have been exceedingly 

helpful and competent in all matters regarding the thesis preparation. 

Finally, I would like to thank my wife for her support during 

this work, and for cheerfully accepting the hardships that befall a 

graduate student's wife. 

This work was- supported at various stages by the U. S. Atomic Energy 

Commission, the National Science Foundation and the Norwegian Council 

for Science and the Humanities (NAVF) . 



-272-

APPENDIX A 
EIGENVECTORS AND DIAGONALIZING MATRIX FOR THE 

HAMILTONIAN H
0 

= HQ + HZ OF CHAPTER V 

As shown in Section V-A, the hamiltonian ~ J( = _1__ 
yH o yH (JCQ + :HZ) = 

0 0 A 
(3I

2 12) - - I has eigenvectors IE>. = (ai' 13i, y i' oi)A in the repre~ 
2 z 9 X l 

sentation where I is diagonal, and the following relationships 
z 

13. 
2 13 2 

A.B.a. o. 3 1 = -A.a. y. = - 2 ai = - 4 ""A: ai -
l (3 l l l 

A = d. A 
i 2 

13 

T. 
l 

l 

T1 , 2 = ~- ( ...;1 ± ~ 4 + 6A + 9A 
2 

) 

T3 , 4 = ~(1 ± ~4 "'- 6A + 9A
2

) 

l l l 
l 

Root 1: + Root 2: 

Root 3: + Root 4: 

hold: 

B.a. 
l l 

The 16 different vector components are interrelated, and as will be shown, 

the number of different components is 4 for the case of general A • 

First, consider components which belong pairwise to the same vector. 

Using the notation 131 , 2 = y1 ,2 for 131 = y1 and 132 = y2 , it is easy to 

show: 

131,2 = Y1 2 ; a3 4 = -o · 4 ; 13 4 = -y 4 ' ' 3, 3~ 3, 

Take, for example, a
1 

, 2 = o1 2 .. From the above; one has: 
. ' 

o
1 

,
2 

= - - 1-·(d. + A ' B ) a · 
A1 , 2 4 l ,2 . 1,2 l ,2 

Using the secular equation in factored form which corresponds to roots 

2 
1 and 2, ( Eq. (V-7)) s one can substitute for T1 , 2 

(A-1) • 
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The result is: 

01,2 
-1 (~ + t A2 + Tl,2 

3 3 -t A2) = - 4- 2A al 2 = al 2 3 
- Tl 2 -A ' ' 2 ' 

For components belonging to different vectors, one can show: 

( A-2) 

Since orthonormal vectors are needed for the diagonalization matrix, one 

must have, using the results above, 

Vectors 1,2: (a. ' s. ' s. ' ai)A Normalization: ( 2 + s.2) 1 =-a. 2 1. 1. 1. l. l. 

2 s.2) 1 ( A-3) 
Vectors 3,4: (ai' si, -s. , "'"ai) A Normalization: (a. + = 

l. l. 1. 2 

Thus for ~1 vectors: 

(A-4) 

The expression for ai establishes normalization of each vector. a
1 

= S
2 

if, for all A: 

. .!±. A2 = 
3 1 

3 
= ± 4 

The first condition obviously holds since A is always positive: 

Secondly: 
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Analogously, one finds: 

which establishes the rest of Eq. (A -2). 

3 -- 4 

Together, Eq. (A-1) and (A-2) reduces the 16 components to 4 sets 

of different components. The quantities a, b, c and d are defined by 

a = Ct.l - 01 = (:32 = y2 b - ('(2 = 0 . = -s = -Y 2 1 1 

c = ('(3 - -o = (:34 = -y4 d - ('(4 = -04 = -s = y3 3 3 

The transformation matrix from the representation where I is diagonal . z 

(called the A representation·in V-A} to the eigen-representation of 

H = H + HZ (B represent~tion) is therefore: 
0 Q 

= (-: 
-b 

b 

a 

a 

a b 

c 

-d 

d 

-c 

d 

_:) 
-d 

Obviously, the eigenvectors are mutually orthogonal. Since a, b, c and 

d are real, UAB is orthogonal: 
-1 

UAB· = U . ·. AB 

• 
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APPENDIX B 
ROTATING-FRAME ENERGY IN A STRONG r.f. FIELD. SUDDEN APPROXIMATION 

.An intuitive·understanding of the problem can best be obtained by 

looking at a simple system first, namely that of a spin 1/2 nuclear 

.species with no quadrupole moment, in a high static magnetic field 

H U x. 
0 

Assume that the s.pins. are allowed to reach a state of thermal 

equilibrium, characterized by Boltzmann distributed energy level 

populations and the absence of macroscopic phase coherence between 

spins. In this state, there will be a macroscopic magnetization 

M = C H /T _x . 0 

where C is the Curie constant (the field configuration is chosen so 

as to conform to that in Chapter V) • 

(B-1) 

Here, one will make use of the "sudden approximation": if a strong 

-+ C.W. r.f. field is turned on in a ti:me <<yH1 , where H1is the rotating 

r.f. field vector, then the state of the system immediately after 

application of the r.f. field will be approximately equal to that 

preceding the pulse. 

The magnetization (Eq. (B-1)) will remain unchanged after trans-

:formation into a rotating frame where the r.f. field vector is stationary. 

If the r.:f. frequency is w(~w :: YH ), the magnetization M will couple 
0 0 . X 

to the off-resonance part of the rotating-frame effective field 

to yield the initial rotating-frame energy 

E 
0 

CH 6w 
-- _.;;;.o __ 

YT (B-2) 
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Thus, exactly on resonance, E = 0, and E will be positive or negative 
0 0 

depending on the sign of w - w. The result (Eq. (B-2)) is also 
0 

obtained by a quantum mechanical analysis. 

One may now proceed to the more difficult case of.spin systems 

where quadrupole and Zeeman laboratory frame interactions are of 

arbitrary relative magnitudes, and where the field configuration is 

as described in Chapter V. In this case, an intuitive classical 

description is no longer possible. Instead of the simple rotating frame 

in the pure Zeeman case, one must now seek out the frame of reference 

where the full hamiltonian including the r.f. perturbation has a 

non-vanishing time average, which is necessary for the existence of 

time independent "rotating-frame" energy and eigenstates. This is 

achieved by transformation into a representation where the hamiltonian 

becomes static (with the exception of high-frequency terms due to 

other transitions or a counter-rotating r. f. field vector). 

As an example, take the case of an r.f. field exciting transitions 

hetween states 1 and 4 as defined in Chapter V. In the interaction 

representation of the static laboratory frame quadrupole and Zeeman 

hamiltonian X , the total hamiltonian can be written (cfr. Eq. (V- )): 
0 . . . . . 

xr.f.* =- yeff. 
( 

0 0 0 exp(i6wt )) 
h H

1 
0 0 0 0 

. 0 0 0 0 
· exp (-i6wt) 0 0 6 B 

(B-3) 

.\~) 

• 
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B is the eigenrepresentation of 'J(' , and one has defined 
0 

4w - (E1 - E4)/h - w 

Y ::yLAB·· 2(3ad-bc) eff 

It is assumed that w ~ (E1 - E4)/h, so_that matrix elements corresponding 

to other transitions can be neglected. 

. * In Eq. (B-3), a nonzero Aw will make K f time dependent. In 
r. . 

that case, it is possible to transform into a new interaction representation, 

and it is convenient to write (henceforth, zero matrix elements will not 

be written explicitly): 

* K 
r.f. 

1
) + i sinAwt (_

1 
B 

Defining the following 4 by 4 matrices in analogy with the Pauli spin 

matrices a , a , a : 
X y Z 

. .;_ l (. r --
X - 2 l 

l)· . l( ; rY = 2 i 
. B 

-i) :__ l (l . r --
' z - 2 

B ·. 

.· -1) 
. B 

the same commutation a:pd multiplication rules apply, and· in particular: 

exp (-if <P) r 
· Z X 

exp(ifz<P)- r cos<P + r sin<P 
X y 

One may then write 

* 'Jf 
r.f. 

sinAWt · f ] y 

= - Y h H
1 

exp(if nwt) f exp( -if 6wt) eff z · x z 

Recalling the interaction representation transformation formula for 

general 'Jf1 'Jf
0 

and F(t) : 
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* 3C = exp(iF(t)/h) JC
0 

exp(-iF(t)/h)- dF/dt 

one obtains in the present case with F(t) = -r ~ullt 
z 

h ( = -Yeff H.r 1 

Here, .all time dependence has been transformed out. 

(B-4) 

J B 

The energy in this interaction representation can be evaluated by: 

** 

** E 
0 

** ** = NBTr(P 3C ) r.f. 
(B-5) 

where P ·is the density matrix and N the nuniber of nuclei. In the 

laboratory frame: 

where 

3C =3C +Jf 
o Quadrupole Zeeman 

and Z is the partition function. Obviously, 

* p = exp(iJC t/h) P exp(-iJC t/h) = P 
0 0 

and one also finds 

** * p = p = p • (B-6) 

In the thermal eq_uilibrium state immediately before application 

of the r.f. pulse, P will be diagonal in the B representation, and one 

has trivially: 

• 
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exp(-E/kT) 

~( 
e.xp ( -E

2
/kT) ) p = exp(-E/kT) 

(B-7) 

exp(-E4/kT) 
B 

Combinirtg Eqs. (B-4), (B-5), (B-6) and (B-7), one obtains: 

(B-8) 

In the high temperature approximation, 

z ~ Tr 1 = 21 + 1 = 4 

·and 

** . NllllW(E4 - E1 ) 
E . ~- ....;;....,.·-----=-

0 4kT 
(B-9) 

Extension to the other laboratory frame transitions is trivial. 

** From Eqs. (B-8) and (B-9) it is apparent that E = 0 for !J.w = 0, 
. 0 

which coUld have been ascertained directly from Eq. (V-14), using 

Eq. (B~5). As in the case of a pure Zeeman laboratory frame hamiltonian, 

** E changes sign as !J.w is swept through zero. 
0 
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