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SELECTIVITY IN MULTIPLE QUANTUM

NUCLEAR MAGNETIC RESONANCE

Warren Sloan Warren

Materials and Molecular Research Division

Lawrence Berkeley Laboratory

Abstract

The observation of multiple-quantum nuclear magnetic resonance

transitions in isotropic or anisotropic liquids is shown to give readily

interpretable information on molecular configurations, rates of motional

processes, and intramolecular interactions. However, the observed

intensity of high multiple-quantum transitions falls off dramatically as

the number of coupled spins increases. The theory of multiple-quantum

NMR is developed through the density matrix formalism, and exact inten­

sities are derived for several cases (isotropic first-order systems and

anisotropic systems with high symmetry) to show that this intensity

decrease is expected if standard multiple-quantum pulse sequences are used.

New pulse sequences are developed which excite coherences and produce

population inversions only between selected states, even though other

transitions are simultaneously resonant. One type of selective excita­

tion presented only allows molecules to absorb and emit photons in

groups of n. Coherent averaging theory is extended to describe these

selective sequences, and to design sequences which are selective to

arbitrarily high order in the Magnus expansion. This theory and computer

calculations both show that extremely good selectivity and large signal
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enhancements are possible. For example, the IO-quantum transition in

a lO-spin system can be enhanced by more than four orders of magnitude.

Other types of selective excitation presented include selection of only

transitions with Al symmetry, elimination of zero-quantum transitions,

excitation with only a few pulses in isotropic and anisotropic systems,

and excitation from nonequilibrium initial conditions. Experiments

with four-quantum, six-quantum, and eight-quantum selection verify the

coherent averaging and computer calculations. Noise reduction from

two-dimensional spectroscopy, multiple-quantum NMR in exchanging systems,

and statistical aspects of multiple-quantum coherence (including an

information theory treatment) are also presented.
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I. Introduction and Overview

1.1 The Basic Magnetic Resonance Experiment

The observation of energy level differences between spin states

in a magnetic field dates back to the experiments of Stern and Gerlach

1
in 1922. However, measurement of these differences for nuclear spins

•••

in bulk material, with the possibility of observing the effects of

interatomic interactions, did not occur until more than twenty years

2 3
later.' The development of nuclear magnetic resonance since that

time has been phenomenal. This development has been summarized else­

4-8
where. It is important, however, to point out the reasons why

•••

NMR has become so useful, and the information which can be extracted

from spectra.

Every nucleus has a characteristic total spin angular momentum

h 2I(I+l) , where 21 must be a nonnegative integer; for protons 1=1/2.

When the nucleus is placed in a static magnetic field B Z, the
o

z-component of this spin angular momentum is quantized. It is

Thus, the interactions are what makes nuclear magnetic resonance

are therefore bounded and discrete, and if no other interactions are

-I, -1+1, •.. , I. This angular momentum generates a magnetic dipole

-hymB. The energy levels
o

moment ~, whose interaction with the applied field (the Zeeman inter-

present the spectrum can only give the value of y, whith has been

restricted to I = mh , where m can take on any of the (21+1) valuesz

measured for virtually every known nucleus (or B if Y is known).
o

~~

action) has the classical form E = -~·B
o

interesting. It is useful to think of the interacting group of N spins•

•
•

•
•
•
•
•

as a composite system. For example, if I = 1/2, the total z-component

of the angular momentum M = 1. m. can have any of 2N values from
i 1



2

M = -N/2 to M = N/2. If interactions are ignored, all of the

(Nl/«N/2)+M)1«N/2)-M)1) energy levels with a fixed value of Mare

•••degenerate. The interactions break this degeneracy. The energy

splittings that are produced are much smaller than the Zeeman energy

splittings for all the cases to be considered in this work, so the

energy levels end up as in Figure 1.1. There are 2
N

distinct energy

levels in a system with N spins - 1/2, and if transitions between any

N N-ltwo levels are allowed there can be 2 (2 ) different transitions.

•
•
•
•1.2 The Spin Hamiltonian

. l' h . 1018 l' d' f N 1018A macroscop1C samp e m1g t conta1n nuc e1, an 1 =

the number of energy levels is astronomically large. If all of these

are nondegenerate, the individual transitions will certainly not be

resolvable. Fortunately the degeneracy is often not completely

•
••lifted; the amount of degeneracy which remains (and hence the number

of distinct transitions) is determined by the form of the spin •
1.2.1 Zeeman Hamiltonian

Hamiltonian.

The terms in the spin Hamiltonian which will be considered in

9this work (in rough order of decreasing strength) are:

I
I
I
I
I

If all the spins are identical, this is written as

i
H = -Ehy.B I . = -Ew I . (in units of h = 1), where I . is

Z i 1 0 Z1 i 0 Z1 Z1

the operator for the z-component of the spin angular momentum of

the 1· th .sp1n.

HZ = -w I. This term will be present in all of the systems to be
o Z

considered in this work.

rad/sec for protons.

Typically B ~ 50 kG, which makes w
o 0

I

••
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I

I

I
I

I

I

I

I

I

3

M =-~ -----------
2

o~

N
"2-----------

XBL 7710-10022

Figure 1.1 Schematic energy level diagram for a system of N spins-

1/2 without symmetry. All the eigenstates can be nondegenerate.

The manifolds correspond to different values of M, and have degeneracy

N!/(N/2)+M)!(N/2)-M)!.
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1.Z.2 Radio Freguency Hamiltonian

If an oscillating radio frequency Crf) magnetic field

••Bl(t)COS(wt+¢(t))x is applied to the sample it will cause an

interaction of the form Hrf '" - ~YiBl(t)cos(W~))Ixi c -l:Zwl

cos(Wt+¢(t))I
xi

. If all the spins are identical, this is written

as Rrf • -2wl(t)cos(wt+¢(t))Ix . The interesting case is w ~ w
o

'

and in this case one normally goes to an interaction representation

(the "rotating frame"110 defined by JC ... exp(-iwI t) Hexp(iwI t).z z

The mathematical details will be postponed until Chapter II, but

the effect is to make the system appear to evolve under a Zeeman

•••••Hamiltonian

JC • -(w -w)I = ~wI
Z 0 z Z

and an rf Hamiltonian

(1.1) ••
Other terms also appear, but they oscillate at high frequencies and

are neglected (the "rotating wave approximation,,).lO The magnitude

JC f • -wl(t){I cos¢(t)+I sin¢(t)}r x y
(1.2)

••
field gradients of the form

A nucleus with spin I ~ 1 has an interaction with electric

of WI is controlled by the experimenter.

1.2.3 Quadrupolar Hamiltonian

-+ i-+H ~ l:1 'V "1 (1.3)
Q ii:: i

i o2V
where VaS = oaoS (a,S = x,y, or z), the second derivatives of the

ipotential. V must be traceless and symmetric (i.e., an irreducible

•••••
Iterm, which

2
C . (T ) .•

m:L m:L

Z
H = l: l:

Q i m=-2
(the secular

second-rank tensorll ,l2) and this implies that

2
In the rotating wave approximation only (To)i

•
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I
commutes with I ) survives. For example, if the gradients arez

axially sYmmetric this term can be explicitly written as

1.2.4 Direct and Indirect Dipole-Dipole Hamiltonian

where Q. is the quadrupole moment of the i th nucleus.
1

I
I
I

eQ vi
i zz

~ 41(21-1)
1

(31
2

. -I (1+1))
Zl (1. 4)

I Any two magnetic moments ~l and ~2 have an interaction energy,

which can be written as

I
I

~ 'V L
i>j

H 'V
J

L
i>j

(1.5)

If all the nuclei are identical, the secular terms can be written

induces a magnetic moment in surrounding electrons, which then

i'
D J represents the direct interaction (the energy of one dipole

traceless or sYmmetric, but the antisymmetric part is unobservable.
14

Jij is not necessarily

in the magnetic field of the other), and is traceless and symmetric.

Jij represents the indirect interaction (for example, one dipole

. 4 5 13interacts with the other d1pole). ' ,

I

I
I

I

I explicitly as

where e.. is the angle between the z-axis and the internuclear vector
1J

I
I
I

L
Pj

-+ -+
D .. (31 .1 .-1. 0 1.)

1J Zl ZJ 1 J
D ..

1J

y. y. (3cos
2

e .. -1)
1 J 1J (1.6)

I L
i>j

J .. (i ..i.) + J~r:iso (31. I . -1. 01.)
1J 1 J 1J Zl ZJ 1 J

(I.7)

I
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•Most of the systems to be discussed in this work have ~ as

the dominant term in the Hamiltonian. Since the terms D
ij

depend

on 6
ij

and r
ij

, they supply a wealth of structural information. The

terms J
ij

are sensitive to the electronic configuration.

The secular part of the couplings between two unlike spins I and

•••S has a somewhat different form. In this case, only those terms which

commute with both I and S are retained, which gives
Z Z

x ..
J

L: 2Dij (I is .)
i>j Z zJ

L: J i . (I is j)
i>j J Z Z

••••

nucleus. This magnetic field interacts with the nuclear magnetic

Frequently the homonuc1ear and heteronuc1ear cases are

distinguished by writing a .. instead of D.. for homonuc1ear pairs,
1J 1J

and b
ij

for heteronuc1ear pairs. A similar distinction can be made

for X
J

, but it will not be needed in this work.

1.2.5 Chemical Shift Hamiltonian

i A h thElectrons induce a magnetic field -a ·B z at the site of t e i
o

x = -L:o I .cs i Z1

•
•
•
•
I

••
I
I

•
(1.9)

(1.8)-+ i '"'\, L: I -0 -B Z
i - 0i -

x
cs

moment to produce the chemical shift Hamiltonian

The secular term can be written as
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I
I
I
I

••••••••••••

7

1.2.6 S~plifications of the H~iltonian

In the most general case, all of the terms in the Hamiltonian

of the last subsection must be retained. However, in many systems

some of these terms can be eliminated. Three special cases will be

considered.

1.2.6.1 Solid Samples

XQ is usually the dominant term in the Hamiltonian if I > 1/2.

For protons, however, 3C
Q

= 0, and J<D dominates. The summations over

nuclei must theoretically run over the entire sample, but crystal

symmetries may simplify this calculation somewhat. lS The spectrum

generally does not contain resolvable lines. A typical spectral width

for proton transitions with liM = 1 is 50 KHz.

The small terms in the Hamiltonian, such as X ,do not produce
cs

observable effects in the presence of X
D

or XQ. However, different

terms have different symmetry properties under manipulations in spin

or coordinate space. For example, both the spatial parts and the spin

parts of XQ and J<D are irreducible second-rank tensors; the spatial

part of j( is the sum of an irreducible zero-rank tensor and an
cs

irreducible second-rank tensor, and the spin part is a first-rank

tensor. Techniques for discriminating between tensors of different

rank are detailed in reference (9), and one of these techniques (line-

narrowing rf pulse sequences) will be discussed in Chapter III.

1.2.6.2 Isotropic Liquid Samples

All the molecules in isotropic samples undergo rapid diffusion

and reorientation. As a result, the spatial terms in the operators

V, a, D and J must be averaged over all orientations, and only the
::



8 ••isotropic (zero-rank tensor) portions survive. This implies that

in the absence of rf irradiation. In addition, all intermolecular

then

and J
aniso

vanish.
ij

x c ~wI
z z

The total homonuclear Hamiltonian is

(1.10)

••••couplings vanish, so the summations only involve the spins of a

single molecule. This simple Hamiltonian produces relatively few

distinct transitions.

Isotropic spectra are of course useful for compound identification, 8

because the chemical shifts of different electronic environments

are well known. The spectral width is proportional to the static

field. For protons at 50 kG, the maximum width for transitions

with ~ = I is about 2 kHz, and individual transitions are often

less than I Hz wide.

1.2.6.3 Anisotropic Liquid Samples

A liquid crystal becomes partially oriented when placed in a

large magnetic field, as will most molecules dissolved in a liquid

13 16crystal.' Rapid diffusion still occurs, but the molecules have

a preferred direction so reorientation is not isotropic. The

diffusion causes all intermolecular couplings to vanish, as in the

case of isotropic liquids. However, intramolecular couplings are

only partially averaged.

The most important case to be considered in this work is the

case where the only spins are protons. The Hamiltonian is then

••••
•
•
••
••
••
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I
I
I

J{
Z

where

= L:
i>j

D.. (31 .1 .-r.-r,) +
1J Zl ZJ 1 J

L:
i>j

J .. (r. -r,)
1J 1 J

9

L: o. 1 .+ t:.w I
i 1 Zl Z

(1.11)

I
D. ,

1.J

2
<3cos e.. -1>

1J
(1.12)

I
I
I
I
I
I
I

I

,
I

Janiso is usually negligible for protons, and J{Q = O.
ij

The averaging in equation (1.11) is over all allowed orientations

(averaged values must also be used for J., and 0,). D,. can also be
1J 1 1J

expressed in terms of the molecular ordering matrix Sap'

where e is the angle made by the a axis (molecular coordinate
aa

system) with the a axis (the laboratory coordinate system direction

of the static field B). S is traceless and symmetric, and the number
o :::

18 19
of independent components depends on the symmetry of the molecule. '

The important point is that the terms D.. depend on <r ..-3>, e.. , and
1J 1J 1J

at most five ordering parameters, so they convey structural information.

The only term added in going from isotro~ic to anisotropic

liquids is J{D' but anisotropic spectra generally have more transi­

tions. A typical spectral width for transitions with ill! = 1 is

10 kHz for molecules dissolved in a liquid crystal, and 40 kHz for

the liquid crystal itself. If the individual transitions are

resolvable, they will typically be no more than a few Hz wide.

1.3 Selection Rules and Spectral Complexity

The different systems of section 1.2.6 were compared in terms
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of the spectral width for transitions with ~ = 1. Historically •
be shown (and will be shown in section 2.2) that in the limit of

these were the first transitions to be observed. In fact it can

weak irradia tion li}1
20= 1 transitions are the only ones allowed.

••This selection rule also holds for the transitions induced by a

6 21
single strong pulse.' Spectra produced by one of these two •

example, individual couplings are not observed in solids.

techniques will be termed single-quantum or conventional. If the

resolvable, however, this analysis becomes impossible. Thus, for

single-quantum spectrum is resolvable, it is in principle possible •••
••

If the spectrum is not1 i · 1 1 . 23ana ys s requ1res a computer ca cu at10n.

to determine the coefficients D
ij

, J
ij

or 0i' Sometimes this

analysis can be done by hand, as with first-order isotropic

8 11 hi hl . 1 1 8, 22 f hspectra or sma , g y symmetr1c mo ecu es. More 0 ten t e

The situation is somewhat better with liquid samples. However,

the number of allowed single-quantum transitions grows very rapidly

as the number of spins increases. This is illustrated for the

proton spectra of anisotropic systems by Figure 1.2. If only a

few protons are present, all of the transitions are easily resolvable,

••
•but the spec tra become extremely complex if more than five or six

consider the proton spectrum of oriented cyclooctatetraene, which

spins are present. As an example of this spectral complexity,

is a fairly small molecule. The symmetry dictates that there are

•
•
•
•
•
•

unique D
ij

values and one value for ai' yet there are 2070

24transitions. Clearly most of the lines give redundantdistinct

only six

One approach to simplifying spectra is isotopic substitution (for

example, replacing protons with deuterons). This NMP. version of a spin

information and these additional lines can make analysis impossible.
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~ I_---.Jl- _ l CH2CI2
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I J '

~ I I !I ~
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..,.J~v~'~_.J'~"_'__..J~I~

o
XBL 7910-12344

Figure 1.2 The single-quantum spectra of several oriented molecules.

The number of transitions increases dramatically as the number of

spins is increased. (Figure courtesy of Dr. Zeev Luz.)
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. 25 26
labeling experlffient ' is useful, since replacing most of the protons

reduces the number of possible transitions. Thus, one way to find

the six coupling constants of oriented cyclooctatetraene would be

to synthesize the six different species which have only two protons.

Each of these species would have a simple spectrum. This approach

13 24 27has been extensively used to study large molecules, ' , but it

has two important disadvantages: isotopic subs titution may change

27the molecular configuration, the order parameters, or the rate of

internal processes, and synthesis of selectively labeled molecules

is often difficult.

Pulse sequences (to be discussed in Chapter II) have been

designed which overcome the selection rule ~ = 1 of conventional

NMR spectroscopy, thus permitting the observation of transitions

28-34
between states with arbitrary ~. These multiple-quantum

transitions can also be used to determine the dipole-dipole coupling

constants. In addition, because the number of possibly distinct

transitions falls off rapidly as ~ increases, multiple-quantum

spectra do not require isotopic labeling to make them resolvable.

In fact, the observation of multiple-quantum transitions is a

practical alternative to isotopic labelin~, and there is a great

deal of similarity between these two techniques. Roughly speaking,

the coherent flipping of n out of N spins inherently labels the

(N-n) spins left behind. These ideas will be made'more quantitative

in the next section.

II
II
II
II
II
II
II
II

•
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1.4 The Information Content of Speetra35

1.4.1 General Spin Systems

Consider the energy level diagram for a system of N spins - 1/2,

illustrated in Figure 1.1. The energy levels are broken up into

manifolds of states with equal M, and the degeneracies of the

manifolds are Nl/«N/2)-M)l«N/2)+M)l If the overall Hamiltonian has

absolutely no symmetry elements, all of the levels can be nondegenerate

and the number of distinct n-quantum transitions is (2N)~/(N+n)~(N-n)~34

For example, there is only one transition with 6M = N, because

there is only one state with M = N/2 (all spins a) and only one

state with M = -N/2 (all spins 6). Even if the overall Hamiltonian

has no symmetry, some parts of it have allowed symmetry operations.

For example, XD and K
J

contain only bilinear operators, and are

unaffected by flipping all the spins. This means that the energy

of the N-quantum transitions have no direct or indirect dipole

coupling term. On the other hand, all the terms in Xes and X
z

are linear, so they are multiplied by -1 when all the spins are

flipped. It is then easy to see that

I
I
I
I

a.IX ITI a i IXD+t1{) ~
1 1

<TI a.> <TI a > - - L: 0, + 2" N6w
l. z i l. l. 2 l.

i i l.

6ilXzl~ a i IX
D
+;]{) ~

1 1
<TI 6,> <TI a.> + - L: o. - - N6w

l. l. 2 l. 2
i l. i l.

6E N6w - L: 0,
l.

(1.13)

(1.14 )

(1.15)

I
I
I

Therefore, the N-quantum transition gives the resonance offset

(or, if chemical shifts are present, the sum of the shifts) directly.
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The result is the same, no matter what the sample is; of course, if

the sample is a solid, this formula applies strictly only to the

18
10 -quantum transition (or however many spins are present) unless

the spins of interest are sufficiently dilute to make long-range

couplings negligible.

The frequency of a single transition contains very little informa-

tion about complicated molecules. The (N-l)-quantum and (N-2)-quantum

spectra are still fiar simpler than the single-quantum spectrum, but

contain enough transitions to be useful. There are N states with

M = ± «N/2)-1), and (N
2
-N)/2 states with M = ± «N/2)-2). The number

of allowed transitions involving these states depends on the symmetry

of the Hamiltonian. If absolutely no symmetry elements are present

(as is possible in an isotropic system), there are 2N (N-l)-quantum

transitions and N(2N-l) (N-2)-quantum transitions. In such an

isotropic system there are N chemical shifts and N(N~1)/2 spin-spin

couplings, so the (N-l)-quantum and (N-2)-quantum spectra generally

contain enough transitions for a complete assignment. As mentioned

earlier, a typical transition is less than 1 Hz wide in a homogeneous

magnet, and the spectral width might typically be 1 KHz, so these

transitions are usually resolvable.

A totally unsymmetrical anisotropic system would have N(N-l)/2

direct dipolar couplings, the same number of indirect couplings, and

N chemical shifts. Xn is usually a few orders of magnitude larger

than X ,and the chemical shifts can be suppressed without affecting
cs

36 37 . J{Jen ' (see sectl.on 111.1) so for the rest of the section incs

anisotropic systems will be ignored. In this case the (N-l)-quantum

spectrum has N pairs of lines (M = (N/2)-1 ~ M = N/2, or M = N/2 ~

I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
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M = -«N/Z)-l), and is symmetric about (N-l)~. This spectrum

is similar to the single-quantum spectrum which could be produced

if all of the molecules were cooled down into the ground state

M - _N/2;38 the only allowed transitions in that case would be to

M = -«N/Z)-l) states, so N lines would be produced, and the

frequencies are the same as those of half the lines in the (N-I)­

quantum spectrum if ~w = O. The (N-2)-quantum spectrum is also

symmetric, and has N(N-I) pairs of lines (M = N/Z + ~1 = -«N/Z)-2),

M K (N/Z)-l + M = -«N/2)-I), or M = (N/2)-2 + M = -N/Z) plus a highly

degenerate peak at (N-2)~w, arising from transitions between any

M=(N/2)-1 eigenstate and the M = -«N/2)-I) eigenstate generated by

flipping all the spins. There are N(N-I) possibly different direct

and indirect couplings, so roughly this many pairs of lines are needed

for complete characterization. Typically, each transition would be a

few Hz wide, out of a total spectral width of many KHz. Therefore,

the (N-I)-quantum and (N-Z)-quantum transitions for anisotropic

systems are also usually resolvable, and assignment of these two spectra

is sufficient to determine all dipolar couplings.

If the Hamiltonian has additional symmetry operations on an NMR

time scale, the number of transitions decreases, because the eigen-

states can be assigned to several irreducible representations (Figure

1.3). Since the multiple-quantum spectra contain few lines to begin

with, symmetry effects are easily noticed. The number of transitions

can be determined by generating s)~etry adapted states and this has

been done for general isotropic systems.
34

However, for anisotropic

systems this process can be quite involved. If only the number of

transitions is required, simpler symmetry arguments will suffice.
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AI f 2 f3 • • •
m - N/2 I state

m - N/2-1 - - • • • N states

m = N/2-2 - - -- • • • N(N-I)/2 states

• • • •
• • • •
• • • •

m - -(N/2-2) -- • • • N(N-I)/2 states-- --

m - -(N/2 -I) - -- • • • N states

m - -N/2 I state

XBL B05-9541

Figure 1.3 Schematic energy level diagram for a system of N spins-I/2

with symmetry. The states with M = ±N/2 belong to the totally

symmetric representation AI' so all N-quantum or (N-I)-quantum

transitions are in that representation. (N-2)-quantum transitions

can come from other representations as well.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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1.4.2 Symmetry Considerations for Anisotropic Systems and Analogy to

Isotopic Spin Labeling

Consider first the (N-l)-quantum spectrum. The states with

M=N/2 (all spins a) and M=-N/2 (all spins S) are invariant to all

molecular symmetry operations, hence they belong to the totally

symmetric representation AI. Therefore, the (N-l)-quantum transitions

all have Al symmetry, and each Al eigenstate for M=(N/2)-1 will

generate one transition, as will each Al eigenstate for M=-«N/2)-1).

There is no symmetry reason for any of these transitions to be

degenerate. In the spin product (SP) basis set, the states with

M=«N/2)-1) are the N states with (N-l) spins a, and the remaining

spin B; the opposite is true for M=-«N/2)-1). Al symmetry adapted

states can be generated from this basis set by taking one SP state

and applying all the symmetry operations of the spin system to it. 39

If this process is repeated for all the SP states, all the Al states

are generated.

The symmetry operations of the spin system can be described

from two different perspectives. Symmetry operations such as planes

or axes of rotation can be defined, and eigenstates can be classified

39according to their behavior under these symmetry operations. A

more versatile approach, which we will use here, is to describe

b 11 d . f h 1 i 40.41syumetry operations y a owe permutat10ns 0 t e nuc e •

Two nuclei a and b are magnetically equivalent if there is a symmetry

operation which turns a into b; this same symmetry operation need

not convert b into a. If no such operation exists, the nuclei are

inequivalent. Since each state in the SP basis for l! = ±«N/2)-1)
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can be described by its single different spin, this definition implies

that the number of Al symmetry adapted states will be equal to the

number of inequivalent spins. Thus, each inequivalent spin produces

one pair of (N-I)-quantum lines.

Spin product states are more easily visualized than are symmetry

adapted eigenstates, and therefore it is convenient to work in this

basis. It can be shown readily that the number of distinct n-quantum

transitions can be determined from any convenient basis set (not

necessarily the eigenbasis) by counting the number of n-quantum

matrix elements which ean evolve independently. Therefore, the number

of transitions (but not the transition frequencies) can be determined

in the spin product basis. In this basis, an (N-I)-quantum matrix

element corresponds to flipping (N-I) spins in the local field of one

spin; it is still a proton, but it is distinguishable from all the

other spins. The spin can be either a or S, so we expect one pair of

lines for each inequivalent spin; if two spins are equivalent, there

is a symmetry element which forces the two corresponding (N-I)-quantum

matrix elements to be equal at all times. The number of inequivalent

spins is equal to the number of possible monosubstituted species, so

we assign one pair of lines to each of those species.

The number of (N-2)-quantum transitions can also be easily

determined in the SP basis set, and symmetry arguments (given in

Appendix A) show that .the following counting scheme is correct.

There are two fundamentally different ways to generate an (N-2)­

quantum transition in the SP basis set. One way to generate an (N-2)­

quantum transition is to flip all N spins, starting from a state with

one spin S and the rest a; therefore, these transitions correspond to

••
•
•
•
•
•
•
••••
•••••••
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M = (N/2)-1 + M = -«N/2)-1). Since all the spins flip. these N

transitions have no dipolar energy, so they all occur at (N-2)6w.

An (N-2)-quantum transition can also be generated by flipping (N-2)

spins in the local field of the remaining two, which we label x and

y. The number of distinguishable ways in which two spins can be

chosen out of N is determined by the symmetry of the molecule. It

is equal to the number of different species with (N-2) isotopic labels.

The two remaining spins may be aa, aB, Ba, or SS, which gives a quartet

if there is no symmetry element x + y, Y + x, and a triplet if there is

such a symmetry element (because then as and Sa are equivalent).

Therefore, each unique ordered pair (xy) of spins in the molecule

gives one pair of lines; in addition, there is always a highly

degenerate peak at (N-2)6w.

(N-3)-quantum transitions and lower orders can also be coun~ed

by similar schemes. However, the arguments above show that there is

always at least one pair of lines in the (N-2)-quantum spectrum for

each unique direct coupling constant, so the (N-3)-quantum spectrum

mainly provides redundant structural information. In addition. the

effects of intramolecular motion. if they can be detected at all by

NMR, can be detected in the (N-l)- or (N-2)-quantum spectra. Any

process which causes exchange or pseudoexchange (rotation about 'a

bond, for example) between inequivalent sites would decrease the

number of possible monosubstituted species. and therefore would

affect the (N-I)-quantum spectrum. If only magnetically equivalent

sites are involved. the motion operator commutes with the Hamiltonian

in equation (I.II)unless the ordered pair of spins (ij) is transformed
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into an inequivalent ordered pair (kl). Since this process would

decrease the number of possible disubstituted species, it affects

the (N-2)-quantum spectrum. The main advantage of assigning

transitions in the (N-3)-quantum spectra or lower-quantum spectra is

that the additional line assignments give coupling constants with

better accuracy.

1.4.3 Examples of ~lultiple-QuantumSpectra and the Isotopic Labeling

Analogy

This subsection shows how multiple-quantum N}ffi can be applied

to specific molecules, and illustrates the use of the isotopic

labeling analogy. The number of (N-I)-quantum pairs will always be

equal to the number of different species with all but one of the

protons removed. Each possible species with all but two protons

removed contributes either a triplet or a quartet to the (N-2)­

quantum spectrum. If we label the two remaining protons x and y,

and if there is a symmetry element which exchanges x and y, a triplet

results; if there is no such element, a quartet (two pairs) results,

as mentioned earlier. Thus, one pair of lines can be assigned to

each different way that one proton can be labeled x, and another

proton y. This scheme is used in the examples that follow. These

molecules have all been studied by members of the Pines research

group.

1.4.3.1 Acetonitrile (A
3

, with C3v symmetry)

The acetonitrile molecule (CH3CN) contains only three protons,

so its single-quantum spectrum is easily resolvable. However, the

multiple-quantum spectra are useful in studying the relaxation of an

oriented methyl group.42 An unsymmetrical three-spin system would

•••••••••
••
•
•••
•
•
I

•
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Three-quantum: one line

Two-quantum:

x
/\

H-H
one pair

n-Quantum Spectra (n= 1,2,3)

Acetonitrile

3 kHz
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.'
•••
••

One - quantum:

x
/\

Y-H
one pair n = I

H
':C-C=N

W' J
H

n=2 n = 3

XBL B07-10633

•
••

Figure 1.4 The multiple-quantum spectra of the methyl group of

acetonitrile. The high symmetry allows for only one monoprotonated

and one diprotonated species, so the two-quantum spectrum has one

doublet, and the three-quantum spectrum has one triplet.
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have one three-quantum transitions t six two-quantum transitions
t

and

fifteen one-quantum transitions (three of these are degenerate and

'six others are weak if chemical shift differences are small) because

there are three eigenstates each for M = ±1/2 and one eigenstate each

for M a ±3/2. The high symmetry of a methyl group reduces the number

of transitions considerably, as shown in Figure 1.4. There is only

one pair of two-quantum transitions, since there is only one mono­

protonated species CDZHCN; the position of the proton is labeled

x in the figure. Similarly, there is only one diprotonated

species CDHZCN, and this gives a triplet in the one-quantum

spectrum, because there is a symmetry operation which exchanges the

two protons. This can be seen by labeling the two protons x and Yt

as in the figure t and noting that the two ways to do this are related

by a mirror plane. The three protons are magnetically fully equivalent

(each spin is coupled identically to every other spin), so the indirect

intramethyl spin-spin coupling is unobservable unless the full

equivalence is broken (for example, by heteronuclear interactions).

The singlet direct spin-spin coupling can be extracted from the one­

quantum or the two-quantum spectrum.

1.4.3.2 Benzene (AA'A"A" 'A" "A""', with C6v symmetry)

The single-quantum spectrum of a six-spin system without symmetry

would have 792 transitions, but only 15 different coupling constants.

The C
6v

symmetry of benzene reduces the number of single-quantum

transitions to 76 and the number of different couplings to three.
43

All the spins are magnetically equivalent, but they are not magnetically

fully equivalent because there is more than one coupling; this makes

It
••••••••••
•
•
•
•
•
•
••
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3 kHz

n-Quantum Spectra (n =4,5,6)

Benzene•
•
•
•
•
••
•
•
•••

Six-quantum: one line

Five-quantum:

Ox
one pair

Four-quantum:

X X XPo;Oy
y y

three pairs

n=4 n = 5

H H

H*HH H

~lf'/­
n = 6

XBL 887-10629

••
•
•

Figure 1.5 The multiple-quantum spectra of benzene. There is only

one possible monoprotonated species, so there is one pair of five-

quantum lines. The three diprotonated species imply three triplets

(seven lines) in the four-quantum spectrum.
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the spectroscopic notatJ.·on AA'A"A"'A'" 'A"'" i· 1n anJ.sotropic so vents,

as opposed to A
6

in isotropic solvents.

The high symmetry also reduces the number of allm~ed multiple­

28 29
quantum transitions, , as shown in Figure 1.5. There is only

one species of monoprotonated benzene (C6D
S

H
l

) so the five-quantum

spectrum has one pair of lines, instead of the six pairs expected

for an unsymmetrical molecule. There are only three possible

diprotonated benzenes (C6D4HZ)' corresponding to the ortho, meta,

and para configurations, so the four-quantum spectrum consists of

three triplets, for a total of seven lines, instead of the 61 four-

quantum lines found for an unsymmetrical six-spin molecule. The

experimental spectra verify these predictions, and therefore are

consistent with the assumed geometry.

It is useful to consider how the spectra would change if

distortions were present on an NMR time scale. Most distortions,

such as an elongation along an axis perpendicular to the C6 axis,

would make the spins inequivalent and therefore would create more

five-quantum and more four-quantum transitions. However, if the

bonds alternated between two different lengths, as in the classical

nonresonant structure with three double bonds, all the spins would

remain equivalent, and the five-quantum spectrum would still have

only one pair of lines. In this case more lines would be added to

the four-quantum spectrum. However, the extra lines might be

expected to be weak if distortions are small, and would not be

produced at all if the distortions were rapid (which they certainly

44
are in this system.)

••••••••••
•
•
•••
•
•••
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n-Quantum Spectra (n =4,5,61
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Figure 1.6 The multiple-quantum spectra of maleic anhydride. The two

methyl groups would give three diprotonated species if their motions were

correlated, but only two if not, so the number of four-quantum lines

depends on the motional model. There is only one monoprotonated

species, so the five-quantum spectrum does not reflect correlations.
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·1.4.3.3 Maleic Anhydride (A3A3' with uncorrelated methyl group

motion)

At room temperature the two methyl groups of this molecule are

expected to rotate rapidly. As a result, all six spins are equivalent.

There is only one possible monoprotonated species, so there is only

one pair of five-quantum lines, as shown in Figure 1.6. However,

the equivalence of the spins reveals nothing about possible correlated

motion between the two groups. Multiple-quantum spectroscopy provides

a particularly elegant test of correlation, because the number of

lines in the four-quantum spectrum is affected. If the methyl group

undergoes uncorrelated motion, there are only two possible d1protonated

species, giving five lines; if the motions are correlated like two

gears, there are three possible disubstituted species and seven

lines. Recent studies by Jau-Huei Tang45 have shown that only five

lines are present at room temperature, and that their positions are

consistent with uncorrelated motion.

symmetry depends on temperature)

Cyclooctatetraene, CSHS' has been shown to have D2d symmetry at

low temperatures by electron diffraction studies. 46 With this tub­

shaped symmetry, the single-quantum spectrum has 2070 transitions,24

as mentioned earlier. At room temperature, ~ost all ~f these

transitions are broadened by a bond shift process, as shown in Figure

1.7. This process can be viewed as a pseudorotation; spin 1 becomes

spin 2, spin 2 becomes spin 3, and so forth. The transitions are

not resolvable, so the bond shift process has been analyzed by isotopic

substitution;24 the spectra of a random mixture of all possible

•••
•••••
I
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•
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I Figure 1.7 The multiple-quantum spectra of cyclooctatetraene. The

••
single-quantum spectrum has 2070 lines, and is totally unresolvable

when the bond shift rate is comparable to dipolar couplings. The six-

quantum transitions also broaden, but they are still resolvable. In

••
I

the high temperature limit, six lines have disappeared since the

number of diprotonated species is reduced. There is only one mono-

protonated species at any temperature, so the seven-quantum spectrum

is unaffected by the bond shifts. This molecule will be discussed

further in section 6.2.

I
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diprotonated species were analyzed.

Multiple-quantum spectroscopy allows the fully protonated species

to be directly studied. Since all the spins are equivalent, there is

only one monoprotonated species, independent of the bond shift rate;

therefore there would be only one pair of seven-quantum lines, and

these lines give no kinetic information. However, the six-quantum

spectrum is affected by the bond shift. At low temperatures the

DZd symmetry should give six independent dipolar coupling constants

(DlZ ' D
l3

, D14 , D
15

, D
l6

and D18 ; Dl7 = D
l3

by symmetry), so there

are six diprotonated species. The species (1,3) gives a quartet,

since there are no symmetry operations 1 ~ 3, 3 ~ 1; all the other

species give triplets. Labeling the two protons x and y as before,

we find x=l, y=2; x=l, y-3; x=3, y=l (= x=Z, y=4 by symmetry);

x=l, y~4; x=l, y=5; x=l, y=6 (= x=2, y=5 by symmetry); and x=l,

y=8 (= xz 2, y=3 by symmetry), so there should be seven pairs of lines.

At high temperature, the rapid bond shift makes x=l, y=2 equivalent

to x=Z, y=3; x=l, y=3 equivalent to x=2, y=4; and x=l, y=4

equivalent to x=2, y=5. The number of six-quantum pairs should

therefore be reduced to four.

The effective permutation group is the same as that of a regular

-3octagon; however, since D.. ~ <r .. >, the coupling constants will not
~J ~J

have the ratios that octagonal symmetry would dictate. This molecule

will be discussed again in section 6.2

1.4.3.5 Substituted Biphenyls (AA'A"A"'BB'B"B"'; symmetry

depends on model)

The relative motion of the twO phenyl groups of biphenyl and its

derivatives can be studied by measuring the direct coupling constants.

••
•••
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However, the single-quantum spectrum of biphenyl is extremely complex.

Some simplification can be achieved by removing the two protons on

the ends of the molecule, since their distance is independent of the

ring motion, but even with this substitution the single-quantum lines

47a
cannot be completely resolved. Diehl and co-workers analyzed the

spectrum of 4,4'-dichlorobiphenyl by picking out a number of the

transitions and iterating on their frequencies. The spectrum of

47b4,4'-bipyridyl has also been analyzed.

By contrast, the multiple-quantum spectra of substituted

biphenyls are easily resolvable. The seven-quantum spectrum will

always contain two pairs of lines if the substituents are identical,

since there are two monoprotonated species, as shown in Figure 1.8.

Even if the substituents are not identical, the biphenyl structure is

not likely to be substantially distorted, so two pairs are still

48
expected (although the lines may be split). The number of six-

quantum lines depends on the motional model. Either free rotation

or jumps between four equivalent sites (corresponding to inter-ring

angles 8~ -8, TI + 8, and TI - 8) will give seven diprotonated species;

labeling the spins x and y shows that there are ten pairs of lines.

However, jumps between only two sites (corresporlding to inter-ring

angles 8 and -8) will give fourteen pairs of lines, as will a small

amplitude rocking motion around a single site. Steve Sinton has shown

that eight pairs of lines are visible above the noise level in the

six-quantum spectrum of 4-cyano-4'-pentYI-d
ll

-biPhenyl,48 and their

positions coincide with those of eight of the ten pairs which a

four-site model would generate. Computer simulations have shown
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Figure 1.8 The multiple-quantum spectra of a typical para-disubstituted

biphenyl. The two substituents are different, but the rings should not

be strongly distorted, and the dipolar Hamiltonian is assumed to have

a symmetry operation which exchanges them. There are then two mono-

protonated species, so there are two pairs of seven-quantum lines.

Jumps between four equivalent values for the inter-ring angle would

give seven diprotonated species (four triplets and three quartets)

and ten pairs of lines.

••••••
II
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that the remaining two pairs are expected to be weak, and extensive

signal averaging would probably be required to observe them. It is

interesting to note that isotopic labeling of the substituents was

combined with multiple-quantum NMR to study this molecule.

Synthesizing the molecule with a perdeuterated chain is straightforward49

but selective substitution on the rings is more difficult.

1.5 Conclusions

The conventionally observed ~ = 1 transitions do not have any

special information content that cannot be found in other transitions.

In fact, the dramatic spectral simplification which occurs ~s ~

increases makes the observation of multiple-quantum transitions

advantageous. The multiple-quantum transitions are readily

interpretable and generally resolvable, and this makes their

observation an important and practical alternative to spin labeling.
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II. Theory of ~ultiple-quantum N}m

It was shown in Chapter I that the observation of multiple-

quantum transitions provides dramatic spectral simplifications

compared to the observation of single-quantum transitions, without

any real loss of information content. Nevertheless, until recently

multiple-quantum NMR has not been extensively used, and single-

quantum NMR is still much more common. One important reason is

that, while it is possible to produce multiple-quantum transitions

. 50-54
by cw techn1ques, the technique has serious limitations which

will be discussed in section 2.2. Even if a spectrometer is designed

to give rf pulses, it may not be versatile enough for multiple-quantum

experiments. It should also be noted that single-quantum spectra

are not always as complicated as the worst cases discussed in section

1.4 would imply. In an isotropic system, for example, many transitions

will be nearly degenerate or will have vanishingly small intensities

if the chemical shift differences are much larger than the J couplings.
8

The most important reason, however, is the difficulty of producing

multiple-quantum spectra with good signal-to-noise ratios. It is

not coincidental that all of the molecules listed in section 1.4.3

are fairly small (eight spins or less with some symmetry). The problem

is best understood through the density matrix formalism, which will be

developed in the next several sections.

2.1 Operator Formalisms

2.2.1 The Density Matrix

The density matrix is a standard quantum mechanical tool for

5,55 A tdealing with coherent processes and mixed states. ny pure sta e
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can be written as a linear combination of the basis functions of any

complete orthonormal set

The expectation value of any observable operator A is then

(11.1)

<'¥IAI'¥> = l:
i,j

c c* <jIAli>
i j (11.2)

The operator A can be represented by a set of numbers A.. such that
J.J

A
ij

• <iIAlj>; these numbers are usually written in matrix form. If

the system is not known to be in a pure state (for example, if only

ensemble averages of observables over a macroscopic sample can be

measured) then equation (11.2) is replaced by

<'I' IAl '¥> == <A> = l:
i,j

c c* <jIAli>
i j

(11.3)

The density matrix element P.. is defined to be equal to ~;
J.J J. J

the density operator P = l: P. li><jl. It can be seen from equation
i

. J.j
,]

(11.1) that P
ii

is the population of state i, and that P
ij

(i#j) is

only nonzero if there is a definite phase relationship between the

coefficients c. and c. that survives the ensemble averaging. This
J. J

phase relationship is called coherence.

Equation (11.3) can be further rewritten as

<A> :0::: = l: (pA) ..
i J.J.

= Tr(pA) (II. 4)

Thus the expectation values of all observables can be predicted

if all the elements of p are known, and therefore p contains all the



34

available information about the system.

The equation of motion under a Hamiltonian Je(t) is

•pet) R i[p(t),X(t)] (II. 5)

If the Hamiltonian is time independent (d[(t) = ~, equation (11.5)

can be simplified considerably. In this case

•pet) ., i[p(t), X] (IIo6a)

pet) ., i[p(t), xl (II.6b)

pet) =exp(-:iJCt)p(o) exp(iJCt) (II. 7)

Thus, in the absence of relaxation, pet) is related to p(o) by

a unitary transformation, called the propagator. This relation

holds even if X is not time independent; in that case the propagator

is T exp (-i!K(t)dt), where T is the Dyson time-ordering operator. All

properties which are invariant under unitary transformation are therefore

constants of the motion; these include Tr(p) = L
2 56 i

L Ipijl , and the entropy S = -kTr(p In p).
ij

p = 1, Tr(p2) =
ii

From statistical mechanics it is known that at equilibrium the

density matrix for a canonical ensemble will be Po = exp(~/kT)/Tr

(exp(~/kT». The Zeeman Hamiltonian j{ is usually the largest term
z

by far in j{, so that

1 - 61 + ...z

B (yB /kT)/Tr(exp(~ /kT»
o z

(11.8)
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and at normal magnetic field strengths 8 « 1 unless T « 1 K, so

only the first two terms in the expansion in equation (11.8) are

retained. In fact, the identity operator is frequently omitted, since

it commutes with all other operators and does not affect the

evolution. This produces a reduced density matrix p = -81. The
o z

same symbol will be used for the full density matrix and the reduced

density matrix, with the meaning clear from context (the reduced

density matrix will be used exclusively for the rest of this work,

except for section 6.3). All the properties of the density matrix

also hold for the reduced density matrix, except that the reduced

density matrix is traceless.

It is frequently convenient to separate the system Hamiltonian

into two parts H
O

+ HI' and then go to an interaction representation

defined bylO

A is any operator, including the density operator. It can be

readily shown that

<A> & Tr(pA)

(11.10)

(11.11)

For a system which is irradiated at frequency w the choice HO = WI z

is particularly convenient. This generates the rotating frame

Hamiltonians of section 1.2, in which continuous irradiation gives

a time independent X
rf

. Equation (11.11) implies that all observables

must be referenced to the radiofrequency field. For example, I x
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is not parallel to the laboratory x-axis at all times, but it does

have a definite phase relation with the rf. The tildes will be

dropped for the rest of this work, but the rotating frame is assumed.

Equations (11.5-7) are only valid for nonexchanging systems in

the absence of relaxation. The theory of exchanging systems will

be discussed in section 6.2. . 57 58The simplest treatment of re1axat~on '

introduces relaxation times T
1

and T
2

for the off-diagonal and

diagonal matrix elements respectively:

P ..
~~

P ..
~J

P ..
i [ P ,X] .. - 2.l

~J )(T
2

..
~J

(11.12)

(11.13)

In

is useful for computer calculations.

h ( Q I) . h . 1 .b . l' f h . thw ere -~ .. ~s t e equ~ ~ r~um popu at~on 0 t e ~ state.
z ~~

the most general case (T
2

) .. is different for every transition.
58

~J

2.1.2 Fictitious Spin Operators

The evolution of a system in the density operator formalism can

be viewed from two different perspectives. One possibility is to

examine matrices, i.e., focus on an individual element p .. of the
~J

density matrix, and observe how this element changes with time. The

element is calculated through matrix manipulations. This perspective

P .. depends on the choice of
~J

the basis set, and the obvious choice is the Hamiltonian eigenbasis,

but frequently the values of chemical shifts and coupling constants

are not known in advance, so this basis cannot be determined.

The other possibility is to examine operators. For example,
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the equilibrium density operator is -B1 = -B ~ I i' where I
z 1 z zi

h i th "An h" hacts only on t e sp1n. operator w 1C acts on n spins (for

example. I I I ) may connect states with ~ = O. ±l•.•.• ±no
xl y2 z3

However. not all n-spin operators give ~ = n. The expectation

values of all operators can be calculated as a function of time to

describe the evolution of the system.

Clearly. the choice of a basis set is as important for an

operator perspective as it is for a matrix perspective. A system

N N
of N spins-1/2 has 2 eigenstates. and 4 linearly independent

operators are required to describe it completely (there is one

constraint. Tr p = 1). Several useful basis sets are:

2.1.2.1 Single Spin-1/2 Operators

Each spin has two states a and B. so it has four linearly

independent operators. These four can be chosen as I • I • I •
xi yi zi

N
This gives 4 operators for the entire system. and the

constraint Tr p = 1 simply specifies the expectation value of the

1. The identity matrices are generally
n

omitted from all other operators.

One disadvantage of this basis is that it can be difficult to

tell what values of ~ are produced by certain linear combinations.

For example. the operator I x11x2 connects states with ~ = O. ±2.

as does the operator I 1
yl y2

~ ~

However. 1 II 2 + I I = 1 °1
x x yl y2 1 2

I I commutes with I • and hence only connects states with ~ O.
zl z2 z

This problem can be avoided by the use of raising or lowering

+ O±
operators 1- = 1 ± iI • and either I and 1 or I = 1/2 ±

x y z

I .59.60 Commutator relations and matrix representations
z



operator in the I , I ,
x y

basis. Operators in the
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for these operators are listed in Appendix E.

+ - 0+ 0-A single operator in the basis I , I ,I ,I (for example,

+-+
Il~213) corresponds to a single density matrix element in the spin

product (SP) basis, and this basis is useful for that reason. Every

NI , 1 basis set has 2 elements in the SPz

1+, I , I , 1 basis set have 2g elements,z

where g is the number of times I or 1 occurs.z

2.1.2.2 Generalized Spin Operators

Fictitious spin-l/2 operators were defined by Vega and Pines for

61
spin-l systems. These are:

I 1=1/2 Ix, x

I 2=1/2(1 I +1 I )
x, Y z z Y

I 3-1 / 2(1 2_1 2)
x, z y

I 1=1/2 I
y, Y

I 2=1/2(1 I +1 I )y, z x x z

I 3=1/2(1 2_1 2)
y, x z

I 1=1/2 Iz, z

I 2=1/2(1 I +1 I )z, x y y x

I 3=1/2(1 2_1 2)
z, y x

(11.14)

A spin-l has three states and nine linearly independent operators.

All nine of the operators in equation (11.14) are traceless, so they

cannot all be linearly independent, and in fact I 3 + I 3 + I =x, y, z.3

O. Double-quantum transitions in the presence of quadrupolar inter-

actions are readily described in this basis. These operators are

easily generalized to the case of N coupled spins-I.

A set of fictitious spin-1/2 operators for general multiple­

quantum transitions can also be defined.
62

Every pair of eigenstates

Ir> and Is> becomes an effective two-level system, with three

operators
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<illY Ij> c (-iIZ)(Oi OJ - 0i 0. )rs r s s Jr

<iII
Z

Ij> c!z (Oi OJ - 0i 0. )rs r r s JS
(11.15)

These operators can be used for spin-l systems, and in these systems

are related to the operators defined by Vega and Pines. In a system

with N spins-1/2 there are ZN(ZN_l ) possible pairs of spins, so there

are far more operators than can be linearly independent (for example,

if N = 6 there are 12096 operators, all of which are traceless, but

only 4095 traceless linearly independent operators). This makes

these operators inconvenient for large systems.

2.2 Simple NMR Experiments

2.2.1 Continuous Irradiation

The simplest method of inducing transitions between two states

Ii> and Ij> is to irradiate the system with photons which have an

energy equal to the transition energy and monitor the absorption.

In the presence of continuous rf irradiation at the frequency w,

the rotating frame Hamiltonian can be written as

-J{ -wI
Z 1 x

(11.16)

All of these symbols were defined in section 1.Z. The density matrix

equation of motion (11.12-13) is most conveniently expressed in the

X eigenbasis:
Z
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w ~ <ilX Ii> - <jlX Ij>ij z z

(II.l7)

(II .18)

(11.19)

The observable operator is the transverse magnetization in the

rotating frame

<M > - C Tr(pI ) = Cy y
(II.20)

The spectrum is obtained by sweeping w or w over the region of
o

interest. If this sweep is done slowly, it may be assumed that

p ~ O. This gives:

(11.21)

(II. 22)

The steady-state solution for the signal S is easily expanded in

powers of wI:

(II. 23)

(II. 24)

(1)
w

1 Pii
= 0

(1)
w1 P..

J.J
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(11.25)

Equation (11.24) merely shows that there is no transverse

magnetization if wI = 0 7 since the system is then at equilibrium

with the static field. Equation (11.25) gives the conventional

high-resolution NMR spectrum, and several important features should

(1)
be noted. Pij • 0 if (IY)ij • 0, and since I y is a single-quantum

operator only matrix elements with 8M - 1 can be excited. In

(I)
addition, Pij is small if Wij {T2)ij « I, so W must be within a

few linewidths of the frequency difference between states Ii> and Ij>

for (I) to be substantial.Pij
Thus only transitions which are nearly

resonant contribute to the signal. Finally, the lineshapes are

Lorentzian, and the intensity of the transition between states Ii>

and Ij> is proportional to II I:j •
y 1

Multiple-quantum coherences will only appear to higher powers in

2 (2)
For example, WI pis:

2 (2)
WI Pij

(11.26)

p~~) can have nonvanishing matrix elements only between states with

~ = 0, ±2. For these matrix elements to be substantial the following
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conditions must be fulfilled.

1. If &~ = 2 this implies that 2w is nearly

equal to the frequency difference between states i and j; if &~ a

this condition cannot be matched by changing w. Thus p(2) does

not have substantial zero-quantum operators.

2. wI must be at least comparable to <w
ik

- ~j>' the frequency

spread of the single-quantum transitions.

3. However, the energy levels which are connected by I or I
x y

must have some anharmonicity. If the levels are perfectly harmonic

and ~ = 2, then

for other values

(2)w
ik

= w
kj

and P
ij

of ~.

= o. Similar results hold

Even if all of these conditions are met, so that p(2) has two­

quantum operators, S(2) = Tr(I p(2)) = O. Only single-quantum
y

operators are observable. However, a large two-quantum operator

generates single-quantum operators in p(3), and therefore s(3)

3
(which is proportional to wI ) gives signal for two-quantum

transitions.

Transitions with ~ > 2 require higher-order perturbation theory,

which will not be done here. A complete solution can be found in

reference (52). However, the form of equations (11.21-22) allows

some qualitative comments. The first term which has n-quantum

operators is p(n); if n is even, p(n) has only even-quantum operators,

·and if n is odd it has only odd-quantum operators. The n-quantum

operators must generate even higher-order terms with single-quantum

operators in order to be observable, and the first such term is

(2n-l) .. (2n-l)
p , so the s~gnal ~s proportional to WI . The n-quantum

transition can only give substantial signal if ow is nearly equal to
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its frequency difference, and this implies that zero-quantum

transitions do not appear because they cannot be put on resonance.

However, if S(2n+l) is large the signal for the n-quantum transition

will tend to decrease. For example if the single-quantum transition

Ii> ~ Ik> (~=Mi+l) is the only resonant transition, then pi~) < 0,

p~) > 0, the population differences are deplete~ and S(3) reduces

the signal. This effect is called saturation. Lower-quantum

transitions saturate at lower powers, but the high-quantum transitions·

have only a narrow range for WI between the value which starts to

produce them and the value which causes them to disappear through

saturation.

The net result is that continuous wave multiple-quantum NMR is

51sometimes useful for two-quantum or even three-quantum transitions,

but is not really useful for higher quanta. In a small spin system

the two-quantum transitions can help in line assignments,53 but in

larger systems the two-quantum spectra are hardly simpler than the

single-quantum spectra, and the additional experimental difficulties

are rarely justified.

2.2.2 Pulse Methods: Single-quantum Experiments

An alternative method of observing NMR transitions involves

applying one or more intense rf pulses and then observing the

transverse magnetization as it evolves under X. The simplestz

experiment is to apply one pulse as in Figure (II.la). During the

pulse the Hamiltonian is that of equation (11.16). If the pulse has

a length t , the density matrix at the end of it is, from equation
p

(11.7),
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90 X

I I
fl I <Ix>, <I y>

____ 1.- 1.-1 -_.:...-----

90 X 90x 90x

b) J~_T_._1L.- f
_1 I

XBL 807-10631

Figure 11.1. Simple pulse sequences for NMR experiments. In this

notation 90 is the flip angle of the pulses in degrees (8 = 180 wltp/TI,

where wI is the rf field strength and t
p

is the pulse width) and the

subscript indicates the phase of the rf relative to some reference

wave. The sequence in part a prepares and detects only single-quantum

transitions. The sequence in part b prepares and detects multiple-

quantum transitions.



p (t )
p

exp(-i(K -WII )t )(-31 )exp(i(K -w1I )t )
z xp z z xp

(11.27)
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WI and t
p

are controlled by the experimenter. If WI is large

enough, it is possible to pick t
p

such that wlt
p
~ 1 but all matrix

elements of K are much less than 1. Using the concept of the norm
z

of a matrix defined in Appendix E, and the expansions for exponential

operators given there, one finds that

pet ) ~ exp(iw
1

t I ) (-61 ) exp(-iw
1

t I )
P px z px

-SCI cos(w1t ) - I sin(Wlt »
z p y p

(II.28)

since the contribution of j{ is negligible. The dipole moment
z

->- 6
lJ = )'1 is ro ta ted by an angle e = W t away from the z-axis.

1 p

If 6 = TI/2 all of the population differences are simultaneously

depleted, and these differences are transferred into single-quantum

coherence. The signal after a time t
l

of free evolution is:

<M (t »
y- I

c 2: P .. (tl)(I ) ..
ij lJ Y J l

c [ p .. (t ) exp (iw .. t 1) exp ( - t. I (T?) .. ) (I ) ..
lJ P lJ 1 ~ lJ Y J l

ij

-cS
?

L 1'1 I"" exp(iw .. t
l

) exp(-t/(L) .. ) sin(Wlt
p

)
y ij lJ 1 L. lJ

ij

(11.29)

Fourier transfonnation >lith respect to t
l

gives:



S (w)
2

= -cS sin(w1tp) I II I .. (T2)· ./(l-i(UH.Ll .. )(T
2
)..)

ij y 1J 1J 1J 1J
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(II. 30)

Comparison of equations (11.30) and (11.25) show that the

spectrum obtained from weak cw irradiation is exactly proportional

to the spectrum obtained from Fourier transforming the free induction

21decay (FID) after one pulse.

2.2.3 Pulse Methods: Multiple-Quantum Experiments

2.2.3.1 Simplest Multiple-Quantum Sequence

The simplest pulse sequence for producing nonselective wideband

multiple-quantum spectra is shown in Figure (II.l(b».28,32,63 The

first two pulses are separated by a delay T. At the end of the

second pulse, the reduced density matrix is:

PMQ(t) = -8 exp(-i~I /2) exp(-tK T) exp(irrI /2)1 exp(-irrI /2)
y z y z y

exp(iX T) exp(irrI /2) =-6 exp(-~ T)I exp(iX T)z y x z x

(11.31)

(11.32)

In general j( will contain zero-quantum, one-quantum_and two-quantum
x

operators, so the complex exponential can give P matrix elements

corresponding to all multiple-quantum orders. After these pulses,

the system evolves under X
z

for a time t
l

. Multiple-quantum

coherences do not correspond to oscillating magnetization, so they

cannot be directly detected, and a third pulse plus a delay t z are
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needed to partially transfer them back into the observables <I > and
x

is repeated with different values of t
l

.<I >. The sequence
y

signal as a function of t
l

is

The

<M (t
l
»= C Tr(pI ) =C Tr(p exp(-inI /2) I exp(inI /2)

x x Y z Y

x exp (-j){' T)1 exp(j}{' T) exp(iX t
l
»

x z x z (11.33)

-1
c:: -cB (11.34)

where PMQ(-tZ) is defined by analogy with equation (11.31). The

signal is Fourier transformed with respect to t
l

to produce a

multiple-quantum spectrum. For simplicity of notation relaxation

terms have been neglected; if t
l

, t z « TZ they can be included

in Equation (11.34) by replacing exp( iw .. t
l

) with exp(iw .. t
l

)
1J 1J

exp(-tl /(T2)ij) •

Equation (11.34) reveals several differences between pulse and

cw multiple-quantum experiments. The linewidth of each transition

is (T
2
)ij for the pulses, but this is true only for the single­

quantum transitions in the cw experiment. The apparent frequency

of a n-quantum transition is the frequency difference (in the rotating

frame) between the two states with the pulse sequence, but is a factor

of n smaller than this in the cw case. The most important difference,

however, is that the rf field strength WI does not appear in the

pulse expression, as long as WI is large enough so that X
z

can be
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neglected during t. As a result, there are no saturation effects.
p

2.2.3.2 Separation of Orders; Removal of Static Inhomogeneity

Several simple multiple-quantum pulse sequences are illustrated

in Figure (11.2). Inspection of X shows that the n-quantum spectrum
z

is centered at ~w with the sequence in Figure (II.2(a», so different

values of n will be completely separated if ~w is greater than the

spectral width I IX I I. However, if the field is inhomogeneous, thez
~

resonance offset term must be replaced with·~w(r)I , and the n-quantum
z

transitions are n times wider than the single-quantum transitions.

The simplest method of removing this inhomogeneous broadening

. 36 37 63is to put echo pulses ' , in t
l

. For example, if X = X +
z D

+
~(r)Iz' a single 1800 pulse at t l /2 is sufficient (Figure (II.2(b»,

with ¢ ~ y and ¢ + TI = y). In this case the evolution propagator

exp(-1Xz t l ) in equation (11.34) is replaced with

~

since [XD,~w(r)Iz] = O. The broadening is completely eliminated, but

all of the multiple-quantum spectra are centered at w = O. This

overlap also occurs in continuous wave multiple-quantum, but there

the number of quanta can be identified by the WI power dependence

of the transition.

Several different techniques exist for determining the number of

quanta associated with a particular transition. For example, a static

field gradient can be applied for a short interval a in t
l

; the

n-quantum coherences will dephase n times faster than the single-
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<1 z>
XBL 8010-12245

Figure 11.2. Several common pulse sequences for multiple-quantum NMR

experiments. The sequence in part b) removes static inhomogeneity

terms. Part c) illustrates a useful concept for understanding

multiple-quantum NMR: the pulse sequences are more symmetric if I z

is imagined to be observable.
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quantum coherences. If the same gradient is applied during t z' any

magnetization arising from single-quantum coherences in t
l

will refocus

after the same interval 0, but signal from n-quantum coherences will

refocus at no. 33 ,64

Other approaches rely on the behavior of n-quantum coherences

under phase shifts of the irradiating field. A phase shift of ¢ in

the first two pulses of any of the multiple-quantum sequences discussed

so far will change PMQ(T) in equations (11.31) and (11.34) to P~Q(T):

(11.36)

(II.37)

For example, if ¢ = n all of the (2n+l)-quantum coherences are

multiplied by -1, but all the (Zn)-quantum coherences are unaffected.

Adding spectra with ¢ = 0 to spectra with ¢ = rr will eliminate all

28 34 63odd-quantum coherences. " This method is readily generalized;

for example, adding n spectra, each shifted by ~ = 2n/n, retains only

transitions with ~ nk (k = 0, ±1 , ±2 , ••• ).

A third method, which permits the simultaneous observation of

all multiple-quantum transitions, is known as time proportional phase

incrementation (TPPI).29,30 In this experiment, whenever t
l

is

incremented by 6tl , the phases of the first two pulses are incremented

by 6¢ = (6w')6t
l

. Then ¢ = 6w't
l

in equations (11.36-37). Substitution

into equation (11.33) shows that the n-quantum coherences appear to

evolve at n6w' + Wij ' so if 6w' > I /Xz / I all of the transitions are
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separated, and the spectrum is the same as would be produced by a

perfectly homogeneous field without echoes.

Z.Z.3.3 The Choice of Observable Operators

There is actually a great deal of similarity between the roles of

T and tzin equation (11.34). This symmetry is partly hidden in the

pulse sequence by the experimental need to measure <I > or <I > even
x y

though the initial density matrix is proportional to I. If instead
z

it is assumed that <I > can be measured, as in Figure (II.Z(c», an
z

additional pulse is needed at the end of t Z• The sequences in parts

(b) and (c) would always give the same spectra. but in part (c) the

symmetry between T and t z is apparent. For this reason the theory

will be developed (here and in later chapters) as if <I > were
z

detected. The experimental pulse sequences will always include one

additional pulse immediately before detection. to sample <I > or <I >.
x Y

Z.3 Preparation of Multiple-Quantum Coherences

It is clear from equation (11.34) that multiple-quantum coherences

will only be observed if they appear in PMQ(T) and PMQ(-tZ). However,

not all values of T or t z are useful. For example, if T = O.

equation (11.31) reduces to PMQ(O) = -BIz. and no coherences can

be observed. The same problem obviously occurs if t z = O. On the

other hand, there is clearly an upper limit to desirable values of T

and t z because of relaxation effects. Thus. a very important problem

is to determine the optimum values of T and t z for observing a

particular transition.

If X is known, this problem may not seem difficult; in principle
z

PMQ(T) can be calculated exactly. In fact this can be done by hand for
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. 61-63very £mall systems (for example, a single isolated sp~n-l) but

since the number of states for a system with N spins-li2 as 2N explicit

Calculations rapidly become difficult. Some computer calculations

with systems as large as six spins without symmetry or eight spins with

66symmetry have been completed (see also sections 3.2 and 4.2).

However, in most actual experiments X is unknown (the purpose of the
z

experiment is to measure it). In this case, explicit calculations

are not possible. Nonetheless, even in this case several important

conclusions can be drawn from the form of equation (11.31).

2.3.1 Small Values of T

One useful approach is to differentiate with respect to T:

(11.38)

(II. 39)

Equation (11.39) can be used to generate a power series expansion

around T = 0:

~_Q(T) c -B(I +iT[1 ,X ]
. M z z x

2­
T

2
[r I ,X ] ,X ] + ... )

z x x
(11.40)

As expected, PMQ(O) = -BIz. All other terms involve commutators,

and their form depends very much on the nature of the system being

studied.

2.3.1.1 Isotropic Systems

In this case X is, from equation (l.lO),
x

X
x

= ~wI - L 0i I . + L
x i X~ i>j

J .. (1. ·r.)
~J 1. J

(II. 41)
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I
z

- E I zi is the sum of operators which act on only a single spin;
i

so are 6WIx and EOiI
xi

. The commutator between any two single spin

operators is also a single spin operator (in fact it is the sum of

operators lxi' I
yi

and I zi). H~~ever, a n-quan~dm operator must

involve n spins. Therefore, if X
J

= 0 multiple-quantum coherences

never develop. In addition, [XJ,I z ] - [XJ,Iy ] - [XJ,I z ] = O. This

implies that if all the chemical shifts are equal (in which case they

can all be made zero by redefining 6W) then equation (11.31) becomes

c -B(I cos(6WT) - I sin(6wT»
z y

and again no multiple-quantum coherences are produced.

(II. 42)

Even if neither of these conditions holds, the term proportional

to Tis:

-iTB[I ,X ] c (-nwI +EOiI i)TB (11.43)z x y y

which has only single-spin single-quantum operators. The term

2
proportional to T is

Z 1 2 2 2
f3 TZ [[Iz'Xx],Xx ] c 2" BT (6w I z-26w Eo. I .+Eo. I .

i :1. z~ i:1. Z:1.

+ (II. 44)

The second and third terms are secular, but they do not commute with

X , so they can generate coherences between states with ~f c O. The
z
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fourth term has two-spin operators, but they are only single-quantum.

The term proportional to T3 has three-spin operators which come from

the commutator of the fourth term in equation (11.44) with X
J

. However,

all these operators are still single-quantum since X
J

is secular. It

also has two-spin two-quantum operators which come from the commutator

of the fourth term in equation (11.44) with tail i. These are:
i x

3Thus the first two-quantum operators are proportional to T. Roughly

speaking, the two-quantum operators will not be significantly large

until <J
ij

(Oi-G
j

)2T3> ~ 1. Frequently this implies values for T

(and t 2) of tens or hundred of milliseconds.

This line of reasoning is easily extended. In general, the first

nn-spin operators are proportional to T , but these operators are only

single-quantum; the first n-quantum operators only occur after Cn-l)

more commutators, so they are proportional to T(2n-l) •

2.3.1.2 Anisotropic Systems

-+ -+
The additional term here is X = r Di .C3I .1 .-lioI.), which has

xx J X1 xJ J

zero-quantum and two-quantum operators:

(11.46)

Equation (11.46) is readily verified by examining the rotational

properties of second-rank tensors._ The term proportional to T is:

01.47)
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Single-quantum and double-quantum operators first appear

proportional to T. Unlike the isotropic case, multiple-quantum

coherences are produced even if X = O. In fact if X ~ 0 and
cs cs

t:.w .. 0 j( has only zero-quantum andx
63

has only even-quantum coherences.

~wo-quantum operators, so PMQ(T)

This term will be substantial

when <In TI 2>1/2 ~ I, and typically this is a fraction of a
ij

millisecond.

2
The T term is proportional to the commutator of equation (11.47)

with X. It can immediately be seen that no operators involving morex

than three spins are present; in addition, the three-spin operators

arise from the commutators of X
J

or Xxx with the last term of

equation (11.47) so they are even-quantum. In general, the term

2
proportional to T then has operators with ~ = 0, ±l, ±2. As with

isotropic systems, this reasoning is readily extended. The first n-spin

(n-l)
(n > 1) operator is proportional to T • If n is even, this term

has n-quantum operators; if n is odd the next term does. The

dependence on T for different values of ~ is listed in Table 11.1.

2.3.2 Long values of T

2.3.2.1 Isotropic Systems

The results of section 2.3.1.1 show that a reasonable intensity

for multiple-quantum transitions can only be expected if terms

proportional to high powers of T cannot be neglected,: in which case

a power series expansion does not converge. A more profitable

approach in this case is to expand the propagator in powers of J
ij

,

since typically Ilx II» IIJC
J
II (see Appendix E for the definitioncs

of this norm and for the expansion). PMQ(T) can be written as:
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Table 11.1

Dependence on T of multiple-quantum coherences produced by the sequence

(90 - T - 90-)
y y

Initial T power dependence

lIM Isotropic Anisotropic

0 2 2

1 ~ 1

2 3 1

3 5 3

4 7 3

n(even) (2n-l) n-l

n(odd) (2n-l) n
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PMQ (1) ~ BR{exp(-i(X ~J+~WI )1)1 exp(i(X +K +~wI )l)}Rt
cs z x cs J z

(11.48)

where R ~ ext< -iTII /2) .
y

replacing I zi ~ lxi' l
xi

~ -Izi ' I yi ~ I yi in any explicit operator

expression found for the quantity in brackets. In the spin product

basis set, X + bwI + r JijI iI j is diagonal. -Choosing this ascs z z z

A in the expansion for exp(A+B) given in equation (E.lO) one finds:

(11.49)

(II. 50)

For simplicity assume that I~i - ~j I » J ij (this is equivalent

to the condition that the spectra be first order) and I~i - ~j I 1 ~ 1.

Then the second term in equation (11.49), and all higher-order terms

in equation (E.lO),are much smaller than the first. The three parts

of ~ all commute with each other so equation (11.48) reduces to:

(II. 51)

= (II. 52)
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To simplify this further, pick a particular value of i (say

i = 1). Then all terms JjkIXklxj (j,k ~ i) in (11.52) can be

neglected, since they commute with I
ZI

and I
y1

' and only (n-I)

products appear in (11.52). It is readily shown that

(11.53)

(11.54)

This permits the coefficients for any operator in PMQ(T) to be

explicitly written. As an example, consider the N-quantum transi-

tion in a system with N spins-1/2. For any given i, the only

operator in (11.51) which induces N-quantum transitions is

I .).
XJ

Its coefficient is:

S(COS«~W-Ol)T) n 2sin(Jij T/2))
j"i

S(sin0w-0
i

)T) n 2sin(Jij T/2»)
j7'i

(N even)

(N odd)

-N +
(I )( r I .) has the N-quantum operator (i) (2 ) (IT Ii)' plus

yi itj XJ i
other operators. Finally, the magnitude of the coefficient of the

N-quan tum coherence in the density ma trix is
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1.. 13 0: cos ((.6w-o .) T) IT sin (J, . T/2) ) (N even)2
i

~
j,li ~J

1 13 0: sin~w-o i) T1 II ~sin(J .. T/2» (N odd)2 ~Ji j~i

(11.55)

The actual value is imaginary if the phases of the first two pulses

are chosen as y and y. These expressions have several important

features.

1. The maximum value for the N-quantum coherence is 8 N/2, for

a value of T which makes all of these sine and cosine terms equal to

1. This is only possible if all the J ij and a
i

values have rational

ratios, but even if this is not the case the signal can come

arbitrarily close to 8 N/2. This is equal to the value of 8 I for
z

the ex treme states. I t will be shown in sec tion 3.5.1 tha t this

is the maximum value any coherence can have.

This maximum can only be achieved if the predicted value of

T «T
2

. In general, some of the spins will be weakly coupled

(J
ij

« 1 Hz) and in this case sin(J
ij

T/2) ~ 1 implies an unacceptably

large value of T. Relaxation effects are easily included if it is

assumed tha tall coherences dephase wi th the same value of T2 ; the

expressions in (11.55) must then be multiplied by exp(-T/T2).

2. Neglecting relaxation, it is possible to formally integrate

over T to get an estimate of the average N-quantum coherence magnitude.

The result is:

(II .55)
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. This can be compared to an average coherence magnitude since

PMQ(T) is related to BIz by a unitary transformation. Then

(11.56)

The average N-quantum coherence magnitude is exactly the same

as the overall average coherence magnitude. However, if one spin is

coupled very weakly to all the rest (J ..T
2

« 1 for all j with one
1J

specific i) the magnitude of the N-quantum coherence for acceptable

values of T is much smaller. Lower-quantum coherences are not as

seriously affected, since those operators do not involve couplings

from one spin to all others.

3. Assume that the coupling J
i

. is weak. Then the terms
. J

involVing 0i or OJ in (11.55) are very small. The dominant terms

in the sum over i will be from spins which are relatively strongly

coupled to all others. The form of (11.55) implies that the N-quantum

coherence depends on the product of the couplings of all spins to one

(Figure (II.3a)) rather than a chain of couplings (Figure (II.3b)).

4. The N-quantum coherence oscillates rapidly as T changes

because of the (~-Oi) terms. Slower oscillations come from the J ..
1J

terms. The most probable value of the magnitude is not 0, as would

be expected if the distribution were Gaussian about the origin.

Instead, as the number of strongly coupled spins increases, the



a. Clustered Couplings

61

b. Chained Couplings

XBL 8010-12248

Figure 11.3. Two general schemes for development of multiple-quantum

coherence. In isotropic first-order systems only the-product of the

couplings from one spin to all others matter, as in part a). In

anisotropic systems the chained product of couplings also contributes,

as in part b).
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oscillations will tend to die away and deviations fro~ the average

will become less frequent.

2.3.2.2 Anisotropic Systems

In most isotropic systems the largest terms inithe Hamiltonian

are mutually commuting, which considerably simplifies the analysis.

This is not the case for general anisotropic systems unless

Ilx c! I » IlxD11 and for most systems this implies static magnetic

fields orders of magnitude larger than are currently available.

One special case that can be solved exactly occurs if all the spins

are magnetically fully equivalent, which implies that all the Dijs

65are equal. One example is bullvalene, which has 10 spins. In

this case

-+ -+ -+ -+
X c bwI + D r(3I .1 .-1 '1,) + J r Ii-I

J
.

Z ZJ. zJ i J

All the terms involving Ii-I
j

commute with the rest of the

13
Hamiltonian, so they can be deleted. The remaining terms are

mathematically identical to equation (11.50) with the substitutions

J
ij

- 3 D,oicO. The N-quantum coherence in an N-spin system is then

NS N-l:z COS(~WT) sin (3DT/2) (N even)

(N odd) (II. 57)

Again the maximum possible value is SN/2 but unlike the

isotropic case this value is easily attained (for example, in an

even-spin system set 6w = 0 and T = TI/3D). ~~en N is large the

N-l .sin term produces very sharp peaks and broad valleys as T J.S
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changed and this has important implications for two-dimensional

spectroscopy (to be discussed in section 6.1). The average

N-quantum signal is

</p (T)1 2> = B~2 2-(2N+l) (2N-2)'/(N-l) ,2
MQ N/2,-N/2 •. (11.58)

This is generally much larger than (11.55). Here, however,

the magnitude of an average coherence should be calculated using

the known symmetry. 40Total spin I is a good quantum number so

the N-quantum coherence belongs to an irreducible representation

which has only N+l states, one for each value of M. The available

portion of Tr(I 2) is N(N+l) (N+2)/12 so thatz

These values are compared in Table 11.2. It is clear that the

symmetry greatly strengthens the allowed transitions, and that the

N-quantum transition is somewhat stronger than average even when

symmetry affects are included.

If the system has lower symmetry, analysis is much more

complicated. Only Xn and ~Wlz will be retained in what follows.

& - exp(-iX T)(I cos(~wT)-I sin(bwT»exp~ T)
~ Z Y ~

(11.60)

Thus ~T= (2k+l)(n/2) gives odd-quantum coherences only, and

63
~T = kn gives even-quantum only. The terms in X are not

~
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mutually commuting, so about all that can easily be said is that

if I IX TI I » 1, the propagator has matrix elements corresponding
xx

to all values of ~, and if one spin is coupled weakly to all other

spins the N-quantum coherence will be weaker.

Computer calculations have been done for small systems. 66 The

results are quite similar to what would be predicted for isotropic

systems, with a few exceptions. If all the D
ij

constants are

approximately equal and have random signs, the average coherence

magnitude is roughly independent of~. If all the D
ij

constants

have the same sign, the N-quantum coherences will be stronger than

the average. This can be interpreted as a symmetry effect. If all

the couplings are equal, the N-quantum transition is much stronger

than the overall average without symmetry (Table 11.2). When all

the D
ij

couplings have the same sign this highly symmetric operator

is a significant part of X ,so even though the true eigenstateszz

have no symmetry this operator pumps N-quantum transitions more

strongly.

Computer calculations also show that in anisotropic systems

multiple-quantum coherences can be produced by either of the pathways

of Figure 11.3. Recall that the form of coupling in Figure 11.3(b)

(i.e., JijJjkJkl ••• ) is precluded in the isotropic case, because

the operators in the propagator are mutually commuting. This means

that the operator I ° in the initial density matrix is unaffected
Zl

by propagator terms proportional to J ok ' U,k~i). In the anisotropic
- J

case this simplification is not possible. One important consequence

of this difference is that anisotropic multiple-quantum N}ffi is useful



Table II .2

Average N-quantum transition intensity for A systemB, versus the
n

overall average transition intensity with and without symmetry.

Overall Overall
N N-quantum (with symmetry) (without symmetry)

6 1.107/3 .57:43 0.023/3

8 1. 67613 .741tJ 0.0078/3

10 2.32/3 .88~ 0.00244/3

12 3.0313 1.0TlJ 0.0007313

65
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in systems such as chains, where each nucleus is strongly coupled to

nearby spins, but no spin is strongly coupled to all others.

Z.4 Signal Intensities; Ensemble Averaging

Fourier transformation of equation (11.34) shows that the

multiple-quantum spectrum is:

Sew) = -c 8 L:
ij

(PMQ(T)) .. (PMQ(-tZ)) .. o(w -w .. )
J1 1J 1J

For arbitrary values of t z and T the intensities and phases

of the different transitions can vary widely. For example, Figure

1I.4(a) shows the spectrum of oriented benzene (14 wt % in Eastman

liquid crystal 1115320) at Z4.0°C with !::.w = 500 Hz and T = t z =

10 msec. There is no simple way to put all the transitions in

phase, and therefore the spectra are usually presented in magnitude

form, as in Figure II.4(b). If the linewidths are important, well-

resolved transitions can be individually phase corrected. If 1 = -tz
all of the transitions have the same phase, and magnitude spectra

are not needed. Time reversal of the dipolar Hamiltonian is

possible, as will be discussed in section 3.4, but it is complicated.

Any specific value of t z or 1 will pump some transitions more

strongly than others. For example, one of the three allowed pairs

of four-quantum transitions is not visible above the nQise level

in Figure 11.4 and the five-quantum and six-quantum transitions

are not visible either. For this reason one generally averages

together magnitude spectra corresponding to many different values

of t z and 1. This process is termed ensemble averaging, and was

used to produce all of the spectra shown in section 1.4.
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Oriented Benzene
n -quantum spec t ra

r=t2 =10.0 msec, llw=500 Hz

b Magnitude spectrum

(one buffer)

n= 0 n = I n=2 n=3 n= 4 n=S

XBl 8010-1269'

Figure 11.4. The multiple-quantum spectra of oriented benzene (14 wt %

in Eastman liquid crystal #15320) at 24.0° with T = t 2 = 10 msec and

bw = 500 Hz.
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An ensemble averaged spectrum for benzene is shown in Figure

11.5. Transitions corresponding to all values of ~ are present

in this spectrum. The simplest statistical assumption (to be

discussed further in section 6.3) would be to assume that, on

the average, each symmetry allowed transition is pumped about

equally well. A computer simulation for this case is shown in

Figure II.6(a). This gives a good qualitative description of the

intensity distribution. The integrated intensity of each order

should then approach a binomial distribution if there is no

symmetry, because the number of transitions has that distribution.

This is also qualitatively correct, as shown in Figure 11.7.

However, the intensities do vary somewhat, and this variation

cannot be completely eliminated even by extensive averaging, as

shown in Figure I1.6(b). Some transitions are inherently stronger

than others. For example, the arguments presented in section

2.3.2.2 suggest that the average intensity should increase as ~

increases, since D
12

~ 313 D
13

~ 8 D
14

for the hexagonal symmetry,

and therefore all the coupling constants have the same sign. This

increase actually does occur experimentally as shown in Figure 11.8.

The total intensity of the spectrum for any specific T and t 2

is:

(11.61)

if all the transitions are nondegenerate. It is easily seen that

this sum is maximized when IpMQ(T) lij = I~MQ(-t2) Iji , and in this

2
case the sum is equal to -C 8 Tr(PMQ(T) ). 1nvariance to unitary
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Ortented Benzene
n-Quantum Echo Spectra

n =0

o

n =I

6w

n=2

26w

n=3

36w

Frequency

46w

n=5

56w

n=6

66w

XBL 805-9489

Figure 11.5. Nonselective multiple-quantum spectra of oriented

benzene averaged over four va-lues of T = t
2

. The integrated

intensity falls off as t:J.l increases.



a All fransilions weighted equally

Oriented Benzene

Theoretical n-quantum spectra

70

b Exact overage (2000 va lues

of T)

n =0 n=4 n= 5 n=6

XBL B010-12692

Figure 11.6. Computer simulations of benzene multiple-quantum spectra.

In part a) all allowed transitions are weighted equally. Part b)

corresponds to averaging over 2000 values of T = t Z·
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x Experiment
o Stochastic coupling

(with symmetry)
~ Stochastic coupling

(without symmetry)
--Gaussian

2
6

2exp(-n 16)/l: exp(-n 16)
n =I

3 4
n (number of quanta)

XBL 788-10117

Figure 11.7. The integrated intensity pattern for benzene, compared

to the predicted pattern if all transitions are pumped equally.

Symmetry effects are not ~portant in this integrated pattern. The

prediction without symmetry is a binomial distribution, which

approaches a Gaussian as the number of spins is increased.
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Figure 11.8. The intensity of an average allowed transition taken

from Figure 11.5. All the dipolar couplings have the same sign, so

the high multiple-quantum transitions are expected to be strongest.
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transformation implies that this equals -c S Tr(I 2), which is alsoz

the integrated intensity of the single-quantum spectrum in a

conventional one-pulse experiment.

Actually, this result holds for all pulse multiple-quantum

experiments. In the general case (Figure 11.9) a pulse sequence

(which need not be cyclic) is applied to produce multiple-quantum

coherences. This is called the preparation sequence, and its propagator

will be called U. The spins then evolve under ~z for a time t
l

. In

the simplest experiments no pulses are applied during t
l

; however,

decoupling, spin echoes, or more complicated sequences are possible

if suppression of part of X is desired. Another pulse sequencez

(called the mixing sequence, with propagator V) is used to transfer

the multiple-quantum coherences that evolved during t
l

into observables

<I > and <I >. These are detected after a time t 2 (note that thisx y

definition of t
2

is not equivalent to the one used in Figures 11.1-2).

In this subsection t 2=O is assumed (the general case is treated in

section 6.1).

is

If <I > is again assumed to be observable the signalz

-c 8 <I > ~ -c S Tr(pI )z z

- -c S Tr(V exp(-iX tl)UI U
t

exp(iX tl)VtI )z z z z

iw t
le mn (11.62)

mn
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I
I

<IX>

<I >y

XBL 8010-12486
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Figure 11.9. Generalized pulse sequence for multiple-quantum

experiments. A sequence with propagator U (the preparation sequence)

creates multiple-quantum coherences. These coherences evolve during

t
l

, and are partially transferred into observable single-quantum

operators by a sequence with propagator V (the mixing sequence).

The observables are detected after a delay t 2 .



The maximum signal is obtained

every matrix element and again

when I(ur ut) I =
z mn

is -c B Tr (I 2).
z

I(vtr V) I for
z Inn
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This condition for maximum signal is obviously satisfied if

tu & V ; this case corresponds to T c -t2 for the simplest pulse

sequence. Fortunately, T = t 2 is just as good. J( is a real
x

operator (i.e., all of the matrix elements of J( can be made real
x

by an intelligent choice of basis set). This implies that

(exp(-iX T)I exp(iX T)) ..
x z X 1.J

(exP(iXXT)I exp(-iX T)).. (11.63)
Z x J 1.

so inspection of equation (rr.34) shows that the only difference

between T = t 2 and T = -t2 is that all the lines are in phase with

each other in the time reversal case. If some of the lines are

degenerate this may matter, but the important transitions are

usually nondegenerate (see section 1.4). The general case (T # ± t
2

)

will be discussed in section 6.1, and general conditions for

I(UIzU
t

) lij = I(VtIzV) 'ji will be discussed in section 3.5.1.

If the multiple-quantum matrix elements are inefficiently

excited (for example if i IX
z
Til « 1), P

MQ
(T) has large matrix elements

along its diagonal. These matrix elements are populations, so they

do not evolve, and most of the intensity of the multiple-quantum

spectrum is found at w = O. An efficient two-pulse excitation has

little intensity at w = 0, and is expected to make all coherences

roughly equal as explained in the last section. This means that the

total magnetization (-C BTr(I 2)) is divided up among 4
N

matrix
z

elements in a system with N spins-1/2. In going from a N-spin system



76

to a (N+I)-spin system the magnetization increases by a factor of

(l+(l/N)), but the number of matrix elements increases by a factor

of 4. Thus the accumulation time for the same signal-to-noise ratio

is almost a factor of 16 larger.

As a result, multiple-quantum spectra for large spin systems

are weak. All of the spectra in section 1.4 were taken with the

sequences of Figure (II.2(b)). With the experimental apparatus

currently available to our research group (to be described in section

6.1) accumulation times of several weeks for an eight-spin system are

not uncommon. Larger systems therefore cannot be readily studied by

the techniques examined in this chapter.

2.5 Conclusions

The density matrix formalism has been developed to describe both

continuous wave and pulsed NMR experiments. In particular, pulse

sequences to produce and detect multiple-quantum coherences have been

analysed. The simplest sequences can pump all symmetry allowed

coherences about equally, independent of~. Nonetheless the

intensity of any individual transition falls off rapidly as the

number of spins increases. Techniques to increase signal/noise ratios

will be discussed in the next several chapters.
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III. Theory of Selective Excitation of Multiple-Quantum Transitions

The signal-to-noise ratio in the standard multiple-quantum

experiment falls off rapidly as the number of spins increases, as

noted in the last section, because the number of observed transitions

grows very rapidly. One way to solve this problem would be to

distribute the total spectral intensity between only a few transitions,

instead of driving all transitions equally. In a small system with a

known Hamiltonian this can be done. For example, in a two-level

system the population difference can be completely transferred

into coherence by a 90 0 pulse. In a three-level system the

propagator is a 3 x 3 matrix, and pulse sequences can readily be

designed which produce only two-quantum coherence, if all of the

i
61,62

couplings are g ven. But this approach is not readily gene~alized

to larger systems, except in such simple cases as isotropic first-

order systems (section 2.3.2.1) or anisotropic systems with ~

symmetry (section 2.3.2.2). In addition, the couplings are generally

not known in advance (if they are known, most of the justification

for taking the multiple-quantum spectra disappears). Thus, aside

from even-odd selection due to the bilinear form of spin coupling

operators (see section 2.3.2.2) no general method of selective

excitation has been proposed.

67-70
In this chapter, and the papers which preceded it, general

methods of selective excitation of multiple-quantum coherences are

proposed. The theory of selective excitation is derived here as an

extension of coherent averaging theory. In chapter IV computer

simulations of selective experiments are presented and discussed.
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In chapter V selective spectra are presented, and practical

considerations for producing good selective sequences are detailed.

The results of these chapters will show that selective excitation

of multiple-quantum transitions in NMR is theoretically and

experimentally possible, that this technique can provide enormous

signal enhancement, and that general selective sequences are

applicable to a wide range of spectroscopic systems.

3.1 Review of Average Hamiltonian Theory

3.1.1 Expansions for the Propagator

The effect of any sequence of irradiating pulses and delays on

a general system in the absence of relaxation can be represented by

a single unitary transformation U (the propagator). Calculating U

directly by multiplying together the propagators for each part of

the sequence is extremely tedious if many eigenstates are involved.

However, this calculation can be avoided for certain pulse sequences

by a technique known as average Hamiltonian theory. This technique

9 71 72
is thoroughly documented,' , so only a brief summary of important

results will be reproduced in this subsection. In the next subsection

the results will be generalized to describe sequences which are

inherently selective.

The total Hamiltonian of a system is written as K(t)~. +Xl(t),1nt

where Xi is the internal Hamiltonian of the system (for example,
nt

the interactions between pairs of magnetic dipoles) and Kl(t) is

the explicitly time-dependent interaction controlled by the

experimenter (for example, the interaction with radiation). ~l(t)

is termed cyclic with cycle time t c if Kl(t) and the propagator
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t

exp(-i JXl(t')dt ' ) are periodic, and if t is the shortest
o c

that constitutes a period for both VI (t) and Kl(t). If

UI(t) is a pulse sequence made up of an integral number N of cycles,

ththe propagator for the entire sequence is the N power of the

propagator correspondi~g to one cycle, and therefore only a single

cycle need be considered.

The propagator for a single cycle can be shown to be:

U - exp(-i1Ct ) = exp(-iOC(O) + ill) + •.• + x(n))t )
c c

where:

(111.1)

(III. 2)

-(1)
j( (IIL3)

t

jf(2) = 1 rc
- 6t

c
Jo

[Xint(t2),Xint(tl)]] + [Xint(tl),[Xint(t2),Xint(t3)]]}

(IIL4)

and

i Ma . 73 f h t' f hThis s a gnus expans10n 0 t e propaga or 1n powers 0 t e

cycle time. The average Hamiltonian expansion is a perturbation

expansion in powers of a smallness parameter t that has a physical
c

meaning· t and i (t) are s~ultaneously varied by lengthening the
, c int
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For this reason, xci) is termed a correction term of order

i and is proportional to t i.
c

v(O) is the d
~ zero-or er or average

Hamiltonian, and J{ is the effective Hamiltonian. The advantage of

this ~~ansion is that a complex time dependent process has been

expressed by a time independent Hamiltonian.

3.1.2 Examples of Multiple-Pulse Sequences

Pulse sequences are usually designed so that X(O) has some

particular desired property, and then higher-order terms are

minimized. Two simple examples are shown in Figure (111.1). Figure

37
(III.l(a» is called a Carr-Purcell sequence. The sequence is

cyclic because U
l

(2T) = 1. If the pulses are assumed to have

negligible width, J{i (t) is:
nt

-x +J{ +J{ -J{ -J{
-~ Q J cs Z

(0 < t< T/2)

(T/2 < t < 3T/2)

(3T/2 $. t ~ 2T) (III.S)

because the first-rank spin tensors J{cs and Xz are inverted by a

180 0 rotation. Then

x(O) = J{ + J{ + J{
D Q J

and the chemical shifts have been suppressed. If a pulse sequence

is symmetric, such that Xi (t) = X. (t -t), ~(l) and all other
nt ~nt c

odd-order correction terms vanish. This sequence is symmetric, so

the major corrections come from X(2) and from pulse sequence
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180y 180y
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b. L
XBL 8010-12249

Figure 111.1 Two multiple-pulse sequences for suppressing some parts

of the Hamiltonian. Part a) shows a Carr-Purcell sequence, which

suppresses first-rank tensor interactions. Part b) shows a WAHUHA

sequence, which suppresses second-rank tensor interactions.
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imperfections (inhomogeneity, timing errors, and the like) .
.., I

Figure (III.l(b)) is called a WAHUHA sequence./ 4 M can be
Z

-+ -+
decomposed into three parts: zero-rank tensors (r J

ij
l

i
'l

j
),

.first-rank tensors (-r crilzi + ~Iz)' and second-rank tensors

~D' UQ and terms with J~iso). Zero-rank tensors are not

affected by rotations. Second-rank tensors are proportional to

-+ -+
3I

zi
l zj - Iiolj (for UQ i=j), and first-rank tensors are proportional

to I zi ' U
int

is then:

Xi (6T-t) = X (t) (111.6)
nt int

This gives

X(D) _ 31 (bow(I +1 +1 ) - LOi(I .+1 .+1 .» + L J .. cl. ·1.)
x y Z Xl. yl. Zl. l.J l. J

X(l) .., D (III.7)

This sequence eliminates dipolar and quadrupolar terms, thus

permitting the observation of chemical shifts in solids. More

sophisticated sequences are designed to have smaller error terms.

For example, one very powerful method of reducing these terms
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involves alternating between two or more different cycles (called

subcycles) to form a new, larger cycle. Under certain conditions,

some of the higher-order terms for the entire cycle are simply equal

to the sum of the corresponding terms for the subcycles; such terms
75are said to decouple. Decoupled pulse cycles for line narrowing

have been produced that have x(2) = 0 for the dipolar Hamiltonian,

75
and have small error terms.

3.1.3 Estimation of Correction Terms

Higher-order terms are usually difficult to calculate, but

their size (and therefore their contribution to residual line widths)

can sometimes be estimated. If X(O) = X(l) = X(2) ••• = jf(n-l) = 0,

then X(k) I: j{.(k) , where ;'(k) is defined as

t t
(k) (_i)k JC fk+l

j( - dt
t c 0 k+l 0

k~, n+l ••• 2n

t z... f
o

-
dtl Xint(tk+l) Xint(tk )

(111.8)

Reference (9) contains a weaker version of this theorem, which

-(JO) -en) =(n)requires X I: 0 for all j<n for X z X • but lnspection of

their proof 76 leads to the immediate conclusion that X(j) = 0 for

all j < (n-l)/2 is sufficient for X(n) = ~(n)

The volume of integration is (t )n+l, so ~(n) can be easily
c

estimated in terms of Xi . This estimation requires the concept
nt

of the norm of a matrix. The norm of an arbitrary NT x NT matrix

A can be defined as:

(III. 9)
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IAI is invariant under unitary transformations, so if A is

Hermitian, DAn is the root-mean square eigenvalue of A, called

M2
l / 2(A). 0 h . i ht er conven1ent propert es t at are proven in Appendix

E are:

1. If.A and B are Hermitian, BABD = BBAU < N 1/20AD OBII.
- T

2. lIB = 1, where I is the identity matrix.

3. If A is Hermitian, DAnO is the square root of the (2n)-th

moment of the distribution of the eigenvalues, called M;~2(A) .

Since M;~2(A) ~ (M;/2(A))n for any distribution, DAnn ~ (DAB)n.

4. If A and B are similar Hermitian matrices, such that A

else known about either matrix, then (AB)
mIl

5. However, if A and B are two different matrices, with nothing

= LAB is the sum
mi in

i
of NT numbers, which are expected to add randomly. This implies

Properties (3)

::; I (i (t ))n+lO•
int 1

-
and (4) imply that OJ(. (t 1) Je. (t) •.. X (tl)D

1nt n+ 1nt n int

For many systems the eigenvalues of X. have1nt

roughly a Gaussian distribution, and in this case

Thus

.1/2 1/2 1/2 n
H2n .. (1·3·5 ..• (2n-1)) (M2 ) = «2n)~/(2n)n~)l/2(M;/2)n

(111.10)

(111.11)

In fact, if the cycle contains many pulses so

varies rapidly, 11K (t ) K. (t) ... k t(tl)Dint n+1 1nt n 1n

that X. (t)1nt
'V nJ( nn+l

int •



85

I ~(n) " I "If' "n+l
Thus ~ t c

M ~ ~inttcu /(n+l)!, and for those terms for which
/,"1' _I." ,/ ... , ~ ...

U~IDT~) = X~mT~), IXlnT~)u/uxln)n ~ ~J(inttcn/(n+l). For higher-order

terms expressions involving commutators, such as equations (111.3-4)

are required.

All of the results presented so far are applicable to any cyclic

pulse sequence. It is now necessary to extend average Hamiltonian

theory, in order to create pulse sequences which selectively excite

only a few transitions.

3.2 Extension of Average Hamiltonian Theory to Selective Sequences

3.2.1 Definitions

An operator is nk-quantum selective if it can be completely

decomposed into irreducible tensors T~, with k allowed to have any

integral value including O. If only k = ±l is required, the operator

is n-guantum selective. If tensor components that are not integral

multiples of n are required, the operator is nonselective. Any

nonselective operator can be decomposed into an nk-quantum selective

operator and a remainder which we call non-nk-quantum selective

(abbreviated nns). From the definition of tensor operators, the

product or sum of two nk-quantum operators is also an nk-quantum

operator. In addition, an operator is nk-quantum selective if and

only if it is invariant to a rotation of 2n/n about the z-axis.

A cyclic pulse sequence is j-order nk-quantum selective if all

the operators U(i)(i ~ j) in the average Hamiltonian expansion of

the propagator are nk-quantum selective operators. (For example,

- (0) 4 l' b vCl}. th .if J( is k-quantum se ect1ve ut ~ 1S not, e sequence 1S

zero-order 4k-quantum selective). An equivalent definition is that
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. i+l
all terms in the propagator proportional to (t

c
) (i ~ j) are

nk-quantum selective. If the initial density matrix has no

coherences, the final density matrix will contain only nk-quantum

selective operators, up to terms proportional to (t )j+l.
c

The physical meaning of nk-quantum operators depends on the

system being considered. If the axis of propagation of the radiation

is chosen as the z-axis, an nk-quantum operator causes a net

absorption or emission of a multiple of n photons, and changes

the z-component of the angular momentum of the applied field by

some multiple of nh. If the z-component of angular momentum is a

good quantum number for the system (as it is, for example, in NMR

at normal magnetic field strengths), conservation of angular momentum

implies that the system can develop coherences only between states

for which this quantum number differs by a multiple of n. If this

is not a good quantum number, the selection rules for n-quantum

transitions are more complicated.

3.2.2 Theorems for Selective Sequences

Many of the theorems of average Hamiltonian theory are directly

applicable to selective sequences. In addition, bwo new theorems

which can be viewed as generalizations of known theorems for line

narrowing sequences are useful.

Theorem 1. Suppose a cycle (cycle time t ) consists ot m subcycles
c

(cycle times tel' t c2 ' •.• t cm) , each of which is

j-order nk-quantum selective. Then the cycle is also

j-order nk-quantum selective. Furthermore, the non­

U+l)
nk-quantum selective (nns) part of K for the cycle

decouples, i.e.,



(1t(j+l) t )
c nns

m

= L:
i=l

ex (j+l) t )
i ci nns
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(III.12)

Proof: For simplicity of notation only the case m=2 will be explicitly

proven, since repeated application of this theorem with m~2 proves

the theorem for arbitrary m.

The propagator for the cycle is equal to the product of the

propagators for the two subcycles:

(III.13)

Expansion in powers of t , t 1 and t 2 (recalling that X(k) ~c c c
I

t
k and X(k) ~ t k ) shows that the term proportional to (t )k+l is:
e j cj c

-(k) 1 -(k') -(kit) 2
-iX t + - L: X X t + ...

c 2 k', k" c

(k )
+1.

(k' ) (kit)
L (-iJ( 2 t L: ' j[ 2 - 2 2 + ... )= X 2 t c2k+k=k-l 2 c2 2 2

k' kit
1 2 2' 2

(k )
+!

(k' ) (kit)
(-i~ 1 tcl I' - 1 - 1 2 + ... )x Xl Xl tel2 k' kit

I' 1

k'+k lt = k-l

k'+klt = k -1
1 1 1

k'+klt = k -1
2 2 2

(III. 14)

In this expression kl ,k2':: -1; if ki = -1 the terms involving t
ci

are
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ignored. The terms represented by C... ) are products of three or more

operators, multiplied by (t )3 or higher powers of t .
c c

-Ck)X can

only appear in the first term on the l.h.s., and all other terms
(k, )

must have smaller superscripts. By assumption, X 1 is nk-quantum

selective for all k. ~ j. When k=O, equation (111.14) simplifies to
1

(III.IS)

X-(O) , k I' 'f' 0 I f Iso 1S n -quantum se ect1ve 1 J ~ • t 01 ows by induction

-(k)
that all the operators X (k ~ j) are nk-quantum selective by

'+1considering progressively higher powers of t , through (t)J .
c c

The only possible nns term proportional to (t )j+2 on the
c

-( '+1)
l.h.s. is then (-iX J tc) since all other terms involve only

nns

lower-order operators which are nk-quantum selective. Similarly,

the only possible nns term on the r.h.s. is -i(XI(j+l)t
CI

+ X(j+l)t) .
2 c2 nns

By equating these two expressions, Theorem I is proven.

The only property of nk-quantum selective operators that was

needed to prove Theorem I was closure of this set of operators

under addition and multiplication, and similar theorems can be

proven for any other set of operators with these two closure

properties. In particular, the null set is closed under addition

and multiplication. A decoupling theorem for that case (i.e.,

X(O) = X(l) ... = X(j) = 0) was proven by Burum and Rhim. 75 Their

version of the decoupling theorem was used to cancel residual error

terms by combining cycles. A similar approach will be taken in

section 3.3 to create selective sequences. Incidentally, another
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set which satisfies the required closure properties is the set of

N-quan tum opera tors in a N spin-~ N}iR sys tem, plus the popula tions

of the two ex treme states; this case will be discussed la ter .

The size of the first nns term for a j-order nk-quantum selective

sequence can be readily estimated.

Theorem II. If a sequence is j-order nk-quantum selective, the non-nk­

quantum selective (nns) part of j{(j+l) can be written as:

CX(j+l» ==
nns

JC. t(tl »1n nns (111.16)

Proof:
( "+1)

The proof of this theorem is iden tical to the proof tha t K J

has this form if K(j) == 0 for all i 2 j, contained in reference (9),

so it will merely be ou tlined. The mos t general expression for the

term proportional to (t ) j+2 in the propagator is
c

t t"+2
(_i)j+2~ dt 1~

o j+2 0
dt j +l

-
dtl Xint(tn+l) Xint(tn)

(111.17)

-(0) -(1) -en)
Expanding U = exp(-:iX + X + ... X •••)t ) as in the l.h.s. of

c

equation (111.14), the only possible non-nk-quantum selective term

·+2 - (j+l)
proportional to (t)J is (-iX t) ,which proves the theorem.

c c nns

It should be noted that equation (111.16) is only valid for the

first nns

holds for

term, while if X(n) = 0

-(2n)
all terms up to J( •

for all n < j a similar expression

The difference is that the l.h.s.
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_(kl )_(k
2

)
of equation (111.14) contains operators such as X X , which

"" (k, ) _(k?)
vanish if either~· ~ or X - vanishes, but which are generally

_(k
l

) _(k
2

)
nk-quantum selective only if both X and X are nk-quantum

selective.

3.3 Design of Selective Sequences

3.3.1 Zero-Order Selective Seouences

A sequence which is zero-order nk-quantum selective can be

produced from any cyclic sequence of pulses and delays, using a

technique called phase cycling, illustrated in Figure II1.2(a).

Assume that the cyclic sequence has

cycle), an effective Hamiltonian X
o

a duration ~T (called a sub­
p

= ;jf(O) + XCI) + ... ;R(n)
o 0 o· •• ,

and a propagator V = exp(-iX 6T). At the end of the interval 6T ,
o 0 p p

the sequence is repeated with all radiation phase shifted by ¢ = 2n/n

about the z-axis, giving a new effective Hamiltonian X¢ and

propagator V¢. X¢ is related to X
o

by a rotation of -¢ about the

z-axis:

and U¢is related to V
o

in exactly the same manner. This phase shift

is repeated n times, creating a cycle with cycle time t = n6T. To
c P

(")calculate X J for the cycle, note that t is proportional to 6T .
C P

( .)
Therefore ;j{ J

o
-(")and j{ J scale in exac tly the same manner when t c

is changed, and equating terms proportional to t c with those

proportional to 6T shows that:
p
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cflI ~
¢ (n-I)¢

(a) ~Tp ~Tp ....""".11." ......... ~Tp

.:PIo ell...""II I .... " II .... cf1I.{ ) ePI.( ·.. ·It It ....... It • I I cflI· 11 /
't' n-I ¢ n-I)¢ ¢ dt 0

(b) ~Tp ~Tp ........................ ~Tp ~Tp 1'1"'1 II •••••• II II I' II II ~Tp ~Tp

XBL 803-8899

Figure 11I.2a Phase cycling can be used to create nk-quantum selective

sequences, using phase shifts of ¢ = 2n/n. The cycle of n subcycles is

more selective by one order in the average Hamiltonian theory expansion.

Figure III.2b The cycle of 2n subcycles formed by phase cycling and

symmetrization is more selective by two orders.
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x(O) 1
n

n-l
L

i=O

1
= -

n

n
L

i=O
exp(i£¢I ) X(O) exp(-i£¢I )

z 0 z

(III.20)

.J2TIp£/n
~ ,

n-l
This sum scales the matrix element ex(O» by (lin) L

o ij m=O
is zero unless p I: nk.where p = m.-m.; this scaling factor

J. J

Therefore, X(O) is a pure nk-quantum selective operator. Since

v(O) decouples, th tati f th b 1 i 1~ any 0 er permu on 0 e su cyc es s a so

acceptable. Higher order terms have some nk-quantum selective parts

n-l -(1) (1)
(for example, there is a contribution L Xi ¢ to U ) but no higher

i=O
order terms are completely selective. Thus, the sequence obtained

by phase cycling is zero-order nk-quantum selective. Equivalently,

the propagator after n subcycles can be written as:

U =
n-l

IT exp(-£K~ 2 I nT )
O

~= TIp n p
p=

n-l
c: 1 - ~T (L ;K~ 2 I) + ~J(~nT a2\ (III.21)

p 0 ~= TIp n ~ p
p=

If Ix¢nTpl « 1, the last term can be neglected. Combining

equations (111.4) and (111.5) to first order in ~T we can write
p

n-l
U
ij

==Oij- ~T (L exp (i2TIPCM.-Mj )/n» (J( )i'
p p=O J. 0 J

= 0iJ'- in.6T GK ) .. o(CM.-M.)-nk)
p 0 J.J 1. J

(111.22)

Thus U will only induce transitions between states with nM = nk,

to first order in ~T. If t can be made arbitrarily small, all the
p c

higher-order terms in the average Hamiltonian expansion become
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unimportant, and this zero-order selective sequence becomes completely

selective; of course, the selective term HX(O)t g + 0 as t + 0, but
c c

this can be remedied by repeating the zero-order sequences many

times. An operator which only induces transitions between states

with ~ ~ nk will also only transfer populations between states

with ~ = nk. Thus selective sequences can create selective population

inversions.

This application of average Hamiltonian theory is somewhat

-
unusual, in the sense that Xi (t) (i.e., X , X~, ... ) is given

nt 0 ~

instead of generated from a time independent X. . Figure (111.3)
~nt

shows schematically how this difference can be eliminated. The

phase shifts are equivalent to a series of z pulses on a system with

an otherwise time independent X. Since the pulses have strange flip
o

angles, phase shifting can probably be done more accurately.

3.3.2 Sequences Selective to Arbitrary Order

In general, the cycle time cannot be made vanishingly small, so

higher-order selectivity is desirable. One simple way to get a

first-order selective sequence is to symmetrize the cycle, as

illustrated in Figure (III.2(b)). X(O) is still nk-quantum selective,

and the symmetrization causes X(j) to vanish for all odd j, so the

first nonselective term is X(2).

In fact, sequences which are selective to arbitrarily high order

can be designed. Suppose that the sequence for X in Figure II1.2(a)
o

is already j-order nk-quantum selective, instead of being nonselective

as was assumed earlier. Theorem I proves that the sequence obtained

by phase cycling is (j+l)-order nk-quantum selective~ because
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ll.Tp ll.Tp ll.Tp ll.Tp

.JI
int

= j}./O' CPz = flip angle CP. phase z

•
•
•
= jJ./ (n-I)T S t <nl:::.T

(n-I)¢' P P

'iii (t) n/ 0 S t < l:::.T pc::o'tint =O'to'

=.JI. l:::.Tp S t < 2l:::.Tp
cP

•
•
•

XBL 803-8945

Figure 111.3. The analogy between a phase cycled sequence consisting of

subcycles with effective Hamiltonians X¢ and a pulse sequence on a

hypothetical system with Xi = X. Average Hamiltonian theory cannt 0

be applied to the pulse sequence.
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df(j+1) ) decouples:
nns

=
n-l

L: (j{(j+l»
£=0 .£¢ nns

=
n-l

L: (exp(i£<PI) j{(j+l)
£=0 z 0

exp(-i£¢I)) = 0
z nns (III. 24)

Therefore, starting from a nonselective X , (j+l) phase cyclings
o

produce a sequence that is j-order nk-quantum selective, requiring

(j+l)
n subcycles; each block of n subcyc1es is zero-order nk-quantum

2
selective, each block of n subcycles is first-order nk-quantum

selective, and so forth.

selective sequence may be

For example, a first-order 4k-quantum

2
constructed from 4 = 16 subcycles, and the

phases of the subcycles can be written schematically (O:¢=O, 1:¢=n/2,

2:¢=n, 3:¢=3n/2) as (0123) (1230) (2301) (J012). Each group in

parentheses is a zero-order nk-quantum selective sequence, and is

phase shifted by n/2 to produce the next group.

In the absence of relaxation, there is no limit to the number of

times phase cycling can be applied, and therefore sequences which

are selective to arbitrarily high order can be designed. In any

real system, only a limited number of sub cycles could be completed

before relaxation effects make the average Hamiltonian calculation

invalid. One way to reduce the number of subcycles required to

achieve a given order of selectivity is to combine phase cycling and

symmetrization, as in Figure III.2(b). The sequence is first-order

nk-quantum selective even if X is nonselective. If X is already
o 0

j-order nk-quantum selective (j odd), the phase cycling and

symmetriza tion requires 2n subcyc1es to make a (j+2) -order nk-quan tum
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2
selective sequence, instead of the n subcyc1es required for two

phase cyc1ings. Thus. a (2j+1)-order nk-quantum selective sequence

. j+1
requires (2n) subcyc1es «(j+1) phase cyc1ings and (j+1)

symmetrizations) and a (2j)-order nk-quantum selective sequence

requires n(2n) j subcyc1es «j+1) phase cyc1ings and j symmetrizations)

For example, a third-order 4k-quantum selective sequence requires

2
(2n) & 64 subcyc1es. and the relative phase can be written

schematically as (0123)(3210)(1230)(0321)(2301)(1032)(3012)(2103)

(3012)(2103)(2301)(1032)(1230)(0321)(0123)(3210).

3.4 Application of Selective Sequences to Multiple-Quantum NMR

3.4.1 Design of Effective Subcyc1es

In this subsection the general principles of selective excitation

are applied to the particular case of a system of directly dipole

coupled nuclear spins. The high resolution and simplicity of the

high multiple-quantum spectra of these systems was discussed in

section 1.4. It will be shown how the use of selective sequences

can overcome the problem of small signal intensity, thus making these

spectra observable in large spin systems.

The Hamiltonian for the N spins-1/2 of an oriented molecule in

a large magnetic field can be written in the rotating frame (in units

of h • 1) as

:K c:
z

_ 'J{ + J( + ex + liwI )
zz J cs z

(III. 24)

where typically DJ( n »OJ( II. IIJ(JU, All of these terms were
zz cs
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defined in Chapter I. The evolution under this Hamiltonian must be

converted, by some as yet unspecified sequence of pulses and delays,

into the propagator U (and effective Hamiltonian X ) of the last
o 0

subsection. If the sequence can be designed to have high qu~~tum

operators in the leading terms of its effective Hamiltonian, then

the cycle need only be selective to a low order since high-quantum

operators will appear in its leading terms. Since X contains onlyz

T.

first and second-rank operators, no simple rotation of X can containz

high-quantum operators. In fact, it can be shown that no matter

what the actual pulse sequence is for X , it cannot contain multiple­
o

quantum operators unless IX ~T a > 1. If the cycle consists of manyz p

subcycles then aX t I » 1, but convergence of the effective Hamiltonian
z c

expansion generally requires ax t n < 1. For this reason the pulse
o c

sequence for X must be constructed such that IX n « Ux n. Several
o 0 z

approaches will be discussed.

3.4.2 The Use of Time Reversal in Subcycles

3.4.2.10eneral Principles

One general approach to subcycle design uses the method of time

reversal and is illustrated in Figure (111.4(a)). Pulse sequences can

-(0)
be designed with Xn = 1/2GKn ,xx + Xn,yy) = -1/2 Xn,zz; the effect

of such sequences is to make the spin system appear to evolve back­

77
wards in time. If such a pulse sequence is applied for a time 2T

and then turned off, the initial condition will return after a time

If IX TR ~ 1, both the forward time and reversed time
n,zz

propagators can contain irreducible tensor operators of arbitrarily

high rank, but will commute with I z ' Similarly, pulse sequences can
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ePI'T' = - nI Jp dtp

N
XBL 803-8942

Figure 111.4. Possible pulse sequences for the subcycles in Figure 111.2.

In part (a) time reversal sequences generate X'T' = ~ T so thatp p ,

UX n «UX
D

n, but X contains multiple-quantum coherences. In
o ,zz 0

part (b) a WAHUHA sequence with a long cycle time has the same effect.
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be designed with j{~O) = 1/2 CJ<D + Jfn ) =: -1/2 j{ . In this,yy ,zz n,xx

case, the propagator obtained from a sequence with aX TO > 1 will
D,xx -

contain irreducible tensor operators of arbitrarily high rank, but

will not commute with I. Such a propagator can generate multiple~-- z

quantum coherences and can be viewed as a multiple-quantum rotation

(as opposed to the rotation produced by a single strong pulse,

Which will only generate single-quantum coherences from a density

matrix proportional to I ).z

The propagator for the subcycle of Figure (1II.4(a)) is VeAT ) =
p

exp(-tK'T') exp(-tK ~T') exp(-tK T). Time reversal techniques are
p w p P

used to make X'T' = ~ T. When this condition holds, the periods
p p

T and T' may be viewed as a complementary pair of multiple-quantum

rotations which sandwich the period ~T'. Together they form a cycle,
p

and the propagator is:

is nonsecular, bilinear and does not commute with j{ then j{
W 0

U(~T ) =: exp(-~T'(exp(-~T)j{ exp(-tK T»)
p p p w p

Therefore

X E (~T'/~T ) (exp(LK T)X exp(-~ T»
o p p p w p

If X
P

will contain high multiple-quantum operators when IXpTD ~ 1.

(III. 25)

(III .26)

Since

the exponential operators constitute a unitary transformation
~"['

IX I "" ~ aj{ I. The desired eff ec t of reducing the norm of the
o ~"[ w

p
subcycle Hamiltonian is achieved when ~"[' « ~"[ •

p p

Since Ij{ ~"[ D = Rj{ ~T'n the small interval ~T' may be thought
o p W P P

of as an effective cycle time for the subcycle. This concept is very
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useful in understanding the application of average Hamiltonian theory

to selective sequences.
-(n
X -~ is defined to be the term which scales

i
as (t) when the cycle time is changed, but implicit in this

c

definition is the assumption that X. (t) is also scaled propor­
1nt

tionately. Thus, if every delay in a specific pulse sequence is

doubled and the length of each pulse is doubled while keeping the

-(i) i
flip angle constant, the term X is multiplied by 2. In a

selective sequence Xi (t) is replaced with K , X , and so forth.
nt 0 4>,

for the sequence in Figure (III.4(a», butIn fact, ~T = 2T + ~T
P P

if T is changed at all X will
o

change. The only way to double each

matrix element of X ~T (which is analogous to scaling X. (t» is
o p 1nt

to double ~T but leave T alone. Thus T should be viewed as a fixed
p

parameter, and ~T is effectively the length of the subcycle.
p

3.4.2.2 Specific Subcycle Sequences
,

Several choices are possible for X , X , and J[. One choice is
p p w

to let X = X = I uij (31 iI .-I.·I.)~ produced by the sequence
p xx i>j x XJ 1 J

90 - T - 90-. X has been neglected; if this is a bad approximation,
y y cs

an echo sequence can be used. X; = - f Xxx' produced by a time

1
reversing sequence, such as (2 T - 90x - T - 90x - T - 90i - T - 90i -

1
T - 90- - T - 90- - T - 90 - T - 90x - -2 T), repeated enough timesx x x

to fill a period T t 2T, and X = X using no pulses at all (Xw zz w

Using the notation of reference (75) for various error

is a "window" in the sequence).

, - (0)
sequence chosen for Xp has J£
1£1) .. O.

The particular time reversing

1
= - 2 ~,xx; it is symmetric, so

terms from pulse imperfections, one finds J~O) (resonance offset and

chemical shift terms) = 0; X~~)(rf inhomogeneity effects) = a



- (0)
(to order E); and XeD (nonzero pulse width)

correction terms, we have

X,h jn -= exo (iX T) (JC fl:r') ~~ (-iX T)
't'=U P • XX Z P -'r' xx

101

o. Neglecting all

(II.27)

which is purely even-quantum. This is sometimes convenient; for

example, a third order 10k-quantum selective sequence requires

2
4n - 400 subcycles, but a third order 5k-quantum selective sequence

only requires 100 subcycles, and if no odd-quantum coherences are

present in X¢ the two sequences have the same effect.

3.4.2.3 Eure Double-Quantum Sequences

The sequence 90 - T - 90- only gives X = X if there are no
y y p ~

chemical shifts, if 6w c 0, if the rf homogeneity and the static

homogeneity are perfect, and if the pulse widths are negligible.

Thus even if 1 is kept short in the sequence for T', usually

IX 61 I »BX 61'0 because neglected error terms would enter.
<P p w p

One very convenient way to lessen the severity of error terms is to

design a sequence with an effective Hamiltonian having only double-

quantum terms; then time reversal can be achieved by a phase shift.

T
For example, the sequence (2 - 90x - l' - 90x - 1 - 90i - l' - 90x -

T
T - 90i - T' - 90x - T - 90

x
- T' - 90

x
- 2) has an average Hamiltonian

X(O) -= (1'/1+1')X + (1/T+T')X in the limit of e-function pulses,
D. yy zz

and if T' c 2T,

fcD(O) = 1
3

(ZJ( + X )
D,yy D,zz

(III. 28)

This is a pure double-quantum operator. If the pulses are assumed

to have a square envelope but a finite width t
p

' x~O) is a pure
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double-quantum operator for T' = 2T + t
p

; other pulse errors may change

this relation slightly.

-(0)
Since Xn is purely a two-quantum operator, a phase shift of 90°

multiplies it by -1; this can also be seen by substituting I ~ I ,
x Y

I ~ -I , I ~ I in equation (111.28). Therefore, if the pulsey x z z

sequence is run with y and y pulses instead of x and xpulses, the

zero-order average of the dipolar Hamiltonian is inverted. rv +\"'"cs

~1z) is cancelled to lowest order by this sequence, and X
J

is

unaffected. In most anisotropic systems, OX n is several orders ofzz
-(0)

magnitude larger than aX}, so X
D

dominates when IIX
z

Tn « I and

very good time reversal is possible.

This sequence compensates for several common pulse errors. Static

-+
inhomogeneity would force ~w to be written as ~w(r), but the zero-

order average vanishes. Similarly, rf inhomogeneity, which can be

represented by a pulse flip angle of 90-E, does not

to order E. The largest nonvanishing error term in

-(0)
appear in X

D
-(0)
X should be

the cross term between static and rf inhomogeneity, which is minimized

The sequence looks symmetric to the dipolarby making ~w '\, O.

x(l)Hamiltonian, so vn = 0, and under ideal experimental conditions

.r,.(2)
the ultimate limitations to time reversal come from ~D and X

J
.

These terms will make ax ~T a > aX~T 't. Fortunately, one feature
o p p

of the selective experiment is that perfect time reversal is

unnecessary since imperfections merely cause IX g to be larger than
o

in the ideal case.

Potential sequences for X include:w

1. No pulses, giving X = X and even-quantum selection for
VI z

initial condition 81 .z
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45 _~T'_45-, giving all orders in K .
x p x ¢

3. The same sequence as K , except phase shifted by 45°.
P

Clearly X is also a pure t~o-quantum operator, but [X ,X ] 1 0, so
~ p ~

multiple-quantum coherences still develop. After a brief interval

nT~, another phase shift of 45° gives X;.
Most of the experimental ~ork to date (to be discussed in

chapter V) has used X = X and X = -3
1 (Kn - Xn ). Previous

w z p ,yy,xx"

attempts with X = Xn and X' = - 1
2

X , as discussed above, were
p ,xx p D,xx

less successful.

3.4.3 The Effects of Imperfect Time Reversal

As mentioned earlier, errors in the sequence for X and X' cause
p p

IX I to be larger than expected. If these effects are small they can
o

be compensated for by decreasing 6T'. In some systems, however,
p

perfect time reversal is impossible. One example is NMR is isotropic

solvents; X can easily be reversed, but X is a zero-rank tensor
cs J

and cannot be affected by wideband pulses. Average Hamiltonian

theory is not well suited to this calculation, since nXJTU > 1 to

generate multiple-quantum operators, so discussion of this case will

be postponed to section 4.6.2.

3.4.4 Other Subcycle Sequences

The standard WAHUHA sequence, illustrated in Figure III.4(b) is

another possible pulse sequence for X. If X = X , this sequence
o int zz

gives X(O) = X(l) = 0 (neglecting pulse errors). However, if

-(2) -(4)
IX TI » 1, X will have strong contributions from X ,X and

zz 0

higher-order terms ~hich contain multiple-quantum coherences. For

some values of T such that IIX TU '\" 1, fiX fi «nX D. but J{ contains
zz 0 zz 0
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a substantial fraction of multiple-quantum coherences. The sequence

is repeated N times, so nT = 6 NT. When such a subcycle is
p

incorporated into a selective excitation sequence, it will prove

useful to think of T as a fixed parameter while N is varied in

order to vary the cycle time; again this approach allows X to
o

remain fixed.

Clearly, any other line narrowing sequence is also a candidate

for producing Xo ' but this sequence.would probably be the easiest to

use for low-quantum selection because of its relatively large correction

terms. A possible advantage over the use of time-reversing sequences

is the very low duty cycle, which results because T is much longer

than in a normal WAHUHA experiment. Simple sequences for X will
o

be discussed further in section 4.6.1.

3.5 Selective Sequences in the Multiple-Quantum NMR Experiment

3.5.1 Optimum Relation between Preparation and Mixing Propagators

Any selective sequence can be incorporated into the general

framework of a multiple-quantum experiment described in section 2.4.

It was shown in that section that the total integrated intensity of

the multiple-quantum spectrum is at most proportional to the

equilibrium magnetization, -c 6 Tr(I 2). This can only be achievedz

if the preparation propagator U and mixing propagator V are matched

such that IUlzUt'ij = IVtlzvl ji , and for nonselective experiments

this implies T = ±t2 .

~r the selective experiment this constraint is more difficult to

satisfy. The simplest experimental arrangement is to use the same

sequence for preparation and detection, so U = V. If the effective

Hamiltonian X (U = exp(-iXt )) is real then U is complex symmetric,
c



and this implies tha t (VI V
t
) i. =

z J

4-

Cv II V) ..•
z J 1.

An equally desirable
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arrangement is to have X related to a real operator by a phase shift.

(For example, all the four-quantum elements might be imaginary and

all the zero-quantum elements real). This will always be true for

I
N-quantum selection in an N spin-'2 system because there are only two

N-quantum elements and a phase shift which makes one real makes the

other real. In addition, if the two-quantum sequence is used for

X (in Figure III.4(a)), and if either the two-quantum sequence or
p

X is used for X , then X will be related to a real operator by a
Z w 0

phase shift. In this case the constraint is satisfied for any zero-

order or symmetrized first-order sequence. In other cases the signal

may be somewhat reduced; this will be discussed in section 6.1.

3.5.2 Phases of Selected Transitions; Time Reversal Mixing

If the preparation and mixing sequences are designed such that

U E Vt then equation (11.62) shows that all transitions will appear

t
in phase. The condition V = V will be called time reversal mixing,

since it can generally be accomplished by a mixing sequence which

reverses the order of the pulses in the preparation sequence, phase

shifts each pulse by 180°, and time reverses each delay. In addition,

some pulse sequences allow simpler approaches. For example, if the

two-quantum sequence is used for X , X , and ~'(with phases 0, TI/4,
P w P

and TI/2 respectively, as explained in section 3.4.2) and the sequence

is symmetrized then V = Vt can be achieved by changing the phases to

TI/2, n/4 and 0 respectively. Pulse sequences which do not include time

reversal mixing usually produce transitions with arbitrary phases,

and magnitude spectra are then calculated.
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3.5.3 Potential Signal Gains; Selective Population Inversion

An efficient wideband excitation drives all of the possible

transitions about equally. Therefore, the average intensity of a

single line in a multiple-quantum spectrum is smaller than the

average intensity of a single line in an ordinary single pulse

experiment, by a ratio (number of single-quantum transitions)/(number

of excited multiple-quantum transitions). When there are many spins,

the intensity of a single transition becomes extremely small. For

example, a system with N sPins-; and no symmetry has 22N possible

distinct matrix elements, so totally nonselective excitation gives

-2N 2
a signal for each transition of 2 (C B Tr(I ».z

If only certain orders of multiple-quantum transitions are

excited, but the excitation is still efficient (in the sense that

the population differences are substantially depleted) the intensity

of a single transition grows. For example, if the resonance offset and

chemical shifts are removed from the excitation and mixing periods

of the standard nonselective experiment, only even-quantum coherences

are excited, and since roughly half the coherences are even-quantum

this increases the intensity of an average even-quantum transition by

a factor of two. If only a few transitions are excited (by an

extremely selective sequence) and the sequence is efficient, the

intensity of each transition can be enormous. Suppose that selective

excitation is used for both preparation and mixing, and that UIzU
t

and VtI V in equation (11.59) could be prepared with all the matrix
z

elements zero except for the single coherence with ~~ = +N and the

single coherence with ~ = -N. In that case, the signal gain
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2N-l
rela tive to the nonselec tive experimen t would be 2 • However,

the densi ty ma trix tha t resul ts is no t rela ted to the ini tial

condi tion I z by a unitary trans forma tion, and therefore it carJlO t

be produced by any sequence that does not include relaxation.

A more reasonable es tlma te of the maximum possible gain is

t
obtained by finding the~ possible value of (UI U ) b' where

z a

la> is the single state with M ., +N/2 and Ib> is the single state

with M c: -N/2:

(III.29)

(III .30)

6
ab

(III.31)

The maxilnum can be readily seen to be Uaa = 1/12, Uab ., 1/12,

U
af

- 0, U
ba

c: -1/12, U
bb

= 1/12, Ubi c: O. The phases are not unique.

Such a propagator concentrates the matrix elements of U in the states

wi th the larges t values of 1M I. I t couples states Ia> and Ib> only

to each other, effectively creating a two-level system. The two-

level system has

j 1/17. 1/12)

u \-1/12 1/12

exp(i(n/2)I ab). y
I

y
ab = (0 -i/2)

i/2 0

(III.32)

where I ab is a fie ti tious spin- ~ opera tor for mul tiple-quan tum
y
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62
coherence.

Thus, the maximum possible signal is obtained by a selective

-90 0 pulse, shown schematically in Figure 111.5. The signal from this

transition is -C B (UI Ut )2
z ab The gain when compared to

totally nonselective excitation is then

(111.33)

this sequence should be some linear combination

tThis sequence would be used to create UI U andz

To achieve this gain a sequence that couples the state M = N/2

only to the state M = -N/2 is needed. The effective Hamiltonian for

ab ab
of I and I .

Y x

VtI V. If thez

effective Hamiltonian has this form for M = ± N/2 it can have any

form whatsoever for the other levels, and the signal in the N-quantum

transition will be unaffected. A selective 1800 pulse is also

possible (for example, a sequence which produces a selective 90 0

pulse could be applied twice.) Such a pulse would not produce any

signal, but would invert the population difference between the two

extreme levels. This approach to population inversion has applications

to other spectroscopic systems.

Often the (N-l)-quantum or (N-2)-quantum transitions in an N-spin

system are more interesting than the N-quantum transition, since the

N-quantum transition contains no dipolar information. If (N-I)-quantum

selection is used, the number of transitions increases to 2N for a

system without symmetry. In addition, while it is possible to
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~-----Iy

90° N-quontum
pulse about x-axis

XBL 803-8898

Figure 111.5. Schematic illustration of the effect of N-quantum selective

sequences, in terms of an effective two-level system involving only M =

± N/2. A selective 90 0 pulse transfers the entire population difference

between those two states into N-quantum coherence, giving a gain

relative to nonselective excitation of N2
N

•
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envision a TI/2 pulse on a two-level system completely depleting the

population difference, in a multilevel system it is very unlikely

that all population differences can be eliminated simultaneously.

Thus one also produces zero-quantum transitions and populations in

the M = ± N/2 and M = ± (N/2-l) manifolds, effectively increasing

the total number of pumped matrix elements by 2N2+2. No hw, owever,

the available fraction of 1
2

is larger. The result of all of thesez

effects is:

(111.34)

Values of ~ and G
N

_
l

for systems without symmetry are listed

in Table 111.1. If symmetry is included, all gains are reduced,

because fewer transitions are allowed and therefore the system is

effectively a collection of smaller systems. All of the methods used

here are still valid, except that the number of density matrix elements

2
excited and the available fraction of I should be recalculated usingz

the known symmetry. In general, N-quantum and (N-l)-quantum

transitions must have Al symmetry, since the states with M = ± N/2

have that symmetry as noted in section 1.4. The relevant energy

level diagram is not a binomial distribution but instead is the

group of Al states. The calculations are straightforward, and benzene

has been included in Table 111.1 to illustrate symmetry effects.

These gains become extremely large for large N. However, the
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Table 111.1 Enhancement of N or (N-l)-Quantum Transitions in an N-Spin

System by Selective Excitation

N Symmetry GN
G

N
_

1

2 None 8 1.14

4 None 64 6.10

6 Benzene 47.5 17.2

6 None 384 32.7

8 None 2048 154

10 None 10240 683

12 None 49152 2922

14 None 229376 12269

16 None 1048576 50892

18 None 4718592 209409

Table 111.1. Enhancement of high multiple-quantum transitions.

using selective sequences. Sequences which select only N-quantum

(or only (N-I)-quantum) are illustrated in Figure 111.2.



Table 111.2 Intensity of High Multiple-Quantum Transitions, With and

Without Selectivity, Relative to Total Magnetization of the Sample

Intensity (In Percent)

N Symmetry Nonselective
xGN

xG
N

_
l

6 Benzene A
l

0.197 9.38 3.69

6 None 0.024 9.38 0.80

8 None 1.5 x 10-3
3.13 0.24

10 None 9.5 x 10-5 0.98 0.065

12 None 5.9 x 10-6 0.29 0.017

14 None 3.7 x 10-7
0.085 4.5 x 10-3

16 None 2.3 x 10-8
0.024 1.2 x 10-3

18 None 1.4 x 10-9 0.0069 3.0 x 10-4

112
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single N-quantum transition contains only a tiny fraction of the

total intensity in the nonselective experiment, and therefore the

total signal available in the N-quantum and (N-l)-quantum transitions

with and without selectivity should be calculated. This calculation

is done in Table 111.2 and assumes that the total number of protons

in the sample is kept constant as N is changed. The signal size is

calculated as a fraction of the total magnetization of the sample.

The signal size still decreases as N increases, but the decrease is

much slower than in the nonselective experiment, and Table 111.2

indicates that selective excitation should dramatically increase

the number of molecules which could be studied by multiple-quantum

spectroscopy.

3.5.4 Coherent Initial Conditions

In all of the calculations so far, the initial density matrix

has been assumed to be the equilibrium matrix -81. However, otherz

initial conditions are possible. If an nk-quantum selective

operator is applied to an initial density matrix -81 (produced by a
x

single 90° pulse), only coherences with ~ = nk ± 1 are produced.

One important advantage of this technique is it is no longer necessary

to pretend that the observable operator is <I > . <I > is thez ' x

operator which has signal. In the standard multiple-quantum

experiment and in this experiment, the signal can be sampled long

after the last pulse; in the selective experiment which starts from

I , the signal should be sampled as close as possible to the last
z

pulse, and this causes filtering problems.
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Unfortunately, selective excitation from I is much less
x

efficient than selective excitation froD I z ' since all the single-

quantum transitions are always excited. The number of single-

quantum transitions in an unsymmetrical system with N spins-1/2 is

«2N)!/(N+I)!(N-I)!). Using Sterling's approximation one finds

(2N)!/(N+I) I (N-I) I ~ 2
2N/1rrN (III. 35)

so the fraction of pumped coherences is at least 2/(TIN)I/2, and

the expected gain is IN (/TI/2) = .89/N. This small enhancement

often will not justify the additional difficulties of a multiple-

pulse experiment.

3.5.5 Symmetry Selection

One physically interesting application of selective sequences is

the production of multiple-quantum transitions corresponding to a

limited number of irreducible representations. The N-quantum and

(N-I)-quantum transitions all have Al symmetry, so if a Nk-quantum

or (N-I)k-quantum selective sequence is applied to a system at

equilibrium only Al energy levels are perturbed. If one more pulse

is applied after the selective sequence, the density matrix can have

all orders of multiple-quantum Al coherences, but in the other

irreducible representations can only have single-quantum coherences.

Depending on the nature of the energy level diagram, it may be

possible to select other representations as well. This symmetry

selection will be discussed further in Chapter V.

3.5.6 Heteronuclear Selective Excitation

The differences between heteranuclear and homonuclear selective

excitation are quite minor if the I-spin pulses and S-spin pulses
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are always shifted by the same amount. The Hamiltonian has several

additional terms not found in equation (111.24). The most important

addi tional term

which generates

in the heteronuclear dipolar coupling, L b .. 1 .s .
lJ ZJ.. zJ..'

t ' ~+ ~+ if .opera ors sucn as L l~ 2 an approprlate sequence

is used. The sequence for X in Figure (111.4(a) is still valid, but
o

x X' and X should be changed. Many choices are possible. Onep' p w

simple option would be to make X and X' into two-quantum operators
p p

for both sets of nuclei, (i.e., apply the same pulses to both), but

in addition supperss the heteronuclear couplings with echoes on one

set of nuclei. As long as the heteronuclear couplings are not

suppressed in X , all multiple-quantum operators can be produced,
w

with the S operators the same in X as they are in X .
o w

One interesting difference between homonuc1ear and heteronuclear

selective excitation is the possibility of using different phase

shifts for the different nuclei. For example, a sequence which is

4k-quantum selective for I spins and 3k-quantum selective for S

spins can be generated by shifting I pulses by n/2, and S pulses by

2 TI/3; such a sequence requires 12 subcycles. If there are 4 I spins

and 3 S spins, all of which are spins-1/2, this sequence produces

only ~ = 0, ± 4; ~s = 0, ± 3. However, shifting both sets of

pulses together produces more high-quantum operators; in this

example, if all the pulses are shifted by 2 TI/7, only ~~l = 0,

~ - 0; &-11 = +4, &-1S = +3; and ~I -4; ~ = -3 operators are

produced. Generalizations to spins with total angular momentum

> 1/2 are straightforward.
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3.6 Extent of Selectivity in Non-Ideal Selective Sequences

3.6.1 General Systems

As mentioned earlier, for any multiple-pulse sequence one expects

I X(n). < IX I n+1 n J(
- 4 int t c ' In a selective sequence, ¢ is formally

-
equivalent to Xi (t), as illustrated in Figure 111.3. Therefore, asnt

. -(0)
IX¢tcl ~ 0, X becomes the dominant term of X. The nonselective

terms of U E exp(iX(Nt )) can be made arbitrarily small in principle byc

making t very short, while if Nt is kept constant the selectivec c

contribution from X(O) is unaffected. In practice, the attainable

selectivity is limited by several factors.

1. For technical reasons, t cannot be made arbitrarily short. Forc

example, if each subcycle requires pulses with specified flip angles,

each pulse has a finite width which depends on the strength of the

exciting field.

2. The time required to pump multiphoton coherences is generally

dependent on the "anharmonicity" of the energy level spacing. The

excitation sequence needs to extend for a period comparable to the

inverse of the anharmonic frequencies, which in the last section were

the dipolar frequencies. This problem was investigated in depth in the

last section; one solution is to construct a subcycle with an effective

Hamiltonian ax I «IX I, so that IX t R can be small even though
oint 0 c

IX t I is not. If this is not possible, the general considerations
int c

of the preceding section still hold, but to retain selectivity the

8ubcycles would need to he shorter, and cycles se1ective to higher

order would be needed to obtain high quantum operators.

3. Because there is a lower limit to the length of a subcycle, the

minimum time needed for a j-order nk-quantum selective sequence
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increases rapidly as j increases. However, relaxation mechanisms make

the average Hamiltonian calculation invalid if the total length of a

sequence is comparable to T2 , the coherence dephasing time. Thus, for

any system only a finite order of selectivity is possible. Inhomogeneous

systems are a special case; excitation designed to compensate for such

broadening may allow homogeneous selective excitation.

4. Timing errors, inaccurate phase shifts or other failures in

control over coherence will reduce the selectivity of any sequence.

This subsection analyses these limitations for general spectroscopic

systems. In order to estimate the importance of the first three

problems listed above the size of the first non-nk-quantum selective

operator from a j-order nk-quantum selective sequence (which is

C-iX(j+l)t) ) and plausible conditions for convergence of the average
c nns

Hamiltonian expansion are calculated in Appendix D. Phase cycling and

symmetrization are combined into one operation, which turns a (j-2)-order

nk-quantum selective subcycle into a j-order nk-quantum selective

cycle requiring 2n subcycles (Figure 1I1.2(b», assuming perfect phase

shifts and no timing errors. The norm of the first nns term for the

cycle, which is (x(j+l)) , is shown in Appendix D to be related to
nns

that of the first nns term of the i th subcycle, which is GK~j-l»nns

kjf(j+1) t) ft
c nns

(III. 36)

8 5 2 3 2 ) 1/2/8 3 09 -1/2
F(n) "" (15 n - 3" n + 15 n n '\,. n (III. 37)

If a (j-2)-order selective subcycle were repeated 2n times without

phase shifting in between, the first nonselective term would be
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X(j-l) t ; the first nonselective term in the j-order selective
i,nns c

'0) 2
sequence is smaller than this only if I (Xl t) I Fen) < 1. This

c

result suggests that the average Hamiltonian expansion fails to

converge when I (fe(0) t ) 2! ;:: F Cn) -1. Thus convergence requires
c

I (fe(0) t ) 1 < F(n) -1 (111.38)
c

Values of F(n) are listed in Table 111.3.

Equation (III. 37) can be used (j-l) /2 times, to express

in terms of (fe(2» for a first-order selective sequence.
nns

can then be calculated, using equation (111.16). The selectivity S

a typical matrix element
2

(I(j(O)t)D '\, FCn)-l),
c

At the limit of convergenceof (i«j+l»
nns

of a j-order nk-quantum selective sequence is defined as the ratio

between a typical matrix element of X(O) and

(III. 39)

where K is defined as the total number of allowed transitions divided

by the total number of nk-quantum transitions, and a is defined by the

relation IX 82 = aKIX(O) 02 (see equation (111.20»; the reason for the
o

definition is that if all the matrix elements of X¢ have roughly equal

magni tude, a '\, 1.

To go further the relative sizes of nx(O) 0, I (X(O» 2 11 and 0 (X(O» 3U

are needed. If the eigenvalues of X(O) have a Gaussian distribution,

equation (DL7) implies that n(j{«()) 211 = /3 1Ij((Q)n
2 and U<:i/D»3 U =

/l5 nx(O)o3. Another possibility is that the energy levels might be



Table 111.3 Values of FCn) = ((8/15)n5-(2/3)n3 + (2/15)n)1/2/8n3 and

(F(n)) -1. As long as II ex(O\ til < (FCn)) -1 the average Hamiltonian
c

expansion is expected to converge rapidly.

n F(n) F(n)-l

3 .090 11

4 .044 23

5 .036 27

6 .032 31

10 .029 35

12 .026 38

14 .024 41

16 .023 44

18 .022 46
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spaced so that Xo has only two transitions which are nearly resonant,

forming an effective three-level system, and X(O) contains a nonzero

matrix element for only one of these transitions; in this case NT = 3,

and if X(O) is traceless one expects f ex(O» nn = 0/2) G1-l) /2 ex(O) gn.

- (0) n I (0) ft n
In both cases B(X ) U does not grow greater than X D very rapidly.

However, if K » 1, so that only a very small fraction of the matrix

elements of X
o

are selected by X(O) , then I (X(O»n. ~ (N
T
)(n-l)/2

IK(O).n is possible. This case and the case of a Gaussian distribution

will be discussed in the next section in connection with multiple-

quantum NMR.
2

The factor (2n)j /4+7/4 makes S grow very rapidly as j is

increased, and fairly small values of j still give very selective

sequences. For example, if a Gaussian distribution of eigenvalues is

-(0)
assumed for X ,the selectivity of a third-order 10k-quantum selective

sequence with a ~ 1, K ~ n, and F(n) = 0.028 (from Table 111.3) is

S - 1170; a typical selected matrix element is more than three orders

of magnitude larger than a typical nonselected matrix element, even

near the limit of convergence. When DcR(O)t )21 « F(n)-l, S will be
c

much larger; in general, if D(X(O)t )fl is scaled down by a factor of A,
c

IX(n+l)t I is scaled down by a factor of Aj +2 , and S increases by a
c nns

factor of Aj + l . It can be concluded that for many systems the use of

cycles with only a finite order of selectivity is entirely satisfactory.

The effects of timing errors and imperfect phase shifts are more

serious. Suppose that the length of sub cycle i is b.r: + <5., and that
p ~

the phase is cPo + E. , where L: O. = L: E = 0 (Figure III. 6} . Then
~ ~ i

~
i

i
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(jJfepn-I+E)(jJfepn-1 +En+,)

LlTp + 01 LlTp+02 111111""'1111 LlTp + On LlTp+On+1 ''''11'1,.,11111 LlTP+02n _1LlTP+02n

XBL 803-8943

Figure 111.6 Modification of the symmetrized sequence of Figure 1I1.2(b)

to include phase errors O. and timing errors E .. We assume, without
l l

loss of generality, that <E >
i

<0.> >= o.
l



x(O) "" I
2nLlT

p
L Un +5.)(expliI (¢.+Ei)J{ exp(-iI (,+, +E »)
i p ~ z ~ 0 z ~i i
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(III.40)

which is no longer purely nk-quantum selective; the matrix element

for an M-quantum transition is multiplied by

I
2nD.T

P

L (In +5.) exp(im(¢.+s.))
i p ~ ~ ~

(111.41)

instead of O.

out:

Assuming OJ « ~Tp and E
j

« 1, this can be expanded

1
2nD.T

P

I
2~T

P
exP(im¢i) + L 0i exp(im~i) + L(~Tp)(imEi)exp(im¢i) + ... ).

(III. 42)

The first term on the r.h.s. corresponds to an ideal sequence and

vanishes if m is not a multiple of n.

with ¢i' the last two terms reduce to

If £i and 0i are uncorrelated

(2n)-1/2«<0:>/~T2) + m2<E:»1/2.
J p J

If the number of subcycles increases (for example, by going to a

higher-order selective sequence) this term decreases, so that the ratio

IX(O). /DX(O)g can be made arbitrarily large. However, if
selective nns

E
j

or OJ are completely correlated with ¢i (so that, for example, every

time the phase should be ¢ = 0 it is actually ¢ = E ). D;jf(O) II 1 . /o se ectlve

IX(O). is not reduced by increasing the order of the sequence. Such
nns

a situation arises with a miscalibrated phase shifting device or for

one in which a digital approximation is made to the exact setting.

One way to reduce this error is to use two (or more) phase shifting

devices, so that the total error is not well correlated with the total

phase. A specific example with a 2k-quantum selective sequence is
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given in Figure 111.7.

3.6.2 Application to Multiple-Quantum N}ffi

As mentioned earlier, an ideal N-quantum sequence that had no zero-

quantum matrix elements could enhance the single N-quantum transition

Nof an N-spin system by a factor of N2. A non-ideal Nk-quantum

selective sequence (which has zero-quantum matrix elements) will not

work as well, for two reasons. First, there may be nonzero matrix

elements for the populations of the states m = ±N/2 (populations may

be thought of as a special type of zero-quantum coherence, with the

initial state identical to the final state). In this case, the

effective Hamiltonian for the two levels will be

ab
a I (Figure 111.8) instead of containing onlyz z

a I ab +
x x

I ab and
x

a I ab +
y y

lab.
y

Depending on the relative size of the coefficient a it may bez

impossible to transfer population completely into coherence.

Statistically the coefficients are expected to be of comparable size

and in that case much of the population can be transferred into

coherence. As mentioned earlier, the form of this effective Hamiltonian

guarantees that U = V gives the maximum signal.

A much more serious effect comes from the requirement that the

average Hamiltonian expansion converge. In general this would imply

I (.K(O)t )21 < F(n)-l. For the sequences described, the distribution
c

of eigenvalues of X is expected to resemble that of the eigenvalues of
. 0

X which will be Gaussian if N is large, It is reasonable to assume
z

. (0) i ..,,(0)
that the eigenvalues of j{ have a Gaussian distribution, s nee ~

.. dOth 1° °t fX(O)has many allowed O-quantum trans1t10ns, an S1nce e ~ a

as T -+ a for Figure III~ is J{. The convergence criterion of equation
z

(111. 58 ) then be written as IIX(O)t II < 3-1 / 4 F(n)-1/2 '\" 2.1 (n
1/4 ).can c
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¢=o ¢ = 7T ¢ = 7T ¢=o ¢= 7T 4>=0 ¢ = 0 ¢ =7T

jj(O) = jJ/, + cPI _ 0 (m odd)
o 7T

(b) One phase shifter: ¢=EO or ¢=7T+E/. EO+E, = 0

¢-E ¢=7T+E, ¢=7T+E
J

¢=EO ¢=7T+E
1

¢ =EO
¢ -E ¢=7T+E,- 0 - 0

(c) Two phase shifters: ,J.. - E or't' - 0

or ¢' = 7T +E'
I

EO+E, = 0

El +E' = 0o I

¢ =EO ¢=7T+E1 ¢=7T+E1 ¢=E
O

¢ -E ¢=7T+E1¢=7T +E1
¢-E- 0 - 0

qj=EO qj=EO qj=EO qj=EO ¢'=7T+E, ' , , ,
qj=7T+ E,ef>=7T+ E, ¢=7T+ E,

(m odd)

XBL 803-8900

Figure 111.7 Reduction of phase shifting errors can be accomplished by

using two (or more) uncorrelated shifters.
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./"-----I x

XBL 803-8941

Figure 111.8 Schematic illustration of one effect of zero-quantum

coherences on an N-quantum selective sequence. The sequence causes

the population difference between the states H = ± N/2 to be rotated

about an arbitrary axis, and co~plete transfer of population difference

into coherence may be impossible. Compare this to Figure 111.5.
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The definition of the norm by a 2N by 2N matrix gives:

(III. 43)

where N is the number of possibly nonzero matrix elements, and thes

rIDS average only includes those elements. Therefore, to make an

average excited matrix element comparable to 1 (which is needed if

we want the effect of X(O) to approximate a selective 90 0 pulse between

the levels M = ± N/2) while keeping DX(O)t n ~ I requires
c

(III.44)

2NThere are 2 possibly nonvanishing matrix elements for a non-

selective sequence, and if only zero-quantum and N-quantum elements

are excited, Assuming that EX(O)t n ~ 1 for a
c

conservative estimate, one finds

(III. 45)

This scales down the possible gain because the selective sequence

effectively produces only a small rotation instead of a 90
0 pulse.

In fact,

(111.46)
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so the gain is

G' (III. 47)

This value of G' is only approximate, since it depends on the

exact maximum permissible value of UX(O)t II. The gain can be roughly
c

assigned to two effects. Only ~ l/IN as many transitions are being

pumped so each one is IN times stronger; in addition, the N-quantum

transition receives intensity from the equilibrium population difference

of the extreme states for which the expectation value

sta tes.

a factor of N greater than the expectation value averaged over"all

A more liberal estimate which allows IIX(O)t /I ~ 2.1 n l / 4
c

would give G' ~ 16 N
2

. While this gain is large, a much larger gain

is possible if NS can be reduced.

3.6.3 Removal of Zero-Quantum Operators from Selective Sequences

The gain can be increased if the zero-quantum coherences are

-(0)
removed from X . One way to do this is with the sequence shown in

Figure III.9(a). The phase shift of n/N inverts the N-quantum coherence

but leaves the zero-quantum coherence invariant, and the time reversal

inverts every order of coherence, so the net result is that zero-

quantum coherences are inverted every subcycle but N-quanturn coherences

are unaffected.
-(0)

The lowest-order average X for the sequence in

Figure III.9(a) contains only N-quantum, 3N-quantum ..• (2k+l) N-quantum

coherences after 2N subcycles. In an N-spin system, this makes

N
s

condition (111.44) is satisfied, and the ideal gain GN

of Table 111.1 becomes possible.

The easiest way to design such a sequence for X¢ is shown in
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.PI -.fJ( .fJ( -.fJ( -.fJ(
0 4>= rr/n 2;' 34> (2n il</>

(0) 6T. 6Tp 6Tp 6Tp ....................................... 6Tp

I
L...--.....J

.PIp .fJ(. -.PIp ""l

lbl [(

jf{p -.fJ(. -.PI p

X )] [( )]
4>'=0 4>' = rr/4 4>' = rr/2 4>' = rr/n 4>'= rr/n - rr/4 4>'= rr/n + rr/2

lwo-quonlum G090

.(
(c) sequence ~ 2T

Figure 111.9 Sequences to select only N-quantum, 3N-quantum ...

(2k+l)N-quantum coherences, a) General sequence. Note that J~ is

inverted after every subcycle, and that the phase shift is ¢ n/N,

instead of ¢ = 2n/N in Figure 111.2. b) X can be formed with the
a

pure double-quantum sequence (part (c)), which is inverted by a

n/2 phase shift.



Figure III.9(b). x , ~ ,X and ~ are all generated from the
p p w w
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double-quantum sequence, mentioned earlier and illustrated in

Figure III.gec) with relative phases 0, n/2, n/4, and 3n/4 respectively.

If IX ~T I « 1. only the N-quantum transition appears. However, the
w p

value of K = IX 1/IX(O)g is now very large (K ~ ZN) so the selectivity
4>

S from equation (111.39) will be somewhat weaker, and should be

reconsidered. High-order selective sequences with no zero-quantum

contributions can be generated from Figure III.9(a) in exactly the same

way that high-order selective sequences with zero-quantum contributions

were generated from Figure III.2(a). A third-order 10-quantum selective

sequence requires (4N)2 = 1600 subcycles (instead of (2N)2 = 400

subcycles without suppression of zero-quantum). Equation (111.39)
2 2

applies if (2N)j /4+7/4 is replaced with (4N)j /4+7/4 and N is

replaced with 2N, since each symmetrized phase cycling now requires 4N

subcycles.

The assumption of a Gaussian distribution of eigenvalues is no

-(0)longer valid, since X has only two nonzero matrix elements. Since

X(O) is Hermitian, the two elements have the same magnitude %R. The

1 -(0'
eigenvalues are ± 2 R, and 0 for all other states, because X J is

traceless. Therefore

011.48)

2 (}l-l) /2 IlX(0) t II 2
c

U1r.49)

2 eN-I) 1Ij(0\ n3
c

(III. 50)
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the calculated

selectivity of a third-order 10-quantum sequence with a = 1, K = 22N- l

and F(n) = 0.029 (see equation (111.39») is 5 = 0.025. However,

1 iii'(O)t )21 d 11 b hi 1~' nee not rea yet sarge; all that is required inc
-(0) 2

Rt - n/2, so I (X t) ~ = .034, a factor of 1400 smaller. Whenc c
-(0) 2 4

1(cK t c ) I has this value, then 5 = 5.0 x 10 .

The maximum gain G can be attained if the 4(ZN_Z) non-N-quantum

selective matrix elements that involve the m = ± N/2 states transfer

2
only a small fraction of (I z )M=±N/2 relative to the fraction transferred

by the two N-quantum selective matrix elements. Since each selective

matrix element is larger by a factor 5, the intensity of the selected

transition is larger by a factor 52, and therefore

52 » 2N+l (111.51)

is required which is satisfied in this example. It can be concluded

that almost all the theoretical gain from an infinite-order selective

sequence is attainable with a third-order selective sequence, and the

potential gains in Table 1 should be approximately realizable.

Note that the theoretical maximum gain becomes more difficult to

achieve as N increases, for several reasons. Equation (111.51) implies

that the required selectivity for maximum gain is proportional to

G17)N, and therefore high-order selective sequences may be needed.

However, the number of subcycles cannot be increased indefinitely,

because each subcycle must have a minimum duration, and relaxation

effects limit the maximum duration of the cycle to less than TZ"
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Typically, IXzzG ~ 10 kHz and T2 ~ 100 msec for liquid crystal systems,

so no more than a few thousand subcycles would be possible; a third-

order 18-quantum selective sequence that eliminates zero-quantum

2
requires (4n) = 5184 subcycles, and therefore, is impossible for many

molecules. In addition, sample heating becomes a serious problem when

many pulses are applied.

3.7 Conclusions

Average Hamiltonian theory has been extended to describe pulse

sequences which produce coherences and population inversions between

states with selected values of~. Sequences have been constructed

which are selective to arbitrarily high order in the Magnus expansion.

These sequences theoretically provide large signal enhancements

relative to nonselective techniques (for example, N-quantum selection

in an N-spin system gives an enhancement of N2
N
). Residual nonselective

terms have been calculated, and convergence criteria for the expansions

established. Thus, selective excitation should be a useful technique

for increasing the number and size of molecules which can be studied

by multiple-quantum NMR.
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IV. Computer Calculations of Selectivity

4.1 Motivation

The theory of selective excitation, as derived in the last

section, extends the formalisms of coherent averaging theory to

describe pulse sequences which are inherently selective. The most

important strength of this theory is its generality. For example,

the pulse sequence represented schematically by Figure (II1.2(a)) is

zero-order nk-quantum selective, no matter what the Hamiltonian is,

and no matter what the exact pulse sequence is for each subcycle.

In addition, residual nonselective terms can be estimated for nonideal

sequences, and this estimation only requires knowledge of II JeD II and

the fraction of nk-quantum operators in the subcycle effective Hamiltonian.

In practice this generality is extremely useful, because the most

interesting applications of selective excitation are to molecules with

unknown dipolar couplings and chemical shifts. Even if the individual

couplings are unknown, UJenll can be readily estimated froID the width of

the single-quantum spectrum; and if UKn6Tpfl ~ I, the fraction of nk­

quantum operators can be approximately calculated (see sections 2.4

and 6.3).

However, this generality implies several important disadvantages.

It was recognized in section 3.4 that even an infinite-order nk-quantum

selective sequence (which would reauire an infinite number_of pulses!)

need not produce any nk-quantum coherences and that a lower limit must

be imposed on the cycle time if high-quantum operators are desired.

Even if this requirement is met, an unfortunate choice of pulse sequence

parameters might produce a subcycle effective Hamiltonian Jeo with a

vanishingly small fraction of nk-quantum operators. 'J( canno t be
o
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calculated without prior knowledge of the coupling constants, no matter

what the exact sequence is, because bilinear couplings are required

to generate multiple-quantum coherences. Therefore, appropriate

lengths for delays [such as ~Ti in Figure (111.4(a))] can only be
p

estimated, not calculated exactly.

In addition, any calculation involving coherent averaging theory

must be treated with caution unless convergence of the Magnus expansion

can be shown. When convergence is questionable, the results can be

completely wrong. As an example, consider the two sequences

illustrated schematically in Figure (IV.l). Figure (IV.I(a» is a

zero-order 2k-quantum selective sequence repeated twice; the second

sequence is first-order 2k-quantum selective, and consists of two

phase cycles (or one phase cycle and symmetrization). The effective

Hamiltonian for the first two subcycles can be written as K + &K
e 0'

where X is 2k-quantum selective and X is non-2k-quantum selective
e 0

(i.e., contains only odd-quantum operators) and E « 1 is assumed.

The exact propagator for the first sequence is then (exp(-i(Jfe +£Xo )

2
(2~T ») . The effective Hamiltonian for the third and fourth

p

sub cycles of the second sequence is X - EX , since this half of the
e 0

sequence is related to the first half by a phase shift of n;

therefore the exact propagator for the second sequence is

exp ( - i(X + &K ) 2ln ) exp ( - i(J{ - EX ) 26 T )
e 0 p e 0 p

(IV.l)

Intuitively, one might expect the second sequence to always be

superior to the first, since it is selective to higher order in the

average Hamiltonian expansion. Equivalently, expansion of the
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b.

cflI0 jlf 7T cJ/7T

I f:.TP I f:.TP I f:.TP

cflIo

XBL'SOlO-12246
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Figure IV.I Two pulse sequences which illustrate that average

Hamiltonian theory must be used with caution. Part b) is first-

order 2k-quantum selective, and part a) is zero-order 2k-quantum

selective. The sequence in part b) is more selective if ~T is
p

small. The sequence in part a) is more selective if ~T is large
p

(see text).



sequence.

exponentials in powers of LT gives D = l-i(4L\T ) (X +EJ( ) + OC6T 2) for
p p e 0 p

the first sequence, and U = l-i(4LT )(X ) + 0(LT
2

) for the second
pep

However, when DX tn II is large, expansion in powers of
e p

LTp is invalid. As long as £ « 1, a different expansion can be used

(see Appendix E):

(
exp (A) .. -exp (A) )

exp(A+£B)'k = (exp(A)) .. O'k + £B.
k

. JJ kk + 0(£2)
J JJ J J A.. -A.

kJJ -1<."

A and B are both written in a basis where A is diagonal. Using this

expansion one finds

(exp(-i(X +SK )(2LT ))2). ~ exp(-iX 46T ) .. O.
e 0- p Jk e P J J Jk

135

(
~XP(-iX (4LT ))j' -

+ £(X ). e P J
0- Jk (X) _

e jj

(IV.2)

exp(-i(X +EX )(2LT )) exp(-i(X -uK ) (2LT )) ~ exp(-iX 4LT ) .. 0jk
e 0- pea pep JJ

~
eXP(-iJ( (2LT )) .. -

_£ (X ) e p 11
0- jk (X) _

e jj

eXP (-iXe (2LTp))kk)2 f)

(Xe)kk

(IV.3)

As expected, the first nonselective term in equation (IV.2) is

proportional to 6T and the first nonselective term in equation (IV.3)
p

2
is proportional to (6T ) , so when 6T is small the first-order

p p

sequence is superior. When 6T is large, however, exp(-iX (26T )) ..
pep JJ

and exp(-iX l46T )) .. are essentially random numbers of magnitude 1;
e P JJ

thus, the root-mean-squared value of the term in brackets is J2 in

equation (IV.2) and 2 in equation (IV.3). Therefore the first-order
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sequence is expected to actually be worse than the zero-order sequence

for large ~T , where the average Hamiltonian calculation does not
p

converge.

Convergence criteria were discussed at length in section 3.6, and

reasonable guidelines were proposed. Nevertheless, it is useful to

confirm the selectivity calculations by a totally independent technique,

because the convergence problem is so important. For a small enough

spin system with a given Hamiltonian, the exact effect of any pulse

sequence can be calculated by solving the density matrix equation of

motion on a computer. Since no approximations are required, such a

calculation allows rigorous testing of the important concepts of the

theory of selectivity, and in addition can show where convergence

actually begins to be questionable. For this reason, computer studies

were initiated. The results, to be described in the next several

sections, verify the calculations of chapter III but give additional

insight into the design of practical experimental sequences.

4.2 Programming Details

A general program for testing selective sequences is given in

Appendix B. The propagator for any pulse sequence can be calculated

by multiplying together the propagators for each individual pulse or

delay. In a system with N spins-1/2, each propagator can be written

as a 2N
x 2N matrix. Multiplying together two matrices of this size

requires 23N individual multiplications, so the number of matrix

multiplications should be kept to a minimum. One way to do this is

to use the simple relationship (111.19) between the propagators for

different subcycles. Thus, once the propagator Uo for the first
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subcycle has been calculated, the propagator for any othersubcycle can

~u

be calculated with 2~~ multiplications, no matter how many pulses the

subcycle contains. Similarly, calculations for high-order sequences

involving several phase cycles can be simplified by calculating the

propagator after the first phase cycle, and using (111.19) on it.

Uo can only be calculated exactly if X
z

is given. For some of

the calculations, particularly those given in section 4.5, coupling

constants are generated. In other calculations the generality of the

theory of chapter III is retained by assuming a form for X , usually
o

one that has random matrix elements of roughly equal magnitude every-

where, subject only to the constraint that the matrix be Hermitian.

All computing was done on a VAX 11/70 system with 2.5 M byte

memory and floating point accelerator hardware. On this system, for

example, calculations for a third-order 4k-quantum selective sequence

on an unsymmetrical four-spin system with 125 different values for the

cycle time required roughly 30 minutes of processor time; thus an

unsymmetrical five-spin system would require roughly four hours, and

few tests with systems of this size were done. Benzene was extensively

studied, because its Al manifold has only 13 states, and several

different random four-spin and five-spin systems were also used. Many

of the subroutines used were originally developed by Jim Murdoch for

66
calculations with nonselective sequences.

4.3 Zero-order Selective Sequences.

4.3.1 Nk-Quantum Selection

4.3.1.1 Propagator Selectivity and Coherence Selectivity

As discussed in section 3.5.1, a Nk-quantum selective sequence



implies that the sequence does in fact

propagator selectivity is proportional

138

in a N-spin system creates an effective two-level system, since it will

only connect the states with IMI = Ni2. Ihe average Hamiltonian (and,

by implication, the propagator) can also have zero-quantum operators

connecting other eigenstates, but these operators commute with I , so
z

if that is the initial condition no zero-quantum coherences can

develop.

Figure (IV.2-3) show the effects of a zero-order 4k-quantum

selective sequence (Figure (111.2a)) on a four-spin system, starting

with a random X and U. The results from five random X operators
o 0 0

were averaged together. Figure (IV.2) shows the ratio of a typical

4k-quantum selective to a typical non-4k-quantum selective matrix

element of the propagator. This will be called the propagator

selectivity, to distinguish it from the selectivity defined in section

3.6, which is not identical because that definition is a ratio of

matrix elements of the effective Hamiltonian. As expected, the

to (t )-1 for small t , Which
c c

have a nonzero GR(l)) .
nns

When t is large, the propagator selectivity is essentially unity.
c

The criterion in equation (111.51) for acceptable selectivity 03 2
»

2N+1 _ 1) is violated when S ~ 5.6. This occurs when UX t B
o c

~ 1.5.

Of the 256 matrix elements, 72 are 4k-quantum selective (16 populations,

2 four-quantum operators and 54 zero-quantum operators), so the relation

Ux ~ 1 by construction of X).
o

-(0) 2 -1
The general convergence criterion ~f t c ) n «F(n) of equation

(111.38) applies directly only to high-order symmetrized sequences.
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Figure IV.2. The propagator selectivity and coherence selectivity

of one cycle of a zero-order 4k-quantum selective sequence. Both

-1
selectivities are proportional to T for short cycle times, which

c

indicates that ;j{(l) does not vani-sh.



However. ~(l)) can be estimated using Theorem II of section 3.2.1:nns
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(X( 1) )
nns (IV. 4)

Since there are only four subintervals, there are only ten operators

K¢(tZ)K¢(t
l
)' and the sum with ¢(tZ) = ¢(tl ) is 4k-quantum selective.

If matrix elements for the remaining 6 operators add randomly

1Ij{(l)t B
c nns

/6
'\, -

16 (IV. 5)

A typical matrix element of ~(O) is 5.6 times larger than a

typical ma trix element of IIX(l) II when IIX(l) II /IIX(O) II '\, «256-72) /72) 1/2
nns nns

(5.6)-1 = 0.29, and plugging this into equation (IV.5) gives 1Ij{(O)t II
c

'\, 0.53. The agreement with computer calculations is quite good,

. -(1)
particularly S1nce X also has some 4k-quantum selective terms.

which implies tha t this es tima te of the cri tical value of II JC( 0) t II
c

should be slightly low.

Figure IV.2 also shows the ratio of the magnitude of a typical

four-quantum coherence in the final density matrix to the magnitude of

a typical one-, two-. or three-quantum coherence, as a function of the

cycle time. This ratio will be called the coherence selectivity.

The coherence selec tivi ty is experimentally observable if the signal-

to-noise ratio is sufficiently good, so it is more useful than the

propagator selectivity. However. it cannot be readily calculated from

coherent averaging theory. Even if the effective Hamiltonian X is



completely kno~, the coherence selectivity requires calculation of

exp(-i~tc)Iz exp(LRtc 1 , which is difficult to evaluate by hand for any

reasonably sized system unless I¥.t B is small.
c

Fortunately, the coherence selectivity is usually larger than the

selectivity of the effective Hamiltonian. This can be readily seen

by expanding p in powers of t , as in section 2.3:
c

141

p - I - it [X,I ] + a(t 2)
z c z c (IV.5)

(IV.6)

Mj-Mk is larger for the four-quantum transition than for any

other transition, so the coherence selectivity is strengthened in the

lowest order term. In fact, since there are 8 three-quantum transi-

tions, 28 two-quantum transitions, and 56 one-quantum transitions,

<~> E 1.48, and the coherence selectivity should be roughly 2.7
nns

times larger than the effective Hamiltonian selectivity on the average;

in Figure IV.2 the ratio for small t is 2.95, but this value depends
c

on the choice of matrix elements for U. Thus, since the selectivity
o

from coherent averaging theory provides an underestimate for the

coherence selectivity, it is still a useful test for convergence.

4.3.1.2 Signal Intensities

Figure IV.3 shows the observable signal intensity for the four-

quantum transition Cthe square of the coherence magnitude, from

equation (J1.34) as a function of the cycle time, in units of 6.

(For simplicity C = -1 is assumed in equation (11.20». The total

available signal 8Tr(1 2) = 16 6, and there are 256 matrix elements,
z
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Figure IV.3. The signal produced by one cycle of a zero-order 4k-quantum

selective sequence as a function of the cycle time. The maximum

attained signal is 2.22 6, which represents a gain of 36 relative

to nonselective excitation.
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so the expectation value of the signal from nonselective excitation is

.0625 S. The maximum possible value for the four-quantum signal is

4 S, from equations (III. 29-33) , so the possible gain is a factor of

64. The largest signal from Figure IV.3, however, is 2.22 when DXlO) t II ==c

2.1- At the peak, the propagator selectivity is only 3.40, so the

selectivity disappears before the true ma»imum can be reached. This

is not surprising, since the first maximum corresponds to a selective

90 0 pulse between the two extreme levels, so the coefficient of the

four-quantum operator in X(O) must be at least n/4 (see equation

(111.32) and section 3.5.1). We then expect nx(O)t n > 1.66 if all
c -

72 4k-quantum operators are pumped equally, and UJC t U ~ 3.14. This
o c

is well outside of the expected range of convergence; in fact, the

propagator selectivity is only 1.74 for this cycle time.

Several approaches can be taken to improve the selectivity.

The first, and simplest, is to decrease the cycle time and increase

the number of cycles. For convenience define T as the number of
c

cycles times the cycle time; T is then the total duration. If two
c

cycles are used, for example, n;J( T II ~ 3.14 for the whole sequence when
o c

UK t n ~ 1.57 for each cycle. Thus larger signals should be attainable,
a c

and this is illustrated in Figure IV.4; the maximum is now 3.19 at

UK T n = 2.75. The signal can be further increased by adding more
a c

cycles. With 16 cycles, the signal follows a sin
2

curve for several

oscillations, as expected from equation (11.36), and tlle theoretical

maximum gain is achieved when 11K T II = 3.2, as shown in Figure IV.5;
o c

the oscillations die away as the ~electivity disappears. If enough

cycles are applied, the oscillations can be prolonged indefinitely.
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4k-quantum selective sequence.

Figure IV.5
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The signal produced by 16 cycles of a zero-order

The signal follows a sin
2

pattern

for several oscillations, and reaches the theoretical maximum of

4.00 for a gain of 64.
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Any arrangement of the four phases is equivalent as far as X(O) is

concerned. However, some arrangements might be superior in cancelling

the largest terms in GR(l)) •
nns

All of the 24 possible permutations can

be related to one of the sequences (0, 90, 180, 270), (0, 180, 90, 270),

or (0, 90, 279, 180), by adding a constant amount to each phase or

reversing the order of the phases; thus only these three groups need

be analyzed. Table IV.l gives the maximum four-quantum signal from one

cycle of zero-order 4k~quantum selection for each of these combinations.

For all of these calculations Y had equal matrix elements everywhere;
o

the different runs correspond to different sets of random phases for

these elements. The maximum signal is 2.22 ± 0.18 for (0, 90, 180, 270),

1.72 ± 0.09 for (0,180,90, 270), and 1.98 ± 0.14 for (0, 90, 270, 180).

However, no single permutation is superior for all five sets of

couplings, and these small differences have no practical significance.

It can be concluded that there is no a priori reason to prefer any

particular permutation.

4.3.2 Lower-Quantum Selection

The N-quantum transition in a N-spin system has no dipolar

information, as explained in section 1.4. The (N-I)-quantum and lower-

quantum transitions are therefore more important. The potential signal

gain from selection is smaller (see equation (111.34» but still

N
substantial; for (N-l)-quantum selection, it is roughly 2 if N » 1.

As an example, Figure IV.6 shows the signal obtainable from

5k-quantum selection or 4k-quantum selection on a five-spin system.

1 . 2 f Nk tThe five-quantum signal follows the norma S1n pattern 0 -quan um

selection in a N-spin system; the maximum signal is equal to the



Table IV.l Effect of Permutation of Phases on Zero-Order 4k-Quantum

Selection.

Maximum Four=Quantum Signal

Trial !J (0,90,180,270) (0,180,90,270) (0,90,270 , 180)

1 1.839 1.558 1.837

2 1.979 1.913 2.293

3 2.871 1.608 2.201

4 1.910 2.020 2.128

5 2.521 1.508 1.444 .

2.22 ± 0.18 1. 72 ± 0.09 1. 98 ± 0.14

147
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Sk-quantum selection is much larger than the gain for 4k-quantum

selection.



value of 81
z

2
for the extreme states, which is 6.25 B; and the gain

Nis N2 = 160. The gain is much smaller for 4k-quantum selection,

because zero-quantum coherences cannot be completely suppressed, as

explained in section 3.5.1. The maximum signal attained from this

sequence is 0.80, which corresponds to a gain of 20.5. The average

signal from IX t R = 10 to IX t I = 20 is 0.40, for a gain of 10.3.
o c 0 c

The estimated gain from (111.34) is 14.5.

Figure IV.7 shows the signal obtainable from 6k-quantum or 4k-

quantum selection in the benzene Al manifold. These results will

be compared in Chapter V to actual experiments. The maximum observed

gain for the four-quantum signal is 7.50, when aX t ft = 1.92. This
o c

selective sequence was applied to five different random X operators,
o

and does not correspond to any particular arrangement of pulses and

delays, so these values are best interpreted as estimates. Thus, if

the actual pulse sequence for X is the sequence of Figure 11I.2(a),
o

the optimum value for ax 6T'O is on the order of 0.5 if one cycle is
z p

applied, 0.25 if 2 cycles are applied, and so forth; this would make

IX T I '\, 2.
o c

4.4 Higher-Order Selective Sequences

4.4.1 Nk-Quantum Selection

Another approach to improving selectivity is to use high-order

selective sequences, as explained in section 3.3.2. Two different

principles (nesting phase cycles and symmetrizing phase cycles) were

used to design j-order nk-quantum selective sequences for arbitrary

. (j+1l/2
j; if j is odd, such sequences requ1re (2n) subcycles. Thus,

the higher the order of selectivity, the longer the cycle time. This

149
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makes average Hamiltonian calculations much more complicated. For

example, a third-order 4k-quantum selective sequence has a cycle

time 16 times longer than a zero-order 4k-quantum sequence, so it

is not obvious that IX(4)t ! for the former is always smaller
c nns

than IX(l)t I is for the latter.
c nns In fact, it was shown in section

4.1 that high-order selection is useless if t is large. If t is
c c

small, however, higher-order selection must be beneficial; in this

example, the first nonselective operator in the propagator for the

zero-order sequence is proportional to t 2, but the first nonselective
c

operator for the third-order sequence is proportional to t 5. Thus
c

an important question is how large t c can be before high-order

selection becomes useless.

Figure IV.8 compares the propagator selectivity of two cycles of

zero-order 5k-quantum selection with one cycle of first-order 4k-quantum

selection. As expected the first-order sequence is far superior for

short cycle times. At IX T I = 4.0 the two curves cross, and for allo c

later times the zero-order sequence is superior. However, the crossing

point is about 25% larger than the theoretical position of the first

maximum (see Figure IV.5), and the improved selectivity of the first-

order sequence near that maximum produces a larger four-quantum signal,

as shown in Figure IV. 9.

For larger values of ox T ft both the first-order and the repeated
o c

zero-order sequence have little selectivity, so the repeated zero-order

sequence is never significantly superior. By contrast, Figure IV.lO

shows the signal from a third-order 4k-quantum selective sequence.

This should be compared with 16 cycles of a zero-order sequence, shown

in Figure IV.7. Again the high-order sequence is much more selective
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for short cycle times; the selectivities are equal at 8.1 when Ox t Q =
o c

14.7, and the zero-order sequence is superior after that. At the first

maximum, the propagator selectivity of the third order sequence is 1103,

compared to only 44 for the zero-order sequence. However, both of these

numbers satisfy the criterion for maximum signal from equation (III.51),

S » 5.6, so the signals are very nearly equal. At the second maximum

the selectivities are 21.3 and 12.0, and these numbers are small enough

to make the third-order sequence perceptibly better. At the third maximum

the selectivities are almost equal. After the third maximum the

selectivity of th~ third-order sequence dies away rapidly, but the

repeated zero-order sequence remains partially selective for several

oscillations.

Figure IV.ll shows the propagator selectivity of the third-order

sequence, plotted on a log-log scale. For small values of t c (UX t n
o c

-4
~ 5) the selectivity is proportional to t c (the solid line in the

figure) as expected when x(4) is the dominant nonselective term and

X(O) is the dominant 4k-quantum selective term. The selectivity begins

to deviate from the line around IX t n ~ 6. The slope initially
o c

-(2)
decreases, which must reflect another selective term, presumably X .

For UX t D > 20
o c

falls off rapidly, which probably indicates that X(6)the selectivity

In fact, the selectivity between IX t I = 10 and IX t 0 = 20 is
o c 0 c

-2proportional to t (the dotted line in the figure), which would be
c

.expected if the dominant selective term were X(2).

and higher-order non-selective terms cannot be neglected.

-(0) 2 1 -1
The convergence criterion n(X t) I < F(n) is equivalent to

c

IX t Q < 6.8 if the eigenvalues have a Gaussian distribution. This
o c



10000

5000

\
\

Third -order 4k-quonlum

T- 4
c

----- - T-2
c

156

1000

500

>.

.~

u
(1)

(1) 100j(/)

50

10

5

0.5 5

•o
o
o

o•...
\

°,

10

.\

\

50

XBL 809-11717

Figure IV.II The propagator selectivi~y of a third-order 4k-quanturn

selective sequence. The selectivity is proportional to T -4 for
c

short values of the cycle time. Deviations from this line occur in

the region predicted by the convergence criteria of section 3.6.



case,

157

was derived by finding the value of the cycle time which would make the

first nus term from a j-order uk-quantum selective sequence (in this

IX(4) I ) equal to the first nns term of a (j-2)-order sequence
nns

repeated 2n times. Calculation of the propagator selectivity of 8

repetitions of a first-order 4k-quantum selective sequence shows that it

intercepts the selectivity of this third-order sequence at RX t n =
o c

5.1. The agreement is good, particularly since the convergence criterion

is merely an estimate based on random addition of nonselective terms

(see section 3.6) and a four-spin system is fairly small for such as

assumption. It can be concluded that equation (111.38) is a reasonable

criterion for convergence of the average Hamiltonian expansion. In

fact, it is a conservative estimate; the selectivity is still around

100 when IX t I = 6.8.
o c

4.4.2 Lower-Quantum Selection

High-order selective sequences are of course also useful for

(N-l)-quantum and lower-quantum transitions. In fact, the calculation

of the selectivity in section 3.6 does not depend on the number of spins

in the system. Computer calculations verify that the number of spins

is not important. For example, the propagator selectivity of a third-

order 4k-quantum selective sequence on benzene deviates by less than

10% from the selectivity in Figure IV.Il throughout the region of

convergence IX t I < 5. The signal from a third-order 4k-quantum
o c -

sequence is identical to the signal from sixteen zero-order 4k-quantum

sequences (shown in Figure IV.6) through the first maximum; is slightly

larger on average through DX T n ~ 12.8, where the propagator selectivi­
o c

ties of both sequences are equal; and is smaller on average for larger
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values of T. Four-quantum selection in five-spin systems shows similarc

results.

Thus, high-order selective sequences can increase the signal in

the selective experiment. They are expected to become even more

important for larger systems, where the required selectivity for

maximum signal is greater. Since the agreement between average

Hamiltonian theory and exact calculations is extremely good for the

systems in this section, it is very likely that the average Hamiltonian

calculations are valid for larger systems that cannot be exactly

analyzed.

4.5 Suppression of Zero-Quantum Operators

It was suggested in section 3.6 that zero-quantum operators should be

-(0)
suppressed from X to achieve the maximum possible gain in large

An average matrix element of X(O)t cannot be made comparable
c

to I without violating the convergence criterion (111.38) unless the

number of selected operators is small. Fortunately, the results of

the last section show that the convergence criterion is an under

estimate. Therefore, while zero-quantum suppression is still expected

to be necessary in very large systems, it is not required in systems

of moderate size (such as those that can be readily studied by computer).

Nonetheless, some of the effects of zero-quantum suppression can

be seen even in these small systems. The calculation is straightforward,

if a sequence such as the one in Figure (111.9a) is assumed. Replacing

-+-
61 ' with -61 ' changes U to U' . Thus, the propagator for the second

p p

subcycle is u~t = exp(i¢1 ) U t expC-i¢I), and the propagators for
't' z 0 Z

each subcycle are multiplied together to produce the total propagator,



as before.

Density matrices corresponding to several values of nx(O)t 0 for
c

a third-order 4-quantum selective sequence on a four-spin system are

given in Appendix C. These matrices show that the first nonselective

coherences produced by the 4-quantum sequence all involve one of the

states with M c ± 2. By contrast, the density matrices produced by

third-order 4k-quantum selection do not show any pattern to the non-

selected coherences. ~(4» contains only terms such as ~(0»2
nns

~i(2» ,as explained in section 3.6, and if zero-quantum operators
nns

-(0)
are suppressed X only connects the states with M = ± 2; if zero-

quantum operators are not suppressed, X(O) has matrix elements for

all values of M. Thus, the sequence of Figure (111.9) does suppress

-(0)
zero-quantum operators from X .

4.6 The Importance of Time Reversal

In all of the computer calculations discussed so far, the exact

form of X was assumed, not calculated. Thus, some unspecified pulse
o

sequence creates multiple-quantum coherences with a propagator U and
o

159

effective Hamiltonian X , and these two operators contain equal amounts
o

of multiple-quantum operators corresponding to all values of~. This

form is quite reasonable. For example, if the actual sequence for X
o

is the sequence of Figure (III.2(a», and if IX TI > 1 is all that is
p -

specified, this random X would be the beSt guess.
0

The key to producing an effective Hamiltonian vltb IX tn n « 1 and
0 p

multiple-quantum operators is time reversal, if the sequence in Figure

(III.2(a ) is used. If the time reversal is essentially perfect,

ax ~T n can be made arbitrarily small by this sequence; if it is not
o P

Perfect, there will be a lower bound to ex ~T D. This means that theo p
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f X and "V , t ha h 1sequences or ~ mus ve sort cyc e times, yet must be
p p

repeated many times, so the selective sequence involves many pulses

(thousands of pulses are typical, as will be shown in Chapter V).

This generally implies problems with sample heating and stability

of the pulse trains. In addition, there are important applications

in which perfect time reversal for J( is not even theoretically
p

possible, such as in isotropic systems; there BXJTI > 1 for J( to
- p

have multiple-quantum coherences, as explained in section 2.3, but

J{K cannot be time reversed with broadband irradiation since it is

a zero-rank tensor.

In this section, the assumption of time reversal will be discarded.

Specific pulse sequences ~ill be applied to systems with known

Hamiltonians. These Hamiltonians sometimes correspond to specific

molecules, and sometimes are random. These calculations show that

time reversal, while useful, is not essential to the design of

selective sequences.

4.6.1 Simple Selective Sequences

The simplest possible cyclic pulse sequence for X would be two
o

pulses with a delay between them. If the pulses are assumed to have

phase y and y and flip angle n/2, then J( E J( , where J( is given in
o x x

equation (11.32). J{ is the operator Which generates multiple-quantum
x

c.oherences in the nonselective experiment. It only has O-quantum,

I-quantum, and 2-quantum operators; in the nonselective experiment

high-quantum operators are generated by the complex exponential in

the propagator. However, higher-quantum operators must be present in

X if zero-order selection is to work. Thus, a zero-order 4k-quantum
o
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selective sequence is not expected to produce much four-quantum signal- .
The general form of XU) can be calculated readily from equations

(111.2-4). Xint(t) is restricted to four possible operators: if ¢ =
- -

0, Jeint(t) EX; if ep "" TI/2, X (t) &: 'J{ ; if ¢ "" 'Tr, Je (t) 0:: Je +
x int y int xx

JeJ + a: ail .---&J1) ==Je ; and 1£ ¢::: 3 TI/2 X (t) EX
yy

+Je
J

+
X1 x -x ' int

0: 0i1yi-fuuIy ) == Je_y • Since all of these operators are at most bilinear,

.;; (1) involves at h d
~ most tree spins, an cannot have four-quantum

operators. -(2)
Je can have four-quantum operators, so a second-order or

third-order 4k-quantum selective sequence might be useful. Unfortunately,

short cycle times imply a small x(2), and i(O) does not vanish Q?(O) =

-1/2 Je + XJ ) . If the cycle time becomes long enough to make nj{(2) T "zz c

~ 1, the convergence criterion is violated. As a result, even high-

order selective sequences do not provide much signal enhancement, as

shown in Figure 1V.12.

The obvious solution is to suppress the zero-quantum coherences,

-(0)
or at least suppress the zero-quantum coherences in J( • One way to

do this, by analogy with Figure (111.9a), is to produce ~ as well as
x

Such a sequence \VOuld not reverse 0:: 0i I . +
X1

x.
x

time

The largest term in X is j( , and -1/2 j( can be producedx xx xx
77

reversing sequence.

by a

~1 ), but these operators could be suppressed from both j( and ~ (by
x x x

echo pulses in j( , and by a suitably chosen time reversal sequence in
x

~x). Je
J

would be unaffected, but since it is very small compared to

J( this would not pose an important limitation.
xx.

4.6.2 Use of Line Narrowing Seguences

A simpler solution is to use a line narrowing sequence for ](0' as

suggested in section 3.4.4. For example, a WAHUHA sequence might be

used. For clarity in later discussions the average Hamiltonian for
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Figure IV.12 The signal produced by one cycle of third-order 4k-quantum

- (0)
X is large but does not

have four-quantum operators, so the convergence criteria are violated

before the four-quantum operators in X(22 become significant. As

a result, not much signal is produced. Compare this to the time

reversal case in Figure IV.6.
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this sequence will be written with a small h. Pure dipolar interactions

- (0) - (].)
are suppressed in ~ and h D • Chemical shift and resonance offset

terms are not suppressed, but these operators are generally much smaller

than Xzz
The operator h~) is given by:

which can be readily shown to contain four-quantum operators. There

is a range of values for T (the short delay between the pulses) such

that IXza » I~ (2)8 » aXes.' DXJD, and if T is in this range a

WAHUHA sequence can be used for Xo if four-quantum selection is

desired. The theory of Chapter III applies, as long as T is considered

to be a fixed parameter; thus, ~T in Figure (III.2(a)) is changed by
p

changing the number of WAHUHA cycles in J{ •
o

If T is not a fixed parameter, the analysis is more complicated.

Figure IV.13 shows the effect on the selectivity of varying T in a

WAHUHA sequence for X. The sequence is incorporated into a zero­
o

order 4k-quantum selective sequence on a four-spin system. When T

is small, the largest term in X is h (0) = (-1/3) ([ 0.(1 .+1 .+1 i));
o cs 1 X1 y1 Z

zero-order selection suppresses the nonsecular part of this, but

-(1)
creates a nonselective X . Thus, the coherence selectivity goes

to 0 as ~T ~ 0; the propagator selectivity becomes very large because
p

of the secular terms in XCO), but these terms will not produce coherences.

If T is small, the largest nns operator in J{ is proportional to T;
o

the largest 4-quantum selective operator is proportional to T
2

, so

the selectivity is proportional to T (in contrast to all the examples

in sections 3.2.3-5, in which the selectivities were proportional to
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Figure IV.I3 The selectivity for one cycle of zero-order 4k-quantum

selection using a WAHUHA sequence for K .
o

The selectivity is

proportional to T for short cycle times, because ftCl ) is nonselective

- (2)
and U has 4k-quanturn operators.

» 11;1((1) II tj((3) II, .

I h . f· n'i'rC 2) IIn t e reglon 0 lnterest ~



negativ.e powers of T). When IX TD ~ 1, DX TH
zz cs

-(2)
are still small; hD is the dominant term in 'J{

o

« 1, so i/O) and h(1)
cs cs

The zero-order

165

selective sequence still works well, since Ox 61 I « 1 so the
o p

coherence selectivity is good. As T is further increased, X(l)

-1increases, and the selectivity falls off as T .

Figure (IV.l4) shows the signal produced by this sequence. When T

6
is small, the signal is proportional to T • When IX Tn ~ 1, the

zz

selectivity is good and the signal is large; in fact, the maximum

signal (2.98 S) is substantially larger than the maximum achieved by

one cycle of 4k-quantum selection using time reversal (Figure IV.3).

Yet, this sequence requires only 16 pulses, so sample heating and pulse

instability are much less troublesome.

The maximum signal can be increased by using high-order selection

or increasing the number of cycles. Figure IV.lS shows the effect of

fixing T at 120 ~sec, and incrementing the number of cycles; the

2familiar sin pattern appears. The period of the oscillations is

proportional to T3 , since the dominant term in X
o

is ~ (2). For this

reason, the maximum may be hard to find in systems with unknown

couplings.

Since ~ (2) has no operators with 6M > 4, high-order selection

must rely on higher order terms, and zero-order selection is

ineffective. For higher-quantum selection a different line narrowing

sequence may be helpful. For example, a sequence with a secular or

-CO)vanishing h will have smaller nonselective terms. Also, sequences
cs

which suppress ~2) might be useful. Thus, for example, the 72-pulse

7Ssequence of Burum and Rhim has 6-quantum operators in its leading

- ( 4) d d f "'If i 6k tdipolar term on ' and would be a good can i ate or ~o n a -quan um
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Figure IV.14 The signal produced by one cycle of zero-order 4k-quantum

selection on a four-spin system, using a WAH1nA sequence for X .
o
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Zero-order 4k-quontum

Subcycle WAHUHA sequence

4.0
T = 120 p.5eC

• • •• • •
•• •

3.0 • •
Q:l •• •x • •
0
c
CT'

U'i 2.0 •
E
::J

C
0
::J
0-
I •...
::J
0 1.0LL

•

•
5 10 15 20

Cycles
xcc 80:0-1268:

Figure IV.lS The effect of fixing T at 120 )Jsec in a WARUHA sequence

for X and incrementing the number of cycles of zero-order 4k-quantum
o

selection. Signal intensities that are as large as in the time

reversal experiment can be obtained.
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selective sequence. A l2-pulse sequence which has ~4) as its leading

dipolar term is:

(T-90_-T-90 -2T-90 -T-90 -2T-90 -T-90 -2T-90_-T-90 -2T-90 -T-90_-
x y x y X Y Y x Y x

2T-90--T-90 -T)Y x

Computer calculations show that this sequence can be used for X
o

if 6k-quantum selection is desired. It is most useful when the chemical

shift differences are small; if this is not the case then the simplest

modification is to insert a 180 0 pulse in the middle of each delay.

Each of these inserted pulses should be 180 0 out of phase with the 90°

pulse which precedes it. Clearly, the larger the number of quar,ta to

be selected, the more complicated X becomes, and this will be a practical
o

limitation to the technique. Nonetheless, the advantage of very low duty

cycles makes the use of line narrowing sequences an attractive option

for low-quantum selection.

4.6.3 Selectivity in Isotropic Systems

For the reasons discussed in section 2.3, multiple-quantum

coherences are produced more slowly in isotropic systems than in

anisotropic ones. In fact, IX
J

6T
p

D ~ 1 will be required to give Xo

multiple-quantum coherences. X
J

cannot be time reversed by wideband

pulses; however, X can be reversed, and since DK B » UXJD ancs cs

appropriately chosen sequence will give selection. For example,

consider the sequence in Figure lIIAGa) in the limit 6T' + O. Letp

X be X = -L a I . + L J .. liI., created by the sequence 90x-T-
p x i Xl i>j lJ J

90~ and let Xl he X ,created by the sequence 90~T-90x (Figure IV.l6).
x p -x A

An average Hamiltonian expansion wiil not converge rapidly for DXJTD ~

1, since then IIX TO »1. But the propagator can be e.xpanded, using
cs
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90 x 90x 90 y 90y 90x 90- 90- 90-

I I I
x y y

T T T T T T T I T

180_ 180_ 180 180x y x 'y

XBL 8010-12678

Figure IV.16 A simple pulse sequence for 4k-quantum selection in

isotropic systems. The sequence for X is 90 -T-180 -T-90 ando x x x'

is actually equivalent to Figure III.4(a) with 6T' = O.
P
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(LID) :

u - exp(-:iJ{' T) exp(-:iJ{' T)
x -x

- (exp(-i(-L:aiI i+J
ij 1 i 1 j)T)+A) (exp(-i(L:a.1 .+J I I )T)+B)

x x X 1 X1 ij xi xj

- exp(-2iL: JijI .1 jT) + A exp(-i(Ia I +J 1 1 )T)
X1 x i xi ij xi xj

(IV.9)

B (
";" ( ) (exp(-iaaiIXi+l:JijIXiIXj)kk_££»

k.£, - .:.Jij I . I .+1 . I . k£ ----:(;-;::L-~--;:::L---.:::::..L......:.:.:::........::.:~:..:..:..;,..~
Z1 Z] Y1 y] 0.1 i+ J .. l .1 ')kk nn1 X 1J X1 X] -hh

(IV.lO)

Since IX TI » 1, lAB ~ IBI ~ IX I/UX I « 1 if the system is
cs J cs

first order, and therefore U is close to 1. Since this sequence is

cyclic, the usual ansatz U = exp(-iK(2T) can be made, and then BX(2T)U

« 1. Thus, this sequence will often produce a usable X .
o

Figure IV.17 shows the selectiVity of a first-order 4k-quantum

selective sequence as a function of T; the molecular parameters

78
correspond to methanol at 270 MHz. The selectivity is expected to

be an extremely complicated function, because X changes as T changes.

Still, there is a region where the selectivity is good and nxou is

small; if T is chosen from this region, the first-order sequence
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Figure IV.17 The coherence selectivity of a first-order 4k-quantum

selective sequence for isotropic systems Gymmetrized version of

Figure IV.16).

270 MHz.

The molecular parameters correspond to methanol at
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can be repeated several times to give a large signal, as shown in

Figure IV.18. For example, one sequence which will produce a large

four-quantum signal is 3 cycles of first-order selection with T = 12.0

msec. The total duration of the sequence is 576 msec, which is short

enough to neglect relaxation effects Gas is implicitly done in all of

these computer calculations). Higher-order selectivity is of course

possible in isotropic systems as well, when relaxation times are long

enough to allow many subcycles. It should be noted, however, that

isotropic selective sequences are not as easy to design as anisotropic

ones, and that relaxation times provide a serious constraint for

protons. The J couplings are larger with other nuclei (for example,

l3C and 19F) and therefore selectivity is simpler in those systems.

4.7 Conclusions

Computer calculations have been presented which verify the average

Hamiltonian theory calculation of Chapter III. The selectivity and

signal intensity have the form expected from those calculations. In

additon, these calculations show that the region of convergence of

the Magnus expansion agrees with earlier estimates, and that the

selectivity is still good near the limits of convergence. Simplified

pulse sequences for isotropic and anisotropic systems have been shown

to provide signal enhancements. Since these computer calculations are

exact (to the extent that the spins follow the density matrix equation

of motion (JI.7)) it may be concluded that selective sequences

provide a practical techcique for slgnal enhancement.
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Figure IV.18 The signal produced -by fixing T at 12.0 msec and

incrementing the number of cycles, for 4k-quantum selection on

methanol at 270 MHz.



V. Selective Experiments

5.1 The Spectrometer

The selective pulse sequences of the last two chapters require

many pulses and complicated phase shifts. For this reason the

sequences would not be possible with most commercial spectrometers.

All of the experiments in this section were done with a homebuilt

machine.

5.1.1 Magnet

The magnet is a persistent superconducting model from Bruker

Instruments. It is operated at 42 kG, giving a proton resonance at

182.00 MHz. The bore is 3.5 inches in diameter. The field can

be shimmed readily to 1/4 PPM over a 1 em
3 region, and laboriously

to 1/16 PPM.

5.1.2 Frequency Generation

A 10 MHz reference signal is tripled to provide an IF frequency

of 30 MHz,. and mixed with ~ 152 MHz (generated by doubling the output

of a Hewlett-Packard 3320A synthesizer and mixing it with 100 MHz)

to provide the proton pulses. To ensure good isolation rf switching

is done once at the IF frequency (two Summit 571 switches in

series) and once at the final output frequency Cone Daico 100C128LA

switch). Four phases (corresponding to x, x, y and y) are generated

at the IF frequency by commercial hybrids. The output is fed into

an AR model 100 or model 200 amplifier to provide pulses of up to

200 watts. The low frequency end also operates with an IF of 30

MHz but is mixed with a lower frequency (58 ~lz) to provide deuterium

pulses at 28 MHz.
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5.1.3 Detectors

The first stage of the detector is a commercial pre-amplifier

(Avantec VTO 511 and VTO 512) with 35 dB of gain. The first stage

noise figure is 2.5 dB. Tne signal from this is mixed and filtered

to ~ 30 MHz, amplified with a variable gain IF strip (up to 70 dB)

and then mixed down to audio frequencies with two phases of the 30 MHz

from the transmitter section. The recovery time after complete

saturation (from pulses) is about 10 Usee.

5.1.4 Digitization

The two audio frequency signals (corresponding to M and M in
x y

the rotating frame) are fed into Datel SHM-2 SIR and Datel ADC-EHlOB2

analog-to-digital converters giving 10 bits. The digitized signal

is fed to a NOVA 2 computer, with a minimum acquisition time of 3

usee. This is more than adequate for all experiments in this work.

5.1.5 Pulse Programmer

An important part of any modern NMR spectrometer is the pulse

programmer. This one is microprocessor based and clocked at 10 MHz.

Pulse programs may contain up to 64 simple statements (branches,

compares, increments, or outputs). Pulse widths can be set to .1 usee,

and the pulses can open anyone of four proton gates, anyone of

four low-frequency gates, and as many of eight auxiliary gates (used

.for temperature blanking, phase shifting, and data acquisition) as

desired. The pulses can be loaded either into a l6-step FIFO or

a 256-step RAM.

5.1.6 Probes

All of the experiments in this chapter require proton irradiation
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only. The probe is home built with a single-tuned 8mm x 30mm

solenoidal coil of uninsulated copper ribbon (11 turns). This coil

is part of a tuned circuit including a homemade series turning

capacitor (two copper rods with Teflon dielectric) and parallel ATC

matching capacitors of various sizes. Q's of over 100 are readily

achieved.

The coil is surrounded by a glass dewar to provide thermal

isolation. Temperature control is achieved by passing air (or

cooled N
Z

gas for low temperatures) over a constantan heater coil.

The temperature is constantly sampled by a copper-constantan

thermocouple and compared by a digital thermometer to a reference

setting. If the temperature is too low, up to 3 amps are fed into

the constantan heater coil (resistance ZQ).

All of the samples were nematic liquid crystals so pulse heating

effects had to be minimized. Fortunately, the selective experiment does

not require signal sampling in short windows in the pulse sequence

so a high-Q circuit and low power (~ SOW) pulses were used. Samples

were sealed in 6mm O.D. x lSmm Pyrex tubes which were suspended in the

center of the coil to minimize rf inhomogeneity and heating effects.

The temperature-regulated air stream was focused directly on the

sample to further decrease heating. Even with these precautions,

relatively long delays (~ 10 sec) were frequently required between

successive shots.

5.1.7 Phase Shifting

All phase shifts are generated by a Daico 10000898 shifter



operating at the IF frequency of 30 MHz. This device produces

phase shifts in any multiple of 2TI/256. The phases were checked with

a Hewlett-Packard 8405A vector voltmeter and found to be stable and

within 1° of the stated value at all times.

The VSWR of the phase shifter depended on the phase setting. To

eliminate fluctuations from this effect and from switching transients,

the pulses were gained up to ~ 3 V and passed through a series pair
pp

of crossed PIN diodes followed by a pair of crossed PIN diodes to

ground. The first pair eliminates small components which are out of

phase with the main pulse, and the second pair reduces fluctuations

in the output voltage. The pulses were then filtered, amplified,

and sent to the probe.

Increased versatility was provided by loading up to 256 phase

settings into a RAM which was interfaced to the phase shifter. With

this configuration third-order sequences for up to 8 spins and first­

79
order sequences for up to 16 spins are possible.

5.2 Experimental Results: Oriented Benzene

5.2.1 Four-Quantum Selection with Time Reversal

The high (D
6h

) symmetry of benzene produces many different

irreducible representations for the eigenstates (Figure V.I). This

reduces the number of allowed transitions; for example, there is

only one pair of five-quantum transitions, instead of the six pairs

of five-quantum transitions in an unsymmetrical six spin system as

mentioned in section 1.4. This molecule is small enough to be

studied by nonselective sequences, and all of the theoretically

28,29
allowed transitions have been observed.
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Figure V.I Energy level diagram for benzene oriented in a liquid

crystalline solvent. The assumed symmetry is C6v0 There is also a

time reversal symmetry operation (flipping all spins) in the M = 0

manifold which is not shown. This symmetry operation affects only

zero-quantum transitions.



179

Figure V.2(a) shows the nonselective (pulse sequence of Figure

11.2.(b)) multiple-quantum spectra at 24.0°C of a sample with 14 wti.

benzene dissolved in Eastman liquid crystal #15320. The same sample

was used for all of the benzene experiments. For this experiment /:,w 0=

500 Hz, and magnitude spectra corresponding to t 2 = T 0= 4.0 msec,

6.0 msec, 8.0 msec, and 10.0 msec were averaged together. The individual

17
lines are resolvable even in the single-quantum spectra, and the

three dipolar coupling constants D12 , D
13

and D
14

have been shown to

be consistent with hexagonal symmetry. Figure V.Z(b) shows, on the

same scale, the averaged results of four spectra with 4k-quantum

selection (¢ 0= n/2 in Figure V.3, and X is the two-quantum sequence
p

described in section 3.4.2) and different values of T and T. All

experiments in this chapter used the same sequence for the mixing that

was used for the preparation, except that one more pulse was inserted

immediately before sampling, as explained in section 2.2.3.3. The four-

quantum transitions are significantly enhanced, and their positions

are unaffected. The nonselected orders are almost entirely under the

noise level, as illustrated by the integrated intensities in Figure

V.4.

Figures V.5 and V.6 present individual spectra (not averaged over

any parameters in the pulse sequence) to calculate selectivity and

signal gains. Each of the spectra in Figure V.5 was taKen with ¢ =

n/2, t ~ 3.8 ~sec, T = 5.0 ~sec, T = 1.5 msec, and 8 subcyc1es (the
p

zero-order sequence was applied two consecutive times) to make a 4k-

quantum selective sequence. The sequence was used in both the

preparation and mixing periods. Immediately before detecting <I > andx

<I > a single additional pulse was applied as explained in Section 2.2.
y ,
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Onenled Benzene
n-Quantum Spectra

Nonsel~ctivt

4k-Ouantum SeleC1tv~

XBL BOc-1116t

Figure V.2 }lultiple-quantum ensemble averaged spectra of oriented

benzene. The width of the four-quantum spectrum is 5L~70 ± 25 Hz.

Part (a) is the nonselective spectrum (sequence of Fi~ure II.2(b)).

Part (b) is 4k-quanturn selective (sequence of Figurev.3).
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cJ/0 jl.(.ep J1f(n -I) ep

(0) ATp ATp ATp

(b)

ePlp
11111111111

T

$'p
111111/111

T' j)f'T' = - IJ/ Tp dtp

XBL 808-11261

Figure V.3 General form for zero-order selective sequences. In part

a) X is an arbitrary cyclic sequence of pulses and delays. All of the
o

pulses are phase shifted by ¢

only nk-quantum coherences Ck

2n/n to produce X. To lowest order,
o

0, ±l, ±2 ... ) survive after n shifts.

Part b) is a possible sequence for ~ which uses dipolar time reversal- 0

to give J{ multiple-quantum operators yet keep OJ( toT II small.o 0 p
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Figure V.4. Integrated intensities of the spectra in Figure V.2. The

nonselective intensities for the selective spectrum are almost completely

under the noise level.
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The only parameter which was varied was 6T' .
p

The selective terms in the average Hamiltonian are linear in 6T'.
p

Higher order terms are nonselective, so the spectra with large values

of /}.T:' are expected to have substantial two-quantum and six-quantum
p

intensity (.K still has the form in equation (111.27), so no odd-quantumo

operators are present in the propagator). Figure V.S(e) confirms this

result. If 6T' is very small and the time reversal is good, even the
p

1inear term is small, and very little coherence is produced. Thus,

there should be an optimal value (or at least an optimal range) for

/}.T' to produce four-quantum coherences. One interesting feature of
p

Figure V.S is that the value which optimizes the central four-

quantum line is much longer than the value which optimizes the side

peaks. There is no reason why the optimal values should be the same;

the side peaks are all Al transitions, whereas the central peak has

contributions from every irreducible representation. In addition,

diagonalizing the Hamiltonian shows that DXzD is larger for the Al

states than for any other representation so equation (111.27) implies,

that, if one averaged over all possible operators Xp ' the Al

trans itions would peak at the smalles t values of tn'. However, this
p

need not be true for each possible X .
P

5.2.1.1 Signal Gains

The maximum observed signal gain for the side peaks relative to

totally nonselective excitation is the gain of 5.6 in Figure V.S(b).

The true maximum gain may be larger than this, since a small change in

6T' from 34 ~sec might produce a larger value. The maximum theoretical
p

gain may be estimated by dividing up the total available intensity

(which is the same as the equilibrium magnetization, 8 Tr(1 z
2
))
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equally among all of the pumped density matrix elements in the A
1

manifold. There are 13 Al states, so there are 169 matrix elements,

but time-reversal symmetry in the M=O manifold forces all 6 zero-

quantum transitions in that manifold plus the three populations to

vanish in the nonselective experiment. (All of the Al M~O states are

gerade. The density matrix in equation (11.31) only connects gerade

to ungerade in the M=O manifold, so no zero-quantum coherences are

65 79
produced).' A four-quantum selective propagator will transfer some

2
of B Tr(I ) from ten of the populations (M = ±3, ±2, ±l) to thez

fourteen four-quantum coherences using only terms linear in ~T'. Only
p

24 matrix elements are involved, and if they are all roughly equal,

the expected gain is 160/24 ~ 6.7.

However, it is clear from the spectra in Figure V.S that some zero-

quantum coherences are also produced. This is to be expected because

four-quantum operators proportional to ~T' in the propagator imply
p

2zero-quantum and four-quantum operators proportional to (~T') . There
p

are 12 zero-quantum coherences which can be pumped, and if these are

pumped as strongly as the four-quantum coherences the maximum gain

falls to 4.4.

The largest enhancement observed for the four-quantum center line

is the factor of 19 in Figure V.S(c). This gain cannot be readily

compared to the theoretical gain because this peak corresponds to six

different transitions in the different irreducible representations.

In addition, the TPPI method of separating the different orders of

coherence can produce artifact peaks if the phase shifts are imperfect.

In this experiment. the TPPI increment was n/8 (i.e., each pulse in
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the preparation period had its phase incremented by n/8 every time t
1

was incremented) and this could give artifacts only at the center of

the four-quantum spectrum. The central peak has no dipolar information

so a distorted intensity does not affect the analysis.

Figure V.5(f) shows an ensemble averaged nonselective experiment

(using the pulse sequence in Figure II.2(b)) with ~w=O. X has only
x

even-quantum coherences, so a partially selective spectrum is produced.

Comparison of parts (a)-(e) with part (f) shows that the selective

experiment does not distort line positions. Residual pulse errors

increase the noise level of the selective experiment, but the signal-

to-noise ratio of the four-quantum lines in parts (a) and (b) is still

substantially better than could be achieved nonselectively in equal

time.

5.2.1.2 Selectivity Improvement

The first nonselective term in the effective Hamiltonian for a

zero-order selective sequence is proportional to (~T'). If ~T' is
p P

cut in half but the number of subcycles is doubled, this term will

be cut in half. The selective term will be unaffected. Thus, the

selectivity of a zero-order sequence can be made arbitrarily good by

making ~T' small and repeating the sequence many times.
p

illustrated in Figures V.6(a)-(c). In this experiment

This is

t = 5.9 ~sec,
p

T = 6.0 ~sec, T' = 18.2 ~sec, and T = 576 ~sec, so X is different
o

f th l"n Fl"m1re V 5 The selectl"ve term should berom e sequences ~- .•

identical for each of the three spectra, and this is confirmed in

parts (a) and (b). The four-quantum regions are virtually identical

for these two spectra (this particular choice of pulse sequence

parameters happens to pump two of the pairs more strongly than the



187

Orlen1ed Benzene

41<. -Ouonlum SeleCl10n

t>Tp~ 64 !-,sec. three cycles

!:.Tp ~ 96 !-,sec. 'wc cycles
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XBL 807-10635

Figure V.6. The effects of increasing the cycle time and reducing the

number of cycles. Average Hamiltonian theory predicts that this will

not change the selective terms but will increase the nonselective

terms. Pulse sequenCE parameters are given in the text.
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the third) except that the four-quantum transitions are slightly weaker

in par~ (b) as the reduced selectivity produces same two-quantum

transitions. In part (c) the selectivity has almost disappeared.

Figures V.4-6 show that suppression of two-quantum coherences is

substantially easier than suppression of six-quantum coherences. This

result is expected if the phase shifts are imperfect. If the phase of

th
the i subcyc1e is ¢i + Ei instead of the ideal value ¢i' a nonselected

coherence (lili .; nk) is multiplied by 0: exp(i(lili) (¢i + Ei»)/n instead

of O. If E
i

« 1

< 2>1/2/ 1/2
E

i
n, so

this is approximately equal in magnitude to (lili)

the error term is three times worse for ~=6 than

for ~=2. Fortunately, most of the allowed coherences correspond

to small values of ~ and are relatively insensitive to phase errors.

5.2.2 Four=Quantum Selection with Simplified Seguences

As explained in chapters III and IV, a WAHUHA sequence (or any

other line narrowing sequence) can be used for X. This makes a
a

zero-order 4k-quantum selective sequence with only 16 pulses, instead

of the several hundred pulses of each sequence in Figure V.4-6.

Figure V.7 shows that this selection works, and also shows that the

choice of T is critical. When T = 50 ~sec almost nothing is produced;

T = 100 ~sec is selective in all the representations; and larger values

produce a large central four-quantum peak, with the selectivity slowly

dying away.

5.2.3 Six-Quantum Selection~ Coherent Initial Conditions

A 6k-quantum selective sequence can he generated by setting ¢ =

ZTI/6 in Figure III.Z(a). If this sequence is applied to benzene at

equilibrium (initial density matrix proportional to I z)' it connects
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Oriented Benzene
4k-quantum selectiOn

Subcycle WAHUHA sequence

T -= 50 fLsec

\.-_~ -'AL ~ -L _

T =100 fLsec

~~ .J..J.... ~_~----'__~ .J.,----J) UJ'-' ~ _

T =200 fLsec

n=O n=2 n=4 n=6

XBl B010-1269:

Figure V.7 Four-quantum selection without time reversal. Here J{
o

is a WAHUHA sequence, as in Figure III.4(b), with T the short interval

between pulses. As expected from section 4.6 the value of T is

critical. The pulse width is 5 ~sec, and therefore the duty cycle

is low.
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only the states with IMI=3 and creates an effective two level system.

The six-quantum spectrum which is generated has only one transition,

as illustrated in Figure V.8(a). However, if the initial density

matrix is made proportional to I by adding one pulse before the selectivex

sequence begins, a 6k-quantum selective propagator will produce only

one-quantum and five-quantum coherences. These coherences can be

detected by the same 6k-quantum selective sequence if the final pulse

of the sequence is removed, and the spectrum is shown in Figure v.8(b).

The residual nonselective coherences are not completely suppressed

for 6k-quantum selection, because the phase shifter is a digital

device which only allows shifts in exact multiples of 2n/256. A zero-

order sequence was approximated by ¢ values of (0, 43n/128, 85n/128,

n, 17In/128, 213n/128) instead of (0, n/3, 2n/3, n, 4n/3, 5n/3). This

approximation leaves a small amount of non-6k-quantum selective operators

in the zero-ord~r term. However, the figure shows that even with this

approximate sequence fai~ly good selectivity can be achieved.

Figure V.9 sho~s the six-quantum signal as a function cf 6~'. If
P

the time reversal is perfect, the signal is zero when 6T' = 0, and
p

follows a sin2 pattern as long as the selectivity is goal. The

experimental points show substantial deViations from a sin
2

pattern for

long values of 6T', which have low selectivity. Iil addition, the
p

nonzero value as 6T' ~ 0 in the figure shows that time reyersal with
p

this sequence (t
p

T c 4.5 ~ sec, T = 672 ~ sec, S1X subcycles) is

imperfect, yet good selectivity can still be achieved. This has great

practical significance, especially in isotropic systems.

5.2.4 Symmetry Selection
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Oriented Benzene

6k-Quontum Selection

oj in i t i 0 i Con d i t ion 12
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Figure V.8 Spectra with 6k-quantum selection on oriented benzene. If

the initial density matrix is at equilibrium, as in part (a), only

the six-quantum coherence is produced. If the initial density matrix

is made proportional to I by one pulse as in part (b), one-quantum
x

and five-quantum coherences are produced.

cycle of 6k-quantum selection was applied.

In both of these cases one
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XBL 8010-12487

Figure V.9 The six-quantum signal magnitude as a function of 6T'. Pulsep

sequence parameters are t = 4.5 ~sec, T = 4.5 ~sec, and T = 672 ~sec.
p

With perfect time reversal this should follow a sin
2

pattern, as in

Figure IV.7. Good selectivity is possible even without perfect time

reversal.
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The singlp. six-quantum coherence in benzer:e has Al symmetry, as

does the single N-quantum transition in any N-spin system. Therefore,

a 6k-quantum selective sequence applied to an equilibrium density

matrix perturbs only Al states; all other representations are unaffected.

If a single pulse is applied immediately after the selective sequence,

Al transitions corresponding to all possible values of ~ are produced,

but non-AI appear only if ~=l, since the density matrix in all other

representations is proportional to Ix or I y . Such a sequence therefore

selectively prepares Al multiple-quantum transitions, and at the end

of the evolution period, a single pulse followed by a 6k-quantum

selective sequence selective detects Al transitions. The resulting

spectrum is shown in Figure V.lD. One pair of non-~ transitions is

visible in the three-quantum spectrum; this pair corresponds to two

nearly degenerate sets of transitions from the E
l

and E2 manifolds,

and is fairly intense in the nonselective spectrum. Except for this

pair, all of the observed lines correspond to known Al transitions.

Therefore 4k-quantum selection, 6k-quantum selection, and Al

selection can be readily demonstrated in oriented benzene. Nonselective

terms can be made very small, and the signal gain from selectivity

is approximately equal to the theoretical predic tions. The behavior

as AT' or the number of cycles is varied is consistent with
p

predictions from average Hamiltonian theory for a zero-order selective

sequence.

5.3 Experimental Results: Oriented l-Bromobutane

5.3.1 Four-Quantum Selection

Benzene is a small and highly symmetric molecule, so nonselective
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ExperImental On en ted Benzene
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Figure V.ID Al symmetry selection on oriented benzene. 6k-quantum

selection produces a density matrix which is at equilibrium in all

manifolds except for AI' so one additional pulse gives only single-

quantum coherences in these manifolds, but multiple-quantum Al coherences.

To detect these coherences one additional pulse is applied immediately

before the mixing sequence.



195

multiple-quantum spectra are perfectly adequate. However, the signal

available for any individual transition in the absence of molecular

-N
symmetry is proportional to 4 , where N is the number of spins in

the molecule. Thus, an unsymmetrical seven-spin molecule requires

16 times as many signal measurements as does an unsymmetrical six-

spin molecule to achieve the same signal-to-noise ratio.

This problem is illustrated in Figure V.ll with the nonselective

multiple-quantum and eight-quantum spectra of this nine-spin system are

expected to reflect internal motion of the chain.
8l

However, these

spectra are essentially unobservable, since there are many more

transitions in the one-quantum and two-quantum spectra. Extensive

averaging of nonselective spectra has confirmed that they are weak.

The energy level distribution for n-butyl bromide
80

,8l is shown

in Figure V.12. There are 144 A x A states, which produce four pairs

of eight-quantum transitions and 19 pairs of seven-quantum transitions

(there are three more pairs of seven-quantum transitions in the other

representations). Nonselective excitation divides the total signal

2
among 144 = 20736 matrix elements. 4k-quantum selection pumps the

16 matrix elements with 6M = ±8, the 1816 matrix elements with 6M

±4, and the 3352 matrix elements with 6M = 0 for a gain of 4.0 in the

~ manifold. Similar gains are found in the other manifolds. Figures

V.13-l4 show the results of 4k-quantum selection on this system.

The actual enhancement is in fact somewhat better than 4.0, because

the zero-quantum matrix elements are not strongly driven. If they

are neglected, the expected gain is 10.5 (the populations cannot be

neglected). The actual gain is somewhere in this range.
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Figure V.II Nonselective multiple-quantum spectra of l-bromobutane.

The signal intensity for the large values of 6}1 is extremely small.

This spectrum corresponds to 6w=O and T=4.0 IDsec.
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Figure V.12 Energy level diagram for l-bromobutane. The methyl group

has A states and Estates; the remaining six spins have A states and

B states. There are 512 energy levels and many allowed single-quantum

transitions. Note, however, that there is only one nine-quantum

transition and there are only four pairs of eight-quantum transitions.
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Figure V.13 Comparison of 4k-quantuID selective spectra (part (b)) with

the nonselective spectrum of Figure V.II (part (a)). The four-quantum

transitions are strongly enhanced.
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4-Quonlum rel]ion

XBL 808-11366

Figure V.14 Enlargement of the four-quantum region of Figure V.13(b).

The pulse sequence included two cycles of 4k-quantum selection with

6T' = 15 ~sec, t = 3.5 ~sec, T = 4.2 ~sec, T = 720 wsec.
p p



5.3.2 Eight-Quantum Selection

Ideal eight-quantum selective excitation would involve only 16

eight-quantum coherences, the populations of the ten states with

IMI = 9/2 or IMI = 7/2 (no other states are co~~ected by eight-

quantum operators) and 24 zero-quantum coherences for a total of

50 matrix elements. The available signal is the fraction of S Tr(I 2)
z

in the ten selected populations, which is 33% of the total. The net

result is a predicted maximum signal gain of 137, which reduces the

signal accumulation time by a factor of 18,700. This tremendous

gain would probably require high-order selective pulse sequences

and suppression of zero-quantum coherences. Nonetheless, even a

zero-order selective sequence should give a large enhancement.

200

Figures V.15-l6 show the results of averaging only four 8k-quantum

selective spectra (¢ n/4 in Figure V.2). The TPPI increment is

n/16 for these spectra so that inaccurate phase shifts are expected

to produce a large central spike in the eight-quantum region. At

least three of the four expected pairs can be seen. The chain has

many allowed conformations, so very little information can be

extracted from these few lines, and the seven-quantum spectrum

will also be required. This spectrum can be obtained in two

fundamentally different ways. A seven-quantum selective propagator

can be designed by setting ¢ = 2n/7 in Figure V.2. Since JC in
o

Figure V.2 is even-quantum selective, some change has to be made in

the sequence; one possibility would be to put a 45 0 pulse immediately

before 6T', and another 45 0 pulse with opposite phase immediately
p

after 6T'. This sequence would pump all 22 pairs of seven-quantum
p
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8k-Ouantum Selection

1-Bromobutane

5 kHz

n=O n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

X6L 608-11262

Figure V.IS The effects of 8k-quantum selection on l-bromobutane.

The signal scale is the same as in Figure V.II. Pour spectra with

different pulse seauence parameters were averaged together.
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I-Bromobutone
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Figure V.16 The eight-quantum region of the selective l-bromobutane

spectrum of Figure V.IS. At least three of the four expected pairs

are visible above the noise level.
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lines. An alternative approach would be to use an eight-quantum

selective pulse sequence starting with a density matrix proportional

to Ix instead of I z ' Since only the Al representation can have eight-

quantum operators, only the 19 pairs of ~ seven-quantum transitions,

the single nine-quantum transition, and one-quantum transitions will

be produced. The first approach will probably give the larger signal

gain.

5.4 Experimental Results: Cyclopentane

Cyclopentane undergoes very rapid pseudorotation at room

82
temperature, so only an averaged structure with C

Sv
symmetry should

be observable in an NRR experiment. However, the ratios of the

coupling constants should reflect the amplitude of the out-of-plane

displacements. The four-quantum spectrum can be obtained by selective

sequences, as shown in Figure V.17. Since there are ~y four-quantum

transitions in this ten-spin system the spectrum is not resolvable,

and higher-quantum selection will be required.

5.5 Conclusions

Selective excitation sequences have been presented for four-,

six-, and eight-quantum transitions. These sequences produce large

signal enhancements and make multiple-quantum ~ffi a practical technique

for a wide range of hitherto inaccessible molecules. The effects of

changing pulse sequence parameters agree with predictions based on

average Hamiltonian theory, which suggests that more sophisticated

pulse sequences selective to higher order will be able to provide

further signal enhancement.

203
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Oriented Cyclopentone

4k-quon1um selection

n=O n=2 n=4 n=6 n=8 n=IO
XBL 8010-1269:

Figure V.17 Four-quantum selection on cyclopentane. The four-quantum

spectrum has many allowed transitions, and therefore is not resolvable.

Pulse sequence parameters are ~T = 25 ~sec, t = 5.0 ~sec, T =
P P

4.7 ~sec, T = 941 ~sec, and eight subcycles.
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VI. Other Topics in Multiple-Quanbum NMR

6.1 Two-Dimensional Techniques

Multiple-quantum NMR is just one example of a broader class of

32,83experiments, known as two dimensional spec troscopy.

two-dimensional sequence has the same preparation, evolution and mixing

periods as in Chapter II and Figure 11.9. However, the restriction

of taking da ta a t only one value of t 2 is dropped. Frequen Uy, in

fact, enough points are taken in t 2 to permit a second Fourier

transforma tion. This technique has ntunerous applications. One

example of a two-dimensional spec trum is given in Figure VI .1. 84

In this section, Owo-dimensiona1 spectroscopy will only be

considered as a signal enhancement technique. Suppse that <I > and
x

<I
y

> are samp~ed at two dis tinc t values of t 2 to produce two mul tip1e­

quanttun spectra. Line positions are governed only by the evolution in

t
l

so these spectra can be averaged together. Clearly the signal-to­

noise ratio is no worse than if one value of t 2 were saved, and it may

be better. This can of course be generalized to taking n points.

The important questions are:

1. How many points should be taken?

2. Should all points be weighted equally?

3. What is the attainable signal-to-noise improvement?

The signal as a function of t z can be written as

..L ...

<I
y
(t

Z
) > ... -CSTr(I

x
exp (-iJI'z t 2) V exp (-:LJf'Z t

1
) VIzV J exp (iJ(z t 1) V I exP(iJ(2 t 2))

.. -CS

eVI.2)
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Figure VI.l A sample two-dimensional spectrum. This is a two-dimensional

J spectrum of Cyclo-[3-(4-S-aminoethyl)phenyloxypropanoyl-L-prolylJ,

not a multiple-quantum spectr~but the signal/noise arguments are

exactly the same. (Figure courtesy of Drs. l~illy Shih and Mel Klein) .
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A similar expression can be written for I . The differences betweenx

equations eVI.2) and (11.62) arise solely from the inclusion of the

case t 2 1 0 here; if t 2 = 0 they are identical except for the fictitious

pulse in section 2.2.3.3 which allows I z to be sampled. The integrated

intensity of the multiple-quantum transitions is maximized when

i" t
leUI zU ) 1

1j
= I(v exp(LKz t 2)Ix exp(-LK

z
t 2)vl

ji
.

condition is satisfied if

U
.1-

Vi exp(iX t
2

) exp(inI /2)
z y (VI.3)

but if equation (VI.3) holds for one particular value of t 2 it is

violated for other values. To go any further requires some

assumptions about the nature of U and V.

6.1.1 Nonselective Experiments

In the simplest nonselective experiments (Figure II.lb) V = exp(inI /2)
y

and U = exp(-iXxT). The signal is maximized if t 2 = ±T. Time reversal

does not affect the solution, so only t 2 > 0 will be considered. One

can write:

ui Ut = exp(-iJ( T)I exp(jX T)z x Z - x

exp(iX t 2)I exp(-iX t 2). x z x

(VI.4)

as in equation CII.3L,). If IIJ1'x CT - t 2)II « 1 or IIJfx CT+t2)1I « 1 then the

magnitudes of all matrix elements of PHQ (-t 2) are very near their

optimum values, and the signal is nearly as large as at T = ±t2 ·

the matrix elements of ~MQ8t2) have changed substantially. The
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expressions for the signal are:

2-c B Tr(PMQ (T) ) (VI.5)

(VI.6)

(VI.6) is smaller than (VI.S), but generally it is not much

smaller. The simplest assumption would be that the magnitude of

each matrix element of PMQ(T) has a one-dimensional Gaussian probability

distribution, which gives

(VI. 7)

(VI.8)

The signal is down by less than a factor of 1.6. In a large anisotropic

system this random assumption is probably reasonable. since so many

different operators are involved in the propagator. In fact computer

66calculations suggest that the situation may be even more favorable.

At any rate it is clearly advantageous to take many values of t 2 other

than just t 2 ~ T.

Relaxation has been neglected in these calculations, but the effects

are easily included if each coherence is assumed to dephase with the

same value of T2 . In this case

-TIT -T/T I
Pl-

1Q
(T) = e 2 exp (-:iJ{xT) I

z
exp (i:Jrx T) + SIx (l-e )

-t
2

/T
2

-t2/Tl
e exp(iK

x
t

2
)I

z
exp(-iKx t 2) + Blx(l-e ) (VI.9)



If t
2

~ T2 the signal drops off substantially and further data points
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are

not very useful. The optimal spacing of retained points in t
2

depends

on the noise bandwidth ~w , since two data points separated by less than
n

l/~ will have strongly correlated noise levels, and this correlationn

means that the signal-to-noise ratio is not improved by averaging them

together. It is therefore reasonable to take about (T26w
n

) data points,

and the expected signal-to-noise gain is roughly

(1 4 T2 A"'n)1/2g2-D ~ +. Uw (VI.lO)

assuming equation (VI.7). The optimum value for ~w is the single­
n

quantum spectral width, so the gain is about the square root of the

ratio of the width of the spectrum to the width of a single transition.

6.1.2 The Second Fourier Transformation; Optimal Filtering

The discussion so far has centered around the signal gain

obtainable by averaging together multiple-quantum spectra corresponding

to several different values of t
2

. In a true two-dimensional experiment,

such as the one illustrated in Figure VI.l, a second Fourier transform is

applied with respect to t
2

• The phases of the peaks in the two-dimensional

spectrum vary enormously, and therefore are presented in magnitude mode or

corrected by adding together several spectra with phase shifted

32 83
pulses. '

Suppose that data accumulation in t 2 begins at t 2 = T. Then the

normal (i.e., only t 2=T) multiple-quantum spectrum correspond to an

integral over w
2

in the uncorrected two-dimensional spectrum.

the peaks are not in phase most of the intensity cancels out.

Since

If

all values of w
2

correspond to equal amounts of signal, and all the
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phases are random, then magnitude correction followed by integration

over Wz would be expected to increase the signal/noise ratio by the

square root of the number of points in w
Z

' which agrees with the

estimate in (VI.IO).

In fact, not all values of Wz are equally good. For example,

if the single-quantum spectrum contains resolved lines, then values of

Wz which do not correspond to those lines have no signal. This can

be seen in Figure VI.I. The optimum signal/noise ratio can be shown

to be produced when each value of Wz is assigned a weighting factor

equal to the total signal intensity of that value. This is equivalent

to applying an optimal filter in t 2 , instead of merely setting the

filtering bandwidth equal to the single-quantum spectral width. Most

large molecules will not have much structure in the single-quantum

spectrum, and therefore this process does not improve the signal/noise

ratio substantially.

It should be noted that there are cases for which two-dimensional

spectroscopy is not very useful in improving signal/noise ratios. For

example, it will not be very useful when the dominant noise factor is

spectrometer instabilities over the long interval which separates

points in t
l

• In addition, there are some systems which do not have

signal for t z # ±T that is as large as shown in equation (VI.7). For

example, the expression for the N~quantum coherence magnitude of an

isotropic first-order system with N spins-l/Z (equation (11.55)) gives

2
<!OMQ(T) !>N/Z,-N/Z (VI.II)

so that if N is large, t z = ~T can be much better than t z # ±T, and
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the expected gain is reduced. The N-quantum coherence in a system with

~ symmetry (equation (II.57)) presents a slightly more favorable case;

for a 10-spin system the ratio is 3.44.

6.1.3 Selective Experiments

Suppose U and V in Figure (II.9) are selective propagators, so that

the gain compared to nonselective excitation is G when t
z

C O. If the

filters are set so that the noise bandwidth ~wn ~ IXzl then values of t
z

with I~ztzl ~ 1 have strongly correlated noise and do not enhance the

signal/noise ratio. However, if D~ztzB ~ 1 the selective propagator V

is multiplied by a large nonselective propagator exp(iXzt
Z

) (see equation

(VI.Z)). This dramatically reduces the selective matrix elements. If

IXzt z8 » 1, the operator vtexp(~ztZ)Iy exp(-~ztZ)V is nonselective,

and the signal is about JG smal1e~ than ae t z = O. These smaller blocks

of signal produ~e a gain"of

and if G is large gZD is negligible. For example, 9-quantum selection

in a ten-spin system gives G ~ 512, and if TZ = 1 sec and ~wn 5 KHz,

the gain is only about 3 if 5000 data points have been saved in t z instead

of one point.

Selective excitation makes two-dimensional signal enhancement

techniques unnecessary, since almost all of the signal is present at

O d h o im 1i that the phase of any individual transition int z = , an t ~s p es

the two-dimensional spectrum is independent of wz. However, data

manipulations in Wz may be useful to provide improved noise filtering.



As mentioned in chapter III, the signal should generally be sampled as

close as possible to the last pulse in V, but if the receiver section

is filtered no signal will be seen when t 2 «6W
n

• The filters are

therefore opened wider than would be necessary in the nonselective

experiment, to sample earlier. The additional noise this lets in could

.be removed by taking many points in t
2

, Fourier transforming, zeroing

the regions of w2 that do not correspond to single-quantum transitions

(and perhaps weighting the regions that do) and integrating over t
2

.

The signal at t 2 = 0 is retained, but the noise is reduced. Just as

in the nonselective case, this is only useful if spectrometer

instabilities are not the dominant noise source.

6.1.4 Conclusions

Two-dimensional techniques will often improve the signal-to-noise

ratios of nonselective spectra, at the expense of enormously increased

data manipulations. However, selective excitation techniques make it

possible to choose only a single point in t z without significant signal

loss. Thus, two-dimensional techniques are expected to have limited

applications in large spin systems, whereas the enormous gains of

selective excitation are extremely important for this case.

6.2 Multiple-Quantum NMR in Exchanging Systems

6.2.1 Density Matrix Equations of Motion

In all of the preceding chapters the internal Hamiltonian has been

written in an implicitly time independent form. In fact, the terms

x ~ jL and X all depend on molecular structure or electronic
Q' J'"D cs

confi~uratjon, an~ even at absolute zero some motions occur.

The effects of these motions on the tlliR spectrum depends on their

212
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timescale relative to terms in the Hamiltonian. For example,

vibrational motions distort the structure of any molecule away from

its equilibrium value and may instantaneously destroy symmetry elements.

14
The period of these motions (~10 Hz) is so short compared to the

85frequency spread in X that only the time averaged structure matters.z

Thus the

equation

_?

couplings Dij in ~ are proportional to (r
ij

~ 8S shown in

(1.12), and this implies that symmetry elements of a

vibrationally averaged structure do not exactly dictate ratios of

coupling constants (i.e., the hexagonal symmetry of benzene does not

44imply that D12/D14 is exactly 8, but it is nearly so. ) At the other

extreme, motions which only change the molecular structure over

intervals which are much longer than T
2

will not substantially affect

linewidths or. line positions.

The interesting case occurs when the period of motions that

substantially distort the molecular structure is comparable to terms

in X. The density matrix equation of motion for this case was derived
z

86,87
several years ago. The simplest case is a discrete process (for

example, exchange between two equivalent sites) which obeys Markovian

statistics. The motion is assumed to change the density matrix from

t
p to RpR , and if the frequency of this motion is liT then

m

. (R Rt
) (P+8I~P -p z

i[p(t),X]ii + T
m

ii - T
l

ii (VIo13)

(

RPR-;--P J
T ij

m

(VL14)

These equations of motion are readily solved for continuous wave

88
irradiation by setting P= 0 as in section 2.2.1. This solution
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also gives the spectrum after a one-pulse sequence.

More complicated pulse sequences, such as the nonselective

multiple-quantum sequence of Figure II.I(b), are more troublesome.

If [R,H] ~ 0 then pet) and p(O) are not related by a unitary transforma-

tion, and in this framework the time evolution must be recalculated every

time t l is changed. An alternative approach is to use a superoperator

60 89
formalism, ' in which p is written as a column vector. The evolution

under the Hamiltonian is governed by the Liouville operator L:

(VI.lS)

and the exchange term is represented by the operator R:

(VI.l6)

The equation of motion is

pet) - -i L pet) + R pet)

pet) - exp((-iL+R)t)p(O) (VI.l7)

The evolution can be solved exactly, but if p is a n x n matrix it must

2 2be written as a 1 x n column vector, and the matrices Land Rare n

2by n. Therefore, calculations of the effects of exchange are likely

to be difficult in large spin systems. However, it is clear that the

multiple-quantum spectra have fewer lines than does the single-quantum

spectrum. Therefore large exchanging systems, which cannot be easily

analyzed by conventional ~ffi because the single-quantum spectrum is

unresolvable, should give resolvable multiple-quantum spectra.
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6.2.2 Signal Size and Enhancement Techniques for General Exchanging

Systems

The nonselective pulse sequences of Figure 11.2 can all be used

in exchanging systems. If IX L I » 1 (slow exchange) then it isz m

possible to choose L,t2 « Lm yet still pump multiple-quantum transi­

tions and in this limit the signal size is essentially the same as in

the static case (equation [1.61)). A similar result holds if

IX T I « 1 (fast exchange). If IX L I ~ 1, however, T,t
2
~ L will

ZtD. zm m

be required to pump multiple-quantum operators, and the signal Yill

be degraded; the exchange makes coherent pumping difficult.

6.2.2.1 Two-dimensional Techniques

The exchange process generally broadens most or all of the

single-quantum transitions. This reduces the gain from two-dimensional

techniques, derived in section 6.1; the formula for the gain (equation

(VI.10)) must have T
2

replaced by the reciprocal of the average line­

width. If ax T I ~ 1 the gain falls to essentially unity, if all the
z m

single-quantum transitions are affected.

6.2.2.2 Selective Techniques

The average Hamiltonian expansions of chapter III are only valid if

the rate of exchange is much slower than the cycle time; otherwise the

nonselective matrix elements of Xo ' X¢ and so forth will not cancel.

This implies that if Ox T I ~ 1 selective sequences will not be possible.
z m

6.2.3 One Example--Cyclooctatetraene (COT)

6.2.3.1 Theoretical Hultiple-Quantum Spectra

The bond shift process in cyclooctatetraene (CSRS) was described

in qualitative terms in section 1.4, and theoretical spectra for the



216

rapid exchange and slow exchange limits were drived by symmetry

arguments (Figure 1.7). Toe intermediate exchange regime will be

discussed here. Recall from section 1.4 that the bond shift can be

viewed as a pseudo-rotation; spin 1 becomes spin 2, spin 2 becomes spin

3, and so forth. The matrix elements of R can be written in the spin

product (SP) basis set:

M - 4: R(II eli) = (II eli) R - 1
i i

M - 3: R(B. IT eli) = B'+1 II eli +1J i,j J i,j

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 O· 0 1 0 0 0 0

0 0 0 0 1 0 0 0
R=

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 (VI .18)

and so forth. R is secular and orthogonal (real valued and unitary).

-R -1 7
~ - 1, so R = R. The M=4 state is clearly not affected by bond

shifts. In fact, despite the form of (VI.lS), not all of the M=3

states are affected by the bond shift process. This can be seen by

generating symmetry adapted states. The symmetry operations of this

molecule are shown in Table VI.l. In the slow exchange limit the

point group is D
2d

, which gives the symmetry adapted states and



Table VI.1 Symmetry Operations of Cyc100ctatetraene

C
2

: 1 ++ 5, 2++ 6, 3 ++ 7, 4++ 8

28
4

: 1--+- 3, 2--+- 4, 3-+- 5, 4-+- 6, 5-+- 7, 6-+- 8, 7- 1, 8- 2

1- 7. 2--+- 8, 3- 1, 4- 2, 5- 3, 6- 4, 7 - 5, 8- 6

·2C ' . 1++ 6, 3++ 4, 7++ 8. 2++ 52 .
1++ 2, 5++ 6, 3++ 8, 4++ 7

2a
D

: 1 ..- 4, 2..- 3, 5 -'8, 6- 7

1_ 8, 2 ++ 7, 3 ++ 6, 4 - 5

R: 1- 2. 2 - 3, 3 -+- 4, 4 - 5, 5 -+ 6, 6 - 7, 7 - 8, 8 - 1

217
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numbers of transitions shawn in Table VI.2. The symmetry adapted states

for M = ±4 and M = ±3 are given in Table VI.3. In this basis R for

M .. ±3 is given by:

1 0 0 0 0 0 0 0

o -1 0 0 0 0 0 0

0 0 o -1 0 0 0 0

0 0 1 0 0 0 0 0
R=

0 0 0 0 ~ -~ -~ -~

0 0 0 0 ~ ~ ~ -~

0 0 0 0 ~ ~ -~ ~

0 0 0 0 -~ ~ -~ -~ (IV.19)

The Al and AZ states are invariant, but all other states are

affected. In fact it can readily be seen that the M = ±4, ±3 Al

states and M = ±3, ±Z AZ states are the only ones which are invariant

to the bond shift process,24 so any transition may be affected unless

both the initial and final states are among these ten. The number of

invariant transitions for each value of ~ is given in Table VI.Z.

The seven-quantum and eight-quantum spectra have no dynamical

information. However, the six-quantum spectra has six fewer transitions

in the rapid eXchange limit than in the slow exchange limit (R becomes

a symmetry operation with rapid exchange), as noted in section 1.4.

2 Z Z
At any exchange rate [R ,X] = [R ,p] = 0, because R is equivalent

to 54. There is therefore no problem with the assumption of a

pseudo-rotation which increases the index of each spin by one; of

course a pseudorotation which decreases each index by one is equally



Table VI.Z Symmetry States for Cyclooctatetraene

Nmnber of Symmetry

M Adapted States

Al AZ B
l

B2 E Total

±4 1 0 0 0 0 1

±3 1 1 1 1 2x2 8

±2 6 2 4 4 6x2 28

±l 7 7 7 7 l4x2 56

0 13 7 9 9 l6x2 70

256

Allowed Nondegenerate Transitions

Unaffected by bond shifts

lIM=l 1430 6

lIM=2 995 0

lIM=3 546 0

lIM=4 225 2

t.M=5 70 4

lIM=6 15 0

lIM=7 2 2

lIM=8 1 1

219



Table VI.3 Wavefunctions (D2d point group)

220

tJ! Symmetry Group RV' Symmetry Group

M = +4

aaa.aa.a.aa Al aaaaaaaa Al

M == +3

"1" - Baaaaaaa, etc.

1+2+3+4+5+6+7+8 Al 2+3+4+5+6+7+8+1 Al

1-2+3-4+5-6+7-8 A2 2-3+4-5+6-7+8-1 A2

1+2-3-4+5+6-7-8 B
1

2+3-4-5+6+7-8-1 B2

1-2-3+4+5-6-7+8 B2 2-3-4+5+6-7-8+1 B1

1+2+3+4-5-6-7-8 E
(1)

a

1+2-3-4-5-6+7+8 E
b

(1)

(2)
Linear combinations of Estates

1-2+3-4-5+6-7+8 Ea

1-2-3+4-5+6+7-8 ~ (2)
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7 7
valid, but since RpR = R PR the same density matrix is produced. This

means that the pseudorotation is basically a two-site problem. The

behavior under exchange of the six-quantum transitions is:

1. The Al and A2 transitions from M = +3 to M = -3 are not

affected by the exchange. Both of these transitions appear at w = O.

2. The BI and B2 transitions from M = +3 to M = -3 are mixed by

the exchange. Both of these transitions also appear at w = 0, so

L = 0 in equation (VI.17), and the exchange merely broadens the line.

3. The E transitions from M = +3 to M = -3 can be described by

16 x 16 matrices Land R, and the Al transitions from H = ±4 to M = -2

can be described by 36 x 36 matrices. The transitions from M =±2

to M = -4 just make the spectrum symmetric, so their evolution does

not need to be independently calculated. All of these transitions

can broaden at different rates. In the slow exchange limit, Alexander
84

has shown that the linewidths are given by:

= (l-R R )/'r
rom nn m

(VI.20)

where m and n are the initial and final states.

The intensities of the peaks cannot be calculated unless the

preparation and mixing periods are also analyzed. In this case R

and L are 64 kx 64 k matrices.

6.2.3.2 Experimental Spectra

As explained in section 6.2.2, most of the signal enhancement

techniques available are of limited use in exchanging systems, so

nonselective multiple-quantum spectra were observed. The signal

level depended critically on T
m

, Figures VI.2-4 show the multiple-
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Oriented Cyclooctatetraene, -150C

n-Quantum Echo SpectrQ

o 3 4 ........-J',5~--~6~--~7:----J,.8--
n

X8L 8010-12684

Figure VI.2 Nonselective multiple-quantum magnitude spectra of 12 wt%

cyclooctatetraene in Phase V liquid crystal at -15.0°C.
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Oriented Cyclooctotetraene, -15°C

Six-quantum magnitude spectrum

I KHz

XBL B010-1269:;

Figure VI.3 Six-quantum region of the spectrum of Figure VI.2. All

transitions except for the central one are broadened by exchange.
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Oriented Cycloociaieiroene. -15"C

Six-quantum phase corrected spectrum

I KHz

Theoretical Line Positions

XBL BOIO-12689

Figure VI.4 Same as Figure VI.3, except that the spectrum is phase

corrected instead of magnitude. The theoretical transitions from the

couplings in reference (24) are also shown. The implied exchange rate

from the line widths is about 33 Hz.
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quantum spectra at -15°C of a sample with 12 wt% COT in Phase V; data

accumulation time was roughly 15 hours. At higher temperatures no

six-quantum signal was observable. In addition, the linewidths increased

as the temperature was lowered past this point. This effect has been

24attributed to increasing viscosity.

Since the slow exchange limit was not observed assignment of the

dipolar couplings was not possible from the spectra alone. However, if

the dipolar coupling constants from reference (24) are assumed the

exchange rate can be calculated from linewidths in the six-quantum

spectra. Of the seven allowed pairs of transitions, only one is

isolated enough and intense enough to measure a linewidth. That

transition has a full width at half maximum of 75 ± 12 Hz, and (l-R R )
mm nn

for that transition is 0.84. The central six-quantum peak is 20±12Hz wide,

so the estimated exchange rate is T-
l = 33 ± 10 Hz, which is somewhat

m

smaller than the rate Tm- l = 55 ± 22 Hz found in reference (24).

6.2.4 Multiple Pulse Techniques to Measure Exchange

It is clear from the last several subsections that multiple-quantum

NMR spectra in exchanging systems will generally be weak and fairly

difficult to analyze. The fundamental problem is that the equation of

motion in (VI.13-14) has two noncommuting terms. It is easily solved

if either of these two terms vanishes, but not otherwise.

In particular, if ;Ie = 0 then

pet)

Ro(t) R
t
-p(O)

1"
m

- -21" IT
= p(O) + ;(~(O)Rt-P(O»(l-e m) (VI.2l)

and if Rp(O)Rt is substantially different from p(O) a pure exponential
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decay results.

One sequence which uses this simple evolution to determine the

exchange rate is shown in Figure VI.5. The density matrix at the end

of the first interval t is
2

(VI.22)

If nXzLmn ~ 1 then it is possible to choose t
2

such that p(t2 ) has

substantial components which do not commute with R. The pulse

sequence during t
l

removes X
z

; several choices are possible, including

the two-quantum pulse sequence of Figure III.9c, repeated with a 90°

pulse shift.

Assuming that t 2 « L
m

, the signal for t
l

o is:

A Tr(exp(-2iX t
2
)I exp(2iX t 2)I )

z y z y
(VI. 23)

and the signal for T2 > t l » L
m

is (A+B)/2 where B is

(VI. 24)

Matrix elements p(tZ)mn which are not affected by the exchange

(i.e., (Rp(tZ)R' ) = p(t2 ) ) do not contribute to the signal difference.
mn mn

But if p(tZ)mn oscillates at frequency wI and URP(t2)R
t

)mn oscillates at

frequency Wz (assuming Dyo-site exchange) then the signal difference

becomes large when <I (WZ-wl)t2l> ~ 1.

In general, this sequence will not work for Tm ~ lI:trz ll, because

in this case II [R,P(t
Z

)]1I «lIp(t2)11. On the other hand, if Lm '\., IIX}

the sequence to suppress X
z

will not be good enough to give an accurate

measurement. Nonetheless for a typical dipolar system this gives Tm a



jlf=jlfz jlf =0 jlf-jlf- z
I
I
I
I
I
I
I

<I >x
<I >y

XBL 8010-12679

Figure VI.5 Multiple-pulse sequence for measuring exchange rates. If

the line narrowing sequence is good the signal is proportional to
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measurable range of several orders of magnitude. The technique is

quite general and should be applicable to a wide range of exchanging

systems.

6.3 An Information Theory Treatment of Multiple-Quantum Coherence

6.3.1 Introduction

The high multiple-quantum spectra of large spin systems are of

great interest because the single-quantum spectrum is often intractable,

as explained in Chapter I. Unfortunately the increased simplicity of

the high multiple-quantum spectra is accompanied by a large decrease in

intensity if nonselective excitation is used. For example, Figure (11.7)

shows the integrated intensity of each order of transitions in a

typical experiment on oriented benzene, compared to an extremely simple

model in which' all transitions are assumed to have the same intensity

making the total intensity of each order proportional to the number of

transitions in that order. The experimental results agree fairly well

with this simple theory; in fact, despite the high degree of molecular

symmetry, group theoretical restrictions- do not dramatically change

the intensity pattern.

Given a specific pulse sequence and a specific Hamiltonian (including,

for example, all dipolar coupling constants and chemical shifts), the

exact non-linear evolution of the spin density matrix can be determined

by the equation of motion and thus the exact spectrum can be calculated.

For large spin systems, however, this approach rapidly becomes

prohibitively time-consuming. In addition, it requires detailed

advance knowledge about the Hamiltonian, which in fact might be the

information that the experiment is designed to prOVide.
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In this section a more general approach to describing multiple-quantum

coherences will be used. Given only limited information about pulse

sequences and the Hamiltonian, one would like to make predictions

about the integrated intensity pattern as a function of the number of

quanta. In other words, if this approach is applied to oriented benzene,

it should reproduce Figure 11.7, but is not expected to reproduce exact

spectra such as Figure 11.4. The predictions obtained are nonetheless

important, for several reasons. For large spin systems, they should point

to a description of multiple-quantum coherence that is essentially

statistical, and allow the testing of different models for a "pumping

operator" to represent the evolution of coherences. In addition, they

should predict how difficult it will be to pump high order multiple-

quantum cohe~ences in complicated systems. The intensity pattern is

predicted here by information theory, which determines the most probable

density matrix consistent with assumed mechanisms for pumping multiple-

quantum coherences. Section 6.3.2 develops the concept of the statistical

coherence limit, corresponding to the most random but coherent density

matrix. Calculations using different pumping mechanisms are compared to

exact dynamical calculations for small systems in section 6.3.3. These

calculations show that an information theory treatment agrees fairly

well with experiment, and give some insight into the evolution of

multiple-quantum coherences for general anisotropic systems.

6.3.2 Statistical Calculations

6.3.2.1 Information Theory

A complete specification of the density operator for a system with

N states requires measuring the expectation values of N
2
_l linearly
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90
independent operators. If fewer measurements are performed, there may

be more than one density operator which correctly reproduces the measured

results. To select a particular density operator one adopts from

91 92
information theory and quantum statistical mechanics the entropy,

given in dimensionless units by

S[p] ~ -Tr(p £n p) (VI.25)

as a measure of missing information. The required density operator is

selected from amongst those consistent with the known constraints as the

90-99
one of maximal entropy. The resulting density operator is

consistent with the data and is otherwise as random as possible.

It is the least committal (or most conservative) induction that is

warranted by the data at hand.

Given the expectation values of m operators A 7
r

<A > = tr(p A )
r r

r = 1, 2, ••• , m (VI.26)

the normalized (Tr p = 1) density operator which is consistent with the m

( 6) by
94,98

mean values in VI.2 and has maximal entropy is given

m
p - exp(-AO + L

~l

A A)
r r

(VI.27)

The (m+l) parameters, A
O

and the Arts, in p are determined by the M+l

operator expectation values that are consistent with the data. The

solution for the A values is unique, provided that the operators are

linearly independent.

6.3.2.2 The Statistical Coherence Limit

As a first application consider the specification of a density
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matrix when all that is known is that it is not incoherent, which means

that, in the basis of interest the off-diagonal matrix elements of p,

(P
ji

' i ~ j), are not necessarily zero. The constraints are therefore

normalization and finite coherence,

r
i

(VI.28)

For algebraic reasons it is convenient to add the first and second

. constraints and rewrite as

r' r
i j

(VI.29)

Here H is the N x N matrix whose every element is lIN so that

(VI.30)

The density matrix P of maximal entropy subject to the two commuting

constraints of mean H and mean I is given by

p - exp[-A I-AH) (VI.3l)
0- -

Recalling that an exponential of a matrix is defined by a power series

expansion and using (VI.30) repeatedly,

P - exp(-A ) {I + Iexp(-A) - I]H}_ 0 CYI.32}

Therefore, if all that is known is that p is coherent, then the

most reasonable inference is that all the off-diagonal elements of

p are of equal magnitude. The diagonal elements are also all equal
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and exceed the magnitude of the off-diagonal ones. If the coherence is

not imposed as a constraint (A=O) then (VI.31) properly reduces to

the familiar microcanonical statistical limit p = liN, a density

matrix of random phases and equal probabilities.

One can readily relate the values of A
O

and A to those of the

constraints

exp(-AO) = l/[N+exp(-A) - 1]

exp(-A) (N-l) (C+l)/rN-C-l] (VI.33)

which shows that the problem is well posed only if Tr(Hp) = (c+I)/N < 1.

This is as it should be since H is a projection matrix (cf. (VI.30))

whose expectation value must be between zero and unity.

The density matrix p is typically that of a mixed state,

2
Tr(p ) (VI.34)

It tends to a pure state, p = H. only in the strong coherence limit

when C = N-l; then p is an eigenmatrix of the projection H, so that

Tr(Hp) = 1. In the opposite extreme C 0 and P = liN, the most chaotic
~

(i.e., maximal entropy) mixed state that is possible. The magnitude

of A increases monotonically as C increases, starting at zero when C 0

and tending to infinity as C ~ N-l.

The object of this theory is to reproduce some of the general

features of the nonselective multiple-quantum spectrum. As explained

in sections 2.2.2.2 and 6.1, the ~nsemble averaged intensity of the

transition from 1i> to lj> is -cS <!PMQ(T) I>i j (or -CS <lp~Q(T) lij> if

+. d') It was shown in section 6.1 that the differencet
2

= _T 1S assume .
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between these two expressions is generally small. This averaging over

T is the key to a statistical approach. Say the different values of T

are indexed by r, r = 1,2, ••• , m, so that altogether m measurements

were taken. Let A be the operator whose value was measured at the r'thr

time. The spectrum would be reproduced by a density matrix which is

consistent with the m measured values. Invoking the maximum entropy

formalism, the result is given by (VI.3l) •

.Two points are important to note. The first is that the density

operator (VI.3l) will not necessarily reproduce any of the individually

measured spectra, nor is it meant to. All that it is geared to do is

to account for the average spectra, obtained after many samplings,

corresponding to different values of T. The second and technical

point is that (VI.31) does not have the form expected from stochastic

94
theories of lineshape. The reason is the differences in the physics

of the problem. There, one is dealing with a Hamiltonian which contains

random elements (e.g., an impurity can find itself in a variety of host

100environments. ) To determine the evolution of the system, it is thus

necessary to average p over the distribution of the random elements.

Here however we are dealing with a single system, with an exceedingly

complex Hamiltonian which we prefer not to have to look at. To make

the problem manageable for a simple theory we thus have to collect

considerable data on the system, which is achieved by repeated sampling.

The net result, (VI.31),100ks like it is the logarithm of p rather than

p itself that has been I averaged I. The conclusion is inevitable, and

is essentially the key theme of the maximum entropy approach. The

way to incorporate data in the least biased manner is by minimizing the
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average deviance of £n p from the weighted constraints

<-£n P + r A A > = minr r
r

(VI. 35)

The magnitudes of the Lagrange parameters serve as the weights.

6.3.3 Forms for the Pumping Operator

Clearly the choice of the constraint operators is extremely important.

The information theory framework implies that these should be operators

whose expectation values are given. Obviously, "if the expectation

values for all the (~-1) coherences and populations are known, the

density matrix is known, but the theory then has no predictive value.

The constraints should thus be kept to a minimum.

All of the following prope~ties are known about PMQ(T):

1. Tr(p~Q(T» = 1. This constraint is easily satisfied since AOI

in equation (VI.31) can be factored out of the exponential, and then it

becomes a normalization constant.

This2. PMQ(T) is related to I-BIz by a unitary transformation.

important constraint cannot be readily expressed in the information theory

framework.

3. In the limit of small T, PMQ(T) can be written as:

2
P (T) - -B(I + i[l ,oJ( ]T + OCT »MQ z z x

(VI. 36)

Thus small values of T produce two-quantum coherences (and one-quantum

coherences if chemical shifts are present), as explained in section

2.2.2.2. The expectation value <ill ,X ]> is known for small valuesz x

of T~
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i[I ,X ]z x = - L Dij(JI iI .+31 .1 .) -!:::.w I + L ail.
i>j x YJ Y~ xJ Y Y~

(VI. 37)

2It can be confirmed by substitution that the term proportional to T

vanishes. Higher-order terms must tend to cancel the T term since the

expectation value cannot grow indefinitely.

The operator i[I ,X ] reflects any molecular symmetry, and if !:::.w =z x

0i - 0 for al~ i it is even-quantum. A most probable density matrix

of the form

peA] • exp(iA[I ,X ])/Tr(exp(iA[I ,X ]»z x z x

=exp(AP)/Tr(exp(AP» (VI. 38)

will also have these properties, so this operator may be a good choice

for a pumping operator. The important test, of course, is how well

equation (VI.38) agrees with experiments.

Figure VI.6 shows how <P> behaves as a function of A. The

expectation value is initially proportional to A, but for large A

it approaches a maximum value~ It can be shown that this maximum is

simply the largest eigenvalue of P by transforming to a basis set

which diagonalizes p[A]. As A increases the fraction of high

multiple-quantum coherence increases monotonically, as shown in
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Figure VI.6 The expectation value of <P> = Tr(pP) as a function of A.

For large A it approaches a maximum value equal to the largest eigen-

value of P.
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Figure VI. 7 for benzene with ~w = 0, and finally converges to what will

be called the strong pumping limit. Physically the strong pumping limit

corresponds to values of l such that ax Tn » I but ~ « Tz L 2'

The multiple-quantum intensity distribution is compared to the

exact dynamical solution (i.e., the average over many values of T) for

several different systems in Figures VI. 8-11. If only dipolar terms

are presen~ both the exact solution and the information theory solution

are purely even-quantum. The eigenstates decompose into two disconnected

groups (for example, for a four-spin system states with M = 0, ±2 are

not connected to states with M = ±l) and the matrix elements of these

two groups should be separately normalized in the information theory

treatment. If this is done the agreement with the exact dynamics is

quite good, as shown in Figures VI. 8-10. For exmnple, the four-

quantum transition in a four-spin system is substantially stronger

when all the coupling constants have the same sign than it is when the

couplings have different signs, as shown in Figures VI. 8 and VI. 9.

Attempts to introduce a resonance offset were 1ess successful.

This is to be expected, because the main effect of a resonance offset

is to generate a term proportional to sin(~wT) which has odd-quantum

elements only (equation (11.60)). If the pumping operator has only

even-quantum elements so will the density matrix, but it is unlikely

that any form for a pumping operator will give only odd-quantum

elements for all values of A. Similarly, the effects of chemical

shifts were not readily reproduced. Figure IV.II shows the intensity

pattern generated for a typical five-spin system with chemical shifts;

the information theory prediction tends to be too 1arge for the large
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Figure VI.7 The intensity pattern as a function of A for benzene with

~w = O. The pattern converges to what will be called the strong pumping

limit for large A.
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values of t.M.

6.3.4 Density Matrix Reduction Schemes: Coherence Versus Incoherent

Pumping

FiulrUr- (VLIo-12) -show that equation (VIe38) gives good qua11Utive

agreement with experiment, at least for systems nth only dipolar

couplings. In fact, the formalism can be further simplified.

Specifying the entire density matrix (i.e., the magnitude and phase

of every element) is probably only necessary to describe the fine

structure of the spectrum. Therefore a reduced density matrix can

be employed where each level is assigned a degeneracy gi corresponding

to the number of different eigenstates in the original manifold. Each

element P
if

of the reduced matrix corresponds therefore to a block of

gigf states ~ the initial matrix. Thus, for example, the density

operator and the pumping operator for benzene (which are expressed as

64 x 64 matrices) are reduced to 7 x 7 matrices.

The best method for reduction of a block of elements in the full

matrices to a single number depends on the form of the pumping operator.

The exponential in (VI.38) can be expanded:

N
,:(P ) -i.j - E P:ia Pas" • Pi'j

a,B;" .•.
(YI.39)

In 'the reduced ma trbLCP
i

is a single number; in the full matrix it is. a

-~ -b~ock o! gi ga numbers.
. 'O'::~ ,.-. :=.

Thus, . a typical matrix element of PiaPas

:;1£~~':-sum of g terms.
£~, ., : a

~~s±mple cases can be distinguished:
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1. ·Coherent pumping. If all of the matrix elements of P have the

same phase then one expects a typical matrix element of Pia PaS to be

g times larger than <p. ><P Q>. The appropriate reduction scheme in
a ~a a~

this case is:

coherent
reduction I· Igigj <Pij>

2
The signal intensity gigj<Pij > is desired at the end of the calculation,

so after exp(AP)/Tr(exp(AP» is calculated each matrix element must be

. squared.

2. Incoherent pumping. If the matrix elements of P have random

phases then one expects the square of a typical matrix element of PiaP
aS

2 2
to be ga times larger than <Pia ><PaS >. The appropriate reduction in

this cas e is:

incoherent

Pij reduction I g; gJ' <P 2>
.£. ij

one number

When exp(AP)/Tr(exp~P» is calculated the signal intensity

automatically appears, so no squaring is necessary. However, each

element in the final matrix must be multiplied by ~.
~ J

Figure VI.12 compares the coherent and incoherent reduction schemes

for a four-spin system with only positive couplings. Only the coherent

reduction agrees with a full information theory treatment. In fact

this can also be seen by examining the form of the pumping operator
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Figure VI.12 Comparison of coherent and incoherent reduction schemes

for a four-spin molecule with positive couplings. The coherent reduction

agrees with the full information theory treatment, showing that the

different pathways to high-quantum operators reinforce.
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in (VI.38); rotation of -nj4 about the spin z axis produces an operator

with only positive matrix elements. Thus for this operator all of the

pathways to high values of ~ reinforce. On the other hand. if the

couplings have both positive and negative values as in Figure VI.13. the

four-quantum coherence agrees with an incoherent reduction, but neither

reduction scheme describes the overall intensity pattern well. In fact

there is no basis set in which all of the matrix elements of Pare

positive; however, some terms will still add coherently (for example,

all the terms in the diagonal will). This is therefore a mixed case.

6.3.5 Conclusions

An information theory approach to predicting the intensities of

mUltiple-quantum transitions gives good qualit~tive agreement with

experiment for dipolar systems. In this framework the high multiple­

quantum transitions are predicted to be enhanced when the couplings

all have the same sign, since this case corresponds to coherent pumping.

Exact dynamical calculations verify this enhancement. In general, however,

the distribution of intensities is approximately statistical.
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Figure VI.13 Comparison of coherent and incoherent reduction schemes

for a four-spin molecule with random couplings. Neither the coherent

nor the incoherent reduction agrees well with the full information theory

treatment. so the different pathways to high-quantum operators do not

reinforce. The intensity of the four-quantum transition i"S therefore

lower than in Figure VI.12.
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Appendix A. Counting Schemes for (N-2)-quantum and lower­
quantum transitions

As explained in section 1.4, (N-2)-quantum transitions fall into

three distinct groups: M = N/2 ~ M = -((N/2)-2), M = (N/2)-2 ~

M = -N/2, and M = ((N/2)-I) ~ M = -((N/2)-I). The first two cases are

easily handled, because all of those transitions have Al symmetry.

The number of states with Al symmetry for M = (N/2)-2 is just the

number of distinct pairs of spins, and the same is true for M = -((N/2)-2).

Thus each unique pair (ab) of spins generates one pair of transitions

in the first two cases.

The third case is more complicated. In general, the transitions

from M (N/2)-1 to M = -((N/2)-I) can have any symmetry. The situation

can be somewhat simplified for systems with only bilinear couplings,

because then the energies and eigenstates for these two manifolds are

identical, and the number of transitions (and line positions) will be

exactly the same as the spectrum of the zero-quantum transitions in

the M c (N/2)-1 manifold. In the spin product basis each of these

states has one unique spin, and each matrix element can be written as

(a) ~ (b), where the label in parentheses specifies that spin. In the

2
most general case, n -n of these elements can evolve independently.

If the system has symmetry operations, then the number of independent

matrix elements is immediately reduced to the number of unique pairs (ab).

In addition, if there exists a symmetry operation a~b then the matrix

element for (a) ~ (b) equals the element for (b) ~ (a). They are also

complex conjugates of each other because the density matrix is Hermitian.

Thus they are real, and the number of possibly independent matrix elements

with imaginary parts is at most equal to the number of pairs Cab) such

that a~. If there are m different frequencies for transitions in the
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eigenbasis then there will be m independent matrix elements in any other

basis, so this gives the number of zero-quantum transitions. Combining

thi~ result with the counting arguments for the other groups of (N-2)-

quantum transitions shows that there is at most one pair of transitions

for each unique ordered pair (ab).

If all of the symmetry operations of the system can be written in

terms of permutations of pairs of nuclei, then the number of transitions

will be exactly equal to the number of ordered pairs. This will be true

whenever the symmetry operations do not include C axes (n ~ 3) or when
n

the C axes are accompanied by mirror planes to raise the group to Cn _nv

Thus, the counting arguments work for all of the examples of section 1.4,

and for all other common molecules; one case for which these are fewer

transitions than would be predicted is the case of two inequivalent

correlated methyl groups.

The arguments can be extended to (N-3)-quantum transitions. Each

unique triplet (abc) could generate at most eight transitions: one with

M = N/2 + M = -«N/2)-3), three with M = (N/2)-1 + M = -«N/2)-2)

«a) + (be), (b) + (ac), (c) + (ab», three with M = (N/2)-2 +

M~ -«N/2)-I), «ab) + (c), (ac) + (b), (be) + (a», and one with

M - (N/2)-3 + M = -N/2.

Additional symmetry elements will make some of these degenerate. For

example, an isolated methyl group will only generate four distinct tran-

sitions, and an isoceles triangle (Dab =Dbo # Dac ) viII generate six

distinct transitions. There are also matrix elements of the form (ab) +

(a); the number of these is exactly 'equal to the number of unique ordered

pairs of spins.



AppendixB. Listings of Computer Programs

Selective Sequences:

250

Program

Subroutines

Information Theory:

Program

SELECT

HEIGEN, LBINO, NUMSORT, DEFIT.E, HARDMAT

INFORM
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at 12 J;-l,'l'st

epcn(u~lt~Z2,ra~c:'~~rat,~~t',ty~c='ne~')

G .:- 2fI ; 'J IS i t - ;'-: . r. a f:'I C' - ' Eli GO. El at' ,t Y '13 C' ' F. C' .. ' )

ccntiruc
8t 3;;;; it-l,dl

,;: .;. Dl~ jJ) I 2. Z·

ecr. ti T,'JE

CpEfl(hf,it-Zl f.c"c-'pet,Eict', t)']'c- '!'In')

kk=-kic+l
1 5 , ; ,- k) - l; \,l O'l

1z(ki!):(n
C€l;tJ.-.l.ll'

e

1"

e
€

e

15
e

22;J~

"';:;:7

)

)

)

)

)

...... d~.

)

e
C

e

H; 12= D

H{(1FC''o'.EC.l)''''B& (1FC'\·.EC'.~)) go te 26

phse=ran(ll:mm) ~ t~op1
l' hg1.'1,ji

de H0 j=I,TIst
GO In 1- I. \

1f(1 .Eq. j) 50 to 52'

/lIZ;'
2161

2106

;>,102
;;Jl,,3

)

)

J

)
-- -"- ~ - - ---- ~:-~~~-.~:~ ... ~ .
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27-0et-19a<: 1a:11:14 ~hX-11 FOF.TRh~ IV-?L~~ V1.~-'~
far r " .;:0 ,:j. 12

ji ir.cD:ij,l)
n;"'lnt(abs(lz(j) - lz(1)j)
d~1j;·i!.b

If(nq.le.le1Z) nZ12=Le12 ~ ~

!ftcdl .1e .1616) a (lj) sexp' err.ph( 6.~ ,rl>5e)',
e(~1)~conj~(a(1jiJ
66 ; 6 1.:'';
r.~12:.nZ12 + 1
il'1ji-~1BR(l fl.p1 - pllss)
if (l.eq.nst) a (1J)=a{l)
rer t1 D"e
gc; t(.; 111

&

2~

~1

de 31 1=1,r,st
Sf 31 j'1,fS;
LZZ(i~c~(1'i!J=0.~ ~
- .. 11 Q;;;,lle, pgle ,,,,1)
rEcC(1.t:121) it1tle
FLaQ 11'172) r ,AC-r
r t aCl iI, i: .1 ~.;;. i V 0 f f'r ( c.; 1 ) , 1~ 1 •n:; p) • \ C j ~ 1 j , i =- 1 ,r. ~ P J • ( c 5 ( 1 ) ,1 =1 , n i

~l~.:-'---*f"'~"";;:.;l,7C'ii;':;;'+:·'~..,~...., ii-ii+l...)--------------------------------_

5122 fer/Tat 114)
r1?," fcrrrcit;ol~ a'

n ::r=n
r-l~" 1

::'crrrat :lJ:,'offsEt freq. ~ ',f7.1,lx,'liz',/11
,!~.rf "Gff/2, /:'

k=Z
Q ( E" 1 2 i 1. R :r 1

f c. rrr. at, lh ,6 f9 .1 )
dQ Cons 1-1,5

format(II,11x,'chemical shifts in Ez',I,llx.21(lh-),/)
jl T i B t s 227 , ( e ~ (1 ), 1- 1 iII)

d;k)~dill:i/4.0

CJ;":-;;j;k)l.~ iiJ

Ip~i+l

Q.g ="12 j-1pl,=<

ce·:J t 1 :Jt:E'
prlf; 1 5~<:6

~Drmat;lhl:/illlll,llx,72a1:111/)
! rill' &;;~" ,"rff

n ~ 1 :J t 5;; <:4
f>rr"t'llx,'Hp<olar alld J ee,,;liros (i" ~~)',/,lh ""1(1~ ) /1

k~k+1

P" i:l t :- > Z" ,i I P,~, k) , 1, j , rJ (k) ,

51337

5~15

c
e

do 32 i~l,n
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25'S

.-..:.

._v''_--.-->__' __

c

c

,~ ... ' ..

VhZ-ll FCR!RAK IV-PLUS V1.3-22
'5E;U:.td1.olZ

2,-O:::t-lS3Z 12:11:14

e c p" Z •Z
ee ~5 1-Lflcp

1 5 t 1 ( 1 , k ~ K : =:: u r. b : 1 , j )
1!!1~;. i;t···~ i&

,e. J ~ ;.. ....

j( ~~ ~l.n;t

l~=n - .15
it~F-,t'i~ l'l

n"te(js+l)=kk \
1 r ,

bzz(lnax(r.st,nst))=n*voff + ECr + des
f;lst~-l

do 11) j~ 1 I'Pll

ls"l(~I=-1

1 f; ( i c t \ 1) .? A e. fPSII; Be, C; 1 5P ( ;r) 1

rr sk= 1
G( 51 kl,r

or oj< lol,"l'.st
1;'1 ,~CI 1") G8 te E6

rr.rr~te~e

1:<111 IIY~,sert (lIbPlt ,II,&st)
1st1( 1,1 i=nur;b(1 ,Lst)
1 ~ t 1 ( 'Z , 1) llU ~b (:;; ,ll S t )
lstl(l,r.st )=nur-b(I,I)
1s01(2, .. s.) !l,"~il:2,li

if(ru"b:<:.j) .!'E. is) (,0 to .;0
;{;( > ir;r +1

kilt=l

kYk=I<y.i;·l
1st(:>:»-!luPf,'l,J:

h:l,~): -vcff~lt5p

k~- Z

rr,s,,=r..sk + rrsk
gel..i: ~E

t(l,ITI)=h{l,rr) + (d(kk) + cJ(H)) * lsp(j) * lsp(i)
cGr.t1n"e

CG 55 1=1,[,rr,1
1~1 1*1

do 57 i=l,n
t,'l,IIo;-l:(l,p') Gdl)~15p(i)

do 55 j=lpl,n
j{k-;;;p1

35 eCD=e:::~ + d(i) + cJ(l)
bzi:l;: Q~Utff + ~~? i~S

e

42 e0~tinu£

!'i" \- {;(

c" •

a

55

57

}
S7Tr"''''''___ .--.Ju.,l.

:J

i
e153

")
2159
GlEZ
21fl

!
ZlC'
(;1(;3
HC

J
el65

..1..-. r ~•.: • ~1f[

elf?

)
.1E=>
e'1f,9
BIn

) ll71

)
~172

2173

)
Z17~

r'P5
:: 1. -,-:

)
-17 7

217.'j
017;

) Z15~

2181
"1C?... .L ___

)
"13 7

Z15~
,., .. -:::.- -. 0100

)
~13c

~;'G7

)
,13-
C13;
21:;-

)
Z191
"';;2
ZEi::

) 21;"
ZoE5
;;:GC
Z"c.-,

) "- (

ZI G C>

~'::I""".-'"
)

;0<2"
;:221
~ .... "7r"'\
416

') ~,23

C<:;;~

0205

-)
z;c;;

...:.::--- ,- .~. - .' 0237

J 32~9

)
-- -_._-

1'". ~.:04!.• '":':ti~' J-' • ~

';..:J:"'••_-.;'"..:. •..
•• ~ '.'-..1. 1;...,"
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156
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c . ) e
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'" 5 '[ ~

VAX-I! FO?~~At, IV-PL1S V1.3-22
(:;PI·'.f'O';'.12

27-0ct-193~ 13:11 :14

1 f (j 5P • ne. 2) gc to se
Ic"-- (,1'1; - If11p (1))*(1fl1I(1) 1)/2 1fl1p(l) * 1"l1p'~;

hil,IT)=';.e
!p. Sj{S 1

b~l,m)= -d(k5) + 2.~*Cj(K::)

6Ef,Hfilf

kj=lr.ox, i'::, j)
fil5 1'55 + E'(p1;'(H)>Ttzz;kj)

de 21;2 j=l,r.5t
F55 :-.6

r Ij )=en pIx (r55 ,e.0)
';'p 214: j l,"5t

~i26BL21izc aDi lEt thE 2DfPglEs", ,.

i f ( 11 ~ P . 1 t. Z) E ) :? 1 y ( 1 11 t'. I ( 1 , j ), = - 2 2 a
:rrgLiH

jr S y=-k 5 J
~5~ ~sk + ~S~ <

.....

k ~}= 1
it Sol( 1
do 2;;;;;;' j{=l,n
if(;lc-,1:h1 ,2EE:. !'is];),}E' ;lst1:1,.')

de 75 k=l,n
U((istll) .and. Itsk) \ist\F.) 'dlHL "ski) ?e,?5,n

ce ",l>;Z j=l,r:st
e-nJiy 11 Q~' 1,n) .. iii

add=I1.;; / sqrt(2.,iJ).J ** n
be 2:;;: i-i,?1st

beneratiop of the p~15E prO~d€dtor•....

j\l=2
illS;! f;lSl! '" :2

t z z ( 1 ::l d 7: ( /Ti 5 t Z+1 , m5 t 0 +m ) )=- h (l , m)
cr;;t1l'tlJ'?

de, II<::: /T,=I,rr.st
lh 1~:::' 1-1,;!;!it

j sp=j sp"'l
ifl1:fl',j'.) ,{

~lstJ=r;5t0 + mst
ec!'!tlB1JE'

do 2141 j{=l,Lst
l1-inEiJc1,k)

Ij=lndt(i,j)
cO : 1 j ) - . ' J )
enn tl r,liE
QQ :2:2.", i l,I;!it

jk=lndx(j,k)

do 2241 /<:=l,TJ5t
lci-1!:lay'l ,k)

·de ~242 j=l.nst
55 0&.6

")
~~l.i..:r

:.J

i
6cc9

) l210
e211
0.212

)
Z213
3214 ?0
2~ 15:

'\ <l21f
3217 75

~ . #. -,•• '- '- 3aa",-",__ .~' , . .r:.. ...
Z(, ;;;

) 222J
;;;;;1 ;~

)
10222
Z2lZ3
Z224

)
~:Z2e 1.,5
322(
:::? 11Z

) c

c

)
c

e22S
r .... 5

~~ .. ~
)

/- ~ I:

. '''2'' 1
z::: 32
,... .... "'1 "1

)
.. ,
<;234
...... "'7::
cec ....

2-'<"<::~~.. ;;237 22Z:l
..,r--7-
... ..::.. .... .:>

;;n:-
r--_ .,.,....

)
_iCC:

C

)
e

66::
,.. .... '1

(..'~-::'..L

) ... :tat:

2:~3

Oe :l

)
Z24::
7'2':"~ : 1';"
~,4 (" 2HZ

) Z:4:"
Z249
(';-:;2 ~Hl

) 12251 2B4
<:2"2
e253

)
.665 :
2255

.....-....... .. "..... -

I
:l;E6

) ~257

j

//.
- ',\

._ -"l'..
- •. <•• ~~: ;.,.: f-I. - .J>',::'
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. -,.--,,.



. ...:z:::.J_
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wAI-11 FC~:nA~ IV-PLJS ,1.3-22
fEFI:•. FC.12

ecn t1 r.Uf

tss 6'S

r(j)=.ss
de 2242 j-l,nst

tss=tssTa(1~dx(l,j»)~eonjg(a:lndI(l.jj)/(nst*nst)
r!, <Gee: 1-1,:at

2?-Oct-193Z lS:11:1~

de £2~0 l=l,nst
QP 2£5~ j l.!l5~

1~=1Jd.(:1 J)
ii 1j) rUj

call h~l~en(a,u,nst)

e.G 1<'" 1-1,Il~t

22H

22H

e
c
111

2252

22E7
7263

025Z­
3:;& ~

0259
2272

::2[1
"~5~

3273

c n[~ for the t1me-'ependent pcrt1cn cf tl:1s progra~..•.•
c

1 f ( ( ire v • e q .1 ) • o!' • ( i r f v. eq . ~ I ) t 5 cal e =5 c; r t ; fl 0 a t (n 5 t ) I fl Oc t ( !: 212 ) i
?;;;~. 1f (:i~L" /@ 1 ).iiPG.;1fE" H.:)i ,s301[' Pi x cll:rt;t.ss)/6'::':3

c

::

Z275 11=1ndJ:~i,1)
---~-:;..?~~-,-_~__~:--...l .f-I,--~_'...,;~ _

)

:J

}j
-).

~ ......., :)

)

)

)

)

)

)
if (:it'bt.1).a!:~.(1nC'o:l:0.nE.1»[0 to 522

.au ) .,., ...... e first calculate Ellp{-i5t} •.•.

)
2231

au HJ J=1.r;st
Q - r FJ 1 ~ ( -, ~ ~ 1 (Z ;:, E ( 2)~ t~ t!>:;.l €' ) )

) ij'-1r.jy.(i.j)
i·1j) "'ij) * 'I

)
P Ii!l t ;;:·3

)

d

°Z"
(;

pi in t So {-±, (11/1<1 \ j ), j=1, r. 5 t)
f" r;:; it: :2" F 5)

J
2237
"<3:::

lip 1;( 1 1,flst
de 142 j=1.LSt
55 ;z C

)

)

)

22;1
Z.go:
eZ93
12;>4
2295
7z05

1 j.l

do 141 i<;~l,nst

H 111il.;t~1 ok)

r(j)=ss ( at ,

de 143 J 1,!Ist
1j=lndxZ1,j)
da(1J) r(JJ
a:ij)=.r(j)
ccrUll"i
1f(irev.eq.2) go to 23J0 ..."?',,'"

,)

--:'~'. '.; .... . /
/

. .
. -_._- -- --'_.' ---- - -- ,' ..

/:.~ .. > ~ :..•~,.. ~:'-~7.~~~·:!~:iT*-~·::~·-···
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27-0:t-19S~ 18:11:14 VAi-11 ~O~TiA~ IV-?lUS V1.3-22
[CpU fOP. P

If(lrev.eq.12) go to 2320
gE te 389

e305
:'=3 Z,"
2310
DeB 1

2341
2eH2

meke a ~AHUHA sequence ... lhls part ~akes Exp(IEzz T)
db 2:5a 1-1,ns.
de 234::: j=1.!lst
55-0,0
do 23·11 k=1,Dst
k1 1R!hlk,1)
kj=-bdx;k,j)
jj{-hd.~~j ,K)
55=55 • exply(kl)-a(kj)
P'j)-S5

55=2:0 • , ..
d.( ;:"'5. k-l,nst

de 23::? 1=1.n5t
Gf 2"'52 ;-1 c5t

r::j)=5S
d. ;;"5"' j-l r::£t

jk=illd:r(j:k)
5~ 55 dp'ik)*e}Jiy'kj;

ccnti:i 1lE

Q( 63E.5 1 l,p.st

de 23,,3 j=1,nst
1.i 1RQ);;1,j)
dr(lj)=-r(j)
c"til<)'~

:ZS1

2318
~--r"g

Z3Z(

232.;
C"' z·,

"?-z,...­
t. .... L:::
:1:6;

Z31c

..... -z - ­
"", .. L(J
..,~-",

(j

2314
~," l~

c

do 23::;; j=l ,!:S t \
~. ~ 1:. :, i:l ~ 1 ( 1 , .j;) j. {l' : 1n cj > (1 f .1: )
nco Nu~tiply by E]p(i~x] T)
db ;"" 1-1.[5t

333:
de <Z'-;~ j=-1,nst
5: o. c

~J

.>

Z::~'7

J335

2341
e3~;;

12343
ZJ:~

~3~5

coif

lZZ51
32l::

2351
2U:

2371

d,~ 23f1 k=1.r:st
h 1nd>;1,k)
kj=l;.dl i:,j)
j 1, - 1 h G~ ( j I '( )

sc=ss ~ d~(lk)-a(k))

p j) 55

do 23f3 j= 1 .~s t
1 j - 1 R GJ. ~ 1 , j )
ci.ed 1 j ) = r( j )
caEt1F.... e
de :::37~ 1=1,nst
dr2272jl, .. st
5S=Z.J
lie £371 1< l,Rst
.1k=lnd.:X;~.k)
,Cr1llGX ••cd)
cph5e=~eJP(c~plx(0.e,pl*(lz(~)-lz(j))/2))
j it - 1!l e~ , j • lr )
55=55 + dm(lk)*a(kj)*cphse

)
...... -
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/
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J __ '. __ -••_O-__ ;. .. -'"
'~' 2)"9

5S=SS • ri~(i~)*a(kj)*cpr5e

r ' :) 5;

If(1rev.eq.12) go tD 1Ze2~

Q. ' ~ -, "" :i - j" i ;. S T.

VAX-11 r0~7nA~ IV-rLJ~ V1.3-Z2
f,;'H.ldl.l:

27 - 0 (' t - 1;13 Z 1 S : 11 : 14

. (j) - ~
de 2::7,3 j"-1,nst
1J iUi.t,:i'J)

de 23:;~ 1=1 ,~st

at ;:Z:::' j'lins,
5S=Z.Z
lie 22;'1 k-l,F.st
1i<"-lnd,.(l,k)
icJ-hcx'K,j)
:~tse=cexp(cmDlx(Z.0,p1~(iz(k)-lz(j)/2))

J1" i R 6. )~ ( j i if )

do 23:-11 1;=1,n5t
1~'1;liI '1 <

CC ;:..:.~z ~=-lf:1st
S <-l ~'

S~~ss - d:r(1~)"2(kj)

r'j)'ss

dr.1J,-,-r\j.
ClfJt15:'c

kjri~d] k,j)
r'-hci{ j,;';'

L3?3

.... ~ , ..
c ...... ;)J.

;;:352

2333
:Z3~

)
::<:E2!

:l

i
Z:S.f

) 33:.5
eCJ:;c
2357

') l360
21352
C3S3.. ~~..~-., " C3E1') 23("
e3~3

)
Z"l"'~

213(5
neE>

) 23(7
Z3f~

rZ59

)
nzn
~·371
"" ..... n ....
cu c

)
~373
''7 -.. ("*

;:'7~

)
i:'"t7i=

l3?7
... "7 .......

, 'OJ

)
~:37~
{>"'t::: ~

Z2~1
')"7-'"

do 2393 j=1.nst
1,i l:'i;h: i , )'
c:r':ijj=r~j

cr;r ~i l' :."

ij{=ind1,1,k)
Ij'i-dT"cj)

rir 2 .. Z.; 1=1.:lst
c, 2'F j'l,J:.sl
S 5 =:'1, J
Q( ;,;" ;';-1 ,'is'

jk=1:1d>-~j,k)

ss ss + arrfjkl*~xpjll~j)

crnt1r.ue
GiI:1 llilrQtTij; 'diXI}
DCA' G1VE the average Barrlltor:1an h1gh-order terTI's ...
t$( t6 ;;r',

1j=1ndx.;1,j)·
a'ij)-r'j;

de 80~ 1=1,nst
Goa ;~6 j-l,Hst

.... '7'""7'
£. .... ,:, ....
•·..7 ...
"" 1:11

2 .. 21

241;)

c

Z..;21
~-:.n

.7.'·. f:'7::;"l- lIIl vvv

;:';1
I"J',--r;.

)
lL. ...... c...;
"'7'" ...

~'3C

C~27
""7 .... ::.

) 23a9
""7"""'"ete.

)
(:3=1
'"'7 ~2

f:'7C'""v_v
'?-:r .... ,.

)
. ?

2395
:Z"l~'--

)
2327
f)7~2

e39S

)

)

J

S5 = ".~
d6 EPl ";;-1,llst

,~

,)

':...... ".'-" '.". .y.- : ... . ;-.... ,;.. ....;. +,'

- - -; ','.

;._-~-~~ ...: :r

- - , - - - ~7: ~,;;:- '.-, .,'.
.:'~
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2&0
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C t r. t i !l\: e
fl r \' IP d t 1 Fly ~ J e)' F i 1E;xx T)

rr.t.:ltiply by exp(iEzzT) ••••
gB ts 3;;

co:ttinue
flO IHlt1plj' by e>p(1b)' ~)

...~ . ";' .. ~ ~ . -.-

i i'; ( j ) . . t. 0 r i ,'2 , a) . : i

VA~-11 ?CR:RA~ IV-?Lu3 ~l.3-22
€ S fI ~.• t;; ~ • 16

55 • 55

L7-Cct-:d~( 13:11:1~

iJ=1::d% d ,j)
;: (1j)-:l:r(1j)

r( j )=55
at 02,,6 J-i,llst

r(j;=ss
~[ .. ;;,'7 1-1 fl~t

CCJntinkE
9Bf,Hf""C
de al'" i=-l.DSt
Il6 6H J-1,fiSt

1j=ir:dx:i,j)
'-7 (1 j r: (j)

1j=1ndy.:i:j)
a,(ij-r:j;

de' 1<.132.; i=l,r.st
Q,' 1 :~£; ,)-1 ,f.5 t

r'j)=s5
de 16'.3 .i-1,ESt

Ji{=ir.c'( (j.it:)
$<=« - rjrr(1kVa~kj)

n=1nC1 (i ,II)
£: j~d) ~-,j)

55= l. Z
elF 1nn ic-l,BSt

do 1iZ1'; i=-l.r.st
<it 12='1, 2 1 :<st

dc lZZ~4 i=l,Dst
;8 1~J:£ j 1'hS\

16=ir.c.x f i,k)
,.;i iI'IQx;;';,i)

55=13.';:'
d, 1Z:Z1 k 1 nst

1~=-1nd.1(1.j J
<;j-(1j)-r'j)

ss=e.<i
elf 1;P1 k-1,r.st

r{J)=ss
de 1~Z2"" j l,:<st

ik=-ir,dx;l,k)
J.:-1:<"7(Ic,j)

de 100;)4 1=1 ,DS t

j~=1Ddx(j,k)

s<-ss « Q~;1k)*i(lcj)

ij=1r,dx\1 ,j)
1l~(lj) r(j~

continue
flllHp1r by exp(iEy;"T) ..

Sci

C

023
:"",: ~

lr' J

1ZZ14

1ilZ24
8

)
~ t"'''' - ,..,-
..JJ.. ... Lv.

:.J

Ji
2,,<":"
~4Z9

2:16
fH.ll

) Z'l-
04.13
Z: li

,,) e~ 15
.......,..... lUr

0417

) "':' 13

ZUS

)
e';LJ
~:21

Z~:2

) U""3
Zt.Z"
"'l'''-;::

teo

)
04L5
2;,'7
u.;203

)
.. 8

Z';'3~

e~"7-4
201

) ~~3~

Z433

)
;';'7'
~~~5

........;; .... 11\ 2':6

)
~~::7

2';'",:0

3';39

)
7';'; 7

24-11
~.' c.

)
2-1,;3
':' 1{1~
.... " ;:..
V,,%,%_

)
Z~,,6

.... 1'"7

) 2443... ~ ........
• :1: .....

2~5Z

)
C, c 1

Z452
"''''5''1:

)
e4S4
e.:.s"
0.456

?-'1- .••...•

)
~457

0~5S

.) 0459

)

/
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I' ....... ..;",'h·: :4·~·~~•....:~
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VAX-II t01r~A~ IV-PLUS Vl.2-22
6~?i r .}Ol\ .1£

27-uct-l;511 10:11:g3ElL:T

:J

i
3 1CZ e ,I 1 jj 022 j 1 •. ,5 t

') 24f.l s~=2. J
. --1E:-:l...:S3-i;:o---------d-li~C--i-iiTi)~e~3_tl-ltk-·_tl••"1ln:55_tt------------------------------

~4E3 lk=lndx,l.~)

Z4S4 kj-l'ldJ<'k,j)
Z4e~ C}h5e=CEXp(cmplx:~.e.pl*(lz(k)-iz(J)l/~»
:?H€ j:j If,d<J,:E)

0471
;,''' n

d~(lJ)=rlj)
SSE U f,iolC

do 12Z~ 3 j =1 • r: 5 t
l~-iE8{'i'f
d~(ij:·:::-(j

c::c".tir.u.

mt:1tlply by EJp(lI:zz':) ••••
dr l~J'~ 1-1,F.5t
de: lJZ-i2 J=l.r.st,s ::: 2

de lZ<J~l k=l.!:st
i::-l:.ei'(: 1, 't i
1"l~~inu; ~hlJi

~~-.+-rJ<.,-..,.:----------------------------------
SS~55 T dm(ik)~eIpiz(~j)

r', j) 5 &

c

122';3
1 ,~ ....

l:Z~l

:r{~

2~32.... -.,
e:x~-

--:;..:.J~-. - ----

rr.dtipl;; by exp(l"zzT) ...•
eo, li~=" 1 l.~&t

de 1&~~2 j~1.n5t \
55-;; .;;;

d~ 13V51 ~=l.r.st

i :- - iB Q7' i. j<; )

55=SS ~J;:ik)*EXpiz(kJ)
pi) - so,

k : = i r' d ~ . I.: , j )
jk-1::!Q}' i 1;',

de"10~52 ,)=l.:1st
ij-hdxi.':)
d ,0, ( i j ~ =r ( j i
en; ti :l"E

1ZZ:'1
12E:

loZiE3
1 ~ ';' c".;

Z';Sl
7'~:

c

25ez
ZC:;?l

rrultlply ::y exp(iHyyT) ....
Q9 : 7 'E' i 1, I'i 5 t
d ( Ie 25::: j =1 . n s t
s s-; ~

e504
~5ZS

e.:-e5
75Z7
3338

.. ZUl

leJ54

do 103El k=l,nst
. n-1I:ld.l ~ i ,ll:)
kj=lndx(k,j)
(3! R5 C - G[I( 1l : GF'llllJE ( ;; •~ dl i~' ( 1 a (IE) 1 2 ( J ) ; ,I 2) )
jk=lndx{j,k)
50, 55 + d~(i~)*a:kj)*spt5e

r(1)=S5
Q6"1<:1i:5 7 j l,an
ij=indx I i.J)
ll-(ij\ r(j;
ccntinue

.-.---~ .. -- .. -.-_ .. :. - r.- .
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VAX-11 gC~TqA~ IV-PLUS V1.3-22
fSi'H"EO?.12

27-0:t-192~ 12:11:14..ELECT

)

:J

1
e no' ~~iti~lJ b, e>~(i£X1 ~)

2513 de 10Z7~ i=1.:1st
) ---&655+144-,---------d-d,c--l-le-ee:e-i'-:,ce-o-jt<o---l1l-;.;-rnt415-tt----------------------------

0515 ·sS:~.0

Z51€ G6 In?l k-l,Fts~

0517 1k~1:1dy.(1 .k)
ZalQ kj-l~Q) k,j)

/
/,-

do 1Z~3~ 1=1.nst
GO I~~a£ j-l,Es~

• ~ ... ••'r -it. - '.,-

5 ~=C.;;l

lif lor1 'r-l,F.st

1 j = iT; d { ': 1 , j )
Q7(ij;-r(j)

ik=-1r.d~:1.k)

;,;j i:1Q7:k,j)
jf.-ifj~X j,t\j-.-s. + c1-:1<)'i .. :kj)

dt 122;.; i=l.f.st
at 136;2 J-l ... st
5 5= 2' • Z "\
elf 1;'6;1 ,,-l,ESt

r;j/~ss

6( 13(;:3 :-1,::5t

r:j)~ss

CL 1;;0:::-3 j-l,Flst

jr.=i:JC7 (j ,k)
5 ~ .' S 5 Ii fI : 1 it , .'. C' ,. J3 i l ( !r j )

1Y.=1 no> i.k)
kJ-irGx,·".ji

55= 0. Z
Q9 l,H:>l It 1,F.5t

do 121~", i=l,p.st
ee 1;;:22 j l,l'lst

1J o 1ndx ' i ,j)
GF<:lJi-r(j)

55=55 + dm(lk)*d(kj)*cpcse
r (j) s s

cC'!, ti :.ue
",... hi?1;.' {;/ 2X?:1PH'?) ..

c(,r,tint.;E'
!nlLJliJ 'f,~ nJ'(ii~Hj)....

dr:;(1j;=r{j

de le123 j=1.:lst
1 j - 1 f. all' i I Y)

H:1794
e

lZ.?92
1e;;:1

HE1
1~H2

10123

2523 1j:01nd.1.(l,j)
Z:2~ 13672 ap(ij) y(j)
Z~25 1ZZ74 continue

e RE~ ~r1~lp1y by E1p(1~Yl C)

Z5';;S
2:: i£

£"549
Z::'o

Z=. "7
.... -: ....

Z:'~l

<;;:{"

'1l=., .. .
c: 1_

C5:3
352;

cSii':

Z52E
2';;27

2532'
:lS"21
~:':2
1= "11'

~53E

2551

2252
2553

e:'~7

::.:: .;;;

eS56
3:&7

z~.=·~
(lazE

0SE3
~U;l

0564

~ ..,~--~ .

- '"":--_. -.)
f\r......c; ....-.~~~ -:__

)

)

)

)

)
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27-0ct-1SSZ 15:11:1'. VhX-ll FO~Tr.AK IV-FLU~ Vl.3-22
CG,H .:-a:t.ii:

cLhti1iO~

m'"lti pl~' by exp (1 ElyT) ..••
de 1ll11-i i-i,fist
do 1Z112 j:l,LSt
5s-,LZ
de 12111 k:l.Dst
if. i:l!h i.L)

jk:1ndx(J,i:)
6$-56 * j?:llC)*i;~j)'i';p~6e

kj:.indI ~j{.j)

e ile.s r' e eJ'}l ( e!f plY. (e .;; •J3 It ( 1 ~ Hr) i d J ; )/e ) )

r(j):S5
elf 1';112 J-1,flst
1j=ll.d.~:1,j j
Gi«ij)-dj)
ce-r.t1!lue
:::e o' JO;; lUpl;;r by liX?(1"'CX "')
O( 1.',1;:'; 1=I,DSt
&f ;",22 ':-1,f.51
55=3.3
~, .'" ~: ~. - ... r S. ..
n=lr,01 i,k)
" j ~;: Co '{ ,C I j :
jk:1LCl;j,k)
5 f - 66 • Q ~ (i Ie) "a: i\ ,n
r;jj=5S
Cor IZl;-' j-l,~st

de 1Ji;:,~ l=l.nst
Co, l;;l"'';; j-l,r;~t

5~=0.Z

de 1~'''1 k-l pst
i'.=ind1(1.k)
II:: 1 pall ' j; I J )
jl:=1J,d~ 'j,k)
6' S 6 .j j. " ( 1;'; ) ~. E ] P ~ • (k .' )

ij=lnQ): (i ~j)
j 1j"-r j)
contlLue
CCn t in 1J p

d~cl1e tow many tl~es tc cycle Iroraeator
1f(=nod(jt ,nptop) ne 1) BO to 14<:
if(1t.ne.l) go to 1~6

1f:R6t It IF) @9 te 14f
prlnt I';S,t
f[',i<ilt ( '/'Ille ReR~E'lecte:l. pHpegoter fer t ',fd.1,1r..'is:' /)
call bard~at (a)
1£ (Ilord eq <l) go to 52C
de- 515 13:1,ncrd
QC 45~ 1 l,lHt
do 450 j:l,r.st

/

"

.
. " . .':~ ..
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VAX-II FChTnA~ IV-FLU~ VI.3-22
(SrI hi Dil 1~

c.r.(1jj=2.0
if (1.el1aj) tlll'(1j)=100

2'f-O.::t-l?cJ Ie:11:14

1nsel=i~sy~~insel

de ~l~ il-l,insel

.....:~_-. ~:t
-- ,-'-

C"(ijj~cirr.(ij)/c~qn(ss)

if '1t:e"Y_e.!'\Eo1; Il'ij) GI",iij:

eort11.'ue
c; ~ r ti 1;1" €'

ij=1ndXll,j) ,
5~-SS .. 'g;r(1j)'cGnj[(h{ij)))

ss=3.0
Iif 5~6 k-loRSt

if (~e!r..eq.l) ge to 5=Z
El p f =- 1 ;;: 2, Po 0 j' e

erntlnue
colI sar9;rat ;d~)

a'1 j ) = c.rr,:' i j )
Gc~tjlille

h=1ndx;1,it)
kj-h,h::i<.j)

m~lt1ply by last propagator
1f(ssy;>; eq.l) Ilz-(=l )H(1Il1R(l1 loll"sel-U',)

de :'12 1~1.!':st

i,:-1<d~~i,j;

r <)=S5
d~'<.';' ,i-l,R"t

1f(~z.Dc.l) ca=eorj&ia(jk)}
s~-",,·gp:a)"ca<Gexp(ccr?17{~~,(iz(k)-1z(j)>,pHse))

een ha:-crr,at (eirr)
0.( ':." i. -1 ,l'.~ t

jl<=lnd1:j,k)
1f r n.C<j.l) 03 a;iIJ)

1f(nsyrr.n€.1) nZ=(-1)**11l+1)
j f( 1 re,' lle ,,) 112-1

if (1l.le.1nsel) phse=lne lC< (11-1)
if (iL

"
L1Esel) JjESE ifl~ ,~ (1lfSE-l 11)

do 5Z5 1=1,nst
8B ald j ij!lst

i.:~i:.c.<);i.j)

GP \1j)-P:j)

de ::'.29 1=1,liSt
tic 6.27 j 1,Est
s5=0.3
eB 52f ;.; 1,ESt

ij~indx(1.j)

8'10) rrJ)

r(j)=ss
GO 569 j-l.BSt

1f(1Le.bo.n~.I) dm(kj)=u(kj)
s s ~ &. ( .. ( i k ) 5'91"1 ( k j ) ,

c

d

50 i
5035
"I?

529

527
546

"")
~~l~C:

:l

)i r511
0612
~El3

e6H

.j ~61"

2615
2&17

) Z6B,'-,......o~·- .. -L-':' ..
0~19

)
"r:2?
eS<:I
ZE22

)
2E23
:1:9£4
eE25

) 2E2E
2527
<523

) 21f29
,5"",,·
01";:1

)
~E";:

~~z:.

6f:H

)
eE3~,
~;:'7~

"'''--:r~

)
w.t; f

:;;:=:33
2:-3:.. .··.Ii eE';2

) l5U
2::'.2

)
;f 13
Z~H

;;: lc
)

Jf';f
"'--I'r""o
16t: 1

lOB

)
Z5~9

;;€:::Z

) eE=-l
~65::

ze53

) 265 ;
2655
2[5=

) eE57
Z65s
I2IE59

~)
:;;HZ

........, ....' e561
;;'ff2

~
eeE3
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VAX-II tC~T?A~ IV-PLU~ VI.Z-Z2
CiI ~: .FOrt .12

CC .1Hnlle
ccnti~ue

fih~ a~crdg2s of propagator selected and non selected ele~e~t5 ....

n ~ 101 8
nr.on=",
a\'sEl-ti,;;
avno:J~Z.<)

6& Ho j-l.llst
de lEe i=l.nst
if (1 dHj. J; 5 (1 t e 16~

i.1=1:ldx~l.j)
rJq-1p.t:alls(1d~) 1e(1))

If(lrev.eq.4.anc.r.q.eq.e) ~c tc 16e
."HI-.Hlll f cit5,i(1Jri i'<1j))
fJ sel=l:'sEl + 1
£( ;G Et:
avr.on=avn0r. + cabs(a(iJ)*a(lj»
:;1::01':-1:)1.01': + 1
r(,"1tin11"

t;;E lC'!IL-a.aitec prcpagatCir rati" at lasl. •••

print l<:l,ns(l
if;ivsel Ef.~l eusel s~Ft(av~Ell 5sel)
iftavc('c.nE.0) aveon=sqrt(evcorl neon)
if (iivr:,~r :H: ':'; riit(:t) ."Eel I iVlleR

de 172 i~l.'1st

1 ~-1J:;;i.x. i i .L

de 1::4 i=l,nst
Q- 1;;4 j-1 £lEt
sS=<i.1ii
Qf :;;' ;.; l.ESt
ik=i:Jci:r(i.k)
jll:-i-dx':j,il;)
s~=SS + d~(ik)~cenjb(a(jk))

r'j;-~s

d;;-(ij!=~(j)
ce .. ;1l;l.IE

if(mod(it,n y rop).ne.1) ec to 147
1f;i~ sf.l) ge te 147
If(nst.gt.1E) go to 147
1'111lt 14",;
fc,r~at ('lThe density matrix fer t , •gIl. 4 .1 x, ' is: ' •/)

-.'

'..:-... •.••.•• _ 0 .~ .. r- ..

'.e:. .•....

.-....--;1::'~f:~ - 0

~

- : ....
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":)

)

)

)

)

)

1j=1::dx:i.J)
f'he;; Fi:EI< 'Ea13~ (alll(lj if !~(lj;)

cc,ntir.l.iE
Fflb(it)-rhe2
f1r.d tte ma~n1tu~e of tPE n-4UcntuT corerence end the ~ve~c[~

n-abll1tuCp d' tee Xl':; ~E1Fcted Flep'er;;t~ Idf e~p~-EltJ I. 1"?\1'~tHj-~ _

,H sel=Z.0
J;Ji all ~

a vnon=0. 0
~r Hi" j-4 o!Ht
jCl1=J-1
6.( 1:7 i-l,irrl

1f.(rr,(;d(~q •.!:lsel).ne. 2, ge tc 135
"':I1~ "G ~; bC to l ... .,
avsel=avscl+:abs:dm(ij;*dm(1j))
p. ; r1" L '. t- 1

ccrtj""iE

1;(a.l!~~" :l€ ~)a rs(;=l-~Qrt(avSf.l/nsFl)

z.... p.....,

)

)

)

)

)

)

i
......:;>.--.. .• "" ,.

J

)

)

if (anPL.L:?Z)drrrct;it)=cvsEl / cHon
i f ( C "I Ii e F• • C ~ , a) err ~ ,; ; \ i •. - ,

if (ir; ...~o.:'J~.d l":::yc=icyc..-l
G",,'i-'I?

1f(llh .e~. 1) go to 253
1£:11).; cit 5) Be H <:16
nri!lt flil,ih
f ( PI!' C .: ',I ,I , Ill! , 'Ii c t.: f e F 1 R i t 1 ell!' .: t r 1 7. ' I i 2 , ' I ' , ,I )
print 611
f'-P'ilt:"~,'pr::Jpilil"tor ~€lE-t''1i/~IdJl-~I?lt?-ti!Q rilt1o~ ',,!)
print EIS, (rat(1), i=l,nt)
flff.TiJt( :J); ,506,1)
print E12
f[,rFriJt(,'/,"1,'ttl? !'I Q;,IiJ-,t'<lil' 6eBer?!!::;E!!!.!! sel'?6ted "eHErl?e-E',

l1z, 'r6tio .... ',I)

_..:j.t7· : ..,,-:- ..-

, ., ." '-,,>"
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t'952
e753
l75~ £13
(;7~5

~7:~

2757 21C
"',..,C""'I ,,:f0, a_
2759 £Zl

G

c
G

~7[;Z f2Z
e

Z7f1 25~

e7e:
07(3
~7f: :U<l
C7f5 3'::.3

e
c
G

07Ec
~7f7

Z763
'.- - __ c
c, , -
- C

G

C
C

277.;
?77=

267

,AX-II ?C?:RAN IV-?LU5 V1.3-22
e:ili,.iO;'.12

.;.ir:t fi::', (c, .. rdt~i), i-: ... t;

pint Ci.6, ib
f 8 ?!'f at \ : l1l , - i d t i a 1 l'ia t pi", t", i 2 I11 ~ " eo '1'131 e t 2a' )
ccr,t1nt;e
If(H; .1e. 10» wr!te(I,6:e) 'nt(1), i-I,!'!t)
1i(1L .1e. 13) wr1te(2.E2Z) (dmrat(i), 1=l,nt)
1fi1h 110 Hi nltEr',f:<:C) (RqGc(l), 1-1 Ilt)
fcrrrat\f15.5)

do 2£.<: i=l,nt
cH::!tce(i)-aillElee(i) !\~ee(1)

aVQ;r,rat:1)=avd",rat(1) + drrrat(1)
a,oati -avpct(i, • rat;i)

do 320 i=l,nt
,,"AGPq:j O\'pqnr,cj) / rl1
avdr;,raL1 ;:avc.r;rdt(1, / nb
i:z , 1 i:: t i a" i:} t . i) ) .. 1 h

;:10se(t;~it=02)

fIf~c(bnit-23;

r J- F r. i u r 1 t =;: 1 ' !' d ~ ~ = 'a ., rat. ci d t ' , type =' :: e~· ' i
.Fitel:-Z:i' ;uI'Putdi, i-l,l't)
clcSE:u~1t=Zl) .
BIPfl',H.it J1,l'aFe 'a';liFral.dat',t:n:;E 'flE~')

••-itE:i.,S:.?' :dVarT:Tdt(L, 1=1;Lt)
-j,(,~E~i-~it ;lj
oJ.'.::r. : u:::: i t ~ 21 • nare =' a YL q (0: G'3 t ' , ty J:E =' nE-Io' ' ;

1/ " ~ t c : i . f C2; 'u ~ Y. it 2 e : i 'I, 1 - 1 , I' t ,

~77£

0(e,;;

" , eo(

2785

;'737

f£'1

o
c'

c

c

prir. t ~21

f G ;'.-, 6 t : 1£.. 1 f / I I I / (I , 1 11< , ' Ii r Lii .'.::: pro p agut 0 r 5 e1 e G t i ¥ i t y . i .

p:-1r:t 515, (avrat:1i, 1=I,:1t)
pfiflt 7"6
fcr~at:11x,'~raDh of A~L;}~~ propa&ctor ratios:' ,I)
G,,11 ! C' ?1("(2"rat.f,t,~l

p11!lt73c
fo,rrat('l::?:iC;'L values of trace rho squarEd ... ',/)
pfiFJt 815. (Fho~i;i 1 i,R~;

~,1nt [22
f\ Fffot;lhl, "///11,111, '':',V:b;;..',::t: cOBeFeEGe selectivity ... '/ll)

print 615, (dvdrr.rdt(i), 1=l,:1t)
tl "1ll t 7;1
fc:-mat(j,lx,':;raph of AVlJi.A;;r coherence rat1os:',/)
" .. 11 """j:16t(ilTfQP-Filt,Flt,:)
print 13:3
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2'r-Oct-1S30 13:11:14
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tAA-11 FCnTRA~ IV-PLUS v1.3-£c
fatP'.t';;:".l:6

)

)

)

)

)

)

)

)

)

')

~..t"''''''''.- .
)

)

~. ,

)
~~

print c15, (avl'_y'co(i). i=-1,nt)
a;~ti6-r * B ! ;.~

print 725
fHlIii\ '11x,'Crapli ef i<"'~;;':':L h-qlOiln\lOf' SiJllill fIliltJEitllGe:',/;
call wowplot(avnq:o,Dt.ai~tlg)
(Fe

•

, "

·"'·.r
" '

- ..... ~ ....,-~.:-., ... ..,.' .........:--.•• ', •. .-=-...-.....

/
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c
c

c
s

c

subrcutine wo~plct(avdat,nt,s)

d1~plaJs data cn the crt

(ijrr.er.51 on avda t (125) ,rny(126) ,lx( 126)

pr in t 72.3
f 8 7F. at: 1B1 ~
q t=n t
1it1-F.t,;.1
ar..ax=2.e
<i e 41" 1 l,l'It
ar.ax=drr,dxI(avdat~i),arraY)
io-;;cd... aA1(" ..,,~ax)

c

1f(dm~x.eq.2) a~ax=1

Q. b .;.. i. 1, Il t
~j. ~ ~ ~ ~-:: • ~ ~ (d ,T: t - d r c:: t .: i ~ )
rr~-~a ". ::;: (arIa;. 5);' i7i1 +

if\} .eq. 59; go to .,,27
c, '7"= i-2,1'"'0
h(1)=lh
h(l"-P:

+ 1 • .5

[31

de ",26 'i=2.12E
1-{1 '"Ul-
lx:l ~=lh+
de 4<:? i-i ,t

kJ~12~.~ * K(~t + .1.~ ~
iLl ,['t' P'J'.I\! 11,0 -IA"

h r,. ;; t . 1 X ,1 Zf oi 1 )
peint E31,a,.,ax
f8:j>;dt;fx,';,' d;<l" PdReE" e t6 ',flEi,5)
retl..fn
(T C

"~/ "

~.- O:-'r~'

~

·_~t .
."~
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-... '--

-- -.- _.,-.- .......~-_ ..__.._----

;AI-ll FCE:;A~ IV-P~~5 il.3-22
:i t. I G1: h • t ,;:, •'"

)i--------€~---__:_~t.}ot:_:ll~5'r_"_:rl-~·9i'P~el-t\i~·t~l1_eM'e-ee_jln:dHI"1. e~f1~e~1-ii_l!2"'...~5'r_cC!_1!_P -flllcf',,---le~)'f"' -lllH'"ff-f'1'.cee'1r"1ff!f!-_ii-tt±i-t-2-tlll~~,"i'''''_ t-t-rr±-i.".,,~ht--'t~)y------_
c tbE Ja:ubi ~!ttod and o~t~ct: t and ttt unitary trd~~for~a~icc

~ Il'.ctrlr 1. tEe ;nrce .. llfr 151 ea~JltEQ (rep; Sl.lilrelJtifle eiGer.
c in the IBM system/35~ scientific subro~tinE package.

)

)

Z0Z2
Ill(: U

2~04
Z~Z:.

e12Z5
2;;(7
2Z22
Z6h;;

12

eu"-ple{ h(nm.nm),u(n~,n~).~ll,ul~,uml,umm,th,tu

EIVIV-nF 1
qn"nm
f.ng~ :: z~ 11
de ,2 i o l,nm
lib 12 j-hftfll
1.0 (i ,j ) =.3 • Z
'ci;l,li-l.e

)
.... ..,,,,.,,

2211
:;;1;;

i ,- - r ..... Z ,.,
de 2.2 1":1,nrrrr
1 ~ - i 1

aprr~x=ar.cr" * r~nGE / qn
iF e :

dc :3 j-ii,nrr
i r. c r'" a ~ (" r ~ - r ~ e 1 ~~.. ~ i I ! ) ~,- ; ': r ~ [, (! ~ j f ~ ~

if;a~.oP' .le. fiicoe; rEturr.
e . [ r,...· 50 ; r: :;; ;. ~;- e 1. G r:- ;

0%,_

.., ..... .., ,

:'1315

.~~l7e~. -
)

)

ZZ2i

nr1 t

.. ulm*b(m,j)
\J~If"j; (r:r, j)

de 3;' l=l,nin,
: 1 1 +1
Gl S':; "' 11 • D"'
11'\ ;a--s.;C<:l,r;;

c. :.. ff ~ r to cl ( b (rr .",) - r. (l • 1) )
1: .6;[f ,ell. ".2; 6ifi-l,,~c is

sir.r=sin'ar)
b )~r cs; ,:dr,

sir.i=sin:aii
Ea:l rf' ( -1;

cr=~.2 ¢ atac! 2.;; "' reeLdl,rr)_ / cliff "
.,i-;; 5' atas( L.G " .,1r:=,ai(ldlolf)) ,I Iliff )

~11=c~p17( eosr*cDsi. sinr~slDi

ulx ~~glx( si~r*-Dsi -psf~si~1

b\l,J)=tb
c,nti:n:l"

url=cm~lx( sinr*:csl;-cosr*sir.i
1'1,.,1: cn-rlx( C'-5rTco51, .. illr"51111

th= ull~b(l,j)

Il;~,j .'-'r;l'il1(l ,j)

c

52

e

e

; --: ,

Z~22

2"2~

Z233
;'231

223f
eZ37

)

)

)

)

)

)

)

-J

tb= UIHr.*h(1.1) - u~l*b(1.:n)

) "i,

- - -. -.a. "',_~:.' _ ~. ... .- .-.... ~ . ., ......-::.-

/',.
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\'AA-~l ~C~T_:L-i·;

1-I:1'l".!:"'.2

1:111'[.(1.,.;

)i <":34('; b.i.1J=tn
---~e-ec"!l4";?'---------tt-tb""~---tiu'f!,.'"!'rr"..,t411:t+(1-i,,-±l-ij>----ltltt'''''I'}-l£*-t1\1~(-l1:--.;1'"...,+-)------------------ _

iZl-iS u.i,rr)=-ulrn*u(i.l) + ull¥uli,rr,)
:2.;; \,l'1.1) tiol
Z~~0 7~ cLntinue

6

::::cr:t1r.uf:

...-..~" r:.-

)

)

)

)

... ",c­
~c:..--.l.c

0;H3

ZZ55
J .."f

liZ

H(1ne .eq. e) go to lU
j r;d =- ~

1f(U:r .(;t. cH.C:-r..x) EO to 1ll
r€,tuOi.
€:!d

_ .. J g'.tIt,·....

)

)

)

)

)

)

)

)

)

)

? l":l
~

n

C
<:6 62
:: :;:;::
70;; ,
~Z.j::

';'; 6 if
2JZ7
"', ..... =
.,., .... ",'-
~t:, ... .:1

ZZ:;;
£dl
0 -12
2:13
7;1 ~;I

Ul::
2<'1 -
< <- 17

.t .. _ : ) 5 I lei,.

if; fT, • 1 ~. C I r t t 1; r:J
i:"rn '()~. r; fCtbiPf,
fTT.= :T

1 f : F _ 0- :. r. /~) P FP E P-

Itiro=r
1f(p 'H 1 \ r€t"fll

r~l"'rr-l

i E- :
de ::..:: 1=1,,,-,rr1
l:i~(-ltiEe*iE i I
1 c=- i d ;~ \ i '1 )
c(~ltln\'E

llir,c=l tir:o/id
p: tl Fr,

~ ,

. -~~~'.-

";:':;. :. '.";

, • .J.

.-
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)

)

)

)

)

)

)

,-:,?:--,;- - .

)

~

~

)
'.-...",::

talulat£5 tae nUFber ef 'e~es' in tbe binary repre5cr.tatie~

of lr.tebcrs

Jj=J~I~ ,
[oIf'" b (l ,j) j j
kk=1
ll-rz
de 12 k=l,n
H((~j ,afte. kif) ,ftE. 0; 11-111
ick=icr;~kk

G G< t i T'oIE

:1\.:11't (:::. J )=-11
cc~ U::l'oI[,

return
Eu"

()fft: a file fa thE disk
~c,=l for 1npLt
if ;; f&r &ytjlyt

d ip2rl s1 (i!) .cr, ~"!;

rr; . 1 ) =:le"f e
P=,;; ~h;;.da

,"f,::l=-ihl.cia
1',3 ;;2i f'i'Ci

rr;'L)=~(2) + k~*1nc

1f(10 .eq. J) open~un1t=el,TIa~~=~.type=·n~~'.err=]o0)
i f" j C f' q 1 ~ 0 P€ < IJ l; 1 t - .., 1 • H ,,11i I? r. t ypl? - ' e ] Q • , err ;:J J ~ )
return

f 0 rrr, a t ( " I .' 0 pe ncr r 0 r for f i 1e " 11 , I )
~E t J r::l

Ef,d

.' .""
:,,\,,~, -' -.....;.~~-..

"" ....~~ p'
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,AX-II f0~TrtA~ IV-PLuS V1.~-22

SljE&.:-C?l
27-0:t-l~c~ 19:27:21

~ i t' 3 i i c 5 tl ·0 [ 0 d t L. c h /I do " a t (:r )

') -------~e----iia_!1:_!srlfl~1t-.a&'fy-s5~e'-(ej-lff"'!l!H-l-e-::"*K---llff'i"aHtbcrr+ile"L:t("55----1(-tl:lrfl~_t_ttl'e_ll_{(ciJfHl~E'_+) ~e~~--eeH'r.~.e:'-~tltta-e.g'€e~-----------­
c

-.'

.,.~..

"(

-.~:-.: . -.- ... -- ~=--"....".,"': ':.-" -- ~.

/'7.' ~~~;~;;:f.:,.-""...-.. ;.'.:

\

;',11,' u:p'))

::c:•. ,.~

cr!Jti:JUE

lst:i.~:)·::up

-'~,tiln;~

?'id t .'5, (15t~j;. J

f( f(lat(::'~ .132(lh-))

f 0 rrr at, ::. h <:. ,: / ,:: x , Ii: ( ,
'Hi-: 1"

1f:0. 5 t.4) fist 16
H(r.. q.:-) Rst 13

cclculatc ptase an:: rraiI,iludE- for each rratrix clcrr,E'!lt, then r~i:1t. .•

n~t1='nst

1 f i h .. t e 1 1e) 1':" t 1 '2 ** ~,

p; i r. t 1.~. :.5 ~ • r. ,;;p2 .;. pI
0' F· irl,:'jl1

TcO= t\iC?i/353.

-:1-':-~-1

nt;p=-:p1 - 1f!'
"e. ;"i;s;lillJ r."ll;
cc 1= ~ 1, rr,s t
k;';-k~+l

de 5e i~l.nst

de .:;~ .1 1.;'~t

i .i = 1:J d JI: : 1 , J .1
;>;rr?al't~1j))

H(zz .It. 0.e01) go to 35
1£(xl ~ 7~ t 4:1.3 ..

gJ to 43
~:t(j)- QZ

if(yy) 33,;:2,32
~rl::(j:-;'1

ge tc 4C
?b-ata~?:yy.TX) / rad
1ph(j)=ph + s1gn(0.5,ph)
0- tG :.

.iifTlc::isirr. ~ce(lE;,iph:1f).lst(l6)

S('~F'i&r twa}:! .R
c

c

c

d

15

c

125

c

112

lZi,
C~<~3

2'12
02211

........... .

.:. .. "' ..

2Z~3

Z":;=
2''''70
,,~V

,(', 1
Z232
;Z'73

2J34
2.,.75
2235 31
Z"77 .,.z
,3233
eZ 7 ; 33
~';-1e

ri1 3 4

Zi42
"Z4 ;)
;;244 35

'--.

)

)

)

)

)

)

'>

• _u zj-. ~ ..,
)

)

)

)

)

)

)
-~':,._ ......

J

~

)

- ".
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~AX~11 tJn;nA~ IV-FLu~ ~1.~-~2

:aii" F:;; 1

J t v.·l

)

)

)

)

)

)

p,1nt 1~3, (ipt(j), j=l,cst)
f"pl,H;7{,lc17;
Cl'ltint.:e

~''''''''-'.

. ~: '

,/-' ....

"",

. r--,: _··,;_r ~. '"

....
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VAX-II FOnr~AN IV-PLU~ Vl.3-~2

pn'Ci~N.?QIi .0

.ltt 1nfor~at10~ th€ory--l~tc ~~lt1ple-qu~~tu~ NMP.. It der1yes
ird'" 'fspir.' lalHi fref'l sOlI'I-€---{lf Jifl' I'4l1PQeJll's ppeerdP'sJ tee
o~eratcrs Ezz and Exx. It w1ll use these operators to produce
E!p(ilB T) 3BQ BpI [lhLlB) T).

0. 1 IT'E ns 10:1 1 t 1 t 1e (72 ) ,1 5 t ((4) ,C ou nt ( 19 ,g) ,a vr eO. ( 1~ , 19) •
1 Hi F (~ ~ i ".llll'll! 2 ,64) ,d!fE 1 \ 1S, 19) f d'le (i::- 1G . dlJd' ( 1?SS ; , I' P( 6 4 )
c.1mer:s1on s2(H~), lst1(2,f4).hzz(4<>,9f),ell:tJ1y(4119E),cs(6).d(15)
Qi9H~i(;; cj(15).1!;t(£Z)dlll<;(7),i~}l(€),r.ln,46),ls\crt\5i

di~Ensi0n f~~f1(2~),def~~~20),c
rr.l il~,ix'c 1,64!,rl;(l(~:J,,1;;( 1)
c 0~rr,C:l tlo. (, p1 n

data 1z/2.?2.3,3*I.a.3*0.Z,2*-I.C.-2.0,-~.0,51*0.0/

.j·"X'~ ,')-(1;+11";.; 1) * i

EpCB ',.r,lt .1, RC:"'P- 'iRfs Ftf, 9:C: t'. t~'Jle 'sh!'.
rea d : 1 , f: 22) !1. r. t , 1co mm , T t , ~ 5 av E • d i j a v e •d t
-t ... Gill c;' 1 • :Z,l ( ~ i 'C .: j i .! iI " e , ;; ~ c: v E , 161 ; )
nnl=-r.-l
or-iTt fZ.
fcrrrot~/.' ,:r.i5 prog!'afT; U~e5 ir.for:-c;atiol' theory to-,:,reci1:t '.
,'f' tf,: I<e,t /lFe];ilflE Q@F,!t:' Fat!"'!". tf.E JlycpiRC 6pcra~(p ,
:,' car LaVE any OI,e of several different for'rs.',I,/I)

p-!J;> 6;;;

r:st=2*~'r

=;). ill t 6?'1t

fer fT. a t (' \. tat i s t L e for m 0 f the l'U fT:P h g c per a tor: ' )
'9liFIt 2::6
fc r;rat (' 1 :?;.:~p1!1g ope-ra tor Ex):' ,I.' 2 :Purnpi!l1S cP'.

'c:nter ci:J[!',1ej')
pr1r.t 7":J,icorr.rr,
f ( r;r. at ( i 2 )
pr1nt ~~4
rer,at, aew If.aIly different values de yell .... aIlt 7 (.le. 25) ',$)
pr1nt 7?9,nt
P,.1Ht ~S§

f 0 !iT: at{' E r; t e r the in 1 t i a 1 val;.: e for t 1me: ',$)
f' fIT iI t (1];, g 11 4)
print 7So7,tt
prill~ E"c
feriTat(' Enter the time 1ncrerrent: ' ,$)
ppilit 7J7,et
if(n.le.6) go to 7999

.,

•.r:

.',

- _ ...._~
: ..... ,

/

..
..- .. ~
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c fer each st3te, a5sig:1 tre nl'rrber cf spins 'up
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VAX-II FCnTF.AN IV-?LUS VI.~-22

ICC1K.:-C:t.'J

fOfrr·at(' ',glZ-.4,' . '.(;1~,4)

27-0ct-192Z Ib:52:~~

f",cpl(li=l
£t~!,l(::-\ 1

p1=4.e~ataL(I.e)

Sf 6617 1-3,Rpl

formct~3·iE,/},4(el~.6,/}}

el 0 ~ e \ II d t • C1 )

H(r. .ct .6) go to oJJJ

f c. C P11 ) =(i-I) *f a c pI (1-1 )
ErE! 662:1 1-1,E!,1
0. Ej:e ~j ~ i ',= ~ a c pI (npl )1 (f a cp I (1 )~ f ac pl (npl+l- i ) )
t .. GF.i. 4l. J'f F 1

fOfmat\' Inter the f.rr.S. dirolar coupliorc and :herr,ical shift:')
·~.i~t 7~7;,dije~~,e~e'E

f r. rrr at: e 1 E • -3 )
61a5e :"1.' t- Jl)

H:c.d(l.:'ln) n.ncp
r ( as ( 1 I r 12") 'lO f f , ( G '. } ) ,i 1; r c;p; , .' c j ( i ) ,1 - 1 ,ll SF ) I ( e 5(1 ; I i 1.!l)

clntinLf
~r 31 j.-1,Rst

fo:-rr;at(72al )
f ( r;r;:t ( i 14 )

izikK)=(n - 2*nup) / 2.0
69 r tinblc

K:o.=k",c+l
l>t(H-) wrp

IHdl ::l

print 5Ze2, itltle
f ( f'''' at' 1 fi 1 , . ',1 ,1 J[ j 72 a 1 , ,Ii,ll )

fcrrr.at(c,.,'dipolar and J cOllplings (in EZj',I,c:x,31(lh-),/)
lr ;:;

'Orint =~J3,voff

[cPffat,(c7,'effset freq, ',f7.1.' Hi',//)
voff=voff /2.:3
"l):-1r. t 3,J~~

nnl=n-l
1l»1 n .*1

do 5310 i=l,nrnl

de 15 irr=l,q:1
:'luI iF. 1
~~t=lbi~c(:'l.nup)
Gr 1 2 jt ~ 1 , F S t

j.:;:=2
R»l Fl*l

7~79

o

7273

c
7325

e

6Z1~

12

OZ3

C

El62

5~Z4

}
I r;?:JI-. r

~

i
2£SZ

)
ZC44
£345
ZC4C

)
2'::47
eiiD

........,.~.. ::=~-

) 3319
~Z5~
", ., ... 1

) Db3.

;:252
S8SZ

) 2254
.... ",c==
0

'-'2=5
)

6Z"7
Z~53

)
'"J - :: --,..,v .... _

) ZZ6Z
.:::~ 1
elf:

)
ne:3
i;;r i
2~fS

2:'''::
.....I 22(7Me ar=-wt

zn:
)

Z2~9

;;':72
?::71... -.... ,.

)
". <,
e~73
..., ., ... ~

C b ;:

)
?Z75
;:17~

ZZ77

)
2"'7~

0279
2i;2

) il~31

CZ62

)
2~6"'l

ee34
"f)"'~0 ... 30

)
3Z3E

/ 2;':,,7

~
., USB

) 2;;39
ZZJe
2':;;1

.) ZZ92

)
• __-'_"~_'_ ••• __ .•..s.. .~._ • '/~

/
. - - -- - -

, 77~~<' ': .. '~

.. .
- .-~~~ :_.. :~•. ;~.-,' '.~ _'.T~.'''' 'l"- '!'~''--~'.:''''~''-~~~''''~~4';14·'''~

..,



.- ..... ~------~- .'-

_. -""-.-------. ..: _._.... ~. -....... - - - .

")
I:-' ~ Jr.!':

:1

1i
ef93
0;:;So4
gZ9=
eZ95

1 ~ZJ7

k?i'93

r.J
~~9:;

~ ..... -. --_..•.: ~.

~lZ~

3H~1

)
0102
ZI~~

2121

)
1:':1.,5
~lZ6

2127

)
:12;;

)
;;12;
~11 ;:
;;111
-. .... ...,

) 2113
M: l'o

)
<l15
~ 1 • f

2117

)
'"""::'1 0

"'4., ....
..... _::1

•• I ~ p.-.~ Z12':'

)
21:1
il H

Z12~

)
~l2';

~. ?=

)
L._-J

~l£c

)
"':27
~123
,.. .. -- ....
ito. t:

)
;::~~z
,.., .. "'1. .
ZI~2

) Zl"'"3
Z13~

~;'35

)
Zl~·E
Zl"77
0138

~ ....... --;".- -) ZD.
e14e

J
2141

)

56Z5
1

5~1~

50)6

ef:n

z.1J1"
c
Eo

z.,

75

(;

I;

r;

VAX-II Fo~rnh~ IV-PL~~ Vl.2-22
I:'::J~t,.;.::Cii..a

do 5ZH; j=ipl.D
ii-toil

[[.2)
Ii HI 1- Ii ( id /4 • \?'
cjq{)=cj\k)14.e
e (I; t1 r,.: e
print 5Ze6
fctp;;a,t{ iI,Ex,','hliP;1cal 5h1ft5 ill az',/,~x,Zl(lh-),/)

pr1~t 5cZ7,(cs(1). 1=1,0)
fCPF>at sJ{,ef£l.l;
csav~=Z

ae 561§ 1 I,D
1~(csl1~.ne.0) "savE=1
- ; ( i ; - :: ; : 1 ) /2 OJ

ac s=-;:. Z
Qf .. - ~.1,~

a c s= c .:: s - c s ( 1 )

dc, 3:. l=l,!lcp
"F-rtF + d (i; . qj(~)

rr s t2" 1
IJ:-st?_?

Cc.ll r,rrrscrt~Ll.rT,t,n.nst)

1:tl~1.1;-nyztl,Est;
1 s t 1; 2 , 1 I ~ r, U"lit : 2 r; s t )
15:1{',-.;t)-;I'·;r1, 1,l;
lstl2,r:st)-'T'urt 2,1)
-"~-Ic ~

istart(js)=rr:rst0
j, .' r - is

de ~2 J~l,~,st

if(rJ'l1't:Z,j' Ill? i;) tc t() ~Z

kk=-kk+1
;c"k ~"k+l

lst(kkJ~nl.lT'b(1,j)
l:tl::,kkk' ~~~'(lijl

lstl(2,ri:ri:k)=ls
cUlti Illl€

mst=kk
.. tc{j~+l) kk
Im=0

do Be m=1 ,rr.s t
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~AX-11 FOFTRAN IV-PLUS Vl.3-~~

I;~ iO"PC; .FO;',;

cio 51 k=l,n
'~r(lc)--l

Lr-8ct-1932 13:32:3l

.1fO .ne. (I'l) go to 6"
Fll ~;£ 1

.. ~ :

rrsk=rrsk * 2 \
if;j:? i:.:~ C C ,8 ~2

IT, sk= 1
e(, 75 'j - 1 , r

cor.t1nue

c(~di:JUE

p=,t':-rz,t' + rst

oe L':~ 1"1 , rst
622:il6.<:"5\0 1,",5,2 ",~'-il;l,rr'

c~:Jti~ue

de 1." 7-1 ~st

k:= (":";' - iflip\1;jQiflir(l) - 1)/2 lf11p(1)
~ l,r\~ a[k5; + 2.i*cj .~5)

; ":J"J
~~i r)-'"' e

ki':=kk"'1
tiLe; 'll~l,p;j) + (Q{ltk) * cj(kk) z 1~Jl(j) * 1~lJ(1}

1tJ1=i+l
IlE 85 j·1Pl.H

H((1st(l) .and. rr.sio;) .ne. 3) isp(k)=l
1:t;(~-P'~1< • l"~iI

iflip;j .. )=iI
j y ;

if((istll) .ane.. rr,si-:) - (ist':r; .aDd. rrsil. n.75.n
jq- J~F 1

ce·n ti nue
I;. .1,iIil- -u9f'"*Hsp
kk=r
0c "" 1=l,Dffl

n;.l.m)=h~l,m) - cs(l;~isD(i)

g( t. ~'

crr,t1nue
d r 1'·7 i -1 I h

de 2130' i=1,!1st
d, 21~?1 ;-, "~t

ccnt1nt;E

E7.J:lylinth:C1.j»=aaa
i<;s;C-'

if((1st1(l,1) .and. msk) .le. (lst1(l,j) .and. msk») gc to 2~~?
li: ~ p- k s r
lI.sk=rr.SK + IT:sk
1C,>:sy H ;l) llxp1y;hQx(1,j))-r-ioiiil

rr,sk=l
c.~ ,ZZ7 k 1 III
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)
27-0:t-~=?3 lc:S2:3~ ~AX-ll ~C~~~A~ rV-p:U3 ~1.3-22

Il,?C;-V ?O( ;;
::l

i
e ~c~cpat1c:: ef Ii' ....

"") 21S~ cc 21:3:: i=l,~,st

, ----t<C-%l.:;g'-:i;,.-------~e.ci'(_i:;;,..::n;;;r~.;.__-;j~--tl••~r,r=sr-lt,__----------------------------- __
Z135 sp=J
~l~f ~s~-l

if (sp.eq.0.5) sp=-1
1f (s~ @,.0; sp-~,5

IT.SJl:=lT5Jl: + /l'sk
jx (1 j) =..,a t : sp Z 2)

219S

e1g7 de ZZ3~ k=l.n
If;(istl(l,l: .ad. Mid ,q. (lctl(l,j) ,alla. I"slr); ~e te ;;;:;;

C2Z1 2<)30
~2Z"

c

ccntinvc
Q'ie8Ral1~E aEll get tAE (REPties .••••

Q b 21: 1 1- 1 ," s t
de ;Cg:: j=-1.nst
ns-.z 'l

;:)227
2;;2;
;'229
";;1-

de 21.;.1 k=l,:,st
1k : Ii Ii)\ r 1 :,;
i\ ,j =i ;) d ~: k: , j :
r ~ s - 5 & * E) j. ; ;" \ i It; ) ,; t :I :I (;; J ;

.."., .. ,... --'
··Z :'13

............
C C: 1 L ::: 1 c

rr~j~-r~s
Ii;; ?H3 ~-l,-~t

ij'-Lc.,:l,ji
l;:J\;iJi FE j'

~217

-.~,..~

... .-., ...... ,.
,( 4 J: *
:::2~2

::~::tinue

de ';2" 1-1 r;~t

dc, 2~';'2 j=l,'1ct
s s- ~

do 2;:.;1 k=l.nst
1" - 1 !: lh' ii" "

jk:=ir,a>; j.W:)
S5-£~ • t,H;i;';)i(J"pj~rUJd

r . .1 ) =- C 5
~( ?:<;:Z j-1,l":st

c c_~

i.:=i:JdJ:\i.j;
f!J:ofij;,?'ji

t:6e~

~Z29
n-..,n., ,
2231
;r3~

<:,33
[,22i
0235
Z;;35
;237
6£33
:':::39

s
c

c

3Z.3S

3012

ee;,;. tin:.lc
Cell {f'et;r.n)
call rrat:hzz)
c .. 11 r!' 5 ~ ; E-1 pi:.' )
cc.lr-t:lete tt.e jJl:rrpinr opeTotrr .. '.
ificEPF.~c,l) 68 te ::::
d", 3032IZ i =1 ,r.st
r;, ":;::;:" j 1,!lst
ij=-indx'i,j)
p·.. r;p:ij'l;n:1j)(ll;:;:
centi n':e .
et te ,31';:
de;, 303~~ i=1.nst
Q( 2"'4~ j-l,:l£t
1J=indx'i,~) ,
r.jl c'+;:Jh~~.~.AH(1jViz~n iz(1;*}:\xx:1j

: ,'r

Z2.;1

;. _1.

. , .. ~ -- .' ...... ~ ~ .. ~ - .. . .'- ..__. - . -- ~ ~

/

. .
• - - • '- .. - •• ~ .... r ......• •~ _ ••• __ ."", . ..D .. _. - .

.... ' ..'

0:, .....



280

......

".. _~._ .._..s"' ""_-__ . ...... -- .-.- _.

VAY-ll Fa~TEhN IV-PLJ~ Vl.3-22
DE'O:iX.iCiL5

CC ,.til.er

27-0:t-13~J lo:52:3Z

rss~.3.0

de 22:-.:3 ,,-1 .r.~t

e.c ;:;:::0 j~l ,r,st
1J-irQ{\lj'

:J

)i
----e-::~,--------<:h-__r_;:~__1:__+~+---------------------------

rss=rss+(ab5(pump(1j)~pu"p(1j)))

~5ralE 1~~1 I 5~~~(P55!~5t)

) Calcula~e reau:ed pumping matri:1es
~f ; ....~ 1-1.H'

)

purr.prec:' i )=2. Z
p';;rprec'(1)-~ 2
cC:Jt1nl:E
6C §';~0 i-1,:':5t

) do :;Z.:l0 j=l.nst
Ij lilA]; (i.,i)
r. 1 = 1.. ( 2 ~- i z ( 1 ) + r. ) /2
~~-1"'2~i2/jiG' 2
nbL=~n"l)~\;l;:-ll .. nl
-' F t F ci r 1 r:2 ' - ... \l IT :- H ~ ( " lr ;;; \ .. Tl;o IT F ( i : ) ,', pl'''!'l ' i ,; )

)

)

')

)

)

)

)

y

)

-)~-........... ~

)

~

fe~",at(' ':h!O Pt:~piDf; OPErotcr (in Ez) is:')
cell ~'rarJ; purrp)
c'-' to 31JZ
'"C ... ~-;' 1-: Hpl
de ;::'06Z j~i.~,pl

, - t i z ~, ~ 2'~: i -1, (2 t
te tiz~~ (n-c"( .1-1 J )/L.~

J:'-j~,'J-.~,1 )
i':=Jndx(i,jJ
llP 11,;w:' s+a;~s ar~ CCIHl .. ctEl~ t,y i:;u7
1f (a~s\tot1zi-tctizj).Ft.2.1)g0 to SSe0
if: ;;, 1; ~ : 1 "t i 7' t 9 t 1 • j ;. 1 t .;; ~ :' i? 9 t 9C ;) :c;;
H(abs(trt1zi-tot1zJ).t.t.1.9) gc to 82ee
a~£F arn b<!:'V€ctnQ 6'11;, \ly ~:R~I"i.Giil 5F.1fT5
PL~P~Ed:1j)~Z.25*C5ave*C5ave~de5!Ot(jJ*(j-l)

ppp-e;;, ;:~ ;-pl;tprec (~j)

#;0 to ;<:03
!'lJlIp-eli'lj) d~j<lvl1*d1J<l,.€,"dI16€,r(J)*(J l)*;j ,,;£1 ;;5
pt:lT'pred (j1 )=purrprej (ij)
86 ;;6 "1:.:7
pumprediij)=0
pl~pr!1Q(ji) i?
cC'!1t1r:ue
dCI c~,l 1-1 :::;01

.'~

)

-.-
:~:~ -, --_ .... ~-.:. .• ' :. __ ,_"._..1.' ,. "'::._ I .•• :..~ ...." . - . .~:.'..~--~:". .1~_'.. ~ .._.- - ' -..;.....~ .'-:.-. ....~;.~:.> - - , ,-~ .

--



~. .-. -.

.......~.

.J>_ ...,,~ •• _ •• _.~_,........ ,_.

281

31Z~

12~

27-0ct-1930 IB:t2:3~

call Ce16en(purr.p,u,nst)
!if 1e~ 1-1 dl5t
1l =1 r.c x .' 1 f 1 )
e ~ 1! ~ll FI' P: 11 l~' 1;;~H •

VAX-II FOP.TP.AN IV-PLU~ Vl.~-~2
I':!Jitr.... FC'~.3

;Z4J
;:l5Z

~122

c
c

1~(csaVE.ne.~) go tc 31el
f'(Ef_"3J~ c
OddlT'a:L= C
6r 92:2 1-1.95\
1 t es t1 t =1r. t (~. 5 +1 z ( 1 j-1 z( 1) )
If(lti~:1t iq :~~:1ts~\lt!21 lao to ~~4~
{\ c: c!;n aJ' =~a1 r re Q 1 ( eo (1 j J , Cci dlTax )
g~ t e : 25G
eVE~",a;(;ma~:real(E(1»).fv€r.mal)

GO,t1Rbf
CC 9ZC.?' 1:1,nst
it=stlt-ir;t(:Z: 5tl.:1l-1:dli)
if(1tf'5tit.nE.(~~(1te5t1t/~)))gc to :;Jef0
f • i ) - E • i : " 6 ali IV a l' .( (' 'l E !Ii". a l'

• •• 'hif

)
2321

Z-,--
.... .£:. ....

"7"7'-::"
)

)
~Z~~
.... ,. ... c
60";"

Z:z£
.... "'7 r- r-

)
CoL..• ,...." ............. L.=
,-,7 ..... r
00 c:::_e-r., .....

)
~v~

;:331
~332
"'"7"'''

)
..
Z3~·4

ZU:

)
e3;:'S
")337

Z~3B

-) ZZZ9
~34l

32> : 1
'"',":tAr'"

J
t:I"","2:L

)
. '. ~

c
~

G

e

HZ.

de 2~Z i tool ,~t

t = { t t T ( i t -1 i ';d t )
If 1k rt f) eO to glZ2

5~=Z.C

5l<P-;~.:l

co h0 j:1,r.st
Et - 6 E') f ( c \ j ; ,', ; :;. t 5 C .-.l e )
s~=ssTeJj*q

5 b" S\,I." lj
d c. H Z i =1 .!J S t
1 1 1fj:h' i. 1)

5~=Z.e •
Coc 151 It; l,DSt
ik=lr_d~(l,k)

jl, ina.] d ,lr)
55=SS+Q~'1k)*conJ€(u(Jk))

P:.j)-S5
do 153 j=1,nst

\

.'

/
/

......

.~,~ .. ~~. _::fj~~~~~~'~-'
:":'4~ - .'



._::L:

•..:!:. -.

-, -

. :-----..;...-.-- ._..._....~ ........_- .. -.

VAX-II FJ~!aA~ IV-FLUS Vl.3-22
Ii;FG ~~ .:-G.:

2,-C:t-19C J lo:~2:3Z

~ i 234= 1: i..C:_i,~)

) ---i~!3~~;r.:~;---ciI-;:r·~'r---""t:~~:'1j;~.~HiH'n1ij:tl:"~~r_(_J_' _
d Pr i r. t 9;;3
e

5 s=ss.dm( 11)
(t.t \1 fjtl~

de 144 1=1.nst
1;i 1Idt:1,1l

print 9;?·4, ( •.•. (j), j=l,nst)
fEfFa~;2f15,§)

55 :::.e

-,l' .

d

c

3251

)

)

)

2352
Z353
2354
:l3;;"

2357
145

do 145 1=l,nst
eel 1(5.1 l,R5t
1J=1r,d7.1,j)
i~:1j)-1~~ Z~a~:1j)/55

cc"tir.UE
Be l:~ j-l, .. st

)

)

)

)

)

)

)

)

)

)

.:)

J

.... ..::c.:...
:3(3

.... ., ........
C L • _

2372

:372
,.,. 7'"7

23c2
"77:'1

~302

333;3
3334
'9325

, C335
230i7

239~

l~S

~154

II
c
11
c

1 ~ " 1 :J d A. : 1 , i )
~ ~ : 11 ; - " ;r ( i i: (1 Z<: ~,LR S t )
f~a:ro:

l;-oitl-?

Ct ~jZ~ J:.l,::.Pl
EFaX i -''3;,; efYall,PEill ;EEl 'd ;" ttots calc i)

Qe :14? ,)=I,npI
~. it):~~t: I', ~iro;al(@i(j;~t*t~ts:ill@$ts-ille-E~a~)i)
de, ::14.:' 1=l,npl
ij-J·.Eili i,~i

\

lie. 51S,,- j=l.opl
~ s-l '

j I. =Jr: ci~ j , rl: j
~ *- ~ $0"" ,. H· ',1 k ) t,-<; ~ ld [': '" F@Q (j k ) ;

1.i :jr,Q] ri.j) 0 *
~rH" ij)-r(j)
cortir.ue
p~ if,. Qk'"'

do c:.'IZ j:l,r.pI
1 j j!"1G ~ ~ i I ~ ,

d~rEd(ij)=li~reli(1j)·5qrt(6egen(1)Cdegeo(j;)

C\H'~ lloll,

ss=C.~

Ii E E14: 1-;' i R;pI
1 i=j;,dx (1.1)
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print 1~3,t

p ~ i r. t S 2~. ('. '" ( j ). ~ ~ 1 • !j P1 )

aVE1:i.~:=0
.. '" EO (1 i ;(

VAX-11 FC~7?hN IV-?LuS V1.~-<2

n t": '"~.• FG'\ .:

Ij~jnlix:l,j)

QI rilc:.1(:.j)-',;;rl1dl (1j) * ~

do 5250< i~l.r.pl

a E 5; Co j 1. !>Jll

continue
do :'-1;'5 i·l.r.~1

drred\ij)~dm:ed:ij)/ss
de fL4' j 1,q,l

H=j neIl i,k) .
j~'-jl=iCh j,i{)

piin t ;1?3

55=-:;. ~
GE! 6251 l(-l,f.'Il1

orTrE;.l:i~j=;-i~!
err.tir'",

de :3~e j=l ,~5t

1j-l~c;>; 1,jJ

d~:Edl ij)=dr;rHi1 :1j;!S5
if:r.s:;t f~ go un L;~";

count'n1.n2)=ccunt(nl.n2)+1
il " E ; r. 1 , I ;; ) - ii " C • H1 ,f1;; ) .... "r s ; aif : 1 J : ~'Ii p- ; 1 j ) /1 6 ~ ~ Il

i ~ ~ j:-. dl i, 1 )
li"-s,, .. d.lVorE'lil '~)

continue
H;r.: •• g;',iiL g8 ;'8 3EH

de ~:Z i~l,n-1

QG ;;=Z j-l,H·l

s~=~.J

~~ c:.", 1-: 'ip~

QO 5'::~:' j= 1, 0,p1
1 J - .i " " .... I .i"'

cC:Jt1nue \
C' ;';;;''' 1-1,t;p

n1=lT:2*iz(i: Tn)/2
II r h;:C q • ( j ; 1 II ) /2

if (i.eq.j) ge; to "S9
a" E' 1 ' Zll , 1:.-2) d vel ( ti 1, 112 ) ± d b 5 I d ~ ( 1 j ) *d It ( 1 : I /1 ~;Z Z;:' ),

"~(, :145 j=l,:lpl
1j'jE'ix 1,j)

go to 30~

HEl(nl h£) o"e1(Il1.r.;;) .... t5(;QP'(1J)+(1~~ last))**:;;/HZiilZ)

IhlJ?r

00:1
23;2 5144
"'7 .... ""1
oeJCi

Z3S4
;'''T':

039~ =H5
7:07
e"o~~_o

3M£<
£4Z2
Cl~l "24Z
~-iZ2

oHZ
2~l~
n. .,~

e 1

H2e
~i""7

242-3 52.51
..." ......... f;:' r-U 4 L e

Z~le
., ~. 1
- .- :....L.:.....:~'-:'.L L

'-~ ~ -c: •

d
e
d

;)~1~

~ {., .-
':;.;1::
~ ~ 1~
,;;<; 13 ~L';4

7 ~ 1';
z..;:z
'"';.7:
ro" ...., ..... =.24 ~,'-":::t.':'G
,., ...... ""J
e :z l6

e.;~.;

'"'::65
Z.;.2E

" ~~.. J#; (

~';23 2:'''
?:~ :-.
£4~;:

6:"71
:;J' "7~... ~'"
;:,~"l

tZ.;34
2 :3::
e~36

"':'""2
2433
Z43Q ;~Q

0H0 3>"0
Z 1:1
~H2J
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:J

)i
)
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VAI-11 FC~T~A~ IV-r:~S V1.3-22
B"b,1\ .!cn .J

de Z;Z i~n+1.1.-1

£2(1,-1 1 ~r.r':.3:
p:-1fit 395,(sZ(1),1=0+1,1,-1)
ferr,:;.I' ',lZ\'~-',f5.2,'

do {ZZ 1=t+1.1,-1
~.,j-J ~1l/2 2)

print 411,(eve1(i,1),1=-o+1,1,-1)
Irrq;.d "IGr tracEl-l, thE llEF\llatielis i1rc:',lZ(el:::.:,'

pr1nt ~lZ:s~.~av;(~'J~:j=L~l.l~-!), \
for::r.iit, ~- ,(0.£, t ,U;e9ocj )

pr1r,t ~Zo0,t

Q ( .. ;;] 'J 1 ll" 1 1, 1
52(1)=1-1-(:1/2.0)
H(cTilcJb:;;Z' :!3P1F.t c:z:::.
ferITat;' (Er;>cr.ent1cl overflo' TC\:t1nE' e:r:ployed ••• )')
frFFat ' 'fitt ir;Gsl1EFElJ;t Fcdtiotier:, ttf- ff:trlx fep t '.r3.~,·

if!n.~e.ln pri!1t 3S5.(s211).i=n-;:;,l.-1)

~1=1-1-:'l!;:: .Z, J

, ;' ' r • j; ~ ,::: j F r i r t 11;;, 5 1 , ( 3 [5 . Gc r: Ii ; : f G~ : 1 • : ) ; ) ,j Ii I 1 • f.. ;, 1;

1flr.lt.:;') prir,t 39S.:s2(11.i=r;+l,l,-1)
if~'J ,-:E ;';r~iI;t 3~5,~s;:li i ~Tl,ne;,c=l)

;rir.t ~';'52

if::::zc:i(1't~t.12:; ~ri::t :3::

obel

92ZZ
.. 11

:'2·':;
::-:C'"'

". ,,::;It.
4

__

3 i f 2

;:4:'5
Z-j e ~

Z.;f3
:.;6'

Z~01

::-:"";:

~453

l: t: :

Zi:;7
Z'S£

:~71

;:-2

i ~~ ~ % e cO 11 L" r<i ;r,e t ; UJTi }

) -----:;;;.;i~{~£;..·--~3-e:'-o;;";:;c:---~j'rfr+ltrfl-tt~Z~f-<;;ni:-,rtf-------------------------------__
~-%i5 3:21 fsr;rat:' ?berEdu;;Ed,:tracel~55)~efi51ty rr,atr1x (1p.te~s1ty'

1 ,1, .. EtE.,l!r,:;cj', fer t- ,E12 if 15: )
)

)

)

)

)

)

)

,J

e:::d

_h._-----_. - . -- _.. --
r >.,.'"'' ... j". "••

'-
, ~

., ~"'. .~.

-----_. ------_ ..--
.,'

ftr:r,ct\' j.'iti: :::ot€re:Jt ~ECL..~ticr.. thF rFiilCeQ :ratri)- is:')
li~r..:t.:-) iFirt JJ=,~s~~:),i-!';'lfli 1~

dr :;';'f(; 1=:,-1.1.-1
si i 1 '7,':.::'

if::-"b:.;;~rir,t 3;S.\52(i),1=n+1,r-3.-1)
1 r '::l e- E 1 .... , =- 7' i fJ t 7;::' i ( E r ~ 1 J, 1 nt:, 1, 1~

p:-irt-4Z:,t~ace(i;~
fr c;r .. :: < ';l=( fFctetiOl vi'l\lE' of thE :!3\lf".]liEG Bj3E,atBF is' :18,:,

1 f : Il • i. f:: .? I p r 1:; t .;1 Z • 51 , (c. t 5 '. d rr re dl ( :!lC}: ( : • J ) ) )~ >;< 2 • j = :J + 1 , n-e .-1 )
1 .-' F. C C ,16) pr i;:; :l?,,, 1 , ; 3 t s( GF f C Ii 1 j f, Ii 1: i f j )) p'" 2 , j ? :::, 1, 1;

cclcl.late trace rtc sql:crE'd
-h;c-Z -

p:1nt ~30.rho(1t)

Gb.t'TC

do 7.=5 1=1.ost
Ii ( ~3 E j - 1 , Est
1j=1r.o.:C1, j)
rho2-rho2"ca'bs:Gff,;1j,\*Qff;ij) Il<J2'6.)
eer:. t1 OLe
rt G ' it)· rl; o~

, '.e12.{.' i')
for- .. t;' 7h<i t o ;"-" of ~r'J sq) .. -€~ is·',611.4.)

7::'5

c
1"7

ex'

,.. . ....,~

do< .Q

..... - .
• 8'J'

:'~Sl
Z~-;;

2~32

0%;;Z

2~93

)

)

)

)

)

)

)

.. ,-:... ~- -.. j 'J

)

". -~.-•.c-<:~. ------........ ':""""" -•. - .. r· ~~. , '.

/ .

."
~,,,- ..~.. ..::::.-:~:=~..... ~.

- ,



Appendix C. Tables of Computer Data for Selective Sequences

This Appendix presents in tabular form data that cannot be

readily converted to figures (for example, the sizes of different

matrix elements in the density matrix).
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a. Zero-order 4k-quantum, one cycle

Uj{ t:. T II = 0.02 to 2.50
o p

b. Zero-order

II X t:. T II
o p

4k-quantum, two cycles

0.01 to 1.25

c. First-order 4k-quantum, one cycle

IIX t:.T II = 0.01 to 1.25
o p

d. Zero-order

II X t:.T II
o p

4k-quantum, 64 cycles

0.0005 to 0.0625

e. Third-order 4k-quantum, 4 cycles

II X t:. T /I
o P

f. Third-order

UX t:.T II
o p

0.0005 to 0.0625

4-quantum, 1 cycle

0.0005 to 0.0625



._---- -----

--- - ---_ .. _. -----_. --'-_.
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--------- ----------- - ----- ----

.---- -Cons i de-ra--2**n --by- 2**n-- effecti ve- Hamil t onian ---
E describing an n spin 1/2 system. Matrix ele~ents are

-----'pumped-ln-the-time-ava ilable\l f-cou I=ling--cons tan ts are-- --------
given) or assumed to be everywhere equal in magnitude

-------w;:::.rUi-f-ana-om pb ases-.-?has-eshff fsereafea-seque-nc'e-w}lfch
is n-quantum selected to any desired order. This program

-- calculates-the-de ns i t y--ma tri x-ti11i ch'i s'-produc ed -as'-'a------- .'-
functicn of t. the propagator and coherence select1v-

'1 t 1es ~-and'he-n-quantum---S1gnar-magnl tude'~---'---

---- ---- En te r 1 1"0 r-t Ime ··-revers"a 1--;- 0--0 th-erwi se :---- ..----- ~ ----~­

(2 means WARUHA,3 means isotropic time reversal.
- and-4-suJ:presses-zero-quantum) - .---------.

1
En te-r-U:enuni1:ler-or-s pfirnrrrrfpTiesoen zene I :

4
--- -----En t er-' the-'order-of ·coheren-cevhTch-i s-selec't ed : - ---- --

4
-En ter--the-numoer-of- cycles;-the"-order of the se-:--
quence. and 1 if symmetrization is desired:

----------=---1 -0 e
how many different values do you want?(.le.125)

-------- -- 125 --------- ...- -.- ---~---.----.. - ---- .. -----.

Inter the initial value for time. in .1 msecs:
----- 0~0200 - ----------------.-.-----~ .._.--.-

Enter 1 to increment time, 2 to increment cycles:
-----~

Enter the time increment:
-------~-.'1?d~0 ----------------- .----...-.- -_._"

--- ------ bo ',.-mar.y-ti 5" Shou Id-be-- a vel'a geet-oVe r ~Tb-m1n 1mi ze--·------ --'
any peculi~rities due to a particular choice of random

------opn-a-s-e s ,
5

Enter any two positive integers ( 3276e
---------~2~___z34 ------

----- ---------- --- ------- - - ..



The density matrix for t R 0.5000 is:

:4 up> :3 up> \3 up> :3 up> 13 up> \2 up> :2 up> :2 up> :2 lip) ;2 up> 12 up) 11 un) : 1 up>- ~ 1 111» ;1 U1» \0 up)
------------------------------------------------------------------------------------------------------------------------_.
<4 up! 1241 95 110 141 85 131 134 103 73 157 171 21/3 24:3 170 ~29 133~o -165---·9g---'(8--1 58--~-8G--;"64-::151 -- ·-::-0--1 7r-l~:r__=_49--11,-8---~f'71---31~- 141

<3 up: 95 ds9 '(8 43 43 1(3 83 1'02-- 2'0 114
_____165 0 15_9 5_7__-_1~f_l__-.26__-9B__l_S8~ __ ..:..1_G__166

90
-921

177
105

1~9

-69
'77

151
lel

-lE2J
275

42

110 78<3 up: 99--~T5" 899 9 23 183 20 33 82 66 89
o -56~4g-:"55--91--14- -=-6s--=rr8---5;;

95 143 124 57 171
20 2'2---=127--1(-2---n--

<3 up: 85 43 23 18 983 118 136 133 29 50 131 ~6
-1"5s-lDl~4g----=8'1 ,,--=9~14~101-!22 -1 -'73 -1:3'3

D up: 1~~3 9 830 18 146-----r9? 197 ---S5 55 35 62 115 64 190 13e
78 -57 56 0 87__1_~__1.?_f__:..1e_~_~)59 -86 -98 -'39 -35 -151 11_5 t 9__

132 56 97 If4
-u~6~7:r--172-

<2 up: 131 lE3 183 146 118 80 67 111 47 35 47 f2 41 97 145 ~
86 76 56 -123 98 0 -14 -159 33 -91 22 72 -81 -179 11 -0

~--- -
<2 up! 134 83 20 187 136 67 1 37 23 44 36 ·41 32 2~7 92 75

6~8---=91---16o__143--14~80--n6-=no__175-162 2~17--2-r---=Sb---3--

<2 up: 103 16~3 197 133 11~ 11 52 2·il ~3 23
151 -158 -14 1"3 -131 159 -14E "-100 -3 1218 -11 149-_.- -

74
le1

7i:l 222
-20 -13---_._-

<2 up: 73 <:6 82 55 29 47 23 11 37 53 58 lel 1<:3 119 83 115
o--1o--5S--=159 -12z---=3y----r16--.1l<l-IBIl In-rn--=rS--53 -2r-SS--I27-

<2 up; 15'7 114 56 55 50 -36 44 52 S:3 d 65 113 114 1M 1~:l lr--
-172 -166 118 86 1 91 -175 3 -111 18" -116 -If 175 29 1f3 -16:3

<2 up I 171 96 89 35 131 ~7 36 2:>' 56 f5 33 135 121 163 "15 225
-12~90_ee-9g-~3---<:Z_16z___::_t03-=-I~.g~ro--lSIl -5~ 119 -30--r"3;:-- 53--

. <I liP: 216 1'1'1 95 62 96 E2 4r--I,-;r-jol 113 1\35 91'7 51 45 ;;3 ~--

49 -105 -20 88 1'113 -72 -26 11 65 16 55 1~{J 16<: 22· 14E 174------ ._------~~ .-

<1 up! 243 Ie\} 143 115 132 41 32 23 123 114 121 51 894 47 10 ::'3
-----1.08 69 2Z--35~<:2-a1---117--=n9--=5~17s__=lr~E'0~Bv.__=r4J -ij7-----zT-

<1 upl 170 '77 124 54 56 S7 2.')7 74 119 104 103 4:> 4'7 8.)1 1)7 1.1;--
. 171 -151 127 151 e0 179 -27 -101 2J -28 36 -22 143 18il Ifl _·c~------ -_. ------
<1 up I 329 HH 57 190 97 145 92 78 83 155 85 :;e 1~ 67 859 5l
--...:.---31--1f0~6~r5---7~-11--58 20---=S::;--=U;3 -132 -146 87 -1f1--Hl~~'2~--~

(0 up: 1336 .::75 171 180 If'! 115 75 222 116 16 225 S9 33 189 S\1 121:'5-
-141 -42 -69 -69 -170 6 -3 13 -127 168 -55 -11:~4 -33 65 -128 12,'

~t;d~:_'l'~'~~" :/~l.j:'<~<·l~'·; . './:j' :,' li-'r;·' ( '~', .....

N
GJ
-...J



- ------- ---------_._- -------- ---- ._-------~--

----_.- -------_._---

- ------- - --. -----288

-----------------------------

- AVERAGE propagator-selecti vi ty-::-:. --

-------- --------99:-4;;8 49-:089 32~-E14---- 24-.373 -- - ---
19.426 16.125 13.765 11.994

-------re-:-6I5 9. 5r22---~8"-. 506-2 7-:8514-----
7.2120 E.~f33 6.1872 5.7702

--------5>4218- 5--:0739- 4-~7804------4.5159----------
4.27~6 4.2599 3.8E01 3.E779

-----------:3:-5103 3::3558 3.2129- 3.0804 H ------

2.9574 2.3425 2.736C 2.6352
-------...2~29 2:4554 2.3734 2-:296S-

2.2242 2.1561 2.0921 2.0318
--1-.3749 1-:9212 1-:3706 1~-t3222

1.7776 1.7349 1.6945 1.6563
---~.62.u2---- --1-:.5S61 1--:.5538--------1 ~ 5232

1.49~3 1.4569 1.4410 1.4165
-------r:-.3::; w.3 1--:-3713 1 •350~ 1-:-33~7- ---------

1.3120 1.2942 1.2773 1.2613
-------1-:~4S1 1 :7315 1.2178 -------1 ~047---------- ------

1.1922 1.1324 1.1~91 1.1533
~--:.14B~ 1--:1382 1~T258 1-:1199-------

1.1112 1.1031 1.Z95~ 1.0573
------""1-~5?6 1~3d 1. 0F72 1~e6HJ-------

1.0551 1.2495 1.0442 1.0392
---- -----~_:_02~5-----1-=-e30Z_ 1~262--------1.3.c26

1.01~3 1.0163 1.0127 1.0114
----1-=~095 "1 ;"0079 r.-006t-----1.005E -.---- .---- -----

1.0049 1.0044 1.004.c 1.0041
1.3241 1~043 1.004c 1~e050

1.2~53 1.~l57 1.0061 1.00E4
1-:-206'( L-eZ69 1-:-0fZ71--------r-.ee,7:3-- ------------
1.~074 1.0075 1.007E 1.0077

-------1-.0078-----1_:_0080 1--:-0083 1.0;)57
1.0eS2

---------

---------------- -- _. -- -- -- - ---- -

----- ----

---------

------------------------------- ----

----------------- -
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------------ ~- ------ ---

~ - - -- ------- .. _------
AVERAGE-coherence selectivity •.••

--- 236. -Z3 ------143-.33 95 ~f20 ------r;1-. 749 -------
57.412 47.244 41.002 35.863

--------~31--:-8f1 ::8-:-£55 2E:023-----23~836

21.978 2(..332 18.997 17.781
--- ----16. 72f 15.74e------14 :884---------- 14~103---

I3.3~2 12.74J 12.138 11.58t
-- ------- 11.Z60 10~571 le.-ll1------ ----9.6747---··- -.- -----------

9.260e 8.8e39 8.4843 8.1195
-------..'7~.--,.,'76 (9 7.4283 '7. 099S 6-:781C--

6.4730 6.1734 5.3827 5.6003
-----_5~-32E2-----5:0E212 4--~8222---------4-~5521------

4.3101 4.0761 3.8503 3.f327
-------- 3.4236---- ~L~23e ~;0312---- -2 .8482 ------

2.6743 2.5094 2.3539 2.2277
-------2:07es 1 .9434 1--:B252 1--:7161-------- --

1.6158 1.5238 1.4395 1.3621
-------1.-2907 1 ~2245 1--:-1(28 ----- 1:104'3-- -- - --

1.3521 3.99863 0.95091 3.90911
-----'~-----_·--c.-873e·6 ·0:35978-----'r~84·B87--·--·--0.-<34090 --._- --

0.83411 0.82740 0.82027 0.81233
--------....g:-2(333::l 0. 79324 :3 .-75201 0-:7 E980---

e.75637 0.74392 0.73331 0.73738
-- -- - -------0.75325------- 0 :76928 --- -----0 :73256-- -- 0.79204

0.79716 0.79767 0.79359 0.78514
----n0-~-77271 --Z ~~677 0.73779 C.71613 --- ----------

0.E3205 0.65574 0.63746 0.6e798
---------(3...--. ::lS-l :::5 ~::B232 0. 6iQ203 0-:62534---

0.64936 e.57132 3.59202 e.71316
----------k:J-:73S-43 0 :-77174 0u :81229 0 .8!J~0e-----

0.90010 0.94274 0.98301 1.0203
---1-~541 1-:--C-a42 1-:-1"108-----L1333 ------------

1.1538

--- -----------

---------

-------- ------

-------------



------------------------

----------29(1---

._---- --~----------------_.------ ~

---------- 0~-64178E~02-0~25692E~01---0~57738E-01----0 .1~232 --
0.15904 0.22735 0.30E56 0.39582

-------0:-494-12 0-:6~"~36 0.71327 t:r:83149-----
0.95357 1.078e 1.2031 1.3273

-------- L-44S9--------1-:-5664 L 6782- ----1-~782T------
1.8786 1.9E46 2.0396 2.1027

---------L-~-1500-----"2~-1ger 2:-213T-------2;2236--------- ---------
2.2200 2.2032 2.1738 2.1324

-----------:>2-~0799 2.01"7::> r:9462 1:8672--
1.7819 1.6916 1.5975 1.5011

-- ------ --- ----1-~4034 -------------1 :3058-----1 :2092----------1: 1146- ---
1.0229 0.93488 0.85103 0.77185

--------0.-69771 0.62880 0. 55525-------0 ~50706------ -------
0.45415 0.40634 0.36341 0.32508

-------0-;29102 0.26088 0:Z343W 0:21091
0.19034 0.17226 0.15633 0.14226

----0.'12978 ---------0-:11866 ----0:10870--- 0 :99731E-01
0.916221-01 0.84272E-01 0.77604E-01 0.71564E-01

---- ------ --- 0. 66118E_-01 --0. 61245E-01----0 :56932E-01--0. 53171E-01-
0.49955E-01 0.47274E-01 0.45111E-01 0.43442E-01
0-=-'±2232E';:'01--0:41437E:-lH~-:-41001I;-:':01-0-.4 0862E'::'01
0.40949E-01 0.41189E-01 0.41505E-01 0.41824E-01

---~:420B1E=--01-0 ~4221fE-01--0:42184E-01---0-~41953E-01------ --- ------
0.41510E-01 0.40855E-01 0.40007E-01 0.39002E-01

-------""0-:37887£"-'01--0 ~36723E-01-0~~5576E-':H--0 .-34518E-01--------- --------
0.33620E-01 0.32951E-01 0.32573E-01 0.32537E-01

------0:-32885E"".:.1:H--0~335451:-=01 0 :34830E~1-fr:3f444:E'=fH-----
0.38474E-01 0.4090eE-01 0.436geE-01 0.4~806E-01

-0. ~02I(.Bt"':';-01--0 .53848E-01---0~"57E8~E=01--0. 61658E-':01 -------
~.6S73fE-01 0.69872E-01 0.74023E-01 0.78151E-01

----- 0.82218E-01--0.86188E-01---e ~90C24E":'01--0-:93691E-01--- -- -
0.97153E-01

------------------------ ----------

--------------

-------------------------------------------
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n aessritiLg an n spin 1/2 syste~. M2trix ele~e~ts are
Dt.jijpe·~ L1 tLe tlllle available (if coaplillf; ~0I15tC"lltS ale

~iven) or assurred to be every~here equal in mag:itude
11'1 th nuda",. ?tas~s. Fhese sh-ifts create a seq-u-er.~e wU-:;-ttrJ-------­
is n-quantum selectei to any de5i~ed order. :bis prc[ra~

e:3: 1 cuI d t e 5 tt e d e ~ 5 Hj---ma-t-r i 1: '.... h i eb i 5 pr-od-·ttuec-f'e~:.~~~s5-aa_--------­

fur:tio~ of t. the pro~agator and coherence sele~tiv-

lties. dId the n-qIJ2nto(l. Slf:lI21 l(idgnitnde.

Ente~ 1 for time rerer-sal, e otberwispe~.-----------------­

(2 rrea~s ~AEUEA,3 ~eans isot~opic time re~ersal.
anc 4: Stpp.esses ze10 quanta,r)

1
:tn t e :' H. e r. u~ 'be f 0 f 5!, i ~ 5 ( 3 i-:r-TI-tl~i""'-=""~--f'lb""'='"'!'L~zr-<~""'rn-je~)-'.~-------------

4-
l;~ter the order of i.,cherF.'p.ce 'f.. hicb is sele~tE~_.

4
I n t e it!. e 11 [ : ,be I 0 f ,-,;y.~ 1 e s. t II e 0 1': e" (i f t l: e 5 e
quence, 2nd 1 if syrr~ptrization is desired:

2 . J 0

En t e r the i r. i t i a 1 val ue f:) r t i Tn e, in. 1 rn 5 e c s :
f.?1~2

Er.ter 1 to ir.crerrent time, 2 to incre~ent cycles:
1

Ente~ the ti~e increment:
e.gle~

a n ~T peeul i a r i tie 5 due to' a par t i ~ u 1 arch a ice of ran d 0 r'J

pr.csc5 l'
1

Enter ary two ~05itive integers < ~2768

1 7 3 2Z)!'



" .
----------------------------------

The dens1ty matrix tor t t 0.370~ 1s:

-----l:41r1J> :3 01'> :3 op-:r--1"3\l"P:r--1-:l--o~p_~;r-72lJp>-:~r~2I!;J';r-~p> 11 "p> :1 {'F> 1101'> :1 "1'> :~rr\I""F"">-----

<4 \;pi 407 96 144 195 141 1~3 157 61 1~ 132 143 ;06 ;49 112 ::92 1735
:l . 10\4 1M 9~ 147 12~ 71 ·9~ kll~ 15<) 13' ull~ 119 "114 -29 I;:"

-<~\l : 9C ge4 Et--3-3---£2---1~s-----1"4e----115--"23~7- ------j)1 II ~ 91 'i~..t""2--2"''i.·~..--------
114 0 165 113 1 ~5 -111 -123 li'7 -~7 1[·0 -72 90 -34 1<:3 -1:7 30-------------------------------------- ------------------------------

<3 up: 144 61 915 1~ 7 142 30 87 95 53 :4 141 lZ~ 65 111 12"
1:l4 1115 ~ 143 1~!l 9~ 74 ·1:r-3~~7 ,\~ cl~ *1~7 l~~ ~I

~J__llp-}....-196 33--Hr--M~2C ~e--1:3r,'--191--1~2-_S3___za__1~!~7·...~c-----
99 -113 143 0 14'3 54 -176 -124 45 -114 -16 -121 -1~ -125 1<::0 36

<3 upl 141 22 7 25 912 94 12f21 1'3 ::15 126 H~ 94 99 3~ 159
1'19 1:5 159 1'1'3 e Hl~ IH' 9" 12r-z2 :'5 ~'I' ~~ ~~ '1~ 17~

-<-i:~oc 1~H2 g~3~4 6?-----~Z3-__z1 64 62 4Z 9~3\---------

12Z 111 88 -54 HW 0 -IE -157 27 -13 34 ~3 -121 -174 4'3 -12

<2 up: 167. 148 30 138 12E 34 10 16 9 9 26 15 52 177 115 77
'i'1 H:3 'i'4 11'0 145 13 0 14~ 14[' In 1'19 eo IJ6 " ~8 2

~2-tt!,' 61 115 8'i'--194-2-~1e 24 2 3-r----2~ ee 42 4~'t"1-~~~\.-----·---

95 -1<:7 13 124 -99 157 -149 0 -50 3 96 a -179 120 18 -1

<2 up i 18 29 95 lE 16 28 9 2 23 32 33 81 125 84 !'9 125
46 c9' 8~ 4C 1z1 z7 14'" S~ 1'l~ is::. e:: 4" S~ 5~ He

<-c---u1+---~2 47 ri'3 n-----BO n·--~J?-----~r_:r~·-~~3 131 lSz ~~

-159 -160 137 114 . 22 43 172 -3 -135 133 -121 -50 \ 125 -27 Iff -!':3

<c: up: 143 91 64 53 H~6 <:4 ~c 210' 33 50 15 96 110'2 165 ::15 215
138 n 5'i' Ie :,:. 34 148 9!l 1~5 121 Itl~ '35 75 e1J l:-~ 5'3

-«--ttp-+-2e f 1 1'3
4f -99

H1 28 12~ (4 15 fe 9·t--~L}------B-'1----93G 4)) ~5 15 1~.".5---------

-33 121 87 -63 -66 -3 63 5': 35 150 gg -23 143 1~3

<1 up: 219 91 102 Ifl 94 f2 52 42 125 1.)3 112 40. 9H 16 1.. 1~9
11 9 94 16 16 95-----1-£1 55 1 'i''J1--.''--t'::--::----'7:' 10\ 9 1'3? 1: ~ 1::'J>---..,.t1'z---------

<1-upt--112 10-f~30--9J 1~17?-12--S1---131---1f."--?s---I--!"0\}---5'~_219------

1 74 -123 107 125 69 174 7 -123 :,-\ 27 ae 23 1:3 19:;' 17!' -:·1

29 157 1::6 1SS 99 4'3 2~ 18 :9 ICC 135 1019 11'1) l~!"-e-~I~::'~'-------'---
<1 t:p: 292 lE2 111 155 83 S5 115 (1 f9 1:2 '06 15 14 52 e71 1?·4

~'j-M-----1.!fJ3-S-2+:3--1?&--Pi'c--1 ~9 93 97 2P-r--l-?: (3---2-15 1~~'t"<3r-----'

-135 -30 -57. -36 -178 10 -2 4 -H6 63 -58 -lc8 ... -12 54 -137 1"0

N
~
t·..)

." .. ,-;~...;l,.":":.:.:..,~I .....'..',lkl~I~~~t.:j:~:JJ.;~l;;.:.:':t.-~,J J;~.;.J.';'~8~;j.;'i·,U~·'·;.:i:~~· ,:!; ~4~:.~J\'i i!~,~~\'Ii:.:: .. '~ '-.t.:!.:!L ,·,".~;.l•• J-i.':~'I:""~1 }~'''' :."~.'l ;"1. ;..J. .• I.' ;



-----------------------------------~293}_---

AV :t:L\ ;E propacator 5electivit~v....

214.15 lZ'C.35 '7'1.Zl7S 53.13:-
42.44.7 35.287 3e.171 25.332
22.3~5 20.954 18.997 1'7'.366
15.984 14.800 1 ~. 77 3 12.873
12.050 11.374 19.741 10-;--1-72
9.6:;72 9.1396 3.7606 9.3530
~·.e0f'7 ?e75e 7.3C4Z 7.Z?e9
E.:30S5 6.5598 f.3262 6.1072
5.9012 5.7076 :'.5249 :;.2523
5.1a:;1 5.0345 4.8978 4.7495
4. f1 E1 4.49<33 4.3(98 4:.2552
4.145,9 4.0413 3.94-13 3.9457
3.7S~1 3.(OC4 3.5923 5. ::::n e
3. 42-i.2 3.3499 3.2796 3.2101
3.14.12 3.E'30e 3.0201 £:. ':::616
2. 90 5~ 2.'3511 2.7992 2.7488
2.76~5 2.E5,39 2. E09 t5 2. ~iC56
£:. 5~~,3 2.4833 2.4442 £:.~e53

2.:C::-5 2:.3339 2.2992 2.2(54
2.2324 2.2002 2.1 f36 2.1377
£.10'/£ £::. 2773 z:: • &4.79 2.213:=;
1.93;6· 1.SE09 1.9324- 1 . S,041
1.e7::J 1 . 3472 1.3197 1.7919
1 .76:39 1 .7360 1.7e9c 1.5805
1.C523 1.(2:;2 1.59'7'1' 1. ;:7-:3 3
1.5431 1 .5159 1 .4390 1.4E23
1.~350 1.4095 1.3C!36 1 •25 3e
1.::327 1.3278 1. 2E 34 1.2593
1 . ";)§,7 1.212E 1.19;H 1.1f'3<3
1.1456 1.1257 1.1eS5 1.eSS9
1.~CC9 1.e43? 1.02511 1.Z'143

13.99218



294

---------:lIAe-v1J-f-?-A-&~e--5-e-l~t+v-i-+y>--;.••••••-------------------

C-ii. JC 32~ .lC 212.39 1=,~.23

127.Z2 1~5.5:3 ge.16c 73.6:37
CS.EE3 62.47': 5E.594 51 .-€e--7
~7.5~1 43.9C5 43.b72 :39.1E3
3-5.'171 33.Sg2 31. 7-04 3 0----o.fe-l 6
22.459 27.040 25.743 24.551
2~.4=2 22.434 21. 459 za .re1'
19.733 19.010 13.28 ;: 17.596
If.9'~? 10.331 1-5-;-9--4 f 15.199
14.E55 1 ~ .144 13.t:55 13.134
12.7("1 12. 294 11. S17 1 H--o--4-€2
11.0ff 121.681 10.307 9. S434
~. =9:::-2 9.244~ ~.ge1': e . =7'3C
3.2575 7.9441 7.6377 7. ~j3S3
7.t'457 6.?-595 C.4:~4 C.207E
5.8412 5.E315 5.4283 :5.131 7
4.:-'419 4.7099 4.432:3 4.2639
4.0522 3.3479 3.6512 3.4C22
5.:311 3.1 e82 2.9431 '7. 7865
2.63.52 2.4934 2.3559 2.2433
2.12':'-9 2.~~22l 1 . 923-1 1 . 63-15
1.7470· 1.EC9·3 1.5971 1.5305
1.~6.J7 1.4112 1. 3556 1.29::t
1.25::,4 1.2072 1.1599 1.1130
1.i'EC3 1 .€HSe S.9724~ ~.92115

2.57139 0.32225 0.76311 12.71514
e.CE165 8.C3:10 e.:554~ e . 534'16
0. ·;5690 Z.11492 0.39142 0.35978
be ;: :.311 B.3:291 0.3394e 2.4£699
0.47549 0.5309f 0.::9107 2.f5399
2.718::e e.732~9 2'.84(92 l.92'9 9 9
0.9f9f0



295

It VG:.A. GE l'l qua M-tlffl 5 i g r. a--t--fr'-Ma~g~r:;i:-tt;-lu,t-ee~F'>-;.-=.-;.;-;;.----------------

0.E39~lE ~2 0.2539;£ 01 0.SC:11B 01 2.1:229
0.15504 0.22152 0.29314 0.3~450

0.43012 ~.5a393 S.695~9 ~.81275

3.9~5~7 1.0f39 1.1951 1.3291
______---:11:--.......1r6~J52-------,1:h-!.6:;}1g6-'e~,59-----_-t-l-..?'f-bZoe-'"'-3:-1-----±1••-::rt:370--l-1----------

2.0018 2.1303 2.2541 2.373~

2.4801 2.5S25 f.GS19 2.9339
2.S6~8 2.9398 3.Ze45 3.0597
3.1250 3.14e4 3.1658 3.1211
3.19f6 3.1822 3.1f83 3.1450

----------.:3h.--31:---:.Jl:-i:i:'~9f----_.:3r..nes_=_?h2~2~---.37oi.36<cC13~ee----~2e-.-.~~66,q9~---------

2.90~4 2.5333 2.7573 2.f760
2.S9Z~ 2.5003 2.4~S5 2.3102
2.~118 2.1118 2.0108 1.;095

----------:tl----..--'-':~e~~.:...:1~----11f-----,.;-;7040~e..,~7-_----..:11-.;--fE"'--i3~8~8+------'l~.5-1-11--2?-----------
1.41~7 1.3227 1.2325 1.1455
1.2623 e.93169 g.9~5~3 0.32332

C.7E4~7 0.70~41 7.64027 0.53422
3.5~223 C.i8i23 S.44C1S e.3JS93
0.362S5 0.3~950 2.29948 0.27~40

-------~e"7". ..:.;:?-44-43+1-Jc,§---~9""7.-7l2-rz2--f-'f-44+.9f------~3f-----o.--i-2U1-3h'7'--i-2U?2'-----~e'----:.:+'lSOVT-?;3f-l19'-----------
0.17455 2.16134 0.14932 0.13259

----------;..j2•.---l-1--i:"2~9+'0'-C3---~e...---l-l---i::'2c'cC'___±1~9f----____t01__;.---:fl,---fl:__t:r:'_i:2'i'e~--~e;_, •.----::l1:-r0~.:..<J+l----------
e.97837~-31 0.91324£-01 Z.8502fE-21 0..759201-01
i.9:9~=E Jl 8.Sge o 2L 81 9.01320* 81 B.S~fa3I Sl
2.49999E-01 0.4?521I-01 0.~9Z05E-01 e.34107I-01
E.292S0E 31 a.24?93E 31 0.207052 B1 e.17091E 21
~.1402~I-J1 0.1155EE-01 0.97507E-02 Z.9~575E-02

2.S31§0E 02 e.37§~lE Z2 ~.9927ZE ec r.12e16E el
J.14322I-01 0.18302E-e1 0.22~fZE-01 e.27583E-01
S.~3Bc9= 81 8.39g~eL Sl v.45~29~ it Z.S=e75E 21
Z.5S3:3EE-e'1

\



-._--- ----------
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- -~ .- --- --- ------

---~--Cori5ider-a2,;c-*n-by2**n--effectfve-tarnfffonfan-~---·_---------

H d es ~!:..ib1 r.g ~~...!!-.-sJ)in_liZ_ ~lS tem._ M~ tri~_.~J_e!!1en ~ s .~.r e . . _
--------puip-ed in the time available (if coupling constants are
_____--'"gA~.en). cr assumed to be every_where e9....ual in rnaEniJud~ . _

~ith random phases. Phase shifts create a sequence ~hich

is n-quantum selected to any desired order. This nrogram
c-aleul a te-s-th-e-d-e-nsTt·Y-rriafrfi~bich-·i s-pi·o-d uced-a-s·a· -~-- -.--.--.-
function of t. the ~ropagator and eo~erenee selectiv-

------1 ties.-- and-t-he-n':quantum-sTgii"al-magni tuae. -------.-------

En te r -1- f 0- r-t i mer·e ;'-er5ar-;-Zoihe r-;':'Tse .-:------------. ------­
(2 means WAnUHA,3 means isotropic time reversal,

-a-t a--4 -s uppres ses - ze ro-q uari tum) ---- ----------- -._~-- -~-

1
En ter fhe number ors-pins (0 impli es benzeneT:

4:
En tertb-e-Orde-r-cif -cohe-rencewhich-fs-selec-t ed :.------.-~--- .. _-

4:
--.----En te·;'- -the--numbe r -of-cY::1es·-,the -C·r-de r- of-the·- 5 e -:-.

quence. and 1 if symmetrization is desired:
-------·~~=--:;1 1 1

ho- many different values do you want?(.le.125)----------- 125--- ---"--- ---- --- ---"------.-._--- ------- ---

Enter the initial value for time, in .1 ~secs:--------- "2:.0103·---- -----.----.--- -----.-.- .... - _.

Enter 1 to increment time, 2 to increment cycles:
1

Enter the time increment:
--.- --·0.01k3J -----.

---bo"'- rfany~"'s-should- be -averaged-ove-r--:-t6--minirni ze--~· ~--_.---

any peculiari ties due to a part! cular choice of random .__.. _.__..
-----n-h-as es-?

1

Enter a~y t~o positive integers < 32768
-.---- ---123·-234----- -----

--------------

---_ .._--



'rbe density matrix for t ~-~~700-1S':-

_____-LJiLllP):3 Ujl.2..-.Q up> 13 up> 13 uP.Ll2.-uJ.L.lLuP2.-...!.Lup)--':LuI:2.-.12-UJ-'~p> :1 up> :1 Ill:> II up>--l-L.1Jp> in liP>
----------------------------------------------------------------------------------------------------------------------------------
<4 up: 498 If,4 58 43 13 187 18 43 ~5 210 1:;7 Cl5 59 112 13~ 1'357

" -85 -177 153 . -"8 -43 -123 -31 -123 151--=.S'5 -1'5 52 40 -"9 127

QJpl 164----.it.t6-35 51 31 134 ell---l0L-.Z?'__...8t:'--.E.5 11;0, 6Z 77 71': 13.4
85 0 154 25 -138 -8 41 -16" 116 155 -136 110 -21 -159 -11 17

<3 up! 58 36 932 23 18 133 102 86 21 1:1 71 53 71 Ie? 133 <;5
177 -le4 11 34 -P3 -Z3 110 14i-3.::> -3'1 -57 -133 -49 -117 "I 119

<3 up: 43 51
-153 -25

?_~.e 9 154 109 .9Z<--l2.:L-._o9 59 f;:l 70 119 1"1 114
-34 0 13 146 140 -34 174 18 -1?'l -83 17" 152 1<'3 -1~6

<3 up! 13
58

:"1
1 ~8 .

18 8
133. -13

954
I"

23
-98

54
-84

135
138

62
141

4.3 f9
137 _ -104

51?
I'll

99
-178

n
111

f7
f(.

74
21

~Lup.L-187 li:4------.U..~4 23 57
43 8 23 -HE 98 0

33__72__31-..... _41--2.2
-17 -155 45 -13~ -43

71 93 79 14" f?· _
-137 11 145 -15 174

18 80 102 108 51 33 3 35 14 3~ 12 31 21 162 Q~ 71
123 -11 -110 -14<' 84 17 180 132 -" L--.J..5~ -144 45 -11 p 65 -146 -I "Q

45 32
123 -116

21
-85

123 62
-174 -141

31
-45

14
64

13 3
55 _ e

lq 13 46 47 103 24 77
S4 147 -66 10(' HI 73 61·

95 113
85 -110

122
-2~1 _

12
141

22
43

E9
IN.

19 101, 24 41 109 1~~ 1:13 32
-9~ -117 14J 18~ -9 153 ~3 -1~

63 59 71 31 24 ~6 In l~q 951 36 27 11 711
013 -141 137---4~20 Ei3---:':; 3 1~<J175 57 15<" -134

55
178

71
57

50
133

(6
1~6

le7
96

!.~__u 9 63 72 tp_;:__ 93---.l..:;.~__1 Z:'1__11.'.3.
117 -1:,2 -Ill -115 -f,~, -9H -l? -t;'" -23

j'7 2L-?0(') :'-3---.1...;:....... _
-~7 109 130 -l?Q 163

'VI lRE] 134
-127 -17

85 114
-149 155 N

I.D
'-J



---- -----------_._--. -----_._._--._-
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- ---- - ----- - ---- ---

--- - ---------- -------

------ .- --- --~ ---
---~----- ---- - AVERhGE prcpag2tor-selec-tivit,y.~ ..

--------------------------------._- -----_. ----
11261. 2314.3 1252.0 702.42 44S.9t:
311.;::7 L'23 . 26 174.39 137.4e, 1 tL.'Z 3
91 •4 ~1 7f::.c27 65.3E:2 55.837 46.436
42.430 37 .': 13 33.210 29.f54 26.61g ------------------ c4:.ee:3 ~ 1 .746 19.7'(4 18.1244 16.519
15.1 E~ 13.065 12.2ge 11.92E 11.059._---- 12.275 9.5([3 i:3.3374-~ ------8.9228 7.8339

~~J5S _5~ill.4 6.46412 6.~f~ 5. 719_1-- ____
5.4·::::·7 5.1420 4.B715 4.E2Z~· 4.385'1
4.1Ec7 3.9f17 3.7696 3.5591 0.4193------_._------
3.2593 3.1e·33 2.9558 2.3~09 2.7030
2.5:32-1: _~. ~_f,7'j 2.35;~ 2.2560 2. 1579--- ----- ..._- . - -
2.~f-±2 1 . ]'1t:-3 1 .3928 1 .3145 1. ?s:27
1 .5752 _1_.6l):3 1.5523 J .4~QJ. L-~423 ----1.3S13 1.3-129 1.2975 1 .2::,5 f. 1.2161
1 .1 784: 1 .1428 1.1092 1.2J77E.: 1 . J~79-------- - ---- -
1 .-2·102 e.9S~25 C.!=16S;::9 (/'.94497 C.92343

'2-. ~·:3S5 ~.3:3~70 ·O.8E'S21 70.35572 '0.3"=4'3'0
--~ ------------------ Z •33~74 '2' .32313 2.32219 e'.B124E: 0.31EJ7

--------- ---. - z.. 31<171
~.S22.1.7

----------0.241 ::,c--
o ':.)"','.:)7 7:

( • ..it ~ de -{ I

--------:j;.572E5
0.57353

-------

?31434 ~.815Z~ e.316d1 ~.g1923

J~' . S 2 5"-'9=2"--_----'·~'-'.'_"'2n~~_'_:::'_:_--J.Le-'_8_~2'___ -'e"-.L.3"'_,3_'_7'_'SoL_4'"____
7-.34560 0.8494:1 0.85235 :il.35E1f
~.E'::23?; (/I. Sf51 ~ 0 35_7....3.-£3_~JJ.e_L._L.37C;::._L9 __
J.37~E·1 0.S7~22 0.87744 0.37826
2.37337 e.S7940 0.39049 e.83122

- -
- .

--- ----- - --- -------- ------_.__._----- ----

--- -----_._------------------._._---_._-----



- -- -----~------ - -- -

---------

3~ 75 S • 8693 • 3 3865 • 2 2.l.7.:,L.;4~.9.:......-__1......3.....9u.2.........:;1;4~ _
:1e7 •14 7 10 • E3 54:4: • 04 4 2 ~ •72 347 . 75
286.73 ~40 .16 20'3. 78 -IT1_~0\L.__~loL.J5o.L,1~.!..>o5l...!.3L.-_. _
132.62 116.91 103.79 92.722 83.302
75. ? 10 E. S .2 S0 62 .098 ~f . 7!~5~3~_->.5~2=-t..-3<J~7..>.l.5__
47.935 44.253 40.990 38.2'51 35.425

_______.----l3~~::'"".~.i?~'3~1~·,_._~:3a....B. 7 0 28 • 9'~ f 27 .1 19 .2.5........4::z;;8;..u8~ _
23.997 22.t.:J~ 21.374 2r~.218 19.151
16.164' 17.249 16.397 15.6'04 14.353__~..sL~:!2..._..:._~_~.:=...2.__~~_=__=-..---oI...>.l.J.~,.:l.---...L.....t->.l.>J..U...-- _._... _

1~.1f9 1Z.518 12.926 12.331 .. 11.791
_~11.222 1~.B(j2 10.345 9.910~ 9.4876

9.234:9 8.7233 3.3407 7.9965 7.6590
7 .3;; C8 7 •~~8 [, (;. . 7 7 2..L-L..A~L3""'_1'-_ _"E-'.J>.2.....2"'"'3~1 _
5.9629 5.713~ 5.4723 5.2416 5.0193
4 • 3ZS1 4 •6 eZ·.3 4. • 4.0 18 .-=4.'-=.-=:Z:.,:,:0-"'-9_9""'__---"-4_=_.=e=.2-=..4=0__
3.2433 3.6672 3.495f 3.3238 3.1570
3 •~_~ 3 2 • :t~ -3 5 2...!_7.1.l..5-__~5L'lli..____"2.......-"·1,,,,",3~~.....1__

---------;:-2-=-.304~6"----=2.1312 2.~540 1.9523 1.3~75 ------.

---.1-,~0 LAL5-3.~ 1 .5..E.5 L -L.:15Z_t._·__......1 .a..:.~;.LJr~:.Ll.f-,l"-- .
------ 1'.3355 1.271J 1.2125 1.1::99 1.1130

1. e714 1 . '3 :5j:_L.-_.....LJ1..0.J.-.8-..0-!....9.1.~ 7.9__12. • 951 :2:1
0.S3432 Z.92322 0.91756 0.91tE2 0.91932
2'. 9253~ 0 •.9_~597 0. 941Lw.--.-~2' 3.93306

1.C05Z 1.e~Z6 1.0533 1.Z396 1.1225
_______.-~1-'-,~1 1 , 19 (25 1 0 22.1..2 1 ,Z5.2.E'-'__...1 ........2......9"'-J:i,.......1o.- _

" .

------_._.--------------------------- ._----_...

------ -----'-------------------------.- ----_.

-_._----- -_.._--_.- ---- .-._.. _-

---_. __ ..._-------- _._---_ .._---- -----------_._--------_ ..

----------_.



------------- -

------.-.---.. -- 300----·-·

----- ---~-- -- --

A·trIP.AGE n-ql1a:1tum signal magni tude ••.•
O'.f:'iQS7":-Z2 ?2Zj5.31F-·ol 'Lr::7252F-01 0.10J:)0 e·.1~7~3

-·-_0.22438 - J • .)934:1 0.39231 2.49Z97 3.5~S3Z

0.71378 0.93539 e.95::22 l.e993 1.~375

.,
~. .. '. -.:'" .

1 •37 <3 9 1 . 5225 1 • 6671 1 •8118 1. 9555
2.0973" . 2.2361 2.3711 ?5014 2.6262
2.7446 2.8561 2.9599 3.0=56 3.1425
3.22'25 3.2291 3.3490 3.3972 3~3\.L:5",,-=4~_

--_.- ~E57 3.~e·S2 3.{950 3.4:952 3.1261
3.~6ge 3.4412 3.4052 ;;.3534 3.3132
3.25E:.1 3.1923 3.123E, 3.0491 2.9700
2.33E·6 2.7997 2.72J96 2.6169 2.5222

-~~~:"'-=:--_'--:=-=--::-:=-~_-:'-_----:~::--=--:~--~~~:--'.:---~~-=-=--=--.--,,- ----_.
-------- ?4259 2.3L34 2.2303 2.1319 2.2337

1 . S3 59 t .S;) 9 ;;, 1 . 7432 1 ,e; 4.B..9 L-,5-L>5,L,,6--.;;4'"---_
1.4635 1.3774 1.2914 1.2'080 1.1273
1.e49E3 2.97480 0.93313 e.S3466 2.759~3

e.72753 0.645-39 0.59361 2.54164 3.49297
0.';'4754 2'.40530 0.3(:;E17 0.3300E 0.29f89

------C!,.265?9 2.23379 0.21364 L19Z,39 e.17C41:
0.J,';'205 e.135S5. 0...J.2.1.;)7 e~..J_2~ne (7~'2..67Q7'E-01

---- --- 0 •o630~E-31 0. 78084E-01 0. 70~lEE-01 Z. E:39S7E-,n 0. 583Z,4E-01
e.53542.L-el (:,494931-21 e.4613er-01 r.1~~74E-2i 2.41175E-01

----_.~~ ---0.39-1S1E-o.1 2.33233E-01 0.37521E-01 Z.37131E-J1 Z.37245E-01
0. 37E 93E-:H e. 3S527E-J1 0.39721 I -0L.2_.5J~gE_-:?~0. 4:_~ 62!: -01

----e.4533~E-e1 e.~7927E-e1 0.5e759E-01 0.53391I-~1 e.5727eE-01
2 .5e 377E-~1 C. 5';'f9.'1E=~_L_.z....,-U3..6..5..5.E-01 ~ •.1..21..5.33.=..LL 2'. 7E? ~7 E~~1 .

------ "

'\

-------

-------

----------------------~------.._---
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Go r 5 ide r a 2;~-f~i v e I: dlf"H t~e-O~:1-li_a8~;;'~------------­

E descriti~g an n spin 1/2 syste~. Matrix ele~erts are
pb~pcd :n t~e time 2~ailable (if :t~pli~~ constent5 er~
given) or assu~ed to be every¥here equal in ~agnitude

-------4II/-±ic'lt7ib}--T!-'-'a~:e.-t>fT1 phases. Pha-s-e--s-h+f-ts create a 5eq-tl-e-~e 'tI'h:i-~~~1r-------­

is n-qu2ntum selecte1 to any desired crder. ~b1s program
~~s-the de!1 sit Y I'?a-t--F-H-.-w-b-i--€-h i s p-r-{)d-l:UHC?-1cE><da--aa-55r-4:a'l-----------­

fun:tio~ of t, the pronabator and ~oh~rer.8e select1v-
1 tie 5, e ~ ~ the n q ~ 18 n t U rT. 5 i gn e1 rr. e: en i t tl de.

-----tt:rflFl--'{t-e-r 1 for tiFFe reversal, 0 other",.ise:
(2 meaLS WAEUEA,3 means isotropic ti~e reversal,
8~d 4 5~ppre~5e5 t~ro qn8nttl~)

1
--------!'£fr-t e r t !i e l'l urr be p 0 f 5 13 i-~2I-i ffl pl-i--e-5-be-p-z-en-Qe--;)~:~------------­

4
"EtCI' H20 order C'-f~erpr.cf' ",rich i Co 5el~qt-ff~d~:-------------

"":!:
~ n t e. t L e _1 I. rr tel 0 f '- y,-- 1e ~, n:= 0 r del eftL e 5e
que~ce, and 1 if symmetrizatio~ is desired:

64 e 0
hG~ many different values do yc~ want?(.le.125)

125
En t e r the i r.i t i a 1 val ue for ti ~ e, in. 1 rr 5 e: s :

2.eee:s
Enter 1 to increment time, 2 to increment cycles:

1
Ente~ the time incieme~t:

------z.-e-0~------------------------------------

hOI. f1.all/ E '~ s!:oold b~ aVE!a(;~d over, to rri:Jirri ze
ar.y peculiarities due to a parti:~lar choi:e of rar.do~

----ph a-5' e-s---? ..

1

Enter any twc rcsitive integers < 32759
1:'3 224:



The density matrix for t 0.1250E-01 Is:

------+-'1:·1-vp-;-+J-1rp> :3 ap> :3-a-pMj-trp-> ::e ap> :2<lp->-tZ-U1l)'-j'2I:l'P'r-t2"111l~2 ao'> ;1 ap> 11 up> 11 Cj'> :1 up> l~ up>

<4 up:

--:0---2 'I :3 ~ ~ g------<.3-u1' I 2--i~0~ e 2 e 5 5 .3 1
132 e 0 0 "-133 -129 114 -f5 -169 -79 65 -113 14-1 -15f 9

4~23625 0 10ee e 0 3 2 4 4 2
~::: 0 0 0 :l tlH 89 ~ II 8?"-1T'l --""llq"l"~-~~:O:~--"'lqr':5r--Tl~5~~-~·rl~5~~::--~~~2:-

<3 up:

----<3- ell: 8 0 e l-;¥O0 e 2- 6 5 2 -I 4 1 'i' 1 't ~

110 0 " 0 0 30 -173 -143 -25 -12~ -32 139 -29 ?1 115 78

1~'i' e e 0 e t 2€ 159 158 f e 46 ~!l % .,~ 89 ~e t~:!;

<3 up: 6 o " o 13e3 3 5 2 2 ;\ 4 4 5 4 2 5

-314~-158~15"24
'"

3--'3~---i3 il (3 Z 1 : t
1"0 " 0 0 " 2

3 2
UJ7 -3"

c ~

-<2-u,p I 120 130

344.:e
'"

<2 up: 8 5 2 6 :. 0 0 e c z
(;II ~ £9 EJ 3 ~ 'i' 3 1"_9 \1 Sl 0 Sl l~ 11 11 14 12 22 1~

-121148-165eo
--<M.Lp 1 5 :3 i 5 2 e 0---2 1l 13 iJ e f 1 :3 .,

71 -114 20 143 158 e e 0 0 0

43143o<<: up: " 1 4 2 2 0 0 " 0 '3
~ £~J R9 en 2~ El ~ II Sl 2 i1l 61 2~ 89 'Ie IS1

3 2---(c-up I -166 168
..~~~ ...

142 123
3 ~ 0 e~~ 2 " :3 4 4

46 0 " 0 e e '3 -69 1e5 -55 157 -43

<2 Jpl 5 2 2 4 4 o " " e o " ~ 2 6 4 7
1C£ 99 t9 32 4Cl ~ 2 2 il :3 ~ ~2 133 183 1 H 5!

€I "2---6--
o ('I 14,)e

3 fl 3---3----2 --3--tee0 I

o 61 69 82 180-2'1 0
_.(l-trp i I' +----6---1---4

49 -65 -23 -139 55

00 [) I,'ll 'V ,.---~--;:;

<11: P : 1 :? 3 3 7 5 3 <' 2 4 ~

lit 113 1S E9 98 150 14 1(5 E~1~$5'

2 e 1Z2'" J '3 f.

-----(-l-uP: 3 3 2 1 1 1 4; 1 1---5
138 -144 158 -71 89 1:c3 12 -148 ti75~

6 fl il IJ-3a 2 ?-
lll3 0 e 190 ~ -5"

7100ila'3'34<1 up: 8 5 5 1 2 3 1 3 3 4
38 158 155 115 !)5 ~'3 2~ 21 'i'~ ~ IH " Z 0 .'!:l 111

w
o
N

." ,...... ,', \.~ ....~., :, •.:..... ...'#~.. , I" -, .,;- .... :• 1 . . •
... .I : 1,... \ •. ~ ••• tJ ,, .J; Jo" .~ ••

----(-6-\11"1--1999 9 <\ 0 5 '1 :3 ? '1-"'--'7 C e ? ? 5~

-128 '~-9 ;732.' -:78163. 31 ;:-19 1 -151 43 ··52 '-:-11.0. 5 50 -141 "
•• ._.•. c .... ~-"'--~:""""-"":'- _



~ce density ~atrit for t· 2.f~50E-01 i5:

!". \llj) ~:t l"ln') ':'1 tJTJ) !~ liT''> !~ 'uo') !2 i1L~ ~2 dtJ~>-~~~~jY: :1 up> :1 ap> ~1 up·' 1 up ... :e up

<4 up! 35~ • ~~ _ • ~~ _. ~~ __ •~~_~ 1~~_~~~_~~~_3~_~~~ ~__ .~2 __ ~? __ , ?~__ ,~~~_5~~~_~
G 1tO IC) :ItO Ie:;;; ~CI T--rr----J~_____=_~-c::::r____rr~_________}I I ... ';:' ri;-;J--·~-----lL.-.'j

63-57 '115-4<'-H46
1--H' ~ 3~1~c.r '1 2 1, 2t 1'\ 11't

101 -57 -51 93 -~4 140

34<':'115:'0321333 " 997 0 1 27 1A 1 ~ I? 14
lEe ~ a e 1~8 65 ~g 1f'1"-'t'l1 Jer :'1 11l Dr Id 1:::< ~~

<3 up i

----<'3 l1p! 44 e e 9Er'i' ::> 9 :l~-2t------l'1 n---2'l 2'2 1~ ot~

-170 e ~ 0 15'3 130 4rJ -85 -'l~ l e 7 25 7 27 -,,0 171 107

1[_ 161 te:l 159 e §'i' 159 1iJ8 52 D ?, 133 !l'l 12~J 12~ lr.;
<3 up: H' 2 9se 12 . 15 11 19 12 11 7 12 'Ill ,4 f:~

""
1 \I 1 e 7---n '3 z, t2

177 ~ 00 -81 -12'3 -IF7 -1?~ -52
--------------------------------~

'~19 12 27 Cl 1~

121 67 [r -13e 97

<Z t:p: 5 '3 1'1 3 15 1 o e o e ~ 140 '3 4 I" 11
'i' ':J : 1 89 49 159 f. (J a l a 3 ~ :, 1 56 ' ., 1~

.~ OJ ":'F-- ---rl. ---:I 'I) -~- --,;r-~---YJ00
=-rp, ~4 -93 121 85 -103 -177 2 i?, '0

1 ;, ~ Ij HI 4 17
e " -45 -1:.'2 177 49 -c3

2771895:1<2 '1!l: 2 ~ 15 12 9 19 0 0 " 1 1
. 813 24 141 83 Co e El l e ~ J ... 3 Fn 'i'? 11 U:F

--<-2---<tpl 29 23 14 21' 12 1 e 1 1---1 0 11 1!.l 21 ., 15
-lZq -140 103 -167 (5 0 " 00 0 J -q -lS9 10 -1~2 73

2S 3 e f ~ e 17: 12" 1,(,) n 1~~

'2 up: 23 4 13 14 11 ~ o '" 2 o ~ <~ 5 7 9

<1 "p I :? ~ 2 ::' 19 '? 'i'----H 9 ~ 11- --l"-c---'Y-': 1 1 1 3~r.---------

-41 44 -lf2 -7 -1~3 81 -( 4~ 2.3 15 1"5 leo 2 .~ " 82

9Cl',;619
1.':--- - .I: J,.. :l 1. 1. J lJ ---z:-o Ii.. ...l
1cr_ , ..... , Q '-0 ..,::' .r~~ ~~

<l \' P : 72 14 33 29 12 23 f' 1? ' 9________~.~c;;.;-:...__......~1C-J'1 r,n "'~<I""'"", ~. 1"'___ r·,

---(+l--luJ}i 4': :'2 15 22 HI A
120 -115 1~" 59 1~ 5 167

+--1g--------I-o-?t---? t ~~::1-----
86 -177 77 -19 -143 ~ -~S 18~ -15r -71

<t liP: 52 14 22 19 24 3 15 4 7 7 1 ~ 1 1 ? (')07 ~Cl

!:;ij ~7 135 171 12A 173 79 I'? H lCe ----'i'e e 1~3 1:'~ l~~""'J------

--{lHtp I 1952 16 3~ 46 ('3 32 11 1~15--9--~:) 4~4 ~9 :"~~

-129 , -C3 ,,-40 -107 -164 52 19 23 -126 -73 -109 -C\2 5~ 71 -'l:J 19:~I _

ti '/: ~"'. ~';""'" j:. k.~": ~~~:~lt:_;:<.,~~~'~M~~~,,1~~~-«'.;.;,,Ui·,.b·:_.' ....Ju~~i,~;'~~~,.~Ijj.·~.~·~' ·~'t .;~.~~ ;~. ,"

w
o
w



304

AVER~;E prCp2ratc~ 5cleetivity ....

7C ~?A
'-''- .,..}--

103 72. 1
53~ .2f,
~'l ::' =-. 21 B

17:.22
14::.62

93.789
~3.62§

2f~·. Z3
211. 83

12::".18
111. 90

3-3.eS4

f7.933
63.123

4-:i.379
4:.1-321

53.690
~ ±•50~2:----------
50.514
4:7.194

42.514
'39.:65

30.r.49
'13.423

234.10
223.2f
13~.2~

124.S3

f12.~1

~Ja.52

142:.S

51.~50

4:9.9:!~

132.84
11S.65

81. 9~ 1
94.S5:

~5. '~22

~;:. ':77

53.774
fs.§o2f

101.90
93.717

CZ9.50S'

69.227
54.£:31

;:g.;:44
3'1.'215

71 . .57 ~

65.-465

714.29
4:::7.76

137.79
119.52

191.91
1CC'.99

104.99
g3.25l

3'~4 .66
2.35.97

6:3.372
5e.5ff
52.511
43. :35
4.5.7.36
4:: .,2:

g3.945
?C.:CC

33.S2c

41.2;)2
39.22E

2Z1.~9

1(,'1.''-2
143.&3
1L 3. 77

357.~6

475.§-5

423'1 4c

323.37
250.15

St.e71
9-::. ~<1

1218.25
95.912

71.9[8
55. :-~1

4c.4':1
42.77?

33.912

:::1.935
57.f:l
~.~ .4S·6
i~.9~':

.;1'.722
lr~ . 1 f 0

3t J~3
~§.q15

34.2~E

33.3:-:1
7~ CL'"vi-. • .... _ r(.;

3~.323

~5 .114
34.!14
33.235
32.395
22.i31

36.224
34.S;:'?
3':.732
;3:3. 1133
3~.376

22. 972

3.5.719
:54.535
33.573
3~.213

32.373
33.21C



305

,
I1 _

AV ~n.1 GE c: che f" '" :1~t:-ii:\vr_'ii-'tt:-'.v-v 7".7.7.-;-.------------------

2569.7
14,2 1
97E.47
735.0:
578.::3
4~02.f7

3f9.00
£34.13
206.2·9
1 C3. 19
65.1~3

3.::'9~1

5".2?~

95. 4 3Z:
lze,. ~f
15.4.:-;:
1G5.r:3
1~ L (;4
151.:5
129.(2
1C2. :0'4:'
73.::::6
4.2.7::3
1 C. 1~c
1';.1::'8
39. '?t9
5f.SS9
7.3.:3.=-.2
7-3.3~4

?£.~T?

81.172

2139.9
lc99.9
~:n3 .93
692.25
54~.59

;:-'7'.5S
3"lC .29
2,':-4 • £ '?
187.f~

115.f:;
49.103
1? :-3?
f2.437
135.30
1~S.00

1?09
15'i'.2f
1:::02.3':.
14f.S1
12:.. =:=
9~,.f72

f:J.~l:

35 . .214
C.l:t:37
22.-U5
42.099
62.523
7".S3~

3!.134
3-=.~2f

~Z3C. 7
1932.7
11 :19. S
843.f3
f-4:?E5
515.94
413.5{
325.14
z44.69
1159.21
9'3.449
3~. 48 0
2~.Z7::

74.032
11~ 43
14-4.41
Jf'2.2~

157.24­
1:::9.3:
141.59
11=·.91
C~. 28f
:,7. 9=12
27.749

e.g7(U~

2':.453
47. 751
f4. 117
?5.:2~

Sl.;:15
-? 74'<

3£lZ.3
1621.9
12' S€.' • G
784.79
f12.53
43~.~6

392'.3?
3J4..46
::2:'.39
151. g 5
81 .CiF?~--------
1:3 •3e, 5
5?592
25.254
122,. ~£
15Z.0S
1 (1 .cO

155.22
15'--.95
135.9s,
lle.:::.'::
5:3.793
:::,13 .:55
20.334
?CC34
32.221
S2.3523
S7.394
99.191
31 .944
31 . 901



e.1C302iE ~1 ?S:'163E 21 i.14:=Oe 2.£":5301
2.3?5:'5 0.Sf09E 0.74937 0.9591f

1 .13t4 1 .4~49 1.C722 1. 9290
2.163:: 2.4355 2.fSZf 2.214f
3.1627 2 .63'%2 3.5129 3.cf73
3. '1940 3.3917 ::.9::37 3.S937
3.§§:4 3.9>:,re 2.9t48 5. ~12"1
:3. Ege,0 3 .5-±~-± 3.3£53 3.1692
...., QC:'2r:: £.7'225 Z: .4797 P.:f92z: • _ -..,Il,,'_

1.97Se, 1 .7213 1.4721 1.2::15
1 . 0'3 :~i3 ~.7913~ B.:9091 e.12915

0.~34::2 e.1632e 0.31135E-21 e.25159I-L'1
i .12PJJi~E e£ e.92;:,L"S3E ~~ e. 4923 2E ~1 2.12e91!..

0.222'7'3 0.3~327 a.51e2~ .:: .eS115
6. 3927:4 1 .112? i.otiS::: 1. ~%9

1.3417 2.2949 2.~4f5 2. :-925
~ ~~ - 3 .",:1., ~ . C;)7, =.~435,- . --- '- .....
3. fJ59 3.1425 ~.:3S11 3. S2 99
c.9772 3.9:39 c.993e 3. 9304
3.3520 3 .7';'38 ;:.c:,77 3.-±~59

3.i:=1~
'2 . c: - c

L.~~'4f: 2.:.9-39\..~ • t: ..... v -.'

2 7<;'C; 2.1234 1.2:'13 1 . EJ15. '- -'-'-

1 .35"1 1 .1 '::5l' 3.~3::?3 6 .7~Z:92

0.52GES e .~':'64 91 2.2~;:14 0.12933
~~. tee-eeI 01 2.1 9 24:2E 31 ~.2:'95~E e3 0 .2:..:123i e1L

0.71220I-J1 0 .1::;:89 2. 2f 3t7 0.42173
e.5':tl~ f'.7~12Jl 't.~:El= 1- 1773

1.4122 1 .f557 1.?24:3 2 .1541
2. 'H~: ? 2 .f H7 2.='717 "J . f,B77~

3.~afc ~ .4<341 ~.5136 3.7472
3. 34u~ 7 .S13g: 3.§-C34 :.Sge::~

3.94:37

306



307

r----------------------------------
Consider a ~**n by 2**n effective ~a~iltcnia~

~ • .:::::: REz) oraSSUfTt:Q to Dt' tvt:-.ywnfre E4Ua1 In :1dg:ll tUCt
~ith :aLdom phases. Phase shifts cr~ate a sequence whi~h

•. Q~s.:;nLL.b c;. :tJ SpIr. 1/.::: systerr. ~c:.trlX elerr~erts tiT"e
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~ -., ."..-. "' - - r - ... -

""'1 ..... '- _4 oJ '=, C.l """ .1 .1. J.

4 :, 1
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pb~ses. ?
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Appendix D. Residual Nonselective Terms for Selective Sequences

In this Appendix the size of the first non-nk-quantum selective

operator from a j-order nk-quantum selective sequence, which is

,- (j+l) t ) ,
(-lX C nns' 1S estimated.

To simplify the calculations phase cycling and symmetrization

are combined into one operation, which turns a (j-2)-order nk-quantum

selective subcycle (j odd) into a j-order nk-quantum selective cycle

requiring 20 subcycles (Figure 111.2), assuming perfect phase shifts

and no timing errors. As in earlier calculations, the propagator

for the j-order nk-quantum selective sequence is expanded in powers of

t .
c

to t
c

Th f ' I' "v(j+l) h' h ' 'Ie 1rst nonse ect1ve term 1S 1~ t, W 1C 1S proport1ona
c

('+2) '+2
J All other terms proportional to t J are nk-quantum

c

(D.3)

(D.2)

( '+2)
selective, so the only possible nns term proportional to t J

c

is (iX(j+l)t) . The product of the propagators for the subcycles
c nns

'+2 '+2
has several terms proportional to (t ,)J =(t /2n)J ; they are:

C1 c

IT V(t ,) = _il:,j{(j+l)t , (D.I)
i C1 i i C1

_ r, (X, (0 )X, (j)+i, (j) j{, ( 0 » t 2 ,
i<::J 1 J 1 J C1

_1 L(X. (O)k (j)-t5{~j)J(,(0»t 2 .
2 ill 1 1 C1

-.L. (M~l)j(, (j-I);.;J{, (j-l)x. (1))t2, (D.4)
1.<) 1 J 1 J C1

_1 I;: (X. (I)X. (j-I)-t5{, (j-l)x, (1»t 2 ,(D.S)
2 1 1 1. 1 1 C1

+(i. L , kt3 . +(i/2) ,L'>kt3 .+(i/2).>L, kt3 ,)
l>J> C1. l=J C1 . 1. J= C1

(J(~O)J{~O)Jt (j-l)-tic. (O)x. (j-l)JC (O)-tic, (j-l)x, (O)JCk(O» (D.6)
1 JK 1 J K 1 J

+(i/6)h 3 , (X, (O)i. (O)i, (j-l)-ti, (O)i, (j-l)i, (O)-ti. (j-l);(, (O)x. (0»
1 C1 1 1 1 1 1 1. 1 1 1

(D.7)
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'+2
plus terms not proportional to (tc)J . We will assume that the subcycles

are themselves constructed by phase cycling and symmetrization, so that

X (j±2j') = 0 for all j', and terms (D.2 - D.S) vanish. In addition,
i

terms (D.l) and (D.7) are unaffected by a phase shift of ¢ = 2n/n, so

they are nk-quantum selective. Finally, term (D.6) contains many nk­

quantum selective portions; for example L X (O)X (O)X (j-l) is nk-
i=j<k j j k

quantum selective of i and j are in the first half of the cycle and k is

in .the second half.

Straightforward counting arguments show that the

(1 n 2 + 1 n + k
2

- k - 2nk) times; the
2 2

(4nj - 1 - 2j2 + 2j - 2n) times; and

Jf. (0) = X. (0) and IIX. (j-1)1I =
1 J 1

(IIX. (O)J( (j-I)X (0)11) 2 _
1 J k

The construction of the subcycles implies

IIJc.(j-l)U, and therefore (II (X. (0))2 Jf.(j-l)1I 2 )
J 1 J

( 11K. (j -1) (if. (0)) 2 11 2 ) .
1 J

- (0)- (0)- (j -1)
operator Xi X

j
X

k
occurs

operator X (O)K (j-l)K (0) occurs
i. j k

- (j -1)- (0)- (0) 3 2 1
the operator Xi X

j
Xk occurs (2 n + 2 n + .2 . 2') .1 - 1 - nl tlmes.

If all of these numbers are just added randomly, an overestimate is

produced. For example, if i = j = 1, the nns part of the summation

k~l Xl (O)X
l

(O)X
k
(j-l), which contains (n-l) terms, is the same size as a

- (0)- (0) - (j -1)
single term, since «Xl Xl ) (LX

k
)) = O.

k nns

In fact, all of the matrix elements have the general form
n-l . e

1m
LOa e , where e is a multiple of 2n/n. For the nns terms, it can bem= m

shown that

The summations yield:

II (X(j+l) t ) II 2 _
c nns

n«a 2 ) _(a)2)
n n

(D.8)
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8 5 _ ~ 3 +.1... )1/2/8 3 09 -1/2F(n) =:~ n 3 n 45 n n '\,. n (D.9)

(ILIO)

Since X(j) is proportional to t j, one expects that if t is
c c

"small" IX(j+l). » DX(j+3) I (assume the cycles are symmetrized, so that

X(j+2) vanishes) and if t is "large", IX(j+l) U « IX(j+3) D The
c

interesting value of t is the one which makes DX(j+I). '\, nx(j+3)U; if
c

t is much smaller than this critical value, convergence is expected.c

Assume that one has a (j':2)-order nk-quantum selective subcycle

which is known to converge, so that OX(O)U » DX(2). and nx~j-l)D »
. 1 n~

IX(j+l). To create a j-order nk-quantum selective cycle requires
i nns

The

calculatedwasincreasing the cycle time by a factor of 2n. nx(j+l) D
nns

·+2
by examining the term in the propagator proportional to t J

c

largest nns terms proportional to t~+4, under these assumptions, are:

- r
i>j>k>i>m

terms.

CD .11)

Again a substantial fraction of the r.h.s. cancels or is forced

to be selective. Most of the remaining terms on the r.h.s. cancel with

'ir(j+l) :-(0) 2terms such as <It (H) on the i.h.s. The result is that, if
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Thus, a

converging (j-2)-order nk-quantum selective subcycle implies convergence

for the j-order selective cycle if Uj(O) t II « F(n) -1.
. c

Equation (D.lO) can be used iteratively, to calculate the first nns

term as a function of successively lower-order terms. To begin the

iteration, however, an expression for RX(2)n for a first-order
nns

selective sequence (Figure 2(b) with X¢ nonselective) is needed. It

has been shown that (equation (111.16»:

- -
Xint(t3)Xint(t2)Xint(tl»nns

-
X in this expression is X~, as discussed in relation to Figure 111.3.int 'I'

This can be rewritten as

3(-i/2n6L )(6T)( I
p p i<j<k

+ 1:. I
2 i=j<k

+ 1:. I ) (X . X . J( )
6 i=j=k ¢(~) ¢(J) ¢(k) nns

where ¢(i) is the value of ¢ during i th subcycle. Since the operators

X¢(i) are nonselective, only a few terms in the summations are forced

to be nk-quantum selective (note, however, the sum with i=j=k is nk-

quantum selective, as are a few of the terms in the other sums). The

possible values of i,j and k divide into two sets:

a) i and j are both in the first half of the cycle and k is in the

second half, or i is in the first half and j and k are both in the

second half. In this case the sum over the isolated index reduces to

-CO)
nJ( •

b) i, j and k are all in the same half of the cycle. In this case
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no further reduction is possible. By construction of the sequence,

- (0) (0)
If one assumes dX X,I.,(O)JC,I.,(j)II> = <IIX (J( j( II>

'1-']. 'I-' • ¢ i) ¢ (j ) ,

straightforward algebra then gives:

2
Uj(2) t.-r U2 '\.. n <IX j{ X A 3 11 2 + n <UX-(O)X "ff' n2

'p nns 12 ¢U) ¢(j) ¢(k)Ll'Tp >"8 ¢(j)l1l.¢(k) >

(1).12)

< IIX(O) II" (K ) 2 11 is expected
¢(i)

This implies

CD .13)

The first-order sequence should converge if II (JC¢ (2nt.'T
p
» 2 11 '\., I,

because equation (D.12) then gives 1Ij(2) t.'T II «1. Combining this
p nns

with earlier results, one expects a j-order nk-quantum selective sequence

which is constructed from ; (j+l)

(and therefore has a cycle time t c

phase cycles and t (j+l) symmetrizations

(2n)(j+l)/2t.T ) to converge if
p

= II (j{(O)t )2 11 « F(n)-l
c

These constraints are intended to be conservative~ and Chapter IV

shows that this is indeed the case. The size of the firs t nonselective

term, OX(j+l)II , is
nns
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(D.14)

and 1;1(2) I is given in equation (D .13), so
i nns

CD .15)

We define the selectivity, S, to be Kl / 2SX(O)I/UX(j+l)U which is
nns '

the ratio of a typical nonzero matrix element of x(O) to a typical nonzero

matrix element of t.K(j+l)) . We would like to calculate S as X(O)t
nns c

approaches the limit of convergence, which is B(X(O)t )2 n ~ F(n)-l.
c

Since t - (2n)(j+l)/2~T , a (X(O)~T )2 U ~ (2n)-(j+l)F(n)-1, and:
c p p

0).16)

Equation (D.16) is the same as equation (111.39).
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Appendix E. Some Matrix Relations

This Appendix will only treat properties of matricies that are

101 102
not listed in standard linear algebra textbooks ' and are required

for the calculations of this work.

E.l The Norm of a Matrix

The general definition of a norm of a n x n matrix A is a real-

101valued function A + IAI such that:

IAI > 0 unless A
ij

= 0 for all i, j

I aAl - I al IAD, where A is any scalar

IA + BI < IAU + IBn

(E .1)

(E.2)

(E.3)

Many choices for a norm are consistent with equations (E.1-3). The

9most useful choice for coherent averaging theory is:

By inspection, III = 1, where I is the identity matrix. Several

properties of this norm derive directly from the definition of the trace

of a matrix; for example, lAD is invariant under unitary transformation.

t 2 1/2 .Thus, if A = U AU, lAD = (A
ij

) , the root-mean-squared e1genvalue of

m 2m 1/2A, and IA a = (A..) , which is the square root of the (2m) th moment
1J

of the eigenvalues of A. This implies DAmn > BAlm.

Other useful properties are:

1- I Vi = (Tr(U Ut )/n)1/2 1, where U is any unitary matrix.

2. I AD = (Tr(A At )/n)1/2 = (Tr(At A)/n)1/2 = "At R •

3. lAB" = IBtAtU (from property (2» = DBAD if A and Bare Hermitian.

Property (1) implies that this relation is also true if A and

B are unitary; however, it does not hold for general A and B.
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4. Again let A = U A ut
, where A is diagonal (i.e. A is a normal102

matrix). Then

IAAI ~ (Tr(AAAA)/n)1/2 = (Tr(A2A2)/n)1/2 = (f(A2)ii(A2)ii /n)1/2

Since the norm is invariant under unitary transformation this

implies that IABO 2 IA
2a = IB

2
U, where A and B are any two

similar normal matricies.

5. IABI D (Tr(ABBt At )/n)1/2 = (Tr(At ABBt )/n)1/2 ~ (fj(AtA)ij

(BBt ) In)1/2 < «~ (AtA) J(L.(BBt ) .. )In)112 = nl/2UAn IBn
j i - 1j iJ IJ J 1

so IABO' < nl/2SAI aBO.

6. If A and B are two different matricies, but nothing else is

known about

expected to

them, then (AB)ij is the sum of n numbers which are

add randomly. This means that IABI iJ~ - n (IA B 1
2

)
ik kj

_ n ( I A. k' 2 ) (I B .1 2) so lAB U -., I Aft DBI •
1 kJ

E.2 Exponential Operators

103
The exponential of a matrix is defined by the Taylor series:

2 n
exp(A) = 1 + A + A 12 + . . . + A In! + (E.5)

Exponential operators arise naturally in the solution of the density

matrix equation of motion, and frequently expressions such as exp(iAt)

Bexp(-iAt) must be evaluated. Clearly the unitary transformation which

diagonalizes A also diagonalizes exp(A) , so if A = U A U
t

then

exp(A) ~ U exp(A) Ut (£.6)

(exp(A» .. = 0 .. exp(A) ..
1J 1J 11

If A cannot be diagonalized (either because it is not normal or

because the diagonalization would be too complicated), calculation of
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exp(A) is difficult. The Taylor expansion (E.5) only converges rapidly

if IAI as explained in the last

section. Fortunately, angular momentum is the generator of rotations,

and this fact often makes explicit calculation unnecessary. For example,

exp(-iI ~/2) I exp(iI ~/2) corresponds to a rotation of I by ~/2 about
x z x z

the x-axis, and is therefore equal to-I •
y

Frequently an expression such as exp(A+B) must be simplified. If

[A,B] - 0, then exp(A + B) • exp(A) exp(B); otherwise the expressions

are complicated. . 103-105Some useful expanS10ns are:

exp(A+B) c exp(A)exp(B)exp([B,A] /2)exp(t ([A,(A,B]] + 2[B,[A,B]] ) ...

(E.7)

exp(A)exp(B) = exp(A+B~A,B] /2 + [A,[A,B]]/12 + [[A,B] ,B] /12 + ... )

(E.8)

exp(A) B exp( -A) = B + [A,B] + [A,( A, Bj ] /2 ~ (E.9)

(exp(A+B» ij = ( (A» ~ + B (eXP(A) .. - e:xp(A) 00)exp iiUij ij 11 JJ
Aii - A

jj

+ r BikBkj
k Ajj - ~k

+ ...

{

exp(A)ii - exp(A) ..
JJ

exp(A)kk - eXP(A);;~

~ - Ajj ~j

(E.10)

In equation (E.10) A is assumed to be diagonaL r and B is assumed to

be completely off-diagonal. Equation (E.7) is useful when the commutators

can be readily calculated; for example, if [A,[ A,B}] = [B,[ A,B]] = 0

then exp(A + B) = exp(A) exp(B) exp([B,A]/2). Equation (E.10) is useful
106

if IAI » IBft. because the expansion is in powers of DBn/DAn.



E.3 Tables of Commutators

[1 , 1 ] = iT (eye)
x y z

+ + + ..l.. -
1- • 1 ± 11

y'
[r, 1 ] = ±1-; [ l' , 1 ] = 21

x z z

10 ± -= 1/2 ± 1; [1+,10+] = [1-,10
-] ={10 +, 10

-] = 0;
z

= 10 + _ 10 -;

328

(Lll)

(E .12)

(E .13)

1 = (1~2 1~2) I = (i~2 -i~2) I (1~2 -1~2)x y z

r+. (~ .~) 1 = (~ ~) 1 (; ~)

10 + = (~ ~)
0- (g ~)1 (L14)



REFERENCES

1. O. Stern, Z. Physik. 2, 249 (1921); W. Gerlach and O. Stern,

Ann. Physik. ~, 673 (1924).

2. F. Bloch, W. W. Hansen and M. Packard, Phys. Rev. 70, 474 (1946).

3. E. M. Purcell, H. C. Torrey, and R. Pound, Phys. Rev. ~,

37 (1946).

4. A. Abragam, The Principles of Nuclear Magnetism (Oxford,

London, 1963).

5. C. Slichter, Principles of Magnetic Resonance (Harper & Row,

New York, 1963; Springer-Verlag, Berlin, 1978).

6. T. C. Farrar and E. D. Becker, Pulse and Fourier Transform

NMR (Academic, New York, 1971).

7. R. T. Schumacher, Magnetic Resonance (W. A. Benjamin, New York,

1970).

8. P. L. Corio, Structure of High-Resolution NMR Spectra (Academic,

New York, 1966).

9. U. Haeberlen, "High Resolution NMR in Solids: Selective

Averaging~ Advances in Magnetic Resonance, Supplement 1

(Academic, New York, 1976).

10. I. I. Rabi, N. F. Ramsey and J. Schwinger, Rev. Mod. Phys.

~, 157 (1964).

11. B. L. Silver, Irreducible Tensor Methods (Academic, New York,

1976).

12. M. E. Rose, Elementary Theory of Angular Momentum (Wiley,

New York, 1957).

13. J. W. Emsley and J. C. Lindon, NMR Spectroscopy Using Liquid

Crystal Solvents (Pergamon, Oxford, 1975).

14. Haeberlen, Chapter 2.

329



15. Abragam, Chapter 3.

16. P. Diehl and C. L. ¥~etrapal, "NMR Studies of M~lecules

Oriented in the Nematic Phase of Liquid Crystals", NMR:

Basic Principles and Progress, vol. 1.

17. A. Saupe, Z. Naturforsch. 19a, 161 (1964).

18. B. Bhagavantam and D. Suryanarayana, Acta. Cryst. !, 21

(1949).

19. H. A. Jahn, Z. Krista11. 98, 191 (1933).

20. Corio, p. 160.

21. I. J. Lowe and R. E. Norberg, Phys. Rev. 94, 630 (1954).

22. Ems1ey and Lindon, Chapter 2.

23. P. Diehl, H. Kellerhals, and E. Lustig, "Computer Assistance

in the Analysis of High-Resolution NMR Spectra", NMR: Basic

Principles and Progress, volume 6 (Springer-Verlag, Berlin,

1972); Ems1ey and Lindon, p. 75.

24. Z. Luz and S. Meiboom, J. Chem. Phys. 59, 1077 (1973).

25. B. J. Gaffney and H. M. McConnell, J. Mag. Res. ~, 1 (1974).

26. J. Seelig and W. Niederberger, J. Am. CheM. Soc. 96, 2069

(1974); J. Seelig and W. Niederberger, Biochem. 13, 1585

(1974); A. Seelig and J. Seelig, Biochem. 13, 4839 (1974);

J. Schindler and J. Seelig, Biochem. ~, 2283 (1975); J.

Seelig and A. Seelig, Biochem. Biophys. Res. Commun. ~,

406 (1974).

27. P. Diehl and C. L. Khetrapal, Canad. J. Chem. 47, 1411 (1969).

28. S. Vega, T. W. Shattuck, and A, Pines, Phys. Rev. Lett.

]2, 43 (1976); A. Pines, D. Wemmer, J. Tang and S. Sinton,

Bull. Am. Phys. Soc. ~, 23 (1978).

330



29. G. Drobny, A. Pines, S. Sinton, D. Weitekamp, and D. Wemmer,

Faraday Division of the Chemical Society Symposium 11,

49 (1979).

30. G. Bodenhausen, R. L. VoId, and R. R. VoId, J. Mag. Res. 12,

93 (1980).

31. M. E. Stoll, A. J. Vega, and R. W. Vaughan, J. Chern. Phys.

~, 2029 (1977).

32. W. P. Aue, E. Bartholdi, and R. R. Ernst, J. Chern. Phys.

64, 2229-2246 (1976); A. Wokaun and R. R. Ernst, Chern. Phys.

Lett. ~, 407 (1977).

33. H. Hatanaka, T. Terao, and T. Hashi, J. Phys. Soc. Jpn.

~, 835-836 (1975); H. Hatanaka and T. Hashi, J. Phys. Soc.

Jpn. ~, 1139 (1975).

34. A. Wokaun and R. R. Ernst, Malec. Phys. 36, 317 (1978).

35. This section is similar to W. S. Warren and A. Pines,

"Analogy of Multiple-Quantum NMR. to Isotopic Spin Labeling",

J. Am. Chem. Soc. (in press).

36. E. L. Hahn, Phys. Rev. 80, 580 (1950).

37a. H. Y. Carr and E. M. Purcell, Phys. Rev. ~, 630 (1954).

37b. S. Meiboom and G. Gill, Rev. Sci. Instrum. ~, 688 (1958).

38. R. E. Smalley, B. L. Ramakrishna, D. H. Levy, and L. Wharton,

J. Chem. Phys. 61, 4363 (1974).

39. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill:

New York, 1964).

40. R. G. Jones, NMR.: Basic Principles and Progress, vol. 1;

(Springer-Verlag: Berlin, 1969), pp. 97-174.

41. H. C. Longuet-Higgins, Mol. Phys. ~, 445 (1963);

J. T. Hougen, J. Chern. Phys. ~, 358 (1963).

331



332

42. J. Tang and A. Pines, J. Chem. Phys. ~, 3290 (1980).

43. A. Saupe, Z. Naturforsch. 20a, 572 (1965).

44. P. Diehl, H. Bosiger, and H. Zimmermann, J. Mag. Res. ll,

113 (1979).

45. J. Tang and A. Pines, J. Chem. Phys. 11, 2512 (1980).

46. C. Wi11egerodt and F. Durr, Chem. Ber. 20, 539 (1887); T. Koide,

T. Oda and I. Nitta, Bull. Chern. Soc. Jap. ~. 738 (1956);

T. Koide, Bull. Chem. Soc. Jap. 40, 2026 (1967).

47a. W. Niederberger, P. Diehl, and L. Lunazzi, Mol. Phys. ~,

571 (1973).

b. J. W. Emsley~ J. C. Lindon, D. S. Stephenson. L. Lunazzi,

and S. Pulga, J. Chem. Soc. Perkin II 1541 (1975).

48. S. Sinton and A. Pines, Chem. Phys. Lett. (in press);

S. Sinton and J. B. Murdoch, private communications.

49. G. W. Gray and A. Mosley, Mol. Crys. Liq. Crys. ~, 71 (1976).

50. W. A. Anderson, Phys. Rev. 104, 850 (1956).

51. J. I. Kaplan and S. Meiboom, Phys. Rev. 106, 499 (1957).

52. S. Yatsiv, Phys. Rev. 113, 1522 (1959).

53. W. A. Anderson, R. Freeman and C. A. Reilly, J. Chem. Phys. ~,

1518 (1963).

54. J. I. Musher, J. Chem. Phys. 40, 983 (1964).

55. D. S. Saxon, Elementary Quantum Mechanics (Holden-Day, San Francisco,

1968).

56. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon,

Oxford, 1958).

57. F. Bloch, Phys. Rev. LQ, 460 (1946).

58. A. G. Redfield, Adv. Mag. Reson., volume 1 (Academic, New York,

1965).



333

59. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955).

60. C. N. Banwell and E. Primas, Mol. Phys. ~, 225 (1963).

61. S. Vega and A. Pines, J. Chem. Phys. 66, 5624 (1977).

62. A. Wokaun and R. R. Ernst, J. Chem. Phys. ~, 1752 (1977);

S. Vega, J. Chem. Phys. ~, 5518 (1978).

63. D. Wemmer, Ph.D. Thesis, University of California, Berkeley (1979,

published as Lawrence Berkeley Laboratory Report LBL-8042).

64. A. A. Mauds1ey, A. Wokaun and R. R. Ernst, Chem. Phys. Lett.

55, 9 (1978); A. Bax, P. G. Dejong, A. F. Meh1kopf and J. Smidt,

Chem. Phys. Lett. 69, 567 (1980).

65. C. S. Yannoni, J. Am. Chem. Soc. ~, 5237 (1970).

66. J. B. Murdoch, private communication; J. B. Murdoch, W. S. Warren

and A. Pines, to be published.

67. W. S. Warren, S. Sinton, D. P. Weitekamp and A. Pines, Phys. Rev.

~, 1791 (1979); W. S. Warren, D. P. Weitekamp and A. Pines, J. Mag.

Reson. 40, 571 (1980).

68. W. S. Warren, D. P. Weitekamp and A. Pines, J. Chem. Phys. 21,

2084 (1980).

69. G. Drobny, A. Pines, S. Sinton, W. S. Warren and D. P. Weitekamp,

Proc. Royal Soc. (in press).

70. W. S. Warren and A. Pines, J. Chem. Phys., submitted.

71. U. Haeber1en and J. S. Waugh, Phys. Rev. 175, 453 (1968).

72. M. Mehring, High Resolution NMR Spectroscopy in Solids (Springer­

Verlag, Berlin, 1976).

73. W. Magnus, Commun. Pure Appl. Math. 1, 649 (1954).

74. J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20,

180 (1968).

75. D. P. Burum and W. K. Rhim, J. Chem. Phys. 2!, 944 (1979).



76. Raeber1en, ref. 9, p. 178.

334

77. w. K. Rhim, A. Pines, and J. s. ~augh, Phys. P~v. B 1, 684 r1 Q71 \
\. .. "", .... /.

78. F. A. Bovey, NMR Data Tables for Organic Compounds, volume 1

(Wiley, New York, 1967), p. 37.

79. G. Drobney, to be published.

80. D. Weitekamp, private communication.

81. G. Drobny, private communication; G. Drobny, D. P. Weitekamp,

W. S. Warren and A. Pines, to be published.

82. J. E. Kilpatrick, K. S. Pitzer and R. Spitzer, J. Am. Chem. Soc.

69, 2483 (1947); B. R. Henry, I-F. Hung, R. A. MacPhail, and

H. L. Strauss, J. Am. Chern. Soc. 102, 515 (1980).

83. J. Jeener, presented to Ampere Summer School, Rasko Po1je,

Yugoslavia, 1971; A. Kumar, D. We1ti and R. R. Ernst, J. Mag.

Reson. 18, 69 (1975); L. Muller, A. Kumar and R. R. Ernst, J. Chern.

Phys. ~, 5490 (1975);

G. Bodenhausen, R. Freeman, R. Niedermeyer and D. Turner, J. Mag.

&eson. ~, 133 (1977).

84. Willy Chao-Wei Shih, Ph.D. Thesis, University of California,

Berkeley (1979, published as Lawrence Berkeley Laboratory report

LBL-10097) .

85. Ems1ey and Lindon, section 4.2;

H. G. Hertz, Prog. Nucl. Mag. Res. Spectr. 1, 159 (1967);

L. C. Snyder and S. Meiboom, J. Chern." Phys. 44, 4057 (1966).

86. J. Kaplan, J. Chern. Phys. ~, 278 (1958); J. Kaplan, J. Chern. Phys.

~, 462 (1958); J. M. Anderson and A. C-F. Lee, J. Mag. Res.

1, 427 (1970).

87. S. Alexander, J. Chem. Phys. 1I, 967 (1972); J. Chern. Phys.

lZ., 974 (1962).



335

88. P. D. Buckley, K. W. Jolley and D. N. Pinder, Prog. Nucl.

~~g. Res. Spectr. lQ, 1 (1975).

89. G. Binsch, Lecture notes from Bat-Sheva Workshop on Magnetic

Resonance Spectroscopy, Rehovot, Israel, Sept. 1979;

G. Binsch, "Band-Shape Analysis," Dynamic Nuclear Magnetic

Resonance Spectroscopy (L. M. Jackson and F. A. Cotton, editors;

Academic, N. Y., 1975), p. 45-82; R. A. Hoffman, Adv. Mag. Reson.

!!-, 88 (1970).

90. U. Fano, Rev. Mod. Phys. ~, 74 (1957)

91. C. E. Shannon, Bell Syst. Techn. J. (1948); N. Wiener, Cybernetics

(MIT Press, Cambridge, 1948).

92. J. von Neumann, Mathematical Foundations of Quantum Mechanics

(Princeton U. P., Princeton 1955), Chap. V.

93. For a recent set of reviews see The Maximum Entropy Formalism

M. Tribus and R. D. Levine, eds (M.I.T. Press, Cambridge, 1978).

94. W. M. Elsasser, Ph¥s. Rev. ~, 987 (1937).

95. R. L. Stratonovich, Sov. Phys. J.E.T.P. 1,426 (1955).

96. E. T. Jaynes, Phys. Rev. 108, 171 (1957) and in ref. 93.

97. E. H. Wichmann, J. Math. Phys. !!-, 888 (1963).

98. A. Katz, Principles of Statistical Mechanics (Freeman, San Francisco,

1967) .

99. Y. Alhassid and R. D. Levine, J. Chern. Phys. 67, 4321 (1977), and

in ref. 93.

100. See, for example, M. Brout, Phys. Rev. 115, 824 (1959); R. M. Mazo,

J. Chem. Phys. ~, 1224 (1963); or for a different context K. F. Freed,

J. Chem. Phys. ~, 5588 (1971).

101. C. H. Edwards, Advanced Calculus of Several Variables (Academic,

New York, 1973).



102. F. Ayres, Jr., Theory and Problems of Matricies, Schaum's Outline

Series in Mathematics (McGraw-Rill, New York, 1962).

103. W. Magnus, Comm. Pure Appl. Math, 2, 649 (1954).

104. R. M. Wilcox, J. Math. Phys. ~, 962 (1967).

105. J. E. Campbell. Proc. London Math. Soc. 29, 19 (1898).

H. F. Baker, Proc. London Math Soc. 34, 347 (1902).

F. Hausdorf, Ber. Verhandl. Saechs. Aka. Wiss. Leipzig,

Math-Natur, Kl. 58, 19 (1906).

106. Corio, Appendix III.

336


