PROCEFDINGS ihe LBLazgg

ﬁl} 5 l}ﬂ I ﬂﬁ CONF-810202
I

LY WORIKSHONR

S

DS T

“MENT AND
H \“ W@l'“KS

RE

Slojirw ey Bub, 1981

LAWRE M( ERCELEY TABORATORY
UNIVERGE O CALIFORNIA, BERKELEY

PREPARED FOR THE U.S. DEPARTMENT OF FNERGY UNDER CONTRACT W-7405-ENG-48




LEGAL NOTICE

This book was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their
employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency
thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect
those of the United States Government or any
agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price Code: A13




LLBL-11860

PROCEEDINGS OF THE FIFTH
BERKELEY CONFERENCE ON DISTRIBUTED DATA MANAGEMENT
AND COMPUTER NETWORKS

Computer Science & Applied
Mathematics Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Sponsored by

Applied Mathematical Sciences
Research Program

Office of Energy Research

U.S. Department of Energy

Washington, D.C. 20585

and

In cooperation with ACM and SIGMOD

General Chairperson:

Program Cochairpersons:

Program Committee:

Rowland R. Johnson, Lawrence Berkeley Laboratory

Lawrence A. Rowe, University of California, Berkeley
Patricia Griffiths Selinger, IBM Research Laboratory,
San Jose

Philip Bernstein, Harvard University

Greg Chesson, Bell Laboratories

David Clark, MIT

Robert Epstein, Britton Lee

Hector Garcia-Molina, Princeton University
Jerry Held, Tandem Computers, Inc.
Gérard Le Lann, INRIA, France

Jon Postel, USC/ISI

Jerry Popek, UCLA

John Shoch, Xerox PARC






il

ACKNOWLEDGMENTS

We would like to thank Dr. James C. T. Pool of the Office of Energy Research in the
Department of Energy, under Contract No. W-7405-ENG-48, for his continued support of
the workshop.

The program cochairpersons greatly appreciate the help of the following people who
assisted in refereeing the papers.

Doug Clark
Yogan Dalal
Chris Esculier
Guy Ferran
Frank Germano
Bruce Hunt
Jay Israel
Alan Katz
Butler Lampson
Nguyen Gia Poan
P. Rolin
Eric Schmidt
Stu Schuster
Carl Sunshine
Suzanne Sluizer
Eugene Wong






TABLE OF CONTENTS

QUERY PROCESSING

Dynamic Re-Materialization: Processing Distributed Queries Using
Redundant Data v
E.Wong . 3

A Dataflow Solution for Implementing Distributed Queries
D.H VInes, Jr. o oo 14

An Approach to the Cost/Performance Comparison of
Distributed Systems
LA Denota .. ... .. 38

DISTRIBUTED APPLICATIONS WORKSHOP

Distributed Data Bases in a Calendar System
L Greif ... e 67

Site Autonomy Issues in R*: A Distributed Database
Management System :
B. Lindsay . ...... .. e 68

CONCURRENCY CONTROL

Two Part Proof Schema for Database Concurrency Control
P. A. Bernstein, N. Goodman, and M. =Y. Lai . ... ... ... ... ... ... ...... 71

Concurrency Control Overhead or a Closer Look at Blocking
vs. Nonblocking Concurrency Control Mechanisms
D.Z Badal .. ... ... . . . e 85

A Deadlock-Free, Variable Granularity Locking Protocol
H. F.Korth ... ... 105

CONCURRENCY CONTROL WORKSHOP

A Straw Man Analysis of the Probability of Waiting and
Deadlock in a Database System
J. Gray, P. Homan, H. Korth, and R. Obermarck .. ... ... ... ... ... .... 125



vi

DATABASE AVAILABILITY

A Formal Model of Crash Recovery in a Distributed System
D. Skeen and M. Stonebraker .. ... ... ... ...

Consistency of Redundant Databases in a Weakly Coupled
Distributed Computer Conferencing System
B L Strom ...
On Evaluating Availability in Distributed Database Systems
G. Martella, B. Rounchetti, and F. A. Schreiber ... ..... ... ... . . ...

Detection of Mutual Inconsistency in Distributed Systems
D. S. Parker, G. J. Popek, G. Rudisin,
A. Stoughton, B. Walker, E. Walton,
J. Chow, D. Edwards, S. Kiser, and
C. Klime . .. . e

DISTRIBUTED DATABASE SYSTEMS WORKSHOP
An Architectural Overview of R*: A Distributed Database

Management System »
P.G. Selinger . ...

NETWORK COMMUNICATION

Squire — A Communications-Oriented System
H R. Chesleyand V. B, HURE . . ... ... .. i

An Analysis of Piggybacking in Packet Networks - v
WoS Lat ..o

A Distributed Adaptive Multi-Path Routing-Consistent and
Conflicting Decision Making
ROAttar .. .. e L.

NETWORK FILE SYSTEMS WORKSHOP

Network Data Management: The Virtual File System
R. Popescu-Zeletin, L. Henckel, W. Heinze,
K. Jacobsemn, and G. Mail-. . ... . ... . . . .

Performance Analysis of a Distributed File Cache
‘G. Barua, J. Bruno, and P. J. Downey . ......... ... ... ... ..

A Distributed UNIX System
A, Glasserand D. M. Ungar ... ... ... .. . ... .. ..



vii

DISTRIBUTED DATA
Redundant Allocation of Relations in a Communication
Network
P.M. GO ADPErs o o 245

File Assignment in akComputer Network
D. V. Foster, L. W. Dowdy, and J. E. Ames, IV . ........... [ 259

Copying Structured Objects in a Distributed System

K R.Sollins ....... ... . . . . . . . . ... R R R R 284

DISTRIBUTED OPERATING SYSTEMS WORKSHOP

RIG, An Architecture for Distributed Systems: A Summary
KA Lantz .. ... .. P 301






QUERY PROCESSING







DYNAMIC RE-MATERIALIZATION: PROCESSING
DISTRIBUTED QUERIES USING REDUNDANT DATA

Eugene Wong

Department of Electrical Engineering and Computer Sciences
' and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT

In this paper an approach to processing distributed queries that makes
explicit use of redundant data is proposed. The basic idea is to focus on the
dynamics of materialization, defined as the collection of data and partial re-
sults available for processing at any given time, as query processing proceeds.
In this framework the role of data redundancy in maximizing parallelism and
minimizing data movement is clarified. What results is not only the discovery
of new algorithms but an improved framework for their evaluation.

Research sponsdred by the Honeywell Corporation under a grant from the Corporate
Computer Science Center, by the Army Research Office under Grant DAAG29-78-G-0186,
and by the Air Force Office of Scientific Research under Grant 78-3596.



1. Introduction

In this paper we propose a new formulation for the problem of processing
queries in a distributed database system. By such a system we mean a collection
of autonomous processors, communicating via a general communication medium, and
accessing separate and possibly overlapping fragments of a database. The user's
view of data is to be an integrated whole, both fragmentation and redundancy
being invisible. Geographical dispersion, though sometimes present, is not an
essential ingredient of such a system, and the range of systems so encompassed
includes not only the classical geographically distributed databases but also
configurations that are in effect database machines. The problem of distributed
execution of queries is common to all these systems.

In the query processing algorithm designed for the SDD-1 distributed data-
base management system [WONG 77], an irredundant subset of the database is used
during the execution of any single query. No effort was made to exploit the
possible existence of multiple copies either to maximize paraliel operations or
to minimize data moves. A related and somewhat hidden characteristic inherent
in the SDD-1 algorithm is that parallel processing is opportunistic rather than
deliberate.

These characteristics were recognized in [EPST 78] where the emphasis fell
heavily on maximizing parallelism. The algorithm proposed there, and implemented
for the distributed version of INGRES, achieves a high degree parallelism by
partitioning one relation among the processing sites and replicating all other
needed relations at every site. We shall call this the F-R (fragment and repli-
cate) algorithm. For a query referencing many relations, the degree of data
replication and the resulting communication cost to achieve this replication
may be prohibitive. Thus, the F-R algorithm is best applied to pieces of a
many-variable query, one at a time, each with only two or three variables. Ex-
perience of using the F-R algorithm in the distributed version of INGRES
[EPST 80] dindicates that the procedure of splitting a query before applying the
F-R algorithm is not an easy one to optimize.

It is time then, to seek a new formulation of the problem of distributed
query processing that puts the issue of redundancy and parallelism into better
focus. One such formulation was suggested by some recent work on database
partitioning in a distributed system [WONG 80].

IT. Partioning a Database

Let D denote the database as viewed by a user. Let M. denote the data re-
siding at processing site i. We assume that U Mi =D and dall M = {Mi} a

materialization of D. Suppose that the databdse designer is free to choose M.
How should he choose? : o

Among the major issues to be resolved is that of redundancy. Intuitively,
the cost of redundancy is paid on updates and benefit accrued on retreval. What
we need is a conceptual framework to make this precise. Let Q denote a collec-
tion of queries on a database 7. We shall say that a materialization M of D is
self-sufficient (relative to Q) if for every q in Q and for every i there exists
a local query q; on Mi such that .




Result (g,DP) = U Result (qi’Mi)
-i 3

Self-sufficiency means that no inter-communication is necessary to process q.
The only data movement needed is a final one to collect the results.

For two materializations M and M' denote M > M' if M; D M.' for every i.
A Tocally sufficient M is said to be minimally redundant 1f thdre exists no
M'< M (other than M itself) that is locally sufficient. Minimum redundancy
means that data reduction at Tocal sites cannot preserve local sufficiency.

Suppose we assume that it always takes longer to process a query when there
are more data. Then, in terms of both retrieval and update, it is better to have
minimal redundancy than not. Thus, minimally redundant materializaticns repre-
sent a desirable class of partitions for the database.

ITT. Query Processing by Dynamic Re-Materialization

In terms of the concepts that we have introduced for database partitioning,
query processing can be viewed as a dynamic process of changing materializations.

Let g be a single query. Let Mgt) denote the data at i available and selected
for processing q at any stage t of processing. M(t) = {Mgt)} will be called the
materialization at t. Any algorithm for distributed query processing can be

represented as a sequence of states: (q(t),M(t)), t =0,1,2,...,N. The terminal

state (q(N),M(N)) is required to be Tocally sufficient and to satisfy the con-
dition ‘

U Result (qu),MgN)) = Result (Q,V Mgo))
i i

In other words, from the terminal state only. local proceésing and gathering up
of results are needed to complete processing. Transition between two successive

states (q(t),M(t)) and (q(t+]),M(t+])) occurs as a result of data movement and/
or local processing. A transition will be called a redistribution if only data

movement is involved, and a local derivation if: (a) (q(t+1),M(t+])) is derived
(t) ,(t) - (t+1) _ ()

from (g‘'~’,M*"’) by local processing, (b} M <MY, and (c) Result

(o(E1) y(E41), (£) y(t)).

(M) (M)

= Result (q
For any-terminal state (q ) a measure of the parallelism that it
affords is given by

(N)

i

(W) sy ()

= max (time to process q
.i

(N))

(q on M,

The cost to reach (q(N),M(N)) can be expressed as

N :

Cltag M) = G +
t=



where CO(N) is the cost of resynchronization between transitions and T, is the

cost of making the'tzh-transition.
If a compatible scale for v and C is known, the problem can then be stated
as one of optimal control. Even though the optimization problem is unlikely to

be solved in any general sense, it provides a framework that allows algorithms
proposed on heuristic grounds to be evaluated.

IV. Strategies Based on an Initially Feasible Solution

Let q(o) = q be the query to be processed and M(o) the data initially
available for processing q. We say (q,M) is an initially feasible solution if

it is a "locally sufficient redistribution” of (q(O)’MTO)), i.e., M is locally

sufficient and derivable from M(O) by moving data. The cost of using such a
strategy consists of several components, of which we assume the following to be
dominant:

(a) C(M(O),M) = cost of moves
(b) t(g,M) = cost of terminal parallel processing

We shall say a strategy is of the IFS type if it consists-of the following steps:

(1) One seeks a (q(]),M(])) that is a "local derivation" of (q(o),M(o)).

(2) If no such local derivation can be found, one seeks an initially
feasible solution (q,M). :

(3) One seeks to improve (g,M) by replacing the one-transition strategy
(q,M(O)) + (q,M) by a "short" sequence of transitions. Perform the
first transition (q,M(O)) +A(q(]),M(])) in the sequence.

(4) 1Iterate, wfth (q(]),M(])) replacing (q(o)’M(o).

Both the SDD-1 and F-R algorithms are variations of IFS algorithms. In

the SDD-1 case, the initially feasible solution (q,M) is restricted to be not
merely locally sufficient but single-site sufficient. That is, there exists a
site j such that g can be processed entirely on M:. The choice for M in the

F-R algorithm is to replicate every relation but 8ne, which is obviously locally
sufficient, not only for a given q but for all q. It seems clear that to
qualify for selection as the initial choice as a feasible solution, (q,M) should

be at least "non-inferior" with respect to the pair of costs (C(M(O),M), t(q,M)).
That is, there exists no initially feasible solution that is equal or better in
both (c,t) and strictly better in at Teast one. Neither the SDD-1 nor the F-R
algorithm guarantees this in general. Indeed, the choice is often poor in

these cases.



7

Example 4.1 Consider a conceptual séhema given by:

person (socsec, name, state-of-res)
corp (cid, cname, state-of-inc)
emp (socsec, cid, position, salary)
Suppose that there are two sites with their Tocal schemas given by the follow-
ing view definition statements:
range of p is person
range of ¢ is corp
range of e is emp
define person 1 (p.all) where (p. state-of-res = "NY")
define corp 1 (c.all) where (p.state-of-inc = "NY")
define emp 1(e.all) where (e.salary < 25000)
define person 2 (p.all) where (p.state-of-res # "NY")
define corp 2 (c.all) where (c.state-of-inc # "NY")
define emp 2 (e.all) where (e.salary > 25000)

Now consider a query

retrieve (p.name) where (p.socsec = e.socsec)
and (c.cid = e.cid)
and (c.name = "IBM")
We begin with the materialization.

M%O) (person 1, corp 1, emp 1)

Méo) = (person 2, corp 2, emp 2)
Processing the clauses that involve only local operations, we get
M) = (m, a1, 1)

M(]) = (P2, C2, E2)
where

Pk = person k projected on (socsec, name) -
Ck= corp k restricted to (name = "IBM") and projected on (cid)
Ek= emp k projected on (socsec, cid)

Now assume the following statistics for these relations



relation #tuples tuple width in bytes

P1 1000 29 (9,20) \

P2 1000 29 (9,20)

Cl 1 5

C2 0 5

ET 1000 14

E2 1000 14 -
C1 (cid) E2 100 14
Cl1 (cid) E1 1000 14

The initial feasible solution in the SDD-1 algorithm would consist of site
1 as the final processing site and

M = {move P2 and E2 to site 1}

which entails moving 43. K bytes of data. On the other hand the F-R algorithm
would yield a materialization

M, = (P1, C1, E1, E2)
(P2, C1, E1, E2)

=
[t}

M] = {move E2 to site 1}
{move C1 and E1 to site 2}

=
N
i

which in this example corresponds to the M(z) that minimizes communication cost
C(M) and entails moving 28 K bytes of data. M, can be reduced by joining C1 to
~ E1 and moving the join instead of E1 (1405 bytés). M, can be reduced by moving
Cl to site 2, joining C1 with E2, and moving the join. The resulting sequence
of materialization would appear as follows, where padenotes join:

W) < (1, o1, B1), (P2, E2))

M) = ¢(p1, 1, E1), (P2, C1, E2)}

m(3) - {(P1, El maC1), (P2, E2 = C1)}

M%) = ((P1, E1waCl, E2 aC1), (P2, ElsaCl, E25q C1)}

and M(4) is now locally sufficient. The total amount of data moved is 2805 bytes,
and no more processing is involved than either the F-R or the SDD-1 algorithm.

For our example, the strategy that we have found is just about the best possible
over a wide range of relative costs for communication and local processing.



V. Repeated-Join Strategies

The database-partition problem suggests the following class of query proc—'
essing strategies: Consider a relational database D = {R], R2, cees Rm} where

R, are relations. We shall say a query q is admissible if it is a finite
répetition of "restriction", "projection" and "join" on the relations inD.
We shall say an admissible g is elementary if it involves at most one join.
Now, suppose that for any D we know how to find a "good" materialization M(D)
that is locally sufficient for all elementary queries. Then, we can construct
a query processing algorithm as follows: Construct a sequence

D = D(O), D(]), D(N)

q(O)s q(])b ----- ) q(N)

such that q(N) = q, and for each t q(t)
o) ¢ () Resutt(q{H),0(t)).  since for each D
materialization M(D(t)) that is locally sufficient for all elementary gqueries,

M(D(t)) is a fortiori locally sufficient for q(t). The repeated-join algorithm
consists of repeating for each t the following steps.

(t)

we know how to find a

is- an elementary query on D and

(t)

(a) Execute q(t) on M(D(t))

t)

(b) To obtain D(t+]), add Resu]t(q(t),v(t)) to D( and eliminate the

relations no longer needed in processing q.

(c) Construct m(p't*1))

"How good this algorithm is depends on :
(1) Whether we can construct M(D(t)) as claimed, and

(2) the cost in resynchronization and data movement in making the tran-
sition M(0(t)) > mep(t*1)y,

Qur preliminary study suggests that the efficacy of this class of algorithms
is enhanced if we augment the semantics of the relational model and use the
semantics to restrict the class of admissible queries.

Roughly speaking, the semantic augmentation that we undertake corresponds
to distinguishing between entities and relationships [CHEN 76, WONG 79], but
we shall define the semantics strictly in terms of the constructs of the re--
Tational model.

First, we classify the sets that serve as domains of the relations in the
database into identifier and value. D is an identifier domain if and only if
there is a unique relation E, such that the elements of D are in one-to-one
correspondence with the tuplés of Ej. We shall say D is the key of Ej.

Every relation must have at least one identifier domain. A relation will
be called an e-relation (entity) if it has a key, and an r-relation
(relationship) otherwise.



10

Example 5.1

person (* socsec, name, state-of-res)
corp (* cid, cname, state-of-inc)
emp (socsec, cid, position, salary)

where underscore indicates an identifier domain and * indicates a key. Clearly,
"person and "corp" are e-relations and "emp" is an r-relation.

Now suppose that we 1imit the admissible data manipulation operations to
the following:

(a) Restriction - boolean condition on values
(b) Projection

(c) Join - on an identifier domain D
(d)

Note that admissible joins are Timited. For example, the join

Closure

person (state-of-res = state-of-inc) corp
would be an inadmissible operation, but the fo110wihg operation is admissible;

socsec cid _
(person ( ® ) emp (™ ) corp) [state-of-res = state-of-inc]

D
Let &< denote the semijoin operator defined in [BERN 79]. That is, Aél B

is the projection on A of the join A éLB. The following proposition gives a
condition for local sufficiency in terms of the semijoin.

Proposition 5.1 Let D be a collection of relations. Let M be a materialization
of D such that to each e-relation E corresponds a unique E(k) in Mk.such that

E=VUE(k)
k

Then, M is locally sufficient for all elementary queries if for every RE€ D
and every identifier domain D in R

(5.1) RIQ ED(k) € closure (Mk) for every k.

Proof: For R and S in D, we can write



11

Since projection and restriction commute with union, the proposition is proved.
H

Condition (5.1) provides a simple means for testing the local sufficiency
of a materialization M for elementary queries. Further, if M fails the test,
(5.1) provides a means for augmenting M to make it Tocally sufficient. As such,
(5.1) makes the repeated-join algorithm work. At each step t in the algorithm,

to construct M(D(t+1)), we only need to distribute enough of the result
(q(t),v(t)) so that

(t+1)y

(5.2) result (q( ) D(t))L< E.(k) € closure (M, (D

! k!l

for every k and every D.
Example 5.2 Take the schema in examp]e 5.1, and consider the same query as in
example 5.1. We have

= {person, corp, emp}

socsec cid
q = person. <  (emp b< (corp(name="IBM"))) [name]

Define personk and corpk as in example 4.1, but define

socsec cid
emp k = (emp <  person k) U (emp t< corp k)

Take the initial materialization to be

= {(person k, corp k, emp k), k = 1,2}

Then M(O) is locally sufficient for all elementary queries on D.
Now, take

= {person, corp, emp}

cid _
(0) (emp < (corp(name="IBM"))) [socsec]

0
fl

Here, we have no need to distinguish q(O) and its result. Hence, we can write

0(1) = {person, qfo)}
(D) 2 (o o 4(0))

q=qa emp < ¢ [name]

As in example 4.1, assume that

corp 2 (name="IBM") = ¢



12

Hence, qéo) = ¢ and

(0) _ ,(0)

q q

To satisfy (5.1), we can take

‘ M§]) = (person 1, q$0))

Mé]) = (person 2, q%o))

which requires moving qgo) to site 2. Alternatively, we can take

(-l ) ( ) soc¢sec
M, = (person 2, a < person 2)
which would entail first moving (person 2) [socsec] to site 1 and then moving
socsec
q%o) < person 2 to site 2. However, the double move would be ovbiated by

storing at each site an index for the distribution of identifiers.

For a given q, the sequence q(n) is by no means unique, and the optimization
problem is to choose q ") 5o as to minimize cost, however cost is defined.

VI. Conclusion

In this paper we propose a new approach to distributed query. processing.
This approach focuses on how the data available at each site change as processing
proceeds. We believe that issues of parallelism and redundancy are rendered
clearer by this approach. Our immediate goal is not so much to find better
algorithms, but to provide a conceptual framework in which new classes of algo-
rithms can be formulated in a natural way.



[BERN79]

[EPST76]

[EPST80]

[HELD75]

[HEVN78]

[WONG77]

[CHEN76]

[WONG79]

[WONG80]

13

REFERENCES

Bernstein, P.A. & Chiu, D.W., "Using Semi-joins to Solve Relational
Queries," Computer Corp. Am. Tech. Rep. CCA-01-79. To appear in JACM.

Epstein, R.; Stonebraker, M.; Wong, E; "Distributed Query Processing
in a Relational Data Base System", Proc. 1978 ACM-SIGMOD Conference
on Management of Data, Austin, Texas, June 1978.

Epstein, R. & Stonebraker, M; "Analysis of Distributed Data Base
Processing Strategies," 1980. International Conference on Very
Large Data Bases, Montreal, October 1980.

Held, G.D., M.R. Stonebraker, & E. Wong; "INGRES-A Relational Data
Base System," Proc. NCC vol. 44, 1975.

Hevner, A. & Yao, S.B., "Query.Processing on a Distributed Data Base,'
Proceedings of the Third Berkeley Workshop on Distributed Data
Management and Computer Networks, LBL-7953 UC-32, Lawrence Berkeley
Laboratory, Berkeley, California, August 1978.

Wong, E.; "Retrieving Dispersed Data from SDD-1: A System for Dis-
tributed Databases," 1977 Berkeley Workshop on Distributed Data
Management and Computer Networks, Lawrence Berkeley Laboratory,

May 1977.

Chen, P.P., "The entity-relational model - towards a unified view of
data." Transactions on Database Systems 1,1 (Mar. 1976), pp. 9-36.

Wong, E. & Katz, R.H.; "Logical Design and Schema Conversion for -
Relational and DBTG Databases," International Conference on the
Entity-Relationship Approach to Systems Analysis and'Design, Los
Angeles, 1980.

Wong, E.: "The Design of Representation Schemas," Technical Report,
Honeywell Corporate Computer Science Center, Bloomington, MN, July
1980.



14

A DATAFLOW SOLUTION FOR IMPLEMENTING DISTRIBUTED QUERTES

Donald H. Vines, Jr,
Computer Science Department
University of Southwestern Louisiana
Lafayette, Louisiana 70504

‘To process a aquery in a distributed environment involves the
design of a distribution strategy and the implementation of the
distribution strategy on the network, This paper proposes the
implementation of distribution strategies by a scheduler
subsystem wusing a dataflow approach., Our distribution strategy
consists of a set of dataflow subgraphs. Each subgraph contains
all the data manipulations and data transmissions which can be
performed on a single site and may depend on Llocal datar, data
from remote sites, or local and remote data. Our scheduler
subsystem, consisting of a global and a Llocal scheduler, is
distributed throughout the network. The global scheduler sends
the dataflow subgraphs to the local schedulers and handles
reliability issues associated with the dataflow subgraphs., The
local schedulers undertake the evaluation of the subgraphs by
initiating each operation whenever all of its input data are
available. The operations are initiated in an entirely
decentralized fashion, that is, without reference to the global
scheduler on the query originating site. The comnlete execution
of all subgraphs ends with the result data on the required site,
Hence, the dataflow approach to implementing distribution
strategies uses distributed scheduling control and decentralized
execution control with the only synchronization mechanism being
data availability., Network control messages are only required in
the case of network failures or abnormal terminations,

1 INTRODUCTION

Query processing in a distributed database system involves
two phases: query decomposition and query scheduling., The first
phase decomposes a query into a distribution strategy, The
distribution strategy specifies the operations (i.e., data
manipulations and data transmissions) to be performed, the
precedence relationships (1., the data dependencies) between
the operations to be maintained, and the network sites 1in which
to perform the operations. The objectives in the derivation of a
distribution strategy are to minimize both response time and
network traffic, These objectives are not wunrelated; for
instances, it 'may be necessary to increase network traffic in
order to introduce parallelism that will decrease response time,
The second phase, query schedulings, implements the distribution
strategy by sequencing the operations on the network subject to
precedence constraints. To efficiently implement a distribution
strategy., the opportunities for performing the operations 1in
parallel on the different sites in the network must be exploited



15

while the synchronization requirements to maintain essential
precedence relationships between the operations are kept at a
minimum, In recent years considerable attention has been given
to the query decomposition [ADAM8B0OB, EPST78, GOOD80, HEVN78,
HEVUN79, NGUY79, PELA79, STON77, WONG?77] phase; however, only a
few researchers have focused on the query scheduling [ADAMBOA,
SERGBN, ROTH?77] phase,

Query decomposition can be statics dynamices, or a combination
of static and dynamic. Static decomposition [GOODB0O, HEVN7Q,
PELA79] occurs prior to query scheduling and 1is based on

estimates of the intermediate result data sizes. Static
solutions decrease response time by increasing parallelism but
may increase network traffic, if the estimates are bad. Dynamic

decomposition [EPST78, HEVN78, STON?7, WONG?7] occurs during
query scheduling and is based on the actual sizes of the
intermediate result data., Dynamic solutions may decrease network
traffic but restrict parallelism due to reoptimizations during
the query scheduling phase. Recently, a combination of static and
dynami¢c decomposition has been proposed [ADAMB0B, NGUY79) where
reoptimizations are only done when the =estimates are  bad.,
Combined static/dynamic decomposition reduces response time by
increasing paralletism and, when the estimates are bad, network
traffic is reduced by reoptimizing portions of the distribution
strategy. Combined static/dynamic solutions require the query
scheduling mechanism to accomodate static and, on an exception
basis, dynamic decomposition,

The query scheduling mechanism <c¢can be centralized or
decentralized. In centratized query scheduling, the operations
within a distribution strategy are controlled by a central site.
Only those operations which can be processed without wviolating
the precedence constraints are transmitted to the involved sites,
This mechanism requires network synchronization messages from the
involved sites to the central scheduler after the operations are

performed and may require network synchronization messages
between the involved sites for the transmisssion of data. In
decentralized query scheduling, the operations within the

distribution strategy are controlled by the involved sites., All
the operations are transmitted, wunconditionally, to the sites
where they are to be executed, This mechanism may or may not
require network synchronization messages between the involved
sites to wake up the target operation prior to transmitting the
input data.

All previous solutions, centralized or decentralized,
implement distribution strategies by passing synchronization
messages over the network. Synchronization messages ensure that
an operation 1is not processed wuntil 1its predecessors have
finished processing, The use of network synchronization messages
has led previous solutions to provide stronger synchronization
for data transmissions than for data manipulations. Centralized
solutions (e.g.r, SOD-1) may reguire three sites to synchronize
the data transmissions and two sites to synchronize the data
manioulations. Decentralized solutions (e.g.r, SER) require two
site synchronization of all data transmissions and single site
synchronization of all data manipulations. The synchronization



16

provided by previous solutions (i.e.r passing messages)
restricts parallelisms, increases intersite communications and may
increase the response time associated with processing a query.

To avoid these problems by reducing the amount of network
synchronization (i,e., single site synchronization for both data
transmissions and data manipulations) required to implement
distribution strategiesr, we developed a new solution based on a
dataflow philosophy [SMIT75, CHAN76]. Consider the dataflow
graph presented 1in Figure 1. First noticer, OP1 and OP2 are data
independent (i.e.» there is no precedence relationship between
them) and so they can be processed in parallel. Furthermore, OP3
is data dependent upon OP1 and OP2 (i.e.» there are precedence
relationships between them) and so O0P3 must wait until OP1 and
O0P2 have finishedr, or for pipelined executions OP3 can start with
portions of T1 and T2 without waiting for the completion of O0OP1]
and 0P2, Note that operations are only related according to their
data dependencies, That is, an operation cannot be scheduled for
execution wuntil its predecessors have produced the input data
consumed by that operation., The dataflow philosophy implies that
operations are triggered by the arrival of data. Such a
philosophy prompted the dataflow solution to the auery scheduling
problem in a distributed database system,

IDFGA] IN1 IN2
N D e e e e e e e e e
! I ! |
I IR oV I
I I ! I [ !
| I orP1 | I opP2 | I
| e o 1 !
| U 1 |
! T1 1§ T2 a [
! Vo __V__ | [
[ ! I ! !
| I opP3 | ! |
[ e | I , l
! | I !
| TR T |
| | T3 1 1 T4 |
c ! SV __V__ [
| | ! ! !
| ! I or4 | l
! ! e _l [
Do e e e e e e e e !

| !

Vv Vv

ouUT1 ouUT?

Figure 1: A Dataflow Graph

The dataflow solution allows decentralized query scheduling
like SER [SERGS80J, but without requiring network synchronization
messages to trigger operations waiting on remote data, The



17

precedence relationships between the operations within our
distribution strategy are defined within a set of dataflow
subgraphss the nodes being the operations themselves and the arcs
being the input (operands) and the output (result files). FEach
subgraph contains all the data manipulations and data
transmissions to be performed on one of the network sites, The
query originating site sends the subgraphs to the involved sites
where they are executed tocatly in a completely decentralized
fashion according to the availability of data. The complete
execution of all subgraphs ends with the query response presented
to the result site, Network messages are only requirec to prepare
for the eventualities of network or site failures, The dataflow
solution reduces the amount of network synchronization required
to implement distribution strategies, In addition, it ©provides
support for decentralized concurrency control and combined
static/dynamic decomposition,

We briefly present our distributed database environment 1in
Section 2 and describe the development of a distribution strategy
for queries to the distributed database. Section 3 shows how
such a distribution strategy is split into dataflow subgraphs and
develops the architecture of our scheduler subsystem, Sec¢tion &
describes the decentralized execution of our dataflow subgraphs
on the network, Lastly, some conclusions are drawn in Sectionm 5.,

2 DISTRIBUTED DATABASE ENVIRONMENT

The dataflow scheduler is developed for MEDLEY: a
distributed DBMS project at the University of Southwestern
Louistiana supporting heterogeneous DBMSs, In MEDLEY, all
requests to the distributed database are translated into a
standard interface at the query originating site and from the
standard interface into the data manipulation tltanguage of the
local bBMS at the involved sites, The scheduler functions within
the standard 1interface and, because of this, is also valid for
homogeneous distributed DBMSs, Figure 2 extracted from the
architecture of MEDLEY [DELC80A] shows the subsystems which
interact with the scheduler, In this section we define the
functions provided by these subsystems and the interfaces between
"these subsystems and the scheduler,  The query decomposition
subsystem is presented because it produces the distribution
strategy which the scheduler implements,



18

query trees
|

-.oonoaooocalooeosco-eooe--oc-o.

o D WD €O - G O e s @ On

B N Y

€ an D 4D O ) D I A TR A A

1 1
I CONCURRENCY |
i CONTROL |

on e - G D T o D D

o e e wn D @ I e G e

o8 60 80 59 CO 68 e 06 s &9 80 S0 ove B2 06 3% ep B

!
| INTERNAL I<===m=== >1 SCHEDULER
| SUBSYSTEM | I SUBSYSTEM

s 2 @ on o ew e o B I e ]

98 98 ®0Q 40 06 69 40 €8 Dc 83 BE US RO GO0 G0 Gc %0 Ge o8 4O s oo

|
ICOMMUNICATION |
! MANAGER |

P e R T R

HOST-HOST
NETWORK

Subsystems at the Standard Level of a Heterogeneous
Distributed Database System

Figure 2

2.1 Query Decomposition

Query decomposition for MEDLFEY [ADAMB0OB] combines static and
dynamic decomposition. Given the original query tree (see Figure
5)rs, static decomposition produces a distributed query tree, and
splits the distributed query tree 1into a set of subtrees
according to the location of data. To produce a distributed
query tree, the query decomposition module determines where to
access redundant datar, estimates the size of the intermediate
results to be transmitted between the sites of the network, and
specifies the sequence of operations. The distributed query tree
is composed of all the operators to te executed on the various



19

sites in the network and are interrelated according to the data
dependencies mandated by the application. The distributed query
tree is assigned a wunique name (time stampse circulating
sequencer, etc.) within the distributed system and split between
any two operators to be executed on different sites. This
process gives a set of subtrees, each containing data dependent
processing which can be performed on a single site, The set of
subtrees comprise our distribution strategy. Each subtree s
assigned a unique name within the distribution strategy, the name
of the distribution strategy of which it is a part, the name of
the site where it is to be executed, and the name of the query
originating site. Query subtrees can be reconstructed
dynamically [ADAMB(OR] in either of two situations:
e the subtrees cannot be executed because of network or
site failures, and .
2. the size of the intermediate results to be transmitted
betweeen the involved sites differ, considerably, from
the estimates. '

2.2 Concurrency Control

Concurrency control in MEDLEY [DELCB80B) is done by adding
new operators <(e.g.r, begin subtransactions, end subtransaction,
and commit subtransaction) within the query subtrees, The
introduction of operators into the subtrees does not affect the
scheduler since it only triggers operators whenever the condition
for activation is satisfied, For this reasons, the control of
concurrency will be transparent to the scheduler and will not be
considered within this document,

2.3 Internal Subsystem

Each local DBMS in MEDLEY is overlaid by a layer of software
called the internal subsystem which offers a relational algebra
database 1interface, The internal subsystem 1is responsible for
interpreting the procedure packets representing relational
algebra operators wunder request from the scheduler. It invokes
the Local DBMS or the local operating system to execute these
procedures, possibly concurrently. It also stores, retrieves,
.and provides status information relative to the availability of
result retations. If the data manipulation language of the lLocal
DBMS is different from the standard interface then the internal
subsystem will perform the translations.

The procedure packet ~passed from the scheduler to the
internal subsystem has the format <INPUT,PROCEDURE,OQOUTPUT>, The
INPUT operands are relation name{(s), attribute name(s), and/or
criteria. PROCEDURE is the name of the relational algebra
operator to be executed, oQuUTPUT is the name of the output
(buffer, pager, etc.,) 1into which the result relation can be
placed. A message packet is returned to the scheduler at the
completion of the relational algebra operator. The message packet
contains the name of the result relation and the status changes
of the input relations. The internal subsystem 1interorets a
procedure packet by accessing the INPUT relations, executing the



20

PROCEDURE, generating OUTPUT, and returning a message packet to
the scheduler,

2.4 Communication Manager

A communication manager on each site provides the following
services which are requested by the schedulers: transmits data
(relationss subgraphss and messages) to the communication manager
of the server, serves data received from the communication
manager of the transmitter, and provides status information
relative to available data and network or site failures. It does
this wusing: a classical transport service between communication
managers such as layer 4 of 150 Open System Architecture [1S079]
and a storage area for received data that has not been served,
The communication manager also  receives data from the
communication manager of the transmitter and deposits in the
storage area at the logical address of the server,

There are two procedure packets passed from the scheduler to
the communication manager used to control the exchange of data to
and from the communication manager. The procedure packets have
the following formats:

SINPUT,"TRANSMIT">

The INPUT operands are the name of the data to be transmitted,
and the logical address of the server (site_ids, qraph_ides
subgraph_id, and data_id) within the storage area where the data
are to be deposited, TRANSMIT transmits the data as a packet via
the transport service to the communication manager of the server,
A message packet is returned from the communication manager of
the transmitter to the scheduler. The message packet contains the
name of the data and a code which indicates whether the
transmission was successful or whether it was not successful due
to network or site failures, The commuhication manager
interprets a procedure packet representing a transmit operator by
accessing the INPUT operandss executing TRANSMIT, and returning a
message packet to the scheduler. The transmission is
asynchronous, the server being not warned. It is the remote
communication manager which responds (see DEPOSIT) by depositing
the result of the transmission at the logical address of the
server (see SERVE).

KINPUT,"SERVE",QUTPUT>

The INPUT operands identify the communication manager of the
transmitter (site_id) and the logical address of the server
(graph_ids, subgraph_ids, and data_id) within the storage area
which contains the data to be served. SERVE serves the data
received from the communication manager of the transmitter to the
process that requires its inpute. OUTPUT s the name of the
output (buffer, pager, etc,) 1into which the result data can be
placed, A message packet is returned to the scheduler containing
the name of the result data and a code which indicates whether
the server could fire with the inputs provided, whether it could



21

not fire due to lack of inputs, or whether it could not fire due
to network or site failures, The communication manager interprets
a procedure packet representing a serve operator by calling and
providing SERVE with the INPUT operands and the name of the
QUTPJT (buffer, pager etc.) into which the result data can be
placed., It is the responsibility of SERVE to determine whether
the 1input data are available within the storage area. If SERVE
has enough inputs to fire then the data are withdrawn from the
storage area and placed in the (buffer, pages etc.) provided. If
the data are not contained within the storage areas then SERVE
checks the communication manager of the transmitter four network
or site failures. The message packet 1is returned by the
communication manager of the server to the scheduler,

There is one primitive of the communication manager that s
used to receive data from the ~communication manager of the
transmitter and deposit in the storage area at the logicatl
address of the server that will uLtlmately accept the data, This
primitive has the following format:

<INPUT,"DEPOSIT",CODE>

INPUT is a packet containing the received data (relations, graphs
or message) and the logical address (graph_ids subgraph_id, and
data_id) within the storage area where the data are to be
deposited, DEPOSIT deposits the received data within the storage
area at the logical address of the server, If the server does
not exists, then a new branch will be grafted into the storage
area and the data deposited with the assurance that the server
will come 1into existence at some future time., The CODE is
returned to the communication manager of the transmitter after
the data has been deposited.

5 DATAFLOW SCHEDULER SUBSYSTEM

We present the internal architecture of each scheduler that
composes the dataflow scheduler subsystem in this section. The
dataflow - scheduler subsystem is itself a distributed systems,
j.€es there is one on each site of the distributed system, As
Figure 3 indicates, each scheduler <consists of two internal
schedulers <called the global and the local scheduler
respectively, The global schedulers transform query subtrees
into dataflow subgraphse interact with the communication
manager to transmit and receive dataflow subgraphs and messages,
and submit received subgraphs to the local scheduler for
interpretation. Messages between the global schedulers are only
required to prepare for the eventualities of network or site
failures such that the appropriate recovery procedures can be
invoked., The local schedulers are anything that can execute a
dataflow subgraph, 1,€ae dataflow simulators, dataflow
interpreters, dataflow database machines, etc. They execute the
subgraphs in a completely decentralized fashion according to the
arrival of data, interacting with the internal subsystem for data
manipulations and with the communication manager for data



22

transmissions,

query subtrees query subtrees
SCHEDULER | SUBSYSTEM SCHEDULER | SUBSYSTEM
Peccces - R + B + bemcm oo |cromece- +
| v 1 I | | ) v I
| tr=mcceccecw- + Isubgraphs! € lsubgraphsl +4==ececmc-ms +
I 1 GLOBAL | 1&messages!| O |8messages! | GLOBAL I
| ]| SCHEDULER | ~=rrcwva== > M |[{romocwcanas >l SCHEDULER | !
| temcmececcea + | I m F | ] tewccoce= ———t |
[ | | I u Al | 1 |
ltermi- llstart, | i N C ltermi- llstart, |
Ination lirestarts! [ GO O Ination llrestartsl
lreportsl!i%aborts | U o | lreportsi i&aborts |
| lv | I a1 | | lv !
| teermmceccrn- + | I I O | 4mvemcccnce- + |
| I LOCAL ] lrelations! I Y Jlrelationst | LOCAL | |
| I SCHEDULER | mwrereno== >1 0 R e e >] SCHEDULER | |
| 4=e=w-- - + | I N | d-emcecaccnas + |
| | | | 1 ]
frmmc e re e n e mo - + tommm + tormcm e e e e - +
SITE A SITE B
Figure 32 The Dataflow Scheduler Subsystem
The dataflow solution to implementing distribution

strategies is best demonstrated by a detailed example., The
following example consists of a distributed database and a
manipulation of the database., The latter part of the example
will be ‘further developedes in subsequent sectionse into our
distribution strategy which will then be implemented by our
dataflow scheduler subsystem, The example employs the relational
model of data [CODD70] and assumes that wuser gqueries are
expressed in the data sublanguage, QUEL [HELD75], Although
relational examples are used throughout this paper, our solution
is not restricted to relational queries, Any query which can be
represented as an acyclic graph can be processed. The fotlowing
database is assumed to consist of four relations stored at the
sites of a networke.

- D G O s W O D OR Am G ER € D AT e B WD GD P At e GRS O e e A WA W WD OF A A e G AD e G D oD =

| RELATION | ATTRIBUTES I SITE |
| NAME | ] |
| SPJ: Supply Il Sno Pno Jno | A |
| S: Supplier l Sno Sname C(City I A !
| P: Parts I Pno Pname | B !
I J: Project I Jno Jname C(City 1 C I

D O D A e D A D e e e U3 W W A AD G WD A W D D WS D W D D D MY mh GP TR AR AR kA T GD G W W

Figure 4: Sample Distributed Database



23 !

The example network has three sites integrated into a distributed
system which allows site C wusers to submit requests such as:
list the Jname for those projects who use Bolts from suppliers
located in Lafayette. 1In QUEL, the required manipulation of the
database is expressed as:

RETRIEVE INTO W (J.Jname)

WHERE (SPJ.Sno = S.Sno) AND (SPJ.Pno = P.Pno)
AND (SPJ.Jno = J.Jno) AND (P_.Pname = "Bolts")
AND (S,City = "Lafayette')

This query is parsed into a relational atgebra [CODD71] tree form
which exposes what operations are to be performed, what data are
to be operated upon, and what data dependencies are to be
maintained., Each node in the relational algebra tree <c¢ontains
one procedure. This procedure implements one of the relational
algebra operators or one of the utility functions, such as sorte.
etc. The query tree depicted in Figure S is the main input to
the query decomposition subsystem, Note the similarity to the
dataflow graph of Figure 1, '

SPJ s
e e e e e e |
I

(SPJ.Sno = S.Sno) 1JOINI P
—————— !
e e e |

I
(SPJ.PNno = P.,Pno) |JOINI J

- - - - - w -

———— -

(SPJ.Jno = J.Jdno) 1JOIN!

(P.Pname = Bolts & ISEL |
S.City = Lafayette) ——==--

- - -

(J.Jname) |PROJI

- - - -

Figure 5: Query Tree for Example Application

Now that the distributed database and the manioulation of
the database have been defined, the decomposition process will be
discussed. To develop a distribution strategy. the query
decomposition subsystem performs the following steps:

1. optimization of the tree using relational algebra



24

manipulations [SMIT75, GARP79] and consideration of the
network topoltogy [ADAMEB0OB]
2. decomposition of the resultant tree into a set of query

subtrees,
The output of step 1 is a distributed query tree in which all
operations have been localized to individual network sites, A
distributed version of the query tree of Figure S given the
distributed database shown in Figure 4 is illustrated 1in Figure
6.

Lafayette) =~—=w==-
|
AﬂSPJ (A.S.Sno) 1A.PROJI B.P
L e |
| | |
]
(A, SPJ.Sno JA.JOINI (B.P.Pname IB,SEL |
2 A,S,5Nn0) =~--mese- = Boltg) ==cee—=-
| l
(A.SPJ.Pnos, |A.,PROJI (B.P,Pno) IB,PROJI
ASPJ.JNO) ======= : o m————
A
1 |
(A.,SPJ.Pno) [IB.JOINI C.J
= BePoPno --=-==-- - |
| |
(A.SPJ.Jno) IB.PROJI (Cudodnos, 1C.PROJI

-------- CoJodname) =—====>--=

LR N L o - G ——— - b D D e w0 4 e -

(Ao SPJodno = Celdadno) 1C.JOINI

- s e oo em e -
- s - wm D e o

(CoeJadname) 1C.PROJI

<CLRESULT>
Figure 6: A Distributed Query Tree
In order to perform step 2, TRANSMIT .and SERVE operators must be

inserted onto any arcs where a data transfer between network
sites is implied. Ffor example, the arc between the nodes A, PRCJ



25

and B,JOIN connects operations at site A and site B8, The arc
implies that data must be transmitted from site. A, received at
site B, and served to the JOIN operator. A TRANSYMIT operator and
a SERVE operator would be inserted onto this arc¢ and all other
arcs which meet this criteria, Once all appropriate TRANSMIT and
SERVE operators have been added to the tree, subtrees are
produced bky splitting the tree between each TRANSMIT/SERVE
operator gpair such that the TRANSMIT operator belongs to one
subtree and the SERVE operator belongs to the other,

2.7 The Global Scheduler

According to the role played by the global schedul=sr in the
execution of a distribution strategyr, it will be called the
producer or the consumer,

3.1.1 The Producer

The global scheduler which accepts the distribution strategy
from query decomposition is called the producer. The producer
transforms query subtrees 1into dataflow subgraphs. It converts
each node of the query subtree into a dataflow node containing
the input operands, the status of the input operands, the name of
the procedure to be executedrs and the name of the result
relation., The result relation is assigned a wunique name within
the subgraph and associated with the input operand of the target
no de. The subgraph is assigned a wunique name within the
distributed system and associated with the site of the consumer
and the site of the producer, The names facilitate unambiguous
reference to the result relations and the subgraphs. The
associations provide for the transmission of the subgraphs to the
sites where they are to be executeds, the transmission (i.e.r
return) of the subgraphs to the site responsible for recovering
from network or site failures, and the exchange of relations
between the nodes of the subgraphs. In Figures 7 - 9, the
dataflow subgraphs produced from Figure 6 are shown with the
names identifying each subgraph and result relation.



O D o o e e wn Ty = .

L D

.Figure 7: Dataflow Subgraph @1.61 For Site A

- an o - o e

- - o e e

26

L CFULL) (FULL) I
! SELECT |

- w W on en o

e I I S R

FCEMPTY) (FULLY
1 PROJECT !

- s S D o o AD > O e

- e -

JOIN |

B R e R T R I o R A

-y e - - -

T4 1"SB-Q1-G2-INT1"

LCEMPTY) CFULLD |
I TRANSMIT |

O D W e . L A A W A WP - T W > BB e W €D G D = AR - - G 4D CH G e e WS R W m TR S WD W M v WS W Um we M

B e e R I P I I

e e



27

- D @ e D e O R wm o S D ap e TN D CD B ED R OF G WD G e we 43 e e

"Q1-G2-INT"™ "SA" I"Pname=Bolts"

- oo Y oo oam eV was me - o > sV owmaram ¥ aman -

-—om .. s e e o o o - e e

|
|
Ve e V..

TCEMPTY) CFULL) 1
| PROJECT t

-y e e o - - e o

B I

]
|
[
|
|
|
. |
T1 | T3 | "Pno=Pno'
|
Vv
M

! JOIN 1

o W P e N TR W v w5 W .

T4 | !
emVe LVl

I CEMPTY) (FULL) |
I PROJECT |

75 | }
Vo maee Ve

TCEMPTY) (FULLD I
| TRANSMIT |

- - wn . -

v O e e e e P AR W U 4D A e e GR AR WD R R A WD W e A G N Gl Me G G e Wb MR R A s G R R D e e B G e e S A e W e

Figure 8: Dataflow Subgraph Q1.62 For Site B

I e T R T



28

oo om e om e D o on D

1SC,SC.Q1.G3I J
| b e e e e e e e e e e e e
"Q1=-G3-1INT" '"SB" ! "Jnosdname”
] | ! !
V. V__. Ve V___
I CFULL)Y CFULL)Y I FCFULLY CFULLD
I SERVE | | PROJECT |
Vo o e 1 |
| ]
T11 121 "“Jno=Jno"
| | |
Vo Voo V____
JCEMPTY)(CEMPTY)(FULL) )
] JOIN : |

> or o G CD e or @ R e e D O3 GF e WD O €D o>

TCEMPTY) (FULWL)
|  PROJECT |

Do e e €3 e e | » > D G D

| (EMPTY |
1 QUTPUT |

D e R

€3 D D D TR D Cn D T TR P O P D D D O (D R T D AR D P Mk D O3 B 03 = 4D G D Ch D €D G D Gy A € O3 U AR O 6D D GB CB D OB O e @ D o

Figure 9: Dataflow Subgraph Q1.G3 For Site €

The dataflow subgraphs are saved by the producer until they
are completely processed or completely aborteds, The producer
requests the communication manager to transmit the subgraphs to
the sites where they are to be processed, The communication
manager performs the transmission and returns a message packet to
the scheduler., The message packet contains the name of the
subgraph and the status of the transmission (e.g.r, SENT or FAIL),
The remainder of this section <concerns the reliability issues
associated with our distribution strateqy. The producer updates
the status of every operand within the named subgraph to reflect
the status of the transmission, and looks for suspended portions.
The only nodes which can be suspended are binary operators whose
operands have status (FAILED)(FULL) or (FAILED)(FAILED) and unary
operators with status (FAILED), To isolate failures within the
subgraph, the producer recursively traces the failed input/output

arcs backward/forward to their source/target node until
preceeding/succeeding operands having status (FULL)Y/ (SENT) are
encountered, If a preceeding operand having status (SENT) is

encountereds, the producer waits for more information (i.e.s, until
the subgraph is suspended) before removing the failted portion,
This procedure may require all preceeding and succeeding
subgraphs to be examined before the failure 1s i1solated, The
moment the failure is isolated, it and all preceeding nodss whose



29

operands have status (EMPTY) (their intermediate results have
been lost on the failed site(s)) will be removed and sent to
query decomposition for reoptimization, Reoptimization will
result in another set of query subtrees with a message indicating
whether to modify, continues, or abort the suspended portion(s) of
the subgraph(s), Whenever the transmission of a subgraph s
successfuls, the producer requests the communication manager to
serve any subgraph received (i.e.r, returned) from the dinvolved
sites, The communication manager serves and returns a message
packet to the scheduler. The message packet contains the name and
the status of the subgraph (e.g.s EMPTY, FAIL, or FULL)Y. If
SERVE could not fire due to lack of input, it will te recguested
again, If SERVE could not fire due to network or site failuress
the producer will function analogous to failures encountered
prior to transmitting the subgraphs, If SERVE could firesr then
the producer updates the status of the operands within the
subgraph according to the status of the input operands of the
returned subgraph, Llooks for suspended portionses ands when
suspended, requests reoptimization from query decompocsition.
Whenever all the subgraphs 1in the distribution strategy are
completely processed or aborteds the producer returns the status
information it has maintained on the subgraphs to query
decomposition and cleans up any subgraphs it has saved,

3.17.2 The Consumer

The consumers continually request the communication manager
to serve dataflow subgraphs received from the communication
manager of the producer  to the local scheduler for
interpretation. The communication manager serves the subgraph and
returns a message packet to the scheduler. The message packet
contains the local name and the status (e.g.r EVMPTY, FAIL, or
FULL) of the subgraph. If SERVE could not fire due to lack of
inputs, then it will be requested again, If SERVE could not fire
due to network or site failures, then all subgraphs in progress
identified with the failed producer will be aborted, 1f SERVE
could fire, then the consumer determines the name of the
subgraph, stores the subgraph wuntil completely processed or
aborteds, and submits the subgraph to the local scheduler for
interpretation. The local scheduler interprets the subgraph and
returns a message packet to the scheduler. The message packet
contains the name and the status (e.g.. FULL or EMPTY) of the
subgraph, If the local scheduler could not interpret the subgraph
due to network or site failures, then the consumer retrieves the
subgraph from the memory of the local scheduler and replaces the
saved subgraph with the retrieved subgraph. The consumer will
examine the name of the subgraph to determine the producer and
request the communication manager to transmit (i.e., return) the
subgraph to the producer. The communication manager will perform
the transmission and return a message packet to the scheduler,
The message packet contains the name and the status (e.g.r, EMPTY
or FAIL) of the subgraph. If the transmission was successfule,
the subgraph which contained the status of each operand when the
subgraph terminated has been sent to the producer, If the



30

transmission was not successfuls, then the subgraph will be
discarded because the producer could not be reached,

2.2 The Local Scheduler

In MEDLEY, the local schedulers are dataflow interpreters
[LAND791, they execute the dataflow subgraphs (see Figures 7 - 9)
in a completely decentralized fashion. The schedule of the
operations within the subgraphs is determined by the availability
of data. The status of the input operands indicate whether the
data are available (FULL) or not available (EMPTY), The nodes of
the subgraphs are enabled whenever all its input operands are
full. In this section, we will introduce the asynchronous
dataflow scheduling mechanism which triggers the enabled nodes of
the subgraphs, .

An enabled dataflow node that represents a relational
algebra operator is interpreted by the internal subsystem., The
internal subsystem <calls and provides the procedure with the
input operands and the output (buffer, page, etc,) into which the
result relation can be placed. For each result relation produced,
a message packet is returned to the Llocal scheduler containing
the name of the result relation and the status changes of the
input operands., The dataflow node containing the name of the
result relation as an input operand may then be enabled, if all
its input operands are full,

An enabled dataflow node that represents a TRANSMIT or a
SERVE operator is interpreted by the communication manager. These
operators provide the exchange of data between the nodes of the
subgraphs; however, it is the local scheduler which makes the
synchronization happen. The communication manager of the server
is the Listener and the TRANSMIT operator is the initiator . of a
connection., Once a <connection 1is established, TRANSMIT is the
sender and the communication manager of the server 1is the
receiver of a flow of data (i.e.», deposits in the storage area).
The transmission is asynchronous., the server being not warned,
It 1is the responsibility of the server to determine whether the
input data are available in the storage area. If the input data
are not available, then the 1local scheduler will continually
request as part of its operation cycle wuntil the data are
available or the communication manager of the transmitter fails,
The completion of a TRANSMIT operator completes the execution of
a dataflow subgraph. The complete execution of a SERVE operator
generates output in the (buffer, page, etc.,) provided and sends a
message packet to the local scheduler. The local scheduler Looks
for the dataflow node containing the name of the result relation
as an input operand, and, when enabled, sends to the internal
subsystem or the communication manager for interpretation, In
this wayr, operations on remote sites - are enabled without
requiring network synchronization messages,



31

4 DECENTRALIZED EXECUTION

This example gives an idea of how the dataflow scheduler
subsystem functions to implement a distribution strategy on the
network, Query decomposition starts the implementation by
submitting a set of query subtrees to the producer, The producer
transforms the query subtrees into equivalent dataflow subgrapbhs,
It transmits the subgraphs to the involved <consumers, The
consumers continually request subgraphs from the communication
manager on its site as part of its operation cycle. The moment a
subgraph arrives, it is submitted to the . local scheduler for
interpretation and the execution of the distribution strategy is
started up in a decentralized fashion,

An initial <configuration of the subgraphs 1is given in
Figures 7 = 9., First notice the SELECT operator in Q1,G1, the
SERVE and the SELECT operators in Q1.G62, and the SERVE and the
first PROJECT operators in @1.G3 are enabled allowing them to be
processed in parallel. The local schedulers interpreting Q1,62
and Q1,63 will continually trigger the SERVE operators as part of
their operation <cycle, The SERVE operators look for available
relations within the storage area at logical address Q1-G2-IN1
and Q1-G3-IN1 respectively and, when available, generates output
in the (buffer, page, etc.) provided. The concurrent firing of
the SELECT operator in Q@1.G1, the SELECT operator in Q1.G2, and
the first PROJECT operator in Q@1.63 will produce the following
configuration of the dataflow subgraphs.



32

R e e R R P

e e v e G . e | e am i e e e | s O3 B AD mm e e e wm | AT 4 MR G e TR NS MR Ge e R e M W OB W TP T M e R AR e W W W WD TR A e

- em o  anmy oo e oo o W

FCEMPTY) CFULL) |
| SELECT |

- Gy - - A an -

o oan av an emm | D s @ V om o3

I (FULL)Y CFULL)
i PROJECT |

B R e R

- om e s oam OO on an an

I 121 |
..... VaeVeaeo Vo
PCFULL) CEMPTY) (FULL) I

-, wr o e WD O e G D a0 A w2 WO W W

| !
coeV e Voeo

FTCEMPTY) (FULL) I
| PROJECT !

© wnmn e G e W D w3 e

I CEMPTY) (FULL) I
I TRANSMIT ]

- e €2 D > oy Cham €

— - TR oy - — D s W ey G mmp Tt S v Mma T e T wman S mm— . ey e o—

I
|
!
|
|
|
|
i
!
|
I
l
l
|
|
|
| ! JOIN I
|
!
|
I
|
|
|
l
|
|
|
|
|
|
|
|

- > D o> G wD D A D 0D D A A e €D B D T D D Cp O s h 3 Oh e €D WD €3 e e 3 iy O @ D I SR D b CD €3 > o OB <> <o OO 6D £ W D G W . B @

Figure 10: Q1.G1 after execution of SELECT



33

o o A ow O *D ey G e e D

1SB,5C.Q1.G21 p

| | N b e e et e ——— e
| "R1-G2-IN1" "SA" 1"Pname=Bolts" !
| l | | ] i
I N Voo oo Voo Voo I
| I (FULL)Y CFULL) LCEMPTY) (FULL) | {
1 | SERVE ] | SELECT | !
! | U | | | |
| | | "Pno" i
| | T2 | | |
| | Ve V____ |
| } I CFULL)Y C(FULL) I |
| ] I PROJECT | {
| { B e | 1
| ] e e e { 1
{ T1 | T3 | "Pno=Pno" |
| } | | |
! oV Ve Vo {
| FCEMPTY) (EMPTY) (FULL) |
| | JOIN 1 ]
| | e i 1
| "Jno" |
| T4 | | |
| R ' S | B !
| FCEMPTY) (FULLD T |
l { PROJECT } )
| | | !
| | "SC-Q1-G3=-INT" |
| TS | ! [
| Ve V__ .. |
I FCEMPTY) (FULLD! l
| } TRANSMIT | |
| | S 1 |
| e e e e e e e e e e e e e e e e e e e ——a

Figure 11: Q1,62 after execution of SELECT



34

D @ B @D A e D B > A

1SC.5C.Q1.G31

lm@unuumooon,oaooeacmogaaaomauuo'ma—-omac-ann-ommao-coo¢¢oanaa

"Q@1-6G3-IN1" "SB" "Jnosdname"

i | |
v v Voo Ve, w

PDOoo " Do | Do - em

TCFULL) CFULLY I 1 CEMPTY) CFULL) |
| SERVE | | PROJECT |

@—ao@noooaco' 'omwamaocommuc

iomooon anno'

T11 T2 "Jno=Jno”
| [ §

N SR DU S
I CEMPTY) (FULL) (FULL) |
| JOIN : |

'oc@momccuc- co@ﬂ@@ool

“"Jname"
I |

L(EMPTY) CFULL) I
! PROJECT !
! |

D OB G P D e Y T DD T

T4 |
........ Veeeoews
1 (EMPTY) . |
! ouTPUT |

D ED P O G D A D AR D T

——
— me S g e S D N D . S M W e D e S e w— W WD avm —

DD 6D D G D D D WD R D G Y GO CD D D D O D D D P P TP 5B D 0 P O €D D GBI dY T WD UP 0 G @9 940 @B O3 U0 D OB TD €03 @ €5 XD H D @O a3

Figure 122 Q1.G3 after execution of. first PROJECT

The first PROJECT operator in Q1,61 and Q1,62 are also
independent and can be processed in parallel, The firing of the
PROJECT in Q1,61 will enable the firing of the JOIN operator.
After the JOIN operator has fireds, the second PROJECT operator
will be enabled., The firing of the PROJECT operator will enable
the firing of the TRANSMIT operator, TRANSMIT will initiate a
connection with the communication wmanager on Site B, After a
connection is establisheds TRANSMIT will be the sender of data
bearing packets and the communication manager on Site B will be
the receiver (i.e.» deposits in the storage area), The firing of
TRANSHMIT Wwill complete the execution of Q1,61 and return a
message packet to the consumer on: Site A, The consumer on Site A
will transmit (i.e.sr, return) the subgraph which contains the
status at termination to the producer on Site C which s
responsible for the recovery issues associated with the subgraph,
The firing of the SERVE operator in Q1.G2 will enable the firing
of the JOIN operator, The firing of JOIN will enable the firing
of the second PROJELT», and so on., The complete execution of all
the subgraphs ends with the result data on Site C.



35

5 CONCLUSIONS

This paper presented a new solution to the query scheduling
problem in a distributed database system based on a dataflow
philosophy. The dataflow philosophy implies that operations are
enabled by the arrival of data rather than synchronization
messages, Given a auery which references data. distributed over
several sitese query decomposition performs optimizations,
produces a distributed query tree, and splits the distributed
query treer, according to the Llocation of data, into a set of
guery subtrees, Our distribution strategy is then constructed by
transforming the query subtrees into a set of dataflow subgraphs,
The dataflow subgraphs are transmitted to the local schedulers
where they are to be executed Llocally in a completely
decentralized fashion. The complete execution of all subgraphs
ends with the query response presented to the result site.
Network control messages are only reqguired to prepare for the
eventualities of network failures, This solution efficiently
implements the distribution strategy by reducing the amount of
network synchronization, distributes the scheduling function
throughout the network, and executes the dataflow subgraphs in a
completely decentralized fashion, In addition, it provides
support for decentralized concurrency control  and combined
static/dynamic query decomposition,

ACKNOWLEDGEMENT

The author would Llike to thank Dr. Elaine Lishoa for her
guidance during the preparation of this paper. He would also like
to thank Dr. Bruce Shriver and the entire MEDLEY group for their
helpful comments.

REFERENCES

CADAMBOA] Adams, E, Jo»r Lillies, Co. Wee and Viness, D, H.o "A
Dataflow Solution to Processing Distributed Queries,"”
University of Southwestern Louisiana, 1980,

CADAMBOB] Adams, E., J. "Query Decomposition in MEDLEY: A
Distributed Multiple Database System," University of
Southwestern Louisiana, 1980

[CHAN76] Changs P, Y., "Parallel Processing and Data Driven
Implementation of a Relational Data Base System,"
Proceedings of the ACM, 1976, pp. 314 - 318,

[coop70] Codds E. F.sr "A Relational Model of Data for Larqge
Shared Data Ranks.," CACM vol. 13, no. 6, June 1970,

(CoDD71] Codds E. F., "Relational Completeness of Database
Sublanguages,'" Courant Computer Science Symposia, vol,
6: Data Base Systems. Prentice-Hall, New York, 1971,



(DELCECA]

[DELCBOR]

TEPST?7E]

LGARR79]

[Go0D80)

[HELD?7S)]

[CHEVN? 9]

[(HEVN78]

[1sov91

CLAND79]

[NGUY?9]

(PELATO]

36

Detcambre, L.sr Adams, E.» Birjandi, A., Farooar, M.,
Hayatgheyb, A., Lillies, C.» Lisboar, E.» Sadagopan, M,
Kese and Viness, Dosr "Guideline for the Design of MEDLEY:
A Distributed Multiple Database System," University of
Southwestern Louisianar, 1980,

Delcambres, L. and Lisboar E. Ter "Concurrency Control
in MEDLEY: A Distributed Multiple Database System,"
University of Southwestern Louisiana., 1980.

Epstein, R, S.» Stonebraker, M., and Wong., Eovr
"Distributed Query Processing in a Relational Data Base
Management System," Proc. ACM-SIGMOD, 1978, pp. 169 -
180.

Garrisons Jo M. » "Interfacing a High Level AQuery
Processor with a Relational Algebra Language," MS
Degree Projects, University of Southwestern Louisiana.,
Lafayette, La,r, May 1979,

Goodman, N,, Bernstein, P, A., Reeve, C, L., Rothnie,
Jo B.r and Wong F.r "Query Processing in SDD-1: A
System for Distributed Databasess,”™ Technical Report
CCA-80-04, January 30, 1980.

Helds, B. Do.s Stonebraker, M, R,, and Wong, F., '"Ingres
- A Relational Database System," National Computer
Confgrence; 1975.

Hevner, A, R.» and Yaosr S. B.r, "Query Processing in
Distributed Database Systems,” IEFE Transactions on
Software Engineering, May 1979, pp, 177 - 187,

Hevner, A, R.» and Yaor S. B.r, "Query Processing on a
Distributed Database,” Proc. PRerkeley Workshop on
Distributed Data Management and Computer Networks,
Lawrence Berkeley Laboratory, Univ. of Calif., 1978,
pp. 91 - 107.

IS0 "Reference Model on Open Systems Interconnection,”
1SO/TC97/SC16/N227, June 1979, ' ‘

tandry, Ss P.sr and Shriver, B, Dg,s "A Simulation
Fnvironment for Performing Dataflow Research,"
Conference on Simulation, Measurement and Modeling of
Computer Systems, 1979, pp. 131-139,

Mguyens, G, Teor A Unified Method for Query
Decomposition and Shared Information Updating in
Distributed Systems,"” Proc, Distributed Computing
Systems, Huntsville, Ala., October 1979,

Pelagottisr Gose and Schreiber, F, A,, "Evaluation of
Transmission Requirements in Distributed batabase



[ROTH77]

[SERG80]

[sm1v751

CSTON?77]

fWONG?77]

37

Access," Proc, ACM=SIGMOD, 1979, pp. 102-108,

Rothnier, Jo. Bas and Goodman, N.r, "An Overview of the
Preliminary Design of SDD=-1: A System for Distributed
Databases,” Proc. Berkeley Workshop on Distributed Data
Management and Computer Networkss, Lawrence Berkeley
Laboratory,Univ. of Calif., 1977,

Sergeant, G. and Treille, L.e '"SER: A system for
Distributed Execution Based on Decentralized Control
Techniques,”" Project SIRIUS, Le Chesnay France, 1980,

Smith, J. M. and Changs, P. Y.r "Optimizing the
Performance of a Relational Algebra Database
Interface,”" CACM 18, No., 10, October 1975, pp. 568 -
579.

Stonebrakers, M., and Neuholds €., "A Distributed
Database Version of Ingres »" Proc. Berkeley Workshop
on Distributed Data Management and Computer MNetworks,
Lawrence Berkeley Laboratory, Univ, of Calif., 1977,

Wongs, E.» "Retrieving Dispersed Data from SOD=1: A

System for Distributed Databases,’" Proc. Berkeley
Workshop on Distributed Data Management and Computer
Hetworks, Lawrence Berkeley Laboratory, Univ. of

Calif., 1977,



38

AN AFPROACH TN
113

COMPF ekl S0ON

E

LYMM &, DENQILA
Bentlew Gollesdos

Walthsm: M 0225

Te CINTROODUCTION

The surrose of this rarer ig to set  fortih zn grsrosch to
comFaring the exrected cost/rerformance of distribubted dabainc
menagenent schemes in  rarticulsr orerzting  ercvironments,
messures  chosen  sre  messghe  Lbraffic to  rerresent costh
recranse Lime Lo rervesent rerformance.

The besic methodologe of evalusation bedgins b snslzzing  the
sgement  schneme  zncd then  identifwing bthe seecific
contral saths ard Lhe metwork date Flow reauirved to nendle both
urcdates snd retrievals. The control ang destzs Flow informstion is
used to develor & cueuing network model of the entire szstewm.
Assumetions  soout  the orerzting characterigtics of the swsten
(such &8 communicstions commections and delavsy rrocessing soWer:
cilsk retesys snd transsction ineot distribution) zre incorsorsted
in the mocdel so that sversdge swustem resronse  time  snd  averzge
network message traffic can be czlculsted,

detabDase  mar

The rgrticular menassement  schoemes to dllustrate
thie Lranssction FTlow/ouedinsg  snelusis are srecific
cazes of stazndsrd technicues for s e mEanademnent: & totsllw
centralized schemery z masterislave %cheme Wwherelrn one n
chasrge of the gistribuated dztabesers arid & SWNCOTOnlae
wherein 211 of the nodss coorerate to mansse the dgatsbese

oie 1% 4
o SOnEE

FONSE TIME

Hesronse time de defined sz the intervzl belween &  use
resuest Tor @ deats  trar ction {retrieval or updats? 1
notificstion of  dihte comeslebtion. Im s distributed zwstany
"comeletion”® ey mesn oz varietw of  thinsis, For exs

comeletion of an usdste irn o2 masters slave tem o i e s the
wrdate nas  been arelied ¥ for l&twr
traensmission to slave cories. In cordbre #oOSRWMCATonized swstem
mignt consider =2 urdste comslete onlw when z2ll cosles have
ackrnowledsed arrlication, Interacti rwtrlnvxl comsletion iz
simelers pecause  Lhe  User recsives nils at nhis Lerminsls
To encomezass somne of this verietwr we will consider & Lrans

14 o




39

to be comrlete when the user receives notice thst he can srocesd
with his next traneschbion.
We serzregte contributions Lo reseonse  Lime (RT3 imto b

k4

fallowing stedes {(exrlzined bhelowl!

reguest (F1)
gtion strategy (08)

¥ vrocess
X oartimis
¥ tranemission to remote nodes (LDl
X srocess dets (FO)
X transmission from remote nodes (CD2)
¥ rrocess result (F2).
For sn dndiviousl dsts transactionys the resgonsse Lime will be

RT = F1 + 05 4 £C CD1e FhOy COE 3 + F32s

where the function ¥ derends on the metwork torolose zndg on the
aotuzl managsement scheme used,

The srocess peeuest stase  intersrete  the transsction  andg
mers Lt from the users view of the limited datzbsse rortions nie
can 2ecess to s slobel (losicsl) datasbase views If the reguest
1e  comslicstedy it ds  wswally decomrosed into & hierschw of
simele sters (INGRES: for exsmele 11y decomroses multi-varizble
RUSTLES Lo zllow multirle one-varizble rrocessins). In =
centralized swustems the onme-varisble sters would e cFore
seauential laes i & distributed sustem thew could e done in
rarallel st multisrle nodes 17 the datse were distributed.

Im the oetiwizstion sirstess stages  Lhe reauest is
ciistributed +to  the nodes holding srerorriste sileces of the dats
aor anw srecisl rrogrsms veauired to heandle  Lhe - 55 LME WSS
will resresent strictle the rrocessing cost st the oridinstins
mooie This can De  verw comrliceted 1f  selection of  some
combinsticon of dats movements and locsl srocessing s desired (s
i BhOD-1s L2717, The ortimizesticn cen be time-consuming  snd bhe
arrrorristeness of  rFrarticular zldgorvitoms maw not be aaebsbhlished
until imelementstions demonstrate the rerformance carabilities.
WHe will not desl witin  ortimizetion strastesw &b s38ll d; this
anzlvsie becsuse 1t would involve modeling a2t & level of detsil
mucht lower  than would e eroductive  for the simeler zversde
cost/rerformsnce indicstors we chose.

frapswission Lo rtemote oodesss 1if smg ds reeuiredc: involves
setting wr  sll of the losgiczl communicstions links reauireds
aotusl ly traneferring Lhe nata arii B wailts for
acknowledsements.

=ing fTrom the slobail
& torase requests. i =i
=1avai$ andg urdetesy snd sniv

The mrocess dasts stage besins wit
datas view Lo ;Fsrawriete locsl F i
zeoesses will set or sut ozts Tor ret

o

'?,i il



40

results  to De  returned will be mappﬁﬁ nzck to the f#lobsl dsts

o

VLB These activities mew oocur in garzllel at different nodes
it more than one holds datz necesssry to 3 transection,

[ransmission from remche Lofes returns cons Letdan

information or resulis. Set-ur time here mesw De minimsl 1 the
sending logsiczal comnnmection remzing estzblished snd oren g5 &
virtusl communications circuit,

The srocess result stsdse collects and coordinsgtes anw remote
resylts being returneds transforms from the slobsl detz view Dack
o the locsl user’s viewy snd does  any  rrocessing required Lo
rresent results to the user,

The eauztion for resronse time is designed to emrhasize  the
effects of distribution on tnhat resronse tLimes I mrﬂmr o

concentrate on comrsring distributed odstz mensdgement schenes WE
Hill teke 5 very narrow viewroint and reduces our COHblﬁEFoLlQH 1o
Just  bhe  mador  contributions of  Processing dste  (FID g

transmission to and from remote nodes (CHly CHZ2Y S
RT = £¢C Coils FOy COZ )

We consider this to be the first-order statistics of the rroblems
ang conseauently will look to first-order auewnins snelzsis for
the solutions, Thaet isy we sesume thst the asversse contribution
from (F1 + 0% 4+ F2) will e so close to constant for the verious
manasement schemesy that 1t will contribute onlw & constsnt
offset in  the aversde KT values, Second-~order statisticss such
as the variances sre rrobsbly not so simely rartitionsd snd will
not  be deslt with here. In this rarery we considers Lherns
Foisson srrivals and exronentislly distributed servioe times with
& single server st esch node (central or distributedl)y the basic
MAMAL aueuing situstiorn [33, A summarwe of the notstion used 1s
provided ss Table 1.

I ovder to Tocus o the distribution issues of the various
mengsemnent schemesy we will use & Further zimelificastion of
constantys fixed communicstion delzws between terminsls  snd &
cerntral site or between any reir of nodes in & network sursorting
cistrituted meansgemnent. Thuasy CHL = CDZ = Chs & constant, Since

thils gernersl lw rerresents &I Loeslizeds nest-rsge  Ccase
commarications delsys we will sctuzlly be comsuting lower pounds
for the true values of resronse times, This i3 auite

grrrorrister since our  rFrimary dnterest i1s  in comraring the
mensgenent  schemesr not in rredichting actusl rerformsnce values
for  imelemented swstems. Choice of  some ma<imum  zllowzble
communlcstions  delzy  thst  dncluded =z tolerance  Tor rezource
ronienlnmn iod sadition of some maximun offset value Ffor 0 P14
s+ } wmulu e needed in order to celculste srerodimate upmer
pouncs dnsteac,




41

Lisoiate and vetrievel trensactions will e sssumed Lo arrive
urdformls oistributed over =s1l  tne termlnaln 1o Sy B
sarrival rstes will be exrressed rser terminsl. Comrletle ourlicate

corlies of bhe dstabese wlll De assumed b esch node.

e THE MODELS AMD THE aAMALYSIS
Aol CENTRALIZED MaANAGEMENT

& centralized ostsbhese swstem consists of & centrs zite
receiving LiFciste zrmi retrieval tremsesctions from 811 the
terminzls in the swsstem. We aessume  thet the terminsls 2re
ltoacated & fixed communication delaws: LIy from the centrzl site.
The flow dizgram Tor the eueuing model of & centralized sustem ig
showre b Figure 1. Ite purrose dis to exelicitly show the arrival
retesy the communication raths and delawsy zngd the losgiczl flow
of the transsctions throusgh the sustem fe.d.y bransscticr SHTTA Ve
from and are returned to the cluster of terminslsy wivich 13
rerresernted by the double rectansgle in the diasram).

for the

The mathemsticel detzils of the eueding asnalzeis
resronse time

model are in  the srrendices of [471. The averzse
far the swetem camn he edpressed bw

CHL 4+ 7 4+ CD2s

4

4

where 1] is thne communicstions delsw between the terminzls  anid
the centrel nodey T is the totzl time srent by 5 transasction in
the eueuing swstems asnd CH2 dis the communicaetions delaw from the
central node pack to the terminsls, The total time in the
gueing swetem is & Tunction of the service timess Tor urdstes
(XY snag retrievals (XRYsy  the rstio of usdate zrrivals to
retrieval srrivals (M) and tne wutilizestion of the server (rhors
which can also pe thought of sz what fraction of time the central
foge 1s Dpusw Frrocessing the transsctions)?

Ak XU 4+ XR

= 1eoe shes 414D StES o0 m20e tuts s cave 4eke AFS seee smes smek meos ven Onbe Sene Sebs RS Bo0n Sove

(A 4+ 1381l -~ vho) +

We zres on the zveraser restrictes Lo rho < 1 in order thsat the
wetenm De stanle andg mnot bos down. ur rerformanee evelustor of
spbralized manssement i1s Lhus

A oF XU 4 KR
h‘ l‘ - :' \;(4 L- D } wis rrre sake smes e cens wae soms sens saon Sore en sen bitn shee ses sees ssee neb bibe ain bien

(8 + LrECl - rhol ?
it MUHktl-ULlﬁL into the eeustion Tor RT whst we brow soout  CD1s
e amiy T, Fisiure 2 shows how thils rezronse bime varises with

e
i



42

the urdste/ retrievel ratio. The rmumerics]l values have Deoen
chosern  on the bhesis of 5 unit communicetions delaw so that if we
consider s commpunicstions delsy of 1 secondy we zre talking about
urdate  service time of 200 wmsy and relrieval service time of 100
me (ressonsble for lardge detasbsse disks commonlys  wserd todawe).
Retrieval arrival rate is chosen ss the inderendent wvarizble Tor
comegtations]l convenience and becsuse the sustem rerformznce does
derend  onn the srrivals verw besicslle (without transaction
arrivale the suwstem hes no work to do  znd serformsnce 1%
meaninsless), O this peeisy resronse time comes ouwl in seconds.

Faen trznssction in the centralized detsbsse sustem reauires
communication only between the orizginsting terminasl  and the
centrzl nodes so thet network messssesy ze  between cories  of
clstributed detesbzse mansdgersy  are nob necessarwy,.  This would
give uys & cost rredictiony NM for the mumber of messsgesy Tor &
cemntralized system of

MM = 0.

In order to meke anw comrsrison with the digstritwted swetems
st1ll to be  snalezeds let wuz consider instesd s centralized
swatem 8 imrlemented om tor of & communications swuonet  in 3
MEnner cdirectls analosous to the subrmet which surrorts
communication zmong the nodes of & distributed swstem, I this
Wwaw  we will be =z=ble to comrzre the cost of the sustems v
counting network mesosses, Otnerwiser we wons lci have t.0
ciifferentiste among the costs  of  long-distence lines from
terminals to & centrael nodes the costs of Jocel lines bDetween
teminals attsched directls to individuzl nodes of a2 distributed
austemy snd  the commurdcations subnet required Smers Lhe
cisrersed nodes  of bthe distributed swstem, S0 we wWwill consider
the lons-distance communications from terminsls to & central node
to be of the ssme cost zs the  dnter-node messages 1n &
distriouted custem. The locsl communications bhetween e
termingls esttached loczlly to & node of 2 distributed swestem
would not be counted similzrley since their contribution to  the
orerationsl cost of the digtributed swystem is not comesranls.
For this snelwsisys theny the cost rredictor of 2 centrslized
swetem 1s

NMo= 2,

F.3 MASTER/SLAVE MANAGEMEHNT

We will consider two-host resl lilenos [ For tie
mastersslave management of & diztriouted dstzbese swstemd 11
urdates asre Torwazroded to the mester for grelicationys then to  the
Dischk sy arig Fimelle out to zll the slaves. The =zckrowleaseoment

to the user of the sustem’s zccertznce of the urdste transso




43

is  sent onlw after the back-ur has successfully asrlied the
usdate to its comrlete durlicsate cory of the dztzhasse. Eascoh notde
will rFrocess 211 retrieval recuests from its own loczal terminsls
aggainst ite own comrlele durlicate cory of the datsbase. The
network flow diassram for the aueuins model of the swestem is shown
i Figure 3y and the flow intermnzl to the nodes is in Figure 4.,
Bw  adding wur flow in snd out  of esch nodes we szee that the
rrocessing tratfic recuired is the ssme for each node in the
network (see [4]1 for the detsils):. This gives & totsl time in
the aueuing sustem of

M X A X XU + XK

TR e e re e o s o e e st e e s s o s e e v

(N X% a4+ 1) %X (1 -~ rha)l .

The averase resronse time throushout the metwork must taske
into  scoournt both the different twres of nodes and the different
trensactions. For the one mastery one hack-ury N2 slavesy sna
an urdate/retrieval rstio of Ay

RT = (1/N) % LA/(A+1)] % 2 % CI
+oAL/AND X CAAA+ID)D & 2 X Ch
+ DON-2)/7H0 X LAaZ(A+10T % 3 % CI
+ L2¥ACCA+TLY + 17¢a+100 X T s

which simelifies to

Y A IN-2 2641 HEakXl + XR
[0 M TR SR PUPWR S (3 § ST NS A S
At N atl (NKATFL YR (l~rho) N

Figure 9 shows how the resronse times for urdates and retrievals
combine +to form the sverasdge., Fisure & shows how the resronse
time derends om the rumber of modes fTor & dgiven wrdates/rebrieval
ratior snd Figure 7 how it derends on the urdstes/relrieval ratio
for 8 diven number of rnodes, :

In the master/slave sustems since retrievals asre 21l handled
locallw thew contribute no network messsges ta the cost
rregictor, Contriboution of the urdstes is weighted bw  their
rrobebhility of occurrencer o that the sustem cost in Lerms of
the aversse number of messzdses reauired to rrocess 8 Lransasction
i

A IRN-2
M s K e
"+l M .



44

.3 SYNCHRONIZED MANAGEMENT

Lel.arnm hss sugdsested D61 that sganchronized menasement csn be
hendled oy exrlicitly secuencing urdste reauests using tickets
eimilar to ones found in & bakerw to sssign service order to  toe
customers, The tickelt order ensures that urdates are rrocessed
in exsctly the same order throughout the distributed sustem. To
eliminste concurrency in accessing (s well ss to avoid desdlock
over dsta resources) gnd still have distributed control over the
cgistributed databasses the daizhsse hosts of the swustem are
arranged in & virtuzal ring by szssigning rermanent identiTication
numbers in seauentizl]l incressing fashion sround the ring so that
a8 Fredecessor and successor are defined for esach node. A srecizal
message called the corntrol token is circulasted around the virtual
ring to imrlement the ticketing fazcilitw, Tickets can be taken
from the "disrenser® (the control token) only by the node owning
the token and sre zssidgned to rending urdate recuests onlw sfter
the control  token has been accerted bw  that node’s rins
successor, Thus when an urdete recquest arrives st & rarticular
modey it is sssidgned the next ticket that the node has asvailable.
If there are no tickets lefts the recquest must wait in 3 rendins
auewe until the control token arrives (bhack at thst node) zrnd the
node can gelt more tickets,

Ticketed urdste recuests sre sent throushout the sustem.
A1l nodes zre restriclted Lo arrluing urdates in ticket orders so
it ereceding ticket rnumbers are missingy & newly arriving
ticketed urdate must be aqueued until 11 lower ticket rumbers
fhisve bheen srocessed, The token effectivelw acts in rlace of 2
centralizedry master clock to rrovide globasl event sequencing.

Swnchronized manssement schemes have not been simele  to
model L7131, Even the lodicslle simerle virtusl ring does not model
directly into s simerle oeueuinsg swztem, arne arriving  urdate
transaction not omly waits fTor rsrior btranszctions auewed fTor
services 1t maw &lso wait to sel & ticket sssisnedy it must wait
for rrior ticketed urdsates to be zerliedr ang 1t maw have to wait
to see if prior ticket numbers are used or have exrired. We will
svoia  some oof this comelexitw bwe choosing to work with 8 verw
simrle lodgicel rerresentastion of the virtuzl rings & secuentiazal
ring  with the successors locasted in simele ring order.  Even in
fully interconmected networks (where each node nas 2 direct
communication link to esch other)sys we mignt want to sssidn

successors sccording Lo rhwsical rrodimity. Thne seguentis] R NE:]
Hsllows ws to contirnge wusing the asssumetion of constanty Tixed
commwinications delasws without considerzstion of routins arid

network interconnection sratterns, We will see that the solution
is efficient encush to comrete with the other mznasgement schemes
only under cevtain conditions. For now our concern s that it is
simele encousth to be modeled,



45

Urdaste and retrievs] transactions will be considered as
Foisson arrivals urid formly gistributed over sll network
terminzslsy zs before. It we do not sllow tickets to bhe recuested
shesd  in anticierstion of future arrivalss the urdate recuests
Wwill wait for the token to zrrive in order for tickets to De
reauested and sssigned, The simrlest scheme to ensure usdste
grrlication in the ticket order is to circulate the urdates bLw
srrending  them to the tokern snd removing them when thew get back
to their originsting rode, This means +thet  urdstes arrive st
ezch node 211 a2t once to be rrocessed in & betoh.

Retrieval recuests will still be hazndled loczlle st ezch
rode (the comrlete durlicate cories assumstion). In order to bhe
sure the retrievals get ur~to-date information thew will have to
wait Tor the current circulating set of urdates to be srrlied.
This means retrievel reauests will zlso be saved until the token
arvives and then be sdded to the batch behind the current set of
urdatesy Fidgure 8, The flow dissram of Figure 9 shows how all
the nodes are connectedy while the internsl detailes Tor z single
node are imn Fisure 10, Notice that evernn this simelified node
model is not & standard eueuins sustemr since service maw not
begin until the token arrives and transactions  arriving sfter
batch rFrocessing  besgins maw not Join the aueue bheing srocessed.,
This assrect is emrhssized in Fidgure 10 by the barrier which is
tridggered Tor transmission onlw bw the arrival of the control
toker (thirnk of the diasgram z¢ & hwbrid of flow control and  an
evaluation net). Imn order to have s stable sustem thast doesn’t
bog downe we are slso constrained to comerlete rrocessing of  one
bateh tefore the mnext srrives.

The averase resronse time for 2 tramsasction will be made ur
of three rarts

X waiting for the tokens

¥ waiting for the rredecessors in the aueue to be serveds
anid

¥ actual service time.

Using our sssumrtion of zotivity being wuniformle distributed
zeross  all terminzsls and nodes of the networky we will saw that
the averase wait for the token is hslf of the time for a3 virtusl
circuit, The order in the cueye is wrdates from all other rnodesy
loczl urdates zndg then local retrievals (Figsure 8y so all local
transasctions wsit for non~-local urdstes (from +the obher N-1
nodes) to be rFrrocessed, Since average service times are
constanty the uwrndiform distribution savss  the averade wait for
local wurdstes will be for half the totsl mnumber and the averase
wailt for locsl retrievals will be for 211 urdates rlus hsalf the
rumber of retrievals, Thus we end ur with (for detailsr see [471)



46

RT = JHEANKCT 4+ nd(N-L)ENXCDRAXLR¥XU
+ CAZA+HLI D X (L EBEnANRCIEALLRAXLD
+ DLA7CA+1 T ¥ DrokHRCIRLRCK Cak XUt SkxXE 3,

Figure 11 shows how this resronse time varies with the mnumber of
nodes zned Figure 12 shows the derendence on bthe urdate/retrieveal
ratio. :

If we treat the control token as having the ursdates Lo be
circulated arrended to ity the combined token/usdate rachage can
me considered s 3 message. For esch wurdates theny N messages
sre reauired to comerlete the circulatiorns  andg the rnumber of
messades sveraged over both urdates and retrievals gives us

NM = [Aas(A+1)Y] X N .

4, COMFARISON OF THE ERASIC MDDELS

In order to comrare the rerformance of the centralizeds
master/ slave and suwnchronized management schemes wsing the
models Just develoredy & standsrd set of rarsmeter wvalues is
used. These 2re listed at the tor of Figure 13 and could De
taken to rerresent units of seconds. The swustem load is kert
comrarable by comsidering 100 terminsls in the centralized sustem
and 10 nodes each with 10 terminsls (for a swystem totsl of 100
terminsls) in  the distributed casses. The resronse time 1s
mormalized to units of communication delsw to Hive lower bDownd
results and the actusl msgnitude of the ressonse times ie less
imrortant thanm the relative rositions of the curves, Figure 13
shiows the mastersslave scheme has belter sveradge resronse time
than the centralized sscheme since only local retrievsls are
comreting  with suystem urdates for rrocessinsg resources st esach
node rather than swetem retrievals comreting with swstem urdates
st a single node, Szsturation of the centrzl site slso occurs for
much lower arrival rates then sasturgtion of the master node
becsuse of the higher centrzlized dedree of contention. Thus we
see that the svstem Flow dizsdgrams are rarvticularly useful to
exrlicitly  rerresent  the differernces smonsg comreting manasement
rhilosorhies so that rerformance rredictions can be made,

The seauentizl mnature of the sunonronized model stards  out
@8 & clesr dissavantage in resronse time until the central site
arnd master node are satursted and orersting 2t verw hidn
utilizstions. QOur choice of 2 communications delasw beltween nodes
lardge with resrect to srocessing delsws within nodes reflects our
corncern  with long-hsul networkss Ls@ey oistributed swetems of
geograrhical ly risrersed MoGes. Setting Buide this
characteristic momentarily snd zllowing oommunications delsus
comrarahle to srocessing  timesr we zge  Trom Figure 14 Lthat
synchronized manssement comretes very well with the obther schemes



47

situstion which is rerresentstive of

locsl network.,

in &
for &

comFsrison =mong schemnes is
15, The rmumber of messsdes reguired to
sveraged over all of the tranzesction
roints corresronaging to the revformance
for 10 nodes znd are indiceted by the
Agziny  the master/slave scheme dgives

less contention then centralized andg

SRMCNTONILZed., Thue we see tnet  the
averase resronge time for rperformances

message t.o nhancle = transaction
differentiste

The cost

tHP659
COMPETLSON
ETTOWS
the
less

Eric

agmong the menadement schemes

the ezremeter vslues

rerresented  din Fisure
fandle & transaction iz
The ssrbticuler
raraneters are
i the fisure.
best result becasuse of
seauentialite  than
firet-order statistices
avergse nunber  of
costy  do  dindeed
Tormal was.

for
i o3



1]

L4

L5

I71

48

REFERENCES

., Stonebrzhker snd E. Neuholdy "A Distributed lstabsse
Version of INGRES:® Proceedinsgs of the Second Berkelew
Workshos on Distribwbted Dzis Mesopssement sod Comsutec
Networksy 2527 Maw 1977y pr. 193646,

A Uistributed Dzatzhase Mansgepent Sustewm for Commasnd
sod Control aseplicetionsl Sewmizédoousl Techoical
Begnrt 2y Comruter Corrorztion of Americas CCA-78-03y
F0 Januarwe 1978 155 pe,

L. RKleinrock: Queuneing Ssstewsse Uolume 12 Ibeonws
dJotwy Wilew angd Sonse 1975,

e DeNoiges Ferformence snd Iipeliness in s Distribuled
latsbssey HUSC Techniczl Rerort &099y Navsl

Lirnderwater Swstems Cernters New Lorndons: CTs

X oJduly 1979y 221 rr.

Fo @lepers amd J. layy "4 Frincirle Tor Resilient
Srering of Distributed Resourcess® Brown Universilw
Workshor in Digstributed Frocessings audgust 197686,

G, Lelaznm "Alsoritihme Tor Digstrinuted Dets~Sharing
Suetems Which Use Ticketsy® Proceedioss of bhe
Ihirdg Berkelew Workshor on Distributes Uata
Mzpasenent and Comsuber Networkse 2931 August
1978y pr, 2859272,

H., Garciz-HMolines Ferformzsoce Comsarison of Usdate
Algorithws for listributed Dailzbzspsy
Frosress Rerort 1y Stanford Urdversitbaey 1978,



4¢

Taple 1. SUMMARY OF NOTATION

cuo communicastions delsy

L. asverade swstem arrival rate :
LR averase srrival rate rer terminasl of retrievsl transsctions
LU averadge arrival rate rer terminzl of urdste trarsactions
XBAR sverasde sustem service time

xR averade service time for retrievals

Xu averasdge service time for urdates

rn ramber of terminsls rer node

N rnumber of nodes

rho utilization

t averase total time srent in the svstem

RT resFronse time

a=L.U/LR

urdate/retrieval ratio rer terminal



Figure

50

1. Flow Diagram for Basic Centralized System

cD

n*N* (LR+LU)

ch

n*N#* (LR+LU)




51

Figure 2. Dependence of Response Time on the Update/Retrieval Ratio

CENTRALIZED
BASIC CASE

NUMBER TERMINALS/NODE= 100
COMMUNICATIONS DELAY= 1.0
UPDATE SERVICE TIME= 0.2

- RETRIEVAL SERVICE TIME= 0.1
UPDATE/RETRIEVAL RATIO= A
NUMBER OF NODES= 1

4.00

3.60

1

20
{

3.

NORMALIZED RESPONSE TIME

8 A=1.0 . A=0.5 L aen. 25

[ O A=0.1

4V

o ”

o] o

o T 3 ~

(w]

4.0 0.02 0.0u 0.06" 0.08 0.10

RETRIEVHL ARRIVAL RATE PER TERMINAL



Figure 3.

Network Flow Diagram for Basic Master/Slave System

back-up

cD

CD

cD

Ch

AP, Mmaster }

[43



53

Figure 4. Internal Node Flow for Basic Master/Slave

p n*LU+N*LR ) ™~
// L] n*LU +

n*LR )

. m * r
\\\\\h_‘i n*LR+SU -—’/////
...

5LR n¥*LU \\\x .
I l . . B

n*LU + L

n*LR ]

/

A\

/ .
[
\\
“
A4

n*LR

I

n*LU +
n*LR

SU




54

Figure 5, Average Response Time from Contributions

10.00

8.00
L

6.00

313}
{

H,

NORMABLIZED RESPONSE TIME

2.00

MASTER/SLAVE
BASIC CASE

NUMBER TERMINRLS/NODE= 10
COMMUNICATIONS DELAY= 1.0
UPDATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME= 0.1
UPDATE/RETRIEVAL RATIO= 0.25
NUMBER OF NODES= 10

UPDATE

Py
o Pas <>

: AVERAGE
RETRIEVE

I
.

.00

00 0.ou 0.08 0.12 0.16
RETRIEVAL ARRIVAL RATE PER TERM

]

. 0.
INAL

20



55

Figure 6. . Dependence of Response Time on the Number of
Nodes in the System

MASTER/SLAVE
BASIC CASE

NUMBER TERMINALS IN SYSTEM= 100
COMMUNICATIONS DELAY= 1.0
UPBATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME= 0.1
UPBRTE/RETRIEVAL RATIO= 1.00
NUMBER OF NODES= N

“ﬁ 0.01 0.02 0.03 0. 04 0.05
RETRIEVHL ARRIVAL RATE PER TERMINAL



56

Figure 7. Response Time Dependence on the Update/Retrieval Ratio

MASTER/SLAVE
BASIC CASE

NUMBER TERMINALS PER NODE= 10
COMMUNICATIONS DELAY= 1.0
UPDATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME= 0.1
UPDATE/RETRIEVAL RATIO= A
NUMBER OF NODES= 10

10.00

8.00

6.00

. 00

NORMHLI%ED RESPONSE TIME

2.00

b
o A=0.1
B———O—

0.08 0.16 0.2u 0.32 0.u0
RETRIEVQL ARRIVAL RATE PER TERMINAL

JLUU



57

Figure 8. Queue Model for Basic Synchronized System

local local other node

retrievals updates updates \\\\~‘//




58

Figure 9. Network Flow Diagram for Synchronized Management

i

CD

_CD

CD




Figure 10,

Internal Node Flow for a Basic Synchronized System

s A*N*CD*LU! n*N*CD*LU '\\\
7 . >
rd n*N*CD*LR
P}'
’/ F n*N*CD*LR

j X ,
] N !
% f N ;
; { g
\ % ’ £
7 SU-n*N*CD*LU f
control token + SU SuU 1,:?////1L control token + SU'
\ ' '
token p_

p

SU = N & nasN*CD*LU

SU'= SU - n*N*CD*LU + n*N*CD*LU!

65



60

Figure 11. Dependence of Response Time on the Number of
Nodes in the System

SYNCHRONIZED
BASIC CASE

NUMBER TERMINALS IN SYSTEM= 100
COMMUNICATIONS DELRY= 1.0
UPDATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME= 0.1
UPDATE/RETRIEVAL RATIO= 0.25

g NUMBER OF NODES= N

21.

o0 0.0u 0.08 0.12 0.16 0. 20
RETRIEVQL ARRIVAL RATE PER TERMINAL



61

Figure 12. Dependence of Response Time on the Update/Retrieval Ratio

SYNCHRONIZED
BASIC CASE

NUMBER TERMINALS/NODE= 10
COMMUNICATIONS DELAY= 1.0
UPDATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME= 0.1
UPDATE/RETRIEVAL RATIO= A
S NUMBER OF NODES= 10
o |

00

8,

7.00

NORMALIZED RESP

.oo

0.02 0.0u 0.06 0.08 0.10
RtTRIEVRL ARRIVAL RATE PER-TERMINAL



62

Figure 13. Comparison of the Basic Models

COMPARISON
BASIC CASE

NUMBER TERMINALS/NODE= 10
COMMUNICATIONS DELAY= 1.0
UPDATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME= 0.1
UPDATE/RETRIEVAL RATIO= 0.5
NUMBER 0OF NODES= 10

o
o
Ll
o
o
L
N
Py
!
T
o
o
o _ -

=
= g/csumm.

yo-0-o-o-o-a-8 MSTR-SLY
(s ] A A, A o - 2
S la &
-
0.0 0. oy 0.08 .12 0.16 0.20

RETHIEVHL ARRIVAL RATE PER-TERMINAL



5.20

4,20

1

20

3.

20

2.

'NﬂngLIZED RESPONSE TIME

|

!

. 20

63

Figure 14.  Another Comparison of the Basic Models

COMPARISON
BASIC CASE

NUMBER TERMINALS/NODE= 1
COMMUNICATIONS DELAY= 0.
UPDATE SERVICE TIME= 0.2
RETRIEVAL SERVICE TIME=

UPDATE/RETRIEVAL RATIO=

NUMBER OF NODES= 10

CENTRAL

0
1

0.1
0.25

MSTR-SLV

CHR

00 0.ou 0.08 0.12
RETRIEVAL ARRIVAL RATE PER

0.16 0.
TERMINAL

20



64

Figure 15. Meésage Flow Comparison for Basic Models

MESSAGE FLOW
BASIC CASE
UPDATE/RETRIEVAL RATIO= 0.25

.00
J

Y

3.20

2. 40

® CENTRAL

.60
1

1

AVG # MSGS REQUIRED PER TRANSACTION

[am]
o0
CDI—
[an]
(@)
9’ 00 4,00 3. 00 12.00 16.00 20. 00

NUMBER OF NODES



DISTRIBUTED APPLICATIONS &8
WORKSHOP y







67

Distributed Data Bases in a Calendar System’

by

frene Greif
Massachusetts Institutes of Technology
Cambridge, Massachusetts

We report on our experiences in building a calendar system to run in a distributed computing
environment. The calendar is designed as a set of support tools for communrication, decision making
and data retrieval related to calendar maintenance. Most calendar functions such as making or
cancelling appointments are performed by the user and automation of these functions is not
emphasized. Instead these support tools will provide a framework within which one can decide which
junctions should be auiomated. The user can gradually transfer functions to the system by, for
example, specifying that for certain "office hours" the calendar itself can schedule appointments
requested in messages from other calendars.

The organizing principle of the calendar system is that individuals will keep data about their
schedules in thelr own private data bases. This implies that exchange of information about schedules
and moeetings must be dene explicitly -- one cannot simply access a common data base that contains
calendar information for all users. Motivation for distribution is not reliability or ease of access but
rather is the assurance ol autonomy in calendar managerment and maintenance of privacy of
individuals' data in the context of an application with operations on the data of more than one
individual.

The distributed data base issues raised due to this organization will differ from those encountered in
calendar systems in which all users’ calendar data is stored in a single data base which happens to be
implemented as a distributed data base. The most notable difference is that the distribution of data
will ha apparent to the application designer and programmer and cannot be hidden in the data base
implemantation.

The visibility of the distribution of data in the calendar system can be expected to be typical of many
distributed application ptograms. in general, data to be displayed to the user may be composed from
sources in many separate data bases with dilfering privacy constraints. Queries and updates to the
data may involve more than one data base and require preservation of consisiency requirements
among those data bases. Protecols such as two-phase commit and mechanisms for implementing
atomic transactions without locks wili appear in application program code in forms suited to the
apphcation.  Afemic transaclions may be expected to extend over longer periods of time at the
application: level of a system and thus will require somewhat different support than do their analogues
at the data base management level. The design of appropriate protocols as well as the development
of pregramming language support for the application programmer are the research areas to which
the experiences in this application will have most relevance.

1 i .
This research was supported by the Advanced Research Projects Agency of the Defense Department and was monitored
by the Office: of Naval Research under Contract Number NOQO 14-75-C-0661.



68

Site Autonomy Issues in R*:
a Distributed Database Management System

by
Bruce Lindsay
IBM San Jose Research Laboratory
5600 Cottle Road
San Jose, CA 95193

A DDBMS must simplify the user's task of defining applications which
manipulate shared data stored at multiple computing sites. To this end,
the DDBMS must supply distributed concurrency controls and transaction
recovery protocols, as well as transparent access to remote data. Any
operation allowed on local data should also be possible on remote data. At
the same time, because different computing sites are controlled by
different individuals or organizations, the DDBMS must preserve each
site's control over its own data. We call this notion site autonomy. Site
autonomy includes the ability of each site to control who may access its
data as well as the ability to access and manipulate local data
independently of other sites. Site autonomy is essential to the peace of
mind of the managers and users associated with each site.

Issues surrounding the architecture of a system of independently
managed, voluntarily cooperating database sites are explored and
solutions preserving the autonomy of individual sites are explained.
Preserving site auteonomy impacts the implementation and architecture of a
distributed DBMS in several areas. The authorization facility must
enforce local authorization rules and must authenticate the identity of
remote accessors. Catalog management must be fully distributed in order to
allow graceful system growth while maintaining catalog data at the sites
“where it is needed to support local and distributed operations. Query
planning and binding are impacted by the distributed dependencies between
bound query plans and database objects. Finally, the delegation of the
commit / abort decision to another site during the distributed transaction
commit protocol-can also jeopardize site autonomy.

The approach being taken in the implementation of R¥*, an experimental
distributed database management system being developed at IBM's San Jose
Research Laboratory, to these site autonomy issues will be discussed and
explained. Mechanisms leading to harmonious cooperation- in the execution
of distributed database operations without compromising local control and
standalone operation are presented. Distribution of management
responsibility and judicious placement of control information are shown
to lead to a system without globally replicated control structures or
centralized services.



CONCURRENCY CONTROL _ 3







71

TWO PART PROOF SCHEMA FOR DATABASE CONCURRENCY CONTROL*

Philip A. Bernstein
Nathan Goodman
Ming-Yee Lai

Aiken Computation Laboratory
Harvard University
Cambridge, MA 02138

ABSTRACT

Concurrency control algorithms for database systems are usually regarded
as methods for synchronizing Read and Write operations. Such methods are
judged to be correct if they only produce serializable executions. However,
Reads and Writes are sometimes inaccurate models of the operations executed by
a database system. In such cases, serializability does not capture all aspects
of system executions that are relevant to correctness. To capture these
aspects, we describe a two part proof schema for analyzing concurrency control
correctness. We illustrate the proof schema by presenting two new concurrency
algorithms for distributed database systems.

1. INTRODUCTION

Serializability is widely recognized as the basic correctness criterion
for database concurrency control. Serializability requires that the inter-
leaved execution of users' transactions be computationally equivalent to a
serial execution of those transactions. The importance of serializability as
a correctness criterion has led to the development of an extensive theory of
serializability [BSW, Papadimitriou, SLR].

In serializability theory, an execution of a set of transactions is re-
presented by a "log". A log is a sequence of Read and Write operations sub-
mitted by transactions and denotes the order in which these operations were
executed by the database management system (DBMS). The execution represented
by a given log is called "serializable" if there is a serial log that is
computationally equivalent to (i.e., has the same effect on the database and
produces the same output as) the given log.

This view of serializability hides an important aspect of DBMSs: the
operations submitted by transactions are not identical to the operations
executed by the DBMS. This view leads to certain anomalies.

To illustrate such an anomaly, consider a database of two data items, X
and vy, each of which has an associated timestamp, ts(x) and ts(y). FEach
transaction, Ti’ is assigned a unicue timestanmp ts(Ti) when it begins

*Phis research was supported by the National Science Foundation, Grant Numbers
MCS77-05314 and MCS79-07762, and by the Office of Naval Research, Contract
Number N0O0014-80-C-0647.



72

executing. Transactions can submit two operations to the DBMS, Read and Write.
In response to an operation Read(x), the DBMS reads the current value of x
(ignoring the timestamp) and returns the value to the transaction. In response
to an operation Write(x,value,ts(T;)), the DBMS applies Thomas.! write rule
[Thomas]: if ts(T;) >ts(x), it sets x:=value and ts(x):='ts(Ti); other-
wise, it does nothing. The effect of Thomas' write rule is to produce a data-
base state in which Writes appear to have been applied in timestamp order [BG].

Now, consider the following serial log:

I, = Readz[x]Write2[x,val ,val

1 ts(T2)]Readl[x]Writel[(x,y),(valx

1 ),tS(Tl)]

27 vl
where Readj[x] denotes the execution of Read(x) by T;, etc. Assume

ts(Ty) <ts(Ty), and initially ts(x)=ts(y) =0. Ly is serial. So, if we
subscribe to serializability theory, then we must judge L; to be correct.
However, from a user's viewpoint, I; must seem anomalous. Although Ready
reads the value of x written by Writejp, the value of x written by Write,
is x's final value (Thomas' write rule prevents Write; from overwriting x).
Thus, this log does not correspond to a serial execution of the users' trans-
actions assuming the usual user-oriented semantics of Write ("he who writes
last has installed the final value"). That is, if the users executed their
transactions serially, in either order, using the usual semantics of Write,
they would obtain a different result from that produced by Ly-

Of course, Ly must be considered to be an incorrect execution. However,
a blind application of serializability as a correctness criterion would judge
Ly to be correct. Something is amiss.

The anomaly exhibited by L7 1is a consequence of users' Writes having
a different semantics than the system's Writes. To circumvent the anomaly, a
more elaborate analysis of correctness is required.

Such analyses are the main subject of this paper. We present in Section 2
a more accurate model of database system implementations in which the behavior
of the users' and systems' operations are both represented. Using this model
we define concurrency control correctness in a way that prevents anomalous
executions such as Ly. And, we develop a two part schema for proving correct-
ness in this sense. To allow an expanded repertoire of operations beyond
Read and Write, we explain in Section 3 how to generalize two phase locking to
synchronize operations other than Read and Write. The rest of the paper
shows how to use the machinery of Section 2 to prove the correctness of fairly
complex concurrency control algorithms. Section 4 considers a system in which
increment and decrement are implemented (and synchronized) as primitive
operations. Section 5 considers a concurrency control algorithm that combines
two phase locking with Thomas' write rule.

2. THE TWO PART PROOF SCHEMA

2.1 A Model of Database System Implementations

A database system (DBS) is modelled as a collection of transaction modules
(TMs) and data modules (DMs) connected by a nefwork. TMs supervise trans-—
actions, while DMs manage the actual database. The network connects =ach TM to



73

each DM and provides error-free FIFO message communication; the network will
not be discussed further. Users access the DBS by submitting transactions.
Each transaction is a sequence of operations that reference data stored at
DMs. FEach transaction submits its operations to a single TM which transmits
the operations to the appropriate DMs. Each DM executes the operations it
receives, possibly after reordering them. A DBS is specified by listing its
TMs, DMs, database, operations, and optionally a concurrency control method
(cc method) that determines how DMs reorder operations.

EXAMPLE 1: A centralized multiuser database system could be model’led as the
following DBS. There are multiple TMs (one per user) but only a single DM.
The database consists of data items X,Y,%Z,... .- The operations are Begin
transaction, End transaction, and Read and Write a data item. 0
EXAMPLE 2: A distributed database system could be modelled as the following
DBS. There are multiple TMs and multiple DMs. The database consists of time-
stamped data items x,y,Z,... . The operations are Assign a Timestamp to a
transaction, Read a data item, and Write a data item using Thomas' write
rule. 0
Associated with each TM of a DBS is an Zmput log specifying the order in
which operations were submitted to the TM. An <mput to the DBS is a set of
input logs, one per TM.

Associated with each DM is an execution log specifying the order in which
operations were executed by the DM. An execution of the DBS is a set of
execution logs, one per DM. An execution is a complete model of the computation
performed by a DBS.

An execution is serial if there is no interleaving of transactions in any
log and there exists a total order of transactions consistent with the serial
order of each log. An execution is gerializable (SR) if it is computationally
equivalent to a serial execution of the same transactions.

A database system implementation (DBI) consists of two DBS's arranged as
in Fig. 1. The wuser DBS (UDBS) represents the users' view of the implemented
system, while the execution DBS (EDBS) is a lower level system that supports
the users' view. These DBS's are connected by a translation function t that
maps logs of the UDBS into logs of the EDBS, and a view function v that maps
database states of the EDBS into database states of the UDBS. The UDBS exists
for the most part in the mind's eye of the user. Users submit operations ’
defined in the UDBS and imagine that these operations are executed against the
UDBS database. 1In reality the DBI translates UDBS operations into EDBS oper-
ations which are executed against the EDBS database. TLet IN={all inputs to
the UDBS}, and EX={all executions of the EDBS}.

EXAMPLE 3: Consider a DBI whose UDBS is given in Ex. 1 and whose EDBS 1is in
Ex. 2. For each data item X in the UDBS database, one or more data items
Xy,...,%X, 1in the EDBS database are designated copies of X. t is the
following function (we use square brackets with EDBS operations and parentheses

with UDBS operations, to distinguish them):

Begin P Assign Timestamp to T; «c¢all it ts(T)
Read (X) P Read[xi] where Xy is any copy of X



74

Figure 1

Database System Implementation (DBI)

Solid lines indicate the actual transaction execution.

Dashed lines indicate the user's view of transaction execution.

(/"-"\\
P T T ' R 1 r\"‘“'”/T
! P |
. Ll I ' ' User
transaction——————g= = —— ﬁ o™ --q DM |~-1 Database! DBS
|
) | | { J
“—_""'"—"" bt e ‘ '\\ /J
A
I
|
[}
-—--—nu—-—-‘_—-.—_—-.'
} |
{
translation function :view functiony
(£) ! (v) ;
e e e e 4 X
]
]
|
|
]
!
1
]
Execution

™ i DM 4 Database

DBS




75

Write (X,val) {Write[xi,val,ts(T)]lall copies x.

; of X}
End P nothing '

V is defined iff for all X, all copies of X have the same value. When
defined, v maps xiF*X for all X and all copies X of X.

2.2 Correctness of a Database System Implementation

Intuitively, a DBI is correct if every execution "permitted" by the system
is SR Zmsofar as the UDBS is concerned. More formally, let TE€ IN and suppose
the effect of executing T by the UDBS is to map UDBS database state UDy into
UDBS database state UDy; this effect is correct if there exists a serial exe-
cution E' of the UDBS such that E' contains the same transactions as I
“and E'(UDO)==UD1. The DBI is correct if the effect of executing every input
is correct.

Of course, executions do not actually occur in the UDBS, so we must re-
express the intuitive notion of correctness in terms of the EDBS. Let EE€EX
and let E' Dbe an execution of the UDBS. E <mplements E' 1if for all states
D of the EDBS database, v(E(D))=E'(v(D)); see Fig. 2. Let I€ IN. The DBI
translates I into t(I), which is the input to the EDBS. A cc method re-
orders these EDBS operations, after which they are executed. Let s denote
the reordering performed by the cc method; then E=gs(t(I)) is the execution
actually performed by the EDBS. E correctly implments 1 if there exists a
serial execution E' of the UDBS such that E' contains the same transactions
as I and E implements E'. The DBI is correct if it correctly implements
every input.

Figure 2
Correctness of DBI

Let E be an execution of EDBS, and E' an execution of UDBS, E <implements

E' 1if for all states DO the following diagram commutes.

El
D, >UDl

/N N\

E
DO -————————;>Dl

T.e., the effect of E on D is "the same" as the effect of E' on UD

O A
here UD.=v 0
W D (D:).

This correctness definition can be decomposed as stated by the following
theorem.

DECOMPOSITION THEOREM: A DBI is correct 1f there exists S<EX={all executions
of the EDBS} such that the following two parts hold. B

S-part: For all inputs I, s(t(I)) <s computationally equivalent to some
E!€S.
I



76

T-part: FEvery E!'€S <mplements a serial execution E' of the UDBS
containing the same transactions as 1. o

The proof of the Decomposition Theorem follows directly from the formalization
of DBI correctness. However, stated in this form, the theorem provides the
basis for our two part proof schema.

The proof schema says that proving the S-part and T-part is sufficient
for proving correctness. The S-part is essentially a conventional proof of
serializability while the T-part verifies that the translation between the
UDBS and EDBS is correct. The T-part is what avoids anomalous SR logs such
as Ll of Section 1.

EXAMPLE 4: The SDD~1 concurrency control [BSR] can be modelled by the DBI of
Ex. 3 (with additional cc methods in the EDBS). The correctness proof follows
the two part schema just described [BS]. The S-part proves that for every.
IC€IN, s(t(I)) is computationally equivalent to a serial execution E' in
which conflicting Writes appear in timestamp order; more formally, s(t(I))

is computationally equivalent to a serial execution E' in which

1. whenever W) =Write[x,val],TSy] and W2==Write[x,va12,TS2] both
appear in E', then Wj; precedes W, iff TSy <TS,, and

2. two well-formedness properties are satisfied:

i. two Write have the same timestamp iff they "belong" to the same
transaction, and

ii. for each copy x3 of X, if wWrite(lxj,val,TS] appears in E',
then so does Write[Xj,val,TS] for all copies X3 of X.

The S~part is the bulk of the proof.

The properties of E' were carefully chosen to facilitate the T-part.
The T-part follows from two facts. First, since conflicting Writes appear in
timestamp order, every Write on a data item has a larger timestamp than any
previous Write on that data item. So, when applying Thomas' write rule, every
Write does in fact overwrite the previous value. Hence Writes in E' behave
exactly like Writes in the user DBS. Second, since each user Write(X,val) 1is
translated into {Write[xi,val,TS]|all copies x; of X}, all copies of X
are updated simultaneously insofar as other transactions are concerned. Hence,
the multiple copies in the EDBS behave like the single copy in the UDBS. o

3. GENERALIZED TWO PHASE LOCKING

To reduce intersite communication and to increase the amount of concurrency,
it is sometimes advantageous to implement a database system with higher level
operations than Read and Write. For example, consider a distributed database
system with two sites. Suppose a transaction at site 1 wants to increment x
which is stored at site 2. Using Read and Write necessitates two rounds of
communication: first Readix] 1is sent to site 2 and the value is returned to
site 1; then Writelx,new value]l 1is sent to site 2. However, if site 2
supported Increment as a primitive operation only one round would be needed.

Thus, using the higher level operation "Increment" reduces intersite communication.



77

In addition, higher level operations can lead to improved concurrency.
For example two increments on the same data item commute--i.e., their result
is independent of their execution order--and so increments can be freely
interleaved. By contrast, Writes do not generally commute and so must be
synchronized by a concurrency control (cc) method.

We will want to synchronize higher level operations directly in the cc
method described in Section 4. To do so, we explain here how to extend
standard locking to arbitrary higher level operations.

Two Phase Locking (2PL) is a standard technique for synchronizing Reads
and Writes [EGLT]. There are two lock types: Rlocks and Wlocks. Before
executing a Read (resp. Write) on x a transaction must obtain an Rlock
(resp. Wlock) on x. To attain serializability certain combinations of locks
are excluded. We say that two lock types conflict if they cannot be con-
currently held by different transactions on the same data item. In standard
2PL, Rlocks and Wlocks conflict, as do Wlocks and Wlocks. 1In addition, once
a transaction releases a lock it cannot obtain any further locks.

2PL can easily be extended to arbitrary operation types Oys+..,0,. For
each operation type there is a lock type. The conflict properties of lock
types are entirely determined by the commutativity properties of the operations:
Two lock types, Oj-locks and O;-locks, conflict iff 0;I[x] and Oj[x] do not
commute (for some x). The execution rules are analogous to the Read-Write
case. Before executing O0;[x], a transaction must obtain an Oj-lock on x.
And, a transaction must obtain all the locks it will ever need before releasing
any lock. We call this extension of 2PL to arbitrary operation types
generalized 2PL.

s

The generalized 2PL theorem--that the generalized 2PI algorithm guarantees
serializability~-can be proved by a straightforward extension to the proofs of
[BSW, Papadimitriou].

EXAMPLE 5: Consider an EDBS whose database consists of x,y,z,...- and whose
operations are Read, Write, Increment (Increment([x] adds 1 to x), and Decre-
ment (Decrement[x] subtracts 1 from x). The commutativity of these operations
is as follows. (1) Operations on different data. items commute. (2) Commutati-
vity of operations on the same data item(s) is given by the commutativity

table C,.
1
Cl Read Write Increment Decrement
Read T P P F
Write F F F F
Increment P F T T
Decrement P F T T

To synchronize these operation types we may use generalized 2PL with four lock
tvpes--Rlocks, Wlocks, Ilocks, and Dlocks. Two lock types conflict iff their
corresponding operations do not commute when applied to the same data item.
For example, Increments and Decrements commute, so Ilocks and Dlocks do not
conflict; generalized 2PI permits these operations to be freely interleaved.
By contrast, Increment and Write do not commute, so Ilocks and Wlocks conflict;
generalized 2PL requires that these operations be synchronized.



78

4. AIRLINE RESERVATION EXAMPLE

Imagine an airline reservation system consisting of many intelligent
terminals connected to a central DBMS. The central DBMS tells the number of
available seats on each flight; to make a reservation a transaction must de-
crement this number. Each intelligent terminal stores a collection of binary
flags indicating the "availability" of each flight: the flag for flight X
is True if there are at least Min seats available on the flight (Min is a
system parameter); as we will see, flags may occasionally be inconsistent with
the central database. Transactions execute at the intelligent terminals.
When a transaction wants to reserve a seat, it sends a decrement operation to
the central DBMS and simultaneously checks its terminal's copy of the flag.
If the flag is True, the transaction "assumes" the reservation will be con-
firmed and continues without waiting; otherwise it waits for the central DBMS
to respond to the decrement.

4.1 A Model of the Airline Reservation System

Let us model this system as a DBI. The UDBS consists of one TM per ter-
minal and one DM representing the central DBMS. The UDBS database consists of
the central database; i.e., flags are not visible to users. The UDBS operations
are Begin, End, Read, and Increment with their usual semantics, plus Write and
Decrement defined by

Write(X,val) = }E_valzzo then begin X :=val;
return True end
else return False

Decrement (X} = if X>0 then begin X:=X-1
: return True end

else return False

The EDBS consists of one T™ and one DM per terminal, plus a DM for the central
DBMS. The EDBS database contains the central database and all copies of the
flags. The EDBS operations are

Rflag[X,il] -- read the flag for flight X at terminal i
wflaglX,i,val]l] -- write the flag for flight X at terminal i
Read[X] -— read X from the central DBMS

Write[X,val] = if valZ2 0 then begin

if X<Min and val =ZMin then
T “send Wflag[X,1,True] to all terminals i
else if X=2Min and wval<Min then
“send Wflag[X,1i,False] to all terminals 1i;
X :=val;
return True end
else return False
begin X:=X+1;
if X=Min then
T send Wflag(X,i,True] to all terminals 1

Hi

Increment [X]

end
if X>0 then begin
T x := Xv—l;

if X=Min-1 then

Decrement [X]




/19

send Wflagl[X,i,False] to all terminals 1i;
return True end
else return False

Note that Write, Increment, and Decrement send Wflag's to many terminals, but
do not wait for replies. Flag updates are performed asynchronously with
respect to updates of the central database.

Concurrency control is performed only at the central DBMS and uses
generalized 2PI,. Commutativity of operations is given by the table C2.

C2 Read Write Increment Decrement
Read T F F F
Write F ¥ F F
Increment B P T F
Decrement F F F r

No concurrency control is performed on flags.

To complete the definition of the DBI, we must specify the translation
function t and the view function v. t maps the UDBS operation Read, Write,
and Increment into the EDBS operations with the same name. The UDBS operation
Decrement (X) translates into the following program, where i 1is the terminal
where the Decrement was issued

if Rflag[X,i} then begin
send Decrement[X] to central DBMS:
return True end

else begin
~send Decrement[X] to central DBMS:
wait for reply, call it B;
return B end

Observe that if X's local flag is True, it is assumed that X>0 and True

is immediately returned. If this assumption is incorrect--i.e., if Decrement [X]
ultimately returns False--then the subsequent computations of the issuing trans-
action are incorrect and the transaction must be restarted. To handle this, ©
translates Begin into a "demon" that watches for asynchronous replies to
Decrements; if any reply is false, then the demon restarts the transaction.

t translates End into a program that waits until all asynchronous replies

have been received and then destroys the demon; the End program also releases
any locks held at the central DBMS.

The view function v simply "projects out" the flags. Let D=<flags,
central database> be an EDBS database state; then v (D) =<central database>
the UDBS state consisting of the central database.

This implementation is designed under the assumption that most flags are
True most of the time. Therefore, most reservations are processed quickly,
without the delay of accessing the central DBMS. When the number of seats
gets low (below Min), reservations are processed centrally before responding
to the transaction, to avoid too many restarts. If Min is larger than the



80

number of reservations per flight that occur within a short period of time,
then the number of restarts due to incorrectly responding True should be small.

4.2 Correctness of Airline Reservation System

This system is not serializable in the usual sense. Suppose transactions
Ty and T, both decrement X and are executed concurrently at terminal i.
And suppose X=Min and X's flag at 1 equals True when T; and T; begin.
The following is an occurrable execution of the system, where L;j is the
execution log for the terminal and L. 1is the execution log for the central
DBMS.

E = {Li: Rflag, [X,i] Rflag,[X,i] wflag, [X,1i,False]

LC: Decrementl[X] Decrementz[x]}

E 1is occurrable since (a) it is well-formed relative to t--i.e., the UDBS
operations have been translated into EDBS operations in accordance with t;

and (b) it correctly uses the cc method--namely generalized 2PL at the central
DBMS. Nonetheless E is not SR. Since Decrementl[x] decremented X to
Min-1, it caused Wflagl to be executed. Since Decrementl[x] must precede
Decrement,[X] to have this effect, Tq1 must precede Ty in an equivalent
serial execution. But if Ty precedes T, in a serial execution, the Rflag2
would read the flag value written by Wflagj, contrary to what happened in L; -
Thus, there is no serial execution equivalent to E.

The problem, of course, is caused by the unsynchronized manipulation of
flags. To prove that the system is correct, we use the two part proof schema
to "factor out" this manipulation.

Let EX={all executions of the EDBS} and s={E€EX|E is well-formed
relative to t, and E's execution log for the central DBMS is seriall}. For
the S-part of the proof, we show that every occurrable execution in EX is
computationally equivalent to an execution in S.

Let E Dbe an occurrable execution in EX. By definition of occurrable,
E is well-formed relative to t and correctly uses generalized 2PL on its
operations at the central DBMS. Thus, by the generalized 2PL theorem, its
execution log, Lo, at the central DBMS is S8R. Hence, L, is equivalent to
a serial log at the central DBMS, and so E 1is equivalent to an execution in
S. This establishes the S-part.

Let I Dbe an input to the UDBS, and let EIEIS be equivalent to the
execution of TI. To prove the T-part we must show that E; implements a
serial execution E' of the UDBS containing the same transactions as I. Let
L, be E;'s execution log for the central DBMS. Every operation in L, is
defined in both the UDBS and the EDBS, and insofar as the central database is
concerned each operation has the same effect in both models. Thus E"= {LC}
is the desired serial execution, and the T-part is proved.

Since the S-part and T-part are both proved, correctness follows from the
decomposition theorem. :



81

5. A MIXED CONCURRENCY CONTROI, METHOD

This section presents a new concurrency control method in which 2PL and.
Thomas' write rule are combined. 2PL is used to synchronize Reads against
Writes and Writes against Reads, but not Writes against Writes. That is, in
this method, Rlocks and Wlocks conflict, but Wlocks do not conflict with each
other. Consequently, transactions can execute concurrently to completion even
if their writesets intersect.

The main technical problem is to assign timestamps to transections in a
way that is consistent with the synchronization achieved by 2PL. Section 5.1
presents an algorithm that does this, and Section 5.2 presents the method
itself.

5.1 Timestamp Generation Algorithm

Consider the following DBS. There are multiple TMs and DMs. The data-
base consists of data items x,y,%,...; associated with each data item is a
"lock timestamp", denoted Lts. The operations are any Ol""'on' and the cc
method is generalized 2PL.

When a transaction T obtains a lock on x, it simultaneously observes
Lts(x). When T has obtained all of its locks, it is assigned a unique time-
stamp ts(T) greater than the largest Lts it observed. When T releases a
lock on x it updates Lts(x) := max(Lts(x),ts(T)).

We claim that this algorithm produces timestamps that are consistent with
the synchronization induced by 2PL. More precisely, for every occurrable
execution E, there exists an equivalent serial execution E' of the same
transactions, such that for all transactions T; and Ta, if T4 precedes T
in E' then ts(Tj) <ts(Tj). We call this the timestamp assignment theorem.

For proof, let us define a locked-before binary relation over transactions:
T; locked-before Ty if for some x, T; locked x and at a later time T,
locked x in a conflicting mode. (T; must have released its lock by this
time.) It is a simple consequence of the proof of generalized 2PL that the
locked-before relation is acyclic, and any serial execution whose serial order
of transactions is a topological sort of locked-before is equivalent to the

original execution. The timestamp generation algorithm assigns
ts(Tj) > max{Lts(x)‘Tj locked x} and

Lts(x) 2 max{ts(Ti)|Ti has released a lock on x!.

Thus, if T; locked-before T., then ts(T.)>’ts(Ti), and so the timestamp
order of transactions is a topdlogical sort”of locked-before. Hence a serial
execution in timestamp order is equivalent to the original execution. Q.E.D.

5.2 Mixing 2PL with Thomas' Write Rule

Consider the following DBI. The UDBS in the “standard" one given in Ex. 1,
consisting of multiple TMs and a single DM. The database consists of X,Y,Z,...
The operations are Begin, End, Read, and Write. The EDBS contains multiple Tis



82

and multiple DMs. The database consists of X,y,%Z,..., and each data item has
an Lts. The operations are Read, Assign Timestamp (as per Section 5.1), and
Write using Thomas' write rule. Concurrency control is by generalized 2PL
with the commutativity table C3.

C3 Read Write
Read T F
Write F T

Note that Writes commute with each other, because of Thomas' write rule, and
s0 Wlocks do not conflict in this system. For each X in the UDBS database
one or more data items Xpreeer ¥ of the EDBS are copies of X.

The translation t from UDBS operations to EDBS operations uses the
concept of a local workspace [BG]. The local worksapce is a cache for data
read from the database and a temporary buffer for data to be written into the
database. Let WS be a local workspace. WS(X) denotes the value of X in
the workspace, if such a value exists; else it is undefined. t 1is defined as
follows: :

Begin F initialize WS :=¢
Read(X) b if WS(X) is defined then return Ws(X)
else begin
obtain Rlock on x., where x; 1is a cepy of X;
WS (X) := Read[xi];
return WS(X) end
Write(X,val) » begin
WS (X) := wval;
mark X "written"
end
End b begin
for each X marked "written" do
obtain Wlocks on all copies of X end;
Assign Timestamp to T, call it ts(T);
for each X marked "written" do
Write[x.,WS(X),ts(T)] for all copies X, of X end;
release all locks
end

The view function v is defined iff for all X, all copiles of X have the same
value . When defined, v maps xir>X, where X, is a copy of X.

Let EX={all executions of the EDBS} and let $={E€EX|E is well-formed
relative to t, E 1is serial, and E is in timestamp order}. It follows from
the timestamp assignment theorem that every occurrable execution is equivalent
to an execution of S. This establishes the S-part of the correctness proof.

The T-part has two steps. First, we show that an individual transaction
executing alone in the EDBS is a correct implementation of an individual UDBS
transaction. This amounts to verifying that the definition of t correctly
implements the UDBS semantics of Read and Write. This step holds by inspection.



83

Then, we show that a timestamp-ordered serial execution in the EDBS correctly
implements a serial execution of the same transaction in the UDBS. This step
is identical to the T-part of Ex. 4. Thus, the T-part is established, as is
the correctness of the system.

6. CONCLUSION

We have presented a structure for proving the correctness of concurrency
control algorithms that takes into account differences between the users'
view of the database system and its underlying implementation. The first step
is to model the users' view of the system and the underlying implementation as
independent database systems. We call these the "user DBS" and "execution DBS"
respectively. These systems are then integrated by defining two functions.
One is a "translation function" that translates transactions expressed in the
user DBS into transactions expressed in the executive DBS. The other is a
"view function" that maps states of the execution database (i.e., the real
database) into database states as seen by the user. .

This structure leads to a two part proof schema consisting of an S-part
and T-part. The S-part proof is similar to a standard serializability proof,
and essentially proves that the execution DBS is correct. The T-part considers
the relationship between the user and execution DBS's and proves that correct-
ness of the execution DBS is sufficient to attain overall correctness.

We have illustrated this proof structure on two new and fairly complex
concurrency control algorithms. In both cases the structure induced a
straightforward correctness proof. We take this as evidence that our schema
is helpful in understanding and verifying the correctness of concurrency
control algorithms.

REFERENCES

[BG] Bernstein, P.A., and N. Goodman, "Timestamp-Based Algorithms for Con-
currency Control in Distributed Database Systems", Proc. 6th Conf. on
very Large Databases, Montreal, 1980, pp. 285-300.

[BS] Bernstein, P.A., and Shipman, D., "The Correctness of Concurrency
Mechanisms in a System for Distributed Databases (SDD-1)", ACH Trans.
on Database Systems, Vol. 5, No. 1, March 1980, pp. 52-68.

[BSR] Bernstein, P.A., Shipman, D., and Rothnie, J., "Concurrency Control in
a System for Distributed Databases (SDD-1)", ACM Trans. on Database
Systems, vol. 5, No. 1, March 1980, pp. 18-51.

[BSW] Bernstein, P.A. Shipman, D.; and Wong, W.S., "Formal Aspects of
Serializability in Database Concurrency Control", IEEE Trans. on Soft-
ware Engineering, Vol. SE-5, No. 3, May 1979, pp. 203-215.

[EGLT] Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L., "The Notion
of Consistency and Predicate Locks in a Database System", Communications
of the ACM, Vol. 19, No. 11, November 1976, pp. 624-633,



84

[Papadimitriou] Papadimitriou, C.H., "Serializability of Concurrent Updates,
Journal of the ACM, Vol. 26, No. 4, October 1979, pp. 631-653.

[SLR] Stearns, R.E., Lewis, P.M. II, and Rosenkrantz, D.J., "Concurrency
Controls for Database Systems", Proc. 17th Annual Symp. on Foundations
of Computer Science, IEEE, 1976, pp. 19-32.

[Thomas] Thomas, R.H., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases", ACM Trans. own Database Systems, Vol. 4,
" No. 2, June 1979, pp. 180-209.



85

Concurrency Control Overhead or Closer Look at Blocking
Vs.
Nonblocking Coencurrency Control Mechanisms

D. Z. Badal

Department of Computer Science
Naval Postgradute School
Monterey, CA 93940

Abstract

In this paper we divide concurrency control (CC) mechanisms for distributed DBMS’s
(DDBMS) into three classes. One class consists of blocking CC mechanisms and two
classes contain nonblocking CC mechanisms. We define CC overhead and derive it for
conflicting and nonflicting transactions for each class of CC mechanisms. Since CC
overhead is dependent on CC mechanism only, it can be used as a metric for comparison
of CC mechanisms and as a measure of CC load on DDBMS resources. We also describe
two new nonblocking distributed concurrency control mechanisms which use the concept
of multiple data object versions. One is based on time stamp ordering of transaction
execution and the other is based on nonserializable execution detection and recovery to
serializable execution. We compare both with distributed two-phase locking.

1. Introduction

Over the last few years the importance of distributed DBMS’s has been widely
recoghized. Consequently there has been considerable research on the most important
aspect of distributed DBMS--concurrency control (CC). This paper argues that despite
numerous papers on concurrency control [THO76, THO79, BER78, ASL76, STQ78, BAD78,
ELL77, LAM76, LIN79, KUN79, REE78, RIE79, MOL79, BAD79b, KAN79, LEL78, HER79]
there are very few generic CC mechanisms or algorithms and as a result the majority of
CC proposals are extensions, variations or modifications of these. This is not to say that
such CC proposals are less original. What we are arguing here is that most CC
mechanisms are dissimilar to a far less degree than they are similar and this fact then

suggests that one should attempt to classify them and to compare the properties of each
class.



30

In this paper we divide CC mechanisms into three classes. Our CC classification
criteria are based on conventional operating system concepts of mutual exclusion and
synchronization, the degree of concurrency and the transaction serializability enforcement
policy concurrency control mechanisms use to guarantee that the interleaved and
concurrent execution of transactions is the same as if the same. transactions were
executed in some serial order, i.e, one after another. Such policy can be to avoid,
prevent, or detect and resolve nonserializable executions. By the degree of concurrency
we mean the degree of concurrent execution of conflicting transactions. For example, if
two executing transactions need to access at the same time a set of data objects, then
they will conflict. In this scenario the degree of concurrency is the number of
transaction concurrent actions allowed by the concurrency control mechanism on the data
- objects on which transactions conflict or interfere. More precisely, the degree of
concurrency as defined in [BAD80] is an average number of data objects exclusively
held by a transaction during its execution time. This definition reflects the fact that if
transactions interfere over the set of data objects, then the number of interfering
transactions which cannot execute concurrently is directly proportional to the number of
data objects exclusively held by one transaction during its execution.

The second part of this paper describes two new distributed nonblocking CC
mechanisms. We also derive CC overhead for each class of CC mechanisms. The CC
overhead is defined in terms of synchronization messages and the resulting delay. We
derive CC overhead for non-interfering transactions and two cases each of two
conflicting transactions. We consider the analysis of two transaction conflicts an
appropriate demonstration of the differences among CC mechanism classes. Moreover,
some recent results [GRA80] indicate that the probability of three or more transactions
conflicting at the same time is extremely low.

2. Classification of CC Mechanisms

There are a number of possible classifications of CC mechanisms and it is not easy
to choose one. We consider here the classification introduced in [BAD79a] which is
quite consistent with the traditional operating system concepts. We distinguish three
basic classes of consistent CC mechanisms. (A consistent CC mechanism is serializable or
results in database states identical to those due to some serial execution, called
serialization order, of the same set of transactions.) The MES or mutual exclusion set
class includes any CC mechanism that satisfies the following characteristics: transaction
can execute only if it has an exclusive access, at some time t, to all data objects at
which it writes and a shared access to all data objects it reads. In other words,
concurrent execution of transactions is based on a mutual exclusion over the set of data
objects accessed by one transaction. Two techniques employed to achieve mutual
exclusion over the set of data objects are two-phase locking [ESW76, GRA78, STO78,
ELL77], and sequence numbers (or time stamps) [THO79, THO76, ROS78]. Another



8/

characteristic of MES class is that the serialization order is always determined at
execution time and it cannot be a priori determined or guaranteed. MES class can be
further divided by other classification criteria such as centralized or decentralized
control and processing. Typical examples of MES class can be found in [STO78, GRA78,
THO79, ROS78, ELL77, ALS76, MOL79, KUN79]. '

The second class of CC mechanisms is S or synchronization class. The usual
technique to achieve synchronization involves the use of a unique sequence number
(often called a time stamp) assigned to each transaction. The distinct property of S class
CC mechanisms is that the transactions must execute in the order of their time stamps,
and thus if necessary an a priori ordering of transaction execution can be guaranteed.
Again, one could further classify S class according to the way sequence numbers are
generated, whether the transaction can have its sequence number changed, etc. The
typical representation of S class CC mechanisms include [LAM78, BAD78, LEL78, BER7S,
REE78, KAN7S9, HER79] We note here that although the CC mechanism in [REE78] is
based on time stamp order, in execution it is fundamentally different from other CC
mechanisms. The S class of CC can be divided into two subclasses: strong and weak
synchronization. The strong S (or SS) subclass [BAD78, KAN79] requires that
transactions execute in the order of their original sequence numbers. This means that
transactions should be rejected only because they violated integrity constraints. In
another words, no transaction executing under SS class should be rejected due to
synchronization. We believe a demand exists for a type of CC mechanism that can
guarantee an a priori ordering of transaction execution. For example, most real time
DBMS’s, like air traffic control and command and control, would require strong
synchronization. The weak synchronization [BER78, LAM78, LIN79] (or WS) subclass still
requires the execution of transactions in the order of their sequence numbers but the
sequence numbers can be reassigned. Thus transactions can be rejected because of
synchronization or integrity constraints violation. Therefore, the order of transaction
execution cannot be guaranteed. The SS subclass requires data object preclaiming, i.e.,
data objects are known and claimed before transaction execution; otherwise SS class will
cause serial execution of all transactions. The WS subclass allows run time claiming of
data objects.

The third class of CC mechanisms, called MEQ is based on the mutual exclusion over
one data object at a time and a set of sequencing rules. An example of MEO class CC
mechanism can be found in [BAD79b] and in this paper.

The above classification scheme reflects the degree of concurrency and the degree
of optimism about the probability of transaction conflicts, i.e, a way in which each CC
class minimizes CC overhead associated with conflicting and nonconflicting transactions
and in a way in which each CC class guarantees serializable (SR) execution. The MES
class simply prevents non-SR executions by a pessimistic conflict resolution policy which



88

considers almost any interference as a source of non-SR execution. The S class also
prevents non-SR executions by using a less rigid but still pessimistic conflict resolution
policy (time stamp execution order). Finally, the MEQ class allows non-SR execution to
occur and then to recover to SR execution by using an optimistic transaction conflict
resolution policy. Such policy is optimistic in a sense that it assumes that not only
transactions conflict infrequently but also that many transaction interferences do not
necessarily result in non-SR execution.

The MES class is the least optimistic and provides the lowest degree of concurrency,
while the MEO class is the most optimistic and provides the highest degree of
concurrency. In order to explain this clearly we use the following example. Let’s
consider two transactions T[i] and T[j] which arrived a short time apart and which
access the same set of data objects 1, 2, 3 and 4. As shown in [BAD78b] the sufficient
and necessary conditions for SR execution of transactions can be expressed in terms of
sequencing the transaction actions on data objects they access. The execution of two
interfering transactions is SR if T[i] and T[j] executed in the same order on all data
objects on which they interfered in read-write or write-write manner. Now consider two
cases of T[i] and T[j] execution. First suppose that T[i] must write in the order 1, 2, 3,
4 and T[j] in the opposite order. Then if T[i] and T[] execute under the MES, MEO or S
class of CC mechanisms, they can execute serially, i.e, one only after other terminated.
However, if T[i] and T[j] access 1, 2, 3 and 4 in the same order, then MES class of CC
will again force serial execution. The § and MEQ class of CC would allow one transaction
execution to follow another just one data object behind. However, this case could occur
in the S class only if two conditions are satisfied. First, the sequence numbers i, j must
differ by one increment, i.e, i<j or j<i and there is no sequence number k such that k<j
and i<k or k<i and j<k. Second, the transaction executed later must have a sequence
number larger that the preceding transaction. As this is not generally the case, the S
class rule requiring transactions to execute in order of their time stamps forces any
transaction accessing some data object to follow one of two rules: wait on accesses by
all transactions with smalier sequence numbers, or access the object and then either
reject any transaction with a smaller sequence number or, if the access by the smaller
number is allowed, rollback.

Thus, although the S class of CC mechanisms in principle would allow the trailing
execution of two transactions, it cannot do so fully because of the sequence number
transaction execution rule and the uncertainty about adjacency of sequence numbers if
they are generated at each site, i.e, in distributed manner. To explain this phenomenon
in another way, in MES class CC the sequencing decision is essentially local to the
interfering transaction, while in S class it can be either global to all transactions, as in
[LAM76, BAD79, KAN79, LEL78, HER79], or partially localized, as in [BER78].

The MEQ class of CC allows transactions to trail each other because their



89

interleaving is constantly checked for its serializability [BAD79b]. As in MES class, the
sequencing decision is local to the interfering transactions only, and thus it is not
affected by other transactions in the system.

3. Concurrency Control Overhead

In order to investigate CC overhead for each CC class we must do ihree things.
First, define CC overhead. Second, choose or construct a representative CC mechanism
for each class. Third, select some scenario. The scenario we will consider here is a
partially relicated n-node DDBMS. We will assume that our hypothetical transaction
running under CC class representative CC mechanism accesses e nodes for transaction
execution and r nodes for the update of replicated data objects.

We define two types of CC overhead. One type, called CC no-conflict, is a constant
overhead per transaction due to the CC mechanism. It has three inseparable aspects. One
is CPU and 1/0 load at each node (due to CC information processing such as messages,
locks or time stamps) and the network load (due to CC messages). The second aspect is
a delay experienced by the transaction before CC mechanism allows it to execute. CC
delay has two parts. One is the communication delay due to CC messages and their
sequencing. The second part is due to sharing of DDBMS resources with other
transactions or other processes. The second part of CC delay can be evaluated only by
a simulation or possibly by a detailed analysis using standard queueing theory approach.
This is so because the second part of CC delay is a function of several system and load
parameters. However, the first part of CC delay is the function of CC mechanism only
and can be easily established for most CC mechanisms. We will therefore consider the
first part of CC delay only and from now on we refer to as the CC delay. The third
aspect of CC no-conflict overhead is the number of CC messages (and their sequencing)
needed to guarantee a robust and serializable execution of the transaction. The CC delay
is intimately related to the number of CC messages and their sequencing. This paper
considers only the CC messages and the associated delay as the measure of CC no-
conflict overhead.

The second type of CC overhead, called CC conflict overhead is associated only with
conflicting transactions and it consists of the same three aspects as the CC no-conflict
overhead. Again as in the case of no-conflict CC overhead we consider CC conflict
overhead only in terms of CC messages and corresponding delay. We consider CC
conflict overhead for all three classes of CC mechanisms in two simple scenarios. Each
scenario consists of two interfering transactions T[i] and T[j]. The transactions T[i] and
T[j] access (or read and write) three data objects 1, 2 and 3 at nodes 1, 2 and 3. In
scenario | they access 1, 2 and 3 in the reverse order and in the scenario 2 in the same
order. In each scenario both transactions arrive a short time apart.



90

In order to analyze CC overhead for each class of CC mechanisms we must select
representative for each class. For MES class we use distributed two-phase locking and
for MEO class we use distributed CC mechanism described in [BAD79b]. For S class we
analyze distributed nonblocking CC mechanism proposed in this paper.

We consider here CC mechanisms which produce serializable executions and have a
minimum degree of robustness obtained by using two-phase commit (2PC) or its
equivalent.

3.1 MES Class CC Overhead

A description of distributed two-phase locking (D-2PL) CC mechanisms has
appeared in several papers [GRA78, STO78, RIE79, LID79, GRA80a] and we repeat the
basic rules:

1. each node has a concurrency controller managing data local to that site

2. any transaction which reads data object can read only after it has placed read lock
~ either on the unlocked data object or read-locked data object

3. any transaction which needs to write on data object can do so only after it write-
locked the unlocked data object

4. any transaction can unlock any of its already read-locked or write-locked data
objects only after it read-locked or write-locked all data objects needed for its
execution

The transaction execution under D-2PL CC mechanism with centralized two-phase
commit (2PC) has two steps:

1. Transaction locks at e sites and executes at e sites

2. Transaction coordinator sends r "lock and prepare to commit and update” messages
and (e-1) "prepare to commit and to delete  lock" messages during the first phase of
the 2PC and waits for acknowledgement. During the second phase of 2PC the
transaction coordinator sends (e+r-1) "commit (or abort) and  delete locks" messages.
After all sites acknowledged previous messages the coordinator site commits (or aborts)
and releases its locks.

Thus the CC no-conflict overhead for D-2PL is as follows:

CC delay = 4T



91

number of CC messages = 4(e+r-1)

where T is the average communication delay between one sender and several
destinations. :

As mentioned earlier, we consider CC conflict overhead for all three classes of CC
mechinisms in two simple scenarios. We consider the conflict of two transactions only.
The transactions T[i] and T[]} access three data objects at nodes 1, 2 and 3. We assume
each access to be exclusive, i.e.,, at each node transactions read and write. In scenario 1
they access 1, 2 and 3 in the reverse order, and in scenario 2 in the same order. In
each scenario both transactions arrive a short time apart. In scenario 2 the transaction
which arrived later will have to wait and thus the D-2PL conflict overhead for scenario 2
consists of the delay 3DELTA T + 4T, where DELTA T is the average processing time at
each node and T is the average delay between one sender and several destinations. The
delay 4T is due to 2PC. In scenario 1 the CC conflict overhead, assuming a centralized
deadlock detection and resolution, is as follows. First, the conflicting transactions must
wait for some fixed period of time, say Tw, and then report to the deadiock detector
(delay 2T) which resolves the deadlock by rolling back one transaction. Thus the CC
conflict overhead in scenario 2 consists of delay Tw + 2T + TROL, where TROL is the
transaction rollback time. Assuming centralized deadlock detection the number of CC
messages is 4 (2 from each transaction to deadlock detector) + 2 (rollback of one
transaction from one site when deadlock occurred at site 2). By averaging CC conflict
overhead from both scenarios we obtain:

CC delay = 1/2(6T + 3 DELTA T +Tw + TROL)
number of CC messages - 3

3.2 S Class CC Qverhead

The S class is not easy to analyze because two radically different time stamp based
strategies can be used to keep database consistent. One generally accepted strategy is
to execute updates as soon as possible so that the incoming transactions are not
delayed. In another words, such strategy results in a continuous adjustments to keep
database consistency. Most of S class CC mechanisms use this strategy. The second
strategy proposed in [BAD78] is to insure database consistency whenever it is
necessary, e.g, when read on data objects with a given time stamp is to be executed all
updates on that data object with smaller time stamps are fetched and executed. Such
strategy emphasizes the fact that it is not important that the database is consistent
continuously all the time as long as it is guaranteed that each transaction executes on
consistent data.



92

in this paper we will analyze only the first strategy. Even such analysis is difficult as
there are some C class CC mechanisms which are up to some degree adaptive, i.e., their
CC overhead can be decreased (or increased) for example, by distributing and clustering
primary copies at different sites or by distributing data and concurrency control at
different sites as in SOD-1 [BER78] Since in the MES class of CC we have analyzed
two-phase locking which does not require any a priori assumptions, as for example, a
priori known set of transactions or guaranteed FIFO communication network protocol we
limit S class analysis to CC mechanisms which also do not require any a priori restrictive
assumptions. The S class CC mechanism we investigate is described for the first time in
this paper. It is based on the concepts of data object logs as described in [BAD739b],
multiple versions of data objects and the enforcement of time stamp ordering of
transaction execution. The proposed algorithm allows transaction rejection (due to
integrity constraint violation or due to synchronization) and its resubmission, and
therefore it belongs to a WS subclass of CC mechanisms. The CC mechanism is made
robust by using two-phase coramit and it can be described as follows.

Each named data object (D0) in the database has associated with it a log, called DO
log. DO log contains entries by each transaction which read or updated a given DO. DO
log entry consists of transaction ID, its time stamp, the list of fields and records (or
tuples and attribute fields) transaction read or updated, and the status of read or update
(temporary, aborted, committed). Transaction generates DO log entry after it has
executed access to a given DO and it deletes its DO log entries during the two-phase
commit (2PC). CC mechanism described here is nonblocking as opposed to any CC in
MES class which are.blocking. That is to say in MES class CC mechanisms one transaction
can block or prevent other transactions from accéssing the data objects (DO) it needs.
The general idea underlying proposed S class CC mechanism is that each transaction
generates a new version of data objects it updated. Such versions are temporary until
transaction is committed and then they become permanent. However, temporary versions
are seen by any other transaction as new versions of data objects. Basic rule is that
new temporary version of DO can become permanent only after the preceding temporary
version becomes permanent. For example, if transaction T1 generated version DO[T1] of
BO and T2 generated version DO[T2] of DO from DO[T1], then DO[T2] can become
permanent only after DO[T1] becomes permanent. In other words, each transaction makes
its output immediately available to any other transaction and therefore, it does not block
other transactions. Since the execution of transactions must occur in time stamp order
only serializable executions are generated.

After the transaction made an access to DO or its latest version, and generated DO
log entry, the DO log algorithm pushes DO log entry onto DO log. DO log is stack-like
structure with push operation only. Deletion of DO log entries can occur in any order.
Any push operation triggers the following actions. New DO log entry is checked whether
it conflicts with other DO entry below it in the DO log. if it does, the time stamps of DO



93

log entries are compared and out-of-time-stamp execution can be detected for update-
update or update-read conflicts if the new DO entry has smaller time stamp. If out-of-
time-stamp execution is detected, the transaction which generated the latest entry to
DO log is rejected. This means that all its so far generated DO log entries are marked as
aborted during 2PC.  Consequently, any other transaction which used the oulput of
aborted transaction will be aborted as well. However, if no out-of-time-stamp execution
is detected, then DO log algorithm allows the transaction to proceed in its execution.
After the transaction finished its execution, it will use transaction coordinator and 2PC to
post the updates to replicated DO’s as well as to check at DO logs of replicated DO’s
whether the updates are in the time stamp order. It will also check by the first phase of
2PC whether the preceding conflicting DO log entries are marked as commit or abort.
_ The acknowledgement of the first 2PC message is generated only after preceding
conflicting DO log entries are either comitted or aborted. After the acknowledgement
transaction coordinator either aborts (if any preceding conflicting transaction aborted or
if any site decides to abort this transaction) or it commits (if no out-of-time stamp
execution is detected and all preceding conflicting transactions committed). If transaction
commits, then its updates are made permanent. The same message from the coordinator
(i.e., the 3rd message of 2PC) to all sites accessed by the transaction marks DO log
entries as committed (or aborted). DO log algorithm responds to the third message of
2PC (commit) by checking whether there is any DO log entry (i.e, below or above in the
stack) which conflicts with committed entry. If there is none, the committed entry is
deleted (or marked as deleted if it is to be used for system recovery). If there is a
conflicting entry, then the committed entry can be deleted only after the conflicting
entries are marked as committed or aborted. Finally, all involved sites acknowledge the
3rd message of 2PC and the coordinator site deletes (or markes as deleted) it DO log
entries. The DO log algorithm responds in the same fashion to "abort DO log entry”
messages. '

As can be seen from the description of this CC algorithm, the time stamps are being
used for resolution of transaction conflicts and for serializability of conflicting transaction
execution. The DO logs are dynamically changing and their size is proportional to the
frequency of transaction conflicts. Described CC mechanism is optimistic one as it
assumes that the conflicting transactions will generate an out-of-time-stamp. execution
with probability lower or at worst equal to the probability that they generate execution
in the time stamp order. This implies that at worst case 50% of conflicting transactions
will be aborted and executed serially (i.e., as if they executed under MES class of CC).
However, at least 50% of conflicting transactions will execute in much shorter time
because of nonblocking character of this CC mechanism. We want to point out that
although the proposed CC mechanism is optimistic it is not completely optimistic because
it uses time stamp ordering for transaction conflict resolution. This to say that not all
out-of-time-stamp executions are necessarily nonserializable. For example, assume that
transaction T1 updates DO’s 2, 3 and 4, and T2 updates 1, 3 and 5. Suppose they



Y+

conflict in out-of-time-stamp order at 3. Because of time stamp order execution rule, T1
or T2 or both will be aborted even if their execution is serializable. Of course, if T1 and
T2 executed at 3 in time stamp order, then they can execute concurrently.

Assuming the same T1 and T2 executing under MES class of CC then T1 or T2 will
be blocked at 3 and will have to wait for at least 3T + DELTA T. We note that the CC
mechanism which is truly optimistic, i.e,, one which is based on nonserializable detection
and recovery has been proposed in [BAD79b] and is also described in this paper later
on. If T1 and T2 should execute under such truly optimistic CC mechanism, they could
execute concurrently regardless at what order they accessed data object 3.

Now we derive CC overhead for the proposed CC mechanism. No-conflict CC
overhead is easily seen to be: '

CC delay = 4T
number of CC messages = 4{e+r-1)

The conflict overhead for scenario 1 when T1 and T2 read and update and conflict at
sites 1, 2 and 3 in the opposite order is as follows. Let’s assume that T1 has smaller
time stamp. Then T1 can detect out-of-time-stamp order execution at 1, 2 or 3, where
detection at 1 or 3 are extreme cases. We consider therefore detection of out-of-time-
stamp execution at 2 as an average CC overhead. When T1 reaches site 2 and detects
out-of-time-stamp execution (i.e,, T2 already made DO log entry at site 2) Tl is aborted
by two-phase commit mechanism from site 2. T1 will have to be resubmitted with a new
or the same time stamp.

if T2 generated new DO version at site 1 from DO version generated by T1, then T2
will abort when it attempts to commit. T2 then has to be resubmitted with a new or old
stamp. Of course, T1 and T2 resubmission could lead to a cyclic restart and rejection.
We assume here that some simple method can prevent such situation, e.g, the system
can delay one transaction until the other one commits. However, if T1 is aborted at site
1 before T2 generates new version of DO from T1 output, then T2 can commit. Let’s
assume the former case and then CC delay is 3T (time T2 needs to detect that Tl
aborted and to abort itself). The number of CC messages is 3 (due to T1 abort) + 6 (due
to T2 abort).

The conflict CC overhead for scenario 2, when T1 and T2 read and write and conflict
at sites 1, 2 and 3 in the same order is as follows. {f T1, which has smaller time stamp,
reaches site 1 before T2, then T2 can follow T1’s execution one site behind. This means
that T2 can commit immediately after T1 commits. The only CC overhead is the delay
DELTA T experienced by T2. There are no CC overhead messages in scenario 2.



95

Averaging the CC conflict overhead from both scenarios we obtain:
CC delay = 1/2(3T + DELTA T)
number of CC messages = 1/2(3 + 6)

33 § Cla‘ss Overhead Revisited

Comparing CC overhead of MES and S class we can see that they are quite similar.
In particular for non-conflicting transactions, which are vast majority in most applications,
the CC no-conflict overhead is identical. Of course, the main reason is the use of two-
phase commit (2PC) for insuring the robustness. 2PC is a fault-tolerant communication
protocol intended to tolerate some-faults while still performing the intended function
which is to ensure atomic property of one operation at different sites as, for example,
update of multiple copies or release of locks or atomicity of transaction itself. Thus 2PC
although not designed for or derived from the two-phase locking (2PL) is nevertheless
very natural way of implementing robust 2PL. The point is that 2PL and other MES class
CC mechanisms are blocking mechanisms when by locking some data object other
transactions are blocked or prevented from accessing the same data object. Since 2PL is
blocking it is important that once the transaction commits the locks are explicitly deleted
as soon as possible and in a reliable fashion. 2PC serves very well that purpose.
However, S and MEQO classes of CC mechanisms are nonblocking and therefore, there is
no pressing need to use 2PC in order to achieve the same degree of robustness. As a
matter of fact the use of 2PC for nonblocking CC mechanisms is a major drawback for
such mechanisms as 2PC negates their inherent advantages and makes them, at least in
terms of CC overhead, equivalent to blocking CC mechanisms. Of course, the major
advantage of nonblocking CC mechanisms is that they are nonblocking and therefore,
there is no need to delete (or to mark as deleted) DO log entries (or other structures)
used for serializability as soon as possible after transaction terminated. Notice that the
proposed CC mechanism can use one structure, DO logs, for recovery and concurrency
contral as well. Onthe contrary, blocking CC mechanisms (NEQ class) use two distinct
structures--lock- tables for concurrency control and logs for recovery.

Considering CC mechanism described in the previous section of this paper we will
address the following problem. Can we modify this algorithm in such way that its
robustness is preserved but its CC overhead is decreased by eliminating 2PC? The
answer to this question is positive and we indicate here what modifications are needed.
- Consider the following modifications. Let’s assume nonconflicting transaction Tn. Once Tn
terminated execution, i.e, it did not execute out-of-time-stamp order at any DO it
accessed, Tn instead of committing by 2PC its DO versions (as permanent DO versions)
will just change its status at the site it entered and will exit the system (called initiating
site) from executing to terminated. This can only happen if the initiating site knows that



96

conflicting preceding transactions already committed. This can be accomplished by CC
overhead messages to such transactions initiating sites. Then Tn will use the ongoing
network traffic to piggyback its "delete my DO log entries and commit my DO versions.”
For example, if later on some other transaction T1 (with larger time stamp) should
interfere with Tn's not yet deleted DO log entry, T1 can interrogate Tn’s initiating site
(DO log entry now must contain the address of that site) about Tn’s status. This can
happen either when T1 "bumps" into Tn’s DO log entry for the first time or after T1
terminated but before T1 can be released from the system. In another words, T1 has to
know whether Tn terminated so that the DO versions it computed from Tn versions can

be made permanent by piggybacking its "delete DO log entries and commit my DO
~ versions." We note ‘here that blocking CC mechanisms cannot use piggybacking of
messages because locks must be deleted as soon as possible.

We now analyze 2PC protocol. A traditional concept of 2PC allows any site to
abandon transaction which already executed at that site but it has not committed yet.
The major reason for such abort by the site is blocking character of 2PL. In another
words, as transaction already locked and executed at such site (and therefore, there is
no reason to abort because of program execution failure at that site), then the only
reason the site would want to abort is that the resources blocked by a given transaction
have to be released. Therefore, in 2PC the first message to all sites involved in
transaction execution is intended to verify that none of the sites unilaterally aborted
transaction. Assuming that short duration site failures do not constitute the reason to
abort the transaction, then the first phase of 2PC in 2PL is needed solely to verify that
the transaction was not aborted at any site and that its resources at that site are still
sequestered [LID79] or blocked. The second phase of 2PC is then intended to notify
each site either to abort or to commit, i.e, to make transaction generated output
available to user or end other transactions. (Good description of what types of

transaction output should be released or deferred until commit can be found in
[GRA80a])

We shall now argue why the proposed CC mechanism does not require 2PC while
still being robust. In the proposed CC mechanism transaction output becomes available
immediately after the transaction executed at a given site. (In the proposed CC
mechanism there is no equivalent of traditional 2PC commit point.) Moreover, since the
proposed CC mechanism is nonblocking, i.e, it does not block site resources after
transaction executed at that site, then there is no reason why the site should abort the
transaction. Again we assume that site short duration failures do not constitute the
reason to abort the transaction at that site. Thus the proposed CC mechanism assumes
- that once the transaction terminated successfully its execution, then in terms of 2PC all
of its sites already agreed to commit. Therefore, the proposed CC mechanism must only
guarantee that the second phase of 2PC is performed. This means that "delete (or mark
as deleted) my DO log entries and commit (i.e., make permanent) my DO versions”



97.

messages to each site involved in transaction execution are delivered reliably but not
necessarily as distinct messages. Because of nonblocking character of the proposed CC
mechanism such messages and their acknowledgements can be piggybacked on the
ongoing network traffic. If the messages are piggybacked, then in the worst case the CC
no-conflict delay is 2T and there are 2k messages, where k is a number of transactions
which are terminated but whose DO entries were not deleted yet. In the best case there
is no CC no-conflict delay and no CC messages. Assuming the best and the worst cases
occur with the same probability then the average CC no-conflict overhead is:

CC delay =T
number of CC meésages =k
If the messages are not piggybacked, then no-conflict CC overhead is:
CCdelay = 2T + T = 3T
number of CC messages = 2(e+r-1) + k

CC conflict overhead for the modified version of time stamp based § class CC
mechanism described in this section can be derived as follows. Consider scenario 1 when
two transactions, say T1 and T2, read, update and conflict at sites 1, 2 and 3 in opposite
order. Suppose that first out-of-time-stamp execution occurs at site 2. Then transaction
which made detection will abort itself by changing its status at its initiating site to
aborted. The second transaction when it terminates sends "what is your status"
messages to the initiating site of transaction with which it as far as it knows conflicted in
the time stamp order (i.e, one which precedes it in DO logs). Acknowledgement of such
message in scenario 1 is "aborted" message and the transaction changes its status to
aborted as well. Of course, the change of transaction status to aborted means that the
aborted transaction will piggyback on ongoing network traffic "delete my DO log entries
and my DO versions” messages to all sites where it executed. Assuming ‘the above
described sequence of events (i.e, Tl detects out-of-time-stamp execution and sends
abort to its initiating site /delay T and 1 messages/; T2 executes at site 1 (or 3)
resulting in delay DELTA T and then T2 exchanges 2 messages with initiating site of T1
/delay 2T/) the CC no-conflict overhead is:

CC delay = 3T + DELTA T
number of CC messages = 3
CC conflict overhead for scenario 2 is:

CC delay = DELTA T



98

number of CC messages = O (as both T1 and T2 terminate at the same site 3)
Averaging CC conflict overhead from both scenarios we obtain:

CC delay = 1/2(3T + 2 DELTAT)

number of CC messages = 1/2(3)

3.4 MEOQ Class CC Qverhead

MEO class consists of nonblocking CC mechanisms. This means that their output is
available to any other process during transaction execution. The MEO class CC
mechanism we analyze here is described in [BAD79b] and it differs from the one
described in section 3.3 of this paper in one major respect--it is not based on time
stamp order of transactions execution. It is based on nonserializable execution detection
and recovery to serializable execution. This gives the MEO class higher degree of
concurrency because some out-of-time-stamp order executions which are serializable
and which would be rejected by S class CC mechanisms can be realized under the MEQ
class of CC.

The algorithm can be described best by comparing it to the CC mechanism described
in section 3.3 of this paper. Both CC mechanisms use DO logs. However, the MEO class
algorithm detects nonserializable executions as follows. When transaction Tn made an
access to DO it pushes DO log entry onto DO log. Such entry consists of Tn’s unique 1D,
Tn’s initiating site (i.e, the site where Tn enters and exits the system), list of records
and fields Tn read or updated, and their status (temporary, aborted, committed), and so
far accumulated Tn’s conflict history. DO log algorithm checks whether there is any DO
log entry conflicting with new entry. If there is, then Tn creates its conflict history for a
given DO. The conflict history is the list of conflicting transactions reads and updates in
the same order as they are in DO log. At the next DO Tn deposits its so far accumulated
conflict history and updates it from that DO. The idea is that as Tn hops from one DO (or
site) to another it deposits at each DO its cumulative conflict history which says with
what other transactions Tn conflicted, where and how (i.e, read-read, read-update,
update-update).

Since every transaction generates its conflict history then if two transactions, say T1
and T2, conflict they can determine at once, or when both terminated, whether they
generated nonserializable execution. To explain this consider T1 and T2 updating DO’s 1,
2 and 3 in the same and opposite orders. As long as, say, Tl precedes T2 in any
update-update, or read-update conflict at all DO’s, then the execution is serializable. If
T1 and T2 execute at 1, 2 and 3 in the same order, then both can immediately detect
nonserializable execution. Consider the following scenario. Tl updated 1 before T2.



99

However, at 2 T2 got ahead of T1 and updated 2 before T1. At this point T1 can decide
from T2’s conflict history (which is a part of T2 DO log entry at 2) that T1 and T2
generate nonserializable execution. T1 can also decide from its and T2’s conflict history
what is the best way to restore serializable execution. In our scenario T1 sends T2 "roll
back up to 2" message. When T2 reaches 2 T1 and T2 can resume execution at 2 in
correct order.

However, if T1 and T2 execute at 1, 2 and 3 in the opposite order, then T1 and T2
can detect their nonserializable execution only after they terminated as follows. After
T1 and T2 terminated they both know that they conflicted in a serializable way in 2 DO’s
(either 1, 2 or 2, 3). However, T1 neither T2 know whether they conflicted at the 3rd
DO. One way they can find out is by exchanging their conflict histories at their initiating
sites (where they return after the computation). This exchange will enable their partial
roll-back and recovery to serializable execution. (More detailed description of CC

mechanism behaviour when more than two transactions conflict can be found Appendix or
in [BAD79b])

Of course, another way to find out whether T1 and T2 generated nonserializable
execution is by using two-phase commit when upon termination each transaction would
check at each site for nonserializable execution and for termination (or commit) of
preceding interfering transactions. For example, consider T1 and T2 executing in the
opposite order. Let’s assume that T1 and T2 do not generate their conflict histories.
When T1 or T2 terminate they can make their temporary version permanent by using 3
messages of two-phase comit protocol. That is to say the inititating site of T1 or T2
sends one message to each site it accessed. Such message is acknowledged and a
relevant subset of DO log is returned also. Then the initiating site can decide whether
its transaction a) generated nonserializable execution, b) has to wait for termination of
preceding transaction in order to determine serializability of its execution.

Assume that T1 terminates first and tries to commit. From the first message of 2PC
and its acknowledgement Tl can determine that it conflicted with T2, i.e,, T2 preceded
T1 at some DO. Therefore, before T1 can make its output permanent, it must wait for
T2 to make its output permanent. However, T2 when it attempts to commit will detect
nonserializable execution and will initiate recovery to serializable execution. CC
overhead for 2PC variation of MEO class CC mechanism is essentially identical to the CC
overhead of time stamp based S class CC mechanism described in section 3.2.

We want to emphasize that T1 and T2 can detect nonserializable execution in two
equivalent ways. One is during 2PC and the other is by a) transaction conflict history
mechanism, and b) by communication between transaction initiating sites. Obviously in
terms of CC overhead the second way is much more effective.



100

2PC is used to make the update of multiple copies to appear as an atomic action,
i.e., either all updates are installed or none. In the CC mechanism proposed in [BAD79b]
and also described here, the transaction FORK operation, as multiple copy update, is
seen as a FORK of transaction process which then must JOIN at transaction initiating site.
There the transaction can decide whether all updates have been posted (as temporary
ones) and whether it generated serializable execution (either immediately or after
waiting for preceding conflicting transaction(s)).

We now derive CC overhead for the S class CC mechanism proposed in [BAD79b]
and also described in this section. The mechanism uses DO logs, transaction conflict
histories, initiating sites communication, deletion of DO log entries and commit of
temporary DO versions by piggybacking on ongoing network traffic. The CC no-conflict
overhead is in the worst case 2T and in the best case none. 2T is due to "virtual"
conflicts when executing transaction "bumps” into undeleted DO log entries of k
terminated transactions (2k messages). Assuming the best and the worst cases to occur
with the same probability, then the average CC no-conflict overhead for MEQ class is:

CCdelay =T
number of CC messages = k

MEO class CC conflict overhead for scenario 1 is as follows. Tl and T2 reading,
updating and conflicting at sites 1, 2 and 3 in opposite order will have to terminate first
before detecting nonserializable execution. Assume that T1 terminated first and T2
during T. Then the detection of nonserializable execution occurs by T1 talking to T2
initiating site after T2 terminated and by inspecting each other’s conflict histories.
Resulting CC delay is 2T and 2 messages are involved. Scenario 2 generates CC delay
DELTA T and no messages. By averaging the CC conflict overhead from both scenarios
we obtain: '

CCdelay =T+ 1/2DELTAT
number of CC messages = |

4. Conclusion

In this paper we have analyzed three distributed CC mechanisms belonging to three
different CC classes in terms of CC overhead, i.e, the number of CC messages and
corresponding delay. We have also shown that they differ in the degree of concurrency
they provide. We can conclude that in terms of CC overhead and degree of concurrency
the nonblocking CC mechanisms outperform blocking CC mechanisms, or in another words,
MEQO class outperforms S class which outperforms MES class. However, the results



101

derived in this paper, although useful for CC mechanisms comparison, must be
interpreted within the distributed database system and application parameter space as
done in [BAD80a, MOL79, RIE79]. This is to say that although CC is the most important
mechanism of distributed DBMS the derived results should not be interpreted as an
absolute indication of distributed DBMS performance. For example, even if MEQ class
provides the lowest CC overhead the distributed DBMS might perform better under
another CC mechanism for some applications or networks. In other words, as indicated in
[BAD80Oa] each class of CC mechanisms might be most suitable for certain classes of
applications and DBMS system parameters.

5. Acknowledgement -

The author would like to acknowledge support of the NPS Foundation Research
Program for this work. The author also wishes to express his appreciation to one of the
referees for his valuable comments.

References

[ALS76] Alsberg, P. et al. "Multi-copy resiliency techniques,” Center for Advanced
Computation, Report CA 6202, University of lllinois, Urbana-Champaign, May 1976,

[BAD78] Badal, D. Z. and Popek, G. J. "A proposal for disttributed concurrency control
for partially replicated distributed databases,” Proc. of the 3rd Berkeley Conference on
Distributed Data Management and Computer Networks, August 1978.

[BAD79a] Badal, D. Z. "Concurrency control and semantic integrity enforcement in
distributed databases," Infotech State of the Art Report on Distributed Databases,
Infotech 1979. '

[BAD79b] Badal, D. Z. "Correctness of concurrency control and implications in distributed
databases," Proc. of COMPSAC 79, Chicago, November 1979.

[BAD80O] Badal, D. Z. "On the degree of concurrency provided by concurrency control
mechanisms for distributed databases,” Proc. of the Inter. Symposium on Distributed
Databases, Paris, France, March 1980. '

- [BADS80a] Badal, D. Z. "The analysis of the effects of concurrency control on distributed
database system performance,” Proc. of the 6th Intern. Conference on Very Large Data
Bases, Montreal, October 1980.




1u2

[BER78] Bernstein, P. A. et al. "The concurrency control mechanism of SDD-1: A System
for Distributed Databases,” IEEE Transactions on Software Engineering 4, 3(May 1978).

[ELL77] Eliis, C. "A robust algorithm for updating duplicate databases,” Proc. of the 2nd
Berkeley Workshop on Distributed Data Management and Networks, May 1977.

[ESW76] Eswaran, K. P. et al. "The notions of consistency and predicate locks in a
database system,”" CACM 19, 11 (November 1976).

[GEL78] Gelenbe, E. and Sevcik, K. "Analysis of update synchronization for multiple copy
data bases,” ibid BAD78. ' '

[GEL79] Gelenbe, E. and Sevcik, K. "Analysis of update synchronization for multiple copy
data bases,” IEEE Transactions on Computers 28, 10 (October 1979).

[GRA78] Gray, J. "Notes on database operating systems,” IBM Research Report RJ 2188,
February 1978.

[GRAS8O] Gray, J. Personal communication.

[GRA80a] Gray, J. "A transaction model,” in Automats, Languages and Programming,
Lecture Notes in Computer Science 85, Springer-Verlag, 1980.

[HER79] Herman, D. et al. "An algorithm for maintaining the consistency of muitiple
copies,” ibid KAN79.

[KEL73] Keller, R. M. "Parallel program schemata and maximal parallelism,” JACM 3 (July
1973) and JACM 20 (October 1979).

[KUN79] Kung, H. T. and Rabinson, J. T. "On optimistic methods for concurrency control,”
Proc. of VLDB Conference, Rio de Janeiro, Brazil, October 1979.

[LAM78] Lamport, L. "Time, clocks, and the ordering of events in a distributed system,”
CACM 21, 7 (July 1978). March 1976.

[LEL78] LeLann, G. "Algorithms for distributed data-sharing systems which use tickets,”
ibid BAD78.

[LID79] Lindsay, G. B. et al. "Notes on distributed databases,” IBM Research Report RJ
2571, July 1979

[LIN79] Lin, W. K. "Concurrency control in a multiple copy distributed database system,”
ibid BAD78.



103

[MIN78] Minoura, T. "Maximally concurrent transaction processing,” ibid BAD78.

- [MOL79] Garcia-Molina, H. "Performance of update algorithms for replicated data in a
distributed database,” Ph.D. dissertation, Dept. of Computer Science, Stanford University,
June 1979.

[PAP79] Papadimitriou, C. M. "Serializability of concurrent database updates,” JACM 26,
4 (October 1979).

[REE78] Reed, D. P. "Naming and synchronization in decentralized computer systems,”
MIT/LCS/TR-205, MIT, Laboratory for Computer Science, September 1978.

[RIE79] Ries, D. R. "The effects of concurrency control on database management system
performance,” Ph.D. dissertation, Computer Science Dept, University of California,
Berkeley, April 1979.

[RIE79a] Ries, D. R. Personal communication.

[ROS78] Rosenkrantz, D. J. et al. "System level concurrency control for distributed
database systems,” ACM TODS 3, 2 (June 1978).

[STO78] Stonebraker, M. "Concurrency control of multiple copies of data in distributed
INGRES," ibid BAD78.

[THO76] Thomas, R. "A solution to the update problem for multiple copy data bases
which use distributed control,” BBN Report 3340, July 1976.

[THO79] Thomas, R. "A solution to the concurrency control problem for multiple copy
databases,” ACM TODS 4, 2 (June 1979).



104

Appendix

In order to demonstrate the behaviour of CC mechanism when more than two
transactions conflict, let’s consider an example of three conflicting transactions. Assume
that T1 reads and updates at sites | and 2, T2 reads and updates at 2 and 3, and T3
reads and updates at 3 and 1. The transactions arrive short time apart and they conflict
at each site they accessed as follows. At site 1 T3 precedes T1, at site 2 T1 precedes
T2, and at site 3 T2 precedes T3. This means that T1 knows from its conflict history
that upon its termination it should send its conflict history to the initiating site of T3.
Similarly, T2 and T3 send their conflict histories to the initiating sites of T1 and T2.
Each initiating site now constructs a precedence relation and checks it with other
initiating sites. At that time the nonserializable execution is detected because the
precedence relations will be inconsistent. In our example, T1 initiating .site after
receiving T2’s conflict history knows that T3 precedes Tl precedes T2. The initiating
site of T2 knows that T1 precedes T2 precedes T3 and the initiating site of T3 knows
that T2 precedes T3 precedes T1. In the next step of initiating site communication T1,
T2 and T3 independently detect nonserializable execution which is due to a cycle of
conflicts. Now the cycle must be broken in order to recover to serializable execution. In
our example the initiating site of T1, T2 and T3 have the same, and complete,
information about the conflict cycle to make independently the same decision - to
rollback. In order to avoid cyclic restart and rollback, they can restart at different time,
i.e, with different delay. Such decision can be again made by each transaction
independently by using, perhaps, their ID’s. This example shows how the described CC
mechanism would cope with a highly unlikely situation of three (or more) transaction
conflicts.



105

A DEADLOCK-FREE, VARIABLE GRANULARITY LOCKING PROTOCOL

Henry F. Kortht

Princeton University}
Princeton, NJ 08544

ABSTRACT

A new solution is proposed for the problem of preserving consistency in a database
accessed concurrently by many processes. The solution is an extension of the protocol
of Gray, et al.[1975]. A hierarchy of locks is constructed on the data to implement the
protocol, but the protocol does not depend on the physical organisation of the data. The
primary features of the proposal are serializability, deadlock freedom and the ability to
lock data at 2 variety of granularities. The protocol is designed to work en an arbitrary
collection of lock modes.

§1 INTRODUCTION

The purpose of locking protocols is to ensure consistent execution of multiple
transactions being run against the database simultaneously. We shall not concern
ourselves with the exact form of the consistency constraints. Instead, we shall assume
that each transaction, if run slone, would preserve consistency. Thus, consistency may
only be lost as a result of the concurrent execution of transactions. A standard example
of such a loss of consistency is two clerks simultaneously discovering that one seat remains
for a show and then both selling that one ticket.

The purpose of the concurrency component of & database system is to interleave
the steps of transactions in such a way that:

e  The order of steps within a transaction is preserved

e  Each transaction sees a consistent database (i.e. if a transaction must vio-

late consistency constraints, these violations are hidden from all other trans-
actions.) .

One method of ensuring consistency is to require that all transactions observe a
locking protocol. A locking protocol is a set of rules that require transactions to lock
data they access or modify. If a transaction ¢ desires to access a locked datum, held
by transaction ¢', it must either wait for ¢ to release the lock, or preempt ¢'. We
shall assume no preemption in this paper. If a locking protocol has the property that
every possible ordering of the steps of transactions following the protocol preserves the
consistency constraints, the protocol is said to be safe.

1 Work partially supported by NSI* grant MCS-79-04528
§ Current address: Dept. of Computer Science, Stanford University, Stanford CA 94305.



106

An ordering of steps of a set of transactions is called a schedule. A schedule with
no interleaving is a serial schedule. If a schedule s is logically equivalent to a serial
schedule s’, then s is said to be serializable.

§2 ISSUES IN DATABASE CONCURRENCY

82.1 Granularity

Locking involves some system overhead. It is necessary for the locking component of
the database system (the lock manager) to see if the lock can be granted and then either
to grant the lock request or to put the requesting transaction in a queue. To minimise
this overhead one might propose associating a relatively large subset of the data with
each lock. On the other hand, it is clear that concurrency may be reduced if transactions
lock data that they do not use. This argues in favor of associating a lock with a small
subset of the data. The latter situation is referred to as fine granularity while the
former is referred to as coarse granulersty. There has been a considerable amount of
study of the merits of fine versus coarse granularity (see Ries and Stonebraker 1977},
Ries and Stonebraker [1978), and Gray, et al.[1975], e.g.) The most general solution
permits transactions to lock data at fine granularity, coarse granularity, or somewhere
in between, depending on which is most appropriate for the transaction in question.

§2.2 Deadlocks

A deadlock is a series of “circular” waits, i.e. a situation where there is a set of
transactions ¢3, £3,...,ts such that ¢, is waiting for £3 to release a lock that £3 currently
holds and that ¢; wishes to obtain, t; is waiting for ¢3,...,¢s—1 is waiting for ¢,, and
tn is waiting for £;. Clearly deadlock is unacceptable. Either deadlock must be avoided
by means of the protocol, or the system must detect deadlock and roll back one or
more of the transactions involved in the deadlock. It is frequently assumed that the
cost of deadlock avoidance (in terms of lost concurrency) is greater than the cost (in
terms of added overhead) of checking for deadlock. In some cases (e.g. a user entering
a transaction at a terminal) rollback due to deadlock is highly undesirable.

Definition: A protocol is said to be deadlock-free if for all sets of transactions, all of
which follow the protocol, there is no schedule that results in deadlock.

The goal of the protocol proposed in this paper is to achieve deadlock freedom at
a relatively low cost.

§2.3 Degrees of Consistency

There are many possible definitions of what it means for consistency to be preserved
by a schedule. See Gray, et al.[1975] for a list of possible definitions. For purposes of
this paper we shall use-a rather strong criterion for-consistency, namely serializability.



107

AN AN

7 8 9
Fig. 1. A sample lock hierarchy.

§3 LOCKING

Previously, we stated that if a transaction requested a lock already held by another

transaction the requesting transaction had to wait. This requirement is often too strong.
For example, there is no loss of consistency if two transactions read the same datum,
although consistency may be lost if both transactions write the same datum. To permit
this sort of harmless concurrency, it is desirable to define many modes of locks (e.g. read
locks and write locks). If a transaction locks an entity of the database in & particular
mode, it may access that entity only to the extent permitted by the mode of the lock.
For example, a read lock grants only reading privileges. To write and entity, a wrile
mode lock must be held on the entity. We have already noted that two transactions may
hold a read lock on an entity simultaneously. This notion is formalised in the following
definition.
Definition: Let ¢; and €3 be lock modes. Let e be an entity in the database. Let ¢, and
ta be distinct transactions. Mode ¢; is said to be compatible with {3 if it is permitted
for ¢; to lock e in mode ¢; while ¢3 holds a lock in mode ¢; on e. Lock compatibility for
a given protocol is defined by a function

COMPAT : MODE X MODE ++» {true,false },

where MODE is the set of lockmodes. The function is usually expressed in the form of
a lock compatibility matriz. The compatibility matrix for MODE = {read, write} is

shown below. )
read write

read - true false
write false false

§3.1 Implemecntation of Variable Granularity

A database is a collection of entities. An entity is the smallest datum in which we
are interested in locking. It might, for example, be a relation, or a page or block of data,
etc. Associated with each entity is a lock. These locks become the leaves of a structure
placed on the data. This structure is usually either a tree or a directed acyclic graph.
Holding a non-leaf lock in a “basic” mode (we shall define “basic” shortly) implies all
the privileges of holding that lock on all leaves that are descendants of the locked node
in the tree (or directed acyclic graph). In Fig. 1, holding a lock node 10 implies the
same lock on nodes 1 and 2. A lock on node 13 implies a lock on all @ entities. . .

Without some sort of protocol, the potential for inconsistency exists even if lock
compatibility is never violated. Suppose transaction ¢; locks node 1 (of Fig. 1) in write



108

mode. Further, suppose transaction ¢3 would also like to write the entity associated with
node 1. ¢a cannot obtain a write lock on node 1 because COMPAT(write, write) = false.
However, £3 could lock node 10 (¢, does not hold node 10) and thus implicitly lock node
1. This defeats the lock compatibility constraint.

Problems of this sort motivated the introduction of tntention locks in Gray, et
al.[1975]. An intention mode lock serves as a warning that one or more descendants
will be locked. There is an intention mode associated with each basic mode. We shall
use £ and W to denote read and write locks respectively and precede the mode with
an I to indicate intention mode. Thus we now have expanded the set MODE to be
{R, IR, W,IW} . Now, we can state exactly what is meant by the term basic mode. A
basic mode lock is a lock that can meaningfully be held on data nodes. Intention mode
locks are not basic mode locks because they give their holder no access to data, rather
they permit their holder to request other locks. Using intention locks it is possible to
define a safe protocol. One such protocol is discussed in detail in Gray, et al.[1975]%.
We shall state the protocol without proof of safety. _

1. The first lock requested must be the root node of the structure.

2. For non-root nodes, a request for an /R or R lock is legal only if the parent
of the node is held in IW or IR mode by the requestor.

3. For non-root nodes, a request for an /W or W lock is legal only if the parent;
of the node is held in IW mode by the requestor.

4. Locks must be released either at the end of the transaction or in leaf-to-root

order during execution.
We shall also state without justification the lock compatibility matrix for the set

{IR,IW,R, W} in Fig. 2.
IR IW R W

IR true true true false
Iw true true false false
R true false true false

L4 false false false falee
Fig. 2. Compatibility matrix for {IR,IW,R, W }.

With the additional assumption that transactions are two-phase (i.e. no locks are
requested by a transaction after it has unlocked a node) it can be shown that the above
protocol ensures serialisability. Deadlock, however, is possible. We shall see an example
of deadlock in Section 4.2,

§3.2 General Sets of Lockmodes

We shall consider two lockmodes to be equivalent if the two modes have identical
entries in the compatibility matrix. Formally,

f In fact, the protocol is defined for a directed acyclic graph. We shall only be dealing with trees

83 eOCY PAFOY aNY HOTD INOFITRID GRS 9H6 FreeaPEg QUTD ) CEFIDO &P WETHns,



109

Deflnition: Let 4, B € MODE. We say 4 and B are equivalent if for all X € MODE both
of the following hold:

o  COMPAT(A, X') = COMPAT(8, X)

e COMPAT(X, A) = COMPAT(X, B)

It is convenient to allow a transaction to hold a given lock in at most one mode.
Naively, this would require us to to create a new lockmode for each subset of MODE,
thus expanding the example set of lockmodes of the previous section from MODE =
{IR,IW,R, W} to MODE = gUIRIW, R W) Fortunately, we shall see that in fact

MODE = { {R} {W}L{IR} {IW},{R,IW} }

suffices, since all elements of 2{/2#¥:2. ¥} 506 equivalent to some member of MODE.
For this reason, the set MODE is said to be complete. For notational convenience we
shall dispense with the inner set brackets and write MODE = {IR,IW, R, RIW, W }.
Lockmodes, such as RIW, which consist of 2 or more modes, are called combinatson
modes. In this section we shall discuss the construction of complete sets of lockmodes
from an arbitrary set of basic modes.

Let BASIC be a given set of basic modes. The semantics of BASIC are defined by
the function COMPATgs1c, the restriction of COMPAT to elements of the set BASIC.
In order for the protocol of the preceding section to be used there must be a unique
intention mode for each BASIC mode. Let the set of intention modes be called INTENT.
Then we may define an isomorphism I : BASIC ~ INTENT as follows:

If A € BASIC then I(A) = I A, where IA € INTENT is the intention mode associated
with 4. We now define an extension of COMPATg4sic to BASIC U INTENT as follows:

COMPATBASICUINTENT(4, B) !
COMPATgasIc(4, B), if 4,8 € BASIC
true, if A,B € INTENT
COMPATgs1c(4, C), if 4 € BASIC, B € INTENT, C = I}(8)
COMPATgas1c(C, B), if B € BASIC, 4 € INTENT, C = I""}(4)

Intuitively, the second line of the above definition says that intention modes never
conflict. The last two lines reflect the notion that an intent mode lock implies that the as-
sociated basic mode will be requested on a descendant. Let COMB = gBASICUINTENT,
We now gxtend COMPATBASICUINTENT b0 a function COMPAT copp on the set COMB.

false, if there is A € 4 and B € B such that
COMPATcomp(4, B)= COMPATBASICUINTENT(A, B) = false
true, otherwise.

We note that it need not be the case that COMPAT(4, B) = COMPAT(8, A4). One
such situation involves the introduction of update mode locks. Such a lock allows a
transaction to read concurrently with readers that locked the entity in read mode prior
to the update request. However, the update lock forces subsequent readers to wait.
Update mode is discussed in more detail in Korth[1980).

Using COMPAT, we shall define a partial order on the set MODE.



110

Definition: Let 4, B € MODE. We say 4 C B if for all ¥ € MODE both of the following
hold:

©  COMPAT(B, X) implies COMPAT(4, X).

e  COMPAT(X, B) implies COMPAT(X, 4).

The C relation is read “not more exclusive than.”

Example 3.2.1: For MODE = {IR, R, IW, W, RIW} the C relation is given by the
following lattice:
W

.
RN
R w
N7

2

I

1

The | symbol indicates the null lock.

Lemma 3.2.1: Let X and Y be in BASIC U INTENT. If X C Y, then the combination
mode XY is equivalent to VY. .

Proofs Let Z be any member of MODE. If COMPAT(Z, Y) = false, then there is 3 mem-
ber of { X, Y } (specifically ¥) with which Z is incompatible. Thus, COMPAT(Z, X Y) =
false. If COMPAT(Z,Y) is true, then since X C Y, COMPAT(Z, X) is also true. Thus
there is no member of { X, Y } with which Z is incompatible, 50 COMPAT(Z, X Y) =
true. The proof for COMPAT(X Y, Z) is analogous.

Example 3.2.2: We can now show that the MODE set of the preceding example is
complete. By the lemma, we need only consider combination modes that involve modes

that are incomparable under C. From the compatibility matrix of Fig. 2, it is clear that
the only such combination mode is RIW.

§4 CRITERIA FOR SERIALIZABILITY AND DEADLOCK FREEDOM

In this section we shall develop criteria for deadlock freedom and serializability that
will be useful in proving properties of the protocol. Let T = {¢1,...,tn } denote a set
of transactions running concurrently. Let N denote the set of all nodes (i.e. lockable
objects). Let D denote the set of all entities (i.e. the data, or the leaves of the tree).
Recall that a transaction ¢ can lock a noede in mode I in two ways. The first is to
explicitly request a lock on the node in mode . The second applies only to locking of
leaf nodes in a basic mode. If ¢ locks an ancestor of a leafl in a basic mode, it implicitly
locks the leaf in that basic mode.



111

§4.1 Deflnitions

Deflnition: Let ¢, and t3 be transactions. We define CONFDATA(ty,¢2) to be the set of
entities z in D such that ¢, locks z implicitly or explicitly in mode {;, 3 locks z implicitly
or explicitly in mode /3, and either COMPAT(ly, l2) = false or COMPAT(l3, !;) = false.
It is necessary to consider both COMPAT(ly, ;) and COMPAT(l3, ;) because, as
noted previously, the compatibility function is not necessarily symmetric.
Example 4.1.1: Let MODE be { R, W } and R(t) be the set of nodes z such that ¢ locks
z in mode R but not in mode W, and W(t) be the set of entities z such that ¢ locks =
in mode W. Locks may be implicit or explicit in each case. Then

CONFDATA(t,, ta) = ((R(t1) U W(t1)) N (R(ta) U W(ta)) — (R(t1) N R(ta))

Definition: Let ¢; and 3 be transactions. We define CONFNODE(t,, t2) to be the set of ail
entities z in N guch that ¢, locks z implicitly or explicitly in mode I3, ¢3 locks z implicitly
or explicitly in mode I3, and either COMPAT(l,, 1;) = false or COMPAT(l3, l,) = false.

Intuitively, CONFDATA describes conflicts involving only implicit or explicit locks
on data, while CONFNODE describes conflicts that may arise between ¢ and ¢' anywhere
in the tree. Generalising the preceding two definitions, we can define a CONF function
at any depth of the lock hierarchy.

Deflnition: A node in the lock hierarchy is at depth ¢ if the shortest path from the root
to the node traverses s edges.

We shall assume, for simplicity, that all leaves of the tree are at the same depth.
Deflnition: If £, and ta are transactions, we define CONFi(ty,t2) to be the set of all
z in N such that z is at depth > §, ¢, locks z implicitly or explicitly in mode I,
ta locks z implicitly or explicitly in mode I3, and either COMPAT(l,,l3) = false or
COMPAT(l3, l;) = false.

Example 4.1.2: CONFDATA(t,,t3) = CONF a(ts,t2), where M is the depth of the tree.
CONFNODE(ty,t3) = CONFg(t;, ta).
Example 4.1.3: For any §, CONF; containg CONF;1.

The CONF functions define the set of objects on which pairs of transactions may
conflict. Next we define a “less than” and “precedes” relation on T. Before we do,
however, recall that a transaction is a sequence of steps. A schedule imposes a linear
ordering of the steps of all transactions. Thus we can say that transaction ¢; acquires z
before t3 if the first step of £; that locks z comes before the first step of 3 that locks z
" in the ordering imposed by the schedule.

Definition: ¢, <, t3 if CONFDATA(t,, t2) is non-empty and in schedule s, ¢, acquires all
its locks on members of CONFDATA(t;, t3) before ¢3.

Definition: ¢; <! t3 if CONF;(ty,t3) is non-empty and in schedule s ¢, acquires 8" its
locks on members of CONF(t1,t3), before ¢a.

We shall frequently use <? when discussing the protocol. We shall denote this
relation by <,. We shall use <;", <f+, and < to denote the transitive closures of
<4, <!, and <, respectively. Note that for a pair of transactions, ¢; and ¢3, such that
CONF(t1, t3) is non-empty, it may be that neither ¢y <! 3 nor t3 <J ¢, is true.



112

§4.2 Serializability

Lemma 4.2.1: Let T = {¢1,...,¢n } be a set of transactions. If s is a schedule such that
both of the following hold:

e If CONFDATA(t:,¢;) is non-empty, then either ¢; <, ¢; or t; <, &

e TFornot¢T isit true that t < ¢
then s is serializable.
Proof: Basis: |[T| = 1 The conclusion is trivial.
Induction: |T'| = m. Let us define the following sets:

o T =T—{tm}

© BEFORE={teT|t<} tn}

o AFTER={te€T |t>Ftn}

e  NEITHER = t' — BEFORE — AFTER
Note that BEFORE N AFTER must be empty. If not, then let ¢ be a transaction in
BEFORE N AFTER. It then follows that ¢ <} ¢t <} ¢ s0 ¢ < ¢ contradicting the
assumption. '
For all @ € AFTER, b € BEFORE, and n € NEITHER, the following three facts hold:

o b<; a(because b <} tm <} a)

o b¥} n(becausen <} b=n <} b<tt, = n€ BEFORE)

e aZtn(becausen>Fra=n>raea>"t,. = n€ AFTER)
Let s' be the restriction of T to T' (i.e. simply delete all references to ¢, from s).
Let 85, 84,8 be restrictions of s to BEFORE, AFTER, NEITHER, respectively. By the
above three facts, it is clear that the schedule produced by concatenating ss, 8n, 84 i8
equivalent to s'. Since |BEFORE| < m, the induction hypothesis guarantees that there
exists a schedule s} which is serial and equivalent to s,. The same holds for AFTER and
NEITHER. Therefore, the schedule s}, &%, s’, is serial and equivalent to s'. Now create a
serial schedule equivalent to s by inserting ¢,, after s} and before &, e.g. 5}, tm, 8%, 6% .8

The next lemma is the converse of Lemma 4.2.1.

Lemma 4.2.2: Serialisability of a schedule s for T implies

e If CONFDATA(t:, ¢;) is non-empty, then either & <, ¢; or ¢; <, &, and

o Fornot€Tisittrue that ¢ <& ¢
Proof: In any equivalent serial schedule &' = {¢;,,...,8, } if § < k then ¢, 2} t,.
Since ¢ <, t can never hold, if ¢ < ¢, there exists ¢’ such that ¢ <, ¢ and t' <} &
Since ¢ or t' must precede the other in &' we have a contradiction, thus proving the
second half of the result. If the first result does not hold then there exists ¢; and ¢3 such
that ¢, acquires z € CONFDATA(!1,t3) before t3 while ¢3 acquires y € CONFDATA(¢,, ¢2)
before £. Thus ¢3 obtains the value of z after ¢, has changed it, and £; obtains the value
of y after ¢3 has changed it. However, since &' is serial, either £; completes before ¢;
starts or vice versa. Thus we have a contradiction.

Note that if a protocol guarantees serializability, it does not necessarily follow
that the protocol is deadlock-free. The following example shows that it is possible for
deadlock to occur with conflicts involving intent mode locks of one transaction and basic
mode locks of another without violating serialisability.

[



113

£a: ta:

T
e 1. lock 7TinIW 1. lock Tin IW
: . \ 2. lock5in W 2. lock6in IW
5 6 3. lock6in B 3 lock3in W
4. read 3 4, read 3
/ / 5. read 1 5. lock 5 in R
: 6. write 2 6. read 1,2
1 2 3 4 7. write 3

Fig. 8. Lock hierarchy and examples for Example 4.2.1.

Example 4.2.1: Consider the lock hierarchy of Fig. 3, with ¢; and ¢5 as given in the figure.

Let (i-7) denote step j of transaction i. Consider the following sequence of steps: s =
(1-1), (2-1), (1-2), (2-2), (2-3), (2-4). As a result of the third step of ¢, ¢3 is waiting for
ta to release node 6. As a result of the fifth step of £3, ¢5 is waiting for £;. At this point
we have a deadlock. Any system using a protocol that permits deadlock must detect
deadlock and roll back at least one of the transactions involved. Suppose that ¢5 is rolled
back. A schedule s = (1-1), (1-2), (1-3), (1-4), (1-5), (2-1), (1-6), (2-2), (2-3), ..., (2-7)
could then result. It is easy to see that s is serialisable.

§4.3 Deadlock Freedom _
The following lemma gives a result for deadlock freedom analogous to the previous
results for serializability.
Lemma 4.3.1: If s is a schedule of T = {¢;,...,¢a } and both of the following hold:
e If CONFNODE(t;,t;) is non-empty, then either ¢; <, ¢; or ¢; <, ¢;.
e Fornot¢€Tisittrue that ¢t <;F ¢.
then s is deadlock free.
Proof: Basis: |T'| = 1. The conclusion is trivial.
Induction: |T| = m. As in the proof of Lemma 1, consider &', the restriction of ¢ to
T — {tm }. By the inductive hypothesis, &' is deadlock free. Suppose that & results
in a deadlock. The deadlock must involve ¢,,, 80 the deadlock must be a cycle of the
form (fao,tdy,- .. tdm—s) Where tay == tm. For ta, to wait for a;, .)((mod my it Must be
that L, 13(moa my 7+ t4; and that CONFNODE(ty,, t4,,,) is non-empty, so by the first
hypothesis, 24, 1y moa my <o b+ ThUS, tary syimod m) <6 8 <o oot Lo Ed(i 4 15(mod m)
and a1y imod my <o tdisiymod my This contradicts the second hypothesis, so s
cannot result in a deadlock as was assumed. ]
The converse of Lemma 4.3.1 does not hold. Consider the following example in
which deadlock does not result but the hypotheses of Lemma 4.3.1 are violated.
Example 4.3.1: Consider the trivial hierarchy of three nodes, and the schedule for ¢;
and ¢z, as shown in Fig. 4. The schedule is not serializable, but neither does it lead to
deadlock. This proves that deadlock-freedom of the protocol does not imply that the

protocol guarantees serializability. ;
The following lemma is not the converse of Lemma 4.3.1 (the converse is Ia!se), bu%

is sufficient for our purposes.




ta lock 1in I'W
t lock 2in R
) unlock 2
ta lock 1in I'W
ta lock 2 in w
ta lock 3in R
2/ \3 ta unlock 2,3
4 lock 3in W
ts  unlock 1
ta unlock 1,3

Fig. 4. Example of non-serializable schedule.

-Lemma 4.3.2: If s is both serializable and deadlock free then both of the following hold:

o If CONFNODE(t;, t;) is non-empty, then ¢; <, ¢; or ¢; <, &

e Fornot¢&Tisit true that ¢t <& ¢
Proof: The proof is by induction on the depth of the tree from bottom to top. At each
depth we shall show that the lemma holds for all subtrees whose root is at that depth.
Basis: depth m, where m is the depth of the tree. This is just Lemma 4.2.2.

Inductive hypothesis: Let d be the depth of the tree The hypothesis is

o If CONF4{t,t;) is non-empty, then ¢ < or t; <54y

o Fornot¢€Tisittrue that t<? *t
Induction: First we show that <%* is a refinement of <% in the sense that ¢; <¢ ¢;
implies &; <&~ ¢;. Assume t; <% t; and t; £572 ¢; (ie. <37!is not a refinement
of <¢). Then t; acquires some z € (CONFa—1(ti,t;) — CONFa(ti, t;)) before ¢;. Since
¢t; and ¢; conflict on z, one or the other must acquire z in a basic or combination mode
(because intent modes are always compatible with intent modes). Therefore t; acquires
at least one leaf descendant of z (i.e. some datum) before t;. But t; <& t; implies ¢
acquires at least one element of CONFDATA(t;, ¢;) before ¢;, contradicting serializability.

Using this result, we now prove the first item of the conclusion for depth d — 1.
Without loss of generality we may restrict our attention to pairs of transactions (¢, t;)
such that CONF4—,(ti,t;) is non-empty but CONF4(t;,¢;) is empty, i.e. all elements of
CONF ¢—i(ti,1;) are at depth d—1 of the tree. As above, For every 2 € CONFa—(ts, ¢j),
enther t; or ¢; must be first to acquire z in a basic mode. Thus if next,her t <871 ¢ nor
t; <% t; then serializability is contradicted.

Finally we prove the second item of the conclusion for depth d — 1. As previously,
without loss of generality we may restrict our attention to pairs of transactions (¢, t;)
such that CONF4—i(ti,t;) is non-empty but CONF4(ti,t;) is empty. Therefore any
cycle introduced into the <%~ relation by the refinement must involve one such pair
(ts, ;). Thus, the cycle is of the form ¢; <?~? t;<f""+t‘. Let us denote this cycle by
($koy++ s tim—_y) Where ko = km—1 = 5. In what f{ollows let all arithmetic be modulo .
For all pairs (tk,, tk,, ), there is an z € CONFa—1(tx,, bk, ) such that ¢, holds z and
t;,., is waiting for z, or there is an z € CONFg—y(t,;, tx;.,.,) such that ¢, acquired =z
before tx, . If the latter case holds for at least one pair (¢x,, x,, ), then serialisability



115

is contradicted. If the former case holds for all pairs, then there is a deadlock. In either
case the hypotheses are contradicted.

§5 THE PROTOCOL

This section describes two versions of the protocol. The first is a simplified version
of the second. Most of the proofs for the second version will follow from the proofs for
the simplified version with minor modification.

Recall that a protocol is a set of rules that we shall require all transactions to obey.
We shall not concern ourselves with the consequences of protocol violations, as it is quite
easy for the database management system to enforce the protocol without putting any
extra burdens on the user.

The key notion beyond Gray, et al.|1975] in the protocol is the edge lock. An
edge lock is a lock held on an edge of the lock hierarchy. Only intent mode locks are
permitted on edges, but it is important to point out that intent mode locks on edges
behave differently from intent mode locks on nodes. We shall, as before, denote intent
mode locks on nodes by I followed by the basic mode. For edge locks we shall use
¢ followed by an italic upper case character for the “basic” mode. After stating the
protocol, we shall prove that it guarantees deadlock freedom and serializability.

§5.1 Simplifled Version of the Protocol

This version of the protocol eliminates a few features of the protocol in order to
permit easier proofs. The proofs for the complete protocol are extensions of the results
for the simplified protocol.

Let us fix MODE tobe { IR, IW, R, RIW, W} with COMPAT as defined in Section 4.
Let EMODE, the set of edge locks, be {iR, W }. The compatibility function ECOMPAT
for edge locks is given by the matrix:

tR W
iR true false
W false false

In the definition of the protocol, we shall frequently refer to “the appropriate mode.”
The notion of appropriateness results from natural correspondences that exist among the
sets of lockmodes we have defined. For example, we have already seen a one-to-one cor-
respondence between BASIC and INTENT. Our notation for edge locks suggests a natural
one-to-one correspondence between INTENT 'and EMODE, and therefore, by composition
of mappings, between BASIC and EMODE. When we use the phrase “appropriate inten-
tion mode,” we mean the intention mode that corresponds to the edge or basic lock mode

under discussion.

Definition: Let 4 € BASIC. We define E : BASIC — EMODE by E(4) = iA, where

$A € EMODE is the edge lock associated with mode 4.
Observe that using the mapping E we can define ECOMPAT in terms of COMPAT.



116

Definition: Let a set BASIC of basic mode locks be given with compatibility function
COMPAT. EMODE is the set of all lockmodes £ such that £ = E(¢') where ¢ is in BASIC.
The compatibility function ECOMPAT for EMODE is given by

true, if COMPAT(E™*(¢,), E™*(¢3)) and
ECOMPAT(l, l3)= COMPAT(E ~*(t2), E~*(4)))
false, otherwise

Another function that we shall need, to help define the protocol, is LEAST. Intu-
itively, LEAST, given any lockmode, finds the least exclusive basic mode that is not less
exclusive that the given mode. LEAST may not always have a singleton set as its value.
Although for the examples used in this paper LEAST does in fact always have a singleton
set as its value, we shall not make that assumption in our definition of the protocol.

Definition: The function LEAST : MODE ~» 2BASIC i defined as follows: LEAST() is
the set of ¢’ € BASIC such that £ T ¢, and there is no b € BASIC such that ¢ is not more
exclusive than b and b is strictly less exclusive than £'.
We shall assume that there is a distinct queue for each node and edge into which
transactions waiting to lock that node or edge are placed.
Definition: A set T of transactions is said to observe the snmphﬁed version of the protocol
if all of the following rules are observed.
1.  All transactions must eventually halt if run serially.
2.  The first lock acquired must be on the root node. There are no preconditions for
entering the queue to lock the root node.
3. ‘Transactions waiting for locks are processed in strict FIFO order (e.g. readers are
not permitted to jump ahead of writers in the queue under any circumstances.)
4. Preconditions for entering the queue to lock a node:
1. The edge entering the node must be held in mode at least as exclusive as the
appropriate intention mode.
2.  The parent node must be held in a mode at least as exclusive as the appropriate
intention mode.
Formally, to enter the queue to lock node n, whose parent is p, in mode z,, it is
necessary to hold p in mode z, and (n, p) in mode z, where 2, C E~*(z,) and z.
is not more exclusive than some member of LEAST(z,).
5.  Preconditions for locking a node:
1. The transaction desiring the lock must be at t,he head of the queue for the
node.
2. Lock compatibility, as defined previously, must be observed.
6. Preconditions for entering the queue to lock an edge (p,n):
1. Node p must be held in a mode at least as exclusive as the appropriate intention
mode. \
2. The request to enter the edge queue must have been made at the same time
the lock on the node p was acquired.
F‘ormally, to lock (p,n) in mode z, it is necessary to hold p in mode zp, where
E~*(z,) is not more exclusive than some member of LEAST(z,).



117

1 ia:
1. lock 7inIW 1. lock 7inIVW
1 lock (7,5) in sW; lock (7,6) in sR - 1' lock (7,5) in ¢R; lock (7,6) in sW
2. lock 5 in W; unlock (7,5) 2. lock 6 in I'W; unlock (7,6).
2' lock (5,1) in iR; lock (5,2) in sW  2' lock (6,3) in W
3. lock 6 in R; unlock (7,6) 3. lock 3 in W; unlock (6,3)
4. read 3 4. read 3
5. read 1 5. lock 5 in R; unlock (7,5)
6. write 2 6. read 1; read 2

7. write 3

Fig. 5. Transactions for Example 5.1.1.

7. Preconditions for locking an edge:

1. The transaction desiring the lock must be at the head of the queue for the
edge.
2. Lock compatibility, as defined in the previous section, must be observed.

8. Once a transaction ¢ has locked a node or edge it may not request any other lock
on that node or edge. '

9.  Precondition for the release of node locks: Any locks that the transaction may have
taken on children of the node or edges out of the node must be released, and there
must not be a request for any such lock pending in the queues.

10. Rules for the release of edge locks: If a transaction holds a lock on an edge (p, n),
it must release that lock as soon as it has issued the lock request for node n. Edge
locks may be released at any time (e.g. if a transaction decides that it does not
need to lock node n).

Example 5.1.1: Consider Example 4.2.1, using the edge lock protocol. Fig. 5 shows t,

and ¢3 with the additional locking and unlocking required by the protocol. If we attempt

to order the steps as in Example 4.2.1 (in hopes of obtaining deadlock), we find that after

(1-1), (1-1"), (2-1), transaction t; must wait for ¢; to release edges (7,5) and (7,6), which

it does in step (1-3). As a result the deadlock we saw in Example 4.2.1 is avoided.  [B

§5.2 Facts about the Protocol

In this section we shall prove a number of properties of the simplified protocol.
Unless stated otherwise, we shall assume that all transactions observe the protocol.
Deflnition: Let A be a set of nodes in a tree. Define sup(A) to be the least common
ancestor of A. That is, every z € A is a descendant of sup(A), and sup(A) is the deepest
node having this property.
Lemma 5.2.1: Let ¢; and t3 be transactions. Let A C CONFNODE(ts,t2) be a set of
tree nodes. If £; acquires every node in A before t; then ¢, acquires sup(A) before ta.
Proof: Let ap € A. Let the nodes on the path from sup(A) to eo be denoted by
G, Gm—1,...,80 Where 8, = sup(A). We shall show by induction on the length of
this path that ¢, acquires a(, 0 < ¢ < m before ta.
Basis: ag : given.



116

Inductive hypothesis: t; acquires a, before £,.

Induction: We first show that ¢, acquires edge {@e+1, ac) before ¢3. Transactions £; and
2 must lock (a¢41,@.) in incompatible modes, since ap € CONFNODE(t,, t3) is in the
subtree of a,. By hypothesis, ¢; acquires a, before ¢, 50 ¢, must have entered its request
in the queue before ¢3 (by rule 3 of the definition the protocol). Therefore, (by rule 4) £,
must have acquired the edge (a¢41,a¢) before t3. Now we show that ¢; acquired a4y
first. Since ¢; acquired (ac+1, a¢) first, it must have entered the queue for that lock first.
_Then by rule 2, it follows that ¢; acquired a¢; first.

- Lemma 5.2.2: I s is a schedule for a set of transactions T = {¢,,...,%. } that obeys
the protocol, and if CONFNODE(t;, t;) is non-empty then either ¢; <, ¢; or §; <, &;.

Proof: We define the following sets:

o A;= {a|a€ CONFNODE(t;, t;) and ¢; acquires & before ¢; }

o A; = {a|a€ CONFNODE(t;,¢;) and t; acquires & before ¢; }.
Assume that neither A; nor A; is empty. By Lemma 5.2.1, ¢; acquires sup(A;) before ¢;
and ¢; acquires sup(A;) before ¢;.
Case 1: sup(A;) = sup(A;). There is an immediate contradiction.
Case 2: sup(A:) = sup({ sup(A;:), sup(4;)}) Let (@m,...,a0) be the path from sup(A;)
to sup(A,) where 6, = sup(A;) and ap = sup(A;) We induct on the length of this
path.

Basis: ¢; acquires am before ¢;.
Induction: ¢; acquires edge {a¢, 8¢—1) first by rule 6. Because there is an a in the subtree

of this edge in CONFNODE(t:, t;) such that ¢; and ¢; lock @ in incompatible modes, ¢
and ¢; lock the edge (a¢, a,—1) in incompatible modes. Thus, ¢; enters the queue for
a¢—y before ¢;. This implies that ¢; acquires a;—; before t;. Therefore, by induction, &
acquires ao = sup(As) before t; and we have a contradiction.

Case 3: sup(A;) = sup({ sup(A;), sup(A;)}) This case is symmetric to Case 2.

Case 4: Neither sup(A:) nor sup(A;) is an ancestor of the other. Let z be defined as
sup({ sup(A;), sup(A;)}). Consider the tree path from z to sup(A4;), which we shall
denote as (ay,..., @), where a,, = z and ap = sup(A;). By a now familiar induction,
t1 acquircs = before t3. By applying the same argument to the path from z to sup(A;),
we conclude that ¢; acquired z first. Therefore either A; or A; must be empty and thus
either ¢y <, t; or t; <, t:.
Corollary 5.2.1: Given T and s as in the lemma, if CONFDATA(t:, ¢;) is non-empty then
I < tjort; <,t.

Proof: CONFDATA(t;,t;) non-empty implies CONFNODE(t.,tj) non-empty, which, in
turn implies ¢; <, t; or t; <, t;. Since <, is a refinement of <,, either ¢; <, ¢; or
t; <, ti. .
Lemma 5.2.3: Given set T = {t1,...,ta }, and schedule s such that the protocol is
observed, for no t € T is it'true that ¢t <% ¢.

Proof: Assume that ¢;, <, ti, <, ... <, ti,,_, <s lip, where t;; = £, is a cycle
of <, of minimal length. In what follows, all arithmetic on subscripts of ¢; will be
modulo m. Let z = sup({J].. , CONFDATA(t;,, t'1+x))- Let k be any integer such that

j=0



119

0 < k < m. Since ti, <, ti,,,, CONFDATA(t,,%,,.,) is non-empty. Let & be any
element of CONFDATA(t;,, t.-H,). By the definition of <,, ¢;, acquires @ before &;, ..
Let (Pg,...,Pp) be the nodes on the unique tree path from z == Py to 6 = Ps. We shall
prove by induction on d that ¢;, acquires z before ¢, ,.

Basis: d = 0: ¢ = z = P,.

Induction: By hypothesis, ¢;, acquires Py..; before ¢;, ,. Since Py is the parent of Py,
both ¢;, and ¢;,  , must acquire Py before acquiring Pa--1, and therefore they must both
acquire edge (Py, Py--,). Furthermore, since a € CONFDATA(t;,,,¢;,, , ,), it must be that
the two transactions wish to lock that edge in incompatible modes. We first show that
¢iy, acquires (Pg, Pa—1) before ¢;,, ,. Assume ¢;,,, acquires (Pa, Ps—1) first. Transaction
¢, must (by the protocol) acquire (Py, P4—;) before locking Py—;. However, the protocol
requires that ¢;,,, enter the queue to lock P¢—1 before releasing (Pa, Pa—1). Since all
queues are strictly FIFO this contradicts the inductive hypothesis that ¢;, locks Pg_,
before ¢, ,. Thus, ¢;, locks (P4, P4—,) before ¢;, ;. By the first part of rule 6 in the
defintion of the protocol, it follows that ¢:, locks Py before ¢, , , does, and our induction

is complete. .
Thus, ¢;, acquires z before ¢;,  ,. Since this result holds for all k, ¢;, acquires z

before ¢;,, which acquires z before ¢;,,... which acquires z before £;,. We thus arrive
at a contradiction, and the lemma is proved. |
Corollary 5.2.2: Given T and s as in the lemma, for no ¢ € T is it true that ¢ <} ¢.
Proof: t < ¢t implies ¢ < ¢, which, in turn implies £ € T does not obey the protocol.§
Theorem 5.2.1: The simplified version of the protocol implies serializability.

Proof: Lemma 5.2.3 and Corollary 5.2.1 prove that any schedule of transactions observing
the protocol satisfy the hypotheses of Lemma 4.2.1. By Lemma 4.2.1 it follows that any
schedule in which the protocol is observed is serializable. _ |
Theorem 5.2.2: The simplified version of the protocol implies deadlock freedom.

Proof: Lemma 5.2.2 and Corollary 5.2.2 prove the hypotheses of Lemma 4.3.1. By
Lemma 4.3.1 deadlock freedom follows. |

§5.3 The Complete Version of the Protocol

We now define the second version of the protocol. Most of the ideas and results
carry over from the previous sections without any modification. The added feature of
this version is a rule that permits the first precondition for entering the queue to lock
a node (rule 4, part 1) to be ignored under certain circumstances. To motivate this
exception consider the following example:
Example 5.3.1: Consider the lock hierarchy of Fig. 3. Suppose that ¢; reads node 4
and then decides to add this value to node 4 or 5. Let us assume that the process of
deciding which node to choose is slow (perhaps it must query a person at a terminal).
Suppose that t3 writes node 1 without referencing any other data. If ¢y starts first it
will set edge locks first on edge (7,5) and then on (5,1) before ¢;. Thus ¢3, under the
simplified protocol cannot complete before ¢;. However, if somehow we could allow &3
to jump ahead of ¢1, it could complete without causing any inconsistencies and without

introducing the potential for deadlock. H



120

It appears, based on the example, that a transaction can safely ignore the rules for
edge locks if all of the locks it holds or has requested lie on one path from the root of the
tree. In other words, as long as all the data referenced by a transaction is in one subtree
whose root is a child of the deepest node held so far, it is not necessary to observe the
rules regarding edge locks. This turns out to be true, and we shall prove this fact in the
process of verifying the correctness of the protocol.

Deflnition: A set T of transactions is said to observe the complete version of the protocol
if all of the rules of the simplified version of the protocol are observed, except for rule 4
which is replaced by:

4. Preconditions for entering the queue to lock a node:

1. The edge entering the node must be held in 2 mode at least as exclusive as the
appropriate intention mode unless all locks held or requested by the transaction
lie on one tree path.

2.  The parent node must be held in 2 mode at least as exclusive as the appropriate
intention mode.

We now restate the results of the previous section for the complete version of the

protocol. _
Definition: If a transaction ¢ locks nodes and edges on only one path from the root down
to depth ¢ of the tree, ¢ is said to be a single path transaction to depth s.

Lemma 5.3.1: Let ¢, and ¢; be transactions obeying the complete protocol. Let A C
CONFNODE(t1,t3) be a set of tree nodes. If £1 acquires every node in A before ¢2 then
1 acquires sup(A) before t,.

Proof: The proof for Lemma 5.2.1 still holds, since if exther 1 or ¢a is a single path
transaction then for any A C CONFNODE(t,, ta), sup(A) =

Lemma 5.3.2; If s is a schedule for a set of transactions T = {t;, ., ta } that obeys
the complete protocol, then if CONFNODE(t:, ;) is non-empty then enther ti <5 & or
t; <o t.
Proof: We consider only the case where ¢; is a single path transaction to depth k for -
some &k and A = sup(CONFNODE(ty,t;)) is a node at depth not more than k. (The
proof of Lemma 5.2.2 is still correct for the case of transactions that are not single path
to depth k for all & > 0.) If ¢; acquires A first, £; will be unable to lock a node in the
subtree of A until A; is released by ¢;. Since ¢; cannot release A until all nodes in the
subtree of A are released, ¢; <, t;. Likewise, if ¢; acquires A first, & will be unable to
lock nodes in the subtree of A until A is released by ¢;.
Lemma 5.3.3: Given set T == {¢i,...,¢s }, and schedule g such that the protocol is
observed, for no t € T is it true that ¢ <+ t.
Proof: We need only consider those transactions ¢; that lock exactly one leaf. If ¢;—, <,
ti <, ti+a then since ¢; locks only one leaf it must be that ¢i—1 <s fi4a. Therefore 2
cycle of minimal length cannot include any transaction that locks only one leaf.
Finally, we observe that using the revised lemmas it is easy to prove the followmg
theorems:

Theorem 5.3.1: The complete version of the protocol implies serialisability.




121

Theorem 5.3.2: The complete version of the protocol implies deadlock freedom.

We claim that all of the requirements of the complete version of the protocol are
necessary in the sense that if one or more transaction violates one or more of the rules
then there is a set a transactions T and legal schedule s for T which results in deadlock

or non-serializability.

§6 CONCLUSION

The final version of the protocol allows for a considerable amount of concurrency
while offering the advantage of deadlock freedom and variable locking granularity. The
usefulness of this protocol depends on whether the lost concurrency due to the edge lock
constraints is compensated for by the time saved by not having to check for deadlock.
Some database systems (System/R, e.g.) check for deadlock every time a transaction
begins a wait. In such systems, implementation of our protocol would save a considerable
amount of overhead.

§7 ACKNOWLEDGEMENT
The author gratefully acknowledges the advice of Prof. Jeffrey D. Ullman.

REFERENCES:

Gray, J.N. [1978], “Notes on Database Operating Systems,” in R. Bayer, R.M. Graham,
and G. Seegmuller, “Operating Systems - An Advanced Course,” Lecture Notes ¢n
Computer Science, Springer-Verlag.

Gray, J.N. [1980], “A Transaction Model,” in “Automata, Languages, and Programming,
Seventh Colloquium,” Lecture Notes sn Computer Science, Springer-Verlag.
Gray, J.N., R.A. Lorie, G.R. Putzoly, and L.L.Traiger [1975], “Granularity of Locks and
Degrees of Consistency in a Shared Data Base” RJ 1654, IBM Research Laboratory,

San Jose, CA.

Kedem, Z. and A. Silberschatz [1979], “Controlling Concurrency Using Locking Proto-
cols,” Proc. 20 Annual IEEE Symposium on Foundations of Computer Science, pp.
274-285.

Korth, H.F. [1980], “Generalized Update Locks,” unpublished memorandum, Stanford
University, Stanford, CA.

Reis, D.R., and M.R. Stonebraker [1977], “Effects of Locking Granularity in a Database
Management System,” ACM Transactions on Database Systems 2:3, pp. 233-246.

Reis, D.R., and M.R. Stonebraker [1978], “Locking Granularity Revisited,” UCB/ERL
MT78/71, University of California, Berkeley.

Silberschatz, A. and 2. Kedem [1979), “Consnstency in Hierarchical Database Systems,”
J. ACM 27:1, pp. 72-80.

Ullman, J.D. |1980], Principles of Database Systems, Computer Science Press.

Yannakakis, M., C.H. Papadimitriou, and H.T. Kung {1979}, “Locking Policies: Safety
and Freedom from Deadlock,” Proc. 20 Annual IEEE Symposium on Foundations
of Computer Science, pp. 286-297.






CONCURRENCY CONTROL WORKSHOP







125

A Straw Man Analysis of the Probability of Waiting
and Deadlock in a Database System

Jim Gray¥
Pete Homan
Hank Korth##*
Ron Obermarck
IBM Research Laboratory
San Jose, California. 95193.

Based upon observations of several data management systems, transaction
waiting and transaction deadlock are very rare. Also, the probabilities
that a transaction waits or deadlocks seem to rise linearly with the
degree of multiprogramming in such systems.

We adopted the approach of postulating a simple model and then experiment-
ing with it using simulation. The simulation produced results consistent
with our observations.

Here we propose a simple (probabilistic) analysis of this model as a
"straw man' analysis to be knocked down (by a more careful analysis).
Using the equations derived from the analysis, we conclude the things we
observed in practice:

Transaction waits and Deadlocks are rare but they both seem to increase

linearly with multiprogramming.

Essentially all deadlock cycles are of length two.
There are some surprising predictions from this model:

Waits rise as the second power of transaction size.

Deadlocks rise as the fourth power of transaction size.
These observations have implications for deadlock detection algorithms,
in both centralized and distributed data base systems.

* Current address: TANDEM Computers Inc., 19333 Valco Parkway, Cupertino,
California. 95014.

**% Current address: Computer Science Department, Stanford University,
Stanford California.






DATABASE AVAILABILITY ,,







129

A TORMAL MODEL OF CRASH RECOVERY IN A DISTRIBUTED SYSTEM

by

Dale Skeen ond Michael Stonebraker

Department of Electrical Engineering and Computer Science
University of California
Berkeley, California

ABSTRACT

In this paper we introduce a formal model for transaction processing in a distri-
buted data base system. We use this model to study both failures of single sites and
communications failures. For site failures, we introduce a pessimistic crash recovery
technique called independent recovery, and identify the class of failures for which a
resilient protocol exists. For network partitions, we study the question of finding resi-
lient protocols for the pessimistic case when messages are lost, and also for the
optimistic case when no messages are lost.

1. INTRODUCTION

In this paper we present a formal model for transaction processing in a distributed
data base and then extend it to model several classes of failures and crash recovery
techniques. These models are used to study whether or not resilient protocols exist for
various failure classes. ‘

Crash recovery in distributed systems has been studied extensively in the litera-
ture [ALSB79, GRAY79, HAMM79, LAMP78, MENA79, ROTH77, STON79, SVOB79]. Many
protocols have been designed which are resilient in some environments. All have an
"ad-hoc"” flavor to them in the sense that the class of failures they will survive is not
clearly delineated.

The purpose of this paper is to formalize the crash recovery problem in a distri-
buted data base environment and then give some preliminary resuits concerning the
existence of resilient protecols in various well defined situations.

Consequently, in the next section we give a brief introduction to transactions in a
distributed data base. Then, in section 3 we indicate the assumed network environ-
ment and our model for transaction processing. In section 4 we extend the model to
include the possibility of site failure and give resulls concerning the existence of resi-
lient protocols in this situation. Section 5 turns to the possibility of network failure
and shows the class of failures for which a resilient protocol exists. The paper con-
" cludes with a surnmary and description of future work.

All results are presented without proof. The reader is referred to [SKEEB1] for a
more thorough treatment of the model and detailed proofs of all results.

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 78-3596, the U.S.
Army Research Office Grant DAAGR9-76-G-0245, and the Naval Electronics Systems Command Contract
N00039-78-G-0013.



130

2. BACKGROUND

A distributed data base management system supports a data base distributed over
multiple sites interconnected by a communications network. A transaction in a distri-
buted database is an atomic operation, in the sense that it is indivisible: either it exe-
cutes to completion or it appears not to have executed at all. The goal of distributed
crash recovery is to provide transaction atomicity in the presence of failures for com-
mands which may span several sites.

A transaction may not execute to completion because:
(1) one or more sites fails
() the network fails
(3) the transaction deadlocks with another transaction
(4) the user aborts the transaction.

During the processing of a transaction each participating site must be able to abort the
transaction for any of the above reasons. When a transaction is aborted at a site, the
state of the local data base is restored to its original state by local recovery pro-
cedures. The one site recovery problem is fairly well understood [GRAY?79, LORI?7].

At some point during transaction processing a site reaches a "commit point".
Once a site has committed, it will complete the transaction even in the presence of a
site failure.

For transaction atomicity to be preserved in a distributed environment, either all
sites must abort or all must commit the transaction. A state where some sites have
committed while others have aborted is an inconsistent state.

It is always an option for a distributed data base system to suspend operalion
whenever a failure occurs and only resume processing when the failure is repaired.
Clearly, such a decision will render the distributed system exactly as resilient as the
weakest link. In this paper we will be interested only in nonblocking protacols for which
an operational site never suspends because of a failure.

Protocols designed to enforce atomicity are traditionally called commil profocols.
A commmit protocol is said to be resilient to a class of failures, if the protocol enforces
transaction atomicity and is nonblocking for any failure within the appropriate class.
The nonblocking constraint guarantees that a resilient protocol will always terminate.
Similarly, a resilient protocol with an a priori upper bound on the number of messages
always satisfles the nonblocking constraint. We will be interested exclusively in proto-
cols with predefined upper bounds.

3. THE TRANSACTION MODEL

3.1. The Network Model

The network is assumed to provide point-to-point communication between any pair
of sites. Moreover, it is assumed to have the following characteristics:

(1) it delivers a message within a preassigned time period, T, or
(2) it reports a "time out” to the sender.

When a time-out occurs, the sender can safely assume that the network or the reci-
pient or both has failed. In the case of a network failure, it is not known whether the
recipient received the message.

3.2. Transaction Processing

Transaction execution at a single site is modelled as a finite state automaton
(F'SA). During a transition a site can read one or more messages from the network, do



131

local processing and write one message to the network. A distributed transaction is
then a collection of F'SA's, one per participating site, and the network serves as a com-
mon input/output tape to all sites, Figure 1 presents a four site example.

There are several restrictions on this collection of FSA’s:

(1) The FSA’s are nondeterministic. The behavior of each FSA is not known apriori
because of the possibility of deadlocks, failures, and user aborts. Moreover, when
multiple messages are addressed to a site, the order of receiving the messages is
arbitrary.

(2) The final states of the F'SA’s are partitioned into two sets: the "abort” states, A
and the "commit"” states, C.

(3) There are no transitions from a state in A to a state not in A Similarly, there are
no transitions from a state in C to a state not in C. Therefore, once a site enters an
"abort" state ("commit" state), the site remains in such a state. This corresponds
to the requirement that abort and commit are irreversible operations.

(4) The state diagram describing a FSA is acyclic. This suffices to guarantee that a
protocol is nonblocking.

F'SA transitions are assumed to be instantaneous, and no two FSAs change state
simultaneously. Therefore, the transitions made by a group of sites can always be
linearly ordered.

3.3. An Annotated Example

We illustrate this FSA model by examining a two phase commit protocol (similar to
[GRAY7?9, LAMP76]) for a two site transaction. This protocol is given in Figure 2. In the
first phase each site receives the transaction, partially executes it, and indicates its
readiness to commit ("ready”). The commit decision is made by the co-ordinator (site
1) which receives ready votes and sends a "commit”’ message only if all sites vote
"ready”. For a transaction to commit, three messages are exchanged: "start transac-
tion' is sent to site 2; '"'ready" is sent to site 1; and "commit” is sent to site 2.

FSA, . FSA,

Network

(message buffer)

Figure 1. The model with 4 sites.



132

SITE 1 . SITE 2

(1) Transaction is received.
"Start Xact'" is sent.
"Start Xact' is received.
Site 2 votes: "yes'" to commit,
“no' to abort,
The vote is sent to site 1.

(2) The vote is received.
If vote="yes" and site 1 agrees,
then "commit" is sent;
else, "abort" is sent.

Either "commit” or "abort" is
received and processed.

Figure 2. The two-phase commit protocol (R sites).

The FSA state diagrams for this protocol are given in Figure 3. The initial states
are q; and q,. The execution of the protocoi is initiated by the receipt of the special
message, "Xact request,” at site 1. Kach FSA then proceeds to make transitions asyn-
chronously. For each arc, the message received is indicated physically above the mes-
sage sent. Final states are double circled and labelled Commit (cj) or Abort (a].). All

Site | | Site 2

xact request
starf xact

yes
commit commit

Figure 3. FSA's for the two-phase commit protocol (2 sites).



133

states are subscripted with their site number. This notation will be followed
throughout the paper.

3.4. Global Transaction State

The global state of a distributed transaction is defined to consist of:

(1) a global state vector containing the local states of the participating FSA’s and
() the outstanding messages in the network.
The global state defines the complete processing state of a transaction.

A glabal state transition occurs whenever a local state transition occurs at a parti-
cipating site. Therefore, in a global state transition exactly one local state in the global
state vector makes a transition while the others remain unchanged.!

If there exists a global state transition from global state g to global state g’, then
g is said to be immediately reachable from g A global state, together with the
definition of the protocol, contains the minimal information necessary to compute all
of its immediately reachable states. The transitive closure of the immediately reach-
able relation yields all reachable states. Figure 4 contains the reachable state graph
for the 2-phase protocol discussed earlier. _

A ferminal state is one with no reachable successors. Moreover, a path from the
initial global state to a terminal global state in the reachable state graph corresponds
to a possible execution sequence of the protocol. _

A global state is said to be a final stote if all local states contained in the state vec-
tor are final states. A global state is said to be inconsistent if its state vector contains
both a commit state and an abort state. A protocol is functionally correct if and only if
its reachable state graph contains no inconsistent states and all terminal states are
final states. Figure 4 verifies that, in the absence of failures, the 2-phase protocol is
correct,

Two local states are said to be potentially concurrent if there exists a reachable
global state vector that contains both local states. We define the concurrency set of a
local state s, to be all of the states of other FSA's that are potentially concurrent with
it. We denote this set by C(s) From this definition it should be clear that if state s; Is
a final state and the set C(s) contains a final state of the opposite type, then there
must exist an inconsistent (reachable) global state.

Consider a local state, s,, and all incoming messages that can cause a transition.
Define the sender set for s, to be the collection of all states, Lo such that a transition
from t, sends a message to s We denote this set by S(s,).

Both the sender set and the concurrency set can be constructed from the reach-

able state graph. Moreover, the concurrency set for a state in a canonical protocol
properly contains the sender set for that state.

4. SITE FAILURES

In this section we ektend the model to include the failures of individual sites. The
traditional methed for detecting site failures, a time-ouf, is used. We model one
recovery technique, and then show that only resiliency to single site falluren is possi-
ble,

IThis is true only in the absence of network partitions. When partitions are considered in & later section,
we will introduce global transitions that change only the outstanding messages.



134

(initial state)

G
commit

Figure 4. Reachable state graph for the two-phase commit protocol.

4.1. Failure Transitions

When a site fails a special type of transition, called a failure {ransition, is made, A
failure transition reads all cutstanding messages addressed to the site and writes a
fime-out message to each site. The failure transition originates in the state occupied
at the time of failure and terminates in the state that the site will enter after it recov-
ers. This recovery state could be one of the normally occupied states of the protocol
or it could be part of a special recovery protocol. In a resilient protocol each local
- state must have a failure transition. Hence, the failure transition models the behavior
of the site both at the lime it fails and at the time it does local recovery.

The failure of a site is detected at an operational site by the receipt of a 'time-
out” message from the failed site. Such a "time-out” may (but not necessarily does)
cause a transition to a special recovery protocol.

Like all other transitions, "failure” and "time-out” transitions must obey the rule
of commit protocols: once a site has entered a commit (abort) state, all subsequent
transitions must be to a commit (abort) state. The addition of "failure” and "time-out”
transitions to a protocol greatly enlarges its reachable state space. Examinalion of ne



135

Site | Site 2

xact request
start xact

commit
ack

Figure 5. Two-phase commit pfotocol extended with an ack message.

extended reachable state space will reveal the mixtures of failures the protocol is resi-
lient to.

4.2. Independent Recovery

In an independent recovery scheme, failed sites make a transition directly to a
final state without communicating with other sites. Hence, no communication is
attempted during the recovery process.

Independent recovery is interesting for several reasons. First, it is easy to imple-
ment and leads to simple protocols. One need not be concerned with messages te a
down site being queued in the network or at another site which may be down when the
failed site attempts to recover. Moreover, this model is of interest because it
represents the most pessimistic recovery model. Proving the existence of a class of
resilient protocols in this model implies its existence in all more sophisticated models
of site failures.

The remainder of this section uses the independent recovery scheme.

4.3. Failure of a Single Site

Here we treat the restricted case that only one site can fail during the processing
of a transaction. We first develop two rules for assigning "failure” and "time-out” tran-
sitions. The first rule deals with assigning "failure" transition. The failed site must
make a transition consistent with the state of an cperational site at the time of failure.



136

Rule 1. For a state s; if its concurrency set, ((s,), contains a commit (abort) state,
then assign a "failure” transition from s, to a commit (abort) state.

The observant reader will note that the two-phase protocol of Figure 3 cannot
satisfy this rule: the concurrency set of state p, contains both ¢, and a;. Figure 5
gives a protocol similar to the two-phase one except for the addition of one state and
an acknowledgment message to the commit message. Figure 8 gives the reachable glo-
bal state graph for the protocol. Since no concurrency set contains both commit and
abort final states, it is possible to assign "failure’ transitions from all (nonfinal) local
states according to rule 1.

(initial state)

9 9
abort

P P2
commit

Figure 6. The reachable global state graph for the commit protocol in figure 5.



137

The second rule deals with "time-out” transitions.

Rule 2. For state s;: if t, is in S(s), the sender set for s,, and t, has a failure transition to
a commit (abort) state, then assign a "time-out" transition from s, to a commit (abort)
state. If S(s) is empty, then assign no "time-out” transition from s,.

This rule is less obvious than the previous one. A "time-out" can be viewed as a special
message sent by a failed site in state t, in lieu of a regular message. The "time-out” is
received by the same state (in this case s].) that normally receives the regular message.
Moreover, the failed site, using independent recovery, makes a failure transition based
solely on its local state. Hence, the site receiving the "time-out" must make a con-
sistent decision.

Figure 7 illustrates the application of both rules. The protocol displayed is resi-
lient to a single failure by either site. This can be verified by examining the reachable
state graph for this protocol. In fact, the rules always yield a resilient protocol under
independent recovery. Furthermore, since independent recovery is the most pessimis-
tic (reasonable) model, protocols obeying rules 1 and 2 are resilient to a single failure
under any recavery model.

—————
- -

Figure 7. The extended two-phase protocol of figure 5 augmented with feilure and
lime-oul transitions according to rules 1 and 2.



138

Theorem 1. Rules 1 and 2 are necessary and sufficient for designing protocols resilient
to a single site failure.

Although we have illustrated this result only for the two site case, it holds for
multi-site protocols as well.

4.4. Two Site Failures

The rules given above are sufficient for protocols resilient to a single failure; how-
ever, such protocols are not resilient to the failure of two sites. This is demonstrated
in the protocol of Figure 7. If double failures occur when site 1 is in state p, and site &

is in state p,, then an inconsistent final state results. In fact, no resilient protocol
exists in this situation.

Theorem 2. There exists no protocol using independent recovery of failed sites that is
resilient to two site failures.

Again, this result applies to the multi-site protocols as well as to the two site pro-
tocols.

5. NETWORK FAILURES

A network failure results in at least two sites which cannot communicate with each
other. We model such a partition in two ways. In the first model, all messages are lost
at the time partitioning occurs. In the second, no messages are lost at the time parti-
tioning occurs; instead, undeliverable messages are returned to the sender.

We define a simple partition as one where all sites are partitioned into exactly two
sets with no communication possible across the boundary. Since all partitions can be
viewed as one or more occurrences of a simple partition, we specificly address two
classes of failures: a single occurrence of a simple partition, and multiple occurrences
of a simple partition (or multiple partition for brevity).

We consider a protocol to be resilient to a network partition only if it enforces the
nonblocking constraint. That is, the protocol must insure that each isolated group of
sites can reach a commit decision consistent with the remaining groups. Since the
commit decision within a group is reached in the absence of commmunication to outside
sites, this problem is very similar to the independent recovery paradigm presented in
the previous section.

Throughout this section we will restrict our attention to network partitions
exclusively and ignore the possibility of site failures.

5.1. Partitioning With Loss of Messages

As previously, a site detects the occurrence of a partition by a "time-out"” and can
make a transition on such a message. First, we treat the two site case.

A network partition is modeled as a special type of global state transition. Until
now all global state transitions were triggered by one local state transition. However, a
network partition is modelled as a global state transition that erases all outstanding
messages and "time-outs" are sent to all sites. '

After a partition has occurred, each site will make a "time-out” transition. In fact,
we have a situation analegous to the double site failure in the independent recovery
model of the previous section except that "time-out” rather then failure transitions are



139

made. It can be shown that a solution to the double failure problem implies a solution
to this problem. An immediate consequence of this result is is the next theorem.

Theorem 3. There exists no two site protocol that is resilient to a network partition
where messages are lost.

It is easy to generalize the model to partitions involving more than two sites and
prove theorem 3 for the more general environment.

5.2. Partitioning with Return of Messages

In this situation we assume that the network can detect the presence of a parti-
tion and return undeliverable messages to their senders. This appears to represent
the most optimistic model for partitions, while loss of messages is the most pessimistic
one.

In this case a partition causes a global state transition that redirects all undeliver-
able messages back to their senders and writes "time-out" messages to the recipients
of undeliverable messages. As before, a site makes a transition on a "time-out" mes-
sage. Also, a site makes a transition when an undeliverable message is returned to it.

5.2.1. Two Site Case

To study this optimistic situation, we now define two design rules that resilient
protocols must satisfy.

Rule 3. For a state s: if its concurrency set, C(s), contains a commit (abort} state,
then assign a "time-out” transition from s, to a commit (abort) state.

Here site i in state s, was expecting a message when the partition occurred. Instead, it
received a "time-out”. This site will then make a decision to abort or commit the tran-
saction consistent with the state of the site sending the undeliverable message.

The second rule deals with the site sending the undeliverable message. It must
make a cornmit decision consistent with the decision of the intended receiver.

Rule 4. For state s if t isin S(s,), the sender set for s, and t, has a "time-out' transi-
tion to a commit (abort) state, then assign a "time-out” transition from s, Lo a commit
{abort) state upon the receipt of an undeliverable message.

An observant reader will note that these rules are equivalent to the rules given for
independent recovery of failed sites, In fact, the two models are isomorphic. To illus-
trate the equivalence, consider the information conveyed by a '"time-out” message
from a failed site. The following is true when the operational site, i, receives the "time-
out” indicating a failure of the other site.

(1) the last message sent by site i was not received (the other site failed prior to its
receipt),

(2) communication with the other site is impossible- (it is down),
(3) the other site will decide to commit using independent recovery.
Exactly the same conditions hold when an undeliverable message is returned to site i.



140

Applying the above design rules to the protocol of Figure 5 yields the protocol
illustrated in Figure 8. As expected, the protocol is identical, to the protocol of Figure
7.

In light of this isomorphism, thecrem 4 is not surprising.

Theorem 4. Design rules 3 and 4 are necessary and sufficient for making protocols resi-
lient to a partition in a two-site protocol.

5.2.2. Multisite Case

In the absence of site failures simple partitions in multisite protocols are not very
different from partitions in a two-site protocol, since preserving consistency withir
connected group of operational sites is straightforward. Thus, design rules 3 and 4 can
be extended to multisite protocols in a straightforward way. This leads to the following
resuit. ‘

Corollary 1. There exist multisite protocols that are resilient to a simple partition when
undeliverable messages are returned to the sender.

Site | Site 2

xact request start xact start xact

start xact

yes
commit

~ -
N e————

_____________ »

Figure B. The extended two-phase commit protocol (of figure 5) augmented with time-
ouf transitions and transitions on undeliverable messages according to rules 3 and 4.



141

This result is the complement of the results obtained from the pessimistic model
discussed earlier. The models differ in their handling of outstanding messages when
the network fails: in the pessimistic model, they are lost; whereas in the optimistic
model, they are returned to their sender. Since this is the only difference between the
two models, the next result is implied.

Corollary 2. Knowledge of which messages were undelivered at the time the network
fails is necessary and sufficient for recovering from simple partitions.

We now turn to multiple partitions. Since we are dealing with an optimistic situa-
tion, we assume that "time-outs” and undeliverable messages are unaffected by addi-
tional partitions. This, in effect, is an assumption that the network is partitioned into
all subsets simultaneously, and that the process does not happen sequentially.

Even in this (overly) optimistic model, our results are negative, which implies
negative results for all realistic partitioning models.

Theorem 5. There exists no protoccl resilient to a multiple partition.

Therefore, even complete information about message traffic during a partition, and in
particular, information about which messages are undeliverable, is insufficient for
recovering from multiple partitions,

6. CONCLUSIONS

We have presented a model of transaction processing in a distributed environment
and used it to study both site failures and network partitions. Our results tend to be
meore illuminating than surprising. Using independent recovery, the class of recover-
able site failures has been identified. Using an optimistic model for network partitions,
we have shown that (nonblocking) recovery is possible only for simple partitions. In a
more realistic model, recovery from a simple partition is not always possible.

We feel that the model is an appropriate vehicle for further study of resilient pro-
tocols. The topics that we are currently investigating include:

(1) Generalizations of independent recovery. We plan to include the possibility of
queuing messages for down sites as in [HAMM79].

() Treatment of degrees of resiliency. In this paper protocols were either resilient or
not. We plan to generalize this to a degree of resiliency between 0 and 1 and look
for minimal state protocols with a given resiliency.

Acknowledgments

The authors wish to thank Ken Birman, Ken Keller, and Larry Rowe for their useful
comments and for valuable discussions.



[ALSB76]

[GRAY79]

[HAMM79]

[LAMP76]

[LORI77]

[MENA79]

[ROTH77]

[SKEE81]

[STON79]

[SCHA78]

[SVOB79]

142

REFERENCES

Alsberg, P. and Day, J., "A Principle for Resilient Sharing of Distributed
Resources,” Proc. 2nd International Conference on Soffware Fngineer-
ing, San Francisco, Ca., October 1976.

Gray, J. N., "Notes on Database Operating Systems,” in Operating Sys-
tems: An Advanced Course, Springer-Verlag, 1979.

Hammer, M. and Shipman, D., "Reliability Mechanisms for 3DD-1: A Sys-
tem for Distributed Databases,” Computer Corporation of America,
Cambridge, Mass., July 1979.

Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed Storage
Systern,” Tech. Report, Computer Science Laboratory, Xerox Parc, Palo
Alto, California, 19786.

Lorie, R., "Physical Integrity in a Large Segmentéd Data Base,;’ ACM
Transactions on Dota Base Systems, Vol. 2, No. 1, March 1977,

Menasce, D. A. and Muntz, R. R., "Locking and Deadlock Detection in
Distributed Databases," IFFE Transactlions on Soffware Engineering,
Vol. SE-5, No. 3, May 1979, pp. 195-202.

Rothnie, J. B, Jr. and Goodman, N., "A Survey of Research and Develop-
ment in Distributed Database Management,” Proc. Third Inf. Conf. on
Very Large Databases, IEEE, 1977.

Skeen, D., "Crash Recovery in a Distributed Database Management Sys-
tem,"” Ph.D. Thesis, EECS Dept., Univ. of Calif., Berkeley (in prepara-
tion).

Stonebraker, M., "Concurrency Control and Consistency of Multiple
Copies in Distributed INGRES," IEEE Tronsoclions on Softwure
FEngineering, May 1979.

Schapiro, R. and Millstein, R., "Failure Recovery in a Distributed Data-
base System," Froc. 1978 COMPCON Canference, September 1978,

Svobodova, L., "Reliability Issues in Distributed Information Processing
Systems," Froc. Gth [EEE Fault Tolerant Computing Conference,
Madison, Wisc., June 1879.



143

Consistency of Redundant Databases in a Weakly Coupled Distributed
Computer Conferencing System”

B. Ivan Strom

Bell Laboratories
Holmdel, New Jersey 07733

Usual models of computation permit only ‘‘correct’” results, with- no

provision for tolerating ‘‘acceptably close’’ answers. ... In a loose confederacy
of autonomous nodes, exactly correct results may be unattainable, but no
answer at all is too restricting. ... An *‘almost right’” answer ... may well be

close enocugh for the purpose the question was asked, but we have no
semantics available for requesting or returning such answers.

— Jerome H. Saltzer [SAL77]

: ABSTRACT

Duplicate databases at multiple sites are often required for reasons of economy, ease
of use, or reliability. Most algorithms supporting synchronization of such replicated databases
assume that the sites are in constant communication with each other, so that synchronization
messages, update acknowledgments, etc. may be sent in real time. In distributed computer
conferencing, this may be economically unfeasible, since home computers, on which database
copies might reside, would not be connected to a network. These machines should be able to
update each other’s database at some predetermined (or random) time when communication
costs are lowest.

An algorithm is presented in this paper which allows each computer to maintain a
local copy of the database, and to resynchronize its database with other computers concurrent
with usage. This algorithm is robust, and operates at low cost. It requires only minimal
connectivity between processors (e.g. via a once-a-day dial-up arrangement), and will support
local personal computers. It differs from conventional algorithms for synchronizing redundant
databases in that no global locking or communication is required during the time of the
updates, and that no updates are rejected because of database inconsistencies. It assumes that a
low-bandwidth network, such as a dialup network, is used to transmit updates, and that update
transmission occurs infrequently. The algorithm is immune to network partition, and tolerant
of multiple site failures.

BACKGROUND ON COMPUTER CONFERENCING

Computer conferencing [ARN78] is a technique to permit asynchronous exchange of
information among conferees, freeing them of the requirements of being at the same place at
the same time. The information exchanged is free-form, rather than structured, information —
no forms are used, and no defined ordering between items is required. Rather, users can enter
free-form text, called items, and can establish arbitrary relationships between these items, by
making any item the logical successor (or subtopic) of another. The list of successors of an
item is known as its successor list or s-list. ’

TH

The computer conference “‘item’ consists of a header (initials, dates, flags, etc.),
title, item number, optional text, and s-fist. Figure 1 gives the form of a typical item.

* This study was performed as part of the author’s PhD research at the Department of Computer Science,

Columbia University, New York, New York 10027.



144

bis 29-Jun-79/20-Sep-79 10:15
example of the title line of an item (T, S) #5

Text of the item
(multiline)

title of first successor (T, S) #3
title of second successor (T) #10

Figure 1. Form of a Conference Item

A user can browse through a conference by traversing s-lists, can insert a new item
as the successor of the current item, can specify where an item should be in the current item’s
successor list, can insert an item into multiple successor lists can delete an item from a
successor list, anid can purge (i.e. totally remove) an item.

In a distributed version, the conference may exist on multiple hosts. If the hosts do
not have to be connected to each other in any kind of permanent sense, it is feasible (and
perhaps very practical) to permit copies of the conference to reside on home computers. Before
accessing the conference, a conferee could call whatever network node is responsible for
delivering messages to it, obtain all current updates, and then disconnect from the network.
The conferee would then be free to browse through the proceedings at his leisure, without
using communications lines, and could perform updates to his local copy. When done, he
could again contact the network and have his local site transmit his changes into the network.
To implement this distributed version, problems relating to synchronization of conflicting
updates need to be resolved.

THEORY OF SYNCHRONIZATION

When multiple users access a common database, it is necessary to guarantee that
updates made by each user do not conflict with updates made by other users. The two causes
of conflicting updates are: :

e Update overlap, and
o Lack of commutativity.

It is possible to avoid overlap by using synchronization techniques, such as serializing
requests, which causes requests to wait so that preceding requests may finish one at a time.
When accesses to a database are synchronized, the transactions do not interfere. We define
atomic transactions as those which, once begun, are allowed to finish without interference by
other transactions.

At a single site, it is possible to ensure atomic transactions (or to synchronize
updates) by a number of means.. These include Dekker’s algorithm, P and V primitives, test
and set, and waiting on an event [ALS76, DIJ68]. In the sequel, we will assume that all
database transactions applied at a single site are atomic.

The situation though becomes more complex when multiple sites are involved, for
communication between sites may severely slow down processing. It becomes necessary then
to either explicitly use some distributed synchronization scheme, as in conventional algorithms
permitting distributed databases, or to somehow avoid the necessity for synchronization
altogether.

It is possible to avoid the synchronization requirement by permitting only
commutative updates to occur. Two updates f(x) and g(x) are said to commute if
f(g(x)) =g(f(x)). The fact that commutative updates may overlap in time is immaterial,
since each update will be applied atomically at each site.



145

Thus a specialized algorithm is proposed here. While the basic operations in
conferencmg are not commutative, it is possible to define commutative operations which can
emulate the effects of the basic operations. Also, the algorithm uses the concept of a
‘“‘reasonable approximation’’ to the database, corresponding to the idea that things may have
been said in the conference, and responded to, before- reaching the user’s eyes. In this
algorithm, all read operations are actually ‘‘read-potluck’ operations, in that the data read may
not reflect all prior updates. For text, a system-enforced policy is used to avoid concurrent
updates. For successors, two timestamps (a transaction timestamp f,,4q. and a data item virtual
timestamp #,,) plus a site code are used to differentiate amongst updates, so that no two
updates assigned will be the same. The technique of assigning timestamps allows the
assignments to commute.

Because of the infrequency of communication, this technique is definitely not
applicable to uses requiring current information (such as airline reservation systems). It also
does not maintain the single user (serializable) illusion provided by most database management
systems (this illusion implies that if all the concurrent processes had executed serially instead,
the final result would be the same [ALS76]). But this technique is applicable to general
knowledge exchange, and to any use in which estimates are acceptable.

SYNCHRONIZATION OF TITLES AND TEXT

There is no general algorithm for allowing multiple users to simultaneously update
different copies of arbitrary text (including item titles), and then to resolve resultant
discrepancies between the different versions while maintaining all changes. This problem,
which involves severe semantic and linguistic problems, may in fact be impossible to solve.
However, in the conferencing environment, this mode of operation is neither necessary nor
desirable. Furthermore, if multiple users were allowed to update text, questions of ownership
would become problematic. )

To avoid such difficulties, a policy could be adopted as to who is allowed to update
text. For example, an item might be updated only at the site where it was first entered.
Atomic locks could prevent multiple users at the site from simultaneously updating this text.
Because the restriction on updating text is very easily satisfied This is but a minor restriction in
a computer conferencing environment, since any user who cannot update a specific item’s text
can always write a new item and establish a link between the old and new items, or could send
a message to the item’s author suggesting a change.

UPDATE OF SUCCESSOR LISTS

This poses a more difficult problem, because permissions cannot be used to
distinguish between who may add/delete a given link and who might not. One way to approach
this problem is by decomposition. The operation of modifying successor lists can be
decomposed into the operation of adding or deletmg items from each s-list, and the operation
of reorganizing each s-list.

Consider adding an item to an s-list. Assume initially that at sites « and 8 item
has no successors. Make item j the successor of item / at site «. When resynchronization is
attempted, o will tell 8 to make j the successor of i. If j is already the successor of i-at 3, no
work need be done. If, on the other hand, j and / are still separate, 8 makes j the successor of
i. In either case, resynchronization is possible.

SYNCHRONIZATION OF THE ORDERING RELATIONSHIP

In distributed computer conferencing, it is not adequate merely to establish that one
item is the successor of another. In addition to synchronizing the presence or absence of
successors, the ordering of items in each successor list must be maintained. That is, successors
should appear in a certain sequence rather that at random — e.g. the successors of item I might
be 23, 2, 47, 65, 24, 92, in that order. The previous (binary) algorithm does not permit the
maintenance of this ordering information, and so is inadequate for the application.



146

An example of the problem is as follows: Consider just two sites « and B with
redundant databases, assumed synchronized at time ?4. Let the successors of some item be
given by the list i j k /. Then the sequences shown in Figure 2 could occur.

a B8
to: initial list ijkl ijkl
t,: move / before j at « iljk ijkl
t,: move j after k at 8 iljk ikjl
ty: resynchronize:

move / before jat8 iklj
move j after k at o ilkj

Figure 2. Non-commutative Reorganizations

These operations do not commute, and result in different answers after
resynchronization. It is an example of a generally unsolvable problem, for different users can
specify orderings which cannot be resolved, e.g.

One user wanting i j k/
Another user wanting / k j i

Both the first case, that of combining individual partial orderings into a total
ordering, and the second case of merging dissimilar total orderings, have been discussed at
length in {ARR63], who has shown that:

“If we exclude the possibility of interpersonal comparisons of utility,
then the only methods of passing from individual tastes to social
preferences which will be satisfactory and which will be defined for a
wide range of sets of individual orderings are either imposed or
dictatorial.”

Since the operation of reordering is, in general, noncommutative, other techniques
must be used to maintain synchronization. Possible techniques include:

e Maintaining a base copy and a list of “‘recent changes’’. The list of recent changes is kept
in timestamp order for each s-list.

o Keeping the most recent version of each s-list.

o Constructing a list combining the ordering information applied at different sites, via some
definitive algorithm. This algorithm would require a compromise, which might not satisfy
anyone.

The compromise technique will be the technique discussed in this work. The
semantics of this compromise will be discussed, followed by an algorithm which implements the
compromise. Finally, an outline of a proof of correctness will be given.

SEMANTICS OF ORDERING

Consider an ordering i j k /. The operation ‘“‘move k before ;> may have a number
of meanings depending on interpretation (the user might just as well have said ‘“move k after
i’). This is especially true in a distributed computer conferencing system, where it is possible
that, when the actual update is performed, the true ordering of successors might be quite
different from what the user actually sees as his local ordering (since many prior updates might
not have yet arrived at his site). Assume the true ordering is / k ji (the mirror image of the
ordering that the user assumes is true). Then the different interpretations result in the
sequences in Figure 3. : ‘



147

True initial ordering lkji

Interpretation:
1. Move & before j lkji
2. Move k between i and j . ljki
3. Move k afteri ljik
4. Most recent local ordering dominates ikjl
S. Reject the update because of DB inconsistencies [k ji
6. Move k to “‘second place” lkji

Figure 3. Interpretations of Reorganization Instructions

Since the user has not provided a total specification (and shouldn’t need to, in a
conferencing system, for it is required that input specifications be as simple as possible), the
computer has to try to guess at what the user means by “‘move &k before j”” when the input is
i jk 1. The sixth interpretation will be the one used in the sequel. It assumes that the user is
trying to move an item to a location, rather than to some fixed point relative to another item.

Location terms are, however, generally vague. Such terms include ‘‘at the
beginning of the list”’, “‘at the end of the list”’, ‘“‘one-third through the list”’, and so on. The
algorithm presented here uses timestamps to define precise locations. Each host sorts the s-lists
by means of these timestamps. This ordering function preserves as much semantic knowledge
as possible from the multiple sites — it might be called a ‘‘congressional ordering algorithm,”
for it tries to find a compromise that satisfies a majority of the updaters. Also, the ordering
algorithm has the property that, if all user activity were to cease, the results at the various sites
converge to a common solution.

THE ALGORITHM

For the present, let us assume that the clocks at all sites are synchronized (this will
be relaxed later). We wish to define synchronization of databases. Let DB (¢) be the state of
the database at site « at time ¢. Let PU,(z) be the set of pending updates to be applied at «.
Databases at « and 8 are synchronized at time t (coherent in Gelenbe’s terminology [GEL78])
iff DB ,(t) = DBg(t). A database is up-to-date at time ¢t iff PU ,(¢) = @. It can be shown that
if all databases are initially synchronized at some time ¢, the algorithm presented in this thesis
maintains synchronization for all ¢ = ¢4, whenever all sites are up-to-date.

The four basic operations one can perform on a conference item are:
1. Create the item.
Edit the item’s text.

Edit the item’s successor list.

el

Purge the item.

After each of these operations is done, the result (not the operation) is broadcast to
all other sites in the network. The act of broadcasting consists of placing the result U of the
update operation (i.e. the operation’s write-set) into the set of pending updates PU, for all sites
a other than the current site. At some later time, each receiving site removes the update result
U from PU, and applies it to its local database by replacing any earlier corresponding database
entry by the new value. The operation of broadcasting makes no restriction on network
topology. No time requirement is placed on broadcasting, other than that multiple updates
originating at the same site be received in order at each site.

The algorithm will be described in four sections — definitions, production,
consumption, and application. The definition section will describe the three relations
maintained by the algorithm. The production section will define the producer operations, those
which actually result in new assignments to the replicated databases. The consumption section
will describe what happens when an update produced at a different site is received, or



148

consumed . Finally, the application section will discuss what is meant by applying an update to a
database.

A conference database DB, consists of three sub-databases:

1. ¥, with members (i, header, text, t,pyq., site), is the set of all currently existing items
at site «. When an item is initially created, text = @. t,p4q, is the time at which the item
is created, or its text updated. ¢4, must be monotonically increasing (i.e. the clock
must not be reset). site is the location where the creation or update occurred.

2. SU,, with members (i, j, ison, lupdate » Site), represents the contents of the successor
relation at & (see Figure 4),

Item  Successor toort pdate Site
10 27 Jun 12,1979 11:32  Jun 12, 1979 11:32 8
10 142 Jun 28, 1979 10:14  Jun 28, 1979 10:14 8
10 16 Jun 19, 1979 15:32  Jun 30, 1979 14:12 12
8 27 May 10, 1979 10:14 May 10, 1979 10:14 6

The successors of item 10 are given by S(10) = 27, 16, 142.
The predecessors of item 27 are given by P(27) = 8, 10.

Figure 4. The Successor Relation

where item j is the successor of item i. fy, is a time to be used, along with site, to sort
values of j from the tuples into required order. A time is used for 7y, , rather than just a
random integer, so that items added to the end of a list will be inserted in their proper
time sequence, i.e. ty,, corresponds to an ‘“‘effective’” timestamp for the item. f,pgq. is
the time at which ¢, is assigned to the tuple at site (multiple items may share the same
value of t@a,e ).  Where no ambiguity exists, we will abbreviate the tuple
(is Js toon > tupdate» Site) by (i, j) and refer to its values of #,, and f,pyu. as toq (i, j) and
tupdale (l » .])

3. A,, with members (i), is the set of item numbers of items purged from ¥,. This set
may be kept as a bit vector.

[t will also be necessary to define inequalities for times. Timestamps consist of pairs
(¢, site) where ¢ is a time (either 4y, OF I4,,) and site is a site code. timestamp(i) <
timestamp(j) if and only if either t (i) < t(j) or ¢t (i) =1 (j) and site (i) << site (j).

To order the s-list of item |/ means to sort the set of tuples
{G, s tsons Lupdate » Site), j # 0} by values of (t,,,, site). It can be proved that this ordering is
always unique.

The (production) operations of creating, editing, and purging an item / at site «, and
the (production) operations of inserting or deleting item j from its s-list, are given in the
following algorithm. new will be used as the name of the write-set of each operation, where
new has any of the forms of ¥, SU, or A.



149

let typiae = max(current time, typgue, 1+ max({tygme (J)1)),
where initial 2,55, = 0 and :
where {tupda,e (j)} are the t,p4qe values of the operation’s read-set;
case* operation in { -
create new item:
let i = item # last created at o + some 8,
where § = number of conference sites;
construct tuple new = (i, header, text = @, typgqe , @);
edit
if (i € ¥, or not “‘authorized’) exit;
atomically update the text locally; :
construct tuple new = (i, header, text, t paz., @);
insert j at the end of the s-list:
if (i € Yyorj ¢ ¥,) exit;
construct tuple new = (i, j, t;on = current time, t,piq,, ®);
delete j: ~
if(i € ¥oorj & ¥, or(i,j) € SU,) exit;
construct tuple new = (i, j, tion = 0, lypdae a);
insert j before I, where A (i, ) € SU,:
if (i £ ¥,orj ¢ ¥,) exit;
order the s-list for item i;
if item / has a predecessor k in the s-list
let 1y =ty (i, k);
else :
let t), =ty (i, 1) — 6 for some fixed §;
if (tee (i, 1) —1t; < ¢, for some minimum e) exit;
let ¢,,,, = random value between ¢ and ¢, (i, /);
construct tuple new = (i, j, ton, lypdate» @)
purge ;
if (i £ ¥, or not ““authorized’’) exit;
construct tuple new = (i);
}
apply new at «;
add new to PUg, VB # «a
(i.e. broadcast the tuple to all other sites);

Reception (consumption) of a tuple at site « is given by:

Upon receipt of tuple new € PU, {
apply new at a;
remove new from PU ,;

*  We will assume that each new case terminates the previous case, so that ‘“‘break’ statements are not required

between cases.



150

Applying a tuple new at site « is given by:

case tuple new of the form {
(i, header, text, t,pqe, Site):
if Jold = (i, header’, text’, t\pguc, site’), old € ¥, {
if (Lupdate » Sit€) > (L ipdate » Site’)
replace old by new;
}
else
add new to ¥ ;
let Lo (site) = typdate 5
(is Js tsort s Lupdare » Sit€):
if Jold = (i, j, tions idare» Site”), old € SU, {
' if (tupdate » Site) > (t ypdate » Site”)
replace old by new;
}

else .
add new to SU ;

let Lo (site) = typae 5

(i):
remove | from ¥, ;
add i to A,;
if values for t,,4,4, and site are transmitted along with J
let 1y, (site) = typdae
}

let Iy, = min £, (j), j taken over all sites;
J

The final operation, housecleaning at site « (a deferred application), is defined by:

For all tuples T = (i, j, tsn» tupdate» Site), T € SU,,
if 1o = 0 and typae < Loy
ori € A
orj € A
remove T from SU;

When any of the production operations are performed, a copy of the created tuple is
broadcast to all other sites in the network that are participating in the same conference. There
is no time requirement on the reception and processing of this update tuple. Updating proceeds
asynchronously, with no global logging between sites. When the update tuple arrives at a site,
its value of t,,44, is compared with the value of #,,4,, already stored for the same item. If the
item does not exist, or if the new value of 7,44, is greater, the new tuple replaces the tuple
stored for that item.

The precise ordering of tuples does not matter, as long as it is consistent among the
multiple copies of the database. If multiple updates occur at different sites “‘simultaneously”,
the situation is similar to these updates occurring simultaneously on a single host — i.e. the
operating system will perform one or the other first, selecting perhaps by terminal priority or
process priority. Note that this produces a requirement for clock synchronization. Clock
synchronization has been addressed by Lamport [LAM78], LeLann [LEL79], Belford and
Grapa [BEL79], and others.

It is possible that the currently stored value of lupdae for this item is greater than the
current (real) clock time, because of skew between different hosts. In that case, either the
update could be rejected (perhaps with a note to the user asking him to retry it at a later time),



151

(X3

or the algorithm could choose a ‘‘phony’’ value of #,,4, which would work correctly. This
second approach has been used. 4, is chosen to equal the current time, the last value of
lupdae US€d, or one second greater than the maximum value in the operation’s read-set,
whichever is greatest.

By using this technique, it is possible for clocks at different sites to be slow or fast,
to run at the wrong rate, or to fail altogether. Where clocks are grossly off, the “‘logical clock
synchronization” feature of letting f,,4e be greater than any value of #,,4,, in the transaction’s
read-set assures that all clocks increase in value. In the very weakly coupled environment
proposed, it is superior to logical clock synchronization mechanisms such as those proposed in
[KAN79], which might only give one tick per day (since it requires that all sites confirm the
tick).

The rule suggested here is similar to the timestamp generation rule suggested by
Thomas [THO79] in his majority consensus algorithm. Thomas suggests letting
tupdare = 1 + Max(tpp,, Max({tupdare (/)1)), Where the {0 ()} are the t,4, values of the
current transaction’s base set. However, the algorithm presented here can have multiple items
with a single timestamp. Both Thomas’ rule (which requires incrementing ¢,,,) and SDD-1
[BER78] cannot.

PROOF OF CORRECTNESS

Because of space considerations, it is not possible to present full proofs here. The
interested reader may find these proofs in [STR80]. The general outline of the proofs though
is as follows: To prove that the algorithm works and results in consistent copies of the database,
it is necessary to show that, in the limit when all updates are applied, all copies of the database
converge to the same value (Theorem 1). (A side effect of this is that the network will not be
synchronized if any non-obsolete update remajns unapplied, as shown in Theorem 2). It is also
demonstrated that the algorithm is immune to clock errors (Theorem 3), and that the algorithm
properly corrects for items generated at different sites arriving out of sequence (Theorem 4).

For the algorithm to work, it is necessary for each site to maintain records as to
which data items were deleted. These records can consume much additional core, and can
therefore greatly add to the expense of the algorithm. However, it is possible to perform
housecleaning, removing no longer needed records of deletions. It is shown that the
housecleaning algorithm removes only these no longer needed records (Theorem 5).

Networks are always vulnerable to data transmission errors, database loss, and
similar problems. While a formal proof of the tolerance of the algorithm to these failures has
not been developed, the algorithm appears to handle many failurés well, and is immune to
network partition. A full discussion of the robustness of the algorithm under network failure
may also be found in [STR80].

CONCLUSIONS

Conventional distribution techniques involve close communication between host
computers. This kind of communication is undesirable in distributed computer conferencing,
where the cost of the communication lines between hosts might be comparable to the costs of
the direct long distance communication between the user and remote host. Rather, it is
preferable to allow the hosts to resynchronize infrequently (perhaps once a day).

To permit the hosts to resynchronize themselves and maintain consistency of the
conference information, a totally new algorithm had to be devised. The algorithm is
complicated by the fact that individuals at multiple hosts may make arbitrary changes anywhere
in the conference graph. Since it is not acceptable to inform a user, perhaps a week after his
entry, that his entry is inconsistent with the database state and therefore invalid, the algorithm
must accept all user inputs, and attempt to reach a compromise state that would probably be
acceptable to all the users. This algorithm is presented here, and a summary of a correctness
proof is given.



152

The technique of using f,,4,, to order updates is similar to the technique used in the
P1 protocol of SDD-1 described in [BER78]. It differs from that protocol in that two
timestamps, rather than one, are used. In P1, timestamps are used only to determine if a data
item is to be updated — a site changes its local copy of a data item only if the timestamp of the
local copy is earlier than that of the update message received. The algorithm here operates
similarly to P1, with the second timestamp chosen in such a way as to guarantee a unique
ordering of successor elements.

Like SDD-1, this algorithm makes the assumptions that (1) for every pair of sites a
and B, a transmits messages to $ in timestamp order; (2) the communication medium or
subsystem always delivers messages in the order they were sent; and (3) each of the update
transactions is atomic. However, unlike P1, this algorithm does not require that updates be
transmitted to all sites immediately.

The solution presented here has a number of properties which make it both unique
and useful. These are:

1. The algorithm requires no communication at the time of the updating process. There is

no time requirement on transmission of update operations — the algorithm is totally
speed-independent (except that it does require that the sequence of updates be
maintained).

2. All updates are accepted. There is never a need to coordinate rejection of an update.

3. A compromise is achieved between users, rather than an overruling of one user’s updates
by another. This assumes that ‘‘correctness’, as usually defined (i.e. serializability), is
not an issue.

4. No global locking is used. Since no locks are used, the algorithm is deadlock-free.
5. All copies of the database converge to the same results, provided user activity ceases.

6. All sites are treated equally and run the same programs — no site is a designated ‘‘central
site”.

7. The algorithm is robust in the face of network partition and multiple site failure. The
system will continue to operate correctly despite these failures, and will correct itself after
the failures are recovered from. A technique has also been suggested for handling
database crash recovery.

8. The cost of transmitting information between copies is minimal for this algorithm. Since
only the updated data need be transmitted, without synchronization or acknowledgement
messages, only (n —1) messages are required per update, where n is the number of
database copies. This compares favorably with other systems, such as {[BAD78] and
[THO79], which require additional messages. Furthermore, messages may be batched to
maximally utilize the bandwidth of a channel, and may be sent when transmission charges
are lowest.

9. Implementation of the algorithm is inexpensive, costing only an additional 3.6% storage
to maintain the required timestamps [STR80].

ACKNOWLEDGMENTS

I would like to thank first and foremost my thesis advisor, Dr. S. H. Unger, for
direction, encouragement, insight, and support during these years of research and writing. 1
would also like to thank the members of my committee, Drs. J. B. Kam and H. D. Eskin, for
their valuable suggestions. Particular thanks go to Dr. Kam for a thought-provoking discussion
on the importance of the concept of very weakly coupled systems.

Thanks also to numerous friends at Bell Telephone Laboratories for assistance with
the algorithm. Particular thanks go to R. F. Grantges, for providing facilities and time for my
research, G. W. Arnold, for paving the path in this research, M. DeMaio, who pointed out



153

errors in numerous earlier versions of this algorithm, and to M. S. Hall, Jr. for a very critical
reading of the draft manuscript. :

REFERENCES

[ALS76]

[ARN78]

[ARR63]

[BAD78]

[BEL79]

[BER78]

[D1J68]

[GEL78]

[KAN79]

[LAM73]

{LEL79]

[SAL77]

[STR80]

[THO79]

P. A. Alsberg et al.,, ““Research in Network Management and Resource Sharing —
Synchronization and Deadlock,” CAC Document 185, March 1, 1976.

G. W. Arnold, ““A Computer-Mediated Structured Communications System,”’ PhD
Dissertation, Dept. of Electrical Engineering & Computer Science, Columbia
University, May 1978.

K. J. Arrow, Social Choice and Individual Values, 2nd Edition, Yale University Press,
1963.

D. Z. Badal and G. J. Popek, ‘A Proposal for Distributed Concurrency Control for
Partially Redundant Distributed. Data Base Systems,”” Proceedings of the Third
Berkeley Workshop on Distributed Data Management and Computer Networks, Aug.
1978, pp. 273-285.

G. G. Beiford and E. Grapa, ‘“‘Setting Clocks ‘Back’ in a Distributed Computing
System,”” Proceedings of the Ist International Conference on Distributed Computing
Systems, Huntsville, Alabama, Oct. 1979, pp. 612-616.

P. A. Bernstein, J. B. Rothnie, Jr., N. Goodman, and C. A. Papadimitriou, ‘‘The
Concurrency Control Mechanism of SDD-1: A System for Distributed Databases
(The Fully Redundant Case),”’” IEEE Transactions on Software Engineering, Vol. SE-4,
No. 3, May 1978, pp. 154-168.

E. W. Dijkstra, ‘‘Cooperating Sequential Processes,”” Programming Languages,
F. Genuys, ed., Academic Press, 1968, pp. 43-112.

E. Gelenbe and K. Sevcik, “Analysis of Update Synchronization for Multiple Copy
Data-Bases,”’ Proceedings of the Third Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978, pp. 69-90.

A. Kaneko, Y. Nishihara, K. Tsuruoka, and M. Hattori, ‘‘Logical Clock
Synchronization Method for Duplicated Database Control,”” Proceedings of the Ist
International Conference on Distributed Computing Systems, Huntsville, Alabama, Oct.
1979, pp. 601-611.

L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

G. Le Lann, “An Analysis of Different Approaches to Distributed Computing,”
Proceedings of the Ist International Conference on Distributed Computing Systems,
Huntsville, Alabama, Oct. 1979, pp. 222-232.

J. H. Saltzer, “Research Problems of Decentralized Systems with Largely
Autonomous Nodes,”” Operating Systems Review, March 1977, pp. 43-52.

B. L. Strom, ‘A Multi-Copy Structured Database Computer Conferencing System,”
PhD Thesis, Computer Science Dept. Columbia University, May 1980.

R. H. Thomas, ‘A Majority Consensus Approach to Concurrency Control for
Multiple Copy Databases,”” ACM Transactions on Database Systems, Vol. 4, No. 2,
June 1979, pp. 180-209.



154

ON EVALUATING AVAILABILITY IN
DISTRIBUTED DATABASE SYSTEMS

G. Martella, B. Ronchetti, F;A. Schreiber

Istituto di Elettrotecnica ed Elettronica, Politecnico di Milano
P.zza Leonardo da Vinci, 32 - 120133 MILANO - Italy

Abstract

A quantitative method is presented for evaluating availability in Di-
stributed Database Systems. The description of the distributed system and
of the transaction processing 1s given im terms of a flow graph. The system
states are represented by a structure vector. Transition between states are
modeled by a markovian model. Solution techniques are discussed both for
state independency and state dependency. Finally computation results for an
example are given.

1. Introduction

Distributed systems have been developed in the last years with many
different aims. One of the most popular is the increase in reliability dis-
tributed systems offer with respect to centralised ones and their graceful
degradation properties /Schr 79/.

These considerations apply in particular to Distributed Database Systems
(DDB) where high level of data availability is obtained by redundant data
storage at different sites (Hosts) of a computer network.

Even if sophisticated architectures have been proposed to obtain a very
high availability in Distributed Database Systems /Gray 77/ /Hamm 78/
/Lind 79/, i.e. to assure that transactions are successfully processed, how-
ever little has been done, until now, to give a quantitative evaluation to
these efforts.

In this paper we propose a method to quantitatively determine availabi-
1ity in a DDB, which is based on a markovian model to evaluate the transition
probabilities from a functioning system to a faulty one and vice-versa.

This work is part of the DATANET project of the ItaTian National Research
Council.



155

In particular section 2 contains the description and an example of
how to model the DDB System; in section 3 a transaction on the DDB is
analyzed and a flow graph representation of it is obtained.

In Section 4 and 5 solution methods are presented for the case of in-
dependent faults and for the case of faults depending the ones on the others,
respectively.

Finally, results obtained by a computer program are shown for the
example presented in the paper. '

2. Preliminary Considerations

Consider four disjoint sets of data: {x;} , {xz}, {x,}, {x4}, e.g.
four disjoint files. Furthermore consider the union“of thg four 'sets to be
a single virtual data base. Assume the virtual data base:

VDB = {x], Xos X35 x4}

is physically distributed on a network consisting of four sites, according
to the following pattern :

- site N] contains the set of data D1 = {x], X0 x3}

- site N2 contains the set of data D2 = {x2}
- site N3 contains the set of data D3 = {x2, x3}
- site N4 contains the set of data D4 = {x4}

Each of the four sites contains its own DBMS, which will differ, at
least in general, from the others. The various DBMSs may communicate with
each other via a data transfer network. We assume that the necessary compil-
ing and monitoring facilities are located at each site, "on top" of the To-
cal DBMS. Each site is in one of two possible states. That is: the site
is either up (state 1), or down (state "0"). This dicotomy can be readily
Justified: to this purpose consider the timeout mechanism that regulates
the data communication protocols. It implements a binary law spelling that
a message is "received" if the receiving site emanates an ACK within a given
time limit. Otherwise the message is "not received". Thus a site appears to
be up if it dispatches appropriate ACK messages, and appears to be down if
it fails to do so, whatever the reason is.

Transitions between the two states of a site are governed by probabilis-
tic Taws. Let us call: "failure" the transition from "1" to "0" and:
"recovery" the transition from "0" to "1".

Further, let us call
- (1) probability that the site N, fails during the observation period, i.e.

that the site is up at the beginﬁing of the observation and down at its
end; '



156

- r(1) probability that the site N. recovers during the observation period.

In presence of the appropriate maintenance and recovery procedures the
two figures f(1) and r(i) are independent of the actual starting time of
observation. However they do depend on the lenght of the observation period
and on the general state of the network s, so that we should write more ac-
curately: fét)( ) and r(A%( ). The s dependence can be explained with the
following example: consider that the workload of the site depends on the
state of other sites containing the same sets of data. A greater workload
implies an increased response time and this in turn, via the time-out mecha-
nism, an increased failure probability.

The communication network that connects the four sites of our sample
problem is charaterized by a non-zero probability of failure of its compo-
nents. Let us call:

—fﬁ%’J) probability that the connection between sites N and N fails du-
© ring the observation period t;
—r(1’3) probability that the connection between sites N and N is restablished
At during At.
For every i and At we have :

(i,1)_ .
a) fag” 7= 03

(i.1)_ 4.
b) rAt = 1;

Moreover let us assume :

At At
(1,d)_ .(3,1)
d) rAt A%

that is: the communication network has symmetrical properties.

The transactions which access the virtual data base can be completely
described in terms of their read-sets R and their write-sets W (/Bern 79/).
Transaction T; initiated at site N is said to be local if {RT1U WT }C:D
and global otherw1se

Now, let us consider the transaction T, initiated at site 2, having
read-set Ry, = {x3, x4} and write-set Wr, = {xp}.

T, is a global transaction. For Ty to be successfully completed several
conditions must be satisfied. T, has to have access to the set of data {x3} ;
{x3} is stored at site Ny and at site N3. So, for T, to be successfully com-
pleted it is necessary that both Ny and the communication Tink N, -~ Ny be in
the "1" state, else that both N3 and the Tlink Ny > N3 be in the ""1" state.

AN



157

Similar considerations can be made for the second read access of trans-
action TZ'

The write access (sometimes called an update access) to the set of data
{x,} follows a somewhat different pattern. The external consistency cons-
trdints require that all the copies of the same object have identical values.
This means that all the copies of an object to be updated have to be written
before another access is granded to the same object. This very strong condi-
tion can be somewhat relaxed by using K-resiliency (/Alsb 76/) and other si-
milar protocols.

Choosing k=2 for our problem means that at least two copies of the set
of data {x,} must be updated before the write access is completed. Thus, in
a case whe;e N, and the link N, ~ N, are both in the "0" state, the trans-
action T canngt be completed.”A failure which prevents a transaction from
being successfully completed, is called a critical failure.

3. The Algorithm

The algorithm is divided into two phases. The first phase is static in
nature, in that it analyses the given transaction and the given network to
determine which failures are critical to the transaction itself. Information
concerning these two aspects is collected in vector € , called the structure
vector of the distributed database.

The second phase of the algorithm covers the dynamic part of the problem
and is essentially concerned with the probabilistic description of failures
in the network. This description is finally summarized in the probability
vector p(t).

3.1.1 Transaction ana]ysis

Let's consider the distributed database of the example described in sec
tion 2 and transaction Tp. '

Consider the first read access of the transaction, i.e. the read access
to the set of data {x3} € Ry, . The conditions which must be met for a success-
ful completion of the read agcess have been already mentioned in the previous
section. These conditions can be visualized appropriately on an oriented acy-
clic graph G ={ V,E}, called the search graph. The search graph is built
according to the following three rules:

RuTle T : there 1is only one vertex, called source, without ingoing edges.
Rule 2 : there is only one vertex, called drain, without outgoing edges.

Rule 3 : Edges represent resources (i.e. a site or a communication link bet-
: ween two sites). Edaes are connected in series if the resources they
represent are all necessary for performing the transaction (AND con-
nection). They are connected in parallel if one of the represented
resources is sufficient for performing the transaction (OR connec-
tion).



158

Nl, N2, 2~>1, 2~>3 ALL UP

SOURCE

N1 DOWN

SOURCE

DRAIN

N1, 2> 3 DOWN

'SOURCE |




159

Figure 1 shows the search graph for the read access to {x } in the
case of single and multiple failures.

When the failure is critical the search graph is not connected.

Furthermore, consider the write access to the set of data {x,}.{x,}
is replicated at three sites. The update must obey a 2-resilient proto&o]
This means that there are (%) alternative updating strategies. Figure 2
shows the search graph for the write access to {xp} in the case with no
failures.

Appropriately linking sources and drains of the search graphs for ele-
mentary read and write accesses, finally gives a search graph for the trans-
action as a whole. Fig. 3 shows the search graph for transaction T, in the
case with no failures.

The search graph for the transaction contains the sub-graph for every
element of the read-set Ry, plus a sub-graph for every element of the
write-set p]us a leading eége to model the fact that one must have a working
initial site in order to start the transaction.

The search graph can be associated with a boolean expression. To this
purpose every physical resource must be associated with a boolean variable.
The variables are set to value "1" when the corresponding resources are in
the up state, and to value "0" when the resources are in the down state.
The expression of fig. 3b is obtained from the search graph of fig. 3a by
means of the well-known rules of switching algebra.

This expression can be deduced automatically via a computer program once
it is given the following inputs:

- the physical distribution of the sets of data in the network
- the initial site of the transaction

the r elements of the read-set

- the w elements of the write-set

- the resiliency parameter k.

The appropriate program description is given in the appendix.

3.1.2 The s tructure-vector

The expression in fig. 3b describes the state of the computer network
as far as the site and communication links involved by To are concerned.

The expression has value 0 if there is a critical failure in the net-
work. It has value 1 if the state of the network allows the transaction to
be successfully completed.

The expression in Fig. 4b is a simplified version of that in fig. 3b
and is obtained by repeatedly applying boolean algebra's own rules. Fig. 4a
depicts the corresponding simplified search graph.

The simplified search graph contains 7 elements. This means that there



160

WRITE PHASE: ALL THE RESOURCES IN THE UP STATE

(o]

[SOURCE])

FIG, 2
A
N3 2-vi
N o
E2UEY
N 20y Ny ) 2w N2 o 201
[SOURCE;]
2-02 : NL  aed
INITIAL READ PHASE i WRITE PHASE
SITE £x) l {x3 {x]
B

e A ({23 AT viztand) A {24 A ] A {[23amA2eiAN] v[mum\m]\/[hzuab/\m]}

FIG, 3



161

(b VY h+F) <.?z<?®>

(€

NV g Vo

K3

[n1vea]

o

H039N0S




162

are 2/ = 128 states of the network which significantly differ from each other
-as far as transaction T2 is concerned. '

The simplified boolean expression in Fig. 4b is evaluated for each of
the 128 different states. The result of the calculation are gathered into a
binary vector with 128 elements called the structure-vector tT (/Amoi 79/).
The null elements of the structure vector show the state of thé network which
contain critical failures. Fig. 5 shows a part of an ordered enumeration of
the network states with the corresponding structure-vector.

Now, consider the time-dependent column vector P(t) consisting of 128
components. For t=t* the value of the j-th component equals the probability
that the system be in the j-th state at time t=t* . The ordering of the net-
work states chosen for P(t) is the same as the one established for ETZ'

Thus, we can define the expression :

t) = E' . 0 t) ;
% (©) Poe®)

where the apex denotes the operations of transposition and the multiplica-
tion sign stands for the scalar product.Jﬁ% (t) is a measure of the database's
availability to perform transaction T2.J§E(t) is an explicit function of time
and depends implicitly : '

- via %T on the type of transaction;
- via Cp, on the distribution of the data in the nodes;
- via ETZ on the resilience parameter k;

- via B(t) on the failure probability of the nodes and of the communication
Tinks.

The probability vector's evolution is governed by Markov's (discrete ti-
me) Taw:

P(t+1) = A.B(t)

where the time unit is At, the length of the observation perjod. A is a
square matrix of rank 128 and is called the transition matrix. a,., of A
equals the probability that the system, being in the j-th state Wat time t,
has to be in the i-th state at time t+1.

In what follows we assume in section 4 that the Markov chain is of the
homogeneous type, that is that matrix A does not depend on the state of the
system at time t.

This restriction is then to be removed in Sect. 5.



163

T2

3 0|01 0l0|0| (ojololol~|o|olOi=| |O[C| Q] [O]~| O~
=4
& Ol 0of= ~lo| -« 0]~ ol=|o[~| |o|«|0| |0~ o|~
5 0|0}~ ~{0| O|«|~jo|ol<|~| |«{~|0o| [0]o|~|~
M ARl SO0 OO = ~~=| | OO~ |~~~
M 0 Q|0 Ol ==~ w|~ |~ OlolO |~ ~t
= o O|0 <l Q=R | O]O0p]| [T~ ~
2 O 0|0 ] I JY IR QTS B B oy Y I R ) Y i B ~
z ) ol0 o|ol0lo|O| 0|0 0|0 | =i<|<] {v|=<|~l~w

3

: ololmlelel lEalzlzels2els (5I935 E

-4
~




164

4. The homogeneous case

At this point we will discuss a method which allows us to build matrix
A recursively, out of the knowledge of the failure and recovery probabilities

(1) (1) C s - (1,3) (i,3)
of the sites fAt and rAt and of the communication links fAt and rAt .

Let us firstly consider a very simple system consisting of only one ele-
ment, say of site N.. The system's set of states then comprises gnly two
states. This means 1n turn that the system's probability vector p;(t) has two
components :

- the value of the first equals the probability that site N is in the "0"
state at time t;
- the value of the second component equals the probab111ty that site N is
in the "1" state at time t.
Note that the components of the probability vector add up to unit.

The transition matrix for this simple systemris the following :

p(0 > 0) p(1+0) _ ,
) ()

o p(0=1) p(1 1)

The corresponding Markov chain may be written as :

.i
Biceen) = Al Bty
Now consider a more complex system consisting of two elements, say site
N. and Nj. The system's set of states contains four elements which can be
enumerated in ascending order :

00

01

10

11
where the first figure represents the state of N; and the second the state
of Nj. The system's transition matrix can be obtained via the formula:

a(020) _ 4(0) g a0

where B denotes the direct-product (or Kronecker-product, /Lanc 69/) between
matrices. Fig. 6 presents an example of this transition matrix expansion.

The above formula can be extended to systems with any number of elements.
Consider our example of computer network. As it was already seen there are 7
components (four sites and three communications links) whose state signifi-
cantly affects the outcome of transaction T,.The transition matrix of this
seven-element system can be computed once t%e transition parameters of the
single element are known. If we order the component of the probability vec-
tor p( ) as in fig. 5 the formula spells :



165

P (t0-=0) p (11-00)

-

p (00~ 00) -ra(O!. - 00)
(/l)j(J) ,;,{oo-vo.{) IO(OL '901)
ploo=io) p(oh+id) 1 ploeso) (i~ 10)

plo—-1t)  ploa~u) | plosi) p@t-11)
| Plo<0) Fo=0) plowo) - F"(i"O): plt «9)plo0) pi(i'o)-rj@}oo)
edlo=n o sl fed-Fous) it -

Pee)-plo=c) p-d r(uo) pls) foro) pien) o)
o floet) ool Fl)| fefoun) Fied 1)

i G) ! | ('-A ]
ploe) AL o9 AY
= frmmmmmn e 1=
L COR
B : N

(i) ()

FIG. ©



166

2) 3) 4) 2 > 1) 2 > 3) o (2~ 4)

A=all) g al® g a3 g al®) g g Al g A .

Now it is important to notice that the same matrix A is given by the
following expression :
128 7 . .

_ (i), 728
A = 2]k (H]&i 7). gy

where :
128

- Ik is a row vector, the k-th versor of the 128-dimension space; in other
-

words %128 is a row vector with 128 components, the k-th component being
1 while Ehe others are nulls.

i
fl z,) if the i-th element is up in the k-th system
1-f1

-r(i
state, a vector ](:g )l if the i-th element is down in the k-th system
r

- §(1) is a vector

state.

5. The non-homogeneous case

The formalism introduced in the previous section allows us to handle
the non-homogneous case in a very compact way. Remember that the Markov-chain
is called non-homogeneous when the transition matrix depends on the system
state at time t. The system state in turn is a function of time and thus A
depends transitively on time.

For any physical element i, the staterdependent faj]ure a?d recovery
probabilities may be written as £(1) = £(7) (s) and p(1) = (1 (s). The
overall transition matrix is then given by :

128

7 .

as) = 3, (e k) . 1128

i 1! ('f

. ) 1
where ;(1) (k) is the vector (i) (k) if the i-th element is up in

1-f (k) y1 (i
the k-th system state, or the vector ](¥§1) (k) if the i-th element
r (k)

is down in the k-th system state.

This means that the number of parameters needed to completely identify
the (probabilistic) transition behaviour of a system grows exponentially with
the number of the system's elements.

The computational complexity of the problem can be greatly reduced if
the following consideration is made.

The Markov-chain p(t+1) = A(s).p(t) can be divided in smaller sub-chains;
to this purpose the set comprising the system's physical elements must be
partitioned in dependency-subsets so as to have no dependency between elements



167

of different subsets. Let us call these dependency subsets Sys Sos +ees Sy-

In our example one can reasonably suppose that the failure probability
f(1) of site N. depends on the state of the sites containing the same‘setg
of data and that the failure and recovery probabilities f(i,3) and r(i>J)of
the communication link i - j depend on the state of all other communication
Tinks. Under these assumptions, in our example, we have d=3.

The three dependency subsets are :
S'I ={N]3N29N3} 9 SZI{N4}’ S3 ={2+], 2+3 3 2+4}.

Thus it is possible to write d Markov subchains. The global probability
vector can be then obtained via the expression :

d
p(t+l) = Il B (t+1) ;
1 % .
wgih like in the homogeneous case the s-dependent parameter f(1)(s)
(s)

and r can be deduced from historical series or inferred from the
knowledge of the system's structure and of its operating policies.

6. Results and concluding remarks

For our example of DDB, results have been obtained in the homogeneous
case with a computer program /Gubi 80/ by plotting the availability until
it reaches its asynthotic value (fig. 7). The following values have been
chosen: -

- for the Host computers (sites)

oy -3 o -2
f/At =x=1.10 r/At =u=2.78 .10
- for the communication channels
oy -3 o -1
f/At =x=20,33 .10 r/At =u=1.6 .10

In fig. 8 the bottleneck of the single copy at node 4 has been removed
by making it available in duplicate at one of the other three nodes. The im-
provement in the availability has been of 3.6 per cent.

The proposed algorithm can be extended from the simple example presented
in this paper to any type of distributed data base and any type of transac-
tion.

The features embodied in the algorithm allow to master a wide variety
of situations. Thus the existence of two distinct transition probabilities
provides means for adjusting the model to varying operating and maintainance
policies. The state-dependency further allows to implement complex situations,
provided a good model is found to describe it. Finally the automated algo-
rithm suggests its use as an interactive syntehsis and design tool.



168

FIG, 7

« s s

e e o

" e o o

100=25%6

« s o s 0

o« o

Inn=vath

® 6 % 8 e 0 e 0 s 8 s @

s ® 8 2 5 s 0 & &

(TR

2 %

¥

" s e .

% % % % ¥ & & 2 Fd
. L

& F X ¥ KR

THN=pk?*A

100=r &6
[HO=62°6
Tyv=-62°6
Tou=6d 6
[00-£2°8
100=-62°6A
TU0=6d%6
100=-e7%6
100=62°A
THa=¢ee*6
100=-62"6
100=-6¢"6
100=-62°%6
T00-6<°A
100=-62°6
100-62"6
T00=-62°6
T00=-6¢°6
T0G=6Z"6
160=6d%6
T0u=62°6
TUU=KZ"H
100~62°6
100-6¢%6
100=-62°6
T0U=-62°6
Tou=nt*6
T00=0E*6
100=0E*6
TOU=0F *A
TOU=0t * 6
TCU=TE"A
T00=1€"A
100=-1¢°6
Tne=-ze*6
1G0=-28°6
wo-g€*6
L EUIVES 3 B
T00-4F*6
100-G€°"6
100=-9E"6
Toy=E° &
Tou-vEre
100=-/E"6
100=1%*5h
no=-gw*6
Tou=-a% 6
GRS LAY
100=-16"6
T100-%C"6
TOU=-yS"6
100=-2%*6
100=-79"6
100=%2°6
100=-1R*6
100-06"6
000+00"1

Jopsnnn 2
2000542
2ons0n/)°2
Z0nengy*2
snn+«npaca
cno+06s2
200+006%2
200+nGy*2
Fn0+00n2
200+06E"2
anp+onE*2
2n0+0G6e*2
zoo«qnece
20h+0G1 2
Zoa+ont1te
200+060°2
Zno+0n0°e
200+0C6° T
Z00+006"1
zno+nency
200+008°1
2000621
2no+onz*
Z00+ngo°y
Z0n+0ny* 1
Z00+06G° T
2nH+0ngTy
200+06%9°1
uaps0nnc |
J00+0G6e T
JOnenng ey
Funsnape|
daasnnzey
ann+ngyTy
2nas0pnly
2on+0cn*y
Zoo+nagp*y
Thu+0045°4

T00+000"6

1n0+006"9
Ton-0nn"g
Tno+006* L
T00+000° L
100+00G°9
100+600°9
100+0N&°G
T00+0006°G
100+0ngGg*»
100+000" %
1002004 €
100+000°E
100+0NG"2
Ton+000"2
no+ang*1
I00+008°1
000000 S
0o00*



169

FIG. 8

o

GOCHI0T

o s

)

L

oy

AR

YOO

£00+506°C

(9%

e

U A G e s O

e

AM008

!

sl




170

Acknowledgments

We thank very much Prof. V. Amoia and Prof. M. Santomauro for many
helpful discussions in the course of this research.

Appendix

- physical allocation matrix (specifies for each set of data the sites
containing a copy of the set).
- initial node Nj

- read-set of the transaction {r], Fos vees rr}

write-set of the transactionl wy, wy, ..., w,, }

resiliency parameter k

Algorithm

- form a chain of AND comprising (r+w+1) elements
- the first element of the chain is Nj
- for every j=1,...,r form a further element of  the chain:
- consider the set of data r; and build a Tist of all sistes containing r;

the 1ist contains, say, s elements
- form a chain of OR comprising s elements
- the h-th element of the chain is of the type: (h > i) AND Nh

- for every j=1, ...,w form a further element of the chain
- consider the set of data wj and build a list of all sites containing
wj
the 1ist contains, say, s elements
- form the list of (5 ) elements containing combinations of the s sites

taken k at a time
- the h-th elements of the list contains sites Nyp,...,Np.
- form a chain of OR comprising (5) elements

- the h-th element of the chain is of the type :

((hy > i) AND N

: AND . ... AND ((h, ~ i) AND N )

ht) AND N,



References

/Alsb

/Amoi

/Bern

/Gray

/Gubi

/Hamm

/Lanc

/Lind

/Mart

/Schr

76/

79/

79/

77/

80/

79/

69/
79/

80/

79/

171

P.A. Alsberg, J.D. Day: A Principle for Resilient Sharing of
Distributed Resources.

an International Conference on Software Engineering, Dec. 76.

V. Amoia, G. De Micheli, M. Santomauro: Computer Oriented For-
mulation of Transition Rate Matrices via Kronecker Algebra -

‘Laboratorio di Calcolatori, Politecnico di Milano, Rapporto in-

terno 79-16.

P.A. Bernstein, D.W. Shipman, W.S. Wong: Formal Aspects of Seria-
lizability in Database Concurrency Control - IEEE Transactions
on Software Engineering, May, 1979.

J.N. Gray: Notes on Database Operating Systems - in : Operating
Systems: an Advanced Course, Springer Verlag, 1977

P. Gubian: RELAN: Un programma per il calcolo della affidabilita
dei sistemi - tesi di Taurea in ingegneria elettronica - Politec
nico di Milano, Tuglio 1980.

M.W. Hammer, D.W. Shipman: Reliability Mechanisms for SDD-1 A
System for Distributed Databases - Technical Report CCA-79-05,
July 1979,

P. Lancaster: Theory of Matrices - Academic Press, 1969

B.G. Lindsay, P.G. Selinger: Notes on Distributed Databases -
Advanced Course on Distributed Data-bases, Sheffield City Poly-
technic, 1979.

G. Martella, B. Ronchetti, F.A. Schreiber: Una proposta per un
metodo di analisi della disponibilitd nelle Basi di Dati Distri-
buite - Proc. Congresso AICA 80, Bologna, oct. 1980.

C. Baldissera, S. Ceri, F.A. Schreiber: Basi di dati distribui-
te - Rivista di informatica, Vol. IX. n. 3, luglio-settembre 1979.




172

DETECTION OF MUTUAL INCONSISTENCY IN DISTRIBUTED SYSTEMS

D. Stott Parker, Gerald J. Popek, Gerard Rudisin,
Allen Stoughton, Bruce Walker, Evelyn Walton,
Johanna Chow, David Edwards, Stephen Kiser, Charles Kline

Computer Science Department
University of California
Los Angeles, California 90024

ABSTRACT

Many distributed systems are now being developed to provide users with convenient access to data via
some kind of communications network. In many cases it is desirable to keep the system functioning
even when it is partitioned by network failures. A serious problem in this context is how one can sup-
port redundant copies of resources such as files (for the sake of reliability) while simultaneously moni-

. toring their mutual consistency. This is difficult since network failures can lead to inconsistency, and
disrupt attempts at maintaining consistency. In fact, even the detection of inconsistent copies is a non-
trivial problem. Naive methods either (1) compare the multiple copies entirely, or (2) perform some
simple test which will diagnose some consistent copies as inconsistent. Here a new approach, involving
version vectors and origin points, is presented and shown to detect mutual inconsistently effectively. The
approach has been used in the design of Locus, a local network operating system at UCLA.

This research was supported in part by ARPA Research Contract DSS MDA-903-77-C-0211.
Parker was supported also by ONR Grant N00Q14-79-C-0866.



173

1. Introduction

A number of operating systems have been developed recently in which user files are distributed
almost without restriction around a network. These systems range from network operating systems
(NOSs) such as RSEXEC, NSW, ELAN [TSF 78], and DCS [FH 721, to distributed database manage-
ment systems (DDBMSs) like SDD-1 [RG 77,HS 78] and INGRES [Ston 79). These systems em-
phasize the uniform interfacing of multiple file systems. Files are to be accessible throughout the net-
work, without regard to the accessor or file location.

Unfortunately, a file can be made inaccessible by network failures or crashes of the site where
the file is located, so users may obtain randomly fluctuating views of the state of the network. To al-
leviate this problem, many of the systems propose to keep duplicate copies of files as a reliability
mechanism. This solution engenders another problem. As soon as multiple copies of a file exist, the
system must ensure the mutual consistency of these copies: when one copy of the file is modified, all
must be modified correspondingly before an independent access can take place.

Much has been written about the problem of maintaining consistency in distributed systems,
ranging from internal consistency methods (ways to keep a single copy of a resource looking consistent
to multiple processes atlempting to access it concurrently) to various ingenious updating algorithms
which ensure mutual consistency [LS 76], [AD 761, [Thom 781, [Elli 771, [KR 791, etc. We concern
ourselves here with mutual consistency in the face of network partitioning, i.e., the situation where vari-
ous sites in the network cannot communicate with each other for some length of time due to network
failures or site crashes. This is a very real problem in most networks. For example, even in the Ether-
net [MB 76], gateways can be inoperative for significant lengths of time, while the Ether segments they
normally connect operate correctly.

Network partitioning can completely destroy mutual consistency.in the worst case, and this fact
has led to a certain amount of restrictiveness, vagueness, and even nervousness in past discussions of
how it may be handled. In some environments it is desirable or necessary to permit users to continue
modifying resources such as files when the network is partitioned. A network operating system would
be a good example. In such environments mutual inconsistency becomes a fact of life which must be
dealt with. This paper shows that mutual inconsistency can be efficiently detected through the use of
what we call version vectors and origin points. Once inconsistency is detected, some resolution steps are
needed. In those cases where the semantics of the operations involved are straightforward, automatic
reconciliation may be possible.

It is worth reflecting for a moment on the worth of keeping redundant copies. Although redun-
dancy increases reliability and availability, it leads us to mutual consistency problems when network
partitions occur. Redundant copies are worth having if (1) availability is just as important as consisten-
¢y, and (2) "conflicts" among copies, once detected after a partition, can always be successfully recon-
ciled (either automatically by the system, or by a user). If consistency is of paramount importance
and/or conflicts cannot be reconciled, then redundancy buys little.

The two conditions above would typify many NOS environments, where file update rates are
moderate and "conflicts" would occur only rarely. They would not necessarily characterize most
transaction-oriented DDBMSs, where update rates may be high, semantics of operations are sometimes
complex, and consistency is usually extremely important. The results of this paper will nevertheless be
useful in any system -where mutual inconsistency, presumably due to network: partitioning, -is tolerated.
Since our application (Locus) is concerned with files, we will restrict our discussion henceforth to mu-
tual consistency of files rather than of general resources. [t is clear, however, that all results here may
be applied to more general contexts.



174

The paper is organized as follows. Section 2 briefly surveys previous research on the partition-
ing problem. Section 3 then lays the formal groundwork on inconsistency detection. An accurate and
easily-implemented technique for detecting mutual inconsistency is developed. Section 4 points out
briefly what must be done in the reconciliation of inconsistent copies. Although the reconciliation of
these conflicts must necessarily be left to the user in some cases, it is also demonstrated that for certain
kinds of files {(mailboxes, directories) the reconciliation may be performed automatically by the system.
Finally, conclusions are offered in Section 5.

2. Previous work on partitioning

Network partitioning is the situation occurring when the network is broken into logically
separale components because of site or link failures. There are many partitioning-related issues which
must be addressed in the design of distributed file systems. These issues include the relative impor-
tance of availability over mutual consistency of files, what occurs when one finds a file has become
inaccessible or out of date, and so forth.

To our knowledge, however, partitioning has not been investigated very thoroughly. It has
been mentioned in several proposed methods for updating files in distributed systems. The most typical
response has been to enforce consistency by permitting files to be accessed only in one partition. Un-
fortunately, effective implementation of this policy can often result in the files being accessible in zero
partitions. We outline several existing proposals below.

Voting
In voting-based systems such as proposed by Thomas [Thom 78] and Menasce, Popek, and
Muntz [MPM 771, mutual consistency is guaranteed at the expense of availability. Users desir-
ing to modify a file must lock it by obtaining majority assent in a vote. Since there can be at
most one partition containing a majority of the sites, any file will be accessible in at most one
partition. Unfortunately, it is possible that there will be no partition which contains a majority
of the sites, so in this case no updates could occur anywhere.

Tokens
Here it is assumed that each file has a token associated with it, which permits the bearer to
modify the file. Obtaining the token is another issue, reducible more or less to locking. In this
model only sites in the partition containing the 1oken are permitted to modify the file, so using
tokens is less restrictive than using voting. However, the problem of recreating lost tokens is
nontrivial. Moreover, when a partition occurs, the token may happen to be resident in a
rarely-used part of the network, effectively making the resource unavailable.

Primary sites
Originally discussed by Alsberg & Day [AD 76], this approach suggests that a single site be ap-
/pointed responsible for a file’s activities. Upon partitioning (possibly involving a primary site
crash) either (1) a backup site is elected as the new primary site and consistency becomes a
possible problem (the proposed approach), or else (2) the file becomes inaccessible in all but
the primary site partition.



175

Reliable networks and Optimism

Communications in the SDD-1 system are based on the use of a "reliable network" [HS 78],
which guarantees the eventual delivery of all messages even if partitioning occurs. This
delivery depends on "spoolers" which save messages to be transmitted following a break in com-
munications. No guarantee of post-partition consistency exists; as with the primary site model,
assuming consistent data afterwards is "optimistic" [KR 791 in the sense that it may work out,
but quite possibly the work done in different partitions will have to be undone or coalesced
somehow by users. '

Disk toting
In this approach, employed at Xerox PARC and other installations where very intelligent termi-
nals are linked via a network, files are not stored redundantly but are kept on removable
storage media which can be carried around during prolonged partitions. Thus availability and
consistency are simultaneously achieved, but they are not achieved automatically. This ap-
proach is clearly only useful for local networks with compatible portable storage media at each
site, where the delay and inconvenience implied is acceptable.

Note that none of these approaches openly states either (1) how conflicting versions of files are
detected, or (2) what is to be done when these conflicting files are detected upon merge of several par-
titions. Either the possibility of conflict is precluded by restricting file availability, or else any seemingly
conflicting files must be "rolled back" to the most recent point at which there was no conflict. We show
in the next sections how, without restricted availability, we can ensure correct propagation of updates in
all cases except when unavoidably conflicting file versions are found.

3. Detection of Mutual Inconsistency

One of the reasons the partition problem is so difficuit is that each partition can break into sub-
partitions and/or merge with other partitions many times before the entire neiwork finally becomes
connected. Indeed, it is possible that the network will never be completely reconnected! However, all
messages sent might be delivered eventually through dynamically changing partitions. In this un-
pleasant eventuality, how can one hope to guarantee mutual consistency of files without restricting file
availability as in Section 2?7 We now show how inconsistencies or "conflicts" in the file system can be
accurately detected easily; this solves a large part of the problem. The next section will discuss how
these inconsistencies may then be reconciled.

We must formalize what we mean by a file system "conflict" which arises after a partition, and
pinpoint the kinds of inconsistency which partitioning can cause. This is important since, as mentioned
above, many basic systems principles are invalidated in systems subject to partitioning. First, the se-
mantics of renaming, deletion, and even creation of redundantly stored files or resources in systems
which are partitioned are totally unclear. Second, and worse, user-visible names of entities in the sys-
tem may no longer be assumed to either uniquely specify, or even correctly specify, the entities them-
selves. After a partition, it may be discovered either that two files with the same name have been in-
dependently created, or that two independent updates 10 the same file have been made. In general,
names in one partition bear no relation to entities in another. This is a principle reason for the difficulty in
defining (he semantics of renaming and deletion of files. We need some form of identification of sys-
lem entities which is immune to partitioning. We achieve this below by using "origin points" and "ver-
sion veclors".



1706

3.1. File conflict types and Origin points

A (network) partition is a set of sites which share a common, synchronized, view of some set of
files.

An origin point OP(f) of a file f is a system-wide unique identifier which is generated when { is
created. It is an immutable attribute of f, although f’s name is not (indeed f may have multiple system
wide names). Thus no number of modifications or renamings of f will change OP(f).

An origin point for a file might be something like a (creation time, creation site) pair. Now,
just as names cannot uniquely specify files, origin points cannot either, but they do give us important
information. Origin points tell us when (wo files are based on a common file, but do not tell us wheth-
er the two files are identical, since both could have been independently modified.

There are two types of conflicts that we wish to consider: name conflicts and version conflicts. A
name conflict occurs when two files with different origin points have the same system wide name. In
contrast, a version conflict occurs when two versions of the same file (same origin point) have been
"incompatibly” modified. After some preliminaries, version conflict occurrence is defined more precise-
ly below.

A modification id for a version of a file f is a system wide unique identifier of a modification of f
in some partition and at some time relative to that partition. A modification history for a version of a file
f is the set of modification ids corresponding to the modifications of that version of f which have oc-
curred. Two modification histories are compatible if they are identical or if one is an initial history of the
other, and incompatible otherwise.

We define a version conflict to occur when two versions of the same file f (same origin point)
have incompatible modification histories.

Note that, when two versions of a file are not equal, their modification histories are always
different. However, it is possible for two versions of a file to be equal yet have incompatible histories.
For example, consider a file which contains a bank account balance. If the balance is $20 million ini-
tially, and both partitions decrease it to $0, then at partition merge time although both versions are $0 a
conflict will be indicated. Further, if the semantics of "decrease” mean "withdraw”, a conflict intuitively
should occur.

We claim that this definition of version conflict occurrence is a reasonable one given that noth-
ing is known about file contents semantics. '

Clearly, name conflicts are easy to detect. Version conflicts, however, are more difficult 1o
detect efficiently. This latter problem is addressed in the following sections.

3.2. The problem of version conflict detection

One might think that a simple timestamp scheme could be used to detect possible version
conflicts among files: every time a file is modified in a partition, one marks it with an update time and
the file’s previous update time. Upon partition merge, one checks whether the timestamps on the
copies of a file are either all identical (no update on the file occurred), or one copy of the files differs
from the others by a single update. Thus no conflict is signalled when at most one update is made, but
in any more complex situation a version conflict condition is raised. This approach is deficient in gen-
eral, since some non-conflict situations will be handled as conflicts.



177

Let us describe the version conflict problem in the following way. Think of a partition for a file
as a subset of sites in the network in which all copies of the file are (currently) maintained with mutual
consistency. Note that this definition is not strictly tied 10 the physical details of network failure. In-
stead, here partitions are defined relative (o files and 10 the higher concept of consistency. Although
two sites with different versions of a file f may be communicating for some time, we do not consider
the sites to be in a common partition relative to f unless this difference in the two versions is resolved.

Definition

A Partition Graph G(f) for any file f is a directed acyclic graph (dag) which is labelled as follows: The
source node (and the sink node if it exists) is labelled with the names of all sites in the network having
copies of file f, and all other nodes are labelled with a subset of this set of names. Each node can only
be labelled with site names appearing on its ancestor nodes in the graph; conversely every sité name on
a node must appear on exactly one of its descendants. In addition, a node is marked with a "+" if f is
modified one or more times within the corresponding partition, and/or a version conflict had to be
reconciled in the partition.
We define this latter situation recursively as follows. Let P be a node in G(f). A version conflict had
to be reconciled at P iff there are backward paths from P to distinct nodes P1 and P2 in G(f), such that

(1) a modification to f and/or a version conflict reconciliation for f occurred at both P1 and P2, and

(2) there is no ancestor node of P having two backward paths to both P1 and P2.

Each node in G(f) thus corresponds to a partition for f, a period of time during which the la-
belled sites maintain "synchronized" information about f. All sites appearing in the node label resolve
any differences that might exist among their copies of f. All connections in G(f) between nodes indi-
cate transitions of the network under partitions or merges.

The definition of conflict and reconciliation models the notions of section 3.1 for the following
reasons. First, any version conflict that is reconciled must have been generated by two prior partitions
P1 and P2, giving incompatible modification histories. Second, and conversely, if a file modification of
some kind (update or reconciliation of updates) occurs independently in two partitions P1 and P2, a
version conflict must arise later whenever sites from these partitions inspect f. Condition (2) above
guarantees that partition P is the first point at which mutual consistency is again established.

An example of a partition graph is shown in Figure 1. Here there are four sites, A, B, C, and
D, which support f. Multiple partitions of these initially connected sites occur, so that at first sites A
and B can communicate, but are isolated from sites C and D. Later A and B become isolated, as do C
and D, but B and C resume communication. Ultimately all four sites are reconnected in the bottom
node of the graph. The file f is modified first in the {A,B} partition, and subsequently in both the {A}
and {B,C} partitions. Note that this sequence of modifications should not result in a version conflict in
the BC or BCD partitions since site B at all times has the latest version of f; intelligent implementation
of conflict detection should realize this fact and avoid notifying sites C or D that their f versions
conflict with the current one. However in the final ABCD partition a conflict is (and should be) recon-
ciled, since in this case both versions of f have incompatible modification histories.

Now, as mentioned above it is simple to provide some mechanism which detects all possible
version conflicts; a simple timestamp algorithm will be adequate. What is more difficult is to find a
mechanism which detects-version conflicts only when they are real. In Figure 1, for example, even
though the first update may have been initiated by site A, this information is transitively passed by site
B without conflict 1o sites C and D.



178

Figure I.  Partition graph G(f) for file stored redundantly at sites A,B,C,D

3.3. Version conflicts & Version vectors

Many possible approaches exist for attacking the problem of accurately detecting version
conflicts. More elaborate timestamp schemes are a possibility, and there are a number of methods
based on "update log files" (sometimes referred to as "journaling"). Unfortunately, these approaches
suffer from either or both (1) a need to maintain some kind of global network time (in itself nontrivial
[Lamp 78]), and (2) a need to store the entire partition graph -- or its equivalent -- someplace where it
may be accessed later on. Since the partition graph may get arbitrarily large, the latter requirement is
undesirable. We now present instead a straightforward solution to this problem based on a version
numbering scheme encoding just the necessary characteristics of the history graph.

One maintains a vector with each copy of each file. Within every partition (unit of mutual con-
sistency), these vectors keep a truncated update history for the file. As partitions merge, these vectors
for the possibly inconsistent files are compared. Version conflicts are signalled when, and only when,
the vectors are "incompatible." We formalize this as follows.

Definition A version vecror for a file f is a sequence of n non-negative integers, where n is the number
of sites at which f is stored. The i-th integer in the version vector gives the index of the latest version
of f made at site i. In other words, the i-th vector entry counts the number of updates to f made on
site 1.

Definition
A set of version veclors are compatible when one vector is at least as large as any other vector in every
component. A set of vectors conflict when they are not compatible.

For example, the version vector (1,2.4,3) dominates (0,2,2,3), so the two are compatible; and
(1,2,4,3Y and (1,2,3.4) conflict, but (1,2,3,4), (1,2,4.3), and (1,2.4,4) do not conflict, since the third
vector dominates the other two. In Figure 2 version vectors are given for f in every partition of Figure
1. The vector (2,0,1,0), associated with the node labelled BCD, indicates that f was modified twice at
site A and once at site C. Note in particular that during the {A,B} partition, the file is modified twice at
site A. The final merge results in a conflict.



179

(0,0,0,0)

(0,0,0,0)

(2,0,1,0) (0,0,0,0)

{3,0,0,0)

(2,0,1,0)

CONFLICT!
vector becomes
(3,1,1,0) after
reconciliation
at site B

Figure 2. Partition graph G(f) for f with version vectors effective at the end of each partition



180

We adopt the following usage of version vectors:

[t} Each time an update to f originates at site i, we increment the i-th component of f’s version vector
by one. The vector is stored with the updated file.

[2] File deletion and renaming are initially treated as file updates. Deletion results in a version of the:
file of length zero; when all versions of a file are of length zero, information on the file may be
removed from the system.

[3] When version conflicts are reconciled within a partition, the i-th entry of the version vector for the
reconciled file is set to be the maximum of the i-th entries of all of its predecessors, and in ad-
dition the site initiating the reconciliation increments its entry. This ensures future compatibili-
ly with any old versions of the file still remaining on the network.

[t should also be mentioned that, although the above description suggests the version vectors
are of a fixed length, the vectors may grow or shrink as long as the relevant site information is main-
tained. If a copy of f is added at a site E during some partition, the vector in the partition where the
copy was obtained is simply augmented to reflect the existence of the E copy. Thereafter, sites merging
with this partition will be required to augment their vectors accordingly.

Version veclors serve basically to encode the partial order defined by the partition graph: If one
node in the graph "precedes" another, i.e., there is a path from the graph source through the former to
the latter, then the version vectors of the two nodes will not conflict. This observation leads us to the
following result, which shows us that version vectors are all we basically need to delect version
conflicts.

Theorem
A version conflict must be reconciled at a node in G(f) if and only if f’s version vectors conflict at that
point,

Proof

It is clear that if there is a conflict reconciliation at some node P in G(f) then the version vectors will
conflict at P. (Version vectors detect real conflicts just as well as the simple timestamp algorithm; what
must be shown is that they detect only real conflicts.) Conversely, suppose that f’s version vectors
conflict at some node P. Then two of the vectors must conflict and not be dominated by any third vec-
tor. These two vectlors were generated in two earlier partitions Pl and P2 -- both having paths to P --
where f was modified independently. All that must be shown is that there is no ancestor P’ of P which
also has backward paths to Pl and P2. (Note P’ could be either P1 or P2.) Suppose P’ exists. We know
that in this case the P! and P2 version conflict will be reconciled at P’, giving a version vector whose
components are the maxima of the components from the vectors in Pl and P2. But this vector will
dominate both the P1 and P2 vectors at P, removing their conflict. This contradicts our original as-
sumption. Hence P’ cannot exist, so the partition graph conditions are satisfied and there is a conflict
reconciliation at P. 0O



181

3.4. Conclusions on file conflict detection

The theorem above shows us that version vectors may be used to detect version conflicts and
request user reconciliation of the conflicts. Version vectors will detect only "real" conflicts, i.e., situa-
tions in which versions of a file were modified independently in separate partitions. It must be em-
phasized that if an identical modification is made in two separate partitions, version vectors will indicate
a file conflict. In some applications, then, it may be desirable to actually check a file for differences
when several copies are found to have conflicting vectors. Indeed, this cross-checking of copies may
have 1o be done eventually if the user is to resolve the file conflict.

In any case, we have shown in this section that all file conflicts, whether they are name conflicts
or version conflicts, can be accurately detected by maintaining just two pieces of information with each
file f:

(1) an origin point

(2) a version vector.
In the following section we take up the question of how to resolve file conflicts, now that we know how
to detect them.

4. Resolution of Mutual Inconsistency

A conflict detection mechanism, while valuable, has increased effect if there is also a method
for reconciling conflicts automatically. From several conflicting versions of a file, this method should
produce a subsequent version that dominates these versions, while preserving the operations which
were done to them. Although this is certainly not possible in general, there are many cases which ad-
mit automated reconciliation.

Clearly, conflict reconciliation must take into account the semantics of the operations which
were done to the data objects in conflict. This has been noted by many researchers (e.g.,
[AD 76,p.568], [RG 77,p.57], [HS 78,p.65]). In those cases where the nature of the semantics is
sufficiently constrained, straightforward reconciliation algorithms can be given. For example, consider
two important types of files in Locus, directories and user mailboxes. In both of these cases, there are
just two available operations:

o insert an item (e.g. create a file, or receive a message)
L] remove an item (e.g. delete a file, or process a message) -

Such files have the characteristic that version conflicts can be reconciled simply by taking the union of
the entries in the component files, then removing any entries which had been deleted. Automatic
reconciliation for both of these file types is handled automatically in Locus.*

Automatic reconciliation applies in much more far-reaching contexts than on the systems level.

An instructive example can be found in electronic funds transfer. Consider a checking account, as pro-

posed earlier in section 3.1. Credits and debits can be made to different copies of the account. Resolu-

tion is straightforward so long as the i-th copy is represented as
' X + 6,‘(X)

* Most directory systems, and some mail systems, permit additional operations. Therefore, the au-
tomatic recovery software in LoCus for these file types is more involved than indicated here.



182

where x was the original account balance before partition and 8,(x) is the change in that partition.
Then the new balance is

x + 3 5,(x).

i
This approach may be improper if we require the balance to remain positive. However, there are many
ways to deal with this problem. When it is the balance of a large corporation, presumably the problem
will not occur. More generally, one may operate the system in a more constrained fashion when parti-
tioned, either by limitir.g withdrawals in those cases where the customer is not trusted, or by imposing
quota-like limits on withdrawals within each partition.

A number of existing applications permit automated reconciliation while still allowing robust
operation during partition. Two cases which have been studied carefully are banking and airline reser-
vation systems [Fais 80]. Exiensive, although not full, operation of these systems is quite feasible
while partitioned.

A desirable characteristic of system operation semantics, or of the reduced partition semantics, is
that reconciliation of a data item not necessitate the alteration of many other data items. In order to
keep automatic reconciliation cost low in a data base, for example, one might insist that most transac-
tions executed during partitions not require undoing and redoing when their read sets are subsequently
altered during a reconciliation. This is the case today for portions of banking systems such as automat-
ed tellers.

In general, it is often possible to break the semantics of operations into classes, and for each
class give rules by which the reconciliation algorithms can be constructed. Simple semantic classes per-
mit reconciliation in a straightforward way without keeping much history. 'As the semantics become
more complex, more history and work is required. Of course, even when the semantics of operations
are clear, automatic reconciliation can be very difficult, expensive, and in some cases impossible.
Reconciliation cannot be performed in those cases where, as part of the system’s activity, an external
action has been taken that cannot be undone nor can a compensating action be taken. These cases are
the same ones for which general purpose data management recovery is impossible too.

One suspects that in many systems, automatic reconciliation will be feasible for the large major-
ity of data items. However, there will remain cases that require human intervention.

Independent of the degree of automatic reconciliation, a consistent system policy must be
defined for each of the following questions:

® When and how are data conflicts detected?

@ Is permission to access a data item altered by the fact that the item is in conflict? No alteration
of permission raises the question of which version to make available, and leads to the possibili-
ty of propagating inappropriate values.

® How are users informed of conflicts?

e What support does the system provide the user for reconciling conflicts?

These questions raise a number of architectural questions, some of which are addressed in
[Rudi 79] and {[PWCTK 80].



'

183

5. Conclusions

We have developed an effective method for detecting mutual inconsistency in distributed sys-
tems. Here inconsistency has been assumed to be caused by multiple users modifying different copies
of a common file without mutually excluding one another. Such a situation would arise, for example,
when network failures isolate these users in different partitions of the network. The technique also ap-
plies when partitions are artificially introduced; for example when stations in a connected network delay
their transmissions to take advantage of batching or lower communications rates at various times of
day. The method used is simple, relying only on two newly-introduced constructs, version vectors and
origin points, for its operation. Although the method was discussed specifically in the context of file
systems, it applies equally well to any class of resources for which occasional mutual inconsistency is
tolerable for the sake of availability, or where the semantics of the allowed operations permit automated
recovery.

The general problem of how to resolve mutual inconsistency of copies of a resource, once it is
detected, is a complex question. We have only given it a summary treatment here, since it raises many
design issues and can be answered thoroughly only when the semantics regarding the use of the
resource are explicitly known. We have noted, however, that for some resources aulomatic reconcilia-
tion is straightforward to implement.

References

[AD 76] Alsberg, P.A. & J.D. Day, "A Principle for Resilient Sharing of Distributed
Resources," Proc 2nd Intnl. Conf. on Software Engineering, 13-15 October 1976.

[Elli 77] Ellis, C.A., "A Robust Algorithm for Updating Duplicate Databases," Proc 2nd Bérke-
ley Workshop on Distributed Data Management and Computer Networks, 1977, pp.
1146-158.

[Fais 80] Faissol, Sergio, UCLA. Private communication.

[FH 72] Farber, D.J. & Heinrich, F.R., "The Structure of a Distributed Computer System --
The Distributed File System," Proc ICCC, 1972.

[Gray 78] Gray, J., "Notes on Data Base Operating Systems," in Operaiing Systems: An Advanced
Course, Ed. by R. Bayer et al., NY: Springer, 1978.

{HS 78] Hammer, M. & D. Shipman, "An Overview of Reliability Mechanisms for A Distri-
buted Data Base System," Spring Compcon 78, Feb 28-Mar 3, San Francisco, pp. 63-
65.

[KR 79] Kung, HT. & J.R. Robinson, "On Optimistic Methods for Concurrency Control,"
Proc. Sth VLDB Conf., October 1979, Rio de Janeiro. To appear in ACM TODS.

[Lamp 78] Lamport, L., "Time, Clocks, & the Ordering of Events in a Distributed System,"

CACM vol. 21, 7, 558-565 (July 1978).



[LS 76]

[IMPM 77]

[IMB 76]

[PWCTK 80]

[RG 77]

[Rudi 79]

[Ston 79]

[Thom 78]

[TSF 78]

184

Lampson, B. & H. Sturgis, "Crash Recovery in a Distributed Data Storage System,"
Technical Report, Xerox PARC, 1976.

Menasce, D.A., G.J. Popek & R.R. Muntz, "A Locking Protocol for Resource Coordi-
nation in Distributed Systems," Tech. Rept. UCLA-ENG-7808, Dept. of Computer
Science, UCLA, October 1977.

Metcalfe, R.M. & D.R. Boggs, "Ethernet: Distributed Packet Switching for Local
Computer Networks,” CACM Vol 19, 7, 395-404 (July 1976).

Popek, G., B. Walker, J. Chow, G. Thiel, C. Kline, "Locus: A Distributed System
Architecture", UCLA Technical Report 1980.

Rothnie, J.B. & N. Goodman, "A Survey of Research and Development in Distribut-
ed Database Management", Proc. 3rd VLDB, Tokyo, October 1977, pp. 48-61.

Rudisin, G.J., "Architectural Issues in a Reliable Distributed File System,” M.S.
Thesis, Dept. of Computer Science, UCLA, 1979,

Stonebraker, M., "Concurrency Control and Consistency of Multiple Copies of Data
in Distributed INGRES," IEEE Trans. on Software Engg., vol. SE-5, 3, 188-194 (May
1979).

Thomas, R.F., "A Solution to the Concurrency Control Problem for Multiple Copy
Data Bases," Proc. Spring COMPCON, Feb 28-Mar 3, 1978, pp. 56-62.

Thomas, R.F., R.H. Schantz, H.C. Forsdick, "Network Operating Setems," Technical
Report RADC-TR-78-117, Rome Air Development Center, May 1978,



DISTRIBUTED DATABASE SYSTEMS
WORKSHOP






187

An Architectural Overview of R¥:
a Distributed Database Management System

Patricia G. Selinger
IBM Research Laboratory
San Jose, CA 95193

The issues raised in the implementation of a distributed database
management system are discussed with respect to the dual requirements of
data sharing and autonomous operation of each site. A DDBMS must simplify
the user's task of defining applications which manipulate shared data
stored at multiple computing sites. To this end, the DDBMS must supply
distributed concurrency controls and tramsaction recovery protocols, as
well as transparent access to remote data. Any operation allowed on local
data should also be possible on remote data. At the same time, because
different computing sites are controlled by different individuals or
organizations, the DDBMS must preserve each site's control over its own
data. We call this notion site autonomy. Authorization, query compilation
and binding, catalog management, and transaction management are all
impacted by the concept of site autonomy.

We shall discuss these issues in an architectural overview of R¥*, an
experimental distributed database management system based on the
relational model of data. Work on R* is in progress at IBM's San Jose
Research Laboratory. R* is a prototype based on the experimental, single
site, relational database manager known as System R, also developed at
IBM's San Jose Research Laboratory. R* is a confederation of individually
controlled, voluntarily cooperating, homogeneous database sites. Each
site has a copy of R* which stores its local data and is capable of running
independently from all other sites when it accesses only locally stored
data. When a site requires remotely stored data, it interacts with other
sites via a communication medium which can be anywhere along the range
from memory-to-memory operations on the same physical machine to local or
long distance networks. No particular network configuration or mechanism
is assumed in the design of R¥*; so, rings and stars as well as
point-to-point and broadcast networks can be accommodated.

The structure of this talk follows the path taken by a query as it is
submitted to and processed by R¥.

* The star in R* (pronounced R star) comes from the Kleene Star operator
defined by R* = ( , R, RR, RRR, RRRR, ...). It denotes zero or more R.






NETWORK COMMUNICATION o 38







ivi

Squire - A Communications-Oriented Operating System

Harry R. Chesley
V. Bruce Hunt

SRI International
333 Ravenswood Ave.
Menlo Park, Ca. 94025

ABSTRACT

This paper presents the architecture of a communications-oriented, real-
time operating system named Squire. The Squire kernel provides memory
management, preemptive multitasking, interprocess communication, and the
ability to manage data outside the process address space, as well as services
such as timers. User processes are protected from one another by means of
restrictions on what objects they can access and on the type of access. Squire
has been designed to provide efficient communication between cooperating
processes, portability to new machine architectures, and support for multiple
processor and. distributed processor usage. Protection, reliability, and robust-
ness have been major design goals. Squire supports a new kind of object called
chunks, which exist outside the process address space, and can be used to store
and manage data. Squire also supports a means for extending the kernel in a
controlled manner; this mechanism is used both to implement such traditional
functions as device drivers and to provide extended kernel services not present
in the basic Squire kernel.

1. Introduction

The Squire operating system was designed at SRI in response to the need for an operating
system that would run in a memory-managed environment and be portable to new machines.
especially microprocessors.

Perhaps the most important design goal has been reliability. Although performance is also
considered a primary goal. we have taken the view that the system should be designed-to be
reliable and then be designed to perform. We have chosen this view because reliability strongly
influences total system development cost. and because performance can be achieved by making
correct programs run faster through optimization or acquisition of additional increasingly inex-
pensive hardware.

Our main tools to obtain reliability have been independence and functional compactness.
We have used independence to attempt to minimize the number of interactions; that is, we
have tried to make sure that basic mechanisms rely on as few other mechanisms as possible to
support their function; and that mechanisms do not perform similar functions. On the other
hand. we have also been concerned with functional compactness; i.e.. we have tried to minim-
ize the number of concepts and mechanisms used in the system. This approach produces a
highly reliable system. primarily because it is easier to understand and "unexpected" interactions
among mechanisms are reduced.

Squire is an object-oriented system [12] and makes use of many of the concepts used in
previous operating systems [1.2.4.6.9.10.12]; but there are differences, and new concepts have
been added. However, the number of new concepts has been limited by choice in order to



192

produce a more reliable system. Squire is state-of-the-art, but it is not experimental.

The remainder of this paper discusses the concepts and objects used in Squire and gives
an example of usage.

2. Names

A name is a means of referring to an object independent of the specific program or pro-
cess performing the reference. This independence is important in implementing memory
management, multiprocessing, and distributed processing. Names allow user processes to
access objects in the system. including chunks, paths, and other processes. Name allocation
occurs in two ways: by prior agreement on "well-known" names by the users (i.e., manual allo-
cation), or by allocation of unused names at run time (dynamic allocation of transient or local
names). : ‘

Names satisfy the following conditions:

0 They are unique. For "well-known" names, the user is responsible for satisfying this con-
dition; however, names allocated by Squire at.run time are guaranteed to be both unused
and unallocated (i.e., unique).

o) They are program and process independent. Oné of the functions of the kernel is to map
names into absolute references to objects within the system. In the current implementa-
tion, names are actually an index into a kernel table which performs this mapping.

0 They are efficient and convenient to deal with. In accordance with the efficiency require-
ment, we use integer values for names, rather than ASCII strings or some other more
mnemonic, but less wieldly structure. Mnemonic value is restored by using complle time
constants.

3. Chunks

Chunks are a means of maintaining data in processor memory but outside a process’s
address space. They were designed because processes require an efficient means of passing data
among themselves, despite the fact that large amounts of data may. be involved. The most
efficient way to accomplish this is to pass a reference to the data rather than the data itself.
Often too, in real-time systems, the amount of data managed by a process can exceed its data
subspace. Chunks provide a natural solution to this problem because they are referenced by
name and exist outside the process address space. Chunks are similar to files in concept but are
not part of permanent system storage and are generally smaller in size, and faster and simpler
to access. In implementations where it is efficient to do so, a chunk, or a portion of it, may be
mapped into a process’s address space.

We define the following operations that can be performed on chunks (in addition to crea-
tion and removal):
0 Read. A portion of the chunk is copied into the process’s address space.
o - Write. A portion of the chunk is overwritten with data from the process’s address space.
o Insert. This operation is similar to write. but it expands the chunk. The expansmn how-
ever, is allowed only at the beginning or end of the chunk.
0 Delete. This is the inverse of insert. The chunk is truncated at the beginning or end.

An example use of chunks is in datagram transport. Packets are read directly into chunks;
from then on. only the name of the chunk need be moved through the system. Selected sec-
tions (e.g., a packet header) can be read or written from a chunk, or mapped into a process’s
address space. Finally. passing the name of a chunk does not require that the chunk contents
be passed. Thus, a chunk name can be passed around a distributed system. but the chunk not
moved until referenced.



193

4. Paths

Besides the storage of relatively large blocks of data, processes need a method of passing
signals and small blocks of data (including the names of other objects such as chunks) to other
‘processes. This service is provided by paths. Blocks of data can be read and written, altowing
processes to communicate; these blocks are nondivisible, insuring mutual exclusion. Paths are
a simplification of the link concept introduced in [1]: a path does not provide shared access to a
data area, nor does it have the sophisticated control attributes of links.

Paths also provide process synchronization. Two conditions are defined on which a pro-
gram can suspend: a path becoming nonempty (i.e.. data is available to be read), and a path
becoming nonfull (i.e.. it is possible to write to the path). Processes can suspend waiting for a
single path or some combination of paths to become nonempty or nonfull. However, opera-
tions on paths do not require process suspension. unlike systems such as THOTHI[3]. The con-
cept of a path becoming "full" is used for congestion control and to insure that no single path
will be able to exhaust the system’s resources.

Paths can be used as an efficient signaling mechanism between processes. A small block
of data may be used to indicate the type of signal.

The following operations are defined on paths (in addition to creation and removal):

0 Read. A block of data is copied into the process’s address space and the block is removed
from the path. If the path is empty. the user process is informed of this fact, and no read
operation takes place.

0 Write. Data is copied from the process’s address space and added to the path as a
separate block. If the path is full, the process is informed of this fact and no write opera-
tion takes place.

Wait and read. Suspend until the path becomes nonempty, then do a read.
0 Wait and write. Suspend until the path becomes nonfull, then do a write.
0 Wait. Suspend until some set of paths becomes nonfull or nonempty.

5. Special Functions

In one way or another, all operating system kernels are extensible. The simplest case of
this is vertical extension: adding new virtual machine layers on top of the kernel. This type of
extension is implemented (implicitly or explicitly) by user programs. Kernels are also extensi-
ble horizontally; that is. facilities are added at the kernel level of the virtual machine. The
most pervasive use of horizontal extension is device drivers [11].

When a new function is added to the kernel, a means for calling that function and return-
ing results must be available. Three mechanisms have been used in previous operating system
kernels: (1) The mechanism used to invoke existing kernel primitives (usually an execution
trap); this has the advantage of compatibility with other kernel primitives. and often allows an
extended kernel to emulate some other kernel. (2) The mechanism used to invoke user sub-
routines; this is particularly true in systems that allow a process to call functions that reside out-
side the current program space. and has the advantage of providing a uniform calling mechan-
ism for both user and kernel functions (and consequently the ability to emulate a kernel func-
tion in a user function) [7]. And (3) the mechanism used for interprocess communication; this
has the advantage of compatibility with other interprocess communication {and consequently
the ability to emulate a kernel function in a user process). and of allowing the kernel exten-
sions to use the lacilities provided for message queueing and process synchronization {1].

Squire special functions utilize this last method of kernel extension. We chose this
method for the reasons given above, plus the observation that extended kernel functions are
most often concurrent operations (such as input/output), and thus share more of the charac-
teristics of interprocess communication than of either kernel or user function calls. Further-
more. this method of extension is most easily adapted to distributed processing usage, allowing
the implementation of kernel-level services external to the local hardware.



194

A special function is a kernel-level routine associated with a path. When a message is
written to the path. that routine is immediately invoked. and can read the message from the
path and use it as input parameters; alternatively, the special function can leave the message on
the path for some concurrent activity (such as an interrupt routine) to process. If return infor-
mation is required. the message to the special function contains the name of a path on which to
return it. Special functions can also be associated with the "read" end of a path. In this case.
the function is invoked prior to the path read being performed. This approach is most com-
monly used to return status information.

Device drivers are the most obvious, and probably most common usage of special func-
tions. But special functions are not limited to this form of use; examples of two other usages
are described below: )

Checksum - When Squire is used in a packet-oriented application. the packets are kept in
chunks, and only necessary portions are read into the process data space. This approach
increases system throughput by requiring only the chunk name to be passed from process to
process: but makes certain packet-wide operations, such as checksum computation, difficult to
perform. A special function is provided to perform this operation. The special function resides
at the kernel tevel, and thus has more direct access to the chunk- itself. This allows an efficient
checksum computation without requiring that the process itself access the entire packet.

Routing - One Squire application at SRI involves routing packets within a local internet.
The packets contain a destination name that indicates where in the internet the packet should
be sent. The "routing”" special function accepts messages that specity the name of the chunk
containing the packet. Based on the destination name field of the packet. the "routing” function
sends the packet over the appropriate path. These paths lead either to another process within
the same machine, or to a device driver special function that sends the packet over the internet.
It the packet was sent over the internet, the receiving device driver at the destination machine
sends the packet to a similar "routing” function which routes the packet to the appropriate path
within that machine. Thus. packet-routing is performed entirely within the "routing”" special
function. whether the packet is destined for another process within the same machine or for
another machine in the internet.

Special functions allow efficient implementation of functions that most naturally reside at
the kernel level, either because they must have access to information not readily available at
the user process fevel, or because they cannot afford the execution time overhead inherently
present in a user process implementation. However. this same power that makes special func-
tions so useful also makes them potentially dangerous. Since they reside at the kernel level.
they are effectively exempt from the access protection provided for user processes. Conse-
quently, special functions. like device drivers, should be used only when necessary, and should
be considered only slightly more modifiable than the kernel itself. User programs., on the other
hand, enjoy full access protection, and can be modified more freely without fear of dangerous
consequences.

6. Owners

Squire provides access protection for objects within the system by assigning read, write,
and delete access identifiers to cach object, and associating an owner identifier with each pro-
cess. Processes can only open an object for read. write, or delete access if their owner identifier
matches the corresponding read. write, or delete access identifier of the object. An object can
be opened for any combination of these three kinds of access. [t is also possible to specity an
access identifier that allows any process o access the chunk or path, or one that allows only
processes that already have the chunk or path opened to access it. These two special access
identifiers allow for unlimited access to an object. and for locking an object or a part of it (such
as one end of a path) to a specific process or set of processes. The access identifiers for an
object can be changed via a kernel function call. In addition, it a chunk is open for write, it can
be opened by only one process: that is, if the chunk is already open for write. no other process
can open it, and if it is open for read. no process can open it for write. This is done in order to



195

restrict interprocess communication to paths. These protection facilities add considerably to the
reliability and integrity of the system without implementing full capabilities [5.9]. Our approach
has been to provide strong protection to support our reliability goals rather than 1o achieve
complete protection. We have sought mechanisms that discourage undisciplined use of objects
without preventing intentional unorthodox use. Object capabilities are managed through own-
ers., but restrictions on the sharing of owners are nonexistent in Squire.

As an example. consider a system in which messages originate in a device driver special
function, A. pass through two processes. B and C, and exit via another device driver special
function. D. Three paths are used for passing data from A to B (P1). B to C (P2). and C to D
(P3). In addition, the two processes have owner identifiers BO and CO. The following table
shows the owner and access identifiers for this configuration:

Process name | Owner ideniifier

B BO
C CcO
Path name | Read access | Write access
Pl BO no one
P2 CO BO
P3 no one CO

Note that only the appropriate processes are allowed access to the paths P1, P2, and P3,
and that the type of access is also restricted. Secondly. note that no user processes are allowed
access to the device driver ends of paths P1 and P3. Process C is assured that neither process B
nor any other process within the system can excerpt data from path P2, nor write data to path
P3; process B has similar assurances concerning Pl and P2.

In a system with multiple servers. each server process has the same owner identifier. For
the example given here, if another process existed which also serviced path P2, it would have
owner identifier CO. Thus. owner identifiers are not strictly tied to processes, but rather
represent a class of access authorization within the system.

Remove access has not been mentioned. In a system where P1, P2 and P3 were per-
manent (i.e.. no one has authority to remove them). they would all have remove access
identifiers of "no one." On the other hand. if process B had authority to remove Pl and P2,
and process C to remove P3. then the remove access identifiers for Pl and P2 would be BO,
and the identifier for P3 would be CO.

7. Local Object Descriptors

After an object has been opened by a process. it is no longer referred to by name.
Instead, the function that opens the chunk or path returns a "local object descriptor." These
local object descriptors reference the object while it remains opened by the process. The local
object descriptor provides a (potentially smaller) local identifier which can be mapped into many
global identifiers [11]. Performing an open or close is also referred to as passing an "authoriza-
tion check-point." Access authorization is only verified at these check-points. This is done so
that certain special forms of access restriction can be imposed. One example is "locking" an
object to a particular process, which can be accomplished by the process opening the object.
then changing the access identifiers of the object to "no one"; no other processes can then open
the object.

8. Programs

A program is a collection of procedures intended to be invoked as a process. Programs
are given user-specified names at load time; the names given are then used when invoking a
process to configure the initial program and data spaces of the process. and to establish the



196

owner identifier associated with the process.

9. Processes

Processes are provided to allow simultaneous execution of several programs at the same
time; thus, a process is the entity within the system that competes for processor resources. A
process is either active (competing for processor resources), or suspended (waiting for an event
to occur). It is possible to create a process from another process and to terminate it either by
itself or from some other process. As with other objects. each process in the system has a
name that uniquely identifies it. Also associated with each process is an owner identifier that
indicates what paths and chunks the process can open.

A process has its own "address space" within the system. and can only access the rest of
the system through the operating system calls described in this paper. Processes are scheduled
in a preemptive manner by the operating system. ’

The following operations are defined on processes:
Create. Invoke a process from a specified program.
Exit. Terminate the current process.

Kill. Terminate another process.

Switch. Switch processes.

o © © o o

Suspend. Suspension is accomplished by the wait and read, wait and write, and wait
operations defined in the section on paths.

10. Timers

Squire provides two timer services: a function returning the current date/time, and a
"wake-up" service. which sends a user-specified message to a given path at a given time.

11. Concatenated Function Calls

Since system call overhead is a major factor. in operating system efficiency. frequently
used sequences of system calls have been concatenated together and a single call provided to
invoke them. These calls are more efficient than the equivalent sequence of calls.

12. A Datagram Application Example

The primary usage of Squire at SRI has been in a datagram-based computer communica-
tions subnetwork. In this application, packets are read into the machine from a host computer,
processed by a user-level process. and routed to a destination process through a local internet;
at the destination. possibly within the same machine. the packet is passed to the destination
host computer. The routing operation is performed by a special function previously described.
However, the use of chunks and paths in this application is also noteworthy:

When a device driver reads a packet from the host computer, it places the packet directly
into a chunk. The header of the packet is then extracted and passed to the user-level process
via a path, along with the name of the chunk. Similarly. on cutput the user-level process
passes the header to the device driver, which inserts it into the chunk and then pertorms the
output 10 the host computer. Since all the information the user-lfevel process requires is in the
header, the chunk is never actually read or written from the user-level process. The name of
the chunk is simply passed from process to process within the system.

This approach allows efficient communication of packets among user processes; even more
so than was originally expected for Squire. since we originally thought that the user-level pro-
cess would read the "header" from the chunk itself. Using this approach. the bulk of the packet
is never copied or even examined by the system:; no overhead is incurred to move it into the
process’s address space. or to map the address space onto the chunk.



197

13. The Squire Development Environment

A Squire kernel implementation, written in C and running on the PDP-11 family of
machines (including the LSI-11s). is currently in use at SRI. User programs are written and
compiled under Unix* [11] and downloaded with Squire into the target machine either via a
dedicated serial line or over the local internet.

A system for remote debugging has been developed for Unix. In addition to allowing
debugging of a distant target machine, this approach permits the bulk of the debugger program
and the symbol tables used to reside in the Unix rather than the target machine, thus minimiz-
ing the impact of the debugger in terms of the target machine memory space and execution
time used.

Packages have also been developed to facilitate remote control and measurement of user
programs, and to transport messages across the local internet. These packages are implemented
by a combination of function libraries, processes., and special functions.

14. Acknowledgements
Development of the Squire operating system was supported by the Internal Research and
Development Program at SRI International.

The authors thank Jim Lieb for his help with the design of Squire, and Jim Mathis, Ron
Kunzelman, and Raphael Rom for their advice, criticism, and support.

References

[1] Baskett, F., Howard. J.H.. and Montague, J.T. Task communication in DEMOS.
Proceedings of the Sixih ACM Symposium on Operating System Principles (Nov. 1977), pp.
23-31.

[21 Brinch-Hansen, P. Operating System Principles. Prentice-Hall, July, 1973.

[3] Cheriton. D.R.. Malcolm, M.A., Melen. L.S.. Sager. G.R. THOTH. a portable real-time
operating system. Proceedings of the Sixth ACM Symposium on Operating Systems Principles
(Nov. 1977). pp 1-10. '

(4] Dijkstra, E.W. The structure of the "THE"-multiprogramming system. Communications of
the ACM, Vol. 11, No. 5, May. 1968, pp. 341-346.

[5] Fabray. R.S. Capability-based addressing. CACM 17, 7 (July 1974). pp. 403-412.

61 Jones. A K., Chansler, RJ. Jr., Durham, 1., Schwans, K. and Vegdahl, S.R. StarOS, a
multiprocessor operating system for the support of task forces. Proceedings of the Seventh
Symposium on Operating Systems Principles, (Dec. 1979). pp. 117-127.

[71 Lampson. B.W.. Sproul. R.F. An open operating system for a single-user machine.
Proceedings of the Seventli Symposium on Operating Systems Principles. (Dec. 1979). pp. 98-
105.

8] Levin. R., Cohen. E.. Corwin, W.. Pollack, F.. and Wulf, W. Policy/mechanism separa-
tion in HYDRA. Proceedings of the 3th Symposium on Operating Systems Principles, Autin,
Texas, Nov. 1975.

[9] Needham. R.M. and Walker. R.D.H. The Cambridge CAP computer and its protection
system. Proceedings of the Sixth Symposium on Operating Systems Principles. (Nov. 1977).
pp. 1-10.

[10] Retz, D.L. and Schafer, B.W. Structure of the ELF operating system. Proceedings of ihe
AFIPS NCC 1976, Vol. 44, pp 1007-1016.

" Unix is a trademark ol Bell Laboratories.



198

[11] Ritchie, D.M., and Thompson, K. The UNIX time-sharing system. CACM /7,7 (July
1974) . pp. 365-375..

[12] Wuif, W.. Cohen, E.. Corwin. W., Jones. A., Levin. R.. Pierson. C.. and Pollack. F.
HYDRA: the kernel of a multiprocessor operating system. CACM 7.6 (June 1974). pp.
337-345.



19y

AN ANALYSIS OF PIGGYBACKING IN PACKET NETWORKS

LATI, Wai Sum

Bell-Northern Research
Ottawa, Canada

ABSTRACT

To optimize transmission medium utilization in packet networks, acknowl-
edgements are usually piggybacked in reverse direction traffic. The probabili-
ty of piggybacking 1is increased when acknowledgements are accumulated at the
destination instead of returning them immediately upon correct receipt of
forward data packets. This paper addresses the problem of choosing an optimal
number of acknowledgements to be accumulated at the destination with respect
to piggybacking. The concept of piggybacking level is first defined analyt-
ically and its .basic properties are deduced. The piggybacking levels for
several specific traffic types are then evaluated. It is found that signif-
icant piggybacking 1levels can be achieved even when only a small number of
acknowledgements are accumulated at the destination.

1. INTRODUCTION

Most packet networks employ some form of positive acknowledgement
(ACK)/retransmission protocol together with the window mechanism for error and
flow control. In the basic scheme, a separate ACK packet is returned to the
sender as soon as a data packet is received correctly by the receiver. Since
ACK packets consume network resources, significant overheads can be incurred
in using this strategy [KLEI76].

» To improve the network efficiency, a separate ACK packet 1is not gener-—
ated every time a data packet is received correctly. Instead, the ACKs associ-
ated with the correctly received data packets are initially accumulated at the
receiver. These ACKs are then returned to the sender in a set.of ACK bits
"piggybacked” on normal network traffic in the reverse direction [MCQU72]. To
avoid excessive delay, in the absence of reverse direction traffic within a
certain period of time, several accumulated ACKs are returned using only one
explicit control packet.

Intuitively, as more ACKs are accumulated at the receiver (before
returning them using an explicit ACK packet), the probability of piggybacking
them on reverse direction traffic is increased. In this paper, we are going to
quantify this general relationship under certain conditions. -

To do .this, we first define analytically. the concept. of piggybacking
level and then deduce some of its basic properties. Next, the piggybacking
levels for several specific traffic types are evaluated. It is found that in
all those cases examined, significant levels of piggybacking can be achieved



200

even when only a small number of ACKs are accumulated at the receiver.

Note that in addition to ACKs, flow control information such as credits
can also be returned either wusing explicit ACK packets or by piggybacking.
However, to avoid lengthy description, we shall simply use the term ACK in the
remainder of this paper.

2. ASSUMPTIONS

Consider two entities in communication via some full-duplex transmission
medium. Let one entity be arbitrarily referred to as the origin and the other
as the destination. These entities can be nodes in a packet network, or
stations connected by an HDLC link. Hence they may not be the ultimate source
or sink of user data.

In this paper, the data flow from the origin to the destination is
referred to as the forward traffic, while the reverse flow as the return
traffic. Forward packets generated at the origin are transferred to the
destination via the transmission medium, while return packets are generated at
the destination to be sent back to the origin.

To simplify the analysis, we assume:
(1) independent forward and return traffic,
(2) infinite ACK time—out period at the origin, and
(3) infinitesimally small packet transmission time.
In general, assumption (1) may not be valid. Assumption (2) definitely

violates usual implementation practice. And assumption (3) is also definitely
not true. So, some justifications are needed for their use:

2.1 Traffic independence

Consider an extreme case of dependent traffic when two  entities are in
half-duplex communication. In this situation, only after all packets in one
direction has been forwarded before any reverse direction traffic can be
generated. Piggybacking then will not take effect wuntil all the ACKs in one
direction have been accumulated. But, suppose that each side relinquishes the
turn after sending only one packet and that a forward packet is immediately
responded with a return packet, then all the ACKs can be piggybacked. Thus
the behavior of piggybacking actually depends on the relative timing between
the receipt of a forward packet at the destination and the generation of a
return packet. This fact will be made more explicit later (Section 9).

When the transmission medium is shared among a population of users, as
in HDLC or X.25, then the total forward traffic and the total return traffic
generated by these users and carried by the transmission medium will be more
or less independent.



201

2.2 ACK time-out

After a forward packet is sent, the origin expects an ACK to be returned
within a pre—-defined finite time period; otherwise a retransmission may be
initiated at time-out. Hence, upon correct receipt of a forward packet, the
destination must attempt to return an ACK as soon as possible. The effect of
this finite time-out is that the number of ACKs that can be accumulated at the
destination is reduced. This in turn decreases the probability of piggybacking
ACKs on return traffic.

Since our goal is to determine qualitatively the functional dependence
of piggybacking performance on the number of ACKs accumulated, this effect is
ignored in the analysis. Of course, in actual implementation, the number of
ACKs chosen to be accumulated to optimize piggybacking performance should be
subject to within time-out limits.

2.3 Packet transmission time

ACK
bits
T T T

Figure 1 Finite transmission time of a return packet.

Consider the transmission of a return packet (Figure l). Let

T start of its transmission,
T, = start of transmission of the ACK bits carried by it, and
T = end of its transmission.

Since the transmission time is finite, T3 < T, < Tg. Suppose that the
ACK associated with a forward packet is generated within the half-open inter—
val [tg, T,). 1In this case, the ACK bits of the return packet currently under
transmission has not yet sent. So, it would still be possible to update the
ACK bits of this return packet in order to piggyback the newly generated ACK.

However, in most protocols, e.g. HDLC, X.25, etc., the ACK bits are in
the header portion of a packet. Since the headers are usually only just a few
bytes long, the time interval [Ty, T,) is small enough that the effect can be
neglected. Hence, assumption (3) can actually be relaxed in this case if we
assume that after a return packet is generated and ready to be sent, that
packet cannot be modified.

Now suppose that the ACK associated with a forward packet is generated
within:. the -<closed interval [tA’ Tgl, during which time the ACK bits of the
return packet cannot be modified. We assume that the packet transmissions are
non-preemptive, i.e., once started, a packet 1is allowed to complete its
transmission. There are two cases to consider.



202

return packet 1 return packet 2
ACK ACK
bits ‘bits
Tos Tm T Ter  Ta Tw ' Tes
(a) non-zero time-gap
return packet 1 return packet 2
ACK ' ACK
bits|. bits
Ts1 tAi » tF Ty Tsa tAz Te,
(b) contiguous transmissions
T, = time at which the ACK for a forward packet is generated

Figure 2 Successive return packet transmissions.

First, suppose there is a non-zero time gap between two successive
return packet transmissions as shown in Figure 2(a). Then the ACK generated
during the interval [T,,, Tgl of return packet 1 can be piggybacked on return
packet 2 only if there 1is no explicit ACK packet generated before Tg,. In
this. event, assumption (3) can again be relaxed.

On the other hand, if there is no time gap between two successive return
packet transmissions as shown in Figure 2(b), then it is possible for return
packet 2 to piggyback the ACK generated during [Ty , Tg,l.

In normal operation, in order to avoid excessive queueing delays, the
average return packet inter—arrival time should be greater than the average
return packet transmission time. This means that, on the average, there would
be non-zero time gaps between successive return packet transmissions. Of
course, this may depend on the manner in which the return packets are clus-
tered. But consideration of this would further complicate the simple analysis
intended here.

In summary, the effect of a finite non-preemptive return packet trans-—
mission +time is to force the ACKs to be accumulated at the destination,
increasing their probability to be piggybacked. Assumption (3) then leads to
a lower bound on the piggybacking performance.

It may be argued that since time gaps exist between successive return
packet transmissions, then it dis possible to transmit explicit ACK packets
during these idle periods. When the return traffic intensity is low, this is
indeed desirable (so as to reduce ACK waiting delay). But when the return
traffic intensity is high, these time gaps would be small. The transmission
time of explicit ACK packets may cause additional delays to the transmission
of return data packets. It is then desirable to piggyback as many ACKs as
possible.



203

3. MODELING

To analyze the behavior of piggybacking, consider the set of epochs
[FELL68] when either forward or return packets arrive at the destination end:

(1) forward packet arrival epoch: the epoch when a forward data packet
is received correctly at the destination, and

(2) return packet arrival epoch: the epoch when a return packet 1is
generated at the destination and is ready to be sent.

To simplify subsequent description, we call the time between any two
successive return packet arrival epochs as an interval I. In general, the
length of such an interval I is a random variable, f, with distribution A(t).
Within an Interval I, the number of forward packet arrivals is another random
variable, f.

At each forward packet arrival epoch, an ACK is generated and to be
returned to the origin. Let M be the maximum number of ACKs accumulated at the
destination before being returned to the origin using only one explicit ACK
packet, in the absence of return traffic.

In practical implementations, T is wusually preset for each pair of
communicating entities for a certain period of time. Hence in this paper we
assume that i is a degenerate random variable with constant value N. If W is
the window size for forward traffic, the it is ' required that 0 < N < W to
prevent deadlock. '

3.1 Forward packet arrivals

By the theorem of total probability, the probability that f (f = 0,
1, ...) forward data packets arrive during an interval I is

o0
(1) p[f=f] = j PIf=f|f=t] dA(t).
0
The expected number of forward packet arrivals is

(2) E[f] = 2, fp(F=f].
=0

h

3.2 Piggybacking and explicit ACK packets

Let § be the number of ACKs that have been piggybacked on a return
packet, and T be the number of explicit ACK packets sent during an interval I.
Within this interval I, if there are N or more forward packet arrivals, then
an explicit ACK packet will be sent each time N ACKs have accumulated. Hence
the random variables §, h and f are related:



204

F o= T+ g for given N and interval I,
with

£ o= 0,1, ...,

g = 0,1, «e., N-1, and

h = 0,1, ....

3.3 Definition of piggybacking level

For a given N, the conditional expected number of ACKs that have been
piggybacked on a return packet is

N-1 o
(3) E[8I%N] = 7T g(72 plf=hN+gl).
g=0 h=0

Similarly, the conditional expected number of explicit ACK packets sent
within an interval T is

©  N-1
(4) E[hla=N] = 2 n(2, p[f=hn+g]).
: h=0 g=0

This can also be formulated alternatively as

N o0 hN+ (N 1) ~
(5) E[RIZ=N] = X n P[f=£]).
h=0 f=hN

We have

NE[RIT=N] + E[g|D=N]
o N-1

= 3 (hN+g)P [ f=hN+g]
h=0 g=0

= E[f].

This result is pleasing: for each given N, the sum of the average number of
ACKs sent by explicit ACK packets and that sent by piggybacking on return
traffic is equal to the average number of forward packet arrivals. Actually,
by the linearity of expectation, we have the same relation,

E[F] = E[Ty+E]

Based on this "conservation” result, we define for each given N, the
piggybacking level, G(N), as

(6) GM) = E[g|n=N]
1 - NE[h

~

E[f].

]

/Em
|9=N]

That is, G represents the expected percentage of ACKs generated within an



205
interval I that are piggybacked.

4, PIGGYBACKING LEVEL - BASIC PROPERTIES

In this section, we are going to derive some simple analytic properties
of the piggybacking level, G(N). Practical limitations of the analytic model
are also discussed.

4.1 N =1
It is obvious from eq. (3) that when N = 1, E[§|n=1] = 0. It follows

that G(1) = 0. After all, when ACKs are never accumulated and are returned
immediately, no piggybacking can be effected.

4,2 Large N

At the other extreme, when N is very large, we have from eq. (3),

N-1 oo
lim E[ZIF=N] = 1lim 3, g( 2, P[F=hN+g])
N->® N+® g=0 h=0

o0

= 2 gplf=g]
g=0

= E[f].

Hence, G(N) ——> 1 as N -->9¢0, 1In other words, ultimately all ACKs will be
piggybacked if they have to wait indefinitely.

4.3 Isotonicity

Consider the difference

AE[RIF=N]
E[D]%=N+1] - E[RhI%=N]
® N-1 N-j-1 N
[ 3 iP(i,i,k) + 2, (i+1)P(i,3,k) 1,
i=0 j=0 k=0 k=N-j

where P(i,j,k) = P[F=(iN+j)(N+1)+k] >= O. Hence

AE[R|B=N] <= O.

It follows that G(N) is an isotonic function of N, increasing in value
from G(1) = 0 to 1 as N approaches infinity. So it is possible to increase the

‘piggybacking~level arbitrarily by increasing N.

As a corollary, since G(1) = 0 and G(N) is isotonic, it follows that
G(N) > 0 when N > 1. Therefore, on the average, piggybacking is "guaranteed”



206

to occur when we do not return the ACK immediately.

4,4 Practical considerations

Alas, when meeting the real world, it is disheartening to see that the
simple results, G(1) = 0 and G@) = 1, no longer hold. Also, G(N) cannot be
increased arbitrarily by increasing N. The use of assumptions (2) and (3) in
the analysis leads to these "incorrect” results,

As was discussed in Section 2, the effect of finite ACK time-out places
an upper limit on the piggybacking performance that can be achieved. Hence it
is useless to increase the value of N beyond a certain level. In addition,
deadlock avoidance in the window flow control mechanism dictates that N cannot
go beyond the window size.

Similarly the effect of finite packet transmission time tends to enhance
piggybacking performance. So it is indeed pessimistic to say that G(1) = O.

Nevertheless, it is not the exact value of G(N) that is important. The
intent of this analysis is to shed some - 1light on how ACKs should be accumu-
lated so as to optimize piggybacking performance. We shall return later (in
Section 9) to further discuss this point. Meanwhile, let us continue with the
simple model and derive the piggybacking levels for three different traffic
conditions.

5. SPECIFIC TRAFFIC TYPES

In the next three sections; we .are .going to derive the piggybacking
level for each of the following types of traffic:

(1) Poisson arrivals in both directions,

(2) Deterministic arrival in the forward direction and Poisson arrival
in the reverse direction, and

(3) Poisson arrival in the forward direction and deterministic arrival
in the reverse direction, '

To simplify description, we use the notation A/B, where A and B are the
types of arrival distribution in the forward and reverse directions respec-—
tively. Following the convention of queueing theory, the above traffic types
are denoted by M/M, D/M, and M/D.

5.1 Traffic ratio

Let Ap and Ag be the average data packet sending rates 1in the forward
and return directions respectively. We assume that they are time-homogeneous
(i.e., constant in time). By assumption (1), they are also independent. We
define the return-to-forward traffic ratio, ¥, as

Y = A/ A



207

When ¥ =1, we say that traffic in the two directions 1is perfectly
balanced. Otherwise the traffic is unbalanced. When Ay < Ap or Ag >> A so
that Y ==> 0 or ¥ —=> o, we say that the traffic is extremely unbalanced.

6. THE M/M CASE

6.1 Distribution of forward packets

For Poisson forward packet arrival, we have
PlE=flt=t] = exp(-At)(A,t)/E! .

For Poisson return packet arrival, the inter-arrival time distribution is
exponential:

ACt) = 1 - exp(-A,t).

Evaluating the integral in eq. (1) using these expressions, we get

(1) PLE=f] = A/

Y/

This result can be derived intuitively: The mean total packet arrival
rate at the destination is (A +Ap). Each packet arrival at the destination can
be regarded as an independent Bernoulli trial with probability:

XF/(AF+AK) 1/(1+Y) for a forward packet,
(8)

¥/ (1+Y) for a return packet.

Ag/ (Apg+ )

The probability that f forward packets arrived in succession followed by a
return packet then forms a geometric distribution:

(17a+071F 1¥7+9)]
Y/ (1+Y)F,

P[f=f]

6.2 Mean number of forward packets

The mean of this geometric distribution is

(9) E[f] = 2Xe/Xg
= 1/Y.

This is clear intuitively. The mean inter—arrival time of return packets is
1/Xg. Hence the mean total number of forward packets arrived during this time
is A(1/Xg).



208.

6.3 Mean number of explicit ACK packets

Substituting eq. (7) into eq. (5), we get
(10) E[R|E=N] = 1/[Q+0)"-11.

Again, this result can be derived intuitively: The probability that N
forward packets arrived in sequence, D, > is, from (8),

N
p, = [1/a+n".
This is also the probability that an explicit ACK packet will be generated.

The probability that h explicit ACK packets will be sent followed by a return
packet (i.e., within an interval 1I) forms another geometric distribution,

{R:(l~pN)}, with mean’

p/(1-p) = 1/1(1+4 -11.

6.4 M/M piggybacking level

Substituting eqs. (9) and (10) into eq. (6) vyields the piggybacking-
level for the M/M case,

(1) 6, = 1 - w/[a+)-1].

7. THE D/M CASE

7.1 Distribution of forward paékets

Let
Te = 1/A;
= (constant) forward packet' inter—arrival time,
X = the random  time interval between  a return packet arrival epoch

and the first forward packet arrival epoch following it.
Then we have 0 < X < Tg.

Consider an interval I of length t and starts at epoch T. That is, the
two successive return packets arrive at epochs t and tT+t, respectively.
Further, suppose that, after epoch T, the first forward packet arrives at
epoch T+x.

If no forward packet arrives during the given interval I, then it must

be that 1T+t < t+x. Hence, given x, the conditional probability for this to
happen- is

X
P[f=0|%=x] = g Akexp(—hkt) dt.
0



209

f £>0 forward>packets arrive within the given interval I, we must
have

T+ x+ (f—l)TF < T+t < 1T+ x+ fTg.
Therefore, we have the conditional probability

. x+fTF
P[f=F>0]%=x] = S Akexp(—lgt) dt.
x+(f—1)TF

It can be shown [KLEI75], by renewal theory arguments, that ¥ 1is
uniformly distributed in the open interval (O, TF). Then, by unconditioning
on ¥, we have

TF X
S (l/TF)dx g Agexp(—Agt)dt f=0,
» 0 0
P{f=f] =
Ty XHT,
S (1/TF)dx Agexp(-Agt)dt f > 0.
0 x+H(£-1)T,
Evaluating these integrals, we get
. {1 - [1-exp(-¥)1/Y¥ f =0,
(12) Pf=f] = ;
exp[-¥(£-1)1 [l-exp(-¥)1"/ ¥ £> 0.

7.2 Mean number of forward packets

Substituting eq. (12) into eq. (2) and after some algebra, we obtain the
expected number of forward packet arrivals:

(13) E[f] = 1/%.

7.3 Mean number of explicit ACK packets

Similarly, using eq. (12) in eq. (5) and upon reduction, we obtain

(14) E[RIF=N] = (1/¥) [exp(¥)-1]/[exp(N¥)-1].

7.4 D/M piggybacking level

Substituting eqs. (13) and (l4) into eq. (6) yields the piggybacking
level for the D/M case,

(15) GDM(N) = 1 — N[exp(¥)-1]/lexp(N¥)-11].

It is interesting to compare this expression with that for GM”. When we
re~write eq. (l1) as



210

we observe that G has the same form as Gyu, the only difference being that
1+¥ is replaced by exp(¥). In fact, it can be shown (Section 9 and Appendix A)
that their similarity is asymptotically exact as ¥ ——> O.

8. THE M/D CASE

The return packets arrive at the destination with constant inter—arrival
time Ty = 1/A¢. Within this period, the probability that f forward packets
arrive follows the Poisson distribution

~ 4
Plf=f] = exp(~ AT )( A TR )/£!
with mean given by

(16) E[F] = AT,

1/¥%,
It follows from eq. (3) that

N

WL

-1
g J, 2 ————————— .exp(—AETK).
g=0 h=0 (hN+g)!

Hence the piggybacking level for the M/D case is
N-1 o0 1 hN+g
(17) 6, (M) = ¥ 3 g P — L(1/%) cexp(-1/¥).
g=0  h=0 (hN+g)!
Unfortunately, this expression cannot be reduced to a closed form. However,

extensive tabulations of the Poisson distribution are available for its
evaluation (e.g., [GENE62]).

9. NUMERICAL RESULTS

Eqs. (11), (15) and (17) show that the piggybacking levels for the three
different traffic conditions considered are all functions of N and ¥. They
are plotted in Figures 3 and 4, using one of these two variables as a parame-
ter. In Figure 4, continuous curves have been used to enhance visibility,
even though N is actually an integer variable.

From these graphs, we observe some useful general results:



211

2

~pbdd L

T

Figure 3

forward traffic ratio

5

0.

0.2 0.3

Piggybacking level as a function of

return-to

.4
e

0.1

using number of accumulated ACKs

as parameter.

sty

!
‘

|

R S e
S

< AN < ™~ © < 8 < i e
Gm.l = <o = = - = = =S oS

0.5 14
.4

3

2



o

<o [¥=3
O

212

nij— A o

=]
o

-

MD

—

-

(X

[}

(531

DM

1.0 ]

0.9
0.8
0.7
0.6
0.5

0.4

0.3 |

0.2

0.1

Y=1/2

¥=1/5

__—7=1/10

Figure 4

Piggybacking level as a function

of number of accumulated ACKs,
using return-to-forward traffic
ratio as parameter.



213

9.1 The role of ¥

Besides being dependent on N, the piggybacking levels for all three
cases are functions of ¥ only. Obviously, this is a consequence of using
assumption (1): independent forward and return traffic.

In Section 2.1, we mentioned that the relative timing between forward
and return traffic plays a role in the behavior of piggybacking. The func-
tional dependence of the different G's on ¥ helps to formalize this concept:

By definition, ¥ = Ag/A¢ is the return packet sending rate normalized
with respect to the forward packet sending rate. So, its value indicates, on
the average, how many return packets are generated on the receipt of a forward
packet. Clearly, the larger ¥ is, the shorter will be the expected time
interval between the receipt of a forward packet and the generation of a
return packet. Hence, intuitively, when ¥ is large, an ACK does not have to
wait too long before it is being piggybacked by a return packet.

Figure 3 illustrates this point clearly: the piggybacking level

increases as ¥ is increased. However, observe that, for all the G's, their
functional dependence on ¥ is highly nonlinear.

9.2 Similarity of behavior

Figures 3 and 4 show that the piggybacking levels for all three cases
behave similarly. In fact, the asymptotic behavior of Gyu, Gpw, and G, are
identical under certain conditions. For example, it is established in Appendix
A that, when ¥ << 1 and N is not so large such that N¥ << 1, then the
piggybacking level is asymptotically linear in N and ¥ independently.

This kind of similarity can be explained intuitively: Eqs. (9), (13)
and (16) show that, for all three cases, the expected number of forward packet
arrivals within an interval 1T is 1/¥. Thus, on the average, the relative
timing between forward and return traffic is the same, leading to similar
piggybacking performance.

9.3 Variability of traffic

From the curves in Figures 3 and 4, it is observed that

Gom > Gpp > Gram ¥ > 1,
Gop > Gpwy > Cram Y < 1.

When ¥ = 1, G, > Gy, for N > 2. In all cases, the piggybacking level for M/M
is always less than that for D/M or M/D. This demonstrates that the more
variable the traffic d1s, the less 1is the expected number of ACKs being
piggybacked.

9.4 Rapid convergence

As was discussed in Section 9.1, the piggybacking level increases as the



214

return traffic is increased relative to the forward traffic. When ¥ > 1, the
increase is very rapid for small N and then gradually smooths out. But when
¥ < 1, the increase is very slow with N. Thus in situations when the traffic
is unbalanced, while the piggybacking level may be high in one direction, it
would be low in the reverse direction.

Observe that in all cases, when N = 2 and ¥ = 2, half of the ACKs (for
M/M) or more (for D/M and M/D) are piggybacked already. When comparing with
the fact that G =0 at N =1, this is a significant improvement indeed. When
N >3 and ¥ > 1, the marginal increase of G with N is very small. Thus, for
all the traffic conditions considered, G(N) “converges" very rapidly to its
upper limit (i.e., l). It does so over only a very small range of the values
of N, |

It was pointed out in Section 4.4 that the exact values of G do not hold
in real networks. As a consequence, we can only take the above analytic
treatment of piggybacking behavior qualitatively, rather than quantitatively.
So, it is in this direction that we should interpret the above result.

It was discussed in Section 4.4 that finite packet transmission time
raises the lower limit of G at N =1 to be above 0. Also, finite ACK time-out
reduces the upper limit of G to be below 1, for large N. In other words, the
range of actual G values is only a proper subset of the closed interval
(o, 1l.

For the intermediate values of N, these two effects should not have too
much impact on the piggybacking behavior. Hence we can assume that the above
convergence characteristic of G still holds in this range. In this case, one
sees that it does not really buy too much (in terms of optimizing piggybacking
performance) by accumulating too many ACKs at the destination. In most
applications, a value of N = 2 or 3 should be quite adequate.

10. CONCLUSIONS

The advantage of accumulating ACKs at the destination is that it
improves mnetwork efficiency: the piggybacking level is increased and- the
number of explicit ACK packets is reduced.

However, as more ACKs are accumulated, the average packet response time
and hence buffer holding time are increased. This may also have impact on the
retransmission time—out interval for error control. Furthermore, to maintain
throughput, the window size for flow control has to be increased also. Hence,
it is undesirable to accumulate too many ACKs. at the destination.

In this paper, we have developed a-simple analytic model to investigate
the behavior of piggybacking. We have shown that, by accumulating 2 or 3 ACKs
at the destination (subject to within ACK time—out limits), satisfactory
piggybacking performance is achieved for most traffic conditions.



215

ACKNOWLEDGEMENTS

The author wishes to piggyback in this paper his acknowledgements. He
appreciates the critical comments of his colleagues and referees on an earlier

version of

this paper. He 1is also grateful of the support and interest of

F. V. Crowley in this work.

[FELL68]

[GENE62 ]

[KLEI75]
[KLEI76]

[MCQU72 ]

REFERENCES

W. Feller, "An introduction to probability theory and its applica-
tions," Vol. I, 3rd edition, John Wiley & Sons, Inc., 1968.

General Electric Company, "Tables of the individual and cumulative

terms of Poisson distribution;" D. Van Nostrand Company, Inc.,
1962,

L. Kleinrock, "Queueing systems, Vol. I: Theory,” John Wiley &
Sons, Inc., 1975.

L. Kleinrock, W.,E. Naylor, and H. Opderbeck, "A study of 1line
overhead in the ARPANET," Comm. ACM, Vol. 19, No. l, January 1976.

J.M. McQuillan, W.R. Crowther, B.P. Cosell, D.C. Walden, and
F.E. Heart, "Improvements in the design and performance of the ARPA
network,” AFIPS Conference Proceedings, 1972 FJCC, December 5-7,
1972, Anaheim, California.

APPENDIX A

We wish to show that, when ¥ << 1, and N is not so large such that
N¥ << 1, then G = (N-1)¥/2 for M/M, D/M and M/D.

A.l1 The M/M case

From the binomial expansion,

(1+x)N = 1 4+ Nx + N(N-1)x*/2 + o(x?),

we obtain



216
= (N—l)X/Z-

A.2 The D/M case

From the series expansion of the exponential,
exp(x) = 1 + x + x*/2 + o(x*),
we obtain
[exp(N¥)-1] - Nfexp(¥)-1]
exp(NY) - 1

NE + (NY) /2 - NQ¥+ ¥Y/2)

= (N-1)¥/2,

A.3 The M/D case

“For each given g and N, the infinite sum

oo 1 hN+g
SIS J— A1/8)  Lexp(-1/¥)
h=0 (hN+g)! '

takes from the Poisson distribution every N-th term starting from the g—th
term. Under the given conditions, S is approximately (1/N)-th of the sum of
all the terms (which is unity). Hence,

N-1
Gyp = ¥ 2 g.(1/N)
g=0
= Y, [NMN-1)/2].(1/N)
= (N-1)¥/2.



217

A DISTRIBUTED ADAPTIVE MULTI-PATH ROUTING-

CONSISTENT AND CONFLICTING DECISION MAKING 1

R. Attar
Aiken Computation Laboratory
Harvard University
Cambridge, MA 02138

Abstract

A distributed adaptive multi-path routing scheme for packet switching computer
networks 1is presented. The paper discusses the issues of consistent and conflicting
decision making, which are directly related to the fact that the scheme is distri-
buted and dynamically adaptive. The basic algorithm of multiple paths computa-
tion is an enhancement of the single-path adaptive routing of the ARPANET (also
called the shortest path routing - SPF). The update protocol is in principle
the flooding -ARPANET protocol. Hence the scheme is believed to have the proper-

_ties of simplicity, efficiency, and reliability, of the ARPANET routing. The

simultaneous use of many paths for each commodity is intended to provide high

throughput performance. However, the new component of traffic splitting intro-
duces new challenging problems in distributed adaptive routings. Such problems
are discussed along with some possible solutions.

1 The work presented here was carried out at the Department of Systems Analysis
at Bolt, Beranek and Newman, Inc., in collaboration with Dr. E.C. Rosen. The
research was supported by the Defense Advanced Research Projects Agency and
Defense Communication Agency, under contract No. MDAS03-78 - C-0129,

The views in the paper are those of the author. They do not necessarily
represent those of Dr. Rosen. The views and conclusions contained in the paper
should not be interpreted as the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.



218

1. Introduction

This paper presents a fully distributed multi-path routing scheme for
‘packet switched computer networks, with an emphasis on features virtues and
problems directly related to distributed decision making. This is an enhancement
~ of the ARPANET single path routing. Therefore, it is believed to have some of
the main properties of this routing, such as reliability, efficiency, simplicity, and
suboptimality, which are direct consequences of the features of the distributed
routing algorithms and update protocol (see [2, 3, 4, 5, 6]).

However, due to the simultaneous use of multiple paths for each commodity (a
specific source-destination traffic), the scheme should provide higher through-
put and mitigate problems of suboptimality and the undesirable features which

are directly related to the independent (and, hence potentially.conflicting)
decision making of each node in the network. The effect of conflicting decisions
is hoped to be alleviated by the "smearing" effect of a multi-flow pattern, if
the scheme succeeds in maintaining the stability and "smoothness" of this pattern,
in spite of some of the complexity which it introduces.

Section 2 describes briefly the current single-path ARPANET routing.

Section 3 and 4 present the main features of the multi-path scheme. Section 5
discusses the problems of suboptimality and fairness which seem to be inherent
to the distributed nature of the scheme. A 'solution is provided which maintains
the fully distributed features, though an evaluation of its performance is not
yet available.

2. The Single Path ARPANET Routing

A distributed adaptive single path routing scheme is currently operating
in the ARPANET packet-switching computer network. This scheme became operatio-
nal in May 1979 and proved to be efficient and very reliable [2]. It consists
mainly of three components: a) a measurement process which determines dynamic-
ally the network characteristics; b) an updating protocol for disseminating the
information about the dynamic state of the network; and c¢) the computation of
paths for routing the traffic. A brief description of these components, mainly
emphasizing the relevant details for the multi-path scheme, is provided here.
For further details the reader may consult [2, 3, 4, 5, 6].

Each node in the network maintains a database describing the network topo-
logy and the line delays. Each node measures the actual delay of each packet
flowing in each of its outgoing lines and averages this delay every 10 seconds.
It reports the delay to all other nodes, if it is significantly different from
the previous measurement. An update is always sent after a minute, even if
there is no change in delay, thus ensuring the reliability of the updating pro-
tocol. The updates are distributed by "flooding"; i.e. each node sends each new
update which it receives to all its neighbors. Each update is a short message,
which specifies the delay of all its outgoing lines, and is handled with the
highest priority. Therefore, updates propagate very quickly through the network
and the databases of all nodes become consistent very rapidly after the update is
sent by the reporting node (for further details see [3)}. The databases are kept
consistent with respect to network topology by an up/down line protocol {4, 5, 6].



219

Each node independently calculates the "best" path from it to each node

“in the network. Specifically, the best path is the shortest path, using delay

as the metric. The algorithm is called SPF - shortest path first, because of

its rule for searching the best path [2]. (For a survey of routing algorithms

for computer networks scc [7]). These shortest paths, from the given node

(which carries out the calculation) to all destinations, form a tree, the short-
est-path-tree, the root of which is this node. A schematic description of the tree
construction is provided here with an illustration example in Figure 1 (for

more details see [4]).

The tree is constructed by starting at the root and putting all its imme-
diate neighbors on LIST (which is a data structure of triplets, each triplet
identifying the node, the "father,"i.e., the node from which it was reached in
the process of putting it on LIST and its distance from the root). From among
all nodes on LIST (called "candidates"), the one with minimum distance (from
the root) is put on the tree and discarded from LIST. All its immediate neigh-
bors, except those which are already on the tree, are put on LIST. However,
when the node already exists on the tree, only one instance of it, having the
minimum distance, is kept on the tree. The same is true for the candidates on
LIST. The tree is thus built, shortest-path-first, and the algorithm terminates
when the furthest node is put on the tree. Note, since only one instance of a
node is kept on LIST, the number of tuples in LIST cannot exceed the number of
nodes (and in fact it is always smaller because, each time candidates are added
to LIST one node is discarded from it, see [4].

The basic SPF algorithm is carried out as described above only at a set-
up stage, when a node is initialized. Whenever a change in topology, or in de-
lay,occurs only the necessary changes in the tree are {efficiently) performed,
due to the incremental features which were added to the basic algorithm {[2,4].

Now let us summarize the features of the scheme and discuss the properties
directly related to these features:

The scheme is fully distributed. Each node has the same database and
computation procedures.

. At any given time t, the database of a node S specifies the dynamic state
of the network in terms of topology and delay. The S maintains a tree of short-
est paths from S to each node (or destination) D in the network.

The scheme is adaptive. The state DS(S,t) of the database may dynamically
change via the update protocol (reporting changes in average measured delays)
and the line up/down protocol. The SPF tree T(S,t) would change accordingly.

The scheme is a single path routing, because at any time t, S routes the
traffic destined to a node D on the single shortest path SP(S,D,t). This path
may change in time; however, no more than one path at a time is used to pro-
pagate the traffic to each destination.

The routing decision, though made independently by each node, is consistent
all over the network. This is due to the consistency of DS(S,t), T{(S,t) and
the routing procedures, for all nodes in the network. Note that the consistency
means that the information in DS(S1l,t) and DS(S2,t) is identical for any two
nodes S1,S2, but T(Sl,t) is not identical to T(S2,t).

The trees are consistent in the sense that for any node S2 on the shortest
path from S1 to D, the shortest path from S2 to D is partial to this path, i.e.,
SP(S1,D) D SP(S2,D). Therefore, if Sl propagates the packets with destination
D to S2, they will propagate from $2 to D along the same path, even though the
packets do not carry any path specification, and S2 stores and forwards the




220

packets according to its independent decision making.

Note that, in fact, by using the SPF tree at each node the following weak
consistency condition is satisfied: the segment of SP(Sl,D) from S2 to D is of
the same length as the path SP(S2,D), but they are not necessarily identical.

If there are two paths of minimal length from S2 to D, then S1 and S2 may put
different paths from S2 to D in their SPF trees. Therefore, in order to satisfy
the strict consistency condition that these paths are identical (i.e.SP(S1,D) D
SP(S2,D) as stated above), then in the construction of the SPF tree, whenever
there are more than one shortest path to a destination D, the choice of the
unique path should be formulated appropriately. The strict consistency condi-
tion means that the packet follows the path as determined by the source node.
This is specifically important if some additional properties such as the capa-
city of the path are involved in the routing as is the case in the multipath
scheme.

The database may become inconsistent for a short transient time, while an
update message is propagating and the update processing is carried out. During
such a period of time a packet may change its path while forwarded from one node
to another, and especially, a loop may form. However, due to the efficiency
of the update protocol, the databases soon become consistent, and consequently,
the forwarding of traffic, also becomes consistent, No loop is extant while
the databases become consistent. Therefore, the scheme is "practically" loop-
free, i.e., if any loop evolves during the short transient time, it is a short
lived loop disappearing as soon as the transient update period is over.

The efficiency of the SPF algorithm (in memory space and computation speed),
the consistency of a fully distributed scheme, and the dynamically adaptive
nature of the routing, make the ARPANET scheme, reliable, efficient, and rela-
tively simple. It is worthwhile to indicate some performance features [2]):
the line overhead is less than onc percent and the CPU overhead is two percent.
Most nodes adapt to changes within 100 m.s.. The average time per node to run
the incremental SPF algorithm is of a few m.s.. The total storage for the
modules maintaining the topology database and the mcasurement and updatlng pack-

ages, is about 2000 16-bit words.

The scheme does not generate an optimal youting. Suboptimality and deg-
raded performance may be related to several features of the scheme and intro-
duce themselves in various circumstances. The present discussion is confined
to some drawbacks of the scheme, which are related to its being a single path
routing (and hence motivate the design of a multi-path scheme) and to the con-
flicting decisions (which introduce interesting problems and solutions in pass-
ing to a multi-path scheme).

Consider first the simple case, where the offered load of one node to a
specific destination is higher than the capacity of any available single path.
The network is not able to carry the entire flow of this commodity (a source
destination pair). However, it may be argued that, if this situation is frequ-
ent and known beforehand, it is a problem of capacity design rather than a rout-
ing problem.

Next consider the interesting case, where a single commodity exhausts
most of the available capacity. For example, assume that in the network of
Figure 2, only S2 is sending traffic to destination D, say at the rate of 80
percent of the links' capacity. If the propagation delay of one link is small-
er than the delay increase causced by the heavy traffic of this commodity, this
traffic will oscillate between a 2-hop path S2-S1-D and a 3-hop path $2-53-S4-D,
"carrying" with it the congestion caused by itself (a "hop" is a pair of con-
nected node and link).



221

Now, consider the more complicated situation, where the same oscillation
may result from the interaction of several commodities. Several nodes may hea-
vily use some common links, leading to congestion on these links., Due to the
adaptive nature of the scheme some commodities may be diverted to alternative
paths. However, they may also interact on some common links on these paths,
leading again to congestion. 1In particular, some commodities may oscillate bet-
ween some set of congested links as illustrated by the following example.

Assume, that in Figure 2, the nodes S1 and S2 start sending traffic to desti-
nation D clockwise, congesting the link S1-D. They get an update, reporting a
high delay on the link; consequently, they divert to counter-clockwise paths.

Now they congest the links on the path $2-S3-84-D. The traffic from S1 and

S2 to D will oscillate between these paths, whereas a co-operation, or a global
view of the network behavior, could optimize performance by guiding S1 to route
its traffic clockwise and S2 counter-clockwise. (A comprehensive analysis of the
dynamic behavior of shortest path routing algorithms for the ARPANET is provided
in [5]-

The above discussion illustrates how a degraded performance may be attri-
buted to one or more of the following features of the scheme: single-path,
adaptiveness, distributed decision making, and the use of a dynamically changing
property (i.e., delay) as the metric for shortest path routing. A possible change
of any of these features depends on the specific characteristics of the network
and traffic distribution. Thus, for example, an appropriate combination of the
min~hop (minimum number of nodes traversed) and the minimum delay objective func-
tions, may reduce some of the oscillations illustrated above.

As a final remark, let us cite from (2] that in the ARPANET, "the new algo-
rithm does not show evidence of serious instability or oscillations due to feed-
back effects." However, flip-flops of paths from one link to another link have
been observed.

3. An SPF-based Multi-Path Routing

Our goal is to enhance the successful features and components of the single
path scheme into a multi-path routing which has the main virtues of the single-
path scheme (reliability, efficiency, and simplicity), and, in addition, provides
high throughput. The high throughput is to be achieved by the simultaneous use
of several paths for each commodity, when such a traffic splitting is nesessary.
The design of such a scheme involves four main components: a) measurements for
feedback, b) an update protocol; c¢) a routing algorithm; and d) traffic split-
ting. 1In this section we discuss the third component, as an enhancement of the
SPF-algorithm, which preserves most of its virtues.

The problem of routing each commodity on a set of several paths is first
discussed for a few simple cases. This discussion serves as an introduction to
the algorithm and provides some examples which illustrate why this scheme is
believed to be a "natural" and successful enhancement of the SPF routing.

Consider, first, the network in Figure 3(a). Assume, that each link has a
capacity of 100 units/sec. The nodes Sl, S2, S3 are required to send traffic,
at the rate of 50 units/sec. each, to destinations D1, D2, D3, respectively (we
call this ratc of input the offered load). Node A cannot forward traffic of more
than 100 units/sec. on any single path. Furthermore, all commodities have to be
forwarded from A to B to reach their destinations. The single path scheme cons-
trains the throughput to at most 2/3 of the offered load. However, if A splits
the traffic on two paths, leading from A to B, the network can easily carry the
offered traffic.




222

Assume that at time t, A forwards the traffic to B on a single path A-B.
At some later time t+T, node A detects, by its measuring component, that the
outgoing link A-B is congested. Now, instead of diverting the entire traffic
to an alternative path (hence, congesting it in turn), node A has to find the
second best path to be used for the excess traffic. A "natural" way to do this
is to carry out the SPF algorithm on the subnetwork in Figure 3(b), which is
obtained from the original one by erasing the bottleneck link A-B. Now, there
exists a second best path from A to B via node D. Node A splits the traffic
on these two paths, alleviating the congestion and providing the required
throughput (if the splitting is carried out appropriately - see Section 4)., If
node B were using a single path, it would also detect congestion on its out-
going link and adopt the same policy. However, this example may be misleading
because this local view of congestion and traffic splitting does not provide a
general solution and is neither consistent nor loop-free.

To see these points, consider the examples in Figure 3(c) and 3(f). 1In
Figure 3(c) we have the same scenario, on a different topology. Now, when A
detects the congestion on link A-B, it cannot use an efficient set of paths
for traffic splitting. In other words when all the traffic reaches A, it is
"too late" to be split efficiently (in fact, the only way to use alternative
paths to 2-B is to send traffic on links from which it came, i.e., A-S1, A-S2
or A-S3. However, if the information about congestion in link A-B is dissemi-
nated to all other links, the traffic splitting could be carried out effi-
ciently by S1, S2 and S3. The second best paths are computed by S1,S2, and S3
using the SPF algorithm on the subnetwork in Figure 3(d).

Distributing the information about congestion to all the nodes (in other
words, making the congestion view a "global" one) does not guarantee a consist-
ent routing, unless we make the notion of second best path (or in general the
K~th best path) also globally consistent. Figure 3(f) illustrates this point.
Nodes S1 and S2 are sending cnough traffic to D, each on its shortest (one-link)
path to D, so as to congest their first best paths. Assume that the link capa-
city of each link is 100 units/sec., that S1 is sending 90 units/sec. and S2
80 units/sec. Considcer a "local" procedure of defining a second best path.
Assume, for example, that S1 decides to erase one bottleneck (S1-D), thus
defining S1-52-D to be its second best path, and S2 decides to erase two bottle-~
necks (S1-D) and (S2-D) defining S2-S1-A-B-D to be its second best path. Now,
the second best path routing is conflicting. If a packet is sent by Sl on a
second best path with an indication to be propagated on a second best path, it
will simply loop forever between S1 and S2. If, on the other hand, S1 and S2
both decide to erase S1-D and S$2-D as bottlenecks, then, S1 and S2 have second
best paths, i.e. S1-A-B-D and S2-S1-A-B-D, respectively. (If they both decide
to erase only §1-D as as a bottleneck, then S1 has a second best path S1-S2-
D, and for S2 the second best path is identical to the first best path $2-D.
This pattern provides a small amount of additional throughput; however, it is
consistent and the addition of a third best path, if necessary, would provide
more throughput, via the unused links S1-A-B-D.)

Therefore, in addition to disseminating information about congestion to
all nodes, the decision of when a link is a bottleneck should be consistent
all over the network (see Section 4). The same set of bottlenecks should be
erased from the original network by each node which carries out the second best
path computation. , ,

Now, we define the third best path and then generalize the scheme to multi-
paths up to the k-th best path. Let us reexamine the example of Figure 3(d).
Assume, that by applying the SPF computation on this subnetwork the ncdes S1,



223

S2 and S3 define their second best paths to D as: S1-D-B-D1, $2-S1-D-B-D2, and
53-C-B-D3, respectively. Let us assume, that the traffic splitting scheme per-
formed by S1, S2, and S3, each on its two best paths, is good enough to highly
utilize the set of first best paths (which is not a simple task, as will be dis-
cussed in Section 4). The excess traffic is sent over the set of second best
paths. (By highly utilized, we mean that A-B is still saturated and retains the
definition of a bottleneck. Otherwise, the paths pattern will soon change again
‘and be unstable - see Section 4.) However, the offered load is high enough that
S1-D and D-B are now congested too, and declared to be bottlenecks. This dec-
laration cannot be simple, because if A-B, D~B and S1-D are now erased as bottle-
necks, we do not obtain a third best path. Rather, we lose the previous second
best paths, and anew second best path is defined at each node.

This example illustrates why a notion of flow-type and bottleneck-type is
introduced; this certainly complicates the scheme, but seems to be indispensible.
We call link A-B a type-1 bottleneck. We also call the packets which are pro-
pagated on the first best path type-l packets (and the flow, type-l flow, accor-
dingly). The packets which are propagated on a second best path are type-2
packets. Now we say that links S1-D and D-B are type-2 bottlenecks,even though
they carry both type-1l and type-2 flows.

The type of the bottleneck is determined according to the highest flow
which is passing through the link. Therefore, in this example no type-2 flow
exists in link A-B, as we already know. Now, each of the nodes S1, S2, S3 (and
in fact every other node) is looking at the third subnetwork which is obtained
from the original network by erasing both type-1 and type-2 bottlenecks (see
Figure 3(e)). In other words, the third subnetwork is obtained by erasing the
type-2 bottlenecks S1-D and D~-B from the second subnetwork in Figure 3(d). Thus,
for each node a third best path is defined (e.g., S1-S2-S3-C-B-Dl1l; S2-S3-C-B-D2
and 83-C-B-D3, for the commodities (S1,Dl), (S2,D2), and (S3,D3), respectively-

Note, that as with the case of the first best path, the set of second best
paths, from a given node to -all destinations, is a tree, rooted at the given
node (denote it by 2BP-Second Best Path tree), because it is obtained by apply-
ing the SPF computation to the second subnetwork. Similarly, the set of third
best paths form a tree (the 3BP-Third Best Path tree). Furthermore, the 1BP,
2B, 3BP trees of all nodes in the network are consistent, i.e., it suffices
that a packet carries an indication of its type in order to be propagated along
the intended path when forwarded from node to node, even though each node uses
its own independent computation to define the 1BP, 2BP and 3BP trees. Note
also that the set of bottlenecks erased at each step may consist of more than
one bottleneck of the same type.

In the rest of this section we describe the general SPF-based multi-path
algorithm which provides up to k best paths, for each commodity, k being some
predetermined parameter of the scheme.

At any given time, t, each node S maintains a database which describes the
topology of the network and some properties of each link, as measured and reported
by the node from which it emanates (see discussion of these properties in Sec-
tion 4). 1In particular, this description specifies k sets of bottlenecks B1l,
B2,...,Bk, where, Bj=(Bj1,Bj2,...,Bij) j =1,2,...,k is the set of type-j

bottlenecks. A link is reported, by the node from which it emanates, to be
a type-j bottleneck when its utilization by all flows during the measurement
period is above some predetermined threshold, and the highest type of flow pass-
ing through the link during the measurement period was j. These sets of bottle-



224

necks (each of which might be empty) define k-1 subnetworks G2,G3,...,Gk, where
G(3+1) = Gj-Bj, j = 1,2,...,k-1 and Gl = G is the original network. In other words,
the j-th subnetwork is the original network from which all bottlenecks of type-1
type-2,...,type-(j-1) are discarded.

The j-th best path from S to a destination D is simply the shortest path
(using some objective function, for the metric - see Section 4) from S to D in
Gj. The set of all j-th best paths, from S to all nodes in the network, form
a tree, which we call the JBP tree (the J~th Best Path tree). This tree is
constructed either incrementally or from scratch, by applying the SPF algorithm
to Gj (see Section 2). Denote the path from S to D in this tree as JBP(S,D).

The set of all JBP trees of all nodes in the network are consistent in the
same sense that the SPF trees are consistent; i.e., if S1 is an intermediate
node on JBP(S,D) then the segment of JBP(S,D) from Sl to D is identical to
JBP (S1,D) if the databases of S and S1 are consistent. A fully distributed rout-
ing, where each node stores and forwards packets using its independently computed
trees, is consistent, as long as the following conditions are satisfied:

a. the packet is identified (by some indication in its control
field) as a type-j packet;

b. each node must forward a type-j packet on the JIBP tree
(of this node); and ’

c. the databases of all nodes in the network are consistent.

Thus, we see that by introducing a "global” view of network behavior by the
notion of a bottleneck that is uniquely defined by one node and reported to all
other nodes, we preserved the main properties of the SPF-algorithm while passing
from a single routing to an SPF-based multipath routing. The only overhead
imposed on a packet is the small field identifying its flow type. The traffic
is split up into k flow types, where each flow type behaves as a traffic of the
single shortest path routing defined on a subnetwork. However, as with the single
path routing,the independent decision making may lead to changes in the path of
a packet while it is propagating (and, especially, it may loop) during transient
periods of update processing. Assuming that the update protocol (of both the
bottleneck declarations and the property which serves as a metric for shortest
path computation) is efficient, the routing is most of the time consistent and
loop-free.

Note, that any two paths JBP(S,D) and IBP(S,D) of the multiple set of k
paths of a specific commodity (S,D) are not necessarily disjoint. In parti-
cular, they may be identical if the path IBP(S,D) does not contain any bottle-
neck of type 1 < £ < j-1 (assuming that i < j). This property is consistent
with the main gaal of the scheme; if the i-th best path does not contain any
bottleneck of type & > i, there is no need for the specific commodity to have
additional paths which are longer than the i-th best path. Therefore, we speak
of "bottleneck disjoint" paths, and the trees of a given node $ are "bottleneck
disjoint" trees; (the J+1)BP tree does not contain any bottleneck of type & < j,
and therefore may have any link in common with the JBP tree except the type
% bottlemecks,? < j).

. .The consistency and efficiency of the distributed routing computation ' are
significant features of the multi-path scheme. However, the quality of the



225

scheme depends on many other factors. The following sections discuss some of
these factors, especially those which introduce the problem of conflicting
decisions. : -

4. Measurements, Update Protocol and Traffic-Splitting

In the previous section it was indicated that a link is declared to be a
bottleneck by the node to which it is attached if its utilization is above
some threshold (for a precise definition see [1]). The measurement of link
utilization serves also for the traffic-splitting component. Each node reports
to all other nodes, periodically, and following any significant change in the
residual capacity of each of its outgoing links. The residual capacity of a
link is a measure of the additional capacity which the link can provide, based
on its utilization during the recent measurement period. It is computed using
some upper bound on the maximum usable capacity. This upper bound is a function
of the maximum load which we allow on each link.

The notion of residual capacity is crucial to this scheme. However, its
precise definition is not important for the following discussion. Schematically
it is the difference between the maximum allowed utilization and the measured
utilization; but the precise definition involves among other things the problem
of links going down and up during the measurement period (see[ll).

We emphasize that "consistency of information" refers not only to the
notion of bottleneck, but also to the residual capacity, thus guaranteeing that
all nodes in the network see the same residual capacity of each link (this is
another aspect of the "global view” of the network behavior.) In particular
this information may occasionally not reflect the real residual capacity of a
link, because the reporting node may control the use of this capacity by report-
ing only portions of it. The purpose of such a control of gradually making the
residual capacity available is to achieve stability by preventing the other
nodes from suddenly diverting large flows to this link. This is one of the many
tuning parameters of the scheme. Others include when to change a bottleneck
type, how fast to report an increase ("bad news") or decrease ("good news")
in bottleneck type, the maximum allowable utilization, etc. The discussion of
these parameters is not within the scope of this paper (for further details
see [11). )

The multi-path scheme presented here uses the minimum number of hops
{"min-hops") as the metric for the SPF computation, where a "hop" is a link and
a node attached to it. Recall that the ARPANET single path routing uses delay
in the SPF computation. The main argument for this decision is related to the
objective function of throughput optimization; routing a packet on the min-hop
path minimizes resource utilization and this, in turn, contributes to a higher
throughput. (It should be emphasized, however, that this is an approach which
tries to achieve high performance by "locally" optimizing the objective func-
tion, and therefore is not guaranteed to always provide high performance, let
alone, a global optimum). Another argument in favour of the metric is the sta-
bility of the scheme. The residual capacity of a link is a dynamic measure,
which may lead to continuous change in the path and flow patterns (as a result
of changes in bottleneck types and traffic splitting). Introducing another
dynamic measure such as delay into the adaptive process would complicate the
scheme too much, and could potentially lead to unstable behavior as a result



226

of the additional changes in the pattern of paths and flows, which would be
caused by the.changes in the delay, if it serves as a metric of the shortest
path algorithm. The min-hop is a stable measure because this property of a

path changes only as a result of links and nodes going down and up. It is hoped
that an appropriate choice of the threshold for bottleneck determination will
guarantee an accepted average delay. However, if this turned out not to be the
case, the delay factor should explicitly be incorporated in the routing scheme.

Based on the success of the ARPANET Routing performance, it is believed
that the measurement and updating protocol components, similar in principle to
those of the ARPANET, may render the multi-path scheme efficient and reliable.
The update messages involve residual capacity and bottleneck specification ins-
tead of delay. However, the overhead of this update is affected not only by
the frequency of updating but also by the extent to which the new notion of flow
type and the additional component of traffic splitting are reflected in the update
protocol. These aspects are of major importance in the detailed design of a speci-
fic implementation; however, no further elaboration is necessary for the follow-
ing discussion.

The basic requirement of the traffic splitting component at each node S is
to distribute each commodity (S,D) over a minimal subset of paths (IBP,2BP,...
&BP), %< k in which the first 2-1 paths are saturated and the excess traffic is
sent through the £-th best path. In other words, each node S tries to minimize
resource utilization (by each commodity) by not using a longer path when the
shorter paths provide enough capacity.

Note, however, that in fact this requirement is important for the stability
of the multipath scheme. The priority of the i-th best path over the (i+l)-th
best path must prevail even when they are of the same length (and hence, using
almost the same amount of resources). A failure to fulfill this requirement
may cause a bottleneck link to be underutilized. Consequently, its bottleneck
type would change, leading to a change in the set of k best paths. But this
change is not a consequence of a decrease in the offered load of this commodity.
Therefore, this link may soon again become a bottleneck and the paths pattern
will again change. Such instability of the scheme sometimes may be prevented
by the control which the reporting node has on the disseminated information.
When a node determines a decrease in bottleneck type of one of its links it may
delay the reporting for a certain period of time, to be sure that it is a real
decrease rather than a failure of the traffic splitting components. This ena-
bles the traffic splitting components of all nodes to "correct" their decisions
if the drop in utilization is only a result of their failure to satisfy the
above requirement.

Figure 4 illustrates the problem of instability related to this require-
ment. Each link has a capacity of 100 units/sec. At a certain time, nodes S1,
S2 send traffic to D at a rate of 90 units/scc. and 50 units/sec., respectively.
Assume that S1 started sending traffic later than S$2. Therefore, node S1 splits
its traffic to a type-1 flow of 40 units/sec. and a type-2 flow of 50 units/sec.
(i.e., a perfect traffic splitting scheme, if the upper bound on link utiliza-
tion is 90 percent). Now assume that S2 reduces its traffic to 30 units/sec.

If S1 continues to use the same flow pattern, it is not only using more resour-
ces than it ought to (its second best path is of 3~hops versus 2-hops of the
first best path, but, more severely, link A-D is not a bottleneck any more.

The 2BP of S1 becomes identical to its 1BP (in other words, the set of two paths
"collapses" into a one path). Now, a traffic of 120 units/sec. is sent



227

over a link of 90 units/sec. maximum allowable capacity, congesting it severely
and making it again a bottleneck. A new pattern of paths and flows is defined
until hopefully, the scheme stabilizes. However, the oscillations reduce the
performance, even if at some later time such a stabilization is achieved. Had
we chosen a configuration in which the 1BP and 2BP from Sl to D are of the same
length we could visualize a situation of permanent oscillations between the pat-
terns of 1 path and 2 paths, if the only requirement is- to minimize resource
utilization. ’

Satisfying the requirement of path priority involves knowing how much
capacity is available for each commodity. However this is not enough to define
perfectly a flow splitting, because the future distribution of the offered load
for this commodity is not known at the time when a node is "planning" its future
traffic splitting. Formally, this "planning" means defining traffic splitting
coefficients (see [1]).

The problem of deciding how much capacity would be available on each path
is the most important one for traffic splitting. It involves a division of the
residual capacity of each link among the various nodes using this link, among
the commodities of each node, and among the paths of each commodity using this
link.

Note that even a perfect division does not guarantee a perfect traffic
splitting, but hopefully, a good one. This "hope" is based on the assumption
that the flow pattern which led to this residual capacity will not wvary too
much within the short future time of one measurement period, with respect to
the recent measurement period.

The division of a given portion of the residual capacity among the commo-
dities of the same node and among the paths of the same commodity mainly invol-
ves a maintenance of a large and complicated database of all flows from this
node, and a complicated algorithm of capacity allocation. This would enable the
node to evaluate a maximum flow value for each path and accordingly a set of
coefficients for traffic splitting. However, since the node can keep control of
the flows it sends during the time period between two consecutive updates and
make correcting decisions at some intermediate times, the problem of precisely
allocating the capacity among commodities and flows of the same node might
not be so crucial. On the other hand, the effect of inconsistent decision
making by different nodes is manifested between the two updates. The problem
can be mitigated by additional congestion or flow control which is responsible
to force nodes to correct their decisions. _ '

The problem, therefore, is how to maintain the distributed nature of the
scheme (and hence, its reliability) and provide some consistency between diffe-
rent nodes such that the independent decision making will not lead either to
oversubscription, or underutilization, of certain links which degrade perfor-
mance. Some co-ordination of this independent decision making may be achieved
by the provision of additional information in the update protocol, or even’ an
additional layer of update protocol. The amount and frequency of information
exchange for the purpose of consistency in residual capacity sharing depend on
the specific design of an implementation. An extreme case may be a lack of any
such information, allowing each node to grab some fraction of the residual capa-
city, relying on a congestion control scheme to take care of oversubscription
conflicts. The other extreme case may involve a continuous information ekchange,
imposing a significant overhead.



228

The following is an example of an approach which requires minimal additional
information within the basic update protocol. Each residual capacity update
about a link will also indicate the number NT of commodities which recently used
the link,or in a more complicated scheme the numbers NI and ND of commodities
which tended to increase and decrease (respectively) their flows in this link.
Each node may use this information together with the information it maintains
about its own flows (using this link) and the total amount of traffic in it
(inferred from the residual capacity). 1Its goal is an estimate of what portion
of residual capacity it should consider for its commodities, such that it would
be consistent with all other nodes that are making the same decision.

5. Global Optimality and Fairness

We have already indicated that the scheme is not guaranteed to provide high
performance in all circumstances. However, a distinction should be made between
the cases where a high performance is not achieved because the scheme fails to
operate perfectly, and the cases where suboptimality is inherent to the distri-
buted nature of the scheme. Recall that there is no co-operation between nodes
to achieve a global optimum. Instead, each node tries to optimize (locally) the
resource utilization of each commodity. Therefore, even if the scheme operates
perfectly according to the criterion of flow priority, a suboptimal pattern of
flows may be formed. 1In such cases, the throughput may be increased by diverting
one commodity from certain paths, enabling other nodes to take advantage of these
paths, leading to a globally better solution.

Another aspect of the same phenomenon is related to the requirement of
"fairness": no node should be totally blocked, or in other words, no user should
be denied service.

Both problems are illustrated in the following example. Assume that the
network consists of ten nodes, S1, S2,...,510, connected by full duplex links
of capacity 100 units/sec. in a ring topology, see Fugure 5. The effective
capacity (maximum capacity allowed for use) of each link is 90 units/sec. Assume
that S4 starts sending traffic to D(D=S10) steadily at the rate of 90 units/sec.
on its 1BP, which is a counter-clockwise path Pl of 4 hops. 1Its 2BP is a clock-
wise path P2 of 6 hops, currently not in use. After a while, S2 starts sending
traffic to D steadily at the rate of 90 units/sec. The 1BP of S2 to D is a
counter-clockwise path Q1 of 2 hops and the 2BP is a clockwise path Q2 of 8
hops. Just before starting to send its traffic, S2 observes a zero residual
capacity in the links of Ql, because the usable capacity is totally exhausted
by S4. Therefore, S2 sends all its traffic through Q2. The network is totally
saturated at the maximum allowed utilization of 90 percent; the criterion of
flows priority is (locally) satisfied by each commodity; and the flow pattern is
stable. The total number of hops traversed by all flows is 12 (4 of Pl and 8
of 02). '

The flow is globally suboptimal because, if S4 diverts its flow to P2 of ©
hops and enables S$2 to use Ql of 2 hops, the total number of hops traversed by
all flows drops to 8, i.e., the resource utilization is significantly reduced.
This flow pattern is globally optimal; additional throughput is available if
some other commodities are introduced into the network.

In the suboptimal flow pattern, node S3 cannot input any amount of its

commodities into the network because it observes zero residual capacity on all



229

its paths to any destination. Thus the requirement of fairness is severely vio-
lated. In the optimal case this node can send traffic to $2 and S4. However,
even in the optimal case, it may not be able to send any traffic to other nodes,
if the scheme does not allow a node to introduce its input when the residual
capacity is zero. Thus, in such an implementation of capacity allocation, even
the globally optimal solution does not provide a complete solution to the prob-
lem of fairness (and not surprisingly since fairness and throughput optimization
are not equivalent).

A cooperation between nodes to provide a solution to either global through-
put optimization or fairness may involve a complicated scheme of information
exchange. Most likely this would also increase significantly the overhead of
the update protocol. Assuming that the fully distributed nature of the scheme
should be preserved as much as possible (which we believe is essential for relia-
bility), a solution is proposed which does not involve any cooperation between
nodes. The residual capacity of links is measured with respect to some level
L1 of utilization which is lower than the total allowable utilization; say, for
example, L1=80% and L2=90%. The 10% capacity L2~L1 is called a “"reserved" capa-
city. Each node utilizes a portion of the reserved capacity in addition to the
portion of residual capacity, the portion of residual capacity being positive or
negative depending on whether the recently measured utilization of the link was
below or above 80%, respectively. The portion of reserved capacity is computed
for each path and each commodity, so that it reflects the relation between this
path and the worst path used for the given commodity. The larger the computed
portion, the worse is this relation. In our example this portion is larger for
Q1 of S2 than for Pl of S4. (It is even larger for the paths of any blocked
node, because for such a node, the worst used path is of length infinity,
since it cannot use any capacity on any path.) Thus, S2 would utilize a larger
portion of the reserved capacity than S4, for each link which is common to the
1BPs of S2 and S4. The utilization of reserved capacity leads to reports of
negative residual capacity forcing all nodes to reduce their flows through the
congested links. This process gradually forces the flow of S4 from Pl to P2
and diverts the flow of S2 from Q2 to Ql, leading to a better pattern.

The main feature of this schematically described solution is that it achieves
a global performance improvement not by cooperation involving information exchange,
but rather by a "contention" which allows those nodes whose "situation" is rela-
tively worse to gain a larger portion of available capacity. However, the deci-
sion making process remains fully distributed.

6. Summary and Conclusion

The multi-path scheme described above has four main components:
a) the measurement component, b) the update protocol, c¢) the routing algorithm,
and d) the traffic splitting procedure. The first three components are enhance-
ments of the SPF algorithm and the flooding update protocol, which proved to
support very successfully a distributed routing scheme in the ARPANET. Since
the enhancement into a multiple-path scheme preserves the simplicity, consistency
and distributed nature of the scheme, the virtues of efficiency and reliability
-are most likely to exist in the new scheme. In addition, the new scheme provides
high throughput through the simultaneous use of many paths for each commodity.
Moreover, since the objective function for shortest path computation uses the



230

min-hop metric instead of delay, some stability of path patterns may be achieved
even though the scheme is a dynamic adaptive one. However, the fourth component
introduces new complexity into the process of distributed decision making, along
with new factors of instability in the pattern of paths and flows (because of the
continuous updating of residual capacities and bottlenecks). It was indicated

how these problems might be controlled without damaging the distributed nature

of the scheme and consequently its main feature of reliability.

Still, many problems remain to be studied. Perhaps, most importantly, the
performance of the scheme must be analyzed as a function of the many parameters
which seem to be of major importance in determining its features. These para-
meters, to mention just a few, are the maximum number of paths which may be used
by each commodity, the level of utilization at which a link becomes a bottleneck,
the period of measurements averaging, the fashion of flow division based on traf-
fic splitting coefficients, etc. Some aspects of performance, e.g. the cost
(in terms of memory space,CPU time, design and programming effort) of the routing
algorithm, for a specific implementation, are in principle simple. Specifically,
some estimates may be inferred from the known performance properties of the
ARPANET single path routing. However, the dynahic behaviour of the scheme is
yet unknown.

Some features of the scheme may be studied by simulation, others might be trac-
table to some analytical models (probably via extreme simplifications); some would
be determined for the specific implementation and finally, many would be determined
through its operation by the process of measurements and turning. Simulation study, -
currently conducted at Bolt Beranek and Newman Inc. may provide a better under-
standing of the scheme (especially, of its new components-multi-path routing and
traffic splitting). However, many challenging problems and various new system
designs are to be investigated; especially, in the component of traffic splitting.
Hopefully, such work will lcad to a high performace multl—path routing scheme for
packet switching computer networks.

ACKNOWLEDGEMENT

The work on the multi-path routing was carried out in collaboration with
Dr. E. Rosen who leads the DARPA sponsored investigation of Routing at Bolt,
Beranek and Newman, Inc. The cooperation of E.C. Rosen was of major signifi-
cance in developing an SPF-based multi-path routing and his help is greatly
appreciated. However, the views expressed in the paper are those of the author.

Fruitful discussions with P.J. Sevcik, Mr. J. Mayersohn and Dr. G.J.
Williams provided significant contributions. Finally, I would like to thank
Professor P. Bernstein for his help in editting the manuscript.



SPF-TREE

LIST

Steps

B
1 1
1
NETWORK c A
5 1
S
B
?
A C A C A
@ —rmcrcmamnm)
© )
S S S S
(a,1,s) (c,2,n)
{(c,5,8) (B,2,A) (B,2,A) @
1 2 3 4

FIGURE 1l: The construction of the SPF Tree



232

—P Commodity (S1,D)
—_—f Commodity (S2,D)

FIGURE 2: Traffic Oscillations



D2 Dl
D3 B
A
si S2 S3
(a)
D2 D1
) B
D3
D A
s1 S2 53

(c)

233

D2 D1
D3 B C
A D
J
sl S2 S3
(b)

D2

D3

sl

sl s2 A

(£)

FIGURE 3: A Few Examples Of Multi-path Patterns.



234

40 units/sec.

50 units/sec.

50 units/sec.

b=

50 units/sec.

90 units/sec.

Sl s2

—_—b commodity (S1,D)
—_—p Commodity (S2,D)

FIGURE 4: Priority of Flows over 1BP and 2BP



S8

S7

FIGURE 5:

235

D = S10

Suboptimal Routing



236

REFERENCES

Rosen, E.C., J. Mayersohn, P.J. Sevcik, G.J. Williams and R. Attar, ARPANET
Routing Algorithm Improvements, BBN Report 4473, vol. 1, BBN, Cambridge,
MA, August 1980.

McQuillan, J.M., I. Richer, and E.C. Rosen, "The new routing algorithm for
the ARPANET," IEEE. Trans. on Communications, v.COM-28, no.5, May 1980.

Rosen, E.C., "The updating protocol of ARPANET's new routing algorithm,"
Computer Networks, v.4, no. 1, February 1980.

Rosen, E.C., J. Herman, I. Richer and J.M. McQuillan, "ARPANET routing
algorithm improvements - Third Annual Technical Report," BBN Report 4088,
BBN, Cambridge, MA, April 1979.

McQuillan, J.M., I. Richer, E.C. Rosen and D.P. Bertsekas, "ARPANET routing
algorithm improvements -~ Second Semi-annual Technical Report," BBN
Report 3940, BBN, Cambridge, MA  October 1978.

McQuillan, J.M., I. Richer, and E.C. Rosen, "ARPANET routing algorithm
improvements -~ First Semi-annual Technical Report," BBN Report 3803, BBN,
Cambridge, MA, April 1978.

McQuillan, J.M., "Routing algorithms for computer networks - a survey,"
presented at the 1977 National Telecommunications Conference, December
1977.



NETWORK FILE SYSTEMS WORKSHOP







239

NETWORK DATA MANAGEMENT: THE VIRTUAL FILE SYSTEM

R.Pcocpescu-Zeletin, L.Henckel
¥ W.Heinze, K.Jacobsen, G.MaiB

Hahn Meitner Institut for Nuclear Research
Project : HMINET Berlin F.R.GERMANY

¥ Wissenschaftliches Rechenzentrum Berlin (WRB)
Project : BERNET Berlin F.R.GERMANY

ABSTRACT
A lot of efforts are made in several standardization bodies
(IS0, CCITT) to extend the concept of dedicated network
to an open system based on standards at national and inter-
national level. One of the aspects bound to an open system
architecture is the fact that the user needs some standard
way to manipulate and access data residing on heterogene-
ous hosts.
Accessing data in a heterogeneous computer network has two
main aspects to be taken into consideration:
a) the incompatibilities with respect to data access and
data representation,
b) the data transfer through the network which implies
new requirements as : error recovery, transfer efficiency,
and transfer security.

The presentation outlines the architecture of a network-wide
defined file structure (virtual file) and the corresponding
operations on it. The designed system will be implemented

as a pilot project in two interconnected networks (HMINET

and BERNET) in the Berlin area. Both networks have adopted
the ISO reference model as framework for their architectures.
The reason for the decision to support a common file structure
in the heterogeneous environment will be outlined. The Network
Data Management System functions on layers 5,6 and 7 of

the ISO reference model, decision which has had an important
impact in the adopted architectural concepts.

The virtual file can be described as a tree structure with

n hierarchical ordered levels. Each level is build by a

set of logical data units of the next lower level. Data
units may be accessed at each level using the same set of
operations. The impact of the adopted virtual file structure
on the dynamics of the Network Data Management System and

on the protocol flow will be presented.

The definition of the virtual file as a logical structure
above the different kinds of conventions of the local Da-

ta Management systems seems to find an agreement as the

only feasible solution to candidate for standardization.

In our approach we have adopted the present agreements
achieved in the international bodies as a starting point

for the NDMS design in networks based on the IS0 reference
model for system interconnection.



240

Performance Analysis of a Distributed File Cache

Gautam Barua
John Bruno#*

Department of Computer Science, University of California,
‘ Santa Barbara, CA 93106

Peter J. Downey**

Department of Computer Science, The University of Arizona,
Tucson, Arizona 85721

Our interest is in studying the performance of distributed
systems which share a centralized file system, which we shall
call a file system server (fss). An important feature of current
non-distributed file systems is the presence of a buffer cache
which is used to achieve a reduction in the amount of physical
I/0 between disk and memory. The trend in recent distributed sys-
tems work toward centralization of file system services leads to
problems of managing network bandwidth. 1In this paper we propose
a method (the distributed cache protocol) whereby nultiple ker-
nels can share a central fss while maintaining local buffer
caches, The distributed cache protocol amounts to a method of
apportioning cache entries among kernels, requiring transfer of
an entire block buffer over the network only when necessary to
ensure the consistency of the distributed data. The protocol has
the feature that kernels do not transmit blocks to the file sys-
tem server unless required to do so by a read or write request by
some other kernel. We contrast this cache management protocol to
the write-through protocol. 1In this scheme, a kernel which
writes a block must immediately write it through to the fss.

Suppose requests arriving at the fss are write or read
requests with probability g or p, respectively. Assume there are
n Kernels generating requests in a completely random arrival pat-
tern, A Markov chain model for the states of the distributed
cache is used to calculate the expected block transfers per
request for both the distributed cache and write-through manage-
ment protocols2 The results show a reduction in expected
transfers of “/(n-p) using the distributed protocol..

*The work of this author was supported under NSF Grant
MCS80-04257. **The work of this author was supported in
part under HNSF Grant MCS80-04679 and in part under contract
number DAAK80-80-C-0527, U.S. Army Communications Research
and Development Command, '



241

A Distributed UNIX™ System

Alan L. Glasser
David M. Ungar

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

This paper describes a distributed UNIX system that supports a community of several
hundred computer programmers. Individual UNIX systems are connected with network
software and vendor-supplied communications hardware to provide transparent read-
only access to all files on all processors, and a set of commands for explicit distributed.
data manipulation and resource sharing (e.g., line printers and remote job entry con-
nections). )

The system can withstand a number of hardware failures by automatically routing data
around malfunctioning processors and links. Also, no more human intervention is re-
quired than would be if the same number of processors were operated in a non-
distributed mode.

Network file accesses take four times longer than local file accesses, providing adequate
performance. The system is compared to a Programmer's Workbench provided on a
large computer. Experiences with the system and future work directions are also

presented.






DISTRIBUTED DATA






245

Redundant -Allocation of Relations in a
Communication Network

Peter M.G. Apers

Vrije Universiteit
Informatica
Wiskundig Seminarium
de Boelelaan 1081
1081 HV Amsterdam

ABSTRACT

The location of the data in a distributed database is one of
the aspects that determines the efficiency of query processing.
If we assume a relational data model, the problem is to assign
the relations to the computers such that the total network
traffic is minimized. This assignment cannot be done for every
relation separately because of the complex access strategies pro-
duced by query processing algorithms. These strategies will be
represented by a transmission-strategy graph. A heuristic algo-
rithm that computes an allocation by determining which relations
should occur on the same site, will be given. Also the problem
of multiple copies will be addressed.

Simul ation results give an interesting insight in what part of
the network traffic is caused by queries and what part hy
updates, and also over how many sites the relations per ftransac-
tions are spread.

1. Introduction

Distributed databases are well within reach given the current technology.
How well they will be accepted, however, will depend on their efficiency. One
aspect which is important for the access time of data in a centralized data-
base is how the data are stored. The analogous question in a distributed
database is where the data are located. Obviously, if all the data required
for a particular query are locally available, the user will not notice the
difference between a centralized and a distributed database. However, owing
to updates, it is not always possible to give every site a fully-redundant
copy of the database. The problem of deftermining an allocation of the rela-
tions in a communication network such that the total network traffic is
minimum, will be called the data allocation problem. Current research on dis-
tributed query processing [1,2,4,5,8,12,15,17] shows that the access stra-
tegies for processing queries are rather complex. To obtain smaller inter-
mediate results, which will lead to a smaller response time or to*al network
traffic, the access strategies include transmissions from relations a% one
site to relations at other sites hefore sending the result Lo the site where




246

the result is needed. Because of these transmissions it is impossible to
determine an assigmment for each relation separately. This is also the main
difference from the file allocation problem that only allows transmissions
from files to computers that require the final result. Therefore, the files
can be assigned independently, which makes the problem less complex. A lot of
research has been done in this area [6,7,9,11,14,16]; for an overview see

[131.

This paper is organized as follows. In section 2 the notion of
transmission-strategy graph is introduced. Such a graph represents the access
strategies. We also show that the data allocation problem is NP-complete.
Section 3 contains a heuristic algorithm for determining efficient data allo-
cation. The problem of multiple copies is addressed in section 4. Experimen-
tal results are shown in section 5. We end with a conclusion and an idea for
future research in distributed query processing.

2., Data Allocation and Data Transmissions

We are given a set of relations. These relations and their copies have
to be allocated to the various sites in the communication network. UYe assume
that the communication network is completely connected and that there are no
restrictions on the assignment of the relations. The objective in the data
allocation problem is to minimize the total network traffic, just like in the
file allocation problem. The difference between the file allocation problem
and the data allocation problem is the way the relations are accessed. Tn the
file allocation problem a very simple strategy for processing a query is
assumed: send the data of the queried files directly to the computer where the
result is required. Current research in the area of distributed query pro-
cessing shows that more complicated strategies are used, which, in case of the
relational data model, also allow transmissions between relations. e will
illustrate this by an example.

Example

Assume we are given a database about courses of an international summer
school.

prof (pname, course, country)
student (sname, country)
enrollment (sname, course)
and each relation occurs at a different site. The query
SELECT pname, sname
FROM prof, student

WHERE prof.country = student.country

stated by a user at a site where none of the ahove relations reside, can be
processed as follows:

- project relation 'prof' on the attributes pname and country,



247

- send the result to the site where 'student' resides,
- project relation 'student' on the attributes sname and country,
- compute the join where prof.country = student.country

- send the result to the site of the user, who stated this query.

prof O— > student

Fig. 1: Data transmissions

Figure 1 shows the data transmissions involved in processing this query; note
the transmission from relation 'prof' to relation 'student'. One can imagine
that this strategy leads to less traffic than by simply sending the relations
'prof' and 'student' to C.

a

Before allocating the relations to the sites in the communication net-
work, we extend the communication network with virtual sites. These sites are
fully interconnected and also connected with every physical site. To start,
the relations are allocated to the virtual sites; every virtual site contains
only one relation. Figure 2 shows an example of such an extended network.

Cy

Vs VS,

VS2

Fig. 2: An example of an extended network

Our goal is to identify each virtual site with a physical site. Given
this extended network and the allocation of the relations to the virtual sites
we can produce strategies for the various queries and updates of users of this
database. These strategies consist of data transmissions between virtual
sites and between virtual sites and physical sites. This graph of transmis-
sions will be called transmission-strategy graph; an example is shown in



248

figure 3.

Fig. 3: An example transmission-strategy graph

The edges in the transmission-strategy graph are labeled with the ‘amount
of data (in bytes) that is transmitted through it per unit of time. LINK, .
(=LINK..) will be defined as the sum of the amount of data sent between v%‘i]
and VST, DTiC is defined as the sum of the amount of data sent between VSi
-and site C.

In this paper we will -assume that the strategy for processing queries is
fixed. This means that if two virtual sites, say VS, and VS., are taken
together to form one virtual site, only the data transmissiofs between VSi and
VS . disappear from the transmission-strategy graph. MNo other transmissions
ard affected. This is not true for the strategies produced by most of the
distributed query processing algorithms. With the transmission-strategy graph
we are able to characterize this case of varying strategy, however, we will
‘not consider it here. We will come back to this in section 5.

Before we will describe an algorithm for finding efficient data alloca-
tions, we will show that the data allocation problem is NP-complete.

Theorem The data allocation problem is NP-complete.

Proof In Even [10] it is shown that the minimum edge-~deletion bipartite sub-
graph problem is NP-complete. The problem is stated as follows:

Given a graph G(V,E) and a positive integer k. Is there a subset of
edges E', such that the subgraph G(V,E\E') is bipartite and IE'] < k ?

We will now show that this problem can be polynomially reduced to the data
allocation problem. Assume that we are given a graph G(V,E), where {V|=n.
The nodes in this graph will be the virtual sites and the edges will be
labeled 1 in the transmission-strategy graphs that we are going to construct.
From this graph G we construct (;) transmission-strategy graphs by inftroducing
two physical sites and choosing two virtual sites. For every Lransmission-—
strategy graph another pair of virtual sites is chosen, Each of these two
virtual sites will be connected with one physical site, and these edges will
be labeled infinity. TFigure 4 shows one of the transmission-strategy graphs.
The computation of the data allocation that minimizes network traffic for a
transmission-strategy graph, where VS, and VS, are connected to the physical
sites, corresponds to computing the minimum e&ge—deletion to get a bipartite



249

VS. VS ® C

G(V,E)

Fig. 4: One of the transmission-strategy graphs

graph with VS, in one subgraph and VS, in the other. The reason they are
equivalent is " that after the allocatign, the number of edges (with label equal
to 1) between the two physical sites is minimum. Deleting these edges from
the original graph G leaves G bi-partitioned with VS, in one subgraph and VS,
in the other. Because all pairs V3, and VS, are considered we can determine
whether the number of deleted edges to obta%n a bipartite graph, is less than
or equal to k.

This means that a known NP-complete problem is polynomially reducible to
the data allocation problem, hence this is NP-complete as well. '
O

3. Data Allocation Algorithm

The access strategies produced by distributed query processing algorithms
include data transmissions between relations to obtain smaller intermediate
results, thus decreasing the response time or the total time. Because of
these transmissions it 1is not possible to compute an optimal assignment for
every relation separately as can be done in the file allocation problem.
Therefore, the proposed algorithm does two things to compute non-redundant
data allocations:

- it decides whether certain virtual sites are grouped together to form one
virtual site, and

- it allocates the virtual sites to the physical sites.

The algorithm starts by allocating each virtual site to the physical site
with which it communicates most. The change in the network traffic by taking
two virtual sites together can be computed as follows: before we can take Vgi
and VS, together we first have to remove them from the physical sites to which
they atre allocated. This increases the network traffic with:

max . DTiC + max, DTjC'
Taking them together as one virtual site and allocating them to the physical.
site with which they together communicate most decreases the network traffic
with:

TN Y
L_I(ij + maxC DT(i+j)C'



250

Algorithm

step 1 allocate each virtual site to the physical site with which it communi-
cates most;
step 2 make a list of all unordered pairs (VSi,‘V%j) (i£3) and compute LIHKij;
step 3 while the list is not empty
do
remove from the list the (V%i, V%j) pair whose LINKij is largest;

if (max

c DTiC + max

DTjC) -(max , DT

T
¢ PTappyc + LINK; ) 20

_ C
then

take VSi and VSj together in one virtual site, call it Vg(i+j)
fi;

od

If the total change is negative, then having VSi and V%j together decreases
the total network traffic.

Taking the virtual sites V%i and VS, together as one virtual site changes
the transmission-strategy graph.” Both V%i and VS, are deleted and a new vir-
tual site, denoted by VS(i+' , 1s created. The n%w site inherits all the
incoming and outgoing edgesj%rom both VS, and VS,, except those between VS,
and V5., VS, . .. will contain all the relations“previously contained in va .

J (i+3) i
and VSj.

In Apers [3] it was proven that the above algorithm obtains minimum net-
-work traffic allocations for a special class of transmission-strategy graphs.
To understand why the pairs of virtual sites dre considered in descending
order of their LINK's, one must realize that it is unlikely that, if V%i and
VS ., were previously taken together, that they are located at different sites
in“the optimal allocation because of a smaller LTMK between say VS, and VS, .
How efficient the data allocations are for the more general transmission-
strategy graphs 1s shown in section 5.

Example

We will show by example how the algorithm works. We are given the data-
base of the international summer school and the following queries and updates:



251

Q1: SELECT pname
FROM prof
WHERE prof.country = country name

Q2: SELECT pname, sname
- FROM prof, student
WHERE prof.country = student.country
AND prof.course = enrollment.course
AND enrollment.sname = student.sname

UT: INSERT INTO student:
< name, country >

U2: INSERT INTO enrollment:
< name, course >

The corresponding transmission-strategy graph is depicted in figure 5. The
transmissions to process the different queries and updates are depicted by
different types of lines. The labels are arbitrarily chosen.

Fig. 5: Summer school transmission-strategy graph

First the virtual sites are allocated to the computer with which they
have the most communication:

VS1 at site C
VS, at site C
VS3 at site C3.

The LINK's between the different virtual sites are computed.

LINK12 = 50
LINK13 =0

T -
LINK23 = 180

Because the LINK between VS? and VS, is the largest, this pair is con-
sidered first. Removing the components &f this pair from the sites to which
they are allocated increases the network traffic with: ' ' -

100 + 150,



252

Taking them together and allocating them to site C, decreases the network
traffic with: B

180 + 200,

This means that VS, and VS3 should be taken together because the network
traffic decreases with 1307(= 250 - 380). The only pair that is left over is
VS1 and V3 their LINK is 50. The traffic change when they are taken

together i§%+3)

200 + 200 - (50 + 200) = 150,

Doing so would increase the network traffic, and therefore they are not taken
together. The final allocation is depicted in figure 5.

50 ¢ 150

1 VS 243y 3
vsl={P} ={s, E}

C

Fig. 6: The final allocation

4, Multiple Copies

Until now we have assumed that each relation was stored at only one site.
In practice, however, it is more convenient to have multiple copies to
decrease the response time of the queries and to have a more reliable system.
If one copy of a relation is not available, because for example a site is
down, users can continue using other copies. On the other hand, having
several copies of relations means that they have to be kept consistent.

In this paper we will consider the primary copy principle. This princi-
ple requires that an update uses the primary copy, although a query can use
any copy. After an update (on a primary copy) all the other (secondary)
coples are updated as well. How this is exactly done depends on the con-
currency control mechanism and the ltevel of consistency that is required.

The part of the update transaction that determines which tuples are
updated is a normal query and can be represented in a transmission-strategy
graph as such., ' Figure 7 shows the representation of the part in which the
relations (primary and other copies) are updated.

First the update is sent to the primary copy; from there messages are
sent to update the other copies. The transmissions involved are represented
by this special subgraph for the following two reasons:



253

Fig. 7: Representation of an update

1) if one of the copies, say RT, is taken together with the primary copy, R1
no longer exists and hence need not be updated.

2) if two copies are taken together, say R1 and R2, only one of them will
remain and will be updated.

There are edges between R and R (i=1,2,..) because from R messages are sent
to update the copies. 'The special sign in the subgraph (compare type 2 sub-
graphs in Apers [3]) shows that if two copies are taken together only one
remains and needs to be updated. The LINK between the primary copy and the
copies and the LINK between the copies is the same. The change in the
transmission-strategy graph by taking copies together is illustrated in figure

8.

Fig. 8: Taking copies together

Given the set of queries and updates, the transmission-strategy graph is
generated as follows. All update transactions make use of a non-redundant set
of relations, the primary copies. The queries, on the other hand, are given
their own set of copies of the relations. The primary and other copies are
allocated to different virtual sites. The distributed query processing algo-
rithm can now compute the access strategies for the queries and updates. Fig-
ure 7 shows the connection of the primary copy of each relation and the other
copies.

To determine an allocation, the data allocation algorithm is applied. T&
does not know anything about (primary) copies but just takes together



254

relations if it can decrease the network traffic. For example, if a certain
relation is updated very frequently the LINK between the different copies of
this relation is large. This means that the number of copies is reduced
before taking them together with other relations is considered. Tn this way
it determines how many copies are to be maintained and also where. In the
next section some simulation results will be presented.

5. Experimental Results

The efficiency of the data allocations produced by the algorithm is shown
by applying the algorithm to random transmission-strategy graphs. Tn generat-
ing these random graphs it is assumed that every relation is equally likely to
be used in a query or update. Whether this is true in practice depends of
course on the particular database. However, it seems that the more a relation
is used 1in transactions of different sites, the more difficult the problem of
finding the optimal allocation is. Therefore, we will confine ourselves to
these random transmission-strategy graphs.

The transmission-strategy graphs are randomly generated based on the fol-
lowing parameters:

1) n: number of physical sites.
2) m: number of relations.
3) numqg: the number of queries.

4) numu: the number of updates.
In generating the queries and updates a site is chosen as a result site.

5) depth: the probability that a given relation in a given transaction
receives data from another relation.

6) branch: given the fact that a relation R will receive data in a particular
query or update, it is the probability that another given relation does
send data to R; m ¥ branch is the expected number of relations that send
data to R in this query.

7) upd: is the probability that a given relation is actually updated in a
given update.

8) maxflow: given an edge a number is drawn from the region [0,maxflow] that
represents the number of bytes that is transmitted through it per unit of
time. ‘

During all experiments the parameters that determine the shape of the
queries and updates were kept constant:

depth = 0.2 branch = 0.2 upd = 0.2 maxflow = 100

For a small network (n=5) and a small database (m=5), we applied the data
allocation algorithm to random transmission-strategy graphs for 5 different
values of numg and numu (10 test runs each), For all these cases the algo-
rithm obtained the minimum allocation,



255

For a larger network (n=10) and database (m=10) we investigated the
redundant allocation produced by the data allocation algorithm. The network
traffic was split into five categories:

1) req: relation to computer traffic in a query.

2) rrq: inter-relation traffic in a query.

3) rcu: traffic between relations and computers in an update.
) rru: inter-relation traffic in an update.

5) peu: traffic required to keep the copies consistent with the primary
copies.

Table 1 shows the total network traffic (tott) and the five categories
for various values of numq and numu. The total traffic decreases if the
number of updates decreases because more copies can be maintained. A conse-
quence of this is that the traffic to keep the copies consistent (pcu) forms a
larger part of the total traffic. Figure 9 shows the same figures only the
traffics are now percentages of the total network traffic. Tt is interesting
to see that whatever percentage of the transactions are queries, it never con-
stitutes more than 50% of the total traffic and this maximum is reached if 80%
of the transactions are queries., If less than 20% are updates the cost of
maintaining a lot of copies is so cheap that the traffic involved in query
processing goes to zero.

| numg numu tott req rrq recu rru pcu |
0 10 1235.1 0 0 1150. 4  84.7 o !
b 9 1111.0 62.6 16.7 966.5 50.5 14,7,
b2 8 969.5 62.4 15,0 812.9 60.9 18.3,
b3 7 1086.2 152.2 11,1 853.5 38.1 31.3,
by 6 810.6 114,1 25,7 581.2 33.7 55.9,
.5 5 681.4  148.3 26,7 407.3 19.0 80.1,
6 } 540.4  136.8 8.4 309.0 22.4  63.8,
N 3 417.9 123.2 15,4 185.3  16.1  T77.9,
y 8 2 279.9 121.1  30.6 63.5 2.5 62,2,
L9 1 15,7 54.8 10,1 21.8 0.2 58.8]
110 0 0 0 0 0 0 0

{

Table 1: Network traffics

The fact that both rrq and rru are very small shows that most of the time
the relations required for a query or update are located on one or two sites.
Table 2 shows the average number of relations used in a transaction and the
percentages of number of sites involved. The reason that an update transac-
tion on the average uses more relations (numrel) is that after the query
part, a number of relations are updated that are not necessarily referenced in
the query part. It is interesting to know over how many sites the relations
per transaction are spread, because it shows how complex the processing stra-
tegies will be. Going from one extreme to the other we see that if there are



256

numgq numu numrel 1 site 2 sites 3 sites b sites 5 sites]|

1

) 10 4,42 30.6 41.8 20.6 5.0 2.0 |
b1 9 4,24 32.5 39.7 17.2 8.1 2.5 |
b2 8 4,08 31.4 40,2 18.6 7.2 2.6 !
.3 7 4,20 40.8 37.0 19.0 3.2 . !
- 6 3.90 40,2 37.4 17.6 4.3 0.5
.5 5 3.74 43.4 40,2 12.7 3.7 \
) Y 3.68 52.6 35.3 10.5 1.1 0.5
I 3 3.66 58.3 35.7 5.5 0.5 \
) 2 3.50 64,5 32.2 3.3 \
.9 1 3.40 83.4 14,4 2.2 !
' 10 0 3.40 100.0 !
] |

Table 2: Number of relations and sites

only queries, just 1 site is involved. If, on the other hand, there are only
updates, on the average 2.1 sites are involved. From the table we can also
see that in more than 707 of the transactions no more than 2 sites were
involved. This means that centralized query processing is still an important
issue even in distributed databases and that we may have to give 2-site query
processing more attention. Because the relation per transactions are spread
over so few sites, we also expect that our confinement to fixed strategies
does not lead to allocations with substantially higher network traffic than
the ones where varying strategies are allowed.

Conclusion

The notion of transmission-strategy graph is introduced to characterize
access strategies of the users of a database. The problem of finding the data
allocation with minimum network traffic, is shown to be MP-complete. However,
a polynomial algorithm is given that computes efficient data allocations.
Furthermore, the different kinds of network traffic (relation to relation,
relation to computer, primary copy to copies) were investigated and also the
number of sites over which the relations were spread per transaction. Tt was
interesting to see that in more than 70% of the test runs no more than 2 sites
were involved. This special case of distributed query processing may need
some more attention.

Acknowledgement I wish to thank profs. dr. R.P. van de Riet and dr. A.S.
Tanenbaum for making valuable comments on an earlier version of this paper.

References

(1] P.M.G. Apers, Distributed Query Processing with Inverted File Organiza-
tion, IR 43, December 1978, Vrije Universiteit, Amsterdam.

[2] P.M.G. Apers, Distributed Query Processing: Minimum Response Time
Schedules for Relations, IR 50, March 1979, Yrije Universiteit, Amster-
dam.,



*814

6

SOTJJEJ] NJOMjey

percentages of

total network traffic

100% o
T rcu+rru
+
pcu
+
/o)
50% |
o
+
rcg+rrq x
+
X
i o
0% % ; ; .
numg=0 numq=>5 numng=10
numu=10 numu=>5 numu=0

LST



[31

(4]

71

(81

(9]

[101]

[11]

[12]

(131

[14]

[15]

[16]

(173

258

P.M.G., Apers, Data Allocation and Distributed Query Processing, Proc. ACM
PACIFIC '30, San Francisco, Movember 1980, to appear.

P.M.G. Apers, A.R. Hevner and S.B. Yao, Tmproved Distributed Query Pro-
cessing Algorithm GENERAL, submitted for publication, 1980.

C. Baldissera, G. Bracchi and 3. Ceri, A Query Processing Strategy for
Distributed Data Bases, Proc. EURO-IFIP 1979, Morth-Holland Publ. Co.
Amsterdam, 1979, pp.667-677.

R.G. Casey, Allocation of Copies of Files in an Information Network,
Proc. AFIPS 1972 3JCC, AFIPS Press, vol.40, 1972, pp.517-625,

W.W. Chu, Optimal File Allocation in a Computer MNetworks, Computer Com-
munication Network, Prentice-Hall, Englewood Cliffs ™.,J., 1973.

R. Epstein, M.R. Stonebraker and E. Yong, Distributed Query Processing in
a Relational Data Base System, Proc. ACM-SIGMOD, May 1979, pp.159-180,

K.P. Eswaran, Placement of records in a file and file allocation in a
computer network, Information Processing 1974, Norfth-Holland Publ. Co.,
Amsterdam, 1974, pp.304-307.

S. Even, Graph Algorithms, Computer Software FEngineering Series, Pitman,
London, 1979.

E. Grapa and G.G. Belford, Some Theorems fto Aid in Solving the File Allo-
cation Problem, Communications ACM, vol.20, no.11, MNovember 1977,
pp.378-882.

A.R. Hevner and S.B. Yao, Query Processing in Distributed Database Sys-
tems, IEEE Transactions on Software Engineering, vol. SE-5, no.3, May
1979, pp.177-187. :

K.D. Levin and H.L. Morgan, Optimizing Distributed Databases- A Framework
for Research, Proc. 1975 AFIPS NCC, AFJPS Press, vol.Md4, 1975, pp.A73-
478, ’

3. Mahoud and J.S. Riordan, Optimal Allocation of Resources in Distri-
buted Information MNetworks, ACM Transactions on Database Systems, vol.1,
no.1, March 1976, pp.65-78.

G. Pelagatti and F.A. Schreiber, A Model of an Acccss Strategy in a Dis-
tributed Database, IFIP-TC2, Data Base Architecture, Venice, June 1979,

C.V. Ramamoorthly and B.U. Yah, The Placement of Relations on a Distri-
buted Relational Database, Proc. of The 1st Tnternational Conference on
Distributed Computing Systems, Huntsville, October 1279, pp.Hi2-550,

K. Yong, Retrieving Dispersed Data from SDD-1: A System for Distributed
Data Bases, Proc. Second Rerkeley Workshop on Distributed Data Management
and Computer Networks, May 1977, pp.217-235,



259

File Assignment in 2 Computer Network

Derrell V. Foster, Lawrence W. Dowdy, and James E. Ames, IV

Research into the design of a “data manager® which is under the control of a network
operating system is only beginning. The following critical aspect of this management is
considered: file assignment within the network. Selected previous models and particularly
their assumptions are given. An iterative numerical procedure is given which optimizes the
file assignment in a computer network. It decomposes into & micro model for solving a
queuing network problem and a macro model for golving an integer programming problem.

The micro model determines the optimal branching probabilities to the hosts of the
computer network from the current file assignment. It also introduces the concept of a real
value for the degree of multiprogramming. The macro model reassigns the files to (possibly
different) hosts such that the optimal branching probability constraints are satisfled. It also
includes other constraints, such as the storage capacities of the hosts. The procedure is then
repeated until convergence is achieved.

Implications for dynamic file assignment are given, thus motivating a direction for fu-
ture operating system design.



IL

1L

260

File Assignment in @ Computer Network

Introduction
A. Definitions
B. Previous Work

1. Star Networks or Central Server Systems
2. General Networks

Methodology

A

D.

Iterative Procedure

1. Parameters

2. Formulation of the File Assignment Procedure

3. Verification

Micro Model

1. Parameters

2. Formulation of the Queuing Network Problem
a. Assumptions
b.  Utilization (and Throughput) Equations
c. Nonlinear Programming Problem

3. Verification

Macro Model

1. Parameters

2.  Formulation of the Integer Programming Problem

3. Verification

Examples

Conclusions and Future Research
A. File Assignment Problem

1. Contributions-to-date
2. Future Research

B. Dynamic File Assignment in Future Operating Systems



261

File Assignment in 8 Computer Network?

_Derrell V. Foster?, Lawrence W. Dowdy?®, and James E. Ames, IV
I. Introduction
A. Definitions

Throughout the present paper, we assume that the fundamental distinction between
computer networks is one of topology. Each bhost in the network contains both processing
power and memory (i.e., has intelligence). Geographical distance between the hosts is not
a distinguishing factor. Two common topological distinctions in the literature are either 1)
star networks or central server systems, or 2) general networks. In this paper, we assume a
star network topology. Refer to Figure 1. Note that all traffic between the user terminals

{the T’s) and the hosts (the N’s) must be via the central switchboard (N(0)).

Our file assignment problem is one of assigning a set of files to a set of heterogenous
hosts in a star network such that the message flow (i.e., throughput) when measured at the
central switchboard is maximized. Included in the problem are two important factors. The
first is that an explicit account for all significant delays be represented. The second factor

is that storage capacities of the hosts be included.

In order to find certain system parameters (e.g., throughput), we recognize an analogy.
The analogy is between the star network of Figure 1 and its closed counterpart in Figure
2. The user terminals generate messages which are mapped into jobs flowing around the
closed system (i.e., the number of messages correspond to the degree of multiprogramming).
Viewing the star node (N(0)) as the switchboard between the terminals and the hosts, the
“speed” of the star node is proportional to the rate at which users input messages at the
terminals (i.e., the service rate of N(0) corresponds to user think time). Viewing the hosts as
storage devices, which allow first queuing and then service, is immediate. The feature of full
duplex communication is preserved since message transfers between nodes can occur simul-
taneously. This closed system is recognized as the familiar central server queuing model

with N(0) as the CPU and N(i) as 1/O device i.

1 Supported in part by Health Resources Administration grants HS-01618 and HRA 280-76-0300, by Library
of Medicine grant LM-07008, and by the Department of Energy.
2 Present Address: Department of Computer Science, School of Engineering, Vanderbilt University, Nashville,
Tennessee 37240.
8 Present Address: Department of Computer Scisnce, University of Maryland, College Park, Maryland
20742.
4 Present Address: Department of Computer Scisnce, Virginia Commonwealth University and Modical
College of Virginia, Richmond, Virginia 28226.



262

Figure 1: Star Network

<
—&

Figure 2: Closed Model of Star Network



263

The file assignment problem as stated requires an optimal solution (e.g., throughput
is_maximized). The procedure of Section II may not generate an optimal file assignment
sufficiently quickly to be used in real-time environment. Consequently, heuristics must be
developed which assign files in such a way as to approximate an optimal solution. The value

of having an optimal solution is that the “goodness” of these heuristics can be judged.

We not only want an optimal solution, but we also want it to be integral. The reason
for this is to avoid splitting files across network hosts which may give rise to & complex
addressing scheme. It cannot possibly be the responsibility of the user to split his files (since
he is unaware of what others are doing). Rather, the responsibility for maintaining the
address mapping lies with the operating system located in the central node. To simplify
the address mapping (i.e., to avoid file splitting), we formulate the file assignment problem

using an integer programming problem.

B. Previous work
1. Star Networks or Central Server Systems

Arora and Gallo[3], extending the work of Ramamoorthy and Chandy{16], provide a
solution which is valid in a uniprogramming environment. However, their solution loads the
most frequently used files (everything else being equal) in the fastest memory. For example,
if only two files exist and the capacity of the fastest memory is large enough, both files are
loaded in the faster memory even if a second memory is available and only slightly slower
than the first. In a multiprogramming environment, this normally produces suboptimal CPU

throughput.

Chen[6] gives a solution for obtaining the optimal branching probabilities to the 1/O
devices that includes queuing delays. He does this by using a queuing network model of an
open I/O subsystem. His solution techrique is not valid for & finite degree of multiprogram-
ming nor does the technique include device capacity constraints. Further, his solution to
the file assignment problem assumes that files can be split across devices. We have already

indicated that this is unacceptable to us.

Foster and Browne(10] and Foster(9] have presented methodologies similar to that given
in Section II for solving the file assignment problem. Their approach includes queuing
delays as well as device capacity constraints. The problem with their technique is twofold.
First, a bin packing heuristic is used which only approximates optimal integer solutions.
Consequently,optimality of the solution is impossible to prove. Second, and more impor- |
tantly, & simulation model is used to supply some of the critical parameters. Thus, only a

relatively small problem domain can be examined due to computational complexity.



264

2. General Networks

Mahmoud and Riorden|14], Casey[5], Chu[7], and K!sinrock[12] have presented solu-
tions to the file assignment problem for general networks. Their solution techniques essen-
tially reduce to linear programming models. Again, these assume that the routing strategies
to the various nodes for the particular flles are known in advance or are approximated with
techniques which are independent of the file assignments. These solutions in some cases
provide very good approximations. Many refinements to these basic techniques are seen in

the recent literature [11,12].

11. Methodology
A. Iterative Procedure
1. Parameters

The input parameters to the iterative procedure can be classified into four categories:
1) the average number of messages in the network (i.e., DMP), 2) the average think time of
the users-(i.e., the mean CPU burst time), 3) the workload, and 4) the hardware characteris-
tics. The workload is represented as an activity profile[16]. In our case, the profile contains
two parameters per file: a) accessing frequency and b) length. The accessing frequencies
can be obtained by a variety of different techniques. Probably the easiest of these is to
assume certain file behavior dictated by experience with a particular environment. A more
sophisticated technique is to obtain them by monitoring the file usage. The frequencies can
be obtained easily with software monitors since the activity proflle represents knowledge
only at a very gross level of detail. The fourth input parameter is a representation of the
hardware/software characteristics. In our case, this is composed of a) the number of 1/O
devices, b) the mean latency time of each device, c) device transfer time per word, and d)
the device capacity. (For clarity, we assume that the hardware characteristics are for 1/0

devices. We could have just as easily formulated them for network hosts.)

The output parameters from the iterative procedure are optimal throughput snd the
corresponding optimal integral file assignment. Note that the throughput optimisation
problem is approached from the viewpoint of optimizing the throughput of the entire sys-
tem (measured at the CPU), and not the individual I/O devices. Note that the optimal
fille assignment may not be unique (i.e., there may be more than one flle assignment which A

optimizes system throughput).



265

2. Formulation of the File Assignment Problem
~ The assumptions of our formulation are quite reasonable. First, the activity profile

is assumed static in time. In other works, the frequency of requesting a file is known a
priori and does not vary. Second, there must exist an initial feasible file assignment, one in
which all of the files in the activity profile can be assigned to the 1/O devices of the system
satisflying the capacity constraints. The conditions imposed on the hardware characteristics
assume that the I/O devices can be characterized by their capacity, mean latency time (i.e.,
seek time plus rotational delay), and transfer time per word. The assumption generated by
the I/O device drivers is that the scheduling discipline for all queues is non-preemptive first-
come-first-serve.

The iterative procedure is quite simple:

(1) Call the micro model for solution to a queuing network problem.

(2) Call the macro model for solution to an integer programming problem.
(3) Repeat the first two steps until no further improvement in CPU throughput is made.

The micro model has as one of its parameter inputs the service rates of the storage
devices as determined from the current file assignment {u ’s). These rates are calculated
using a) the mean latency time and b) the product of the transfer time per word and the
total number of file words on that device. The output of the micro model is the optimal
branching probabilities (PSTARs). The macro mode! uses the PSTAR’s in order to generate
a new optimal integral file assignment. This new file assignment becomes the current file as-
signment for the next iteration. Experience has shown that the above procedure terminates

in very few iterations as illustrated in the examples.

3. Verification

The optimal system throughput when obtained by the above procedure agrees with
the solution obtained by a brute force search of the feasible solution space for all cases
examined. Consequently, an inductive argument can be made concerning the convergence
to optimal system throughput and a corresponding optimal file assignment. Verification is

agaih described in Section IIl (Future Research) of this paper.

B. Micro Model

1. Parameters

The micro model requires as input parameters: 1) the number of devices which ¢an be
used for file storage, 2) the average number of messages in the system at any random time
which have the potential of accessing files (i.e., the average degree of multiprogramming),

3) the speed of the central service facility, and 4) the speeds of all storage devices. The



266

first parameter is obtained straightforwardly from the modelled system. Monitors, or other
sources of information on the real system, are needed to determine the second, third, and

fourth input parameters, as previously mentioned.

The output parameters of the micro model are the optimal branching probabilities.
Each refers to the overall probabilities of requiring service at any particular storage device.

These parameters should become more meaningful in the following section.
2. Formulation of the Queuing Network Problem
a. Assumptions

We assume 8 micro mode] as illustrated in figure 3.

\4

Figure 3: Micro Model

This topology of & central server mode] is used in the present paper because of its
analogy with the star network configuration. We assume there are n I/O devices, each of
which has an exponential service rate with mean u (i), i=1,2, ..., n. The CPU service rate
is likewise assumed exponential with :iean A . The average degree of multiprogramming
(DMP) is held fixed st m. The branching probability, P(i), i=1,‘2, ..., D, represents the
overall probability of requiring service at device i. The four parameters, n, m, A , and p 's,
are the necessary inputs to the micro model as explained in the previous section. The P(i)’s

which maximize CPU throughput are the output from the micro model.




267

We note that the problem of finding the optimal branching probabilities has been solved
analytically for an open system by Chen[6]. But for more realistic “finite” systems, where
the degree of multi'programming is, for example, less than 10, the problem of ﬂnding‘the
optimal branching probabilities has hot been accomplished analytically due to the added
complexity of a finite DMP.

b. Utilization (and Throughput) Equations

Our immediate goal is to obiain an expression representing the throughput (TPUT) of
the CPU, which we then maximize with respect to the P(i)’s. It is common practice for
throughput to be measured at the CPU. This throughput is directly proportional to the
utilization (UTIL) of the CPU by the formula: TPUT = UTIL(CPU) X \. Since X is
assumed constant, maximizing UTIL(CPU) also maximizes TPUT. This is the approach we

take.

We are dealing with systems.which can readily be analysed using Markov chains to
extract the steady state probabilities and hence the CPU utilization. Employing these tech-

niques, Buzen|4] shows (for the model we are considering):

UTIL(CPU) = G(m — 1§/ G(m)

where
Gm)= 3. ﬁa(i)"’
{eS{m,n) =0 .
S(m,n)={(lo,....,0n)] D_li=m and ;>0 i=0,...,n}
a(0) = 1 =
a(t) = A X P(1)/u(?) i=12,...,n

However, this formulation of G(m) and the computational simplification of G(m) as presented
in [4] are not suitable for taking derivatives (which are needed in our nonlinear optimisation

process as shown later). This is especially true since the P(i)’s are not independent, rather
n

S P =1.

. Seeking an alternative representation of G(m), it can be shown that by explicitly rewrit-

ing S(m,n):

Gm) = 3 i--~'fZ_.f(a(x)“*—"ﬂa(z)m-‘s’...a(n-—1)"‘<n—n*""’a(n)"*) o)

15=0 sgu=( fhe=0
This formulation is more appropriate for differentiation once the problem of the dependence
among the P(i)’s is resolved. (Note that since a(0)™ % = 1, equation(1) has been simplified

by omitting it.)



268

The computation of G(m), although straightforward, is elongated. Searching for a

simpler representation of (1) we note:

am = 3 ey 3 (42" z(%): (oY

i] =0 i2ﬂ=0 i3!= tpo=0

Assuming a(5)/a(1) 5 1, ¢(y) # 1, and using the simplification formula Zs‘ = (1—s"t1)/(1—s)

=0
repeatedly, we find the following progression: '

a(1)mt—1
a(1)—1

wrenn =6 = () (o )+ (=) ()

whenn=1:G(m) =

) n 1 m-1 —1 1)n—!
i gemeral Glm) = g(a(a)u)—l ) .
=) I ICORTIE))

Juel

Jotl
(2)
This equation can equivalently be derived from the result found by Moore[15] when the
restrictions of a central server model are imposed and simplifications of the type used above

are made. If either a(s)/a(s) or a(i) equals 1, a further simplified form is found since
T .

Sy =r+1.

1=0

We immediately recognize the great reduction in the computational length of G(m),
especially for a small number of 1/O devices. We note that G(m) in (2) is “computationally
independent” of the degree of multiprogramming, m, (e.g., G(2) can be computed as easily
a5 G(152) - a feature not found in either Buzen’s [4] or Moore’s [15] form). Furthermore,
it is possible to calculate G(m) for real values of m allowing the calculation of UTIL(CPU)

when the average degree of multiprogramming of the system being modelled is nonintegral.

c. Nonlinear Programming Problem

The CPU utilization equation, UTIL(CPU) = G(m — 1)/G(m) using (2), is the non-
linear equation which we maximize to obtain the optimal P(i)’s. Due to the variable degree
of this equation resulting from the variable m, search for an analytical solution is abandoned.

We seek a nonlinear programming solution.



269

Standard nonlinear programming problems [13] can be stated as:

minimize:  f(X)
subject to: gi(X)<o0
92(z) <0

gx(z) < 0

where X = [P(1)P(2)...P(n — 1)]7. (We note that the equality constraint ZP(;’) =11is
fu ]
n—1

implicit by substituting 1 — ZP(() for P(n). For this reason P(n) is not an independent

—
variable and is not represent(;d in X). An appropriate objective function, f(X), is found by
negating UTIL(CPU). The only constraints we need are 0 <P <1Li=12..,2=—1
n—1
and EP(i) < 1. This last constraint is added only to assure P(n) > 0.
=1

We state our nonlinear problem as:

minimize: —UTIL(CPU)
subjectto: P(i)—1<0 1i=12,...,n—1
PlHl—1<0 i=1,2..,n—1
—P(1)<0 i=1,2..,n—1
n-—1
(Z P(g) —1<0
=1

We note that the constraints can be eliminated. Either all the constraints are inactive at
the solution in which case they can be ignored, or the active constraints can be eliminated
to obtain an equivalent problem of lesser éomplexity. Notice that the constraints only en-
force 0 < P(1) <1, 1= 1,2,...,n. If P(() = 1, for some i at the solution, then P(j) =
0,7 =1,2,...,n,551. A device j, where P(j) = 0, is interpreted as a useless device and
can be eliminated and the problem then resolved. Therefore, we seek a solution of the
unconstrained problem:

minimize: — G(m — 1)/G(m)

where, if at the solution any constraint is violated (implying P(§) = 0), then the violating
device j is deleted and the problem is resolved.

The minimization technique implemented is the Fletcher-Reeves method(13]. In effect,
it is an extension of the conjugate gradient method plus the added feature of global con-
vergence toward a local minimum while maintaining rapid convergence “near” the solution.
Any nonlinear minimization technique could equivalently be implemented. The justification

of using Fletcher-Reeves comes from the results of an experiment performed by the suthors



270

testing several of the more popular nonlinear techniques. The feature of being “near” the
solution is also available since we know a priori that 0 < P(f) < 1, ¢=1,2,...,n and
also that for the optimal P(i)’s, P({) > P(j) if u(!) > u(4). I, for example we have 3
1/0 devices where u(1) = 300, u(2) = 200, and u{3) = 100, a starting point that may be
considered “near” the solution is P(1) = 0.50, P(2) = 0.33, P(3) = 0.17.

3. Verification

The verification of the obtained solution can present difficulties. Slowly converging
techniques make it difficult to select a i)roper stopping criterion. The question that arises is
“Has the technique converged or are more iterations needed?”. With our present problem,
however, we know a priori that the minimum of the objective function occurs, from mini-
mization theory [13], only at a point where the gradient vector of the objective function is
precisely zero. This zero gradient condition is also a sufficient condition if we can ascertain
that the solution point is a relative minimum rather than a local maximum or saddle point.
It has been hypothesized previously by Hogarth[11] that a hill-climbing algorithm can be
used to obtain the optimal CPU throughput. Dowdy is attempting to prove this by showing
that the CPU throughput function is unimoda!l in the feasibility region for the P(i)’s. Any
solution satisfying the zero gradient condition is, therefore, the global minimum and defines
the optimal P(i}'s. This knowledge is used as part of our stopping criterion.

It could be argued that constrained minimization techniques should be used iastead
of transforming the problem to fit the unconstrained requirements. The difficulty in this
approach lies in the analysis of penalty or barrier functions if these met’;hods are:to be
implemented. Our technique of satisfying the single active constraint, ZP(;’) = 1, by
substitution, proves to be both simple because the constraint is linear, ;szvlwell as helpful
because it reduces the problem dimension instead of increasing the dimension as constrained
techniques often do.

Solutions to all our problems have also been verified by ASQ[2], 8 program for finding
arithmetic solutions to queuing network problems. The value of this is that results can
be verified by a totally independent technique. Once the optimal values for the P(i)'s are
obtained via the Fletcher-Reeves method, these P(i)’s can be slightly modified in all per-
mutations to verify that the CPU throughput does indeed decrease.

C. Macro Model

1. Parameters

Having once obtained the optimal branching probabilities, the problem of how to assign
the files to a;hieve these probabilities still exists. To be more precise we introduce the

following input parameters to the macro model.



271

2) Workload:
NFILES— aumber of files

FREQ(:)— frequency of accessing file
i=12,...NFILES
LEN(s) — length (sn words) of filed

1=1,2,.. ,NFILES

b) Hardware Characteristics

NDEVICES-—number of storage devices
CAP(J) —storage capacity ($n words) ofdevice 7,
i=12,..,NHOSTS

c) Topological Characteristic:

PSTAR(j) —optimal branching probability for device 5
as found in the micro model,
j=12,..,NHOSTS

The output parameter is the file assignment:

ASMT(1,7)—0 orl variable
= 1 when file { {s assigned to device §

= 0 otherwise

2. Formulation of the Integer Programming Problem
We assume that all input parameters are static and independent of the file assignment.

This means, for example, file access frequencies are not allowed to change for differing flle

assignments.

Our objective is to assign files integrally in the I/O subsystem to come as “close” as |
possible to the optimal branching probabilities found in the micro model.. The measure
of “closeness” we use iz a minimal‘ sum of differences over all devices. Each difference,
EPSLN(j), denotes the magnitude between the optimal branching probability and the total
accessing frequency to device j (implied from the file assignment).

We formulate the following integer programming problem to obtsin s file assignment
88

minimige:
NHOSTS

3> EPSLN(j)

Je=1



272

subject to:
NFILES .
]( Z ASMT({,7) X FREQ(i)) — PSTAR(J}IKEPSLN(y) j=1,2,..,NHOSTS
NFILES '
Y ASMT(,j) x LEN(i)<CAP()) j=1,2,...,.NHOSTS
NHOSTS
> ASMT(,j)>1 i=12,...,NFILES
J=1
ASMT(1,5)=00or1 , t=12,...,.NFILES

j=1,2,..,NHOSTS

Constraint (1) simply defines the EPSLN(j)’s. Constraint (2) is the device capacity con-
straint. Constraint (3) assures all files are assigned. Constraint (4) is the integral constraint.

We do not claim that our objective function as given is the best possible. It may well be
the case that device k is the critical device and EPSLN(k) need be much smaller than for the

other devices. In this case an appropriate weight, proportional to the PSTAR(j)’s, applied
NHOSTS

to the EPSLN(j)’s provides for such a need. Minimizing Z PSTAR(j) X EPSLN(j)
j=1
requires the integer programming program to do a better job in minimizing the EPSLN{j)’s

for the more critical devices, at the expense of the slower devices. This has proven true in
practice. Experience has also shown that if it is known a priori that a PSTAR(j) can be met
exactly, (e.g., when PSTAR(s) = 0), the weight on the corresponding EPSLN(j) should be
large, forcing an exact match.

3. Verification

The solution found by any integer programming problem is inherently optimal[l17].
Every file assignment that has the potential of minimizing the objective function is searched.
Only those assignments which can not possibly be optimal are pruned. Given that the
objective function captures the correct meaning of “closeness”, the integer programming

problem converges to a file assignment closest to the optimal branching probabilities.

(1)
(2)

(3)
(4)



273

D. Examples

To ii]ustrate the iterative procedure, two case examples are presented. In each case, the
average degreé of muliiprogrémming ((DMP) is 4 and the mean CPU burst time is 1000 time
units. The 10 files have access frequencies as shown and are each 100 words in length. This
corresponds to our local medical database where each patient record is of uniform length.
There are three storage devices with mean latency times (MLT) of 2000, 6000, amd 51000
time units. The tranﬁfer time pei word (TT/W) for each device is 5, 20, and 10 time units.
Fo.rbeach test case; the worst possible initial file assignment is made: namely, all files are
assigned to the slowest device. _

The iterations are self-explanatory. The iterative procedure (DRIVER) calculates the
CPU utilization and mean device rates from the current file assignment for the micro model.
The micro model calculates the optimal branching probabilities, and the macro model cal-

culates the new file assignment.



274

Case 1 solves the file assignment problem assuming all files can reside on all devices.

CASE 1: 10 FILES OF EQUAL LENGTH, 3 DEVICES OF INFINITE CAPACITY

INITIALIZATIONS:
DMP = 0.400000D +4- 01
LAMBDA = 0.100000D — 02
NFILES = 10
NO: FREQUENCY: LENGTH:
1 0.29 100.00
2 0.15 100.00
3 0.14 100.00
4 0.07 100.00
5 0.05 100.00
6 0.04 100.00
7 0.04 100.00
8 0.04 100.00
9 0.08 ' 100.00
10 0.10 100.00
NDEVICES = 3
NO: MLT: TT/W:  CAPACITY:
1 2000.00 5.00 1000.00
2 6000.00 20.00 1000.00
3 51000.00 10.00 1000.00
INITIAL FILE ASSIGNMENT:
0 1

o O O O 0O O O o o
0 O O O o o O o o ©
N T R R T R )



275
- ITERATION # 1.+~

DRIVER OUTPUT:
MU = 0.500000D —03 0.166667D — 03 0.192308D — 04
UTIL = 0.192308D — 01

MICRO OUTPUT:
PSTAR = 0.857480D -+ 00 0.1452520D - 00 0.0000000D -+ 00

MACRO OUTPUT:
NEW FILE ASSIGNMENT:
1 0 0

1
0

[ T R R R
0O O O O O © oo = O
O O 0O O O 0O O o o

---ITERATION # 2 ---

DRIVER OUTPUT:
MU = 0.400000D — 03 0.125000D — 03
UTIL = 0.425541D +- 00

MICRO OUTPUT:
PSTAR = 0.865290D <+ 00 0.134710D - 00



276

MACRO OUTPUT:

NEW FILE ASSIGNMENT:
1 0
1 0
1 0
1 0
0 1
0 1
1 0
0 1
1 0
1 0

..-ITERATION # 3 ---

DRIVER OUTPUT:
MU = 0.400000D —03 0.125000D — 03
UTIL = 0.425558D -+ 00

MICRO OUTPUT:
PSTAR = 0.865290D + 00 0.134710D + 00

MACRO OUTPUT:
NEW FILE ASSIGNMENT:

bt i D = O O ket b e s
O O = O = = O O O O



277

TERMINATION

AN OPTIMAL FILE ASSIGNMENT:

1 0
1 0
1 0
1 0
0 1
0 1
1 0
0 1
1 0
1 0

DRIVER OUTPUT:
MU = 0.400000D — 03 0.125000D — 03
UTIL = 0.425558D + 00



278

Case 2 solves the file assignment problem assuming at most three files can reside on the

fastest device, one file on the second fastest device, and all files on the slowest device.

CASE 2: 10 FILES OF EQUAL LENGTH, 2 DEVICES OF FIXED CAPACITY
INITIALIZATIONS:

DMP = 0.400000D + 01
LAMBDA = 0.100000D — 02
NFILES = 10
NO: FREQUENCY:  LENGTH:
1 0.29 100.00
2 0.15 100.00
3 0.14 100.00
4 0.07 100.00
5 0.05 100.00
6 0.04 100.00
7 0.04 100.00
8 0.04 100.00
9 0.08 100.00
10 0.10 ~100.00
NDEVICES = 3
NO: MLT: TT/W:  CAPACITY:
1 2000.00 5.00 300.00
2 6000.00 20.00 100.00
3 51000.00 10.00 1000.00
INITIAL FILE ASSIGNMENT:
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1



279

---ITERATION #1---

DRIVER OUTPUT:

MU = 0.500000D — 03 0.166667D — 03 0.192308D — 04
UTiL = 0.192308D —01

MICRO OUTPUT:
PSTAR = 0.857480D 400 0.1452520D0 400 0.0

MACRO OUTPUT:
NEW FILE ASSIGNMENT:
0.

0
0
0
1
b3
1
1
1
1
4

Q O © Q © Q O +2 =
- O O O 0 ¢ o o o

---ITERATION # 2---

DRIVER OUTPUT:
MU = 0.400000D'— 03 0.125000D — 03 0.192308D — 04
UTIL 0.600817D — 01

MICRO OUTPUT:
PSTAR = 0.865290D + 00 0.134710D 4- 00 0.000000D +- 00



280

MACRO OUTPUT:
NEW FILE ASSIGNMENT:
1 0 0

—

o O O © O O O w=
- O O O O O o O o©o
cbdh-lbdi—ll-‘hloc

TERMINATION

AN OPTIMAL FILE ASSIGNMENT:

1 0 0
1 0 0
1 0 0
0 0 1
0 0 1
0 0 1
0 o 1
0 0 1
0 0 1
0 1 0

DRIVER OUTPUT:
MU = 0.400000D —03 0.125000D — 03
UTIL = 0.425558D ~-00



281

III. Conclusions and Future Research
A. File Assignment Problems
1. Contributions-to-Date

The major contribution of this work is that an analysis technique has been designed and
implemented for optimising message flow in a star network (or, analogously, CPU through-
put in a central server system). This is accomplished by astigning files to match the cor-
responding optimal branching probabilities. It includes: 1) all significant delays {including
queuing delays), 2) host {(or 1/O device) capacity constraints, and 3) assigning flles integrally
(to avoid file splitting across nodes). The technique has generated results that are epplicabdle

[y

to real world problems.

Our methodology of decomposing the file assignment problem into & micro model for
solving a queuing network problem and a macro model for solving an integer programming
problem produces clarity in the quantitative definition of the problem. As a final point,
we re-emphasize that the complexity of our queuing network problem is related only to the

number of nodes in the network and not to the degree of multiprogramming.

2. Future Research

In order to add completeness to the file assignment problem, a formal proof of optimality
(rather than an inductive argument) need be given. The major factors that effect the rate of
convergence to the optimal solution need be identified as well. Before this technique can be
used for predictions in our modelling effort, validation must take place. Finally, predictions
can occur when the workload (e.g., the file lengths) and the hardware characteristics (e.g.,

the degree of multiprogramming) are varied.

Experience dictates two important generalizations be made to the fille assignment problem.
First, a more precise characterization of the workload parameter is needed. For example, the
fact that files are not requested independently of one another needs consideration. Second,
the formulation of anvupdate constraint is needed. For example, the users of a medical
database system access the patient records with at least two classes of queries. The first
(as assumed in this paper) involves accessing and retrieving the patient records. The second
involves updating the patient records. The update constraint itself would govern the amount
of centralization/decentralization of a particular record. In a8 general network, if the updat-
ing costs were free, each host could have a copy of each file, subject to the capacity of that

host.



282

B. Dynamic File Assignment in Future Operating Systems

The dynamic file assignment problem is equivalent to the static file assignment problem
as stated in this paper except that the frequency of accessing a file is time dependent (i.e.,
it may vary with time). This time dependency stems from the fact that files may experience
high usage during some time periods and low usage at other time periods. Consequently, it
may be optimal for the files themselves to move in the network, at one period being located
at one particular node and another period at a different node. The problem is not performing
the physical file movement but knowing when to do it. If one moves the files too frequently,
one induces sub-optimal performance due to the overhead of excessive file movement. If one
does not move the files frequently enough, one induces suboptimal performance due to using
outdated file assignments [1]. The goal is to provide a datz manager in the operating system

for the network which will dynamically perform optimal file assignments.



283

References

10.

11.

12.

13.

14,

15.

16.

17.

Ames, J.E.,, IV. Dynamic file allocation in a distributed data base system. Ph.D.
dissertation, Department of Computer Science, Duke University, Durham, North
Cerolina, 1978.

Asplund, CL. ASQ manual: user’s guide to ASQ version 7.3. M.S. project, Department
of Computer Science, Duke University, Durham, North Carolina, June 1976.

Arora, SR., and Gallo, A. Optimization of static loading and sizing of multilevel
memory systems. JACM 20, 2 (April 1973) , 307-319.

Buzen,J. Computational alogorithms for closed queuing networks with exponentisl
servers. Comm. of ACM 16, 9 (Sept 1973) , 527-531.

Casey, R. G. Allocation of copies of & file in an information network. Proc. AFIPS
1972 SJCC, Vol. 40, 617-625. ‘

Chen, P. P. 8. Optimal file allocation in multi-level storage systems. Proc. AFIPS
1973 NCC, Vol. 42, 277-282.

Chu, W. W. Optimal file allocation in a8 multiple computer system. IEEE Trans.
Computers C-18, 10 (1969), 885-889.

Dowdy, L. W. Optimal branching probabilities and their relationship to computer
network file distribution. Ph.D dissertation, Department of Computer Science, Duke
University, Durham, North Carolina, 1978.

Foster, D.V. File assignment in memory hierarchies. Ph.D dissertation, Department
of Computer Science, University of Texas, Austin, Texas, August 1974.

Foster, D. V., and Browne, J. C. File assignment in memory hierarchies. Proc.
Modelling and Performace Evaluation of Computer Systems, North-Holland Publishing
Company, Amsterdam, (Oct 1976), 119-127.

Hogarth, J. Optimization and analysis of queuing networks. Ph.D. dissertation,
Department of Computer Sciences, University of Texas, Austin, Texas, May 1975.

Kleinrock, L. Queuing systems - volume 2: Computer applications. John Wiley and
Sons, New York, New York, 1976.

Luenberger, D. G. Introduction to linear and nonlinear programming. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1973.

Mahmoud, S., and Riordon, J. S. Optima! allocation of resources in distributed
information networks. ACM Trans. on Database Systems 1, 1 (March 1976), 66-78.

Moore, F. R. Computational model of a closed queuing network with exponential
servers. IBM J. Res. Develop. 16,6 (Nov 1972), 567-572.

Ramamoorthy, C. V., and Chandy, K. M. Optimization of memory hierarchies in
multiprogrammed systems. JACM 17, 3 (July 1970), 426-445.

Wagner, H. M.  Principles of operations research. Prentice-Hall, Inc., Englewood
Cliffs, N. J., 1975.



284

Copying Structured Objects
in a Distributed System!'

Karen R. Sollins

Laboratory for Computer Science
Massachusetts Institute of Technology
£45 Technology Square
Cambridge, Massachusetts 02139

Absiract

As systems and subsyslems hecome more sophisticated, the objects they manipulate become more
complex. At the same time systems are being distributed across machine boundaries.  This
distribution leads to an even greater need than earlier for copying objects, while the complexity of the
structures makes copying more difficult. This paper presents an algorithm for copying structured
objects across the boundaries of autonomous but freely cooperating name generators. We
hypothesize a system model containing isolated naming environments caltled contexts. Each context
is globally uniquely named and communication between conlexts is by message passing. Each
object resides within a context and has a locally unigue name assigned to it. These objects can have
complex structure, containing other objects as components. The components may reside in other
contexis. Three copy operations are proposed: (1) copy copies the comptleie structure without
copying any component more than once: (2) copy-local copies all of the structure within the context
of the object and directly accessible through the object without copying any component more than
once, and sending to the receiver the globally unique names of those components not copied; (3)
copy-top copies only the top level of the structure, sending to the receiver the globally unique names
of all the components of the top level.

1. Introduction

As systems and subsystems become more sophisticated. the objects they manipulate become more
complex. At the same time systems are being distributed across machine boundaries. This
distribution leads to an even greater need than earlier for copying objects, while the complexity of the
structures makes copying more difficult.  This paper presents an algorithm for copying structured

objects across the boundaries of autonomous but freely cooperating name generators.

There are many reasons for copying objects. One is to allow two or more users to access the same
object when they do not share any memory. Another is for reliability. A third is encachement in order

to increase access speed. A fourth is to pass parameters by value when invoking procedures. The

1This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored
by the Office of Naval Research under Contiact No. NO0014-75-C-0661.



285

list continues. What is important is that the same problems exist in both centralized and distributed
systems; distribution aggravates some of the problems. For example, speed between nodes is likely
“to be much slower than speéd within a node. Thus, encachement may be necessary to achieve a
reasonable response time from the system. When communication is by passing messages, passing
parameters by value is also needed, unless the procedure invoked is moved to the location of the
parameters by some means or remote access is available. Basically, the distance between
processors, the lack of shared memory, and message bassing as the means of communications

mandate that copying must be supported.

The need to copy objects arises at all levels in a distributed system. Reed and Svobodova [9]
propose a distributed storage system for objects that spans a shared storage repository and the local
storage at each node of a distributed system. Objects may be copied across this boundary. It is also
possible that a particular object may itself span such a boundary. Yet, the names that are used to
access a particular stored object will be unique only within the bounds of the node storing the object.
Liskov's work [6] provides an example at the language leve! of a distributed environment. Here,
guardians are proposed to provide separate naming environments in which to execute. Guardians
allow for isolation; communication among guardians is by message passing. In this situation it is clear
that objects in one guardian will need to be copied into another. It becomes even more apparent that
one needs to be able to copy structured objects, or more likely, parts of structured objects at the level
of large data base management systems. One reason for this is encachement for performance;
another is for reliability. The aclual copying may be hidden from the implementer and user of such a

system, such as SDD-1 [11], but it will be there.

The problem solved in this paper is copying structured objects across naming boundaries. Section
2 describes the problem in more detail; it proposes a model for a system, and points out some of the
finer details of finding a solution to the problem. Section 3 presents the algorithm for copying and
extends the algorithm to three different copying operations. Section 4 provides examples of the
operations. Section 5 concludes the paper with a brief review of the ideas presented in the other
sections. This paper is based on part of a technical report written by the author [13], which presents

the 'problem and its solution in much greater detail.

2. The Problem
This section presents a partial model of a distributed system, limited only to those parts of the
system needed to address the problem at hand and its solution. It then addresses the problem in

greater detail in order to motivate the solution.



286

2.1.The s'ystem

The drive for autonomy émong nodes of a distributed system has had a strong influence on design
criteria for such systems. There are several reasons for this. One is that it reflects the nature of the
human mana’gement'of such a system. I each node in a system is under the management of a
different person, those people want their nodes to be independent of each other. Theyv want to have
absolute control over their own nodes, and would like to control access to the information in their
‘domains. A second strong influence has been the desire to take advantage of the fact tha@ the system
is distributed. This shows up most clearly in the face of failures of one or some of the nodes. There is
no reason that the system as a whole should fail when one or even most of the nodes fail. Of course,
parts of the_ system will be unavailable; but those parts of the system that have not failed should
remain useable. For our purposes, the implication of this is that data objects on available nodes
should be available. In the most extreme case, a node should be capable of operating independently
of all the other nodes. This means that it should be ablé not only to resolve names independently, but
also to generate names independently. As long as each of these naming environments or contexts is
uniquely naméd within the system as a whole, each such context need generate names that are
unique only within its own boundary. Such a locally unique name can be combine,deith the conte_xt’s
globally unique name to create a globally unique name for an objeét? In order to be as general as
possible, structured objects, objects containing other objects as components, that cross context
boundaries must be »considered. This means that components of an object may reside in different
contexts. The globally unique names of components can be used to indicate foreign compdnents.
On the other hand, within one context a uniform style of naming is advantageous. In order to achieve
this, every name that is used within a particular context will have assigned to it a local name. The
context will then have to provide name translation. In the case of a local object, some name
translation will be necessary in order to find the object (get its address). : On the other hand, if the
object is not local, the translation will be into the object’s globally unique name consisting of its

context’s globally unique name and the object’s name within that context.

Since contexts are completely separate naming environments, they are assumed to share no
memory. The reason for this is that they are an abstraction of nodes in a network, as with Liskoy’s
guardians [6]. Hence the means of communication among contexts is message passing. Thus, we
have a two level naming structure consisting of objects within contexts with messages passing

between the contexts.

2Two issues have not been addressed here. First, the assumption has been made that contexts have globally unique names.
Since they are not created or deleted with the frequency of data objects, each node can be assigned a piece of the context
name space. When a node runs out of names it might request more, in which case there will have to be some mechanism for
acquiring more. Second, the need for unique names has not been addressed. Saltzer [12] has discussed this in detail.



287

2.2. The copying problem

We have now hybothesized a system in which communication is by message passing and an object
can have a complex structure. Restricting the contents of messages to base types of objects is not
helpful to the programmer. He needs a mechanism that will take his object and create a copy of it.
This must include not copying twice a component named twice in a structure. This problem is also
addressed in copying list structures. Algorithms for copying list structures have been developed by a
number of people. These include those developed simply as copying algorithms (for example both
Clark [3, 4], Fisher [5], and Robson [10]) and those with particular functions in mind such as garbage

collection (for example both McCarthy {7, 8} and Baker [1, 2}).

At this point, it is worth considering a few examples of structured objects in our system model in

order to highlight particular aspects of the problem to be solved.

Figure 1: A structured object

First, consider Figure 1. A copy of object a should have the same structure; there should not be two
copies of component d. This can be extended to cross context boundaries as in Figure 2. Another
extension to this problem is the recursive structure depicted in Figure 3. It has been depicted here
within one context for simplicity; What is important here is that component and b not be copied more

than once if the operation is to terminate.

Figure 2 highlights a second issue; as much functionality as possible should be available in the face
of failures of some nodes. To this end we propose a modified copy operation, copy-local.  This
operation-will copy all the components of an object in the same context as the object and directly

accessible through the object. For example, consider copying object a in context 1 of Figure 4. Only



288

“context 1 | context 2

Figure 2: Crossing context boundaries ‘-

d

Figure 3: Recursive structure

components a, b, and d will be copied. Thus, at least a partial copy of object a will be available in the
event that the node containing context 2 has failed. In place of those components not copied, we will

need their globally unique names in order to allow for copying them later.

Now, in addition to the copy and copy-local operations, an operation copying just the topmost level
of a structure will be needed. The reason for this is to copy foreign objects and learn:the globally
unique name of each component, in order to avoid copying a component more than once. This

operation is called copy-top.



289

context 1 context 2

S

v )

Figure 4: A more complex structure crossing context boundaries

With a little more information it would be possible to create the copy and copy-local operations
from only the copy-top operation. The additional information needed is the globally unique name of
the original from which a copy was made. This would have to be associated with the copy. In this
case, one component at a time would be copied, keeping track of components named more than
once. This would provide a mechanism that achieves the same effect as the algorithm that will be
presented in section 3, but is much more cumbersome. Copy-local ser;/es to provide a convenient

alternative to copy in the tace of possible failures of other nodes.

Thus, to summarize, we have hypothesized a system mode! containing isolated naming
environments called cbntexts. Each context is globally uniquely named and communication between
contextis is by message passing. Each object resides within a context and has a locally unigue name
assigned to it. These objects can contain other objects as components; the components may reside
in other contexts. Three copy operations are proposed: (1) copy copies the complete structure
without copying any component more than cnce; (2) copy-local copies all of the structure within the
context of the root object and directly accessible through the object without copying any component
more than once, while passing along the globally unique names of those components not copied; (3)
copy-top copies only the top level of the structure, passing along the giobally unique names of all the
components of the top level. The next section presents the general algorithm for copying, and

discusses each copy operation in light of the algorithm.



290

3. Copying

in order to discuss the algorithm for copying, two concepts must be presented. The first is an
extension of the idea of a context, which will be called here a message context. Every component
that is copied will be assigned a name thét is local to the message context. A message context will
exist only for the duration of the copy operation. It will assign each component'copied a name local
to the message context, and will translate its local names into globally unique names or local names
at the sending and receiving ends of the copy operation. In the algorithm, the terms sending message
context and receiving message context are used to refer to the message context as it appears in the
sending and receiving contexts. The other concept is the image. An image of an object is a
transtation of the object into an object in the name space of the message context. A structured object
contains names of other objects or components and base type objects. Every object that is to be
copied will be assigned a name local to the message context. An image will contain the appropriate
names for the images of its components. We are now prepared to present the algorithm, followed by

the specific details for the various copying operations proposed.

3.1. The algorithm
The algorithm can be described by the following set of steps.3 First, we will consider what the

sender must do.

1. Create an empty sending message context. Enter the globally unigue name of the object
lo be copied into the sending message context, assigning it a name in the message
context.

2. For each name in the sending message context, create an image of the top level of the
object. This is achieved by the following.

a. If the object is local and contains only a value, create an image tagging it with the
name assigned by the sending message context to that object, and a value
representing the value of the object.

b. If the object is local and contains components

i. create an image tagging it with the name assigned to that object by the
sending message context.

ii. for each component name, obtain a name from the sending message
context. U the object is already known in the sending message context, the
name will not be new. If the object is not known, a new name will be
assigned, and the component’s globally unique name will be assigned to it.
-Enter the name into the image. '

3These and other refevant algorithms are presented as procedures in Clu by Sollins [13].



291

c. lf the object is not local, copies of the top level of the objeci and a message context
for any component names is obtained from the foreign context. These are then
incorporated intq a local image.and the local sending message context.

The receiver will receive the images in any order and must reassemble them to create the copy.

The following steps will achieve that.

1. As an image arrives, if it is the first image create a receiving message context.

2. For any incoming image, find a local name for the object to be created for this image. If
the receiving message context has the name of the image, it will also have a name fora
new object to be created in the receiving message context. If not, create a new entry in
the receiving message context associating the name of the image with a new name in the
receiving context.

3. Create a new object having the name found in the receiving message context.

4, For each component name in the image, find a name local to the receiving context. If the
image name is already in the receiving message context, a name in the receiving context
will be there also. If not, a new object name in the receiving context must be acquired. It
will be entered with the image name into the receiving message context. Append the
object name to the new object.

5. The process is complete when the image of the top level or root of the object being
copied has arrived and an object has been created for each eniry in the receiving
message context.

This completes the basic algorithm. The following subsection briefly discusses the specific copying

operations.

3.2. The copying operations
The algorithm as it stands describes how the copy operation can be specified, although it is helpful

at this point to indicate in detail how each copy operation is accomplished.

The ordinary copy operation copies all the components of the structured object being copied. If a
component is not local to the context, a copy of the 1op level or copy-top operation must be invoked
on it. The reason for this is to find the global names of all the components of the foreign component
to avoid copying any component more than once. (Figure 2 depicts this problem.) This means that
an inferior copy-top operation will be invoked for each foreign component. Once the images of all the
components of the original object have been sent off, there is no need to send a copy of any part of

the message context.

In contrast to this, for the copy-local operation, no foreign components will be copied. Therefore, if



292

there are foreign components, a partial copy of the sending message context containing the globally
unique name of the top levet of each must be sent. Considering Figure 4, components ¢ and e will not
be copied and only the globally unique name of object ¢ in context 2 will be sent. It should be noted
that if the’object being copied contains no foreign components, the ordinary copy operation and the

copy-local operation will have the same effect.

Finally, we must consider the copy-top operation. This will send exactly one image, that of the
original object. If this object is not a base type object, it will send a copy of the whole sending
message context except the entry for the object itself. This is what is needed for foreign components

in the copy operation to find the globally unique names of all components.

The next section provides examples of both the copy and copy-local operations. The final section

of this paper provides a summary of what has been achieved.

4. Two Examples of Copy Operations

This section presents two examples, one of the copy operation and one of the copy-local operation.
In both cases the object to be copied is object a of Figure 4. Figure 5 depicts the structured object a
of Figure 4 with the name translation of the contexts depicted.also. Note thét object f of context 1
and objects k and 1 of context 2 are nonlocal references. For brevity, only the creation of the sending
- message context at the sending context and the final results in the receiving context will-be depicted:
and discussed. The assembly of the copy in the receiving context should be ohvious from this

discussion and the preceding discussion of the operations.

To copy (full fledged copy) object a from context 1 to context 3, a sending: message context.and.
images of all the components are created in context 1. The images are all sent off to context 3.
Figure 6 depicts this. First, the sending message context is created, and object a.is entered into it by
being assigned the name m within the message. Also.the full global name is entered into the sending
message context. The image being created for object a is tagged with the label m. Then the names
of its components can be translated. Object b in context 1 is assigned the name n in the message
context, d is assigned o, and finally f is assigned p. As each name is assigned in the message
context, context 1 provides the globally unique name of the object being assigned the name in the
message context. Thus, when object f in context 1 is assigned the name p for its image in the
message context, its globally unique name, "context 2, object ¢ is provided in the sending message
context. Once: the image for object a in context 1 has been created, it can be sent to the receiving

context while the other images are created., The creation of the images of objects b and d are



293

context 1 context 2
a ] .
‘_\H X
b — c —_— P Kk
d
|
f text 1
context 1,
d — k objectd
context 1,
e ] N\ ! objecte
i context 2,
objeci ¢
B

Figure 5: Structured object with translation tables of contexts

straightforward and need no further discussion. The creation of the image of object f (object ¢ in
context 2) is achieved by requesting a copy-top of that object from context 2. Thus, a sénding
message context is created in context 2 with three entries in it, one for object ¢ and one each for
objects d and e in context 1. The image of object ¢ and a partial copy of the sending message
context containing two entries is sent to context 1. If there were components in context 2, each
would be copied separately with a copy-top operation, in order to keep track of multiple references to
a component within object a in context 1 as a whole. Lastly, once it has been discovered that there is
one more component in context 1 {(object e) an image can be created for it. Since all the components
are copied, no part of the sending message context needs to be sent to context 3. In context 3
construction of the copy proceeds exactly has the algorithm indicates. The finai result is depicted in

Figure 6; a complete copy of object a in context 1 resides in context 3 and has the name r.

As depicted in Figure 7, the copy-local operation is similar to the copy operation with a few
exceptions. First, it does not copy object ¢ of context 2. Therefore, the fact that object e of context 1

is a component is not discovered, nor is that information needed. Finally, because it is known that



L7t

context 1 (sending context)

sending message context
m| context 1, object a

n | context 1, objectb
o | context 1, objectd

context:2, object ¢

q { context:1, objecte

images

{name of image) m n o]
(values or names value value
of component n

images)

SEE

value

context 3 (receiving context)

Figure 6: The copy operation: copying object a from context 1 to

context 3




295

context 1 (sending context)

sending message context images
m| context 1, objecta (name of image) n o
n | context 1, objectb {values or names value value
o | context 1, objectd of component n
images)
p| context2, object ¢ o]  message context sent
' [p I context 2, objectc ]

context 3 (receiving context)

u context 2,
object ¢

'Figu,re 7: The copy-local operation: copying object a from context 1 to
- context 3




296

object ¢ of context 2 is a component that is not copied, its global name is sent to context 3. Thus,
images of objects a, b, and d are sent, and a partial message context containing the entry for object ¢
in context 2, labelled as p in the context of the message. As can'be seen, the final copy in context 3
is incomplete in that it has a foreign component. In the face of restrictidns due to failure or

protection, this may the best that can be done.

5. Conclusion

This paper addresses the problem of copying structured objects in a distributed system. The
system model assumes that the system as a whole has been divided into non-overlapping naming
environments called contexts. Processes running in such contexts can communicate only by
message passing. It also assumes that the names used inside objecls to name their components are
names that are local to the contexts in which the parent objects reside. The approach taken for
copying such objects from one context to another is to create a context for the message with its own »
local names, all of which wilt only exist for the duration of thé copy operation. Then each component
to be copied will be translated into an image of itself within the message context. The receiving
context will then transform the images (plus names of componenfs not copied) into copies with local
names in the receiving context. This approach lends itself nicely to a new type of copy operation, the
copy-local operation. The justifivcation for this new operation is that a distributed system allows for
partiai failures of the system. One or more nodes may fail, without causing the system as a whole to
fail, and we wish to take as much advantage as possible of that fact. Thus, the copy-local operation
depends only on the sending and receiving contexts being available, without regard to contexts that
may be on failed nodes. It appears to be a promising alternative in cases in which a full copy may not
be critical immediately, as long as the names can be resolved at some time, or where certain

components are simply not of interest, and therefore their unavailability can be disregarded.



297

References

1. Baker, H. G., Jr. Actor ‘Systems for Real-time Computation. Tech. Rep. MIT/LCS/TR-197,
Massachusetts Institute of Technology, March, 1978. Also Ph. D. thesis for the Dept. of Electrical
Engineering and Computer Science, M. |. T., Cambridge, Mass.

2. Baker, H. G. List Processing in Real Timer on a Serial Computer. CACM 21, 4 (April 1978), 280-
294,

3. Clark, D.W. List Structures: Measurements, Algor/thms and Encodings. Ph.D. Th., Carnegie-
Mellon University, August 1976.

- 4. Clark, D. W. A Fast Algorithm for Copying List Structures. CACM 217, 5 (May 1978), 352-357.

5. Fisher, D. A. Copying Cyclic Structures in Linear Time Using Bounded Workspace. CACM 18,5
(May 1975}, 251-252.

6. Liskov, B. Primitives for Distributed Computing. Proceedings of the Seventh Symposium on
Operating Systems Principles, Pacific Grove, CA, ACM, December, 1979, pp. 33-43.

7. McCarthy, J. Recursive Functions of Symbolic Expressions and Their Computation by Machine.
CACM 3, 4 (April 1960), 184-195,

8. McCarthy, J. LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge, Mass., 1965. 2nd edition

9. Reed, D. P, and Svobodova, L. Swallow: A Distributed Data Storage System for a Local Network.
Workshop cn Local Area Networks, IFIP Working Group 6.4, August, 1980. Preprint

10. Robson, J. M. A Bounded Storage Algorithm for Copying Cyclic Structures. CACM 20, 6 (June
1977), 431-433.

11. Rothnie, J.B., Jr., Bernstein, P. A., Fox, S. A., Goodman, N., Hammer, M. M., Landers, T.A,,
Reeve, C. L., Shipman, D. W., Wong, E. SDD-1: A System for Distributed Databases. Tech. Rep. CCA-
02-79, Computer Corporation of America, Cambridge, Mass., August, 1979.

12. Saltzer, J.H. Naming and Binding of Objects. In Lecture Notes in Computer Science 60,
Springer Verlag, New York, 1978, ch. 3, pp. 99-208.

13. Sollins, K. R. Copying Complex Structures in a Distributed System. Tech. Rep. MIT/LCS/TR-
219, Massachusetts Instititue of Technology, Cambridge, Mass., 1979. Also MS Thesis for the
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Mass., May, 1979.






DISTRIBUTED OPERATING SYSTEMs A\
WORKSHOP ad







RIG, An Architecture for Distributed Systems:
A Summary

Keith A. Lantz’
Department of Computer Science
University of Rochester
Rochester, NY 14627

At the University of Rochester we have had six years of
experience in the design and implementation of a muitiple-
machine, multiple-network distributed system called RIG.
RIG was built to serve as an intermediary -between the
human user (working through a display terminal or
personal computer) and a variety of computer systems --
including DEC-10/TOPS-10, VAX/UNIX, Xerox Altos, and
Data General Eclipses. The bulk of the user's
computational requirements is met by these systems,
which are either partially integrated into the RIG system
through an Ethernet or loosely coupled to it through the
Arpanet. RIG also provides a number of support sorvices
such as printing, plotiing, local file storage, and text-
editing.

Superstructure

Logically, RIG can be thought of as a collection of
independent processes running on various computers and
ceeperating via messages.  Typical operating system
services, such as file access, terminal communication,
and printing, are provided by server processes associated
with each system resource (such as files, terminals, and
data bases). A resource may only be accessed or
manipulated through its server(s). Because servers are
constructed with well-defined interfaces, the
implementation details of a resource are of concern only
to its server(s). [Each RIG host supports its own
complement of server processes, which typically include a
Process Manager, Job Manager, Name Server and servers
for local file systems, networks, and printers.

Services are requested symbolically. Processes that
are willing to provide services make themselves known to
the rest of the system by registering with the Name Server.
Subsequently, when the name server receives a symbolic
request for service, it can return the address of a process
that provides the service. If no process is currently willing
to provide the service, one can be created. In addition,
processes may be created by name: Given a name like
"Executive,” the Process Manager will create an instance
of the Executive from a disk-based Process Profile.

Interprocess Communication

All communication between processes takes the form
of messages. Standardized message protocols allow
processes to treat message-passing as remote procedure
calls or pipes, and provide for asynchronous event

1Currenl Address: Computer Systems Laboratory, Stanford University,
Stanford, Ca. 94305

2For a fairly complete description of RIG and pointers to other relevant work
see: KA. Lantz. Uniform Interfaces for Disiributed Systems. Ph.D. thesis,
Unuversity of Rochester, 1980. .

handling. These protocols include consistent
mechanisms for opening, closing, reading, and writing
entities such as files and virtual terminals.

Because shared memory is not used, there is no
distinction between local (intra-host) and remote (inter-
host) communication. Inter-host communication is
provided by processes called network servers. For each
network to which it is connected, each RIG host has at
least one network server that handles the ficw of
messages to and from other machines. The function of a
network server is to act as a local representative or liaison
for remote machines, and to use the resources of the local
machine on their behalf. Remote addressing is provided
via an alias mechanism whereby a remote process
receives an address in the local name space.

Although processes are free to communicate in any
mutually convanient manner, three styles predominate:

1. atomic transactions
2. connections
3. emergency messages

Emergency messages, in particular, provide a simple
yet powerful mechanism for handling asynchronous inter-
process exceptions:  Registration facilities and event
handlers enable any process {o register its interest in
exceptional events that occur with regard to any other
process; notification of the occurrence of an event is by
emergency message. The Process Manager, in particular,
allows a process Pq to learn of the death of any other
process Pb in which 'Pa is interested.

The User Interface

The RIG Virtual Terminal Management System gives its
users the freedom to perform any number of activities
simultaneously. A user sitting at his display terminal may
view the output of various application programs on
different areas of his screen. He may rearrange his
display; -edit or save its contents, or direct keyboard input
to any of the programs under his control.

Table-driven command interpreters serve to isolate the
user from the idiosyncrasies of each tool. User profiles
allow him to tailor the interface to his own needs. To
ensure fast response and support the encapsulation of
existing services, tools are separated into user interface
and service components. These faciliies combine to
present an elegant, robust, and consistent interface
between RIG and the user.

USGPO: 1981-789-009/5703






This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




