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Abstract
The observation of multiple-quantum nuclear magnetic resonance

transitions in isotropic or anisotropic liquids is shown to give readily
interpretable information on molecular configurations, rates of motional
processes, and intramolecular interactions. However, the observed
intensity of high multiple-quantum transitions falls off dramatically as
the number of coupled spins increases. The theory of multiple-quantum
NMR is developed through the density matrix formalism, and exact inten-
sities are derived for several cases (isotropic first-order systems and

anisotropic systems with high symmetry) to show that this intensity

decrease is expected if standard multiple-quantum pulse sequences are used.

New pulse sequences are developed which excite coherences and produce
population inversions only between selected states, even though other
transitions are simultaneously resonant. One type of selective excita-
tion presented only allows molecules to absorb and emit photons in
groups of n. Coherent averaging theory is extended to describe these
selective sequences, and to design sequences which are selective to
arbitrarily high order in the Magnus expansion. This theory and computer

calculations both show that extremely good selectivity and large signal



enhancements are possible. For example, the 1l0-quantum transition in

a 10-spin system can be enhanced by more than four ﬁrders of magnitude.
Other types of selective excitation presented include selection of only
transitions with Al symmetry, elimination of zero—quantum transitions,
excitation with only a.few pulses in isotropic and anisotropic systems,
and excitation from nonequilibrium initial conditions. Experiments

with four-quantum, six-quantum, and eight-quantum selection verify the
coherent averaging and computer calculations. Noise reduction from
two-dimensional spectroscopy, multiple-quantum NMR in exchanging systems,

and statistical aspects of multiple-quantum coheremce (including an

. information theory treatment) are also presented.
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I. Introduction and Overview

1.1 The Basic Magnetic Resonance Experiment
The observation of energy level differences between spin states
in a magnetic field dates back to the experiments of Stern and Gerlach
in 1922} However, measurement of these differences for-nuclear spins
in bulk material, with the possibility of observing the effects of
interatomic interactions, did not occur until more than twenty years

later.z’3

The development of nuclear magnetic resonance since that
time has been phenomenal. This development has been summarized else-
where.4_8 It is important, however, to point out the reasons why

NMR has become so useful, and the information which can be egtracted
from spectra.

Every nucleus has a characteristic total spin angular momentum
hZI(I+l), where 21 must be a nonnegative integer; for protons I=1/2.
When the nucleus is placed in a static magnetic field BOE, the
z-component of this spin angular momentum is quantized. It is
restricted to Iz = mh , where m can take on any of the (2I+l) values
-I, -I+1, ..., I. This angular momentum generates a magnetic dipole
moment U, whose interaction with the applied field (the Zeeman inter-
action) has the classical form E = —H.Eo = —hymBo. The energy levels
are therefore bounded and discrete, and if no other interactions are
present the spectrum can only give the value of Yy, which has been
measured for virtually every known nucleus (or Bo if v is known).

Thus, the interactions are what makes nuclear magnetic resonance
interesting. It is useful to think of the interacting group of N spins
as a composite system. For example, if I = 1/2, the total z-component

of the angular momentum M = I m, can have any of 2N values from
i



M = -N/2 to M = N/2. 1If interactions are ignored, all of the
(N!/((N/2)4M) 1 ((N/2)-M)!) energy levels with a fixed value of M are
degenerate. The interactions break this degeneracy. The energy
splittings that are produced are much smaller than the Zeeman energy
splittings for all the cases to be considered in this Qork, 50 the
energy levels end up as in Figure I.1l. There are 2N distinct energy
levels in a system with N spins -1/2, and if transitions between any

- two levels are allowed there can be ZN(2N—1) different transitions.

1.2 The Spin Hamiltonian

A macroscopic sample might contain 1018 nuclei, and if N = 1018
the number of energy levels is astronomically large. If all of these
are nondegenerate, the individual transitions will certainly not be
resolvable. Fortunately the degeneracy is often not completely
lifted; the amount of degeneracy which remains (and hence the number
of distinct transitions) is determined by the form of the spin
Hamiltonian.

The terms in the spin Hamiltonian which will be considered in

this work (in rough order of decreasing strength) are:

1.2.1 Zeeman Hamiltonian

H = -Ihy,BI . =-Lw I . (in units of h = 1), where I , is
Z i 'iozi i o zi zi
the operator for the z-component of the spin angular momentum of
the ith spin. If all the spins are identical, this is written as
H, = —wOIZ. This term will be present in all of the systems to be

9
considered in this work. Typically BO N 50 kG, which makes w, 10

rad/sec for protons.
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Figure I.1 Schematic energy level diagram for a system of N spins~
1/2 without symmetry. All the eigenstates can be nondegenerate.

The manifolds correspond to different values of M, and have degeneracy

N!/((N/2)RM) L ((N/2)-M)!.



1.2.2 Radio Frequency Hamiltonian

If an oscillating radio frequency (rf) magnetic field
-Bl(t)cos(wt+¢(t))i is applied to the sample it will cause an
interaction of the form Hrf = - EYiBl(t)cos(mt+¢(t))Ixi = -ZZwl
cos(wt+¢(t))1xi. If all the spins are identical, this is written
as Hrf = —2wl(t)cos(wt+¢(t))lx. The interesting case is w v W
and in this case one normally goes to an interaction representation

(the "rotating frame"l10

defined by ¥ = exp(—imIzt) Hexp(iwIzt).
The mathematical details will be postponed until Chapter II, but
the effect is to make the system appear to evolve under a Zeeman

Hamiltonian

Ki = -(wo—w)Iz = AwIz (I.1)

and an rf Hamiltonian

P —wl(t){Ixcos¢(t)+1ysin¢(t)} . , (1.2)

Other terms also appear, but they oscillate at high frequencies and
are neglected (the "rotating wave approximation").lo The magnitude
of w, is controlled by the experimenter.

1
1.2.3 Quadrupolar Hamiltonian

A nucleus with spin I > 1 has an interaction with electric

field gradients of the form

1.7 (1.3)

n 3T
P! 1

ndg

B
§2v
S8

must be traceless and symmetric (i.e., an irreducible

11,12 1 .5 ¢ 2
second-rank tensor ) and this implies that H_ =1 I C_.(T))..
Q i m=-2 mi mi

where ViB = (a,B = x,y, or z), the second derivatives of the

a
i

NG o

potential.

2 s
In the rotating wave approximation only (TO)i (the secular term, which
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commutes with Iz) survives. For example, if the gradients are
axially symmetric this term can be explicitly written as

i

eqQ,
o=y —2 22 (3I§i—I(I+1)) (1.4)

Q 5 41(2I-1)

where Qi is the quadrupole moment of the ith nucleus.

1.2.4 Direct and Indirect Dipole-Dipole Hamiltonian

Any two magnetic moments ul and u2 have an interaction energy,

which can be written as

> > -> j_j >
HD noox Ii'D °I, ’ HJ LD Ii‘J °I, (1.5)
i>j e J i>j pnd J

ij

D represents the direct interaction (the energy of one dipole

in the magnetic field of the other), and is traceless and symmetric.

i
JHd represents the indirect interaction (for example, one dipole
induces a magnetic moment in surrounding electrons, which then
interacts with the other dipole).4’5’13 J* is not necessarily
. . . , 14
traceless or symmetric, but the antisymmetric part is unobservable.
If all the nuclei are identical, the secular terms can be written
explicitly as
v Yiy.(3cos29,,—l)
¥ .= D (3 .1 ~I-I) , D =-—b ~— (1.6)
D co. 1] zi“zj T1i 73 ij 3
i>j rij

where eij is the angle between the z-axis and the internuclear vector

: > >
.= £ J..(1.-T.) + J3iso3r 1 7.7 . (1.7)



Most of the systems to be discussed in this work have ﬂb as

the dominant term in the Hamiltonian. Since the terms Dij depend

on eij and rij’ they supply a wealth of structural information. The
terms J,, are sensitive to the electronic configuration.

ij
The secular part of the couplings between two unlike spins I and

S has a somewhat different form. In this case, only those terms which

commute with both Iz and Sz are retained, which gives

=T 2Dij(IziSzj)

i>j
.= % J,.( .8 .) .
J I3
1> ij "zi zj

Frequently the homonuclear and heteronuclear cases are
distinguished by writing aij instead of Dij for homonuclear pairs,

and bij for heteronuclear pairs. A similar distinction can be made

for ﬂ&,
1.2.5 Chemical Shift Hamiltonian

but it will not be needed in this work.

Electrons induce a magnetic field -oi'Boﬁ at the site of the ith

~

nucleus. This magnetic field interacts with the nuclear magnetic

moment to produce the chemical shift Hamiltonian

-
X ~nzl-0leps X , (1.8)
cs i i~ o

The secular term can be written as

X =-I0 1, . (1.9)
cs {zi .

; B 3 A E X i 4 q 4
N A & § K i ] i B
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1.2.6 Simplifications of the Hamiltonian

In the most general case, all of the terms in the Hamiltonian

‘of the last subsection must be retained. However, in many systems

some of these terms can be eliminated. Three special cases will be

considered.
1.2.6.1 Solid Samples
¥ is usually the dominant term in the Hamiltonian if I > 1/2.

Q

For protons, however, ﬁb = 0, and Hb dominates. The summations over
nuclei must theoretically run over the entire sample, but crystal
symmetries may simplify this calculation somewhat.15 The spectrum
generally does not contain resolvable lines. A typical spectral width
for proton transitions with AM = 1 is 50 KHz.

The small terms in the Hamiltonian, such as Hés’ do not produce
observable effects in the presence of ﬂb or Hb. However, different
terms have different symmetry properties under manipulations in spin
or coordinate space. For example, both the spatial parts and the spin
parts of Hb and Hb are irreducible second-rank tensors; the spatial
part of “ﬁs is the sum of an irreducible zero-rank tensor and an
irreducible second-rank tensor, and the spin part is a first-rank
tensor. Techniques for discriminating between tensors of different
rank aredetailed in reference (9), and one of these techniques (line-
narrowing rf pulse sequences) will be discussed in Chapter I1I.

1.2.6.2 Isotropic Liquid Samples

All the molecules in isotropic samples undergo rapid diffusion

and reorientation. As a result, the spatial terms in the operators

N <

and J must be averaged over all orientations, and only the

b

nQ

?

R -
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isotropic (zero-rank tensor) portions survive. This implies that
.Kb, ﬂb, and Ji?lso vanish. The total homonuclear Hamiltonian is
then

X =0l -I0I,+ L J. .(I.-1) (1.10)
= 4w - . °1, .
z z i zi 1> i1 73

in the absence of rf irradiation. 1In addition, all intermolecular
couplings vanish, so the summations only involve the spins of a
single molecule. This simple Hamiltonian produces relatively few

distinct transitions.

Isotropic spectra are of course useful for compound identification,

because the chemical shifts of different electronic environments
are well known. The spectral width is proportional to the static
field. For protons at 50 kG, the maximum width for transitions

with AM = 1 is about 2 kHz, and individual transitions are often

less than 1 Hz wide.

1.2.6.3 Anisotropic Liquid Samples

A liquid crystal becomes partially oriented when placed in a
large magnetic field, as will most molecules dissolved in a liquid

13,16 Rapid diffusion still occurs, but the molecules have

crystal.
a preferred direction so reorientation is not isotropic. The
diffusion causes all intermolecular couplings to vanish, as in the
case of isotropic liquids. However, intramolecular couplings are
only partially averaged.

The most important case to be considered in this work is the

case where the only spins are protons. The Hamiltonian is then



Ji

48 A 4B dE A8 48 4N F il.l i C- ] i.l’ ‘ll' i'll' ill' illl dll' d!ll

9
H o= L D (LT ~TeT)+ I J (I-T)-Z0 1 +h1
z 1> ij N 3j i>5 j J ; 1oz z
(1.11)
where
Y,Y.
D. .= ——131— <3cos 6. .-1> . (I.12)
T ger >
1]
J??lso is usually negligible for protons, and HQ = 0.

The averaging in equation (I.11) is over all allowed orientations
(averaged values must also be used for Jij and Oi). Dij can also be

expressed in terms of the molecular ordering matrix Sa

5"

SaB =1/2 <3 cosema coseBa - 6a8>

where eaa is the angle made by the o axis (molecular coordinate

system) with the a axis (the laboratory coordinate system direction

of the static field BO). § is traceless and symmetric, and the number

of independent components depends on the symmetry of the molecule.lg’19

The important point is that the terms Dij depend on <rij_3>, eij’ and

at most five ordering parameters, so they convey structural information.
The only term added in going from isotropic to anisotropic

liquids is #_, but anisotropic spectra generally have more transi-

tions. A typical spectral width for transitions with AM = 1 is

10 kHz for molecules dissolved in a liquid crystal, and 40 kHz for

the liquid crystal itself. 1If the individual transitions are

resolvable, they will typically be no more than a few Hz wide.

1.3 Selection Rules and Spectral Complexity

The different systems of section 1.2.6 were compared in terms



10
of the spectral width for transitioms with AM = 1. Historically
these were the first transitions to be observed. 1In fact it can

‘be shown (and will be shown in section 2.2) that in the limit of
weak irradiation AM = 1 transitions are the only ones allowed.20
This selection rule also holds for the transitions induced by a
single strong pulse.6’21 Spectra produced by one of these two
techniques will be termed single-quantum or conventional. If the
single-quantum spectrum is resolvable, it is in principle possible
to determine the coefficients Dij’ Jij or Oi. Sometimes this
analysis can be done by hand, as with first-order isotropic

8,22 More often the

spectra8 or small, highly symmetric molecules.
analysis requires a computer calculation.23 If the spectrum is not
resolvable, however, this analysis becomes impossible. Thus, for
example, individual couplings are not observed in solids.
The situation is somewhat better with liquid samples. However,
the number of allowed single-quantum transitions grows very rapidly
as the number of spins increases. This is illustrated for the
proton spectra of anisotropic systems by Figure I.2. If only a
few protons are present, all of the transitions are easily resolvable,
but the spectra become extremely complex if more than five or six
spins are present. As aﬁ example of this spectral compléxity,
consider the proton spectrum of oriented cyclooctatetraene, which
is a fairly small molecule. The symmetry dictates that there are
only six unique Dij values and one value for Oi’ yet there are 2070
distinct t:ransitions.24 Clearly most of the lines give redundant
information and these additional lines can make analysis impossible.
One approach to simplifying spectra is isotopic substitution (for

example, replacing protons with deuterons). This NMR version of a spin
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Figure I.2 The single-quantum spectra of several oriented molecules.
The number of transitions increases dramatically as the number of

spins is increased. (Figure courtesy of Dr. Zeev Luz.)
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, 25,26
labeling experiment is useful, since replacing most of the protons

reduces the number of possible transitions. Thus, one way to find
the six coupling constants of oriented cyclooctatetraene would be
to synthesize the six different species which have only two protons.
Each of these species would have a simple spectrum. This approach

13,24,27 but it

has been extensively used to study large molecules,
has two important disadvantages: isotopic substitution may change
the molecular configuration, the order parameters,27 or the rate of
internal processes, and synthesis of selectively labeled molecules
is often difficult.

Pulse sequences (to be discussed in Chapter II) have been
designed which overcome the selection rule AM = 1 of conventional
NMR spectroscopy, thus permitting the observation of transitions
between states with arbitrary AM.28_34 These multiple~quantum
transitions can also be used to determine the dipole-dipole coupling
constants. In addition, because the number of possibly distinct
transitions falls off rapidly as AM increases, multiple-quantum
spectra do not require isotopic labeling to make them resolvable.

In fact, the observation of multiple-quantum transitions is a
practical alternmative to isoﬁopic labeling, and there is a great
deal of similarity between these two techniques. Roughly speaking,

the coherent flipping of n out of N spins inherently labels the

(N-n) spins left behind. These ideas will be made more quantitative

in the next section.
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1.4 The Information Content of Spectra35

1.4.1 General Spin Systems

Consider the energy level diagram for a system of N spins - 1/2,
ijllustrated in Figure I.1. The energy levels are broken up into
manifolds of states with equal M, and the degeneracies of the
manifolds are N!/((N/2)-M)!((N/2)+M)! If the overall Hamiltonian has
absolutely no symmetry elements, all of the levels can be nondegenerate
and the number of distinct n-quantum transitions is (2N)!/(N+-n)!(N--n)!34

For example, there is only one transition with AM = N, because
there is only one state with M = N/2 (all spins o) and only one
state with M = =N/2 (all spins B). Even if the overall Hamiltonian
has no symmetry, some parts of it have allowed symmetry operations.

For example, Mb and Hﬁ contain only bilinear operators, and are
unaffected by flipping all the spins. This means that the energy
of the N-quantum transitions have no direct or indirect dipole
coupling term. On the other hand, all the terms in ﬂEs and ﬂé

are linear, so they are multiplied by -1 when all the spins are

flipped. It is then easy to see that

1 1
< ailalen a;> = <l aiIJ(DH(J!I.I a> -5 Lo, +5 Nw (1.13)
i i i i
B H[TB>=<Ta |+ |[Ta>+Ic0, -3 Nw (1.14)
. 1z, i ., 1’ D J', i 2 i 2
1 1 1 1
AE = NAw - L 0, . (1.15)

Therefore, the N-quantum transition gives the resonance offset

(or, if chemical shifts are present, the sum of the shifts) directly.
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The result is the same, no matter what the sample is; of course, if
the sample is a solid, this formula applies strictly only to the
1018—quantum transition (or however many spins are present) unless
the spins of interest are sufficiently dilute to make long-range
couplings negligible.

The frequency of a single transition contains very little informa-
tion about complicated molecules. The (N-1l)-quantum and (N-2)-quantum
spectra are still flar simpler than the single-quantum spectrum, but
contain enough transitions to be useful. There are N states with
M= ((N/2)-1), and (NZ—N)/Z states with M = = ((N/2)-2). The number
of allowed transitions involving these states depends on the symmetry
of the Hamiltonian. If absolutely no symmetry elements are present
(as is possible in an isotropic system), there are 2N (N-1)-quantum
transitions and N(2N-1) (N-2)-quantum transitions. In such an
isotropic system there are N chemical shifts and N(N-1)/2 spin-spin
couplings, so the (N-1)-quantum and (N-2)-quantum spectra generally
contain enough transitions for a complete assignment. As mentioned
earlier, a typical tramnsition is less than 1 Hz wide in a homogeneous
magnet, and the spectral width might typically be 1 KHz, so these
transitions are usually resolvable.

A totally unsymmetrical anisotropic system would have N(N-1)/2
direct dipolar couplings, the same number of indirect couplings, and
N chemical shifts. ﬂb is usually a few orders of magnitude larger
than Més’ and the chemical shifts can be suppressed without affecting
ﬂb36’37 (see section II1.1) so for the rest of the section Més in
anisotropic systems will be ignored. In this case the (N-1)-quantum

spectrum has N pairs of lines (M = (N/2)-1 > M = N/2, or M = N/2 -

.
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M= -((N/2)-1), and is symmetric about (N-1)Aw. This spectrum

is similar to the single-quantum spectrum which could be produced

if all of the molecules were cooled down into the ground state

M= -N/2;38 the only allowed transitions in that case would be to

M = -((N/2)-1) states, so N lines would be produced, and the
frequencies are the same as those of half the lines in the (N-1)-
quantum spectrum if Aw = 0. The (N-2)-quantum spectrum is also
symmetric, and has N(N-1) pairs of lines (M = N/2 -~ M = —((N/2)-2),
M= (N/2)-1 > ¥ = -((N/2)-1),or M = (N/2)-2 + M = -N/2) plus a highly
degenerate peak at (N-2)Aw, arising from transitions between any
M=(N/2)-1 eigenstate and the M = -((N/2)-1) eigenstate generated by
flipping all the spins. There are N(N-1) possibly different direct
and indirect couplings, so roughly this many pairs of lines are needed
for complete characterization. Typically, each transition would be a
few Hz wide, out of a total spectral width of many KHz. Therefore,
the (N-1l)-quantum and (N-2)-quantum transitions for anisotropic
systems are also usually resolvable, and assigmment of these two spectra
is sufficient to determine all dipolar couplings.

If the Hamiltonian has additional symmetry operations on an NMR
time scale, the number of transitions decreases, because the eigen-
states can be assigned to several irreducible representations (Figure
I.3). Since the multiple-quantum spectra contain few lines to begin
with, symmetry effects are easily noticed. The number of tramsitions
can be determined by generating symmetry adapted states and this has
been done for general isotropic systems.34 However, for anisotropic
systems this process can be quite involved. If only the number of

transitions is required, simpler symmetry arguments will suffice.
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Figure I.3 Schematic energy level diagram for a system of N spins-1/2
with symmetry. The states with M = *N/2 belong to the totally

symmetric representation A.,, so all N-quantum or (N-1)-gquantum

1

transitions are in that representation. (N-2)-quantum transitions

can come from other representations as well.
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1.4.2 Symmetry Considerations for Anisotropic Systems and Analogy to

Isotopic Spin Labeling

Consider first the (N-l)-quantum spectrum. The states with
M=N/2 (all spins a) and M=-N/2 (all spins B) are invariant to all
molecular symmetry operations, hence they belong to the totally

symmetric representation A Therefore, the (N-1)-quantum transitions

1
all have Al symmetry, and each Al

generate one transition, as will each A eigenstate for M=-((N/2)-1).

There is no symmetry reason for any of these transitions to be

eigenstate for M=(N/2)-1 will

degenerate. In the spin product (SP) basis set, the states with
M=((N/2)-1) are the N states with (N-1) spins a, and the remaining
spin B8; the opposite is true for M=-((N/2)-1). Al symmetry adapted
states can be generated from this basis set by taking one SP state
and applying all the symmetry operations of the spin system to it.39
If this process is repeated for all the SP states, all the Al states
are generated.

The symmetry operations of the spin system can be described
from two different perspectives. Symmetry operations such as planes
or axes of rotation can be defined, and eigenstates can be classified
according to their behavior under these symmetry operations.39 A
more versatile approach, which we will use here, is to describe
symmetry operations by allowed permutations of the nuclei.ao’41
Two nuclel a and b are magnetically equivalent if there is a symmetry
operation which turns a into b; this same symmetry operation need

not convert b into a. If no such operation exists, the nuclei are

inequivalent. Since each state in the SP basis for M = *((N/2)-1)
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can be described by its single different spin, this definition implies
that the number of Al symmetry adapted states will be equal to the
.number of inequivalent spins. Thus, each inequivalent spin produces
one pair of (N-1)-quantum lines.

Spin product states are more easily visualized than are symmetry
adapted eigenstates, and therefore it is convemient to work in this
basis. It can be shown readily that the number of distinct n-quantum
transitions can be determined from any convenient basis set (not
necessarily the eigenbasis) by counting the number of n-quantum
matrix elements which can evolve independently. Therefore, the number
of transitions'(but not the transition frequencies) can be determined
in the spin product basis. In this basis, an (N-l)-quantum matrix
element corresponds to flipping (N-1) spins in the local field of one
spin; 1t 1is still a proton, but it is distinguishable from all thne
other spins. The spin can be either a or B, so we expect one pair of
lines for each inequivalent spin; if two spins are equivalent, there
is a symmetry element which forces the two corresponding (N-1)-quantum
matrix elements to be equal at all times. The number of inequivalent
spins 1s equal to the number of possible monosubstituted species, so
we assign one pair of lines to each of those species.

The number of (N~2)-quantum transitionsrcan also be easily
determined in the SP basis set, and symmetry arguments (given in
Appendix A) show that the following counting scheme is correct.

There are two fundamentally different ways to generate an (N-2)-
quantum transition in the SP basis set. One way to generate an (N-2)-
quantum transition is to flip all N spins, starting from a state with

one spin B and the rest a; therefore, these transitions correspond to
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M= (N/2)-1 + M = =((N/2)-1). Since all the spins flip, these N

transitions have no dipolar energy, so they all occur at (N-2)Aw.

An (N-2)-quantum transition can also be generated by flipping (N-2)

spins in the local field of the remaining two, which we label x and
y. The number of distinguishable ways in which two spins can be
chosen out of N is determined by the symmetry of the molecule. It
is equal to the number of different species with (N-2) isotopic labels.
The two remaining spins may be aa, aB, Ba, or BB, which gives a quartet
if there is no symmetry element x *+y, y * x, and a triplet if there is
such a symmetry element (because then af and Ba are equivalent).
Therefore, each unique ordered pair (xy) of spins in the molecule
gives one pair of lines; in addition, there is always a highly
degenerate peak at (N-2)Aw.

(N-3)-quantum transitions and lower orders can also be counted
by similar schemes. However, the arguments above show that there is
always at least one pair of lines in the (N-2)-quantum spectrum for
each unique direct coupling constant, so the (N-3)-quantum spectrum
mainly provides redundant structural information. In addition, the
effects of intramolecular motion, if they can be detected at all by
NMR, can be detected in the (N-1)- or (N-2)-quantum spectra. Any
process which causes exchange or pseudoexchange (rotation about a
bond, for example) between inequivalent sites would decrease the
number of possible monosubstituted species, and therefore would
affect the (N-l)-quantum spectrum. If only magnetically equivalent
sites are involved, the motion operator commutes with the Hamiltonian

in equation (I.1l1)unless the ordered pair of spins (ij) is transformed
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into an inequivalent ordered pair (kl). Since this process would
decrease the number of possible disubstituted species, it affects
Athe (N-2)-quantum spectrum. The main advantage of assigning
transitions in the (N-3)-quantum spectra or lower-quantum spectra is
that the additional line assignments give coupling constants with

better accuracy.

1.4.3 Examples of Multiple-Quantum Spectra and the Isotopic Labeling

Analogy

This subsection shows how multiple-quantum NMR can be applied
to specific molecules, and illustrates the use of the isotopic
labeling analogy. The number of (N-1)-quantum pairs will always be
equal to the number of different species with all but one of the
protons removed. Each possible species with all but two protons
removed contributes either a triplet or a guartet to the (N-2)-
quantum spectrum. If we label the two remaining protons x and vy,
and if there is a symmetry element which exchanges x and y, a triplet
results; if there is no such element, a quartet (two pairs) results,
as mentioned earlier. Thus, one pair of lines can be assigned to
each different way that one proton can be labeled x, and another
proton y. This scheme is used in the examples that follow. These
molecules have all been studied by members of the Pines research
group.

1.4.3.1 Acetonitrile (A3, with C3v symmetry)

The acetonitrile moleculg (CH3CN) contains only three protons,
so its single-quantum spectrum is easily resolvable. However, the
multiple-quantum spectra are useful in studying the relaxation of an

oriented methyl group.42 An unsymmetrical three-spin system would
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n—Quantum Spectra (n=1,2,3)
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Figure I.4 The multiple-quantum spectra of the methyl group of
acetonitrile., The high symmetry allows for only one monoprotonated
and one diprotonated species, so the two-quantum spectrum has one

doublet, and the three-quantum spectrum has one triplet.
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have one three-quantum transitions, six two-quantum transitions, and
fifteen one-quantum transitions (three of these are degenerate and
"six others are weak if chemical shift differences are small) because
there are three eigenstates each for M = *1/2 and one eigenstate each
for M = +3/2. The high symmetry of a methyl group reduces the number
of transitions considerably, as shown in Figure 1.4. There is only
one pair of two-quantum transitions, since there is only one mono-

protonated species CD,HCN; the position of the proton is labeled

2
x in the figure. Similarly, there is only one diprotonated

species CDH,CN, and this gives a triplet in the one-quantum

2
spectrum, because there is a symmetry operation which exchanges the

two protons. This can be seen by labeling the two protons x and y,

as in the figure, and noting that the two ways to do this are related
by a mirror plane. The three protons are magnetically fully equivalent
(each spin is coupled identically to every other spin), so the indirect
intramethyl spin-spin coupling is unobservable unless the full
equivalence is broken (for example, by heteronuclear interactions).

The singlet direct spin-spin coupling can be extracted from the one-
quantum or the two-gquantum spectrum.

1.4.3.2 Benzene (AA'A'TA'''AT''W''''  with C6v symmetTy)

The single-quantum spectrum of a six-spin system without symmetry
would have 792 transitions, but only 15 different coupling constants.
The C6v symmetry of benzene reduces the number of single-quantum
transitions to 76 and the number of different couplings to three.

A1l the spins are magnetically equivalent, but they are not magnetically

fully equivalent because there is more than ome coupling; this makes

d . J p . - " ..q. -
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n—Quantum Spectra (n=4,56)

Six—quantum: one line Benzene
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Figure 1.5 The multiple-quantum spectra of benzene. There is only
one possible monoprotonated species, so there is one pair of five-
quantum lines. The three diprotonated species imply three triplets

(seven lines) in the four-quantum spectrum.
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the spectroscopic notation AA'A''A''TA''''A'''' 4 apnigorropic solvents,
as opposed to A6 in isotropic solvents.
The high symmetry also reduces the number of allowed multiple-

28,29 as shown in Figure I.5. There is only

quantum transitions,
one species of monoprotonated benzene (C6D5H1) so the five-quantum
spectrum has one pair of lines, instead of the six pairs expected
for an unsymmetrical molecule. There are only three possible
diprotonated benzenes (C6D4H2), corresponding to the ortho, meta,
and para configurations, so the four-quantum spectrum consists of
three triplets, for a total of seven lines, instead of the 61 four-
quantum lines found for an unsymmetrical six-spin molecule. The
experimental spectra verify these predictions, and therefore are
consistent with the assumed geometry.

It is useful to consider how the spectra would change if
distortions were present on an NMR time scale. Most distortions,
such as an elongation along an axis perpendicular to the C6 axis,
would make the spins inequivalent and therefore would create more
five-quantum and more four—-quantum transitions. However, if the
bonds alternated between two different lengths, as in the classical
nonresonant structure with three double bonds, all the spins would
‘remain equivalent, and the five—quantum spectrum would still have
only one pair of lines. 1In this case more lines would be added to
the four—-quantum spectrum. However, the extra lines might be
expected to be weak if distortions are small, and would not be
produced at all if the distortions were rapid (which they certainly

are in this system.)44

i v
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Figure 1.6 The multiple—quantum spectra of maleic anhydride.
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The two

correlated, but only two if not, so the number of four-quantum lines

depends on the motional model.

There is only one monoprotonated

species, so the five-quantum spectrum does not reflect correlations.
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-1.4.3.3 Maleic Anhydride (A3A3' with uncorrelated methyl group

motion)

At room temperature the two methyl groups of this molecule are
expected to rotate rapidly. As a result, all six spins are equivalent,
There is only one possible monoprotonated species, so there is only
one pair of five-quantum lines, as shown in Figure I.6. However,
the equivalence of the spins reveals nothing about possible correlated
motion between the two groups. Multiple-quantum spectroscopy provides
a particularly elegant test of correlation, because the number of
lines in the four-quantum spectrum is affected. If the methyl group
undergoes uncorrelated motion, there are only two possible diprotonated
species, giving five lines; if the motions are correlated like two
gears, there are three possible disubstituted species and seven
lines. Recent studies by Jau-Huei Tang45 have shown that only five
lines are present at room temperature, and that their positions are
consistent with uncorrelated motion.

1.4.3.4 Cyclooctatetraene (COT)(AA;A"A(3.)A(4')A(5')A(6')A(7');

symnetry depends on temperature)

Cyclooctatetraene, C8H8’ has been shown to have D2d symmetry at
low temperatures by electron diffraction studies.46 With this tub-
shaped symmetry, the single-quantum spectrumrhas 2070 transitions,
as mentioned earlier. At room temperature, almost all of these
transitions are broadened by a bond shift process, as shown in Figure
1.7. This process can be viewed as a pseudorstation; spin 1 becomes
spin 2, spin 2 becomes spin 3, and so forth. The transitions are

not resolvable, so the bond shift process has been analyzed by isotopic

substitution;24 the spectra of a random mixture of all possible
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Figure I.7 The multiple-quantum spectra of cyclooctatetraene. The
single—quantum spectrum has 2070 lines, and is totally unresolvable
when the bond shift rate is comparable to dipolar couplings. The six-
quantum transitions also broaden, but they are still resolvable. 1In
the high temperature limit, six lines have disappeared since the
number of diprotonated species is reduced. There is only one mono-
protonated species at any temperature, so the seven-quantum spectrum
is unaffected by the bond shifts. This molecule will be discussed

further in section 6.2.
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diprotonated species were analyzed.

Multiple-quantum spectroscopy allows the fully protonated species
to be directly studied. Since all the spins are equivalent, there is
only one monoprotonated species, independent of the bond shift rate;
therefore there would be only one pair of seven-quantum lines, and
these lines give no kinetic information. However, the six-quantum
spectrum is affected by the bond shift. At low temperatures the
D2d symmetry should give six independent dipolar coupling constants
(D12’ D13, D14, DlS’ D16 and D18; D17 = D13 by symmetry), so there
are six diprotonated species. The species (1,3) gives a quartet,
since there are no symmetry operations 1 -+ 3, 3 - 1; all the other
species give triplets. Labeling the two protons x and y as before,
we find x=1, y=2; x=1, y=3; x=3, y=1 (£ x=2, y=4 by symmetry);
x=1, y=4; x=1, y=5; x=1, y=6 (= x=2, y=5 by symmetry); and x=1,
y=8 (= x=2, y=3 by symmetry), so there should be seven pairs of lines.
At high temperature, the rapid bond shift makes x=1, y=2 equivalent
to x=2, y=3; x=1, y=3 equivalent to x=2, y=4; and x=1, y=4
equivalent to x=2, y=5. The number of six—quantum pairs should
therefore be reduced to four.

The effective permutation group is the same as that of a regular
octagon; however, since Dij v <rij—3>’ the coupling constants will not
have the ratios that octagonal symmetry would dictate. This molecule
will be discussed again in section 6.2

1.4.3.5 Substituted Biphenyls (AA'A''A'''BB'B''B'''; symmetry

depends on model)

The relative motion of the two phenyl groups of biphenyl and its

derivatives can be studied by measuring the direct coupling constants.
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However, the single-quantum spectrum of biphenyl is extremely complex

Some simplification can be achieved by removing the two protons on

the ends of the molecule, since their distance is independent of the

ring motion, but even with this substitution the single-quantum lines
cannot be completely resolved. Diehl and co—worker547a analyzed the
spectrum of 4,4'-dichlorobiphenyl by picking out a number of the
transitions and iterating on their frequencies. The spectrum of
4,4"'-bipyridyl has also been analyzed.47b

By contrast, the multiple-quantum spectra of substituted
biphenyls are easily resolvable. The seven-quantum spectrum will
always contain two pairs of lines if the substituents are identical,
since there are two monoprotonated species, as shown in Figure T.8.
Even if the substituents are not identical, the biphenyl structure is
not likely to be substantially distorted, so two pairs are still
expected (although the lines may be split).a8 The number of six-
quantum lines depends on the motional model. Either free rotation
or jumps between four equivalent sites (corresponding to inter-ring
angles 6, -6, m + 6, and T - 6) will give seven diprotonated species;
labeling the spins x and y shows that there are ten pairs of lines.
However, jumps between only two sites (correspording to inter-ring
angles 0 and -6) will give fourteen pairs of lines, as will a small
amplitude rocking motion around a single site. Steve Sinton has shown
that eight pairs of lines are visible above the noise level in the
six-quantum spectrum of 4-cyano—4'—pentyl—dll-biphenyl,48 and their
positions coincide with those of eight of the ten pairs which a

four-site model would generate. Computer simulations have shown
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Figure 1.8 The multiple-quantum spectra of a typical para-disubstituted
biphenyl. The two substituents are different, but the rings should not
be strongly distorted, and the dipolar Hamiltonian is assumed to have

a symmetry operation which exchanges them. There are then two mono-
protonated species, so there are two pairs of seven-quantum lines.

Jumps between four equivalent values for the inter-ring angle would

give seven diprotonated species (four triplets and three quartets)

and ten pairs of lines.
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that the remaining two pairs are expected to be weak, and extensive
signal averaging would probably be required to observe them. It is
.interesting to note that isotopic labeling of the substituents was
combined with multiple-quantum NMR to study this molecule.
Synthesizing the molecule with a perdeuteratedbchain is straightforward49

but selective substitution on the rings is more difficult.

1.5 Conclusions
The conventionally observed AM = 1 transitions do not have any
special information content that cannot be found in other transitionms.
In fact, the dramatic spectral simplification which occurs as AM
increases makes the observation of multiple-quantum transitions
advantageous.‘ The multiple-quantum transitions are readily.
interpretable and generally resolvable, and this makes their

observation an important and practical alternative to spin labeling.



II. Theory of Multipnle-OQuantum NMR

It was shown in Chapter I that the observation of multiple-
quantum transitions provides dramatic spectral simplifications
compared to the observation of single-quantum transitions, without
any real loss of information content. Nevertheless, until recently
multiple-quantum NMR has not been extensively used, and single-
quantum NMR is still much more common. One important reason is
that, while it is possible to produce multiple-quantum transitions
by cw techniques,50_54 the technique has serious limitations which
will be discussed in section 2.2, Even if a spectrometer is designed
to give rf pulses, it may not be versatile enough for multiple-~quantum
experiments. It should also be noted that single-quantum spectra
are not always as complicated as the worst cases discussed in section
1.4 would imply. In an isotropic system, for example, many transitions
will be nearly degenerate or will have vanishingly small intensities
if the chemical shift differences are much larger than the J couplings.
The most important reason, however, is the difficulty of producing
multiple-quantum spectra with good signal-to-noise ratios. It is
not coincidental that all of the molecules listed in section 1.4.3
are fairly small (eight spins or less with some symmetry). The problem

is best understood through the density matrix formalism, which will be

developed in the next several sections.

2.1 Operator Formalisms

2.2.1 The Density Matrix

The density matrix is a standard quantum mechanical tool for

. 5,55
dealing with coherent processes and mixed states. Any pure state
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can be written as a linear combination of the basis functions of any
complete orthonormal set

|y> = I c, 1> . (11.1)
i

The expectation value of any observable operator A is then

<Y|AlY> = I c,c* <j|ali> . (11.2)
i3]
i,]
The operator A can be represented by a set of numbers Aij such that
Aij - <i|A|j>; these numbers are usually written in matrix form. If
the system is not known to be in a pure state (for example, if only
ensemble averages of observables over a macroscopic sample can be

measured) then equation (II1.2) is replaced by

<Y[A[Y> = <a> = I c,cr <jlali> . (11.3)
1,y T4
’

The density matrix element pij is defined to be equal to cic§;

. It can be seen from equation

the density operator p = iZ' pij | 1><
(I1.1) that Piyg is the popaiation of state i, and that pij (1#3) dis
only nonzero if there is a definite phase relationship between the
coefficients c and ¢, that survives the ensemble averaging. This

phase relationship is called coherence.

Equation (II.3) can be further rewritten as

=T (pA),, = Tr(pA) . (I1.4)
i ii

<A>= I p, A,
1373k
1,3 33

Thus the expectation values of all observables can be predicted

if 311 the elements of p are known, and therefore p contains all the
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available information about the system.

The equation of motion under a Hamiltonian #(t) is
L
p(t) = 1fp(t),X(t)] . (11.5)

If the Hamiltonian is time independent @(t) = ¥), equation (II.5)

can be éimplified considerably. In this case

p(t) = 1[p(t), x] (1I.6a)
p(r) = 1[5 (1), %] | (11.6b)
0@ 0y = 100 (1) 307 (11.6c)
p(t) = -exp(-iKt)p(e) exp(iXt) . (I1.7)

Thus, in the absence of relaxation, p(t) is related to p(o) by
a unitary transformation, called the propagator. This relation
holds even if ¥ is not time independent; in that case the propagator
is T exp (-i/H(t)dt), where T is the Dyson time-ordering operator. All

properties which are invariant under unitary transformation are therefore

constants of the motion; these include Tr(p) = Z p =1, Tr(pz) =
i ii
2 56
z lp | , and the entropy S = -kTr{p 1n p).
ij 13

From statistical mechanics it is known that at equilibrium the
density matrix for a canonical ensemble will be Py = exp (-H/kT)/Tr
(exp(-¥/kT)). The Zeeman Hamiltonian ﬂé is usually the largest term

by far in ¥, so that

L&
"

1 -R8I + ...
VA

™w
Il

(YB_/KT) /Tx (exp (-, /kT)) (I1.8)



and at normal magnetic field strengths 8 << 1 unless T << 1 K, so
only the first two terms in the expansion in equation (II.8) are
retained. 1In fact, the identity operator is frequently omitted, since
it commutes with all other operators and does mot affect the
evolution. This produces a reduced density matrix po = -BIZ. The
same symbol will be used for the full density matrix and the reduced
density matrix, with the meaning clear from context (the reduced
density matrix will be used exclusively for the rest of this work,
except for section 6.3). All the properties of the density matrix
also hold for the reduced density matrix, except that the reduced
density matrix is traceless.

It is frequently convenient to separate the system Hamiltonian

into two parts H_  + Hl’ and then go to an interaction representation

0
defined by10

A= exp (il t)A exp(-ilt) (I1.9)

A is any operator, including the density operator. It can be

readily shown that

(11.10)

jaeld

b 2 ~
p=1ip, 1]

<A> = Tr(pA) ] (II1.11)

For a system which is irradiated at frequency w the choice HO = wIZ
is particularly convenient. This generates the rotating frame
Hamiltonians of section 1.2, in which continuous irradiation gives

Equation (II.11) implies that .all observables

~

a time independent H;f.

must be referenced to the radiofrequency field. For example, Ix
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is not parallel to the laboratory x-axis at all times, but it does

have a definite phase relation with the rf. The tildes will be

dropped for the rest of this work, but the rotating frame is assumed.
Equations (II.5-7) are only valid for nonexchanging systems in

the absence of relaxation. The theory of exchanging systems will

be discussed in section 6.2. The simplest treatment of relaxation57’58

introduces relaxation times Tl and T2 for the off-diagonal and

diagonal matrix elements respectively:

. _ P =(-BI ),
pii = 1[p,ﬂ]ii ii - z7 i1 (11.12)
1 .
. Py
o= i[p,K],, - =1 1I.13
i3 [p i3 ) ( )
2743

where (-8 Iz)ii is the equilibrium population of the ith state. 1In

the most general case (TZ)ij is different for every tramsition.

2.1.2 Fictitious Spin Operators

The evolution of a system in the demsity operator formalism can
be viewed from two different perspectives. One possibility is to
examine matrices, i.e., focus on an individual element pij of the
density mtrix, and observe how this element changes with time. The
element is calculated through matrix manipulations. This perspective
is useful for computer calculations.. pij depends on the choice of
the basis set, and the obvious choice is the Hamiltonian eigenbasis,
but frequently the values of chemical shifts and coupling constants
are not known in advance, so this_basis cannot be determined.

The other possibility is to examine operators. For example,
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the equilibrium density operator is -BI_ = -f I I _, where I
z iz zi
th . .
acts only on the 1 spin. An operator which acts on n spins (for
.example, I I I ) may connect states with AM = 0, *1, ..., *n.
x1 y2 23
However, not all n-spin operators give AM = n. The expectation

values of all operators can be calculated as a function of time to

describe the evolution of the system.

Clearly, the choice of a Basis set is as important for an
‘ operator perspective as it is for a matrix perspective. A system
of N spins-1/2 has 2N eigenstates, and 4N linearly independent
operators are required to describe it completely (there 1is one
constraint, Tr p = 1). Several useful basis sets are:

2.1.2.1 Single Spin-1/2 Operators

Each spin has two states a and B, so it has four linearly
independent operators. These four can be chosenas I , I , 1 ,

xi yi z1i

59 N :
and Ii' This gives 4 operators for the entire system, and the

constraint Tr p = 1 simply specifies the expectation value of the

operator 111213 ... 1 . The identity matrices are generally
n

omitted from all other operators.
One disadvantage of this basis is that it can be difficult to

tell what values of AM are produced by certain linear combinations.

+2,

-

For example, the operator leIxz connects states with AM = 0

-

-
=T

I .1 + 1 I
x1 x2 vyl y2 1 2

as does the operator 1 ' I . However,
vl y2 )

Izll 2 commutes with Iz’ and hence only connects states with AM = 0.
z
This problem can be avoided by the use of raising or lowering

0+
+ I
operators I" = I + il , and either I and 1 or I = 1/2 #

60 * Y i
1 .59,
z

Commutator relations and matrix representations
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for these operators are listed in Appendix E.

A single operator in the basis I+, 1, IU+, 1" (for example,

‘III;I;) corresponds to a single density matrix element in the spin
product (SP) basis, and this basis is useful for that reason. Every
operator in the Ix’ Iy’ Iz’ 1 basis set has ZN elements in the SP
basis. Operators in the I+, I_, Iz, 1 basis set have 2% elements,
where g is the number of times Iz or 1 occurs.

2.1.2.2 Generalized Spin Operators

Fictitious spin-1/2 operators were defined by Vega and Pines for

spin~-1 systems.61 These are:

Ix’1=1/2 I Iy’1=1/2 Iy Iz’l=l/2 I,

Ix,2=1/2(1y12+121y) Iy,2=1/2(IzIx+Isz) IZ,2=1/2(Iny+Iny)

Ix’3=1/2(122—1y2) 1y’3=1/2(1x2—122) Iz,3=l/2(Iy2-Ix2)
(11.14)

A spin-1 has three states and nine linearly independent operators.
All nine of the operators in equation (II.14) are traceless, so they
cannot all be linearly independent, and in fact I + I + I =
X,3 v,3 z,3
0. Double-quantum transitions in the presence of quadrupolar inter-
actions are readily described in this basis. These operators are
easily generalized to the case of N coupled spins-1.

A set of fictitious spin-1/2 operators for general multiple-

2 .
quantum transitions can also be defined.6 Every pair of eigenstates

|r> and |s> becomes an effective two-level system, with three

operators
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x 1
'<i|Irs|j> T2 (diréjs * Giséjr)

Y 13> = (-
<Al1 13> = (-1/2)(8 )

iréjs - 6iséjr

z 1
<i|Irslj> =3 (éirejr - diséjs) (11.15)

These operators can be used for spin-l systems, and in these systems
afe related to the operators defined by Vega and Pines. In a system
with N spins-1/2 there are 2N(2N—1) possible pairs of spins, so there
are far more operators than can be linearly independent (for example,
if N = 6 there are 12096 operators, all of which are traceless, but
only 4095 traceless linearly independent operators). This makes

these operators inconvenient for large systems.

2.2 Simple NMR Experiments

2.2.1 Continuous Irradiation

The simplest method of inducing transitioms between two states
|1> and |§> is to irradiate the system with photons which have an
energy equal to the transition energy and monitor the absorption.
In the presence of continuous rf irradiation at the frequency w,

the rotating frame Hamiltonian can be written as

Hom I, + @gHOHGH) ~ 0 T

- - w1 . (I1.16)
z 17x

All of these symbols were defined in section 1.2. The density matrix

equation of motion (II.12-13) is most conveniently expressed in the

ﬂ; eigenbasis:
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p,.,+BI
. ii z
Pyy 1“1[Ix’p]ii - T, (I1.17)
= 1w [I_,pl.. + iw S (II.18)
Piy 1% Py 15Pi5 T (1)) .
2714
w4 = <1]M;li> - <j,ﬂ;lj> (I1.19)

The observable operator is the transverse magnetization in the

rotating frame

<M§> = C Tr(pIy) =C ifj pij (Iy)ji (I1.20)

The spectrum is obtained by sweeping wo or w over the region of
interest. If this sweep is done slowly, it may be assumed that

5 = 0. This gives:

Pyy = (-BIz)ii - iwlTl[Ix,p]ii (11.21)
“dw, (T,)
172714
p,, = ( ) [I_,p] (I11.22)
ij l—iwij(Tz)ij x’"1j

The steady-state solutijon for the signal S is easily expanded in

powers of W, :

(1)

p = p(O) + wlp + w12p(2) + ... (I1.23)
p(o) = -BIz = peq; S(O) = Tr(Iyp(O)) =0 (11.24)
Buw, (T, .
1 _ . (1 _ P91t 2744 )
WiPsg = 05 vkt = l-iu&j(Tz)ij)‘(Iy)ij ;
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(T,),.
n _ oDy o £ 12 { 172745 }
s CTr(Ip ) =C8 : | ylij g (T, (11.25)

Equation (II.24) merely shows that there is no transverse

magnetization if w, = 0, since the system is them at equilibrium

with the static field. Equation (II1.25) gives the conventional

high-resolution NMR spectrum, and several important features should

(1)
P1j 3

operator only matrix elements with AM = 1 can be excited. In

@)
pij is small if wij(TZ)ij

few linewidths of the frequency difference between states |i> and |j>

(1)
ij

resonant contribute to the signal. Finally, the lineshapes are

be noted. =0 1if (Iy)i = 0, and since Iy is a single-quantum

addition, << 1, so W must be within a

for p to be substantial. Thus only transitions which are ﬁearly

Lorentzian, and the intensity of the transition between states |[i>
and |j> is proportional to lIy]ij'

Multiple-quantum coherences will only appear to higher powers in

2,(2) is:

w For example, w; P

1°

w, (T,)
210 T8 (T ( ; 2 1§
ko Tty (To) gy

2 (2)
1 Pig

w

)1 41 (T )

- wl(TZ)kj
215wk 15T 115

(T

. 2 (2) _ iwl(T
1 Pij 1-1

()

(1) Iy Kj "

wij x ik

w,(T,)
1'72741k
l-iwik(Tz) (Iy)ik(Ix)kj) (11.26)

ik

pii) can have nonvanishing matrix elements only between states with
AM

= 0, ¥2. For these matrix elements to be substantial the following
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conditions must be fulfilled,

1. < 1. If AM = 2 this implies that 2w is nearly

w (T
137215
equal to the frequency difference between states i and j; if AM = 0O

this condition cannot be matched by changing w. Thus p(z) does
not have substantial zero-quantum operators.
< - >
2. wl must be at least comparable to wik wkj » the frequency
spread of the single-quantum transitions.

3. However, the energy levels which are connected by Ix or I

y
must have some anharmonicity. If the levels are perfectly harmonic
= - (2)
and AM = 2, then Wy = wkj and pij 0. Similar results hold

for other values of AM.

(2)

Even if all of these conditions are met, so that p has two-

e (2)

quantum operators, = Tr(Iyp ) = 0. Only single-quantum

operators are observable. However, a large two-quantum operator

(3) (3)

generates single-quantum operators in p , and therefore S

(which is proportional to w 3) gives signal for two-quantum

1

transitions.

Transitions with AM > 2 require higher-order perturbation theory,
which will not be done here. A complete solution can be found in
reference (52). However, the form of equations (II.21-22) allows

some qualitative comments. The first term which has n-quantum

operators is p(n); if n is even, p(n) has only even-quantum operators,

‘and if n is odd it has only odd-quantum operators. The n-quantum
operators must generate even higher-order terms with single-quantum

operators in order to be observable, and the first such term is

(2n-1) (2n-1)
p 1 .

transition can only give substantial signal if mw is nearly equal to

, S0 the signal is proportional to w The n-quantum
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its frequency difference, and this implies that zero-quantum

transitions do not appear because they cannot be put on resonance.

(2n+l1)

However, 1if S is large the signal for the n—-quantum transition

will tend to decrease. For example if the single-quantum tramsition

(2)

|1> -+ Ik> (Mk=M1+l) is the only resonant transition, then Piy <0,
pii) > 0, the population differences are depleted, and 5(3) reduces

the signal. This effect is calied saturation. Lower-quantum
transitions saturate at lower powers, but the high~quantum transitions '
have only a narrow range for wl between the value which starts to
produce them and the value which causes them to disappear through

saturation.

The net result is that continuous wave multiple-quantum NMR is
gsometimes useful for two-quantum or even three-quantum transitions,51
but is not really useful for higher quanta. In a small spin system
the two~quantum transitions can help in line assignment$,53 but in
larger systems the two-quantum spectra are hardly simpler than the
single-quantum spectra, and the additional experimental difficulties

are rarely justified.

2.2.2 Pulse Methods: Single-quantum Experiments

An alternative method of observing NMR transitions involves
applying one or more intense rf pulses and then observing the
transversé magnetization as it evolves under ﬂ;. The simplest
experiment is to apply one pulse as in Figure (II.la). During the
pulse the Hamiltonian is that of equation (II1.16). If the pulse has

a length tp’ the density matrix at the end of it is, from equation

(11.7),
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90,
!
90, 90, 90, '
b) I T . J t I 15 :<Ix>,<Iy>

XBL 807-10631

Figure II.1. Simple pulse sequences for NMR experiments. In this

notation 90 is the flip angle of the pulses in degrees (6 = 180 wltp/n,

1

subscript indicates the phase of the rf relative to some reference

where w, is the rf field strength and tp is the pulse width) and the

wave. The sequence in part a prepares and detects only single—quantum
transitions. The sequence in part b prepares and detects multiple-

quantum transitions.



-
w

p(tp) = exp(—i(-?fz—wllxhp)(—SIZ)eXp(i(HZ—mIIX)tp) (I1.27)

w, and tp are controlled by the experimenter. If w; is large
enough, it is possible to pick tp such that wltp "~ 1 but all matrix
elements of ﬂé are much less than 1. Using the concept of the norm

of a matrix defined in Appendix E, and the expansions for exponential

operators given there, one finds that
~ n, 3 - -1
p(tp) eXp(lwlthX)( BIZ) exp( 1mltPIX)
= -8(I cos(w.t ) - I sin(w,t )) (1I1.28)
z 1 y 1

since the contribution of ﬂé is negligible. The dipole moment

- -
4 = vl is rotated by an angle 6 = wltp away from the z-axis.

If 6 = 7/2 all of the population differences are simultaneously

depleted, and these differences are transferred into single-quantum

<

coherence. The signal after a time tl of free evolution is:

"

<My§tl)> C Tr(p(tl)Iy) =C I pij(tl)(ly)ji

13

"

C i? Dij(tp) exp(iwijtl) EXP(_%/(TZ)ij)(Iy)ji

"

' 2 i L
~-CB ij ‘Iyxij exp(lwijtl) eXP(_%/(TZ)ij) 51n(wltp)

(11.29)

Fourier transformation with respect to tl gives:
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: 2 :
5(w) = ~CB sin(wyt ) 1§ !Iylij (Ty)g 5/ Amilemwy (T, )

(11.30)

Comparison of equations (II.30) and (II.25) show that the
spectrum obtained from weak cw irradiation is exactly proportional
to the spectrum obtained from Fourier transforming the free induction
decay (FID) after one pulse.21

2.2.3 Pulse Methods: Multiple-Quantum Experiments

2.2.3.1 Simplest Multiple-Quantum Sequence
The simplest pulse sequence for producing nonselective wideband

28,32,63 [

multiple-quantum spectra is shown in Figure (II.1(b)).
first two pulses are separated by a delay T. At the end of the

second pulse, the reduced density matrix is:

pMQ(t) = -f exp(-iWIy/Z) exp(—iﬂ;T) exp(iTrIy/Z)Iz exp(—iﬂIy/Z)

exp(iﬂ;T) exp(iﬂIy/Z) = -B exp(-ﬁK#T)Iz exp(iH¥T)
(I1.31)

-
H& = I Dij(BIinxj—I

-
I,)+ I
13 J

J, (T.-1) - Z0,1 . + A
i 19371 - oIy + Bl

i

(I1.32)

In general X; will contain zero-quantum, one—quantum_ and two-quantum
operators, so the complex exponential can give p matrix elements
corresponding to all multiple—~quantum orders. After these pulses,

the system evolves under H; for a time t Multiple~quantum

1°
coherences do not correspond to oscillating magnetization, so they

cannot be directly detected, and a third pulse plus a delay t, are
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needed to partially transfer them back into the observables <I > and
X

<I >»>. The sequence is repeated with different values of tl. The
y
signal as a function of tl is

<Mx(tl)>= C Tr(pIx) = C Tr(p exp(-inIy/Z) Iz exp(iﬂIy/Z)

= -CB Tf(exp(ﬂ(xtz)lz exp(-ﬂfxtz) exp(-izcztl)

x exp (-1, T)I_ exp(iH,1) exp(il,t)) (II.33)
-1 .
= -CB 12; (pMQ(T))ji(oMQ(-tz))ij exra(lwijtl) (I1.34)

where p k—t ) is defined by analogy with equation (II.31). The

MQ' "2

signal is Fourier transformed with respect to tl to produce a
multiple—quantum spectrum. For simplicity of notation relaxation
terms have been neglected; if tl, t2 << T2 they can be included
in Equation (I1.34) by replacing exp( iwijtl) with exp(iwijtl)
exp(-tl/(Tz)ij)-

Equation (II.34) reveals several differences between pulse and
cw multiple-quantum experiments. The linewidth of each transition
is (Tz)ij for the pulses, but this is true only for the single-
quantum transitions in the cw experiment. The apparent frequency
of a n—quantum transition is the frequency difference (in the rotating
frame) between the two states with the pulse sequence, but is a factor
of n smaller than this in the cw case. The most important difference,

however, is that the rf field strength w, does not appear in the

1

pulse expression, as long as w, is large enough so that ﬂ; can be

1
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neglected during tp. As a result, there are no saturation effects.

Several simple multiple-quantum pulse sequences are illustrated
in Figure (II.2). Inspection of H; shows that the n-quantum spectrum
is centered at nAw with the sequence in Figure (II.2(a)), so different
values of n will be completely separated if Aw is greater than the
spectral width [Iﬂ;]l. However, if the field is inhomogeneous, the
reéonance offset term must be replaced with-Am(;)Iz, and the n-quantum
transitions are n times wider than the single-quantum transitions.

The simplest method of removing this inhomogeneous broadening

36,37,63

nt

is to put echo ‘pulses For example, if ﬂ; = Mb +

1°
Am(;)Iz, a single 180° pulse at tl/2 is sufficient (Figure (II1.2(b)),
with ¢ =y and ¢ + T = y). In this case the evolution propagator

exp(-ﬂK;tl) in equation (II.34) is replaced with

exp (-1 G +w(D1 )t /2) exp(-i(xb-Aw(¥)IZ)tl/z)
= exp(-iﬂbtl) (I1.35)

>
since [ﬂi,Aw(r)Iz] = 0. The broadening is completely eliminated, but
all of the multiple-quantum spectra are centered at w = 0. This
overlap also occurs in continuocus wave multiple—-quantum, but there

the number of quanta can be identified by the w, power dependence

1

of the transitiomn.
Several different techniques exist for determining the number of
quanta associated with a particular transition. For example, a static

field gradient can be applied for a short interval § in t the

l;

n-quantum coherences will dephase n times faster than the single-
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Fipure I1.2. Several common pulse sequences for multiple-quantum NMR

experiments. The sequence in part b) removes static inhomogeneity

terms. Part c) illustrates a useful concept for understanding

multiple-quantum NMR:

is imagined to be observable.

the pulse sequences are more symmetric if Iz
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quantum coherences. If the same gradient is applied during t2, any

magnetization arising from single-quantum coherences in t1 will refocus

éfter the same interval §, but signal from n-quantum coherences will

refocus at n6.33’64
Other approaches rely on the behavior of n—quantum coherences

under phése shifts of the irradiating field. A phase shift of ¢ in

the first two pulses of any of the multiple-quantum sequences discussed

so far will change pMQ(T) in equations (II.31) and (II.34) to pﬁQ(T):
D;{Q(T) = exp(-1i¢I ) DMQ(t) exp(i¢I ) (11.36)
(pﬁQ(r))ij= (QMQ(T))ij exp(-i¢(mi—mj)) (11.37)

For example, if ¢ = 7 all of the (2ntl)-quantum coherences are
multiplied by -1, but all the (2n)-quantum coherences are unaffected.

Adding spectra with ¢ = O to spectra with ¢ = T will eliminate all

28,34,63

odd-quantum coherences. This method is readily generalized;

for example, adding n spectra, each shifted by ¢ = 2n/n, retains only
transitions with AM = nk (k = 0, *1, £2, ... ).
A third method, which permits the simultaneous observation of

all multiple-quantum transitions, is known as time proportional phase

29,30 In this experiment, whenever t. is

incrementation (TPPI). 1

incremented by Atl, the phases of the first two pulses are incremented

by A¢ = (Aw‘)Atl. Then ¢ = Aw't_ in equations (XI1.36-37). Substitution

1

into equation (II.33) shows that the n-quantum coherences appear to

evolve at nAw' + wij’

so if Aw' > ,]ﬂé[] all of the transitions are
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separated, and the spectrum is the same as would be produced by a
perfectly homogeneous field without echoes.

2.2.3.3 The Choice of Observable Operators

There is actually a great deal of similarity between the roles of
T and tzﬂin equation (II.34). This symmetry is partly hidden in the
pulse sequence by the experimental need to measure <Ix> or <Iy> even
though the initial density matrix is proportional to Iz. If instead
it is assumed that <Iz> can be measured, as in Figure (I1.2(c)), an
additional pulse is needed at the end of t2; The sequences in parts
(b) and (c) would always give the same spectra, but in part (c) the
symmetry between T and t2 is apparent. For this reason the tﬁeory
will be developed (here and in later chapters) as if <Iz> were

detected. The experimental pulse sequences will always include omne

additional pulse jmmediately before detection, to sample <Ix> or <Iy>.

2.3 Preparation of Multiple-Quantum Coherences

It is clear from equation (II.34) that multiple-quantum coherences
will only be observed if they appear in DMQ(T) and pMQ(-tz). However,
not all values of T or t2 are useful. For example, if T = O,
equation (II.31) reduces to pMQ(O) = —BIZ, and no coherences can
be observed. The same problem obviously occurs if t2 = 0. On the
other hand, there is clearly an upper limit to desirable values of T

and t2 because of relaxation effects. Thus, a very important problem

is to determine the optimum values of T and t2 for observing a
particular transition.
If ﬂ; is known, this problem may not seem difficult; in principle

pMQ(T) can be calculated exactly. In fact this can be done by hand for
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very small systems (for example, a single isolated Spin—1)61‘63 but

since the number of states for a system with N spins-1/2 as ZN explicit
calculations rapidly become difficult. Some computer calculations

| with systems as large as six spins without symmetry or eight spins with
symmetry have been completed66 (see also sections 3.2 and 4.2).
However, in most actual experiments ﬂ; is unknown (the purpose ofAthe
experiment is to measure it). In this case, explicit calculations

aré not possible. Nonetheless, even in this case several important
conclusions can be drawn from the form of equation (II.31).

2.3.1 Small Values of T

One useful approach is to differentiate with respect to T:

INOREICWORS (11.38)
pee) (1) = 1lpgo™H (1) ) (11.39)

Equation (II.39) can be used to generate a power series expansion
around T = 0:

.
Pyq(D) = -B(I T[T (] - %5-[[Iz,m;],x¥1 + ... (11.40)

As expected, pMQ(O) = —BIZ. All other terms involve commutators,
and their form depends very much on the nature of the system being
studied.

2.3.1.1 Isotropic Systems

In this case H% is, from equation (I.10),

—

X =fwl -Z0. I .+ £ J..(T.°T.) (II.41)
X X i xi 1>4 ij i ]
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I = i Izi is the sum of operators which act on only a single spin;

80 are AwIX and ZGiIxi. The commutator between any two single spin

operators is also a single spin operator (in fact it is the sum of
A X - -— > - .o

<1’ Iyi and Izi)' However, a n—~quantum operator must

involve n spins. Therefore, if Xﬁ = 0 multiple~quantum coherences

: . JC = = = i
never develop. In additiom, [ J’Iz] [ﬂb,Iy] [ﬂﬁ,Iz] 0. This

operators I

implies that if all the chemical shifts are equal (in which case they

can all be made zero by redefining Aw) then equation (II.31) becomes
DMQ(T) = -f exp(—iAwaT) exp(—ﬂKjr)Iz exp(ﬂKjr) exp(iAwaT)

= -B(Izcos(AwT) - Iysin(AwT)) (11.42)

and again no multiple-quantum coherences are produced.

Even 1f neither of these conditions holds, the term proportional

to T is:
—118[Iz,ﬂ¥] = (-Ame+EOini)TB (11.43)

which has only single-spin single—-quantum operators. The term

proportional to T2 is

12 1 2 2 2
B j{'[[lz,ﬂ;],ﬂ;] =3 BT (Aw IZ-ZAw ZoiIzi+§oi 1.
i i
+ i}>:j Jij (oi—oj) (Izilxj-rxilzj)) (11.44)

The second and third terms are secular, but they do not commute with

¥ , so they can generate coherences between states with AM = 0. The



54

fourth term has two-spin operators, but they are only single-quantum.
The term proportiomal to T3 has three-spin operators which come from
£he commutator of the fourth term in equation (XI.44) with H&. However,
all these operators are still single-quantum since ﬂb is secular. It
also has two-spin two-quantum operators which come from the commutator

of the fourth term in equation (II.44) with ZoiIxi. These are:
i

Lgdcz g

2 4+ _--
(0,-0,)" (1,1,-1,1))) (I1.45)
12 1> 3 173 71

i 1 3
Thus the first two—-quantum operators are proportional to T3. Roughly
speaking, the two-quantum operators will not be significantly large

until <J, (o ,—0 )2T3> ~ 1. Frequently this implies values for T

371 73
(and tz) of tens or hundred of milliseconds.

This line of reasoning is easily extended. 1In general, the first
n-spin operators are proportional to Tn, but these operators are only
single-quantum; the first n-quantum operators only occur after (n-1)

(2n-1)
more commutators, so they are proportional to T .
2.3.1.2 Anisotropic Systems
The additional term here is # =r D, .31 I ,—f =f,), which has
bold ij xi'xj 1 73

zero—-quantum and two-quantum operators:

1 3 + 4 - -
= - = = + .
H;x 5 X, + iEj 7 Dij (Iin Iin) (11.46)

Equation (II.46) is readily verified by examining the rotational

properties of second-rank tensors. The term proportional to T is:

3 + 4+ - -
- 1 = - + I = iI. I.-1i7.,1, . (I11.47)
iTB[Iz,foJ TB(Awa z Uini z 7 Dij (i ity J))
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Single-quantum and double-quantum operators first appear
proportional to 1. Unlike the isotropic case, multiple-quantum
;oherences are produced even if KES = 0. 1In fact if Hés = 0 and
Ay = O ﬂ% has only zero-quantum and two-quantum operators, so DMQ(T)
has only even-~quantum coherences.63 This term will be substantial
when <ID1jT|2>l/2 " 1, and typically this is a fraction of a
millisecond.

The TZ term is proportional to the commutator of equation (II.47)
with ﬂ;. It can immediately be seen that no operators involving more
than three spins are present; in addition, the three-spin operators
arise from the commutators of ﬂj or M&x with the last term of
equation (II.47) so they are even-gquantum. In general, the term
proportional to T2 then has operators with AM = 0, *1, *2, As with
isotropic systems, this reasoning is readily extended. The first n-spin
(n > 1) operator is proportional to T(n-l). If n is even, this term
has n-quantum operators; if n is odd the next term does. The

dependence on T for different values of AM is listed in Table II.1.

2.3.2 Long values of T

2.3.2.1 Isotropic Systems

The results of section 2.3.1.1 show that a reasonable intensity
for multiple-quantum transitions can only be expected if terms
proportional to high powers of T cannot be neglected,.in which case
a power series expansion does not converge. A more profitable
approach in this case is to expand the propagator in powers of Jij’

since typically ||ﬂ£s|| >> l]M&II (see Appendix E for the definition

of this norm and for the expansion). QMQ(T) can be written as:
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Table II.1
Dependence on T of multiple-quantum coherences produced by the sequence

90 - T - 90-
(y y)

Initial T power dependence

AM Isotropic Anisotropic
0 2 2
1 1 1
2 3 1
3 5 3
4 7 3
n(even) (2n-1) n-1

n(odd) (2n-1) n
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Pq (D) = BR{exp (-1 0 A +AWT YTIT exp (LG H +hul Y1) I

(II.48)
where R = exd-iwg/Z). The effect of R and R+ can be calculated by

replacing Izi + 1 I  »-I I, Iyi in any explicit operator

xi’ “xi zi’ “yi

expression found for the quantity in brackets. 1In the spin product
. _ .

basis set, s ¥ AwIz + Z JijIziIzj is diagonal. .Choosing this as

A in the expansion for exp(A+B) given in equation (E.10) one finds:

exp(—i(ﬂés+ﬂh+AwIz)T) = exp(—iKoT)

eXP(—ﬂﬂor)ii—exp(—iﬂoT)

1 + - -+ 31
+ > T Jij(Iin+Iin) ( S 5 ) (I1.49)
11 7 %3
i° = Mwl - i o, I, + iij JijIziIzj (1II.50)

For simplicity assume that Iﬂzi - M?jl >> Jij (this is equivalent
to the condition that the spectra be first order) and !Mzi - ﬂ§j| T 2> 1.
Then the second term in equation (I1.49), and all higher-order terws
in equation (E.10),are much smaller than the first. The three parts
of #° all commute with each other so equation (II1.48) reduces to:

, . +
p}Q(T) = BU(i Izi cos(Aw—Oi)T - i Iyi 31n(Aw—ci)T)U (I1.51)

U=exp(-1 Z J

Ix.r)
1>j J

ijIxi

) (11.52)

.H' exp(-i Jijlinij
i>
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To simplify this further, pick a particular value of i (say

i = 1). Then all terms J Ixj (i,k # 1) in (II1.52) can be

jkak
neglected, since they commute with I
zl

products appear in (II.52). It is readily shown that

gnd Iyl’ and only (n-1)

- I | I I, .
exp(-1iJ T) 24 exp(iJ:LJIx

1§ xi xj 175y ™

- Izi cos(JijT/Z) - ZIinxj sin(JijTIZ) (I1.53)

exp(-iJijIinxj'r)Iyi exp(iJijIinij)

= T c:os(Ji

i 7/2) + 21211xj sin(JijT/Z) (11.54)

i
This permits the coefficients for any operator in pMQ(T) to be
explicitly written. As an example, consider the N-quantum transi-
tion in a system with N spins-1/2. For any given i, the only
operator in (II.51) which induces N-quantum tramnsitions is

(1 i)( I Ix')° Its coefficient is:

i#j
B(cos((Aw—0 . )1) T 28in(J,.t/2)) (N even)
1 13
194
B(sitﬂéw—oi)'r) il 21-.'.in(Ji T/2)) (N odd)
j#i 3

-~ +
(1 i)( T Ixj) has the N-quantum operator (i) (2 N)(H Ii)’ plus
i#j i
other operators. Finally, the magnitude of the coefficient of the

N-quantum coherence in the density matrix is



1
= L A I i ‘.
7 B (i cos (( w—oi)r) 1 sm(JlJ.T/Z)) (N even)
28 (Z sin@w-0)T) T sin(Q,,7/2)) (N odd)
i 3#1 1J
(1I1.55)

The actﬁal value is imaginary if the phases of the first two pulses
are chosen as y and ;. These eipressions have several important
features.

1. The maximum value for the N-quantum coherence is 8 N/2, for
a value of T which makes all of these sine and cosine terms equal to
1. This is only possible if all the Jij and Gi values have rational
ratios, but even if this is not the case the signal can come
arbitrarily close to B N/2. This is equal to the value of B Iz for
the extreme states. It will be shown in section 3.5.1 that this
is the maximum value any coherence can have.

This maximum can only be achieved if the predicted value of
T << T2. In general, some of the spins will be weakly coupled
(Jij << 1 Hz) and in this case sin(JijT/Z) n 1 implies an unacceptably
large value of T. Relaxation effects are easily included if it is
assumed that all coherences dephase with the same value of T2; the
expressions in (II.55) must then be multiplied by exp(-T/Tz).

2. Neglecting relaxation, it is possible to formally integrate

over T to get an estimate of the average N-quantum coherence magnitude.

The result is:

2 21 2 -N
<IDMQ(T)l *nj2,-nj2 "5 BN 2 (11555)
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- This can be compared to an average coherence magnitude since

QMQ(T) is related to BIz by a unitary transformation. Then

Trlogg (0% = I oy (@2, = 1Y

ij
= g2 N 2%
2 2 -
<loyg( 15, = 26N 2™ (11.56)

The average N-quantum coherence magnitude is exactly the same
as the overall average coherence magnitude. However, if one spin is
coupled very weakly to all the rest (Jisz <<.l for all j with one
specific i) the magnitude of the N-quantum coherence for acceptable
values of T is much smaller. Lower-quantum coherences are not as
seriously affected, since those operators do not involve couplings
from one spin to all others.

3. Assume that the coupling Jij is weak. Then the terms
involving o, or cj in (II.55) are very small. The dominant terms
in the sum over i will be from spins which are relatively strongly
coupled to all others. The form of (II1.55) implies that the N—quantum
coherence depends on the product of the couplings of all spins to one
(Figure (1I.3a)) rather than a chain of couplings (Figure (II.3b)).

4. The N-quantum coherence oscillates rapidly as T changes
because of the (Aw—oi) terms. Slower oscillations come from the Jij
terms. The most probable value of the magnitude is not 0, as would

be expected if the distribution were Gaussian about the origin.

Instead, as the number of strongly coupled spins increases, the
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a. Clustered Couplings - b. Chained Couplings

vy

XBL 8010-12248

Figure II.3. Two general schemes for development of multiple-quantum
coherence. In isotropic first-order systems only the product of the
couplings from one spin to all others matter, as in part a). In
anisotropic systems the chained product of couplings also contributes,

as in part b).
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oscillations will tend to die away and deviations from the average
will become less frequent.

2.3.2.2 Anisotropic Systems

In most isotropic systems the largest terms inithe Hamiltonian
are mutually commuting, which considerably simplifies the analysis.
This is not the case for general anisotropic systems unless
][ﬂ'cl] >> Ilﬂb]] and for most systems this implies static magnetic
fields orders of magnitude larger than are currently available.
One special case that can be solved exactly occurs if all the spins
are magnetically fully equivalent, which implies that all the D

ij°

are equal. One example is bullvalene,65 which has 10 spins. In
this case

> > > =+
I -1 *I,)+JZLTI,-1,
2] 41 3 ]

JC-=AwIz+DZ(3Iz. 1

1

All the terms involving I,° commute with the rest of the

i Ij
Hamiltonian, so they can be deleted.13 The remaining terms are

mathematically identical to equation (II.50) with the substitutions

Jij =3 D,Oi=0. The N-quantum coherence in an N-spin system is then

%?-cos(AwT) sinN-l(3DT/2) (N even)

E§-sin(Am) sinN_l(BDT/Z) : (N odd) (11.57)

2

Again the maximum possible value is BN/2 but unlike the
isotropic case this value is easily attained (for example, in an
even-spin system set Aw = 0 and T = 7/3D). When N is large the

sinN_l term produces very sharp peaks and broad valleys as T is
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changed and this has important implications for two-dimensional
spectroscopy (to be discussed in section 6.1). The average

N-quantum signal is

1% ply? 2~ (o 2y 1y (-1 1 (I1.58)

<'°MQ N/2,-N/2

This is generally much larger than (II1.55). Here, however,
the magnitude of an average cohérence should be calculated using
the known symmetry. Total spin I is a good quantum number40 50
the N—quantum coherence belongs to an irreducible representation
which has only N+1 states, one for each value of M. The available

portion of Tr(Izz) is N(N+1) (N+2)/12 so that
<IQMQ(T) |2>I=N = 82 N(N+2) /12 (N+1) (11.59)

These values are compared in Table II.2. It is clear that the
symmetry greatly strengthens the allowed transitions, and that the
N-quantum transition is somewhat stronger than average even when
symmetry affects are included.

If the system has lower symmetry, analysis is much more

complicated. Only ¥_ and AwIz will be retained in what follows.

D

pMQ(T) = -f exp(—i(ﬂ;x+AwIX) )Iz exp(iGK;x+Awa) )

= - exp(—iﬂ%xT)(Iz cos(AwT)—Iysin(AmT))exp(iK%XT)
(11.60)

Thus AwT = (2k+1)(n/2) gives odd-quantum coherences only, and

AwT = kT gives even-quantum only.63 The terms in ﬂ%x are not
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mutually commuting, so about all that can easily be said is that

if Ilﬂ;le] >> 1, the propagator has matrix elements corresponding
to all values of AM, and if one spin is coupled weakly to all other
spins the N-quantum coherence will be weaker.

Computer calculations have been done for small systems.66 The
results.are quite similar to what would be predicted for isotropic
systems, with é few exceptions. If all the Dij constants are
approximately equal and have random signs, the average coherence
magnitude 1s roughly independent of AM. If all the Dij constants
have the same sign, the N-quantum coherences will be stronger than
the average. This can be interpreted as a symmetry effect. If all
the couplings are equal, the N-quantum transition is much stronger
than the overall average without symmetry (Table II.2). When all
the Dij couplings have the same sign this highly symmetric operator
is a significant part of Mzz’ so even though the true eigenstates
have no symmetry this operator pumps N-quantum transitions more
strongly.

Computer calculations also show that in anisotropic systems
mul tiple-quantum coherences can be produced by either of the pathways
of Figure II.3. Recall that the form of coupling in Figure IT1.3(b)
(i.e., Jiijkal ...) is precluded in the isotropic case, because
the operators in the propagator are mutually commuting. This means
that the operator Izi in the initial density matrix is unaffected
by propagator terms proportiomal to ij, (,k#1). 1In the anisotropic

case this simplification is not possible. One important consequence

of this difference is that anisotropic multiple-quantum NMR is useful



Table II.2
Average N-quantum transition intensity for An systems, versus the

overall average transition intensity with and without symmetry.

Overall Overall
N N-quantum (with symmetry) (without symmetry)
6 1.107p 571 0.0238
8 1.6768 741 0.0078p
10 2.326 .88% 0.00244 g
12 3.038 1.07% 0.000733

(B=(YBy/kT) (27 V)
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in systems such as chains, where each nucleus is strongly coupled to

nearby spins, but no spin is strongly coupled to all others.

2.4 Signal Intensities; Ensemble Averaging
Fourier transformation of equation (II1.34) shows that the
multiple-quantum spectrum is:
S(wy =-CB8 Z T)).. -t -
(w) . (DMQ( ))Jl(DMQ( 2))ij §(w wij)
For arbitrary values of t, and T the intensities and phases

of the different transitions can vary widely. TFor example, Figure

I11.4(a) shows the spectrum of oriented benzene (14 wt % in Eastman

liquid crystal #15320) at 24.0°C with Aw = 500 Hz and T = t,

10 msec. There 1s no simple way to put all the transitions in

phase, and therefore the spectra are usually presented in magnitude

form, as in Figure II1.4(b). If the linewidths are important, well-

resolved transitions can be individually phase corrected. If T = -t

all of the transitions have the same phase, and magnitude spectra

are not needed. Time reversal of the dipolar Hamiltonian is

possible, as will be discussed in section 3.4, but it is complicated.
Any specific value of t, or 1 will pump some transitions more

strongly than others. For example, one of the three allowed pairs

of four—-quantum transitions is not visible above the noise level

in Figure II1.4 and the five-quantum and six-quantum transitions

are not visible either. For this reason one generally averages

together magnitude spectra corresponding to many different values

of t2 and T. This process is termed ensemble averaging, and was

used to produce all of the spectra shown in section 1.4.
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Figure II.4. The multiple-quantum spectra of oriented benzene (14 wt

in Eastman liquid crystal #15320) at 24.0° with T = t, = 10 msec and

Aw = 500 Hz.
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An ensemble averaged spectrum for benzene is shown in Figure
IT1.5. Transitions corresponding to all values of AM are present
-in this spectrum. The simplest statistical assumption (to be
discussed further in section 6.3) would be to assume that, on
the average, each symmetry allowed transition is pumped about
equally well. A computer simulation for this case is shown in
Figure II.6(a). This gives a good qualitative description of the
intensity distribution. The integrated intensity of each order
should then approach a binomial distribution if there is no
symmetry, because the number of transitions has that distribution.
This is also qualitatively correct, as shown in Figure II.7.

However, the intensities do vary somewhat, and this variation
cannot be completely eliminated even by extensive averaging, as
shown in Figure 11.6(b). Some transitions are inherently stronger
than others. For example, the arguments presented in section
2.3.2.2 suggest that the average intensity should increase as AM

increases, since D12 N 3/3 D13 ~o8 D14 for the hexagonal symmetry,

68

and therefore all the coupling constants have the same sign. This

increase actually does occur experimentally as shown in Figure II.8.

The total intensity of the spectrum for any specific T and t2

is:

S=-CB I |(p() (n -t (I1.61)

1,3 1371

if all the transitions are nondegenerate. It is easily seen that
' i imi = -t .., and in this
this sum is maximized when IDMQ(T)lij ICMQ( 2)[31,

2 .
case the sum is equal to -C B Tr(oMQ(T) ). Invariance to unitary



69

Ortented Benzene
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"
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Figure II.5. Nonselective multiple-quantum spectra of oriented
benzene averaged over four values of T = t2. The integrated

intensity falls off as AM increases.
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Oriented Benzene

a. Al transitions weighted equally Theoretical n-quantum speciro

I |
!MJ J I

b Exact average (2000 values
of )

1'[\[!“!1 HWH'!u"lfmf(klui IR

XBL 8010-12692

Computer simulations of benzene multiple-quantum spectra.

Figure I1.6.

In part a) all allowed transitions are weighted equally. Part b)

corresponds to averaging over 2000 values of T = t,-
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Figure I1.7. The integrated intensity pattern for benzene, compared
to the predicted pattern if all transitions are pumped equally.
Symmetr§ effects are not important in this integratedvpattern. The
prediction without symmetry is a binomial distribution, which

approaches a Gaussian as the number of spins is increased.



Average Transition Intensity (arbitrary units)

@
Oriented Benzene
Nonselective Excitation
o
L ]
®
o o
d | I 1 1 1
! 2 3 4 5 6

Number of Quanta
XBL 8010-12247

Figure II.8. The intensity of an average allowed transition taken

from Figure II.5. All the dipolar couplings have the same sign, so

the high multiple-quantum transitions are expected to be strongest.
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transformation implies that this equals -C B Tr(Izz), which is also
the integrated intensity of the single-quantum spectrum in a
‘conventional one-pulse experiment.

Actually, this result holds for all pulse multiple-quantum
experiments. In the general case (Figure II.9) a pulse sequence
(which need not be cyclic) is applied to produce multiple-quantum
coherences. This is called the preparation sequence, and its propagator
wiil be called U. The spins then evolve under ﬂ; for a time tl. In
the simplest experiments no pulses are applied during tl; however,
decoupling, spin echoes, or more complicated sequences are possible
if suppression of part of ﬂ; is desired. Another pulse sequence
(called the mixing sequence, with propagator V) is used to transfer
the multiple-quantum coherences that evolved during tl into observables
<Ix> and <Iy>‘ These are detected after a time t, (note that this

definition of t, is not equivalent to the one used in Figures I1I.1-2).

2

In this subsection t2=0 is assumed (the general case is treated in

section 6.1). If <Iz> is again assumed to be observable the signal

is

-C B <Iz> -C B Tr(pIz)

= -C B Tr(V exp(—iJ("ztl)UIzU+ exp(iﬂétl)vfIz)
T UD) exp(I £ ) (VITV) exp(-iK t.))
= ~C 8 Tr(U z exp z'1 z exp z 1
iw

+ + t
= - .62
C B lnZn(UIZU )mn(v IZV)mn e mn 1 (11 )
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XBL 8010-12486

Figure 11.9. Generalized pulse sequence for multiple-quantum
experiments. A sequence with propagator U (the preparation sequence)
creates multiple—quantum coherences. These coherences evolve during
tl, and are partially transferred into observable single-quantum

operators by a sequence with propagator V (the mixing sequence).

The observables are detected after a delay t,-
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The maximum signal is obtained when ](UI UT) | = I(V+I V) __| for
z ‘mn z ‘mn
every matrix element and again is -C B Tr(IzL).
This condition for maximum signal is obviously satisfied if
U= V+; this case corresponds to T = —tz‘for the simplest pulse
sequence. Fortunately, T = t, is just as good. ﬂ; is a real

operator (i.e., all of the matrix elements of H% can be made real

by an intelligent choice of basis set). This implies that
(exp(-iKQT)Iz exp(ﬂﬂgr))ij = (exp(iﬂgT)Iz exp(—iK%T))ji (11.63)

so inspection of equation (II.34) shows that the only difference
between T = t, and T = -t, is that all the lines are in phase with
each other in the time reversal case. If some of the lines are
degenerate this may matter, but the important transitions are
usually nondegenerate (see section 1.4). The general éase (1 # 2 t2)
will be discussed in section 6.1, and general conditions for
I(UIZU+)|ij = ](V+IZV) [ji will be discussed in section 3.5.1.

If the multiple-quantum matrix elements are inefficiently
excited (for example if ilﬂ;Tll << l),pMQ(T) has large matrix elements
along its diagonal. These matrix elements are populations, so they
do not evolve, and most of the intensity of the multiple-quantum
spectrum is found at w = 0. An efficient two-pulse excitation has
little intensity at w = 0, and is expected to make all coherences
roughly equal as explained in the last section. This means that the
total magnetization (—CB‘Ir(Izz)) is divided up among 4N matrix

elements in a system with N spins-1/2. In going from a N-spin system
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to a (N+1)-spin system the magnetization increases by a factor of
(1+(1/N¥)), but the number of matrix elements increases by a factor
.of 4. Thus the accumulation time for the same signal-to-noise ratio
is almost a factor of 16 larger.

As a result, multiple-quantum spectra for large spin systems
are weak. All of the spectra in section 1.4 were taken with the
sequences of Figure (II.2(b)). With the experimental apparatus
currently available to our»reseatch group (to be described in section
6.1) accumulation times of several weeks for an eight-spin system are
not uncommon. Larger systems therefore cannot be readily studied by

the techniques examined in this chapter.

2.5 Conclusions
The density matrix formalism has been developed to describe both
continuous wave and pulsed NMR experiments. In particular, pulse
sequences to produce and detect multiple-quantum coherences have been
analysed. The simplest sequences can pump all symmetry allowed
coherences about equally, independent of AM. Nonetheless the

intensity of any individual transition falls off rapidly as the

number of spins increases. Techniques to increase signal/noise ratios

will be discussed in the next several chapters.
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III. Theory of Selective Excitation of Multiple-Quantum Transitions

The signal-to-noise ratio in the standard multiple-quantum
experiment falls off rapidly as the number of spins increases, as
noted in the last section, because the number of observed transitionms
grows very rapidly. One way to solve this problem would be to
distribute the total spectral intensity between only a few transitions,
instead of driving all transitions equally. In a small system with a
known Hamiltonian this can be dome. For example, in a two-level
system the population difference can be completely transferred
into coherence by a 90° pulse. In a three-level system the
propagator is a 3 x 3 matrix, and pulse sequences can readily be
designed which produce only two-quantum coherence, if all of the
couplings are given.6l’62 But this approach is not readily generalized
to larger systems, except in such simple cases as isotropic first-
order systems (section 2.3.2.1) or anisotropic systems with AN
symetry (section 2.3.2.2). 1In addition, the couplings are generally
not known in advance (if they are known, most of the justification
for taking the multiple-quantum spectra disappears). Thus, aside
from even-odd selection due to the bilinear form of spin coupling
operators (see section 2.3.2.2) no general method of selective
excitation has been proposed.

In this chapter, and the papers which preceded it,67—70 general
methods of selective excitation of multiple-quantum coherences are
proposed. The theory of selective excitation is derived here as an

extension of coherent averaging theory. In chapter IV computer

simulations of selective experiments are presented and discussed.
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In chapter V selective spectra are presented, and practical
considerations for producing good selective sequences are detailed.
’The results of these chapters will show that selective excitation
of multiple-quantum transitions in NMR is theoretically and
experimentally possible, that this technique can provide enormous
signal enhancement, and that general selective sequences are

applicable to a wide range of spectroscopic systems.

3.1 Review of Average Hamiltonian Theory

3.1.1 Expansions for the Propagator

The effect of any sequence of irradiating pulses and delays on
a general system in the absence of relaxation can be represented by
a single unitary transformation U (the propagator). Calculating U
directly by multiplying together the propagators for each part of
the sequence 1s extremely tedious if many eigenstates are involved.
However, this calculation can be avoided for certain pulse sequences
by a technique known as average Hamiltonian theory. This technique
is thoroughly documented,9’71’72 so only a brief summary of important
results will be reproduced in this subsection. In the next subsection
the results will be generalized to describe sequences which are
inherently selective.

The total Hamiltonian of a system is written as M(t)#Kint+Hi(t),
where ﬂint is the internal Hamiltonian of the system (for example,
the interactions between pairs of magnetic dipoles) and ﬂi(t) is
the explicitly time-dependent interaction controlled by the

experimenter (for example, the interaction with radiation). ﬂi(t)

is termed cyclic with cycle time t. if Hi(t) and the propagator
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t
Ul(t) = T exp(-1 g.ﬂi(t')dt') are periodic, and if tc is the shortest
interval that constitutes a period for both Ul(t) and Hi(t). If
Xi(t) is a pulse sequence made up of an integral number N of cycles,
the propagator for the entire sequence is the Nth power of the
propagator corresponding to one cycle, and therefore only a single
cycle need be considered.

The propagator for a single cycle can be shown to be:

U = exp(-iit ) = exp(-ici(o) + 7@ 4 - +-i‘n))tc) (I11.1)
where:
tC
_(0) 1 ~
b7y = t—f Jcint(t)dt (I11.2)
c O
tc t,
71 _ =1 f ” > '
¥ tc Odt2 5 dtl [Hint(tZ)’ ﬂint(tl)] (1I11.3)
t t.
7(2) 1 ,/q: 2 UZFZ ~
x = - —=
6t_ J, dt3./g dt, o ey 116G (eq),

7, (e ), (eI + [ (), B (60,5 (c)11)

(I11.4)

and

-~

-1
J(1nt(t) = Ul () Xin

U
V10
, 73 .
This is a Magnus expansion ~ of the propagator in powers of the
cycle time. The average Hamiltonian expansion is a perturbation

expansion in powers of a smallness parameter tC that has a physical

meaning; tc and iint(t) are simultaneously varied by lengthening the
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sequence. For this reason, i(i) is termed a correction term of order

1 and is proportional to tci. i(O) is the zero-order or average
.Hamiltonian, and { is the effective Hamiltonian. The advantage of
this expansion is that a complex time dependent process has been
expressed by a time independent Hamiltonian.

3.1.2 Examples of Multiple-Pulse Sequences

Pulse sequences are usually designed so that i(o) has some

particular desired property, and then higher-order terms are
minimized. Two simple examples are shown in Figure (III.1). Figure
(I1I.1(a)) is called a Carr-Purcell sequence.37 The sequence 1is
cyclic because Ul(ZT) = 1. If the pulses are assumed to have

-~

i H :
negligible width, int(t) is

J(int(t) = JCD + :KQ + JCJ + JCCS + JCZ (0 < t<T/2)
-JCD+JCQ+JCJ-JCCS —J(z (T/2 < t< 3T/2)
= JCD + J{Q + JfJ + J(cs + JCZ (3T/2 < t £ 2T) (111.5)

because the first-rank spin tensors MES and ﬂi are inverted by a

180° rotation. Then
) _ 3
X J{D+JCQ+ 1

and the chemical shifts have been suppressed. If a pulse sequence

= > @)
is symmetric, such that Kint(t) = Kint(tc—t), H and all other

odd-order correction terms vanish. This sequence is symmetric, so

=(2
the major corrections come from K( ) and from pulse sequence



180y 180y

a. 172 T T/72

N

XBL 8010-1224%

Figure IIT.1 Two multiple-pulse sequences for suppressing some parts

of the Hamiltonian. Part a) shows a Carr-Purcell sequence, which
suppresses first-rank tensor interactions. Part b) shows a WAHUHA

sequence, which suppresses second-rank tensor interactions.
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imperfections (inhomogeneity, timing errors, and the like).

-
g

Figure (I1I.1(b)) is called a WAHUHA sequence. H can be
z
decomposed into three parts: zero-rank tensors (I J,jfi-f,),
i j

first-rank tensors (-I OiIzi + AmIz), and second-rank tensors

@, ¥ and terms with J??iso)-
D" Q 1]

affected by rotations. Second-rank tensors are proportional to

Zero-rank tensors are not

> -
ziIzj— Ii.Ij (for KQ i=j), and first-rank tensors are proportional

. XK :
int is then

31

to Izi

e (® ~ GI T, - T{I‘j) +I,+ (I 1) (O<t<m

- - > -+
NV (3T T, - IsI) 4+ I 4+ (I,°I) (T t<2T
yi'y] ] yi i3 )

N3 .1, -1ty +1 .+ (T,T) (2T <t < 3D
x1"xj J xi 173 -

icint(sr—c) = iint(t) (111.6)
This gives
J’f(o) -1 Bw(Il +I +I ) - S0, (I_4I_+I_)) + L J..1.-1)
3 x 'y 'z ivxi Tyi Tzi ij i 3
(111.7)

7 -

This sequence eliminates dipolar and quadrupolar terms, thus
permitting the observation of chemical shifts in solids. More

sophisticated sequences are designed to have smaller error terms.

For example, one very powerful method of reducing these terms
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involves alternating between two or more different cycles (called
subcycles) to form a new, larger cycle. Under certain conditioms,
-some of the higher-order terms for the entire cycle are simply equal
to the sum of the corresponding terms for the subcycles; such terms
are said to decouple.75 Decoupled pulse cycles for line narrowing

have been produced that have i(z) = 0 for the dipolar Hamiltonian,

and have small error terms.75

3.1.3 Estimation of Correction Terms

Bigher-order terms are usually difficult to calculate, but

their size (and therefore their contribution to residual line widths)

can sometimes be estimated. If 7O - g 5@ gD 0,
then ﬂ(k) = i(k), where i(k) is defined as
J‘C(k)-—('i—)kjcdt jkﬂdt fzdt 3, (t. ) K, (t.)
t k+1 k °°° 1 ‘int" k+1l” int 'k
c 0 0 0
k=n, nt+l ... 2n (111.8)

Reference (9) contains a weaker version of this theorem, which
requires i(J) = 0 for all j<n for iin) = i(n), but inspection of

their proof76 leads to the immediate conclusion that i(J) = 0 for

all j < (n-1)/2 is sufficient for i{n) = i(n).

+ .
The volume of integration is (tc)n 1, s0 i(n) can be easily

estimated in terms of Hint' This estimation requires the concept

of the norm of a matrix. The norm of an arbitrary NT % NT matrix

A can be defined as:

[1all] = (ﬁl—Tr(AAJr))l/2 i (II1.9)
T
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IAl is invariant under unitary transformations, so if A isg

Hermitian, !Al is the root-mean square eigenvalue of A, called

2 .
M 1/ (A). Other convenient properties that are proven in Appendix

2

E are:

1. If A and B are Hermitian, §ABI = IBal < NTl/zﬂAﬂ Isl.

2. 11l =1, where I is the identity matrix.

3. If A is Hermitian, IA™ is the square root of the (2n)-th

moment of the distribution of the eigenvalues, called Ml/Z(A)

Since MI/Z(A) > (M l/:Z(A)) for any distribution, 1™ > (HAH)

4, 1f A and B are similar Hermitian matrices, such that A = UBU+,

1aBl < 1A%l = 1821,
5. However, if A and B are two different matrices, with nothing
else known about either matrix, then (AB) =2 A B, is the sum
mn . miin

of NT numbers, which are expected to add randomly. This implies

1ARI ~ Al BRI,

1K e K I
Properties (3) and (4) imply that Kint<tn+l) ﬂint(tn) Xint(tl)

< |G§ t(tl))n+ln. For many systems the eigenvalues of M&nt have

roughly a Gaussian distribution, and in this case

1/2(M1/2)n

(1I11.10)

M2 e @ases o e e/ - (et @Mn

@1 <oax, e 1 en 2 ey HHhY? L airan
c int ¢

In fact, if the cycle contains many pulses so that xint(t)

. . ny f 1 ﬂ}f "n"}‘l.
varies rapidly, ”Hint(tn+l) ﬂint(tn) e Kint(tl) LA



Thus |i(n)tcl N Iﬂinttcﬂn+l/(n+l)l, and for those terms for which
gl | glotl) - galodl)y 2ty b3t 1/(a+l). For higher-order
terms expressions involving commutators, such as equations (III.3-4)
are required.

All of the results presented so far are applicable to any cyclic
pulse sequence. It is now necessary to extend average Hamiltonian

theory, in order to create pulse sequences which selectively excite

only a few transitions.

3.2 Extension of Average Hamiltonian Theory to Selective Sequences

3.2.1 Definitions

An operator is nk-quantum selective if it can be completely

decomposed into irreducible tensors Tik’ with k allowed to have any
integral value including 0. If only k = %1 is required, the operator

is n~-quantum selective. If tensor components that are not integral

miltiples of n are required, the operator is nonselective. Any

nonselective operator can be decomposed into annk-quantum selective

operator and a remainder which we call non-nk—quantum selective
(abbreviated nns). From the definition of tensor operators, the
product or sum of two nk~quantum operators is also an nk-quantum
operator. In addition, an operator is nk-quantum selective if and
only if it is invariant to a rotation of 2m/n about the z-axis.

A cyclic pulse sequence is j-order nk-quantum selective if all
the operators i(i)(i < j) in the average Hamiltonian expansion of
the propagator are nk-quantum selective operators, (For example,
if i(o) is 4k-quantum selective bﬁt i(l) is nmot, the sequence is

zero-order 4k-quantum selective). An.equivalent definition is that
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all-terms in the propagator proportional to (tc)i+l (i < §) are

nk—quantum selective. If the initial density matrix has no
coherences, the final density matrix will contain only nk-quantum
selective operators, up to terms proportional to (tc)j+l.

The physical meaning of nk-quantum operators depends on the
system being considered. If the axis of propagation of the radiation
is8 chosen as the z~axis, an nk—quanfum operator causes a net
absorption or emission of a multiple of n photomns, and changes
the z-component of the angular momentum of the applied field by
some multiple of nh. If the z-component of angular momentum is a
good quantum number for the system (as it is, for example, iﬁ NMR
at normal magnetic field strengths), conservation of angular momentum
implies that the system can develop coherences only between states
for which this quantum number differs by a multiple of n. If this
is not a good quantum number, the selection rules for n-quantum

transitions are more complicated.

3.2.2 Theorems for Selective Sequences

Many of the theorems of average Hamiltonian theory are directly
applicable to selective sequences. In additiom, two new theorems
which can be viewed as generalizations of known theorems for line
narrowing sequences are useful.

Theorem I. Suppose a cycle (cycle time tc) consists of m subcycles
(cycle times t.1s tc2’ .o tcm)’ each of which is
j-order nk-quantum selective. Then the cycle is also

j-order nk-quantum selective. Furthermore, the non-

- (341
nk-quantum selective (nns) part of H(J ) for the cycle

decouples, i.e.,
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GR(j+l)tc) =

nns i

nm~g

&, O,
1

ci’nns (111.12)
Proof: For simplicity of notation only the case m=2 will be explicitly
proven, since repeated application of this theorem with m=2 proves
the theorem for arbitrary m.

The propagator for the cycle is equal to the product of the

propagators for the two subcycles:

exp(-1 @ + T4 ) = ep1@® + &4 o)

(1)
1

x exp(-icﬁfo) 7 L ey (ITI.13)

cl

Expansion in powers of tc, tcl and tc2 (recalling that i‘k) v

-~ +
tﬁ and ﬂﬁk) N t:j) shows that the term proportional to (tc)k 1 is:
- - 1 ] - 1"
-i:fr(k)tc‘*'% p oD gk )tC2+
k',k"
(k,) (k) (k1)
SR TR MRS U S S SO AP
=l — ' "
(k,) k) (kD)
= 1 1 v omo 17 .17 2
- = H e
x ( 1mi t.1 + > k'an 1 Hq to + )
1’1
k'+k" = k-1

k!+k! = k_-1

11 1
ké+k§ = k2—1 (111.14)

In this expression kl,kzz_—l; if k.= -1 the terms involving t . are
i ci
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ignored. The terms represented by (...) are products of three or more
operators, multiplied by (tc)3 or higher powers of t . i(k) can
c
only appear in the first term on the 1l.h.s., and all other terms
(k.)

must have smaller superscripts. By assumption, X s nk—-quantum

selective for all ki < j. When k=0, equation (III.14) simplifies to

iJ—C(‘O)tC = i(rf'(io)tcl + :Tféo)tcz) (I1I.15)

_ 0 B
so H( ) is nk-quantum selective if j > 0. It follows by induction
that all the operators i(k) (k £ j) are nk-quantum selective by
considering progressively higher powers of tc, through (tc)3+1.
The only possible nns term proportional to (tc)J+2 on the
. = (3+1) .
l.h.s. is then (-i¥ tc)nns since all other terms involve only

lower—order operators which are nk-quantum selective. Similarly,

)

nns

=(3+1)
+ ﬂé th

the only possible nns term on the r.h.s. is —i(i§j+l)tcl
By equating these two expressions, Theorem I is proven.
The only property of nk-quantum selective operators that was
needed to prove Theorem I was closure of this set of operators
under addition and multiplication, and similar theorems can be
proven for any other set of operators with these two closure

properties. In particular, the mull set is closed under addition

and multiplication. A decoupling theorem for that case (i.e.,

i(o) = i‘l) cee = i(j) = 0) was proven by Burum and Rhim.75 Their

version of the decoupling theorem was used to cancel residual error

terms by combining cycles. A similar approach will be taken in

section 3.3 to create selective sequences. Incidentally, another
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set which satisfies the required closure properties is the set of
N-quantum operators in a N spin-%-iﬁm.system, éius the populations
‘of the two extreme states; this case will be discussed later.

The size of the first nns term for a j-order nk-quantum selective
sequence can be readily estimated.

Theorem II. If a sequence is j-order nk-quantum selective, the non-nk-

quantum selective (nns) part of i(j+1) can be written as:

t t

~(3+1) PPN S ! f 2 =
el )Ims ((-1) /tc) A dtj+2 _/(; dtl Jcint(tj+2)

-~

ﬂint(tl))nns . (IIIfl6)

Proof: The proof of this theorem is identical to the proof that i‘j+1)

has this form if ﬂ(J) = 0 for all 1 < j, contained in reference (9),
so it will merely be outlined. The most general expression for the

+
term proportional to (tc)j 2 in the propagator is

t t
RET A fj+2 ftz - -
- t dt eee ¥
( R A 41 5 dt) Hinel o) Hine(ty)
ke (111.17)

Expanding U = exp(—ﬂﬁ(o) + ﬁ(l) + ... ﬂ(n) ...)tc) as in the l.h.s. of
equation (III.14), the only possible non-nk-quantum selective term
proportional to (tc)j+2 is (—ﬁﬁ(j+l)tc)nns, which proves the theorem.
It should be noted that equation (III.16) is only valid for the
first nns term, while if ﬁ(n) = 0 for all n < j a similar expression

holds for all terms up to ﬂ(Zn)' The difference is that the l.h.s.
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—(kl)—(kZ)
of equation (III.1l4) contains operators such as K H , which
k) (k)

_

vanish if either X or {' © wvanishes, but which are generally
. k) (k)
nk-quantum selective only 1f both ¥ and ¥ are nk-quantum

selective.

3.3 Design of Selective Sequences

3.3.1 Zero-Order Selective Sequences

A sequence which is zero-order nk-quantum selective can be
produced from any cyclic sequence of pulses and delays, using a
technique called phase cycling, illustrated in Figure III.2(a).
Assume that the cyclic sequence has a duration ATP (called a sub-
cycle), an effective Hamiltonian ﬂ; = iﬁo) + iﬁl) + ... ﬁén) ceey
and a propagator Uo = exp(—ﬂKQATp). At the end of the interval ATP,
the sequence is repeated with all radiation phase shifted by ¢ = 2n/n
about the z-axis, giving a new effective Hamiltonian ﬂ¢ and

propagator U¢. ﬂ¢ is related to H; by a rotation of -¢ about the

z-axis:
ﬂ& = exp(i¢Iz) ﬂ; exp(—i¢Iz) (I1I.18)
= (¥ i -M : I11.19
Cﬂ¢)ij ( o)ij exp (i (M, J.)) ( )
and U¢_is related to Uo in exactly the same manner. This phase shift

is repeated n times, creating a cycle with cycle time t. = nATp. To
calculate ﬂ(J) for the cycle, note that t. is proportional to ATP.
Therefore ﬁ(j) and ﬂ(j) scale in exactly the same manner when t.

(o]

is changed, and equating terms proportional to t. with those

propor tional to ATp shows that:
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’

Figure III.2a Phase cycling can be used to create nk—quantum selective

sequences, using phase shifts of ¢ = 2n/n. The cycle of n subcycles is
more selective by one order in the averagé Hamiltonian theory expansion.

Figure II1.2b The cycle of 2n subcycles formed by phase cycling and

symmetrization is more selective by two orders.



n-1 n
7 %' £=g ﬁég) - %' zio exp(1201,) i§0) exp (-1201 )
(I11.20)

This sum scales the matrix element Gi§0))ij by (1/n) Dgl eiZﬂpQ/n,
where p = mi-mj; this scaling factor is zero unless p = nk?—o
Therefore, i‘o) is a pure nk-quantum selective operator. Since
i(o) decouples, any other permutation of the subcycles is also
acceptable. Higher order terms have some nk-quantum selective parts

. ol o) (D)

(for example, there is a contribution gio Ki¢ to I ) but no higher

order terms are completely selective. Thus, the sequence obtained
by phase cycling is zero-order nk-quantum selective. Equivalently,

the propagator after n subcycles can be written as:

n-1

U= I exp(-iX

_ At )
p=0 ¢=2mp/n" 'p

n-1
=1-3dAT (L
P

2
I Hgmpmp/n) * LT % (II1.21)

If |H¢ATPI << 1, the last term can be neglected. Combining

equations (III.4) and (III.5) to first order in ATP we can write

n-1 :
Uij =61j- iArp(pio exp(i2ﬂp(Mi—Mj)/n))GKg)ij
= - - - . I111.22
dij inATpro)ij JO: 8 Mj) nk) C )

Thus U will only induce transitions between states with &M = nk,
to first order in At_. If tc can be made arbitrarily small, all the
P

higher-order terms in the average Hamiltonian expansion become
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unimportant, and this zero-order selective sequence becomes completely
selective; of course, the selective temrm Hﬂ(o)tcﬂ + 0 as t. 0, but
this can be remedied by repeating the zero-order sequences many

times. An operator which only induces transitions between states

with AM = nk will also only transfer populations between states

with AM-= nk. Thus selective sequences can create selective population
inversions.

This application of average Hamiltonian theory is somewhat
unusual, in the sense that i&nt(t) (i.e., ﬂ;, ﬂ&, ...) is given
instead of generated from a time independent xint' Figure (III.3)
shows schematically how this difference can be eliminated. The
phase shifts are equivalent to a series of z pulses on a system with
an otherwise time independent H;. Since the pulses have strange flip
angles, phase shifting can probably be done more accurately.

3.3.2 Sequences Selective to Arbitrary Order

In general, the cycle time cannot be made vanishingly small, so
higher-order selectivity is desirable. One simple way to get a
first-order selective sequence is to symmetrize the cycle, as
illustrated in Figure (III.2(b)). i(o) is still nk-quantum selective,
and the symmetrization causes i(j) to vanish for all odd j, so the
first nonselective term is i(z).

In fact, sequences which are selective to arbitrarily high order
can be designed. Suppose that the sequence for Xg in Figure II1.2(a)

is already j-order nk-quantum selective, instead of being nonselective

as was assumed earlier. Theorem I proves that the sequence obtained

by phase cycling is (j+1)-order nk-quantum selective, because
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° ®
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XBL 803-8945

Figure III.3. The analogy between a phase cycled sequence consisting of

subcycles with effective Hamiltonians #, and a pulse sequence on a

¢

hypothetical system with J(int = J(o. Average Hamiltonian theory can

be applied to the pulse sequence.
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Gﬁ(j+l))nns decouples:

-1 n-1

=(3+1) - n 7(G+1) - =(§+1)

“ nns zio (2¢> Jans zio (exp(1te1,) ¥,
exp(—ilci)lz))nns =0 . (I1I.24)

Therefore, starting from a nonselective ﬂg, (j+1) phase cyclings
produce a sequence that is j-order nk-quantum selective, requiring
n(j+l) subcycles; each block of n subcycles is zero-order nk-quantum
selective, éach block of n2 subcycles is first-order nk-quantum
selective, and so forth. For example, a first-order 4k-quantum
selective sequence may be constructed from 42 = 16 subcycles, and the
phases of the subcycles can be written schematically (0:¢=0, 1l:¢=7/2,
2:¢=m, 3:¢=31/2) as (0123) (1230) (2301) (3012). Each group in
parentheses is a zero-order nk-quantum selective sequence, and is
phase shifted by m/2 to produce the next group.

In the absence of relaxation, there is no limit to the number of

times phase cycling can be applied, and therefore sequences which
are selective to arbitrarily high order can be designed. In any
real system, only a limited number of subcycles could be completed
before relaxation effects make the average Hamiltonian calculation
invalid. One way to reduce the number of subcycles required to
achieve a given order of selectivity is to combine phase cycling and
symmetrization, as in Figure II1.2(b). The sequence is first-order
nk-quantum selective even if ﬂs is nonselective. If MQ is already
j—order nk-quantum selective (j odd), the phase cycling and

symmetrization requires 2n subcycles to make a (j+2)-order nk-quantum
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selective sequence, instead of the n2 subcycles required for two
phase cyclings. Thus, a (2j+l)-order nk-quantum selective sequence
-requires (2n)j+l subcycles ((j+1) phase cyclings and (j+1)
symmetrizations) and a (2j)-order nk-quantum selective sequence
requires n(2n)j subcycles ((j+1) phase cyclings and j symmetrizations)
For e#aﬁple, a third-order 4k-quantum selective sequence requires
(2n)2:= 64 subcycles, and the relative phase can be written
schematically as (0123)(3210) (1230) (0321) (3301) (1032) (3012) (2103)

(3012) (2103) (2301)(1032) (1230) (0321) (0123) (3210).

3.4 Application of Selective Sequences to Multiple-Quantum NMR

3.4.1 Design of Effective Subcycles

In this subsection the general principles of selective excitation
are applied to the particular case of a system of directly dipole
coupled nuclear spins. The high resolution and simplicity of the
high multiple-quantum spectra of these systems was discussed in
section 1.4. It will be shown how the use of selective sequences
can overcome the problem of small signal intemsity, thus makiﬁg these
spectra observable in large spin systems.

The Hamiltonian for the N spins-1/2 of an oriented molecule in

a large magnetic field can be written in the rotating frame (in units
of h = 1) as
H = Z D (31z

z i>] 1]

-+ > > >
~I, . + (- +AwX
iIz. Ii Ij) + '}: JJ.(IjL Ij) (ZoIzi AW z)

i>j 1 i i

(I11.24)

ﬂ;z + ﬂj + CHES + AwIz)

where typically ﬂﬂézﬂ >> ﬂm;sﬂ, UM&U. All of these terms were
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defined in Chapter I. The evolution under this Hamiltonian must be
converted, by some as yet unspecified sequence of pulses and delays,
into the propagator Uo (and effective Hamiltonian H;) of the last
subsection. 1If the sequence can be designed teo have high quantum
operators in the leading terms of its effective Hamiltonian, then

the cycle need only be selective to a low order since high-quantum
operators will appear in its leading terms. Since ﬂ; contains only
first and second-rank operators, no simple rotation of 1; can contain
high-quantum operators. 1In fact, it can be shown that no matter

what the actual pulse sequence is for ﬂg, it cannot contain multiple-
quantum operators unless IM;ATPH > 1. If the cycle consists of many
subcycles then Uﬁétcl >> 1, but convergence of the effective Hamiltonian
expansion generally requires Uﬂ;tcl < 1. For this reason the pulse
sequence for Hg must be constructed such that Iﬂ;ﬂ << ﬂﬂ;ﬂ. Several
approaches will be discussed.

3.4.2 The Use of Time Reversal in Subcycles

3.4.2.1~0enerai Principles

One general approach to subcycle design uses the method of time
reversal and is illustrated in Figure (III1.4(a)). Pulse sequences can
be designed with iéo) = 1/2GHb,xx + Xb,yy) = -1/2 ﬂb,zz; the effect
of such sequences is to make the spin system appear to evolve back-
wards in time.77 If such a pulse sequence is applied for a time 2T
and then turned off, the initial condition will return after a time
T. If ”{D, ZTU > 1, both the forward time and reversed time

propagators can contain irreducible tensor operators of arbitrarily

high rank, but will commute with Iz‘ Similarly, pulse sequences can
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Figure II1.4. Possible pulse sequences for the subcycles in Figure III.2.

In part (a) time reversal sequences generate M;T' = aﬂ?T, so that

lﬂgﬂ << ﬂﬂb zzn’ but M; contains multiple-quantum coherences. In

’

part (b) a WAHUHA sequence with a long cycle time has the same effect.
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be destgned with %% = 1/2 GO 43 ) = -1/23 . In this
case, the propagator obtained from a sequence with Uﬁb’xxTﬂ > 1 will
contain irreducible tensor operators of arbitrarily high rank, but
will not commute with Iz. Such a propagator can generate multiple-
quantum coherences and can be viewed as a multiple-quantum rotation
(as opposed to the rotation produced by a single strong pulse,

which will only generate single-quantum coherences from a density
matrix proportional to Iz).

The propagator for the subcycle of Figure (III.4(a)) is U(ATP) =
exp(-ﬁK;T') exp(-iﬂ;AT;) exp(-ﬂﬂﬁT). Time reversal techniques are
used to make K;T' = éKbT. When this condition holds, the periods
T and T' may be viewed as a complementary pair of multiple-quantum

rotations which sandwich the period AT;. Together they form a cycle,

and the propagator is:

= -3 ' - T)H - .
U(ATp) exp ( 1ATp(exp( iﬂﬁ ) - exp( ﬂKbT))) (1I1.25)
Therefore
Jfo = (AT}')/ATP)(e}cp(iifpr)Jf‘,n7 exP(—iJCpT)) (111.26)

If ¥ 1is nonsecular, bilinear and does not commite with ﬂ; then ﬂs
will contain high multiple-quantum operators when Iﬂ?Tﬂ > 1. Since
the exponential operators constitute a unitary transformation

At!
11 = Z¥R IH&'. The desired effect of reducing the norm of the
o

subcycle Hamiltonian is achieved when AT; << ATp.

Since IX AT I = nﬂ;AT;ﬂ the small interval AT; may be thought
© P

of as an effective cycle time for the subcycle. This concept is very
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useful in understanding the application of average Hamiltonian theory

=(1) )
to selective sequences. K( is defined to be the term which scales

" as (tc)i when the cycle time is changed, but implicit in this
definition is the assumption that ﬂint(t) is also scaled propor-
tionately. Thus, if every delay in a specific pulse sequence is

doubled and the length of each pulse is doubled while keeping the

(1)

flip angle constant, the term ¥ is multiplied by 21. In a

-~

selective sequence Hint(t) is replaced with ﬂ;, ﬂ#, and so forth.
1

In fact, Arp = 2T + ATp for the sequence in Figure (III.4(a)), but
if T is changed at all ﬂ; will change. The only way to double each

matrix element of ﬂ;ATP (which is analogous to scaling ﬂint(t)) is

1 4
to double ATp but leave T alone. Thus T should be viewed as a fixed

parameter, and Arp is effectively the length of the subcycle.

3.4.2.2 Specific Subcycle Sequences

L
Several choices are possible for Kb, ﬂb, and m;. One choice 1is

to let ¥ =¥ _ = I a,,(3I_.I
P p o

1j xi xj—Ii-Ij), produced by the sequence

i>3
90y - T - 90;. HES has been neglected; if this is a bad approximation,
an echo sequence can be used. ﬂ; = - %-H;x, produced by a time

1
reversing sequence, such as (2 T - 90x - T - 90x -1 - 90; - T - 90; -
1 .
T - 90; -1~ 90; -1 - 903 - T - 90x -3 1), repeated enough times
to fill a period T' = 2T, and M; = K;z using no pulses at all (ﬂ;
is8 a "window" in the sequence). The particular time reversing

! =(0)
sequence chosen for K% has ¢ =

1 .
-3 ﬂb,xx,.it is symmetric, so
iél) = 0. Using the notation of reference (75) for various error

terms from pulse imperfections, one finds iéO) (resonance offset and

chemical shift terms) = 0; iﬁg)(rf inhomogeneity effects) = 0
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= (0
(to order €); and KéD) (nonzero pulse width) = 0. Neglecting all

correction terms, we have

= ! - TT 97
x(b:OATp exp(ifoxT) GKZATP) eX‘p( iJ(xxT) , (11.27)

which is purely even-quantum. This is sometimes convenient; for
example, a third order lOk-quantum selective sequence requires
4n2 = 400 subcycles, but a third order 5k-quantum selective sequence
only requires 100 subcycles, and if no odd-quantum coherences are
present in ﬂ@ the two sequences have the same effect.
3.4.2.3 Pure Double-Quantum Sequences
The sequence 90 - T - 90- only gives { = H__ if there are no
y y P xx
chemical shifts, if Aw = 0, 1f the rf homogeneity and the static
homogeneity are perfect, and if the pulse widths are negligible.
Thus even if T is kept short in the sequence for T', usually
IﬂéATpl >>53;Aréﬂ because neglected error terms would enter.
One very convenient way to lessen the severity of error terms is to
design a sequence with an effective Hamiltonian having only double-
quantum terms; then time reversal can be achieved by a phase shift.
I _ oot e Q0= — +' _ -
For example, the sequence (2 90x T 90x T 90x T 90x
T-90--71'~90--1-90 -71"'-90_ - L) has an average Hamiltonian
x X b'¢ b'd 2
ﬂ£0) = (T'/T+T')ﬂ§ +.(T/T+T')H;z in the limit of é-functiom pulses,
. y

and if T' = 27,

7(0) —% (B +X ) =% e —x )y . (I11.28)

This is a pure double-gquantum operator. If the pulses are assumed

-(0) .
to have a square envelope but a finite width tp’ ﬂé ) is a pure



102

double—quantum operator for T' = 2T + tp; other pulse errors may change
this relation slightly.
7(0)
Since D is purely a two-quantum operator, a phase shift of 90°
multiplies it by -1; this can also be seen by substituting Ix -1,

y
Iy > -1, I, ~1I in equation (II1.28). Therefore, if the pulse
sequence is run with y and § pulses instead of x and x pulses, the
zero-order average of the dipolar Hamiltonian is inverted. CKES +
AmIz) is cancelled to lowest order by this sequence, and K& is
unaffected. In most anisotropic systems, ﬂﬂézﬂ is several orders of
magnitude larger than iﬂbﬂ, so ﬁéo) dominates when "H;Tﬂ << 1 and
very good time reversal is possible. .

This sequence compensates for several common pulse errors. Static
inhomogeneity would force Aw to be written as Aw(;), but the zero-
order average vanishes. Similarly, rf inhomogeneity, which can be
represented by a pulse flip angle of 90-c£, does not appear in ﬂéo)
to order €. The largest nonvanishing error term in ﬂ(o) should be
the cross term between static and rf inhomogeneity, which is minimized
by-making Aw ~ 0. The sequence looks symmetric to the dipolar
Hamiltonian, so (1) = 0, and under ideal experimental conditions
the ultimate limitations to time reversal come from ﬂéz) and ﬂj.

These terms will make lﬂ;ATpﬂ > IHQATP'". Fortunately, one feature

of the selective experiment is that perfect time reversal is

unnecessary since imperfections merely cause |H;U to be larger than

in the ideal case.
Potential sequences for ﬂ; include:

1. No pulses, giving M; = Hz and even-quantum selection for

initial condition BIZ.
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2. 4SX-AT;~45§, giving all orders in ﬂ@.

3. The same sequence as ﬂ%, except phase shifted by 45°.
>C1early ﬂ; is also a pure two-quantum operator, but [ﬂ%,ﬁ;] # 0, so
mul tiple-quantum coherences still develop. After a brief interval
AT;, another phase shift of 45° gives ﬂ;.

Moét of the experimental work to date (to be discussed in
chapter V) has used ﬂ; = H; and ﬂ? = %-(Mb’yy - Hb,xx)' Previous

D,xx

attempts with ﬂ% = ¥ and ﬂ; = - %-ﬂb o’ 28 discussed above, were .
>

less successful.

3.4.3 The Effects of Imperfect Time Reversal

As mentioned earlier, errors in the sequence for H? and ﬂ; cause
|ﬂ;| to be larger than expected. If these effects are small they can
be compensated for by decreasing AT;. In some systems, however,
perfect time reversal is impossible. One example is NMR is isotropic
solvents; ﬂés can easily be reversed, but ﬂ& is a zero-rank tensor
and cannot be affected by wideband pulses. Average Hamiltonian
theory is not well suited to this calculation, since nHﬁT” > 1 to
generate multiple-quantum operators, so discussion of this case will
be postponed to section 4.6.2.

3.4.4 Other Subcycle Seguences

The standard WAHUHA sequence, illustrated in Figure III.4(b) is

another possible pulse sequence for ﬂ;. If Hint = H;Z, this sequence

D 0 (neglecting pulse errors). However, if

@) )

gives i(o) = i(

13 TI >> 1, ¥ will have strong contributions from K and
zz o i

higher-order terms which contain multiple-quantum coherences. For

some values of T such that "ﬂ;zT“ Nl ﬂﬂ;ﬂ << "ﬂézﬂ, but Hg contains
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a substantial fraction of multiple-quantum coherences. The sequence
‘is repeated N times, so ATp = 6 NT. When such a subcycle is
incorporated into a selective excitation sequence, it will prove
useful to think of T as a fixed parameter while N is varied in

order to vary the cycle time; again this approach allows ﬂg to
remain fixed.

Clearly, any other line narrowing sequence is also a candidate
for producing ﬂ;, but this sequence would probably be the easiest to
use for low-quantum selection because of its relatively large correction
terms. A possible advantage over the use of time-reversing sequences
is the very low duty cycle, which results because T is much longer
than in a normal WAHUHA experiment. Simple sequences for X; will
be discussed further in section 4.6.1.

3.5 Selective Sequences in the Multiple—Quantum NMR Experiment

3.5.1 Optimum Relation between Preparation and Mixing Propagators

Any selective sequence can be incorporated into the general
framework of a multiple-quantum experiment described in section 2.4.
It was shown in that section that the total integrated intensity of

the multiple~quantum spectrum is at most proportional to the

2

equilibrium magnetization, -C B Tr(Iz ). This can only be achieved

if the preparation propagator U and mixing propagator V are matched
<+
such that IUI UJ[,, = |V+I V|.., and for nonselective experiments
z- 'ij z 'ji
this implies T = ttz.
For the selective experiment this constraint is more difficult to
satisfy. The simplest experimental arrangement is to use the same

sequence for preparation and detection, so U = V. If the effective

Hamiltonian ¥ (U = exp(—iﬁtc)) is real then U is complex symmetric,
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and this dimplies that (UIZU+)ij = (UTIZU)ji' An equally desirable
arrangement is to have H related to a real operator by a phase shift.
tFor example, all the four-quantum elements might be imaginary and
all the zero-quantum elements real). This will always be true for
N—-quantum selection in an N spin-%- system because there are only two
N—quantuﬁ elements and a phase shift which makes one real makes the
other real. In addition, if the two-quantum sequence is used for

X% (in Figure III.4(a)), and if either the two-quantum sequence or
ﬂ; is used for ﬂ;, then H; will be related to a real operator by a
phase shift. 1In this case the constraint is satisfied for any zero-
order or symmetrized first-order sequence. In other cases the signal
may be somewhat reduced; this will be discussed in section 6.1.

3.5.2 Phases of Selected Transitions; Time Reversal Mixing

If the preparation and mixing sequences are designed such that
U= V+ then equation (II1.62) shows that all transitions will appear
in phase. The condition U = V+ will be called time reversal mixing,
since it can generally be accomplished by a mixing sequence which
reverses the order of the pulses in the preparation sequence, phase
shifts each pulse by 180°, and time reverses each delay. In additionm,
some pulse sequences allow simpler approaches. For example, if the
two-quantum sequence is used for ﬂﬁ, ﬂ;, and %;(with phases 0, 7/4,
and T/2 respectively, as explained in section 3.4.2) and the sequence
is symmetrized then U = V+ can be achieved by changing the phases to

n/2, w/4 and 0 respectively. Pulse sequences which do not include time

reversal mixing usually produce transitions with arbitrary phases,

and magnitude spectra are then calculated.
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3.5.3 Potential Signal Gains; Selective Population Inversion

An efficient wideband excitation drives all of the possible
transitions about equally. Therefore, the average intensity of a
single line in a multiple-quantum spectrum is smaller than the
average Intensity of a single line in an ordinary single pulse
experiment, by a ratio (number of single-quantum transitions)/(number
of excited multiple-quantum transitions). When there are many spins,
the intensity of a single transition becomes extremely small. For
example, a system with N spins-% and no symmetry has 22N possible
distinct matrix elements, so totally nonselective excitation gives
a signal for each transition of 2—2N(C B Tr(Izz)).

If only certain orders of multiple-quantum transitions are
excited, but the excitation is still efficient (in the sense that
the population differences are substantially depleted) the intensity
of a single transition grows. For example, if the resonance offset and
chemical shifts are removed from the excitation and mixing periods
of the standard nonselective experiment, only even-quantum coherences
are excited, and since roughly half the coherences are even-quantum
this increases the intensity of an average evem—quantum transition by
a factor of two. If only a few transitions are excited (by an
extremely selective sequence) and the sequence is efficient, the
intensity of each transition can be enormous. Suppose that selective
excitation is used for both preparation and mixing, and that UIZU+
and V+IZV in equation (II.59) could be prepared with all the matrix

elements zero except for the single coherence with AM = +N and the

single coherence with AM = -N. In that case, the signal gain
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relative to the nonselective experiment would be 22N-l. However,
.the density matrix that results is not related to the initial
condition Iz by a unitary transformation, and therefore it carnot
be produced by any sequence that does nmot include relaxation.

A more reasonable estimate of the maximum possible gain is
obtained by finding the maximum possible value of (UIsz)ab, where
Ia> is the single state with M = 4+N/2 and |b> is the single state

with M = -N/2:

N +
(U1 U )ab i Uai(Iz)iiU ib . (I11.29)
*
= i Uai(Ubi) (1,4 (I11.30)
v () =8
Z U4 bi) " “ab . (I11.31)

The maximum can be readily seen to be Uaa =1/Y2, Uab = 1//2,

Uai = 0, Uba = -1//2, Ubb = 1/v/2, Ubi = 0. The phases are not unique.

Such a propagator concentrates the matrix elements of U in the states

with the largest values of IMI. It couples states la> and |b> only

to each other, effectively creating a two-level system. The two-
level system has
1/VZ 1//2 0 -1/2
U = exp(i(n/Z)Iyab) y Iyab =
=1/V/2 1/V2 i/2 0
(I11.32)

1 operator for mul tiple—-quantum

where 1 ab is a fictitious spin- >
y
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62
coherence.

Thus, the maximum possible signal is obtained by a selective
‘90° pulse, shown schematically in Figure III.5. The signal from this
+.2 2
transition is -C B (UIzU )ab =-CB (Iz)aa' The gain when compared to

totally nonselective excitation is then

2 -2N 2
Gy = (BT, )/ (B2 er (1)

= B(N/2)2/82'2N(N2N/4) = NZN . (11I1.33)"

To achieve this gain a sequence that couples the state M = N/2
only to the state M = -N/2 is needed. The effective Hamiltonian for

this sequence should be some linear combination of I ab and Ixab.

This sequence would be used to create UIZU+ and VTIZV. If the
effective Hamiltonian has this form for M = * N/2 it can have any
form whatsoever for the other levels, and the signal in the N-quantum
transition will be unaffected. A selective 180° pulse is also
possible (for example, a sequence which produces a selective 90°
pulse could be applied twice.) Such a pulse would not produce any
signal, but would invert the population difference between the two

extreme levels. This approach to population inversion has applications

to other spectroscopic systems.

Often the (N-1l)-quantum or (N-2)-quantum transitions in an N-spin
system are more interesting than the N-quantum transition, since the
N-quantum transition contains no dipolar information. If (N-1)-quantum
selection is used, the number of transitions increases to 2N for a

system without symmetry. In addition, while it is possible to
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-
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90° N—-quantum

\ pulse about x-axis
/ Iy /.._____, Iy

I, Ix

XBL 803-8898

Figpure III.5. Schematic illustration of the effect of N-quantum selective

sequences, in terms of an effective two-level system involving only M =
* N/2. A selective 90° pulse transfers the entire population difference
between those two states into N-quantum cocherence, giving a gain

. . . , N
relative to nonselective excitation of N2 ',
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envision a T/2 pulse on a two-level system completely depleting the
population difference, in a multilevel system it is very unlikely
that all population differences can be eliminated simul taneously.
Thus one also produces zero-quantum transitions and populations in
the M = * N/2 and M = * (N/2-1) manifolds, effectively increasing
the total number of pumped matrix elements by 2N2+2. Now, however,
the available fraction of IZ is larger. The result of all of these

effects is:

2 2 _
Dyena + 2RI )/ (28° + 2N + 2) (B2 2NTr(I§))

@
It

?B(Z(I M=N/2-1

N2 —an+ay/ e+ 1) = 2% for (v 5> 1)

(111.34)

Values of GN and G for systems without symmetry are listed

N-1
in Table III.1. If symmetry is included, all gains are reduced,
because fewer transitions are allowed and therefore the system is
effectively a collection of smaller systems. All of the methods used
here are still valid, except that the number of density matrix elements
excited and the available fraction of Ii should be recalculated using
the known symmetry. In general, N-quantum and (N-1)-quantum
transitéons must have Al symmetry, since the states with M = * N/2

have that symmetry as noted in section 1l.4. The relevant energy

level diagram is nmot a binomial distribution but instead is the

group of Al states. The calculations are straightforward, and benzene

has been included in Table III.1 to illustrate symmetry effects.

These gains become extremely large for large N. However, the
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Table III.1 Enhancement of N or (N-1)-Quantum Transitions in an N-Spin

System by Selective Excitation

N Symetry O On-1
2 None 8 1.14
4 None 64 6.10
6 Benzene 47.5 17.2
6 None 384 32.7
8 None 2048 154

10 None 10240 683

12 None 49152 2922

14 None 229376 12269

16 None 1048576 50892

18 None 4718592 209409

Table III.1. Enhancement of high multiple-quantum transitions,
using selective sequences. Sequences which select only N-quantum

{or only (N-1)-quantum) are illustrated in Figure III1.2.



Table TI1.2 Intensity of High Multiple-Quantum Transitions, With and

Without Selectivity, Relative to Total Magnetization of the Sample

Intensity (In Percent)

N Symmetry Nonselective XGN XGN—l
6 Benzene Al 0.197 9.38 3.69
6 None 0.024 9.38 0.80
8 None 1.5 x 107° 3.13 0.24
10 None 9.5 x 107° 0.98 0.065
12 None 5.9 x 107° 0.29 0.017
14 None 3.7 x 1077 0.085 4.5 x 107
16 None 2.3 % 1078 0.024 1.2 x 107°
-9 4

18 None 1.4 x 10 0.0069 3.0 x 10~
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single N-quantum transition contains only a tiny fraction of the
total intensity in the nonselective experiment, and therefore the
total signal available in the N-quantum and (N~1)-quantum transitions
with and without selectivity should be calculated. This calculation
is done in Table III.2 and assumes that the total number of protons
in the sample is kept constant as N is changed. The signal size is
calculated as a fraction of the total magnetization of the sample.
The signal size still decreases as N increases, but the decrease is
much slower than in the nonselective experiment, and Table III.2
indicates that selective excitation should dramatically increase

the number of molecules which could be studied by multiple-quantum
spectroscopy.

3.5.4 Coherent Initiai Conditions

In all of the calculations so far, the initial density matrix
has been assumed to be the equilibrium matrix —BIZ. However, other
initial conditions are possible. If an nk-quantum selective
operator is applied to an initial density matrix -BIX (produced by a
single 90° pulse), only coherences with AM = nk * 1 are produced.
One important advantage of this technique is it is no longer necessary
to pretend that the observable operator is <Iz> 5 <IX> is the
operator which has signal. In the standard multiple-quantum
experiment and in this experiment, the signal can be sampled long
after the last pulse; in the selective experiment which starts from

Iz, the signal should be sampled as close as possible to the last

pulse, and this causes filtering problems.
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Unfortunately, selective excitation from Ix is much less
efficient than selective excitation from 1,, since all the single-
quantum transitions are always excited. The number of single-
quantum transitions in an unsymmetrical system with N spins-1/2 is

((2N) !/ (N+1)!(N-1)!). Using Sterling's approximation one finds

(20) 1/ (v+1) 1 N-1) 1 = 22N (111.35)

/2

so the fraction of pumped coherences is at least 2/(1rN)1 , and
the expected gain is VN (/7/2) = .89¥/N . This small enhancement
often will not justify the additional difficulties of a multiple-

pulse experiment.

3.5.5 Symmetry Selection

One physically interesting application of selective sequences is
the production of multiple-quantum transitions corresponding to a
limited number of irreducible representations. The‘N—quantum and
(N-1)-quantum transitions all have Al symmetry, so if a Nk-quantum
or (N-l)k-quantum selective sequence is applied to a system at

equilibrium only A, energy levels are perturbed. If one more pulse

1

is applied after the selective sequence, the density matrix can have
all orders of multiple-quantum Al coherences, but in the other
irreducible representations can only have single-quantum coherences.
Depending on the nature of the energy level diagram, it may be
possible to select other representations as well. This symmetry
selection will be discussed further in Chapter V.

3.5.6 Heteronuclear Selective Excitation

The differences between heteranuclear and homonuclear selective

excitation are quite minor if the I-spin pulses and S-spin pulses
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are Always shifted by the same amount. The Hamiltonian has several
additional terms not found in equation (III.24). The most important
additional term in the heteronuclear dipolar coupling, I bijIziSzi’
which generates operators such as I+1S+2 if an appropriate sequence
is used. The sequence for ﬂ; in Figure (III.4(a)) is still valid, but
ﬂi, M; and ﬁ; should be changed. Many choices are possible. One
simple option would be to make ﬂb and ﬂ; into two-quantum operators
for both sets of nuclei, (i.e., apply the same pulses to both), but
in addition supperss the heteronuclear couplings with echoes on one
set of nuclei. As long as the heteronuclear couplings are not
suppressed in ﬂ;, all multiple~quantum operators can be produced,
with the 5 operators the same in Ha as they are in ﬂ;.

One interesting difference between homonuclear and heteronuclear
selective excitation is the possibility of using different phase
shifts for the different nuclei. For example, a sequence which is
4k~quantum selective for I spins and 3k-quantum selective for S
spins can be generated by shifting I pulses by m/2, and S pulses by
2 1/3; such a sequence requires 12 subcycles. If there are 4 I spins
and 3 S spins, all of which are spins-1/2, this sequence produces
only AMI =0, * 4; AMS = 0, * 3. However, shifting both sets of
pulses together produces more high—quantum operators; in this
example, if all the pulses are shifted by 2 7m/7, only AMl = 0,

AMS = (; AMI = +4, AMS = 43; and AMI = =4 AMS = -3 operators are

produced. Generalizations to spins with total angular momentum

> 1/2 are straightforward.
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3.6 Extent of Selectivity in Non-Ideal Selective Sequences

3.6.1 General Systems

As mentioned earlier, for any multiple-pulse sequence one expects

ntl n
tl t. . In a selective sequence, ﬂ& is formally

!Jc(n)k < ix
~ in
equivalent to mint(t)’ as illustrated in Figure III.3. Therefore, as

lﬂétcl -0, i(o) becomes the dominant term of . The nonselective
terms of U = exp(ﬂK(Ntc)) can be made arbitrarily small in principle by
making tc very short, while if Ntc 1s kept constant the selective

contribution from 7(0)

is unaffected. 1In practice, the attainable
selectivity is limited by several factors.

1. For technical reasons, t. cannot be made arbitrarily short. For
example, if each subcycle requires pulses with specified flip angles,
each pulse has a finite width which depends on the strength of the
exciting field.

2. The time required to pump multiphoton coherences is generally
dependent on the "anharmonicity'" of the energy level spacing. The
excitation sequence needs to extend for a period comparable to the
inverse of the anharmonic frequencies, which in the last section were
the dipolar frequencies. This problem was investigated in depth in the
last section; one solution is to construct a subcycle with an effective
Hamiltonian |ﬂ;| << lxintl’ so that Iﬂstcﬂ can be small even though
lﬂinttcl is not. If this is not possible, the general considerations
of the preceding section still hold, but to retain selectivity the
subcycles would need to he shorter, and cycles selective to bigher

order would be needed to obtain high quantum operators.

3. Because there is a lower limit to the length of a subcycle, the

minimum time needed for a j-order nk-quantum selective sequence
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increases rapidly as j increases. However, relaxation mechanisms make
the average Hamiltonian calculation invalid if the total length of a
seqﬁence is comparable to T2, the coherence dephasing time. Thus, for
any system only a finite order of selectivity is possible. Inhomogeneous
systems are a special case; excitation designed to compensate for such
broadening may allow homogeneous selective excitation.

4. Timing errors, inaccurate phase shifts or other failures in
control over coherence will reduce the selectivity of any sequence.

This subsection analyses these limitations for general spectroscopic
systems. In order to estimate the importance of the first three
problems listed ;bove the size of the first non-nk-quantum seleétive
operator from a j-order nk-quantum selective sequence (which is
(—ii(j+l)t ) s) and plausible conditions for convergence of the average
Hamiltonian expansion are calculated in Appendix D. Phase cycling and
symmetrization are combined into one operation, which turns a (j-2)-order
nk-quantum selective subcycle into a j-order nk-quantum selective
cycle requiring 2n subcycles (Figure III.2(b)), assuming perfect phase

shifts and no timing errors. The norm of the first nns term for the

cycle, which is (i(3+l))nns, 1s shown in Appendix D to be related to

that of the first nns term of the ith subcycle, which is Gﬁij_l))nns:

GO e 1 r@iE @ 0% G ey (111.36)
F(n) = Cf% n5 - %—n3 + f%—n)l/z/S n3 oL 09 n-l/2 . (I11.37)

If a (j-2)-order selective subcycle were repeated 2n times without

phase shifting in between, the first nonselective term would be



118

(3-1) . . . . . .
xifnns t.s the first nonselective term in the j-order selective
sequence 1is smaller than this only if IG?QO)tC)zl F(n) < 1. This
result suggests that the average Hamiltonian expansion fails to

(0 2 -1
converge when 1 (¥ )tc) I > F(n) ~. Thus convergence requires

1@ Hi<ram™ . (111.38)

Values of F(n) are listed in Table III.3.

Equation (III.37) can be used (j-1)/2 times, to express (ﬂ(j+l))
=(2)
)nn

nns
in terms of (K s for a first-order selective sequence. (ﬁ(z))nns
can then be calculated, using equation (III.16). The selectivity S
of a j-order nk-quantum selective sequence is defined as the ratio

=(0)

between a typical matrix element of H and a typical matrix element

_ 2
of Cx(j+1))nns' At the limit of convergence (Eﬁ(o)tgu v F(n)_l),

_ 2 22 3
s = k" 1r () L2 (2m U /4+7/4{38_§_ + 2 (5 G-{(O)tc)',«x“/“-((O)tcn)2)-1/2
(I1I1.39)

where K is defined as the total number of allowed transitions divided
by the total number of nk-quantum transitions, and a is defined by the
relation lﬂslz = aKlﬁ(o)nz (see equation (III1.20)); the reason for the

definition is that if all the matrix elements of ﬂ@ have roughly equal

magnitude, o Vv 1.
To go further the relative sizes of ﬂixo)ﬂ, |Cﬁ(0))zﬂ and u(i(o))3”

= (0)

are needed. If the eigenvalues of X have a Gaussian distribution,

equation (III.7) implies that H(F(n))zu =73 “?(O)HZ and HC?(O))3U

.VIS ﬂi(0)33. Another possibility is that the energy levels might be



Table II1.3 Values of F(n) = ((8/15)n°-(2/3)n> + (2/15)m)>/2/8n> and
(F(n))-l. As long as HC?(O)th“ < (F(n))_1 the average Hamiltonian

expansion is expected to converge rapidly.

n F(n) w7

3 .090 11

4 044 23

5 .036 27

6 .032 31
10 .029 35
12 .026 38
14 .024 41
16 .023 44

18 .022 46



spaced so that Xg has only two transitions which are nearly resonant,

forming an effective three-level system, and ﬂLO) contains a nonzero

matrix element for only one of these transitions; in this case NT = 3,
and if 7(0) is traceless one expects HCR(O))nﬂ = (3/2)(n—1)/2 Hﬂ(o)ﬂn,
In both cases ﬂ(i(o))nu does not grow greater than 13(0gn very rapidly.
However, if K >> 1, so that only a very small fraction of the matrix
elements of ﬂ; are selected by R(O), then I(i(O))nl v (N,r)(n_l)/2
17(0)ym is possible. This case and the case of a Gaussian distribution

will be discussed in the next section in connection with multiple-

quantum NMR.

2
The factor (2n)j 14+7/4

makes S grow very rapidly as j is
increased, and fairly small values of j still give very selective
gequences. For example, if a Gaussian distribution of eigenvalues is
assumed for i(o), the selectivity of a third-order 10k-quantum selective
sequence with ¢ v 1, K v n, and F(n) = 0.028 (from Table III.3) is

S = 1170; a typical selected matrix element is more than three orders

of magnitude larger than a typical nonselected matrix element, even

near the limit of convergence. When BCR(O)tC)ZI << F(n)_l, S will be
much larger; in general, if UGRCO)CC)" is scaled down by a factor of A,

342

li(n+1)t ! is scaled down by a factor of A , and S increases by a

C nns

factor of Aj+1 It can be concluded that for many systems the use of

cycles with only a finite order of selectivity is entirely satisfactory.
The effects of timing errors and imperfect phase shifts are more
serious. Suppose that the length of subcycle i is ATP + éi’ and that

the phase is ¢, + €,, where I &, =L €, = 0 (Figure III.6). Then
i i ; 1 1 i



(J/¢n—l+€n)(ﬂ¢n-l+€n+ I)

(aq/¢|+62n_,> (”q/ean>

ATp+8I ATp+82 (RN RN RN R RN

AT, + 3,

AT+
P "n+

ATp+82n )

ATD+8 2n

XBL 803-894:2

Figure III.6 Modification of the symmetrized sequence of Figure I1II.2(b)

to include phase errors &, and timing errors Ei. We assume, without
i

loss of generality, that <Ei> = <6i> = 0.
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© __1 . _
O g DO (el pre D) e (-1 (o0e) (r1xdo)

which is no longer purely nk-quantum selective; the matrix element
for an M-quantum transition is multiplied by

1
anp i (ATp-HSi) exP(im(¢i+€i)) (III.41)

instead of 0. Assuming éj << ATP and Ej << 1, this can be expanded

out:
1
2nATp i (ATP+61) exp(im(¢)i+€1)) =
1 .
ZnATp (ZATP exp(im¢i) + I 61 exp(im¢i) + Z(ATP)(imEi)exp(im¢i) + ...

- (I11.42)
The first term on the r.h.s. corresponds to an ideal sequence and
vanishes if m is not a multiple of n. 1If ¢, and 61 are uncorrelated

i
2<% 812y + miee?) 12,
J P J

with ¢i, the last two terms reduce to (2n)
If the number of subcycles increases (for example, by going to a
higher-order selective sequence) this term decreases, so that the ratio
’(0)| _(O)H .
1 JU¥H can be made arbitrarily large. However, if
selective nns

g, or §, are completely correlated with ¢i (so that, for example, every

3 i
—(0)
- - 170y
time the phase should be ¢ = 0 it is actually ¢ Eo), celective

li(O)lnns is not reduced by increasing the order of the sequence. Such
a situation arises with a miscalibrated phase shifting device or for
one in which a digital approximation is made to the exact setting.

One way to reduce this error is to use two (or more) phase shifting
devices, so that the total error is not well correlated with the total

phase. A specific example with a 2k-quantum selective sequence is



given in Figure III.7.

3.6.2 Application to Multiple-Quantum NMR

| As mentioned earlier, an i1deal N-quantum sequence that had no zero-
quantum matrix elements could enhance the single N-quantum transition
of an N-spin system by a factor of NZN. A non-ideal Nk-quantum
selective sequence (which has zero-quantum matrix elements) will not
work as well, for two reasons. First, there may be nonzero matrix
elements for the populations of the states m = *N/2 (populations may
be thought of as a special type of zero-quantum coherence, with the
initial state identical to the final state). In this case, the

ab ab

effective Hamiltonian for the two levels will be axIx + any +

ab ab

al ab (Figure II1.8) instead of containing only Ix and Iy .

z'z
Depending on the relative size of the coefficient aé it may be
impossible to transfer population completely into coherence.
Statistically the coefficients are expected to be of comparable size
and in that case much of the population can be tramsferred into
coherence. As mentioned earlier, the form of this effective Hamiltonian
guarantees that U = V gives the maximum signal.

A much more serious effect comes from the requirement that the
average Hamiltonian expansion converge. In general this would imply
l(iio)tc)zl < F(n)-l. For the sequences described, the distribution

~of eigenvalues of ﬂg is expected to resemble that of the eigenvalues of

M; which will be Gaussian if N is large. It is reasonable to assume

that the eigenvaiues of ﬂ(o) have a Gaussian distribution, since ﬁco)
(0)

has many allowed O-quantum transitions, and since the limit of H

as T+ 0 for Figure III4 is H;. The convergence criterion of equation

- -1/4 -1/2 1/4
(111.38) can then be written as "ﬂ(o)tcﬂ < 3 / F(n) / ~ 2.1 (n ).



$=0 | ¢=T| ¢=T|¢=0 | ¢=7T | ¢$=0)¢:=0]¢ =17
—(0)
Q= J/O+J/7T =0 (m odd)
(b) one phase shifter: =€y Or =T +€, €O+ € = 0
P=€q |P=TT+E || =TT+ || p=€,|p=T+€ | p=€5| ¢=€, |$=TT+€
—(0) |
=— + =
H > GQ/EO 0'2/77—+€|) = Zeomoﬂo (m odd)
(c) Two phase shifters: ¢ =€5 Or $=T+€, €ote€ =0
¢'=€y o = T+e €5t€; = 0
¢>=€t) ¢=7T+€I 4>=7T+€l <¢=€O ¢>=€O ¢=7T+€l¢=ﬂ"+€| ¢=€O
¢z | ¢=€0 | b=€g| $=€0|PTTHE||[=TT+€|$=T+ €)|$=TT+ €
7=y +u +H + 4. ) = 0Ee?
- / ! ! =
4\eyreq TMrerey TTre vy Tete|
(m odd)

XBL 803-8900

Figure III.7 Reduction of phase shifting errors can be accomplished by

using two (or more) uncorrelated shifters.
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Figure III.8 Schematic illustration of one effect of zero-quantum

coherences on an N-quantum selective sequence. The sequence causes
the population difference hetween the states M = * N/2 to be rotated
about an arbitrary axis, and complete transfer of population difference

into coherence may be impossible. Compare this to Figure III.5.
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The definition of the norm by a 2N by 2N matrix gives:

17 Pe 1 = @F tr(cR(O)tc)z))lfz

_ N (D) 2,1/2
@™ 5P| 2
1/2
-N/2, (0 .
- & VKR >tc|2% (II1.43)

where Ns is the number of possibly nonzero matrix elements, and the

rms average only includes those elements. Therefore, to make an
average excited'matrix element comparable to 1 (which is needed if

we want the effect of ﬁ(o) to approximate a selective 90° pulse between

£(0)

the levels M = * N/2) while keeping ! tcﬂ " 1 requires

N_ <2 . (II1.44)

There are 22N possibly nonvanishing matrix elements for a non-
selective sequence, and 1f only zero-quantum and N—quantum elements

2N N-l/z ﬂ1/2. :7((0)

are excited, N¢ " 2 / Assuming that § tcﬂ v 1 for a

conservative estimate, one finds

@O B MW@ (111.45)

This scales down the possible gain because the selective sequence

effectively produces only a small rotation instead of a .90° pulse.

In fact,

I(UIZUJr)ab(\FIzv )ba[ nogo/2,N (I11.46)



so the gain is

2N 3/2

' -N 2 - 2
G' = (B2 4(1z ) ) /B2 tr(I,”) =4 N . (II1.47)

M=N/2

This value of G' is only approximate, since it depends on the

exact maximum permissible value of Uﬂ(o)tcﬂ. The gain can be roughly

assigned to two effects. Only ~ 1//N as many transitions are being
pumped so each one is ¥N times stronger; in addition, the N-quantum
transition receives intensity from the equilibrium population difference
of the extreme states for which the expectation value of Iz is N2/4,

a factor of N greater than the expectation value averaged over all

states. A more liberal estimate which allows ”ﬁ(o)tcn 2.1 nl/4

would give G' 16 NZ. While this gain is large, a much larger gain

is possible if NS can be reduced.

3.6.3 Removal of Zero-Quantum Operators from Selective Sequences

The gain can be increased if the zero-quantum coherences are
removed from ﬂ(o). One way to do this is with the sequence shown in
Figure 111.9(a). The phase shift of /N inverts the N-quantum coherence
but leaves the zero-—quantum coherence invariant, and the time reversal
inverts every order of coherence, so the net result is that zero-

quantum coherences are inverted every subcycle but N-quantum coherences

=(0
are unaffected. The lowest-order average H( ) for the sequence in

Figure III1.9(a) contains only N-quantum, 3N-quantum ... (2k+l) N-quantum

coherences after 2N subcycles. In an N-spin system, this makes

. N
NS << 2N, condition (II1I.44) is satisfied, and the ideal gain GN = N2

of Table III.l1 becomes possible.

The easiest way to design such a sequence for M¢ is shown in
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Figure II1.9 Sequences to select only N-quantum, 3N-quantum ...

‘(2k+1)N—quéntum coherences, a) Genmeral sequence. Note that 3(0 is
inverted after every subcycle, and that the phase shift is ¢ = 7/N,
instead of ¢ = 2m/N in Figure III.2. b) Tr(o can be formed with the
pure double-quantum sequence (part (c)), which is inverted by a

7/2 phase shift.
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Figure I1T.9(b). K%, —Mé, ﬂ; and -M; are all generated from the
double—quantum sequence, mentioned earlier and illustrated in

Fiéure IT11.9(c) with relative phases 0, w/2, m/4, and 3w/4 respectively.
1f !ﬂ;ATpl << 1, only the N-quantum transition appears. However, the
value of K = lﬂ@'/li(o)ﬂ is now very large (R ZN) so the selectivity
S from equétion (I11.39) will be somewhat weaker, and should be
reconsidered. High~order selective sequences with no zero-quantum
contributjons can be generated from Figure III1.9(a) in exactly the same
way that high-order selective sequences with zero-quantum contributions
were generated from Figure III.2(a). A third-order 10-quantum selective
sequence requires (4N)2 = 1600 subcycles (instead of (2N)2 = 400
subcycles without suppression of zero-quantum). Equation (III.39)
applies if (2N)j2/4+7/4 is replaced with (&N)jz/b+7/4 and N is

replaced with 2N, since each symmetrized phase cycling now requires 4N

subcycles.

The assumption of a Gaussian distribution of eigenvalues is no
longer valid, since i(o) has only two nonzero matrix elements. Since

ﬂ(o) is Hermitian, the two elements have the same magnitude %-R. The

-(0)
eigenvalues are * %-R, and 0 for all other states, because X(O’ is
traceless. Therefore

= - - (N+
O 1 - (@H@ ekt - r 2 1/2 (111.48)

- ~(1+3 - - 2
kﬁ(o)tc)zn = (2 N)(Z) (34/16))1/2 = RZZ @ /2 = Z(H l)/zln((o)tc"
(I1I.49)
= - - v+ -1),7(0), ;3
l<ﬂ(o)tc)3ﬂ R YN N T S S B 2 (-1 t,!

(I11.50)
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_(0). .2 -1
H )tc) '~ F(n) ™), the calculated

2N-1

In the limit of convergence (I
selectivity of a third-order 10-quantum sequence with a = 1, K = 2
and F(n) = 0.029 (see equation (III.39)) is S = 0.025. However,
l@io)tc)zl need not really be this large; all that is required in
th = T/2, so IG}—C(O)tC)2lz = ,034, a factor of 1400 smaller. When
|GR(0)tc)Zl has this value, then S = 5.0 X 104.

The maximum gain G can be attained if the 4(2N—2) non-N-quantum
selective matrix elements that involve the m = + Nf/2 states transfer
only a small fraction of (Izz)M=tN/2 relative to the fraction transferred
by the two N-quantum selective matrix elements. Since each selective
matrix element is larger by a factor S, the intensity of the selected
transition is larger by a factor Sz, and therefore
SZ

2 8% 5> 4(2N-2)

52 >> N1 : (III.51)

is required which is satisfied in this example. It can be concluded
that almost all the theoretical gain from an infinite-order selective
sequence is attainable with a third-order selective sequence, and the
potential gains in Table 1 should be approximately realizable.

Note that the theoretical maximum gain becomes more difficult to
achieve as N increases, for several reasons. Equation (I11.51) implies
that the required selectivity for maximum gain is proportional to
(/Y)N, and therefore high-order selective sequences may be needed.
However, the number of subcycles cannot be increased indefinitely,
because each subcycle must have a minimum durationm, and relaxation

effects limit the maximum duration of the cycle to less than T2.
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Typically, |ﬂ;zﬂ " 10 kHz and T, v 100 msec for liquid crystal systems,
go no more than a few thousand subcycles would be possible; a third-
or&er 18-quantum selective sequence that eliminates zero-quantum
requires (4n)”~ = 5184 subcycles, and therefore, is impossible for many
molecules. In addition, sample heating becomes a serious problem when

many pulses are applied.

3.7 Conclusions

Average Hamiltonian theory has been extended to describe pulse
sequences which produce coherences and population inversions between
states with selected values of AM. Sequences have been constructed
which are selective to arbitrarily high order in the Magnus expansion.
These sequences theoretically provide large signal enhancements
relative to nonselective techniques (for example, N-quantum selection
in an N-spin system gives an enhancement of NZN). Residual nonselective
terms have been calculated, and convergence criteria for the expansions
established. Thus, selective excitation should be a useful technique

for increasing the number and dize of molecules which can be studied

by multiple-quantum NMR.
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IV. Computer Calculations of Selectivity

4.1 Motivation

The theory of selective excitation, as derived in the last
section, extends the formazlisms of coherent averaging theory to
describe pulse sequences which are inherently selective. The most
important strength of this theory is its generality. For example,
the pulse sequence represented schematically by Figure (I1I1.2(a)) is
zero—~order nk-quantum selective, no matter what the Hamiltonian is,
and no matter what the exact pulse sequence is for each subcycle.
In addition, residual nonselective terms can be estimated for nonideal
sequences, and this estimation only requires knowledge of Hﬂbﬂ and
the fraction of nk-quantum operators in the subcycle effective Hamiltonian.
In practice this generality is extremely useful, because the most
interesting applications of selective excitation are to molecules with
unknown dipolar couplings and chemical shifts. Even if the individual
couplings are unknown, Hﬂb" can be readily estimated from the width of
the single-quantum spectrum; and if ﬂﬂbATpﬂ > 1, the fraction of nk-
quantum operators can be approximately calculated (see sections 2.4
and 6.3).

However, this generality implies several important disadvantages.
It was recognized in section 3.4 that even an infinite-order nk-quantum
selec tive sequence (which would require an infinite number of pulses!)
need not produce any nk-quantum coherences and that a lower limit must
be imposed on the cycle time if high-quantum operators are desired.

Even if this requirement is met, an unfortunate choice of pulse sequence

parameters might produce a subcycle effective Hamiltonian ﬂ6 with a

vanishingly small fraction of nk-quantum operators. ﬂg cannot be
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calculated without prior knowledge of the coupling constants, no matter
what the exact sequence is, because bilinear couplings are required

to generate multiple-quantum coherences. Therefore, appropriate
lengths for delays [such as AT; in Figure (III.4(a))] can only be
estimated, not calculated exactly.

In addition, any calculation involving coherent averaging theory
must be treated with caution unless convergence of the Magnus expansion
can be shown. When convergence is questionable, the results can be
completely wrong. As an example, consider the two sequences
illustrated schematically in Figure (IV.1l). Figure (IV.1(a)) is a
zero—order 2k-quantum selective sequence repeated twice; the second
sequence is first-order 2k-quantum selective, and consists of two
phase cycles (or one phase cycle and symmetrization). The effective
Hamiltonian for the first two subcycles can be written as Hé + eﬂé,
where Hé is 2k-quantum selective and ﬂé is non-2k-quantum selective
(i.e., contains only odd-quantum operators) and € << 1 is assumed.

The exact propagator for the first sequence is then (exp(-iCﬂé-+EH6)
(ZATP)))Z. The effective Hamiltonian for the third and fourth
subcycles of the second sequence is ﬂé - Eﬂé, since this half of the
sequence is related to the first half by a phase shift of ;

therefore the exact propagator for the second sequence is

exp(—i(ﬂé-keﬂé)ZATp) exp(—i(ﬂé-dKo)ZATp) (Iv.1)

Intuitively, one might expect the second sequence to always be
superior to the first, since it is selective to higher order in the

average Hamiltonian expansion, Equivalently, expansion of the
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Figure IV.1 Two pulse sequences which illustrate that average
Hamiltonian theory must be used with caution. Part b) is first-
order 2k-quantum selective, and part a) is zero-order 2k-quantum
selective. The sequence in part b) is more selective if Arp is
small. The sequeﬁce~in part a) is more selective if ATp is large

(see text).
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exponentials in powers of ATP gives U = 1-i(4AT )(H’+gﬂb) + O(ATZ) for
p € P

the first sequence, and U = l—i(ﬁATp)(ﬂé) + O(AT2) for the second
P

sequence. However, when nﬂgATp" is large,expansion in powers of

At_ is invalid. As long as £ << 1, a different expansion can be used

(see Appendix E):

exp(A), .—exp(4a)
- i kk 2
exp(A+e:B)jk (EXP(A))jj 6jk + EBjk< Ajj_! N ) + 0(e™)

A and B are both written in a basis where A is diagonal. Using this

expansion one finds
- 2
-i(H 4¢ -1
(exp(-i( o qﬂé)(ZATp)) )jk v oexp( jKeAATp)jj ij

(Iv.2)

kxp(—iﬂé(éATP))jj - exp(—iﬂé(&ATP))kd>

+ ().
0" jk <
RIS

exp(-i(ﬂé+eﬂ6)(2ATp)) exp(—i(ﬂé—sﬂé)(2ATp)) v exp(—iﬂé&ATp)jj 6jk

2
exp(-i¥ (2At )) .., - exp(~iX (2A1 )), . )
—e(MO).k(k S e e p kk }> (1V.3)
J

()55 = O

As expected, the first nonselective term in equation (IV.2) is

proportional to ATp and the first nonselective term in equation (IV.3)
is proportional to (ATp)z, so when ATp is small the first-order
sequence is superior. When ATP is large, however, exp(-iﬂé(ZATp))jj
and exp(—iKe(AATp))jj are essentially random numbers of magnitude 1;

thus, the root-mean-squared value of the term in brackets is Y2 in

equation (IV.2) and 2 in equation (IV.3). Therefore the first-order



sequence 1is expected to actually be worse than the zero-order sequence
for large ATp, where the average Hamiltonian calculation does not
converge.

Convergence criteria were discussed at length in section 3.6, and
reasonable guidelines were proposed. Nevertheless, it is useful to
confirm the‘selectivity calculations by a totally independent technique,
because the convergence problem is so important. For a small enough
spin system with a given Hamiltonian, the exact effect of any pulse
sequence can be calculated by solving the density matrix equation of
motion on a computer. Since no approximations are required, such a
calculation allows rigorous testing of the important concepts of the
theory of selectivity, and in addition can show where convergence
actually begins to be questionable. For this reason, computer studies
were initiated. The results, to be described in the next several
sections, verify the calculations of chapter III but give additional

insight into the design of practical experimental sequences.

4.2 Programming Details
A general program for testing selective sequences is given in
Appendix B. The propagator for any pulse sequence can be calculated
by multiplying together the propagators for each individual pulse or
delay. 1In a system with N spins-1/2, each propagator can be written
as a 2N X ZN matrix. Multiplying together two matrices of this size

requires 23N individual multiplications, so the number of matrix

multiplications should be kept to a minimum. One way to do this is

to use the simple relationship (IIT.19) between the propagators for

different subcycles. Thus, once the propagator UO for the first
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subcycle has been calculated, the propagator for any othersubcycle can
be calculated with 2ZN multiplications, no matter how many pulses the
subéycle contains. Similarly, calculations for high-order sequences
involving several phase cycles can be simplified by calculating the
propagator after the first phase cycle, and using (III.19) on it.

U0 can only be calculated exactly if ﬂ; is given. For some of
the calculations, particularly those given in section 4.5, coupling
constants are generated. In other calculations the generality of the
theory of chapter III is retained by assuming a form for ﬂg, usually
one that has random matrix elements of roughly equal magnitude every-
-where, subject only to the constraint that the matrix be Hermitian.

All computing was done on a VAX 11/70 system with 2.5 M byte
memory and floating point accelerator hardware. On this system, for
example, calculations for a third-order 4k-quantum selective sequence
on an unsymmetrical four-spin system with 125 different values for the
cycle time required roughly 30 minutes of processor time; thus an
unsymmetrical five-spin system would require roughly four hours, and
few tests with systems of this size were done. Benzene was extensively
studied, because its Al manifold has only 13 states, and several
different random four-spin and five-spin systems were also used. Many

of the subroutines used were originally developed by Jim Murdoch for

calculations with nonselective sequences. -

4.3 Zero-Order Selective Sequences.

4.3.1 Nk-Quantum Selection

4.3.1.1 Propagator Selectivity and Coherence Selectivity

As discussed in section 3.5.1, a Nk-quantum selective sequence



in a N-spin system creates an effective two-level system, since it will
only connect the stafes with iM] = N/2. The average Hamiltonian (and,
by implication, the propagator) can also have zero—quantum operators
connecting other eigenstates, but these operators commute with Iz, SO0
if that is the initial condition no zero-~quantum coherences can
develop.

Figure (IV.2-3) show the effects of a zero-order 4k-quantum
selective sequence (Figure (III.2a)) on a four-spin system, starting
with a random ﬂs and Uo' The results from five random K& operators
were averaged together. TFigure (IV.2) shows the ratio of a typical
4k-quantum selective to a typical non-4k-quantum selective matrix
element of the propagator. This will be called the propagator
gelectivity, to distinguish it from the selectivity defined in section
3.6, which is not identical because that definition is a ratio of
matrix elements of the effective Hamiltonian. As expected, the
propagator selectivity is proportional to (tc)_l for small tc, which
implies that the sequence does in fact have a nonzero Cn(l))nns'
When tc is large, the propagator selectivity is essentially unity.
The criterion in equation (III.51) for acceptable selectivity (52 >>
2N+1 ~ 1) is violated when S v 5.6. This occurs when ﬂﬂ;tcﬂ 1.5,
Of the 256 matrix elements, 72 are 4k-quantum selective (16 populations,
2 four-quantum operators and 54 zero-quantum operators), so the relation
IR(O)tCl2 = kﬂﬂ(o)ﬂz (see section 3.4.1) gives Hﬂ(o)tcﬂ v Q.8
(o0 v 1 by construction of Mg).

The general convergence criterion Kﬁ(o)tc)zﬂ << F(n)"l of equation

(I11.38) applies directly only to high-order svmmetrized sequences.
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Figure IV.2. The propagator selectivity and coherence selectivity
of one cycle of a zero-order 4k-quantum selective sequence. Both

s . -1 . .
selectivities are proportional to TC for short cycle times, which

indicates that ﬂ(l) does not vanish.
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1 . .
However, GF( ))nns can be estimated using Theorem II of section 3.2.1:

t t
—(1) 1 fC /2
H = (- — d d 7
( )nns ( t. “ t 0 Y M&(tz) H&(tl))nns (Iv.4)

Since there are only four subintervals, there are only ten operators
H@(tz)ﬂ¢(tl)’ and the sum with ¢(t2) = ¢(tl) is 4k-quantum selective.

If matrix elements for the remaining 6 operators add randomly

AT

=(1)
I3 f Y g
x tc nns v Ve <nﬂ¢(t2)w$(tl) p nns

V6 2 =(0 2
V28w e 1% su iR )tc" (1V.5)

(0)

A typical matrix element of is 5.6 times larger than a

typical matrix element of Hi‘l)ﬂ when "ﬁ(l)ﬂ /Hi(o)ﬂ n, ((256—72)/72)1/2
nns nns

._l —
(5.6) ©~ = 0.29, and plugging this into equation (IV.5) gives "H(O)tcﬂ

v 0.53. The agreement with computer calculations is quite good,

1)

also has some 4k-quantum selective terms,

which implies that this estimate of the critical value of ”i(o)tcn

=(
particularly since ¥°

should be slightly low.

Figure IV.2 also shows the ratio of the magnitude of a typical
four—-quantum coherence in the final density matrix to the magnitude of
a typical one-, two-, or three-quantum coherence, as a function of the
cycle time. This ratio will be called the coherence selectivity.

The coherence selectivity is experimentally observable if the signal-
to-noise ratio is sufficiently good, so it is more useful than the
propagator selectivity. However, it cannot be readily calculated from

coherent averaging theory. Even if the effective Hamiltonian H is
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completely known, the coherence selectivity requires calculation of

exp(—i”tC)Iz exp(iﬁtc), which is difficult to evaluate by hand for any
reasonablv sized system unless Iitcl is small.

Fortunately, the coherence selectivity is usually larger than the
selectivity of the effective Hamiltonian. This can be readily seen

by expanding p in powers of tc’ as in section 2.3:
p-I—ic[ﬂ%I]+c(t2)
z c ’z c (1v.5)

li‘f,lz]jk = GOjk(Mj-Mk> (IV.6)

Mj—Mk is larger for the four-quantum transition than for any
other transition, so the coherence selectivity is strengthened in the
lowest order term. In fact, since there are 8 three-quantum transi-
tions, 28 two-quantum transitions, and 56 one-quantum transitions,
<AM>nns = 1.48, and the coherence selectivity should be roughly 2.7
times larger than the effective Hamiltonian selectivity on the average;
in Figure IV.2 the ratio for small tc is 2.95, but this value depends
on the cholce of matrix elements for Uo. Thus, since the selectivity
from coherent averaging theory provides an underestimate for the
coherence selectivity, it is still a useful test for convergence.

4.3.1.2 Signal Intensities

Figuré IV.3 shows the observable signal intensity for the four-
quantum transition (the square of the coherence magnitude, from
equation (II1.34)) as a function of the cycle time, in units of B.

(For simplicity C = -1 is assumed in equation (I1.20)). The total

available signal BTr(Izz) = 16 B, and there are 256 matrix elements,



142

40
Zero—order 4k—quantum
One cycle

30
Q
X
S Kol
o K .
» 20 . ‘
E L] L]
3 - L]
T . *
g : g
o . .
‘ L2
5 ° .
& . y

7o) . "

L] L)
.. ..
L] ..
. ....
.. ‘ .l.
o* ."“00.--00-0.--. se s s ece
2 4 6 8 10

& T
o X8L 809-1172C
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so the expectation value of the signal from nonselective excitation is
.0625 B. The maximum possible value for the four-quantum signal is
4 B, from equations (III.29-33), so the possible gain is a factor of
64. The largest signal from Figure IV.3, however, is 2.22 when ﬂﬁiﬂ)tcﬂ =
2.1. At the peak, the propagator selectivity is only 3.40, so the
selectivity disappears before the true maximum can be reached. This
is not surprising, since the first maximum corresponds to a selective
90° pulse between the two extreme levels, so the coefficient of the
four—-quantum operator in ﬂ(o) must be at least T/4 (see equation
(IT11.32) and section 3.5.1). We then expect ﬂﬂ(O)tcn > 1.66 if all
72 4k-quantum operators are pumped equally, and Hﬂgtcu N 3,14, This
is well outside of the expected range of convergence; in fact, the
propagator selectivity is only 1.74 for this cycle time.

Several approaches can be taken to improve the selectivity.
The first, and simplest, is to decrease the cycle time and increase
the number of cycles. For convenience define TC as the number of
cycles times the cycle time; Tc is then the total duration. If two
cycles are used, for example,"ﬂgTC" " 3.14 for the whole sequence when
ﬂﬁgtcﬂ v 1.57 for each cycle. Thus larger signals should be attainable,
and this is illustrated in Figure 1IV.4; the maximum is now 3.19 at
HKETCN = 2.75. The signal can be further increased by adding more
cycles. With 16 cycles, the signal follows a sin2 curve for several
oscillations, as expected from equation (II.36), and the theoretical
maximum gain is achieved when ﬂHsTCH = 3.2, as shown in Figure IV.5;
If enough

the oscillations die away as the selectivity disappears.

cycles are applied, the oscillations can be prolonged indefinitely.
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(0)

Any arrangement of the four phases is equivalent as far as ¥ is
concerned. However, some arrangements might be superior in cancelling
the iargest terms in GR(I))nns' All of the 24 possible permutations can
be related to one of the sequences (0, 90, 180, 270), (0, 180, 90, 270),
or (0, 90, 279, 180), by adding a constant amount to each phase or
reversing the order of the phases; thus only these three groups need
be analyzed. Table IV.1l gives the maximum four-quantum signal from one
cycle of zero-order 4k—quantum selection for each of these combinations.
For all of these calculations 36 had equal matrix elements everywhere;
the different runs correspond to different sets of random phases for
these elements. fhe maximum signal is 2.22 * 0.18 for (0, 90, 180, 270),
1.72 + 0.09 for (0, 180, 90, 270), and 1.98 * 0.14 for (0, 90, 270, 180).
However, no single permutation is superior for all five sets of
couplings, and these small differences have no practical significance.

It can be concluded that there is no a priori reason to prefer any
particular permutation.

4.3.2 Lower—Quantum Selection

The N-quantum transition in a N-spin system has no dipolar
information, as explained in section 1.4. The (N-1)-quantum and lower-

quantum transitions are therefore more important. The potential signal

gain from selection is smaller (see equation (III.34)) but still

gubstantial; for (N-1)-quantum selection, it is roughly ZN if N >> 1.
As an example, Figure IV.6 shows the signal obtainable from

5k-quantum selection or 4k-quantum selection on a five~spin system.

, 2
The five-quantum signal follows the normal sin~ pattern of Nk-quantum

selection in a N-spin system; the maximum signal is equal to the



Table IV.1 Effect of Permutation of Phases on Zero-Order 4k-Quantum

Selection.
Maximum Four-Quantum Signal
Trial # (0,90,180,270) (0,180,90,270) (0,90,270,180)
1 1.839 1.558 1.837
2 1.979 1.913 2.293
3 2.871 1.608 2,201
4 1.910 2.020 2.128
5 2.521 1.508 1.444 -
2.22 £ 0.18 1.72 + 0.09 1.98 + 0.14

147
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selection.
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value of BIZ2 for the extreme states, which is 6.25 B; and the gain
is NzN = 160. The gain is much smaller for 4k-quantum selection,
because zero—quantum coherences cannot be completely suppressed, as
explained in section 3.5.1. The maximm signal attained from this
sequence is 0.80, which corresponds to a gain of 20.5. The average
signal fromAlﬂ;tcﬂ = 10 to lﬂgtcl = 20 is 0.40, for a gain of 10.3.
The estimated gain from (III.34) is 14.5.

Figure IV.7 shows the signal obtainable from 6k-quantum or &4k-
quantum selection in the benzene Al manifold. These results will
be compared in Chapter V to actual experiments. The maximum observed
gain for the four-quantum signal is 7.50, when nﬂ;tcl = 1.92., This
selective sequence was applied to five different random ﬂs operators,
and does not correspond to any particular arrangement of pulses and
delays, so these values are best interpreted as estimates. Thus, if
the actual pulse sequence for ﬂ; is the sequence of Figure I1I.2(a),
the optimum value for nﬂ;ATéﬂ is on the order of 0.5 if one cycle is

applied, 0.25 if 2 cycles are applied, and so forth; this would make

1IHT1 A~ 2,
oc

4.4 Higher-Order Selective Sequences

4.4.1 Nk-Quantum Selection

Another approach to improving selectivity is to use high-order
selective sequences, as explained in section 3.3.2. Two different
principles (nesting phase cycles and symmetrizing phase cycles) were

used to design j-order nk-quantum selective sequences for arbitrary

i+ 2
j; if § is odd, such sequences require (211)(J 1)/ subcycles. Thus,

the higher the order of selectivity, the longer the cycle time. This
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makes average Hamiltonian calculations much more complicated. For
example, a third-order 4k-quantum selective sequence has a cycle

timé 16 times longer than a zero-order 4k-quantum sequence, so it

is not obvious that lﬁ(A)tcﬂnns for the former is always smaller

than li(l)tclnns is for the latter. 1In fact, it was shown in section
4.1 that high-order selection is useless if tc is large. 1If tC is
small, however, higher-order selection must be beneficial; in this
example, the first nonselective operator in the propagator for the
zero—order sequence is proportional to tcz, but the first nomnselective
operator for the third-order sequence is proportiomal to tcs. Thus
an important question is how large tC can be before high-order
selection becomes useless.

Figure IV.8 cémpares the propagator selectivity of two cycles of
zero-order Sk-quantum selection with one cycle of first-order 4k-quantum
selection. As expected the first-order sequence is far superior for
short cycle times. At lﬂchl = 4.0 the two curves cross, and for all
later times the zero-order sequence is superior. However, the crossing
point is about 257 larger than the theoretical position of the first
maximum (see Figure IV.5), and the improved selectivity of the first-

. order sequence near that maximum produces a larger four-quantum signal,

as shown in Figure IV.9.

For larger values of ”HQTCH both the first-order and the repeated

zero-order sequence have little selectivity, so the repeated zero-order

sequence is never significantly superior. By contrast, Figure IV.10
shows the signal from a third-order 4k-quantum selective sequence,

This should be compared with 16 cycles of a zero-order sequence, shown

in Figure IV.7. Again the high-order sequence is much more selective
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cycle times but inferior for long cycle times, as predicted in

section 4.1.



for shorﬁ cycle times; the selectivities are equal at 8.1 when nx;tcu =
14.7, and the zero-order sequence is superior after that. At the first
maximum, the propagator selectivity of the third order sequence is 1103,
compared to only 44 for the zero-order sequence. However, both of these
numbers satisfy the criterion for maximum signal from equation (III.51),
S >> 5.6, so the signals are very nearly equal. At the second maximum
the selectivities are 21.3 and 12.0, and these numbers are small enough
to make the third-order sequence perceptibly better. At the third maximum
the selectivities are almost equal. After the third maximum the
selectivity of thg third-order sequence dies away rapidly, but the
repeated zero-order sequence remains partially selective for several
oscillations.

Figure IV.11 shows the propagator selectivity of the third-order
sequence, plotted on a log-log scale. For small values of t. (ﬂﬂ;tcﬂ
< 5) the selectivity is proportional to tc—4 (the solid line in the
figure) as expected when i‘é) is the dominant nonselective term and
R(O) is the dominant 4k-quantum selective term. The selectivity begins
to deviate from the line around Iﬂgtcﬂ "~ 6. The slope initially

(2)

decreases, which must reflect another selective term, presumably H .

In fact, the selectivity between lﬂstcl = 10 and 'ﬂ;tcﬂ = 20 is

proportional to tc.-2 (the dotted line in the figure), which would be
72 por 1x e 1 > 20
oc

=(6
the selectivity falls off rapidly, which probably indicates that K( )

.expected if the dominant selective term were

and higher-order non-selective terms cannot be neglected.

The convergence criterion ﬂ(ﬁlo)tc)zﬂ < F(n)—l is equivalent to

i3 t | < 6.8 if the eigenvalues have a Gaussian distribution. This
oc
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Figure IV.11 The propagator selectivicy of a third-order 4k-quantum
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the region predicted by the convergence criteria of section 3.6.
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was derived by finding the value of the cycle time which would make the
first nns term from a j-order nk-quantum selective sequence (in this
casé, Iﬂ‘A)Inns) equal to the first nns term of a (j-2)-order sequence
repeated 2n times. Calculation of the propagator selectivity of 8
repetitions of a first-order 4k-quantum selective sequence shows that it
intercepts the selectivity of this third-order sequence at ﬂﬂgtcﬂ =
5.1. The agreement is good, particularly since the convergence criterion
is merely an estimate based on random addition of nonselective terms
(see section 3.6) and a four-spin system is fairly small for such as
assumption. It can be concluded that equation (III.38) is a reasonable
'criterion for convergence of the average Hamiltonian expansion. 1In
fact, it is a conservative estimate; the selectivity is still around

100 when |ﬂ;tc| = 6.8,

4.4.2 Lower~Quantum Selection

High-order selective sequences are of course also useful for
(N-1)~quantum and lower-quantum transitions. In fact, the calculation
of the selectivity in section 3.6 does not depend on the number of spins
in the system. Computer calculations verify that the number of spins
is not important. For example, the propagator selectivity of a third-
order 4k-quantum selective sequence on benzene deviates by less than
107 from the selectivity in Figure IV.1ll throughout the region of
convergence lﬂ;tcl < 5. The signal from a third-order 4k-quantum
sequence is identical to the signal from sixteen zero-order &4k-quantum
sequences (shown in Figure IV.6) through the first wmaximum; is slightly
larger on average through lﬂ;Tcﬂ n 12.8, where the propagator selectivi-

ties of both sequences are equal; and is smaller om average for larger
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values of TC. Four-quantum selection in five-spin systems shows similar
results.

Thus, high-order selective sequences can increase the signal in
the selective experiment. They are expected to become even more
important for larger systems, where the required selectivity for
maximum signal is greater. Since the agreement between average
Hamiltonian theory and exact calculations is extremely good for the
systems in this section, it is very likely that the average Hamiltonian
calculations are valid for larger systems that cannot be exactly

analyzed.

4.5 Suppression of Zero-Quantum Operators

It was suggested in section 3.6 that zero-quantum operators should be

ﬁ(o) to achieve the maximum possible gain in large

systems. An average matrix element of ﬂ‘o)tc

suppressed from

cannot be made comparable

to 1 without violating the convergence criterion (II1.38) unless the

number of selected operators is small. Fortunately, the results of

the last section show that the convergence criterion is an under

estimate. Therefore, while zero-quantum suppression is still expected

to be necessary in very large systems, it is not required in systems

of moderate size (such as those that can be readily studied by computer).
Nonetheless, some of the effects of zero-quantum suppression can

be seen even in these small systems, The calculation is straightforward,

if a sequence such as the one in Figure (III.%a) is assumed. Replacing

K
At ' with -AT ' changes U to U'. Thus, the propagator for the second

3
subcycle is Ud)I = exp(i¢Iz) UoT exp(—i¢Iz), and the propagators for

each subcycle are multiplied together to produce the total propagator,
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as before.

Density matrices corresponding to several values of ﬂilo)tcﬂ for
a tﬁird—order 4-quantum selective sequence on a four-spin system are
given in Appendix C. These matrices show that the first nonselective
coherences produced by the 4-quantum sequence all involve one of the
states with.M = * 2. By contrast, the density matrices produced by
third-order 4k-quantum selection do not show any pattern to the non-
selected coherences. Gﬁ(A))nns contains only terms such as CT-C(O))2
Gﬁiz))nns, as explained in section 3.6, and if zero-quantum operators

=(0)

are suppressed J only connects the states with M = * 2; if zero-
quantum operators are not suppressed, R(O) has matrix elements for
all values of M. Thus, the sequence of Figure (III.9) does suppress

zero—-quantum operators from i‘o).

4,6 The Importance of Time Reversal
In all of the computer calculations discussed so far, the exact
form of X; was assumed, not calculated. Thus, some unspecified pulse
sequence creates multiple-quantum coherences with a propagator U0 and
effective Hamiltonian ﬂ;, and these two operators contain equal amounts
of multiple-quantum operators corresponding to all values of AM. This
form is quite reasonable. For example, if the actual sequence for ﬂ;
is the sequence of Figure (II1I.2(a)), and if |X§T| > 1 is all that is

specified, this random Hg would be the best guess.

The key to producing an effective Hamiltonian with 'ﬂgATpﬂ << 1 and
multiple-quantum operators is time reversal, if the sequence in Figure
(T11.2(a )) is used. If the time reversal is essemntially perfect,
ﬂﬂ;ATpﬂ can be made arbitrarily small ﬁy this sequence; if it is not

perfect, there will be a lower bound to ﬂﬂsATpﬂ. This means that the
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sequences for H? and H; must have short cycle times, yet must be
repeated many times, so the selective sequence involves many pulses
(thousands of pulses are typical, as will be shown in Chapter V).
This generally implies problems with sample heating and stability
of the pulse trains. In addition, there are important applications
in which perfect time reversal for ﬂ; is not even theoretically
possible, such as in isotropic systems; there Iﬂ&TI > 1 for ﬂ% to
have multiple-quantum coherences, as explained in section 2.3, but
ﬂk cannot be time reversed with broadband irradiation since it is

a zero-rank tensor.

In this section, the assumption of time reversal will be discarded.
Specific pulse sequences will be applied to systems with known
Hamiltonians. These Hamiltonians sometimes correspond to specific
molecules, and sometimes are random. These calculations show that

time reversal, while useful, is not essential to the design of

selective sequences.

4.6.1 Simple Selective Sequences

The simplest possible cyclic pulse sequence for ﬂs would be two
pulses with a delay between them. If the pulses are assumed to have
phase y and y and flip angle 7/2, then ﬂ; = ﬂ;, where ﬂ; is given in

equation (II.32). Xg is the operator which generates multiple-quantum

coherences in the nonselective experiment. It only has O-quantum,

l-quantum, and 2-quantum operators; in the nonselective experiment
high-quantum operators are generated by the complex exponential in
the propagator. However, higher-quantum operators must be present in

¥ 1if zero-order selection is to work. Thus, a zero-order &4k-quantum
o
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selective sequence is not expected to produce much four-quantum signal

)

~ The general form of X can be calculated readily from equations

(I11.2-4). ﬂint(t) is restricted to four possible operators: if ¢ =

0,3, (t) =% ; 1f ¢ = W2, ¥ = - T 3
Hyne ;lcx ¢ / innt(t) J(y, if ¢ "T,innt(t)=iifxx+

H;+ @ o, T Awl) =¥_,; and if ¢ = 37/2, Hine (8 -J(yy +H o+
(Z oini-AmEy) = H;y. Since all of these operators are at most bilinear,
-(1)

¥ involves at most three spins, and cannot have four-quantum

operators. i(z) can have four-quantum operators, so a second-order or
third-order 4k-quantum selective sequence might be useful. Unfortunately,
short cycle times imply a small ﬁ(z), and i‘o) does not vanish Cﬁco) =
-1/2 x,, +'Xb). If the cycle time becomes long enough to make nﬁ(z)TC"

" 1, the convergence criterion is violated. As a result, even high-

order selective sequences do not provide much signal enhancement, as

shown in Figure IV.12.

The obvious solution is to suppress the zero—quantum coherences,

(0)

or at least suppress the zero-quantum coherences in ¥ . One way to
do this, by analogy with Figure (III.9a), is to produce 4%% as well as

¥ . The largest term in H_ is ¥__, and -1/2 ¥__ can be produced by a
b xx prod

time reversing sequence. Such a sequence would not reverse (I OiIxi +
Awa), but these operators could be suppressed from both ﬂ% and AKX (by
echo pulses in ﬂ;, and by a suitably chosen time reversal sequence in
AK%). H& would be unaffected, but since it is very small compared to

H%x this would not pose an important limitation.

4.6.2 Use of Line Narrowing Sequences

A simpler solution is to use a line narrowinmg sequence for X ,as

suggested in section 3.4.4 . For example, a WAHUHA sequence might be

used. For clarity in later discussions the average Hamiltonian for
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selection without time reversal (HQ;W%)' is large but does not
have four-quantum operators, so the convergence criteria are violated

before the four-quantum operators in W(Z) become significant. As

a result, not much signal is produced. Compare this to the time

reversal case in Figure IV.6.
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this sequence will be written with a small h. Pure dipolar interactions
= (O = (1) . .

are suppressed in hD and h p + Chemical shift and resonance offset

terms are not suppressed, but these operators are generally much smaller

than ﬂ;z. The operator h 52) is given by:

= (2) 1 2
hD " 648 tc [ﬂ;xéxéz’ [M%x’ﬂ§y]] (Iv.7)

which can be readily shown to contain four-quantum operators. There

is a range of values for T (the short delay between the pulses) such
that 13! >> IED(Z)I > 1K1, 13,1, and 1f T is in this range a
WAHUHA sequence can be used for ﬂb if four-quantum selection is
desired. The theory of Chapter III applies, as long as T is considered
to be a fixed parameter; thus, ATP in Figure (III.2(a)) is changed by
changing the number of WAHUHA cycles in ﬂ;.

If T is not a fixed parameter, the analysis is more complicated.
Figure IV.13 shows the effect on the selectivity of varying T in a
WAHUHA sequence for H;. The sequence is incorporated into a zero-
order 4k-quantum selectlve sequence on a four-spin system. When T
is small, the largest term in ﬂ; is Ecéo) = (-1/3) Oi(Ixi+Iyi+Izi));
zero—-order selection suppresses the nonsecular part of this, but
creates a nonselective ﬂ(l). Thus, the coherence selectivity goes
to 0 as ATp + 0; the propagator selectivity becomes very large because
of the secular terms in i(D), but these terms will not produce coherences.
If T is small, the largest nns operator in R; is proportional to T;
the largest 4-quantum selective operator is proportiomal to Tz, 80

the selectivity is proportional to T (in contrast to all the examples

in sections 3.2.3-5, in which the selectivities were proportional to



164

L ]
& .. I.
-
. i Zero-order 4k-quantum selection
L ]
. One cycte
. . Subcycle WAHUHA selection
L]
L]
L ]
15 .
. .
. [ . .
: e )
@ |
& | *
g 100
(=]
5 L]
& .
8 [ ]
L]
*
L]
54 ¢
L]
.
e
. e * e
- . A4 .
- L] [ ] L]
- L]
L. J .
. L] oe ° ° o ..
.
L i - ...0 o... ........l............
0.25
0.5 075 10
T (msec)

Figure IV.13 The selectivity for one cycle of zero-~order 4k-quantum

The selectivity is

(1)

selection using a WAHUHA sequence for W;.

is nomnselective

7(2))

In the region of interest l¥

proportional to T for short cycle times, because i

and ﬂiz) has 4k-quantum operators.

s> 17y 173y



165

(0) and E(l)

megative powers of T). When Iﬂ;zTn v, nﬂésTH << 1, so Ecs cs

are'still small; Eéz) is the dominant term in HE. The zero-order
selective sequence still works well, since ﬂﬂ;ATpl << 1 so the
coherence selectivity is good. As T is further increased, ﬁ*l)
increases, and the selectivity falls off as T-l

Figure (IV.14) shows the signal produced by this sequence. When T
is gmall, the signal is proportional to T6. When lﬂ;zTﬂ v~ 1, the
selectivity is good and the signal is large; in fact, the maximum
signal (2.98 B) is substantially larger than the maximum achieved by
one cycle of 4k-quantum selection using time reversal (Figure IV.3).
Yet, this sequence requires only 16 pulses, so sample heating and pulse
instability are much less troublesome.

The maximum signal can be increased by using high-order selection
or increasing the number of cycles. Figure IV.15 shows the effect of
fixing T at 120 usec, and incrementing the number of cycles; the
familiar sinz pattern appears. The period of the oscillations is

5 (@)

proportional to T3, since the dominant term in Kg is by For this

reason, the maximum may be hard to find in systems with unknown

couplings.

Since ED(Z) has no operators with AM > 4, high-order selection
must rely on higher order terms, and zero-order selection is
. ineffective. For higher—quantum selection a different line narrowing

sequence may be helpful. For example, a sequence with a secular or

vanishing E(Q) will have smaller nonselective terms. Also, sequences
cs

which suppress ﬁéz) might be useful, Thus, for example, the 72-pulse

sequence of Burum and Rhim75 has 6-quantum operators in its leading

dipolar term Eéa), and would be a good candidate for Ho in a 6k-quantum
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=(4)

selective sequence. A l2-pulse sequence which has hD as its leading

dipolar term is:
(T—QOi—T—90y—2T—9OX—T—9Oy—ZT—902—T—90y—2T—9O§—T—9Ox*2T—90y—T-9Oi—
2T—90§-T-9OX—T)
Computer calculations show that this sequence can be used for H;
if 6k—quantum selection is desired. It is most useful when the chemical
shift differences are small; if this is not the case then the simplest
modification is to insert a 180° pulse in the middle of each delay.
Each of these inserted pulses should be 180° out of phase with the 90°
pulse which precgdes it. Clearly, the larger the number of quanta to
be selected, the more complicated ﬂ; becomes, and this will be a practical
limitation to the technique. Nonetheless, the advantage of very low duty
cycles makes the use of line narrowing sequences an attractive option
for low-quantum selection.

4.6.3 Selectivity in Isotropic Systems

For the reasons discussed in section 2.3, multiple-quantum
coherences are produced more slowly in isotropic systems than in
anisotropic ones. 1In fact, |H&ATPU " 1 will be required to give ﬂg
multiple-quantum coherences. X& cannot be time reversed by wideband
pulses; however, X  can be reversed, and since IXH_ 1 >> 1¥_ I an

cs cs J
appropriately chosen sequence will give selection. For example,
consider the sequence in Figure III4(a) in the limit AT; + 0. Let
¥ be¥X =-£0,I ,+ I J, 1,1,, created by the sequence 90x-T-
X i xi i>3 i3
9035 and let ' he ¥ < created by the sequence 90,i=-T—90x (Figure IV.16).
P -

An average Hamiltonian expansion wiil not converge rapidly for ﬂMﬁTU "

1, since then !X _T! >> 1. But the propagator cam be expanded, using
cs ,
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90x 90x S0y S0y 90x% 90% 90y 90=

180 180_
X y IBOx |goy
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Figure IV.16 A simple pulse sequence for 4k-quantum selection in

isotropic systems. The sequence for ﬂ; is QOX—T—18O§—T—90X, and

is actually equivalent to Figure IIT.4(a) with AT& = 0.
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(E.10):
U = exp(-3K,T) exp(-#_ T)

- (exP(—i(-ZoiI i+JijI I j)T)+A) (exP(—i(ZoiIxi+JijIinxj)T)HS)

= exp(-21I JijIinij) + A exp(—i(XGiI i+JijI I j)T)

+ exp(—i(—ZU I i+JijI I )T)B + AB (Iv.9)

exp(-1(-Zo,I__+ZJ,. I .I )T
By = CI T T 4T T 0 (— ; 1w 1T Py D i
Z -
i yiyl O3 i ™5 %1 Iy k22

e i(Zo I +ZJ 1
NI O P 0% 0 S S N ik (;O R ’?)“k 22y,
RS ixi ij x1 XJ kk-£2

B

(1Iv.10)

Since lMEsT‘ >> 1, tal ~ Bl ~ lﬂ&l/ﬂﬂ;sl << 1 if the system is

first order, and therefore U is close to 1. Since this sequence is

cyclic, the usual ansatz U = exp(~iK(2T)) can be made, and then IF(2T)I

<< 1. Thus, this sequence will often produce a wusable Ms.

Figure IV.17 shows the selectivity of a first—order 4k-quantum
selective sequence as a function of T; the molecular parameters
correspond to methanol at 270 MHz.78 The selectivity is expected to
be an extremely complicated function, because # changes as T changes.

Still, there is a region where the selectivity is good and “ﬂ;ﬂ is

small; if T is chosen from this region, the first-order sequence
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Figure IV,17 The coherence selectivity of a first-order 4k-quantum
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Figure IV.16). The molecular parameters correspond to methanol at

270 MHz.
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can be répeated several times to give a large signal, as shown in
Figure IV.18. For example, one sequence which will produce a large
fou?—quantum signal is 3 cycles of first-order selection with T = 12.0
msec. The total duration of the sequence is 576 msec, which is short
enough to neglect relaxation effects (as is implicitly done in all of
these computer calculations). Higher-order selectivity is of course
possible in isotropic systems as well, when relaxation times are long
enough to allow many subcycles. It should be noted, however, that
igotropic selective sequences are not as easy to design as anisotropic
ones, and that relaxation times provide a serious constraint for
protons. The J couplings are larger with other nuclei (for example,

13C and 19F) and therefore selectivity is simpler in those systems.

4.7 Conclusions

Computer calculations have been presented which verify the average
Hamiltonian theory calculation of Chapter III. The selectivity and
signal intensity have the form expected from those calculations. 1In
additon, these calculations show that the region of convergence of
the Magnus expansion agrees with earlier estimates, and that the
selectivity is still good near the limits of convergence. Simplified
pulse sequences for isotropic and anisotropic systems have been shown
to provide signal enhancements. Since these computer calculations are
exact (to the extent that the spins follow the density matrix equation

of motion (JI.7)) it may be concluded that selective sequences

provide a practical techcique for signal enhancement.
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V. Selective Experiments

5.1 The Spectrometer
The selective pulse sequences of the last two chapters require
many pulses and complicated phase shifts. For this reason the
sequences would not be possible with most commercial spectrometers.
All of the éxperiments in this section were done with a homebuilt
machine.

5.1.1 Magnet

The magnet is a persistent superconducting model from Bruker
Instruments. It is operated at 42 kG, giving a proton resonance at
182.00 MHz. The bore is 3.5 inches in diameter. The field can
be shimmed readily to 1/4 PPM over a 1 cm3 region, and laboriously
to 1/16 PPM.

5.1.2 Frequency Generation

A 10 MHz reference signal is tripled to provide an IF frequency
of 30 MHz, and mixed with ~ 152 MHz (generated by doubling the output
of a Hewlett-Packard 3320A synthesizer and mixing it with 100 MHz)
to provide the proton pulses. To ensure good isolation rf switching
is done once at the IF frequency (two Summit 571 switches in
series) and once at the final output frequency (ome Daico 100C1281A
switch). Four phases (corresponding to x, X, y and ;) are generated
at the IF frequency by commercial hybrids. The output is fed into
an AR model 100 or model 200 amplifier to provide pulses of up to
200 watts. The low frequency end glso operates with an IF of 30

MHz but is mixed with a lower frequency (58 Miz) to provide deuterium

pulses at 28 MHz.
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5.1.3 Detectors

~ The first stage of the detector is a commercial pre-amplifier
(Avantec VIO 511 and VIO 512) with 35 dB of gain. The first stage
noise figure is 2.5 dB. The signal from this is miied and filtered
to v 30 MHz, amplified with a variable gain IF strip (up to 70 dB)
and then mixed down to audio frequencies with two phases of the 30 MHz
from the transmitter section. The recovery time after complete
saturation (from pulses) is about 10 usec.

5.1.4 Digitization

The two audio frequency signals (corresponding to Mx and My in
the rotating frame) are fed into Datel SHM-2 S/H and Datel ADC-EH10B2
analog-to-digital converters giving 10 bits. The digitized signal
is fed to a NOVA 2 computer, with a minimum acquisition time of 3

usec. This 1is more than adequate for all experiments in this work.

5.1.5 Pulse Programmer

An important part of any modern NMR spectrometer is the pulse
programmer. This one is microprocessor based and clocked at 10 MHz.
Pulse programs may contain up to 64 simple statements (branches,
compares, increments, or outputs). Pulse widths can be set to .l usec,
and the pulses can open any one of four proton gates, any one of
four low-frequency gates, and as many of eight auxiliary gates (used
for temperature blanking, phase shifting, and data acquisition) as

desired. The pulses can be loaded either into a 1l6-step FIFO or

a 256-step RAM,

5.1.6 Probes

All of the experiments in this chapter require proton irradiation
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only. The probe is home built with a single-tuned 8mm x 30mm
solenoidal coil of uninsulated copper ribbon (11 turmns). This coil
is part of a tuned circuit including a homemade series turning
capacitor (two copper rods with Teflon dielectric) and parallel ATC
matching capacitors of various sizes. Q's of over 100 are readily
achieved. |

The coil is surrounded by a glass dewar to provide thermal
isolation. Temperature control is achieved by passing air (or

cooled N_ gas for low temperatures) over a constantan heater coil.

2
The temperature is constantly sampled by a copper-constantan
thermocouple and.compared by a digital thermometer to a reference
setting. If the temperature is too low, up to 3 amps are fed into

the constantan heater coil (resistance 20).

All of the samples were nematic liquid crystals so pulse heating
effects had to be minimized. Fortunately, the selectiQe experiment does
not require signal sampling in short windows in the pulse sequence
so a high-Q circuit and low power (v 50W) pulses were used. Samples
were sealed in 6mm O0.D. X 15mm Pyrex tubes which were suspended in the
center of the coil to minimize rf inhomogeneity and heating effects.

The temperature-regulated air stream was focused directly on the
sample to further decrease heating. Even with these precautions,
relatively long delays (v 10 sec) were frequently required between

successive shots.

5.1.7 Phase Shifting

All phase shifts are generated by a Daico 100D0898 shifter



operating at the IF frequency of 30 MHz. This device produces
phase shifts in any multiple of 2m/256. The phases were checked with
a Hewlett-Packard 8405A vector voltmeter and found to be stable and
within 1° of the stated value at all times.

The VSWR of the phase shifter depended on the phase setting. To
' eliminate fluctuations from this effect and from switching transients,
the pulses were gained up to v 3 Vpp and passed through a series pair
of crossed PIN diodes followed by a pair of crossed PIN diodes to
ground. The first pair eliminates small components which are out of
phase with the main pulse, and the second pair reduces fluctuatioms
in the output voltage. The pulses were then filtered, amplified,
and sent to the probe.

Increased versatility was provided by loading up to 256 phase
settings into a RAM which was interfaced to the phase shifter. With
this configuration third-order sequences for up to 8 spins and first-

order sequences for up to 16 spins are possible.

5.2 Experimental Results: Oriented Benzene

5.2.1 Four—Quantum Selection with Time Reversal

The high (Dﬁh) symmetry of benzene produces many different
irreducible representations for the eigenstates (Figure V.1). This
reduces the number of allowed transitions; for example, there is
only one pair of five-quantum transitions, instead of the six pairs
of five-quantum transitions in an unsymmetrical six spin system as
mentioned in section 1.4. This molecule is swall enough to be

studied by nonselective sequences, and all of the theoretically

28,29
allowed transitions have been observed.
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Figure V.1 Energy level diagram for benzene oriented in a liquid
crystalline solvent. The assumed symmetry is C6v' There is also a
=0

time reversal symmetry operation (flipping all spins) in the M

manifold which is not shown. This symmetry operation affects only

zero—-quantum transitions.
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Figuie V.2(a) shows the nonselective (pulse sequence of Figure
I1.2(b)) multiple~quantum spectra at 24.0°C of a sample with 14 wty
benzene dissolved in Eastman liquid crystal #15320. The same sample
was used for all of the benzene experiments. For this experiment Aw =
500 Hz, and magnitude spectra corresponding to ty =T = 4.0 msec,

6.0 msec, 8.0 msec, and 10.0 msec were averaged together. The individual
lines are resolvable even in the single-quantum spectra,17 and the
three dipolar coupling constants D12’ D13 and Dl& have been shown to

be consistent with hexagonal symmetry. Figure V.2(b) shows, on the
‘same scale, the ayeraged results of four spectra with 4k-quantum
selection (¢ = 7/2 in Figure V.3, and ﬂ? is the two—quantum seauence
described in section 3.4.2) and different values of T and T. All
experiments in this chapter used the same sequence for the mixing that
was used for the preparation, except that one more pulse was inserted
immediately before sampling, as explained in section 2.2.3.3. The four-
quantum transitions are significantly enhanced, and their positionms

are unaffected. The nonselected orders are almost entirely under the
noise level, as illustrated by the integrated intemsities in Figure

V.4,

Figures V.5 and V.6 present individual spectra (not averaged over
any parameters in the pulse sequence) to calculate selectivity and
signal gainé. Each of the spectra in Figure V.5 was taken with ¢ =
/2, t = 3.8 psec, T = 5.0 usec, T = 1.5 msec, and 8 subcycles (the
zero-order sequence was applied two consecutive times) to make a 4k-

The sequence was used in both the

quantum selective sequence.

preparation and mixing periods. Immediately before detecting <IX> and

a single additional pulse was applied as explained in Section 2.2.

<1y>,
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Figpure V.2 Multiple-quantum ensemble averaged spectra of oriented
benzene. The width of the four-quantum spectrum is 5470 % 25 Hz.
Part (a) is the nonselective spectrum (sequence of Figure II.2(b)).

Part (b) is 4k-quantum selective (sequence of Figure v.3).
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Figure V.3 General form for zero-order selective sequences. In part

a) ﬂ; is an arbitrary cyclic sequence of pulses and delays. All of the

]

pulses are phase shifted by ¢ 21/n to produce K&. To lowest order,
only nk-quantum coherences (k = Q, %1, *2 ...) survive after n shifts.

Part b) is a possible sequence for_Hb which uses dipelar time reversal

to give ﬂ; multiple-quantum operators yet keep “WQATPH small.
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Figure V.4. Integrated intensities of the spectra in Figure v.2. The

nonselective intensities for the selective spectrum are almost completely

under the noise level.
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Figure V.5. The effects of varying AT; (see Figure V.3) in 4k-quantum

selective sequences on oriented benzene. When ATé is long the selectivity

,has:diéaypeared. The optimm value of AT; is expected to be longer for

,iheféggiggl'peak than for the side peaks (see text). The largest

QBsegvéﬁ‘gains are 5.6 for the side peaks and 19 for the central

Pulse sequence parameters are o (pulse width) = 3.8 usec,
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The only parameter which was varied was AT;.

The selective terms in the average Hamiltonian are linear in AT;_
Higher order terms are nonselective, so the spectra with large values
of A1' are expected to have substantial two-quantum and six-quantum
intensity CK; still has the form in equation (I11.27), so no odd-quantum
operators are present in the propagator). Figure V.5(e) confirms this
result. If AT; is very small and the time reversal is good, even the
linear term is small, and very little coherence is produced. Thus,
there should be an optimal value (or at least an optimal range) for
At' to produce four-quantum coherences. One interesting feature of
Figure V.5 is that the value which optimizes the central four-
quantum line is much longer than the value which optimizes the side
peaks. There is no reason why the optimal values should be the same;
the side peaks are all A1 transitions, whereas the central peak has
contributions from every irreducible representation. In addition,
diagonalizing the Hamiltonian shows that ﬂﬂ;ﬂ is larger for the A1
states than for any other representation so equation (III.27) implies
that, if one averaged over all possible operators H;, the Al
transitions would peak at the smallest values of AT;. However, this
need not be true for each possible ﬂ?.

5.2.1.1 Signal Gains

The maximum observed signal gain for the side peaks relative to
totally nonselective excitation is the gain of 5.6 in Figure V.5(b).
The true maximum gain may be larger than this, since a small change in
At' from 34 psec might produce a larger value. The maximum theoretical
gain may be estimated by dividing up the total available intensity

. . 2
(which is the same as the equilibrium magnetizatiom, g Tr(Iz bD)



185

equally among all of the pumped density matrix elements in the Al
manifold. There are 13 Al states, so there are 169 matrix elements,
but-time—reversal symmetry in the M=0 manifold forces all 6 zero-
quantum transitions in that manifold plus the three populatioms to
vanish in the nonselective experiment. (All of the Al M=0 states are
gerade. The density matrix in equation (II.31) only connects gerade
to ungerade in the M=0 manifold, so no zero-quantum coherences are
produced).65’79 A four-quantum selective propagator will transfer some
of B Tr(Izz) from ten of the populations (M = *3, %2, #1) to the
fourteen four-quantum coherences using only terms linear in AT;. Only
24 matrix elements are involved, and if they are all roughly equal,
the expected gain is 160/24 ~ 6.7.

However, 1t is clear from the spectra in Figure V.5 that some zero-
quantum coherences are also produced. This is to be expected because
four—-quantum operators proportional to AT; in the propagator imply
zero—-quantum and four-quantum operators proportional to (AT;)Z. There

are 12 zero-quantum coherences which can be pumped, and if these are

pumped as strongly as the four-quantum coherences the maximum gain

falls to 4.4.

The largest enhancement observed for the four—quantum center line
is the factor of 19 in Figure V.5(c). This gain cannot be readily
;ompared to the theoretical gain because this peak corresponds to six
different transitions in the different irreducible representationms.

In addition, the TPPI method of separating the different orders of
coherence can produce artifact peaks if the phase shifts are imperfect.

In this experiment, the TPPI increment was m/8 (i.e., each pulse in
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the preparation period had its phase incremented by 1/8 every time t
1
was incremented) and this could give artifacts only at the center of
the four-quantum spectrum. The central peak has no dipolar information
so a distorted intensity does not affect the analysis.

Figure V.5(f) shows an ensemble averaged nonselective experiment
(using the pulse sequence in Figure II.2(b)) with Aw=0. ﬂ; has only
even—-quantum coherences, so a partially selective spectrum is produced.
Comparison of parts (a)-(e) with part (f) shows that the selective
experiment does not distort line positions. Residual pulse errors
increase the noise level of the selective experiment, but the signal-

to-noise ratio of the four-quantum lines in parts (a) and (b) is still

substantially better than could be achieved nonselectively in equal

time.

5.2.1.2 Selectivity Improvement

The first nonselective term in the effective Hamiltonian for a
zero—-order selective sequence is proportional to (ATé). 1f ATé is

cut in half but the number of subcycles is doubled, this term will

be cut in half. The selective term will be unaffected. Thus, the
selectivity of a zero-order sequence can be made arbitrarily good by
making AT; small and repeating the sequence many times. This is
illustrated in Figures V.6(a)—(cj. In this experiment tp = 5.9 usec,
T=6.0 uysec, 7' = 18.2 usec, and T = 576 usec, so Hg is different
from the sequences in Figure V.5. The selective term should be
identical for each of the three spectra, and this is confirmed in
parts (a) and (b). The four-quantum regions are virtually identical

for these two spectra (this particular choice of pulse sequence

parameters happens to pump two of the pairs more strongly than the
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Figure V.6. The effects of increasing the cycle time and reducing the
number of cycles. Average Hamiltonian theory predicts that this will
not change the selective terms but will increase the nonselective

terms. Pulse sequence parameters are given in the text.
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the third) except that the four-quantum transitions are slightly weaker
in part (b) as the reduced selectivity produces some two-quantum
traﬁsitions. In part (c) the selectivity has almost disappeared.
Figures V.4-6 show that suppression of two-quantum coherences.is
substantially easier than suppression of six-quantum coherences. This
result is expected if the phase shifts are imperfect. If the phase of
the ith subcycle is ¢i + Ei instead of the ideal wvalue ¢i’ a nonselected
coherence (AM # nk) is multiplied by (I exp(i(AM)(¢i+-ei)))/n instead
of 0. If ¢, << 1 this is approximately equal in magnitude to (AM)

i
Ei2>l/2/n1/2

for AM=2. Fortunately, most of the allowed coherences correspond

< , 50 the error term is three times worse for AM=6 than

to small values of AM and are relatively insensitive to phase errors.

5.2.2 Four—Quantum Selection with Simplified Sequences

As explained in chapters III and IV, a WAHUHA sequence (or any
other line narrowing sequence) can be used for ﬂ;. This makes a
zero-order 4k-quantum selective sequence with only 16 pulses, instead
of the several hundred pulses of each sequence in Figure V.4-6.

Figure V.7 shows that this selection works, and also shows that the
choice of T is critical. When T = 50 psec almost mothing is produced;
T = 100 usec is selective in all the representations; and larger values
produce a large central four-quantum peak, with the selectivity slowly
dying away.

5.2.3 Six-Quantum Selection; Coherent Initial Conditiomns

A 6k-quantum selective sequence can be generated by setting ¢ =
2m/6 in Figure I1I1.2(a). If this sequence is applied to benzene at

equilibrium (initial density matrix proportional to Iz), it connects
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Oriented Benzene
4k-quantum selection
Subcycle WAHUHA sequence

T=100 usec

— e

T = 200 usec

n=0 n=2 n=4

n=6

XBL 8010-1263%

Figure V.7 Four-quantum selection without time reversal. Here Mg
is a WAHUHA sequence, as in Figure III.4(b), with T the short interval
between pulses. As expected from section 4.6 the value of T is
critical. The pulse width is 5 psec, and therefore the duty cycle

is low.
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only the states with |M =3 and creates an effective two level system.

The six—quantum spectrum which is generated has only one transition,

as illustrated in Figure V.8(a). However, if the initial density

matrix is made proportional to Ix by adding one pulse before the selective
sequence begins, a 6k-quantum selective propagator will produce only
one-quantum and five-quantum coherences. These coherences can be

detected by the same 6k-quantum selective sequence if the final pulse

of the sequence is removed, and the spectrum is shown in Figure V.8(b).

The residual nonselective coherences are not completely suppressed
for 6k-quantum selection, because the phase shifter is a digital
device which only allows shifts in exact multiples of 2m/256. A zero-
order sequence was approximated by ¢ values of (0, 437/128, 85m/128,

m, 171w/128, 2131/128) instead of (0, w/3, 2n/3, m, 4m/3, 57/3). This
approximation leaves a small amount of non-6k-quantum selective operatcrs
in the zero-order term. However, the figure shows that even with this
approximate sequence fairly good selectivity car be achieved.

Figure V.9 shows the six-quantum signal as a function cf AT;. If
the time reversal is perfect, the signal is zero when AT; = (0, and
follows a sin2 pattern as long as the selectivity is good. The
experimental points show substantial deviations from a sin” pattern for
long values of AT;, which have low selectivity. Ia addition, the
nonzero value as AT' = 0 in the figure shows that time reversal with
this sequence (tp =1 ee4.,5 0 sec, T =672 u sec, s1x subcycles) is
imperfect, yet good selectivity can still be achieved. This has great

practical significance, especially in isotropic systems,

5.2.4 Symmetry Selection
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Figure V.8 Spectra with 6k-quantum selection on oriented benzene. If
the initial density matrix is at equilibrium, as in part (a), only

the six—quéntum coherence is produced. If the initial density matrix
is made proportional to IX by one pulse as in part (b), one-quantum
and five;quantum coherences are produced. In both of these cases one

cycle of 6k—quantum selection was applied.
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Figure V.9 The six-quantum signal magnitude as a function of ATE' Pulse

sequence parameters are tp = 4.5 usec, T = 4.5 psec, and T = 672 usec.

With perfect time reversal this should follow a sin” pattern, as in

Figure IV.7. Good selectivity is possible even without perfect time

reversal.
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The'single six-quantum coherence in benzere has Al symmetrv, as
does the single N~quantum transition in any N-spin system. Therefore,
a 6k;quantum selective sequence applied to an equilibrium demsity
matrix perturbs only Al states; all other representations are unaffected.
If a single pulse is applied immediately after the selective sequence,
A, transitions corresponding to all possible values of AM are produced,

1
but non-A, appear only if AM=1, since the density matrix in all other

1

representations is proportional to Iy or Iy. Such a sequence therefore
selectively prepares Al multiple-quantum transitions, and at the end
of the evolution period, a single pulse followed by a 6k-quantum
.selective sequen;e selective detects Al transitions. The resulting
spectrum is shown in Figure V.10. One pair of non-—A1 transitions is
visible in the three-quantum spectrum; this pair corresponds to two
nearly degenerate sets of transitions from the El and Ez manifolds,
and is fairly intense in the nonselective spectrum. Excepf for this
pair, all of the observed lines correspond to known Al transitions.

Therefore 4k-quantum selection, 6k-quantum selection, and Al
selection can be readily demonstrated in oriented benzene. Nonselective
terms can be made very small, and the signal gain from selectivity
is approximately equal to the theoretical predictioms. The behavior
as A1' or the number of cycles is varied is comnsistent with

predictions from average Hamiltonian theory for a zero-order selective

sequence.

5.3 Experimental Results: Oriented l-Bromobutane

5.3.1 Four-Quantum Selection

Benzene is a small and highly symmetric molecule, so nonselective
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Figure V.10 Al symmetry selection on oriented benzene. 6k-quantum
selection produces a density matrix which is at equilibrium in all

manifolds except for A,, so one additional pulse gives only single-

l’
quantum coherences in these manifolds, but multiple-quantum Al coherences.

To detect these coherences one additional pulse is applied immediately

before the mixing sequence.
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multiple-quantum spectra are perfectly adequate. However, the signal
available for any individual transition in the absence of molecular
symmétry is proportional to A-N, where N is the number of spins in
the molecule. Thus, an unsymmetrical seven-spin molecule requires

16 tiﬁes as many signal measurements as does an unsymmetrical six-
spin molecule to achieve the same signal-to-noise ratio.

This problem is illustrated in Figure V.1l with the nonselective
multiple-quantum and eight-quantum spectra of this nine-spin system are
expected to reflect internal mogion of the chain.81 However, these
spectra are essentially unobservable, since there are many more
transitions in the one—quantum and two—-quantum spectra. Extensive
averaging of nonselective spectra has confirmed that they are weak.

The energy level distribution for n-butyl brcmideso’81 is shown
in Figure V.12, There are 144 A x A states, which produce four pairs
of eight-quantum transitions and 19 pairs of seven-quantum transitions
(there are three more pairs of seven-quantum transitions in the other
representations). Nonselective excitation divides the total signal
among 1442 = 20736 matrix elements. 4k-quantum selection pumps the
16 matrix elements with AM = *8, the 1816 matrix elements with AM =
+4, and the 3352 matrix elements with AM = 0 for a gain of 4.0 in the
A1 manifold. Similar gains are found in the other manifolds. Figures
V.13-14 show the results of 4k-quantum selection on this system.

The actual enhancement is in fact somewhat better than 4.0, because
the zero-quantum matrix elements are not strongly driven. If they
are neglected, the expected gain is 10.5 (the populations cannot be

neglected). The actual gain is somewhere in this range.
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Figure V.11 Nonselective multiple-quantum spectra of l-bromobutane.
The signal intensity for the large values of AM is extremely small.

This spectrum corresponds to Aw=0 and T1=4.0 msec.
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1-BROMOBUTANE ENERGY LEVEL DIAGRAM
SYMETRY ADAPTED STATES

AxA AxB ExA ExB
M=9/2 1 0 0 0
M=7/2 4 3 2 0
M=5/72 13 9 4 3
M=3/2 23 19 2 9
M=1/2 31 25 19 16
M=-1/2 31 25 19 16
M =-3/2 23 19 i 9
M =-5/2 13 9 4 3
M=-7/2 4 3 2 0
M =-9/2 1 0 0 0

Figure V.12 Energy level diagram for l-bromobutane. The methyl group
has A states and E states; the remaining six spins have A states and

B states. There are 512 energy levels and many allowed single-quantum
transitions. Note, however, that there is only one nine-quantum

transition and there are only four pairs of eight-quantum transitions.,
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Figure V.13 Comparison of 4k-quantum selective spectra (part (b)) with

the nonselective spectrum of Figure V.11 (part (a)). The four-quantum

transitions are strongly enhanced.
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4-quantum region
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Figure V.14 Enlargement of the four-quantum region of Figure V.13(b).
The pulse sequence included two cycles of 4k-quantum selection with

At' = 15 usec, tp = 3.5 pysec, T = 4.2 ysec, T = 720 usec.
P



5.3.2 Eight-Quantum Selection

Ideal eight-quantum selective excitation would involve only 16
eight-quantum coherences, the populations of the ten states with
M| = 9/2 or |M| = 7/2 (no other states are connected by eight-
quantum operators) and 24 zero-quantum coherences for a total of
50 matrix elements. The available signal is the fraction of B Tr(Izz)
in the ten selected populations, which is 33% of the total. The net
result is a predicted maximum signal gain of 137, which reduces the
signal accumulation time by a factor of 18,700. This tremendous
gain would probably require high-order selective pulse sequences

and suppression of zero-quantum coherences. Nonetheless, even a

zero-order selective sequence should give a large enhancement.

200

Figures V.15-16 show the results of averaging only four 8k-quantum

selective spectra (¢ = 7/4 in Figure V.2), The TPPI increment is
m/16 for these spectra so that inaccurate phase shifts are expected
to produce a large central spike in the eight-quantum region. At
least three of the four expected pairs can be seen. The chain has
many allowed conformations, so very little information can be
extracted from these few lines, and the seven-quantum spectrum

will also be required. This spectrum can be obtained in two
fundamentally different ways. A seven-quantum selective propagator
can be designed by setting ¢ = 2m/7 in Figure V.2. Since Mo in
'Figure V.2 is even-quantum selective, some change has to be made in
the sequence; one possibility would be to put a 45° pulse immediately
before AT', and another 45° pulse with opposite phase immediately

after AT'. This sequence would pump all 22 pairs of seven-quantum
P
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8k—Quantum Selection
|—-Bromobutane

—
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XBL B08-11262

Figure V.15 The effects of 8k-quantum selection on l-bromobutane.

The signal scale is the same as in Figure V.11l. Four spectra with

different pulse seguence parameters were averaged together.
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Figure V.16 The eight-quantum region of the selective l-bromobutane
spectrum of Figure V.15. At least three of the four expected pairs

are visible above the noise level.
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lines. An alternative approach would be to use an eight-quantum
selective pulse sequence starting with a density matrix proportional
to Ix instead of Iz‘ Since only the Al Trepresentation can have eight-
quantum operatcrs, only the 19 pairs of Al seven~quantum transitiomns,
the single nine-quantum transition, and one-quantum transitions will

be produced. The first approach will probably give the larger signal

gain.

5.4 Experimental Results: Cyclopentane
Cyclopentane undergoes very rapid pseudorotation at room
temperature,82 so only an averaged structure with C5v symmetry should
be observable in an NER experiment. However, the ratios of the
coupling comnstants should reflect the amplitude of the out-of-plane
displacements; The four—-quantum spectrum can be obtained by selective
sequences, as shown in Figure V.17. Since there are many four-quantum

transitions in this ten-spin system the spectrum is not resolvable,

and higher—quantum selection will be required.

5.5 Conclusions
Selective excitation sequences have been presented for four-,
six-, and eight-quantum transitions. These sequeﬁces produce large
signal enhancements and make multiple-quantum NMR a practical technique
for a wide range of hitherto inaccessible molecules. The effects of
changing pulse sequence parameters agree with predictions based on
average Hamiltonian theory, which suggests that more sophisticated

pulse sequences selective to higher order will be able to provide

further signal enhancement.
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Oriented Cyclopentane
4k-quantum selection
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n=0 n=2 n=4 n=6

Figure V.17 Four-quantum selection on cyclopentane. The four-quantum
spectrum has many allowed transitions, and therefore is not resoclvable.
1

Pulse sequence parameters are ATp = 25 usec, tp = 5.0 usec, T =

4.7 usec, T = 941 usec, and eight subcycles.
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VI. Other Topics in Multiple-Quantum NMR

6.1 Two-Dimensional Techniques
-Multiple—quantum NMR is just one example of a broader class of

experiments, known as two dimensional spectroscopy?2’83 A generalized
two-dimensional sequence has the same preparation, evolution and mixing
periods as in Chapter II and Figure II1.9. However, the restriction
of taking data at only one value of-t2 is dropped. Frequently, in
fact, enough points are taken in t2 to permit a second Fourier
transformation. This technique has numerous applications. One
example of a two-dimensional spectrum is given in Figure VI.l.84

In this section, two-dimensional spectroscopy will only be
considered as a signal enhancement technique. Suppse that <Ix? and
<Iy> are sampled at two distinct values of t2 to produce two multiple-
quantum spectra. Line positions are governed only by the evolution in
tl so these spectra can be averaged together. Clearly the signal-to-
noise ratio is no worse than if one value of t2 were saved, and it may
be better. This can of course be generalized to taking n points.
The important questions are:

1. How ﬁany points should be taken?

2. Should all points be weighted equally?

3. What is the attainable signal-to-noise improvement?

The signal as a function of t, can be written as

<Iy(t2)> = -CBTr (I, exp(-i¥ t,)V exp(—ﬁVztl)UIzU' exp(ﬂVztl)V' exp(iH,t,))

+ + iyt
= -CB Z.(UIZU )ij(v exp(er{th)Iy exp(—ﬁﬁitz)v)ji e

1,3
(VI.2)
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XBL 799-11391

Figure VI.1 A sample two-dimensional spectrum. This is a two-dimensional

J spectrum of Cyclo-[3-(4-f-aminoethyl)phenyloxypropanoyl-L-prolyl],
not a multiple-quantum spectrum, but the signal/noise arguments are

exactly the same. (Figure courtesy of Drs, Willy Shih and Mel Klein).
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A similar expression can be written for Ix' The differences between
equations (VI.2) and (II.62) arise solely from the inclusion of the
case t, ¢ 0 here; if t2 = 0 they are identical except for the fictitious
pulse in section 2.2.3.3 which allows I, to be sampled. The integrated
intensity of the multiple-quantum transitions is maximized when
|(UI2U+)|,ij = ’(V+EXP(iHét2)Ix exp(—ﬂKztz)V[ji. For example, this

condition is satisfied if

£
{

U=V exp(ﬂKztz) exp(iﬂIy/Z) (VI1.3)
but if equation (VI.3) holds for one particular value of t2 it is
violated for other values. To go any further requires some

assumptions about the nature of U and V.

6.1.1 Nonselective Experiments

In the simplest nonselective experiments (Figure II1.1b) V = exp(iﬂIy/Z)
and U = exp(-iﬂ%T). The signal is maximized if t, = T. Time reversal
does not affect the solution, so only t, > 0 will be considered. One

can write:

O (—t,)

+
Mg (7t -V exp(ﬁKZtZ)Iz exp(—sztz)V = exp(rﬂgtz)lz exp(—ﬂHth)

S . .
UIZU = exp(—LFXT)IZ exp(iKXT) (V1.4)

]

OMQ(T)

as in equation (II1.34). If "ﬂ%(T—tz)” << 1 or "W%(T+t2)” << 1 then the

magnitudes of all matrix elements of OMQ(-tz) are very near their

optimum values, and the signal is nearly as large as at T = %t

9
However, if "M‘(T—tz)" > 1 and "ﬂ;(1+t2)” > 1 then the magnitudes of
> x -~

the matrix elements of BMQGtz) have changed substantially. The
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expressions for the signal are:

2 ,
' IDMQ(T)lij =-C8B TT(DMQ(T)Z) (VI.5)

s(t ~ itz) =-C B
1j

2
<S(Tt tt,)> = -C r < >
(1 # #t)) Bz lpMQ(T)lij (VI.6)
1]
(VI.6) is smaller than (VI.5), but generally it is not much
smaller. The simplest assumption would be that the magnitude of

each matrix element of pMQ(T) has a one-dimensional Gaussian probability

distribution, which gives
<S(T ¢ it2)> = (2/7m) s(t ~ ttz) C(V1.7)

The signal is down by less than a factor of 1.6. 1In a large anisotropic
- system this random assumption 1is probably reasonable, éince SO many
different operators are involved in the propagator. In fact computer
calculations suggest that the situation may be even more favorable.
At any rate it is clearly advantageous to take many values of t, other
than just t, v T.

Relaxation has been neglected in these calculétions, but the effects

are easily included if each coherence is assumed to dephase with the

same value of Tz; In this case

-1/T —T/T1
DMQ(T) = e exp(—iﬁ;T)Iz exp(iﬂ;T) + BIX(1~e ) (VI.8)

-t /T2 —t2/Tl
pMQ(—tZ) = e exp(iﬂ¥t2)lz exp(—iﬂ%tz) + BIX(l-e ) (VI.9)
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If t, > T, the signal drops off substantially and further data points are

2 2

sery useful. The optimal spacing of retained points in t, depends

A

not
on the noise bandwidth Awn, since two data points separated by less than
l/Awn will have strongly correlated noise levels, and this correlation
means that the signal-to-noise ratio is not improved by averaging them
together. It is therefore reasonable to take about (TzAwn) data points,
and the expected signal-to-noise gain is roughly

Nl 4 LG T Awn)l/z (VI.10)

€2-p 2

assuming equation (VI.7). The optimum value for Amn is the single-
quantum spectral width, so the gain is about the square root of the
ratio of the width of the spectrum to the width of a single transition.

6.1.2 The Second Fourier Transformation; Uptimal Filtering

The discussion so far has centered around the signal gain
obtainable by averaging together multiple-quantum spectra corresponding

to several different values of t2. In a true two~dimensional experiment,

such as the one illustrated in Figure VI.1l, a second Fourier transform is

applied with respect to t2. The phases of the peaks in the two-dimensional

spectrum vary enormously, and therefore are presented in magnitude mode or

corrected by adding together several spectra with phase shifted

pulses. 2,83

Suppose that data accumulation in ty begins at t2 = 7. Thenthe

normal (i.e., only t2=T) multiple-quantum spectrum correspond to an

integral over Wy in the uncorrected two-dimensional spectrum. Since

the peaks are not in phase most of the intensity cancels out. If

all values of Wo correspond to equal amounts of signal, and all the
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phases are random, then magnitude correction followed by integration
over w, would be expected to increase the signal/noise ratio by the
square root of the number of points in Wy s which agrees with the
estimate in (VI.10).

In fact, not all values of w, are equally good. For example,
if the single-quantum spectrum contains resolved lines, then values of
w, which do not correspond to those lines have no signal. This can
be seen in Figure VI.1l. The optimum signal/noise ratio can be shown
to be produced when each value of w, is assigned a weighting factor
equal to the total signal intensity of that value. This is equivalent
to applying an optimal filter in t2, instead of merely setting the
filtering bandwidth equal to the single-quantum spectral width. Most
large molecules will not have much structure in the single-quantum
spectrum, and therefore this process does not improve the signal/noise
ratio substantially.

It should be noted that there are cases for which two-dimensional
spectroscopy is not very useful in improving signal/noise ratios. For
example, it will not be very useful when the dominant noise factor is
spectrometer instabilities over the long interval which separates
points in tl. In addition, there are some systems which do not have
signal for t, # *+T that is as large as shown in equation (VI.7). For
example, the expression for the N-quantum coherence magnitude of an

isotropic first-order system with N spins-1/2 (equation (II.55)) gives

2y

2
) <I¢>1\4Q(T)I>N/2’_N/2 (VI.11)

2
<lpMQ(T)l >nj2,-n72 = ¢

so that if N is large, t2 = #T can be much better than t2 # 71, and
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the expected gain is reduced. The N-quantum coherence in a system with
AN symnetry {(equation (II.57)) presents a slightly more favorable case:

b4
for a 10-spin system the ratio is 3.44.

6.1.3 Selective Experiments

Suppose U and V in Figure (I1.9) are selective propagators, so that
the gain compared to nonselective excitation is G when t2 = 0. If the
filters are set so that the noise bandwidth Awn v lﬂél then values of t,
with lﬂ;tzl < 1 have strongly correlated noise and do not enhance the
signal/noise ratio. However, if ﬂﬂ;tzl 2 1 the selective propagator V
is multiplied by a large nonselective propagator exp(iﬂétz) (see equation
(VI.2)). This dramatically reduces the selective matrix elements. If
Iﬂétzl >> 1, the operator V+exp(£Kzt2)Iy exp(—iKth)V is nonselective,

and the signal is about VG smaller than at t, = 0. These smaller blocks

of signal producze a gain of

gyp v (1 + (TZALun/G))l/2 (VI.12)

and if G 1is large g5p is negligible. For example, 9-quantum selection

in a ten-spin system gives G v 512, and if T2 = 1 sec and Awn = 5 Kz,

the gain is only about 3 if 5000 data points have been saved in t, instead
of one point.

Selective excitation makes two-dimensional signal enhancement
techniques unnecessary, since almost all of the signal is present at
5 = 0, and this implies that the phase of any individual transition in
the two-dimensional spectrum is independent of W,

t

However, data

manipulations in w, may be useful to provide improved noise filtering.
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As mentioned in chapter III, the signal should generally be sampled as
close as possible to the last pulse in V, but if the receiver section
is filtered no signal will be seen when t2 << Awn. The filters are
therefore opened wider than would be necessary in the nonselective
experiment, to sample earlier. The additional noise this lets in could
.be removed by taking many points in tz, Fourier transforming, zeroing
the regions of W,y that do not correépond to single-quantum transitions
(and perhaps weighting the regions that do) and integrating over t,.
The signal at t, = 0 is retained, but the noise is reduced. Just as
in the nonselective case, this is only useful if spectrometer
instabilities are not the dominant noise source.

6.1.4 Conclusions

Two-dimengional techniques will often improve the signal-to-noise
ratios of nonselective spectra, at the expense of enormously increased
data manipulations. BHowewer, selective excitation techniques make it
possible to chpose only a single point in t2 without significant signal
loss. Thus, two-dimensional techniques are expected to have limited
applications in large spin systems, whereas the enormous gains of

selective excitation are extremely important for this case.

6.2 Multiple-Quantum NMR in Exchanging Systems

6.2.1 Density Matrix Equations of Motion

In all of the preceding chapters the intermal Hamiltonian has been

written in an implicitly time independent form. In fact, the terms

Mb, ﬂb Mb and Hﬁs all depend on molecular structure or electronic
configuratjon, and even at absolute zero some motions occur.

The effects of these motions on the NMR spectrum depends on their
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timescale relative to terms in the Hamiltonian. For example,
vibrational motions distort the structure of any molecule away from

its equilibrium value and may instantaneously destroy symmetry elements.

14
The period of these motions (Vv 107 Hz) is so short compared to the

frequency spread in H; that only the time averaged structure matters.85

2

Thus the couplings D in ﬂb are proportional to <rij -’) as shown in

ij
equation (I.12), and this implies that symmetry elements of a
vibrationally averaged structure do not exactly dictate ratios of
coupling constants (i.e., the hexagonal symmetry of benzene does not
imply that D12/D14 is exactly 8, but it is nearly 30.44) At the other
extreme, motions which only change the molecular structure over
intervals which are much longer than T2 will not substantially affect
lipewidths or line positioms.

The interesting case occurs when the period of motions that
substantially distort the molecular structure is comparable to terms
in ﬂ;. The density matrix equation of motion for this case was derived
several years ago.86’87 The simplest case is a discrete process (for
example, exchange between two equivalent sites) which obeys Markovian

statistics. The motion is assumed to change the density matrix from

p to Rpr, and if the frequency of this métion is l/Tm then

‘ t p+BI
. - RpR -p _ z
p(t)jLJL i[p(t),JC]ii +( T )ii ( Tl )ii (v1.13)
Sy - : RoR'=p \ P13
o(t)ij = 1{p(t) ,:h]ij + ( T )ij - T, (V1I.14)

These equations of motion are readily solved for continuous wave

. 88 .
irradiation by setting ¢ = O as in section 2.2.1. This solution
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also gives the spectrum after a one-pulse sequence.

More complicated pulse sequences, such as the nonselective
multiple-quantum sequence of Figure II.1(b), are more troublesome.
If [R,H]‘# 0 then p(t) and p(0) are not related by a unitary transforma-
tion, and in this framework the time evolution must be recalculated every
time t. is changed. An alternative approach is to use a superoperator

1
60,89

formalism, in which p is written as a colummn vector. The evolution

under the Hamiltonian is governed by the Liouville operator L:

Ligoee = Fae 85070ks %y (VI.15)
and the exchange term is represented by the operator R:
Ry g™ o (R Ry =66, ) (VI.16)
LK T kR ikoeg
The equation of motion is
p(t) = -1 L p(t) + R p(t)
p(t) = exp((-il+R)t)p(0) (VI.17)

The evolution can be solved exactly, but if p is a n x n matrix it must
be written as a 1 x n2 column vector, and the matrices L and R are n

by n2. Therefore, calculations of the effects of exchange are likely
to be difficult in large spin systems, However, it is clear that the
multiple-quantum sﬁectra have fewer lines ghan does the single-quantum
spectrum., Therefore large exchanging systems, which cannot be easily
analyzed by conventional MMR because the single-quantum spectrum is

unresolvable, should give resolvable multiple-guantum spectra.



6.2.2 Signal Size and Enhancement Techniques for General Exchanging

sttems

The nonselective pulse sequences of Figure II.2 can all be used
in exchanging systems. If IM;TmI >> 1 (slow exchange) then it is
possible to choose Trt, << L yet still pump multiple-quantum transi-
tions and in this limit the signal size is essentially the same as in
the static case (equation (I.61)). A similar result holds if
lﬂ;Tml << 1 (fast exchange). If Iﬂ;Tmi v 1, however, Toty v T will
be required to pump multiple-quantum operators, and the signal will
be degraded; the exchange makes coherent pumping difficult.

6.2.2.1 Two;dimensional Techniques

The exchange process generally broadens most or all of the
single-quantum transitions. This reduces the gain from two-dimensional
techniques, derived in section 6.1; the formula for the gain (equation
(VI.10)) must have T2 replaced by the reciprocal of the average line-
width. 1If IﬂéTml v 1 the gain falls to essentially unity, if all the
single—quantum transitions are affected.

6.2.2.2 Selective Techniques
The average Hamiltonian expansions of chapter III are only valid if
the rate of exchange is much slower than the cycle time; otherwise the

nonselective matrix elements of ﬂ;, H& and so forth will not cancel.

This implies that if ﬂﬂ;Tml " 1 selective sequences will not be possible.

6.2.3 One Example--Cyclooctatetraene (COT)

6.2.3.1 Theoretical Multiple-Quantum Spectra

The bond shift process in cyclooctatetraene (C8H8) was described

in qualitative terms in section 1.4, and theoretical spectra for the
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rapid exchange and slow exchange limits were drived by symmetry
arguments (Figure I.7). The intermediate exchange regime will be
diséussed here. Recall from section 1.4 that the bond shift can be

| viewed as a pseudo-rotation; spin 1 becomes spin 2, spin 2 becomes spin
3, and so forth. The matrix elements of R can be written in the spin

product (SP) basis set:

M=4: RIa,) = (Ia.) R=1
g 1 g 1

M=3: RB., T a)= 8 T a
j 14 i j+1 1#3 i+l

1 0 00 0 0 0 O (v1.18)

and so forth. R is secular and orthogonal (real valued and unitary).

-1
Rs =1, so R= B?. The M=4 state is clearly not affected by bond
shifts. 1In fact, despite the form of (VI.18), not all of the M=3

states are affected by the bond shift process. This can be seen by

generating symmetry adapted states. The symmetry operations of this

molecule are shown in Table VI.1l. In the slow exchange limit the

point group is D2d’ which gives the symmetry adapted states and
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Table VI.1 Symmetry Operations of Cyclooctatetraene
C,: 15,26, 3+—7,4+>38

: 1—3,2—4,3—>5,4—6,5—7,6—>8,7—1, 8— 2

1—-7,2—-8,3—1, 44— 2,5—3,6—4,7—+5, 8— 6

R: 1—-2,2—>3,3—4, 4 —5,5—6,6—>7,7—8,8—1



numbers of transitions shownm in Table VI.2.
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The symmetry adapted states

for M = 4 and M = *3 are given in Table VI.3, 1In this basis R for

M = *3 is given by:

0 0 0-1 0 0 O

0 01 00 0O

0

0

0 0 0 0 % -k -3 -

0 0 0 0 )% % X -%

0 0 0 0 % 4 -

5

0 0 0 0-% % -k -k

(Iv.19)

The A, and A2 states are invariant, but all other states are

1

affected. In fact it can readily be seen that the M = %4, *3 Al

states and M = *3, 2 A2 states are the only ones which are invariant

to the bond shift process,24 s0 any transition may be affected unless

both the initial and final states are among these ten.

The number of

invariant transitions for each value of AM is given in Table VI.2.

The seven—quantum and eight-quantum spectra have no dynamical

information.

However, the six~quantum spectra has six fewer transitions

in the rapid exchange limit than in the slow exchange limit (R becomes

a symmetry operation with rapid exchange), as noted in section 1.4.

2 .
At any exchange rate [Rz,ﬂ] = [Rz,p] = 0, because R~ is equivalent

to SA'

There is therefore no problem with the assumption of a

pseudo-rotation which increases the index of each spin by one; of

course a pseudorotation which decreases each index by one is equally



Table VI.2 Symmetry States for Cyclooctatetraene

Number of Symmetry
Adapted States

Al A, B1 B2 E Total
1 0 0 O 0 1
1 1 1 1 2x2 8
6 2 4 4 6x2 28
7 7 7 7 14x2 56

13 7 9 9 16x2 70

256

Allowed Nondegenerate Transitions

Unaffected by bond shifts

1430 6
995 0
546 0
225 2

70 4
15 0
2 2
1 1

219
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Table VI.3 Wavefunctions (DZd point group)

1] Symmetry Group Ry Symmetry Group
M= +4
(eTeleTadeTelets] A1 QO.O0000 Al
M =43
"1" = Booooooo, etc.
14+24-3+4+5+6+7+8 Al 24 3+4+5+6+7+8+1 Al
1-243~4+5-6+7-8 A2 2-3+4~5+6-7+8-1 A2
142-3-4+5+6-7-8 B1 243-4~5+6+7-8-1 B2
1-2-34+4+5~-6-7+8 B2 2-3-4+5+6-7-8+1 Bl
1424 3+4-5-6-7-8 e, (M
1+2-3-4-5-6+7+8 Eb(l)
(2) Linear combinations of E states
1-2+43-4-5+6-7+8 Ea
(2)

1-2-3+4-5+6+7-8 Eb
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valid, but since RDR? = R?oR the same density matrix is produced. This
means that the pseudorotation is basically a two-site problem. The
behévio? under exchange of the six-quantum transitions is:
1. The A1 and Az transitions from M = +3 to M = -3 are not
affected by the exchange. Both of these transitions appear at w = 0.
2. The B1 and B2 transitions from M = +3 to M = -3 are mixed by
the exchange. Both of these transitions also appear at w = 0, so
L = 0 in equation (VI.1l7), and the exchange merely broadens the line.
3. The E transitjons from M = +3 to M = -3 can be described by
16 x 16 matrices L and R, and the Al transitions from M = *4 to M = -2
.can be described by 36 x 36 matrices. The transitions from M = *2
to M = -4 just make the spectrum symmetric, so their evolution does
not need to bg independently calculated. All of these transitioms

can broaden at different rates. In the slow exchange limit, Alexander8

has shown that the linewidths are given by:
o- -
l/T2 - 1/T2 = (1 RmmRnn)/Tm (V1.20)

where m and n are the initial and final states.

The intensities of the peaks cannot be calculated unless the
preparation and mixing periods are also analyzed. 1In this case R
and L are 64 k x 64 k matrices,

6.2.3.2 Experimental Spectra

As explained in section 6.2.2, most of the signal enhancement

techniques available are of limited use in exchanging systems, sO

nonselective multiple-quantum spectra were observed. The signal

level depended critically on T, Figures VI.2-4 show the multiple-



Oriented Cyclooctatetraene, - 15°C
n—-Quantum Echc Spectrg

7 8

XBL 8010-12684

Figure VI.2 ©Nonselective multiple-quantum magnitude spectra of 12 wtZ

cyclooctatetraene in Phase V ligquid crystal at -15.0°C.

o
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o
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Oriented Cyclooctatetrgene, —15°C
Six-quantum magnifude spectrum

T
1

I KHz

XBL 8010-12695

Figure VI.3 Six-quantum region of the spectrum of Figure VI.Z2. All

transitions except for the central one are broadened by exchange.
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----- or

Oriented Cycloociaieiraene, —15°C

Six—quantum phase corrected spectrum

]

I KHz

Theoretical Line Positions

L]

XBL 8010-12689

Figure VI.4 Same as Figure VI.3, except that the spectrum is phase
corrected instead of magnitude. The theoretical transitions from the
couplings in reference (24) are also shown. The implied exchange rate

from the line widths is about 33 Hz.
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quantum spectra at -15°C of a sample with 12 wt% COT in Phase V; data
accumulation time was roughly 15 hours. At higher temperatures no
six;quantum signal was observable. In addition, the linewidths increased
as the temperature was lowered past this point. This effect hag been
attributed to increasing viscosity.za

Since the slow exchange limit was not observed assignment of the
dipolar couplings was not possible from the spectra alone. Ho;ever, if
the dipolar coupling constants from reference (24) are assumed the
exchange rate can be calculated from linewidths in the six-quantum
spectra. Of the seven allowed pairs of transitions, only one is
isolated enough and intense enough to measure a linewidth. That
transition has a full width at half maximum of 75 * 12 Hz, and (l—RmmRnn)
for that tranéition is 0.84. The central six-quantum peak is 20+12Hz wide,
8o the estimated exchange rate is r;l = 33 *# 10 Hz, which is somewhat

-1

smaller than the rate T = 55 * 22 Hz found in reference (24).

6.2.4 Multiple Pulse Techniques to Measure Exchange

It is clear from the last several subsections that multiple-quantum
NMR spectra in exchanging systems will generally be weak and fairly
difficult to analyze. The fundamental problem is that the equation of
motion in (VI.13-14) has two noncommuting terms. It is easily solved
1f either of these two terms vanishes, but not otherwise.

In particular, if ¥ = 0 then

+
Sty = RO(t)f -p(0)
m

- =21/t

p(t) = p(0) + Z(RU(OF-p(0) Qe ™ (VI.21)

and if Rp(O)RT is substantially different from p(0) a pure exponential
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decay results.
One sequence which uses this simple evolution to determine the
exchange rate is shown in Figure VI.5. The density matrix at the end

of the first interval t2 is
p(t,)= -8B exv(-ﬂfztz)ly exP(i«'Kth) (V1.22)

if HH;Tmﬂ 2 1 then it is possible to choose t, such that p(t,) has

2
substantial components which do not commute with R. The pulse
sequence during t:1 removes ﬂ;; several choic¢es are possible, including
the two-quantum pulse sequence of Figure 1II1.9c, repeated with a 90°
pulse shift.

Assuming that t2 << Tm, the signal for t1 = 0 is:
- y - 03{‘ .
A = Tr(exp(-2i 2t2)Iy exp(21ﬂét2)1y) (v1.23)
and the signal for T2 >t >> T is (A+B)/2 where B is

. . + . .
B = Tr(R.exp(—JJH'ztz)Iv exp(LKétz)R exp(lﬂétz)ly exp(—LHétz))
(VI.24)
Matrix elements p(tz)mn which are not affected by the exchange
(i.e., (Rp(tz)R )mn = p(tz)mn) do not contribute to the signal difference.
. T .
But if o(tz)mn oscillates at frequency wy and (Rp(tz)R )mn oscillates at

frequency Wy (assuming two-site exchange) then the signal difference

becomes large when <|(w2-wl)t2[> > 1.

In general, this sequence will not work for T 2 "W;“, because

in this case “[R,o(tz)]” << "p(tz)". On the other hand, if T_ " “ﬂj"

the sequence to suppress M; will not be good enough to give an accurate

measurement. Nonetheless for a typical dipolar system this gives T, @
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XBL 8010-12679

Figure VI.5 Multiple-pulse sequence for measuring exchange rates. If

the line narrowing sequence is good the signal is proportional to

exp(—ZtI/Tm).
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measurable range of several orders of magnitude. The technique is

quite general and should be applicable to a wide range of exchanging

systems.

6.3 An Information Theory Treatment of Multiple-Quantum Coherence

6.3.1 Introduction

The high multiple-quantum spectra of large spin systems are of
great interest because the single-quantum spectrum is often intractable,
as explained in Chapter I. Unfortunately the increased simplicity of
the higﬁ multiple~-quantum spectra is accompanied by a large decrease in
intensity if nonselective excitation is used. For example, Figure (II.7)
shows the integrated intensity of each order of transitions in a
typical experiment on oriented benzene, compared to an extremely simple
model in which all transitions are assumed to have the same intensity
making the total intensity of each order proportional to the number of
transitions in that order. The experimental results agree fairly well
with this simple theory; in fact, despite the high degree of molecular

symmetry, group theoretical restrictions- - do not dramatically change

the intensity pattern.

Given a specific pulse sequence and a specific Hamiltonian (including,
for example, all dipolar coupling constants and chemical shifts), the
exact non-linear evolution of the spin density matrix can be determined
by the equation of motion and thus the eﬁact spectrum can be calculated.
For large spin systems, however, this approach rapidly becomes
prohibitively time-consuming. In addition, it requires detailed

advance knowledge about the Hamiltonian, which in fact might be the

information that the experiment is designed to provide.
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In this section a more general approach to describing multiple-quantum
coherences will be used. Given only limited information about pulse
sequences and the Bamiltonian, one would like to make predictions
about the integrated intensity pattern as a function of the number of
quanta. In other words, if this approach is applied to oriented benzene,
it should réproduce Figure 1I.7, but is not expected to reproduce exact
spectra such as Figure II.4. The predictions obtained are nonetheless
important, for several reasons. For large spin systems, they should point
to a description of multiple-quantum coherence that is essentially
statistical, and allow the testing of different models for a "pumping
operator" to represent the evolution of coherences. In addition, they
should predict how difficult it will be to pump high order multiple-
quantum coherences in complicated systems. The intensity pattern is
predicted here by information theory, which determines the most probable
density matrix consistent with assumed mechanisms for pumping multiple-
quantum coherences. Section 6.3.2 develops the concept of the statistical
coherence limit, corresponding to the most random but coherent density
matrix. Calculations using different pumping mechanisms are compared to
exact dynamical calculations for small systems in section 6.3.3. These
calculations show that an information theory treatment agrees fairly
well with experiment, and give some insight into the evolution of

multiple-quantum coherences for general anisotropic systems.

6.3.2 Statistical Calculations

6.3.2.1 Information Theory

A complete specification of the density operator for a system with

N states requires measuring the expectation values of N'-1 linearly
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independent operators.90 If fewer measurements are performed, there may
be more than one density operator which correctly reproduces the measured
resuits. To select a particular density operator one adopts from
information theory91 and quantum statistical mechanics 92 the entropy,

given in dimensionless units by
Slp]l = -Tr(p 2n p) (VI.25)

as a measure of missing information. The required density operator is
seletted from amongst those consistent with the known constraints as the
one of maximal entropy.90—99 The resulting density operator is
consistent with the data and is otherwise as random as possible.

It is the least committal (Jr most conservative) induction that is

warrarted by the data at hand.

Given the expectation values of m operators Ar’
<Ar> = tr(p Ar) r=1, 2, ..., m (V1.26)

the normalized (Tr p = 1) density operator which is consistent with the m

mean values in (VI.26) and has maximal entropy is given by94’98
m
p = exp(—ko + I Ar Ar) (VI.27)
r=1

The (mtl) parameters, XO and the Ar's, in p are determined by the M+l
operator expectation values that are consistent with the data. The
solution for the XA values is unique, provided that the operators are
linearly independént.

6.3.2.2 The Statistical Coherence Limit

As a first application consider the specification of a density
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matrix when all that is known is that it is not incoherent, which means

that, in the basis of interest the off-diagonal matfix elements of p,

(pji’ i # j), are not necessarily zero. The constraints are therefore

normalization and finite coherence,

N
I p,, =1

el i1

i 341

For algebraic reasons it is convenient to add the first and second

. constraints and rewrite as

Tr(gg) = (c+_1)/N , (v1.29)

I"%X H,,p
13 13734

Bere H is the N x N matrix whose every element is 1/N so that

g = § (VI.30)

-~

The density matrix p of maximal entropy subject to the two commuting
constraints of mean H and mean I is given by
p = exp[—AOI—AH]
Recalling that an exponential of a matrix is defined by a power series
expansion and ﬁsing (VI1.30) repeatedly,

p= exp(-xo) {I + [exp(-1) - 1]§} . (V1.32)

Therefore, if all that is known is that £ is coherent, then the
most reasonable inference is that all the off-diagonal elements of

p are of equal magnitude. The diagonal elements are also all equal
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and exceed the magnitude of the off-diagonal ones. If the coherence is
not imposed as a constraint (A=0) then (VI.31) properly reduces to

the familiar microcanonical statistical limit p =1I/N, a density
matrix of random phases and equal probabilities.

One can readily relate the values of AO and A to those of the

constraints
exp(-},) = 1/[N+exp(-)) - 1]
exp(-A) = (N-1) (C+1)/[N-C-1] , (V1.33)

which shows that the problem is well posed only if Tr(Hp) = (C+1)/N < 1.
This is as it should be since H is a projection matrix (cf. (VI.30))
whose expectation value must be between zero and unity.

The denéity matrix p is typically that of a mixed state,
2 2
Tr(p”) = (1+(C“/N-1)) /N (VI.34)

It tends to a pure state, p = H, only in the strong coherence limit

~

N-1; then p is an eigenmatrix of the projection H, so that

-~

when C
Tr(@g) = 1. 1In the opposite extreme C = 0 and p = %/N, the most chaotic
(i.e., maximal entropy) mixed state that is possible. The magnitude
of A increases monotonically as C increases, starting at zero when C = 0
and tending té infinity as C > N-1.

The object of this theory is to reproduce some of the general
features of the nonselective multiple-quantum spectrum. As explained

in sections 2.2.2.2 and 6.1, the ensemble averaged intensity of the

2 2 .
transition from 1i> to |j> is -CB <IDMQ(T)l>ij (or -CB <|QMQ(T)lij> if

t = *T is assumed)) It was shown in section 6.1 that the difference

2
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between these two expressions is generally small. This averaging over

T is the key to a statistical approach. Say the different values of T
are‘indexed by r, r = 1,2, ..., m, so that altogether m measuremmnts
were taken. Let Ar be the operator whose value was measured at the r'th
time. The spectrum would be reproduced by a density matrix which is
_consistent with the m measured values. Invoking the maximum entropy
formalism, the result is given by (VI.31).

Two points are important to note. The first is that the density
operator (VI.31) will not necessarily reproduce any of the individually
measured spectra, nor is it meant to. All that it is geared to do is
to account for the average spectra, obtained after many samplings,
corresponding to different values of 1. The second and technical
point is that (VI.31) does not have the form expected from stochastic
theories of lineshape.94 The reason is the differences in ;he physics
of the problem. There, one is dealing with a Hamiltonian which contains
random elemen;s (e.g., an impurity can find itself in a variety of host
environments.}o0 To determine the evolution of the system, it is thus
necessary to average p over the distribution of the random elements.
Here however we are dealing with a single system, with an exceedingly
complex Hamiltonian which we prefer not to have to look at. To make
the problem manageable for a simple theory we thus have to collect
considerable data on the system, which is achieved by repeated sampling.
The net result, (VI.31),looks like it is the logarithm of p rather than
p itself that has been 'averaged'. The conclusion is inevitable, and
is essentially the key theme of the maximum entropy approach. The

way to incorporate data in the least biased manner is by minimizing the
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average deviance of fn p from the weighted constraints

<=n p + i ArAr> = min . (VI1.35)

The magnitudes of the Lagrange parameters serve as the weights.

6.3.3 Forms for the Pumping Operator

Clearly the choice of the constraint operators is extremely important.
The information theory framework implies that these should be operators
whose expectation values are given. Obviously, if the expectation
values for all the (Nz-l) coherences and populations are known, the
density matrix is known, but the theory then has no predictive value.
The constraints should thus be kept to a minimum.

All of the following properties are known about pMQ(T):

1. Tr(pﬁQ(T)) = 1. This constraint is easily satisfied since AOI
in equation (VI.31) can be factored out of the expomential, and then it
becomes a normalization constant.

2. pMQ(T) is related to l—BIz by a unitary transformation. This
important constraint cannot be readily expressed in the information theory

framework.

3. In the limit of small T, pMQ(T) can be written as:
2
= - .36
oMQ(T) B(x, + 4[1,,3 1T + o™ (V1.36)

Thus small values of T produce two-quantum coherences (and one-quantum
coherences if chemical shifts are present), as explained in section

2.2.2.2. The expectation value <i[Iz,M%]> is known for small values

of T3
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Tr (o (DALLHD = =8G T(EITLE DD + o)
i[r,,x1 =- 1§j Dij BIinyj+3IinXj) -~ Aw Iy + I oini
-Ip, G 24 (1;‘1;_’-1;15) - 3 5(0,) (17-1))
el % 15 = & @" Y 1§j Dij + 22 (o b (VI.37)

It can be confirmed by substitution that the term proportional to Tz
vanishes. Higher-order terms must tend to cancel the T term since the
expectation value cannot grow indefinitely.

The operator i[Iz,K%] reflects any molecular symmetry, and if Aw =

0i = 0 for all i it is even-quantum. A most probable density matrix

of the form

pIA] = exp(AA[T,,3 1) /Tr(exp(4A[T_,% 1))

exp (AP) /Tr (exp (AP)) (V1.38)

will also have these properties, so this operator may be a good choice

for a pumping operator. The important test, of course, is how well

equation (VI.38) agrees with experiments.

Figure VI.6 shows how <XP> behaves as a function of A. The
expectation value is initially proportional to A, but for large A

it approaches a maximum value, It can be shown that this maximum is

simply the largest eigenvalue of P by transforming to a basis set
which diagonalizes p[A]. As A increasesthe fraction of high

multiple-quantumn coherence increases monotonically, as shown in
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Figure VI.6 The expectation value of <P> = Tr(pP) as a function of A.

For large A it approaches a maximum value equal to the largest eigen-

value of P.
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be §a¢1ed the strong pumping 1imit. Physically the strong pumping limit

corresponds to values of T such that ﬂﬂ;Tﬂ >> 1 but T << T,.
The multiple-quantum intensity distribution is compared to the

exact dynamical solution (i.e., the average over many values of 1) for

several different systems in Figures VI. 8-11. If only dipolar terms

are present, both the exact solution and the information theory solution

are purely even-quantum. The eigenstates decompose into two disconnected

groups -(for example, for a four-spin system states with M = 0, *2 are

not connected to states with M = #1) and the matrix elements of these

two groups should be separately normalized in the information theory

treatment. If this is done the agreement with the exact dynamics is

quite good, as shown in Figures VI. 8-10. For example, the four-

quantum transition in a four-spin system is substantizlly stronger

when all the coupling constants have the same sign than it is when the

couplings have different signs, as shown in Figures VI. 8 and VI. 9.

Attempts to introduce a resonance offset were less successful.
This 1s to be expected, because the main effect of a resonance offset
is to generate a term proportional to sin(Awt) which has odd-quantum
elements only (equation (II1.60)). If the pumping operator has only
even-quantum elements so will the density matrix, but it is unlikely
that-any form for a pumping operator will give only odd-quantum
.elements for all values of A. Similarly, the effects of chemical
shifts were not readily reproduced. Figure IV.ll shows the intensity
pattern generated for a typical five-spin system with chemical shifts;

the information theory prediction tends to be too large for the large
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Figure VI.7 The intensity pattern as a function of A for benzene with
Aw = 0. The pattern converges to what will be called the strong pumping

limit for large A.
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Figures VI.8-11 The intensity patterns for several different molecules

in the strong pumping limit, versus an exact dynamical calculation (the

average intensity pattern over many values of T).
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values of AM.

6.3.4 Density Matrix Reduction Schemes: Coherence Versus Incoherent
Pumping

Figures (VI.10-12) show that equation (VI.38) gives good qualithtive
agreement with experiment, at least for systems with only dipolar
couplings. In fact, the formalism can be‘further simplified.
Specifying the entire density matrix (i.e., the magnitude and phase
of every element) is probably only necessary to describe the fine
structure of the spectrum. Therefore a reduced demsity matrix can
be employed where each level is assigned a degeneracy gy corresponding
to the number of different eigenstates in the original manifold. Each
element pif of the reduced matrix corresponds therefore to a block of
88; states in the initial matrix. Thus, for example, the density
operator and the pumping operator for benzene (which are expressed as
64 x 64 matrices) are reduced to 7 x 7 matrices.

The best method for reduction of a block of elements in tﬁe full

matrices to a single number depends on the form of the pumping operator.

The exponential in (VI.38) can be expanded:

i

T leanl

I o ‘ : .
S T o139

: i is a single number; in the full matrix it is

giﬁgiock of &y By mumbers. Thus, a typical matrix element of Py P g

In:;hg ;gduced matrixEP

5g§shﬁ of ga-terms.

FwiTsimple cases can be distinguished:
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1. Coherent pumping. If all of the matrix elements of P have the

same phase then one expects a typical matrix element of P

ia PGB to be

8y times larger than <Pia><Pa8>' The appropriate reduction scheme in

this case 1is:

coherent
> ,} <
{4 Teduction i85 <Fyy
block, gixgj one number
The signal intensity gigj<Pij2> is desired at the end of the calculation,

so after exp(AP)/Tr(exp(AP)) is calculated each matrix element must be

. squared.

2. Incoherent pumping. If the matrix elements of P have random

phases then one expects the square of a typical matrix element of P

to be g, times larger than <Pia2><Pa82>' The appropriate reduction in

iaPa8

this case is:

incoherent
2>

— <P
®i%5 iy

Pij reduction

block, gixgj one number

When exp(AP)/Tr(exp(AP)) is calculated the signal intensity
automatically ;ppears, so no squaring is necessary. However, each
element in the final matrix must be multiplied by Jg;g;.

Figure VI.12 compares the coherent and incoherent reduction schemes
for a four-spin system with only positive couplings. Only the coherent
reduction agrees with a full information theory treatment. In fact

this can also be seen by examining the form of the pumping operator
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Figure VI.12 Comparison of coherent and incoherent reduction schemes

for a four-spin molecule with positive couplings. The coherent reduction
agrees with the full information theory treatment, showing that the

different pathways to high-quantum operators reinforce.
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in (VI.38); rotation of -T/4 about the spin z axis produces an operator
with only positive matrix elements, Thus for this operator all of the
path%ays to high values of AM reinforce. On the other hand, if the
couplings have both positive and negative values as in Figure VI.13, the
four-quantum coherence agrees with an incoherent reduction, but neither
reduction séheme describes the overall intensity pattern well. In fact
there is no basis set in which all of the matrix elements of P are
positive; however, some terms will still add coheremtly (for example,

all the terms in the diagonal will). This is therefore a mixed case.

6.3.5 Conclusions

An information theory approach to predicting the intensities of
miltiple-quantum transitions gives good qualitative agreement witﬁ
experiment for dipolar systems. In this framework the high multiple-
quantum transitions are predicted to be enhanced when the couplings

all have the same sign, since this case corresponds to coherent pumping.

Exact dynamical calculations verify this enhancement. In general, however,

the distribution of intensities is approximately statistical.
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Figure VI.13 Comparison of coherent and incoherent reduction schemes

" for a four-spin molecule with random couplings. Neither the coherent
nor the incoherent reduction agrees well with the full information theory
treatment, so the different pathways to high-quantum operators do not
reinforce. The intensity of the four-quantum transition is therefore

lower than in Figure VI.12.



Appendix A. Counting Schemes for (N-2)-quantum and lower-
quantum transitions

As explained in.section 1.4, (N-2)-quantum transitions fall into
three distinct groups: M = N/2 * M = -((N/2)-2), M = (N/2)-2 ~»
M= -N/2, and M = ((N/2)-1) * M = -((N/2)-1). The first two cases are
easily handled, because all of those transitions have Al symmetry.
The number of states with Al symmetry for M = (N/2)-2 is just the
number of distinct pairs of spins, and the same is true for M = -((N/2)-2).
Thus each unique pair (ab) of spinslgenerates one pair of transitions
in the first two cases.

The third case is more complicated. In general, the transitions
from M = (N/2)-1 to M = =((N/2)-1) can have any symmetry. The situation
can be somewhét simplified for systems with only bilinear couplings,
because then the energies and eigenstates for these two manifolds are
identical, and the number of transitions (and line positions) will be
exactly the same as the spectrum of the zero-quantum transitions in
the M = (N/2)-1 manifold. In the spin product basis each of these
states has one unique spin, and each matrix element can be written as
(a) * (b), where the label in parentheses specifies that spin. In the
most general case, n2-n of these elements can evolve independently.

1f the system has symmetry operations, then the number of independent
matrix elements is immediately reduced to the number of unique pairs (ab).
In addition, if there exists a symmetry operation a +*b then the matrix
element for (a) - (b) equals the element for (b) * (a). They are also
complex conjugates of each other because the density matrix is Hermitian.
Thus they are real, and the number of possibly independent matrix elements
with imaginary parts is at most equal to the number of pairs (ab) such

that ae*b. If there are m different frequencies for transitions in the
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eigenbasis then there will be m independent matrix elements in any other
basis, sc this gives the number of zero-quantum tramsitions. Combining
this result with the counting arguments for the other groups of (N-2)-
quantum transitions shows that there is at most one pair of transitions
for each unique ordered pair (ab).

If all of the symmetry operations of the system can be written in
terms of permutations of pairs of nuclei, then the number of transitions
will be exactly equal to the number of ordered pairs. This will be true
whenever the symmetry operations do not include Cn axes (n 2 3) or when
the Cn axes are accompanied by mirror planes to raise the group to gnv'
Thus, the counting arguments work for all of the examples of section 1.4,
and for all other common molecules; one case for which these are fewer
transitions than would be predicted is the case of two inequivalent
correlated methyl groups.

The arguments can be extended to (N-3)-quantum transitions. Each
unique triplet (abc) could generate at most eight transitions: one with
M=N/2+M= -((N/2)-3), three with M = (N/2)-1 - M = -((N/2)-2)

((a) + (bc), (b) + (ac), (¢) = (ab)), three with M = (N/2)-2 -
M= -((N/2)-1), ((ab) » (c), (ac) = (b), (bc) =+ (a)), and one with
M= (N/2)-3 + M = -N/2.

Additional symmetry elements will make some of these degenerate. For
example, an isoléted methyl group will only generate four distinct tran-
sitions, and an isoceles triangle (Dab =Dbc # Dac) will generate six
distinct transitions. There are also matrix elements of the form (ab) -

(a); the number of these is exactly equal to the mumber of unique ordered

pairs of spins.
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" Program SELECT
Subroutines HEIGEN, LBINO, NUMSORT, DEFILE, HARDMAT

Information Theory:

Program INFORM
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. .
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2593 131 sct=ss + dr(ik)¥ccnjegla{jk))
- 2SS i3 rv_ui;-ts
D g72e do 183 j=1,nst
sdadad] Iisdadyid A3
- evzz2 183 gr(i§i=r(J)
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S Az fepgat o fy ‘eota Lo dnded Y oosodg 74 APV
55 {feppct——"AA i iFr—ete—Tter itttz —id
27=C print 611
lade St v} foTratl 2% ;ﬂ_}"\h;g&tnr selested /frop=selested—Tatios MVA
743 print 615, {(rat(i), i=1,at)
oo S fermatl iy 512 1413
e R e I S e O
2752 print €12
frdod ] fermadl fivdx ‘ttre peguanius—cobheranselpon=cpolactnd cohereagoe
3 f& A A —the—R=guaw Leran AR Tact 2 £ —
ilx, ‘rstio....",/)
- ’ //' B
—— ~ . f. - L ey = ewv> — '.~




R —— e .g.a.‘

2"

1o Butiners Forma, Ine 1w

O v\

R e d e P

— .- ':“:‘;? ..‘.\- T e - T SRS TR T e L T e Sl 2 T ashed TR Bt e .
: <
- L i e o s . DT : 267
X ] . i

ELZCT ¢7-Cct-136¢ 15:11:1% VLX-ll TCRTRAN IV-FLUS V1.2-Z2
- 1 O b )

P e g e
o ;‘ALuﬁﬁ, AQCRLIT I + S T\ G AR S S g
2752 print €13
. .
F s £1Z leFTﬁ_‘l(’/lquA, ga -t vi(hé}x‘\ ~oherence—= _qucutuy... )
- - ’ )
2725 piint €15, .nqco.i), 1=1,rt)
"'7553 :'r A &2 "":"
2757 21¢C ;rlnt €i€, ih
Yy o LaE Lo e a1y Tictad oY oo mie y7 27 11y ! nemnlorad’)
o £ o ryotrrt—tr v id et ety OO 13" S o
Z?ES cce ccrntinve
< LIE SR la 12y wridtael{l E702% {pat {4} 4-91 rt)
y=s b e, 1o )writell 6 ) L pat (4} 4=t ynt)
’ -~ ,
c 1£{iL .le. 12) write(2,€22) (dmrat(i;, i=1,nt)
c il‘L1h e 1_1\.._1.'1‘.st3 €20) {naecelid) 41 rnt)
24wy ottty 11y
Z7€E2 €22 fermat(£15.5)
€
27¢€1 52 do 2€¢ i=1,nt .
anar aymgantd ) avnamad i) anelil
O L S A AWy Aaas B Br 2= B UR s oy 4 P2 A" S T w S
27€3 avamrati)=avdmrat(i) + drrat(i)
376+ ZED IS TR I S YR ST S & T T e
C7€S 3e3 certinue
"f
c
—
©7cé do 3z¢ i=1,nt
nnET avngeoid savpgaalil [ gk
<753 avdhra;.i/-uvdr"at(i, / nhb -
— e - vt r—uv?a’r.xl 7Tty
B c
- ¢ elecelrie =713
& el eserirtt=2is
c close{urit=22)
& el et eeait=33
2775 crernfurit=21.rane= "avrat.dat’,tyre="zrev’)
2~ 214 N PSR WS S PUEIE ST U G S | AN
LA T tTT T ~o ¥ttty T3 T
e ;
A clesequnit=21) -
’ - k4 3 ~ 4
2723 e B bt sl rreRe="avdrratdat Ity pestrew
2T7x #°iiei.8220 lavamrat{i,, i=1,rt)
2TnE R NT RN Bk I
S E v
A ; ‘ , ,
(T7E oper.uzit=¢l.nare="evnqco.G3t’ ,tyre="nevw’,
ke dodiodond it S L S S D S Y LN %
Z R T e e R ta
cT73 clesevvnit=2¢l)

TYPIiCAL values of trace rho squared...”,/)
eba it = :
s Y

2785 print 615, (avdmrat(i), 1=1,at)

Tl vocint 721
c fermat{ilx, 3raph of AVERAGE coherence ratios:",/) .
~2ac a1l wewrletlaudmeat ¢\
1 et aud mraty i ts )t -
2787 print €23 )
w -

CreAle -




i

- SUE N ———— —— o e i o e - -t
e T RPN e s AR AL TSR R 0T BT D e e SR e s i, s v
M P R ~ o o N - ) h N M
T T e T ey B et s Yon e DA K 268
~ 33 -
. L _ S

— et kv b aa e et e o ey S oy —a

11 FCRTRAN IV-PLUS V1.3-zzZ
NvFOR12

)T 2752 print €15, (avngco(l), 1=1,nt)
P 2

nry o alzbi - -3 L4

=
oo dxrhoig—+ B

g

c print 775 . A

) Z791 call wowplotiavngzo,nt,aimtig)

P
TT ST —t e

o/

Ve e
-/

Buri et Formi
~’

Mo
o/

s
, \
p)
, :
D
J
D
)
S o 3
) _ S
L :
e S R “mnf::»-s—; e e et e - o e a e




| L sago inTo o et e T inm e
W e I T e LI A R

3.
t

R

Form, dnc 3w

Monre Bormes

o e AN R e

para — ==
B gt irenr ey S T LR DRI SR B U S Sl P N XA S
JOTTL TN ST L b . ? "
< - - .
~. L
s L ey — - .
A - A w
LSRN - -
.
<

S IR B N ey s By A e

269

z27-Cct-1558€¢ 15:12:24

VEY-11 FORTRAN IV-FLJUS V1

.3-22

c
31 c
c
L
) g2l subrcutine wowplet(avdat,nt,s) -
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o i = - .
. J P i et L IR A g i e — s s —— - —- N
. 27-0ct-143d 15:52:32 VAX-11 FORTAAN IV-PLYUS V1.3-22 -
INEG AN IR~
)]
- : Y Sy
AZA SR P Tar—01 o
N T <
J i X 3 L NS W Apnct o A whom b o A-na
.~ - kT _VIV‘EIUI-. - ULJLSI.C‘A Lv *EJ"_ICIC Iy [LIA* SRR 0 4= 2 BU[TWC!UI‘
(o] with 1 formation theory--iate multiple-quentum NME. It derives
—_— ) & fJim M 5
c operators Lzz and Exx. It will use these operators to vroduce
& extlidxx Ty and cxol [Qey T,1 my
& ex sl T} apd—erpi{Rerrisi—T—
i c
Sew  woreoop WD S > = 4 - S 6+
0223 corpley sur,ee (19}, dmrec( *61),ured(Z ).P:mprea(Sol)
_Zola ~ornlexr el (1% \J"Lr nll’k‘an_r;q_‘l(lci\ rx!nhrjn‘l{'&.pj\
) b o + “‘_-Tl”ﬂ ,——rv ‘ﬁl T80 I <Ak i of =7
8225 dimension {title{72),1ct{€4),count{19,1 C).avreo(ls 19),
3 L rya -’ =N .L.,)LL'- adld) Pk BN Ko ul (e 10 -,.Iqoﬁ_c\ olod
X et e O ety iers T TITo
252€ ¢imersion sZ{1S), 1st1(2,€64) ,hzz{429€) ,exviy(42C€),z25(6).,d{15)
) 2.27 disercies ,-1(1=.\ dctf{ool ehofn denff) Y (22 2D22% &0 -re/ 53
diaencier—e {5t t{eddvrds {2 ol i3y 2 i st ar iy
2225 dirensicn fac,l(ZJ),dean\Zz)
: aag Teal $3o dxift B4 prolza) 274
) 3o L 64y e an >
x 2212 commea iwopl n
i <
2 221l data 12/2.7,2.2,3%1.3,3*¢.2,3%-1.¢,-2. C.2,51%2.3/
: ) 2212 Araxli ‘\-/r+1\r‘a 1+ 4
E <eld i“axfl J)*nst N Rt 1) + 1 -
£) c ,
s enanturit=oo1 poge o Tt f oy A2t 4o 717
DN ePeptFri e e re sl e riv it b pe=—etd—
Zc15 read{1,Z22) n,nt,icomm,tt,csave,ci jave,dt
) 221 txcaleal 7/(-';1 413421_9‘-911;'} 2,)
Znl7 nrl=r-1
2213 ooint £22
) 22is £22 fcrmat{/.” TLis program uses informatior theory to-vmredi:zt 7,
g < e tpa o gact Tmatatle darcd ta oot ady The—prepinp—cporatep ‘
L —t L N e S A R A M S S I LA S s S -~
2 /.7 car have any one of severel different forrs.”,/.//)
) 2zzc peint 50z
cZ1 £22 fermat!” Znter the number cf sypirs (.le. 4): 7, §)
2022 woint 73;2'n
) s2zs gs Formet(1s,14)
et R Lerpatriis
22zZ2 LSI=2¥%r
) 2228 Srint. 522
2227 €2 fcrmat{” Vrat is the form of the pumpirg cperator:’)
- o232 BHR—EIS
) 2222 372 fermat(”’ 1._unpiqg cperator Exx ./, 2:Pumping cp’,
=+ e B L gL R S
233 prirt 752,icomm
J c221 733 formatdiny
232 . print €24 i T
2233 €24 ge;~a%’——h-eu—w-a-e-y—é—iﬂ—f—e%ep+—;a—}%5—é-e—yeu—’ > £ 3 - = waht ? E'le' Eé} l' ;
J 223 print 725,nt ' : i
o Sl 54 nli t & B
_ b e & Friat—£55 -
223€ €35 format{  Erter the initial value for time: 7,%)
z2227 ol oV foermat J‘1;1'€11 4.
2236 print 727,tt
P ! 2o orint E28
ANl T > i < ”
: geae 666 ferrat{(” Eanter the time increment: 7,%)
241 Topnd x ¢ '73'7 AQ
B3 it
) 2242 if(n.le .G) go to 7969 - R
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IKTORV 27-0ct-1382 18:52:30 VAX-11 TCRTRAN IV-PLUS V1.2-22 o

b &% Ul allie § VANl abe Rl ¥
TR ot oty

£42 Print—FERS
. T 44 7273 format\  Inter the r.rm.s. dirolar cougpling and chemical shift:”)
) DAL LECU 4 r3 Sl SO U2 UV 1

L2 €= _U.l‘n T‘—'U'UAJCVT'DDC.VC

c4€ 372 format{” “,g12.4," . “.g1Z.4)

[y S NH

) 247 =2 formet(371€,/) ,4(e14.€,/))
he 1P B T e Vol Y o2 B
R A >l - hlUjY\‘TLLWTLT
wrLo Te = o
) LA XY IR L, ) - $ I S
2349 frotepRdy
2252 vi=4.€%aten(1.¢)
~Ys o4 L 237 § T w1l
) TS € bt vBPE
el32 facplilij=1
fodad Sied I SR S W
T DA A RS
2254 8210 facpl.i)=(1-1)*facpl (i-1) -
D goes 65322 4=1 np
2285 azze degen’i =facpl{npi)/(facpl(i)*facyl{npl+1-1))
. noz twoli=2 -2 Td
- ) = T 7 .
£/ 2238 if{n.gt.6) go to &322
E
< ) ¢ fcr each state, assign tre nuvrber c¢f spins ‘up’
: 2ozc vz
: BT CESECN
£ oael dc 15 ir=1,nfl
e a o s dfr———1-
2CED vet=ibtine(n,aup)
) T etk rst
22€% KA=K«x+1
) 2res letlkk)saup
o~ 2267 lzikg)={n - Z%npup) / 2.0
eEf—— 12 Sortinps
c2ze 13 centinve
D) 232 22 de 23 $4:1 mct
2271 go 31 j=1,nst
s ) L--({-'y’_ivi);’--’f‘ 2z
J) ze7z call defile! ‘role”,5,1)
el regdl 2t didtie
) 2278 read(1.€122) n,ncp
o= 4
2277 f121 format{72al)
2273 S32e— fermetlils)
D €279 €122 fermat (el€.3)
3353 - N SATE R L &
[
) 2231 nhLin=n
ce82 npl=n-1
353 FL1=hsd
) TED - print 522z, ititle
3E5E 5222 g R a2 e &V A
. 2Z23€ orint Z2<3,voff
) 2357 (=¥ Rl feprat{Err—offcet—frea =7 17 Rp’ S/
S : 2288 voff=voff/2.2 g R
8535— pript—5934—
J 2238 5224 fcrmat!(€r, “dipolar and J couplings (in Ez,”,/,€x,31(1h-),/)
2251 =2
) ’ 2292 do 521¢ i=1,nml : .
,_f:_ e S a T T T et e T Y e L e Cseamee T B

coaw —
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R e ST i 277
- - e s
.
i e e e e e v U SR PN
—— - Y = [P S -

INTOEN 27-0ct1-1950 1c:52:32 VAX-11 FORTRAN IV-PLUS V1,2-Z22 ’
NS VIS |

~/
[V
o]
™

.2)
2252 Sl d=dled/a A
2453 DR AL
2495 cjix)=cjlk)re.e
) 2123 —— 5312 centince
clel print 52¢6
Q122 SQ3€E frrn-_at(;‘jv.Fr"th:rr‘lra] shifts in Hv"_'L'Rv'91_l1h—)"/)
) 2122 priat 5227,(cs(i}, i=1,n)
2324 5627 £ eprrat—6XySfo~ir
g1es csave=2
) £128 45315 4=1,5
z127 1f(cs{i'.ne.®) csave=1
. 122 2315 co (4 ang 1) /2 o
H 13 (=554
£ ) c
i <
< c1z3 acs=C.2
: ) 2112 G4 22 431 .=
E c111 e acs=ecs - csii)
. S i i
2 ) 2112 dc 35 1-1,ncp
211 L 2c el or T 4 Q03 e e if2
o = 3 5 4 e
7115 hzz{l,=-r¥voff + 2cDp - &cs
) J1iE Y=2liads nst ast j=z¥vcff 4+ gocp & acg
2117 rstd=-1
2112 foSst2=2
) i3 cell nvrscertinumbt,n.ast) -
AT . 232 SR L A B SNECETE S . EN S o <
2121 1sti(2.1/=nunt’2,rst)
) 215 % le23l2 et ymnmnt /1 1,
3 et iy
2122 letl-2,rst)=rurt.2,1)
oy P
) ¢
-
2123 de 112 js=1,nml
J c
g1z ictart{js)=mrste
o2 ig:r =—~_ig
)] cliz3 . itsp=2¥is - n
T Lo
cilZ de 42 3=1,nst
J 2.721 Gf{nvmbir2 3 ne— 35l o to 42
2122 . LE=KK+1 :
"l"L H VA WS k]
) 2124 fst(kkj=aLmb{1,J)
- £335 LR RS SV TN O £ I
212 1st1{2,xkxk)=1s
) i 23127 A2 ccntipue
2128 mst=kk ; . e
R 2135 rtolis+li=kk
- ; -) +—F>eat -
glse 1m=9 . o .
c

2141 do 8¢ m=1,mst . o L o A
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ST AL S WY — .

~ N

o/

NG

L e e e ————— s et e m e S e e e e+ e aas
INFOR! Z7-0ct1~1832 13:22:3¢ VAX-11 FGFTRAN IV-PLUS Vi1.2-Z:Z
I o0 208
v £O-RE LR
2122 > o b hi <
&34 O R me
€142 Af(1 .ne. m) go to 62
2334 A=}
€145 ao 51 k=1,n .
214E 1&;(](_;1——1
o147 ir{(1st{1) .and. msk) .ne. 3) isp(k)=1
"IAQ lf‘s.l—.ﬂ‘t:l . m:k
2146 51 ccentinue
2152 }.Lﬁrr"‘- —uel“‘*{tj§
21t1 kk=¢
21582 dc £5 1=1 qupl
2153 {vi=i+1
2154 St—55—+—4-pla =
218 kk=kk+1
/ALY ol oo b1 ;3 + S BV AR TARTAREE SR PR VA ANE I T YA R
B L PRI S ate saas TR PLE SEL L2 e ot Ty J7 o
z157 £5 centdnue
2153 de B7 i=1 ¢
215¢ 59 n.l,mi=h{l,m) - cs¢i)¥isn{i)
ANl f-¥4 1o 20
5 H—te
21£1 3] Sws1
Cifz 3sp=2
2:52 il el=n 2
)
21€E¢ msk=1
— 2 2 I i
2165 1f((ist’)) .and. msk) — (istim) .and. msk.; 72,73,72
21£72 el d6t1= 3o pra]
g Ch AR
Cif3 1£linijw)=x
2152 1=z -
2172 TE msx=msk ¥ 2 \
217 £ £ 3 - - bim bl PYSER 2-S it}
PR NS ORI P A . . oy
217¢ k&= {(Z%rn - iflip(1,)*(iflig(1) - 1)/2 - iflip(1) =+ 1flipi2)
2172 Yool oo oo lynt o T oz =)
WL X5 A S 281
2iv4 =l continue
[oliir 4 de 122 21 mst
217¢ e 128 1=1,rst
4% Lo 2w B R T S .7 WL S B
ei7 12¢ ccntinue
217238 rsti=pst2 + mct
3139 119 continue
B al
[of
— —enaratiarn of tre rulca - rnrandoator
generatiorof 1Ee-Fulse Froplgaterrrr
c .
2131 aaa=[(1_2 VLR%"L(“ 21 X% g
2182 dc 2137 i=1,nst ,
o152 G0 2122 =1 ast
2184 exply{indx(1,J))=aaa
z1z2°% LeT=1
21z€ msk=1
21872 Ao 2227 k=1l n
2188 1f((1st1(1,1) .and. msk) .le. (1st1{1,J) .and. msk))} gc to 2222 .
21D k(p:—lr(r
2152 2280 msk=msk + msk ' o . L -
241 Sf"rlrcp 1t 3}JYh{jij_rﬂY{{'3)7)‘“e‘22
Z21¢z =122 ceotiave . . - v ) R
- _ R R [ L ~ S e it e e e
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o R .. S e e e e e = -
..... B Y - - - - -
1703w 27-0c1-1222 1e¢:352:32 VEX-11 TCRTRAN JV-PLUS V1.3-22
:3 SN et ST o SN
—_m PO R | Py b
e genepatien—efl I35 vvrr
T 2182 éc 2122 1=1,nst
) o102 A bl S o i-1  =c %
T II—"T T wa L AT U PR E=T
2128 sp=90
) uASe13 -MEAd
z197 dec 2232 k=1,n
/L Ealel L I R UPIE 2 A S S I &y —a——_lct 13 T ande—mele VL o ta 2270
, Ar")f;bx‘\'1|xv LA ROA-IE EEAE LD S A S S S 2 S Nt Sver A A= S B e ) L s B vt U
Yo n e 215¢ if (sp.£q.8.5) sp=-1
) 2o00 e [y o 2% cn=p &
HAs P eqd p=2+5-
" £2<1 222 msK=rsk + msk
2222 1x{d jl=max(sn,2 2}
) gze3 2132 continve
W i ooanzlliae arpd et the ccmeon o inagc
< Hepgonalize—a3rd—pel-—the—en T
c
) S — 42154 i1 st
¢czCs dc 714z j=1,nst
: 22308 rss=l 2
2D 2227 dc 2141 k=1,ast
i oo A RITER T AR A
< 2Z2 xi=indt. k.J:
~) 0zl Taan rec=rcc 2 gy i ik iirazlas
: IR FEETRs S (L3
< Il 2112 ITLVj.-1%5
H o212 da 2143 wA_‘lv“;f
i) oz $3:1022 1,47
EL T cyis2 TS W TR U
SRl L 4 bt ; -
<Z1t £l o "tlnue
) leiz SC 244 11 net
217 do ZZiz j=1,nst
>~ ez 2 >
> 219 do 2241 k=1 ,nst
AR — e >
2zCi Ja=inax j,ky
) cLiz UL Ssseo - Pyylikirespiu(ix}
2z22 2242 r i)=ss
2T 4k de 2242 31 rot
) 2iiE fi=indrii.i;
P .o PR
et 2rid v AT R4
2ex 22414 coi.tinue
) ol _z-;_}_l {'"—*L’l’.}’}
- c call rratihzz)
ga n']'l rm;tv:.v'\_y;\
)] c celrnlete the ,1wpiné oDErater.. ..
e 3L 8 oo o 1N o 1 e dnBal=
alodnd e £t et E
cZ2 ¢ 223Z i=1.rst
) oot Xl A, 2720 i=1 net
2231 1j=indx’1,J)
2-32 e r-n’-n xJ—hrv 33\ /1z22n
) - — P D x4 3343
_ 2233 SeZoe ccntine - .
oSt 1 = Py b ZaYolel
T oLTY 1\4“&7 =
o225 322% do 324+ i=1,nst -
) [adalic ¥ 4 e 2 z 4—1 n:f
fsiaran, 237 1; 1ndx‘11}
2233 20342 ESERTE-S! JJM{“L{ﬁ{_)A{A Nedaliiehyy it )
v o U
J 2228 dc 2243 3=1,nst
S AD £ -4 o8y 1 -.\
< Fibad s o
) 2211 3242 pump(iji=r'j;/1029 -




ye -
way Ragce OGRS S TR e SE RIS ISR b TT L T e T il et S e et Oy vt e
T N S'-—.?_('?!“,‘:}”’W"j AvA Fo e agnit o . : .
- . . N . - . . s -9 -
fonRd 5 el e e s R s 280
e ma damen . = .
- e -
- ) | . R
S i
U UGS PO - . et e e e ———— e = e o

INESAM 27-021-13%292 10:52:3¢ VAY-11 FORTEAN IV-PLUSC V1.2Z-ZZ
T NLNOARM SO0 ol
3 P 44 S @ i-p o SN NS Wi . e
aces PP s
xZI 2T K 3 4 LS QIS 2 4 0 PR ol
T 2242 rss=2.9
) A LA Lo B ¥=0s ] A 1 K3
L Py -4 A* . L w7t - E SR
224¢ €c <22 §=1,nst
224F $iedrdvidi
) ) @247 2252  rss=rss+(ebs(pump(ij)¥purp(1])))
g e ine i Lo 3041 tscatle=rd2t—~ xqr%’ng:,/r.ﬁg_}
c calculate reauced pumping matricies
) 2346 PPN P W T
g252 : purprec:i)=2.2 -
) 22351 ‘ry"rjgrnf"-’{ﬁ\-a 2
£z52 4556 ccatinue
o e RN d & [N Y I S Y | ~
2252 Ge—Sode—=t a5t
254 do 2249 j=1,nst
) 2zis Limiadsii
228¢ r1=1+(2%iz{4)+n)/2
N 2737 LE=ix 23l 3irpnl 2
2 ) Z2E3 ninz=in-1)%\nz-1; + nil
H nor o £ R L res _rlra‘-mm\rc;Ln}gz\A;unﬁfi diiopapli )
< szt dc 2221 i=1,npl -
Z ) ek o = - e "L;L
: 22€2 {i=4rdxii,J)
H sz £2 £221 noxncecl{ijizsart{ats{nurpred{iiily
£) 2ze dc 2262 1=1,npl
~o L PN L -l
> T T
JZEE€ 1i=gada 1,3y
) [abaliciley (a2l Tl wp'aﬁ;i‘;r~’\hmx~r:‘(\‘T;rﬁ&q’r?firﬂ%:_n‘}}’.‘_bg%_%{ {7\}
2zés 22¢5 if{rst.gt.1€) ¢o to 212¢
PR 22€% orirt 3121
" czve 121 fermat{  The pumting cpersteér (in Ez) is:”)
b Zadoib! ol i ba i sl PRl
- SRS I s S L TL_L
27 €o to 312<
P Ionz Lons {e Bied i=1 np3
£27: de 32¢2 J=1,npl
lETE t1otlizis n=2% 1-1,./2 ¢
J czve totiziz={n-2%{1-1;)/z.2
2oz 4«-4—3;} il
<2713 *'jnux\i J)
) fal how LY SLalEs—are cophecteld }.u XY
2275 1f (al s\totizl-totizj).; .1) gc to 35€2
2222 ifiatstatizi=totizii At ol 2o t oI
b i ' EE B
2z81 if(abs(tctizi totizl).et. 1. ) gc to EZ¢e
< tl-ese—a-ra VRN VR F-Y.| _A'l%iJ)u SheRi-Gat :)i?;s —
. 2zs2 purpred’ijl=2. aa*csavn*usave*deg=r(j)*(J 1)
) 2e=2 plrapresiii apranred (33)
Cy v L8 = X X e
22E4 &0 to 5222 .
2225 2222 nnnr‘s(l(‘lj_\—di iave*dl igveddeser{ 3 VR 4 1)% 1 _2%%1 25
- ) Py T 7 A I e + Tk
22538- meprec(ji =purvrea(1j) )
02287 2 1o S22
! . gz232 8522 pumpred(ij)=3 : co .
- =4 - 22353 'nxmnrn:_d/ 43=2
B A e e - v 7%
2232 €222 ccntinue : S
2221 do 0221 4=1.ppl
) 2252 do 9821 j=1.cpl e
. 22532 Lizdz8xrd ) S —

2254  ©221  purpred1(ij)=sqrtlabs(pumprec(ij))) . . o
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M e Bus nest Forma, Tne aw

P ISR e mmmimmai . i
T Lo
. - x
e - h

A T Ui Tt

T RIS SIS e ade iz

27-0c1-195¢ 18:£2:32 VAX-11 FOETEAN IV-PLUS V1.2-2Z

I8 S0 aM TOR S

po}
Lot

—25E go—te—315T
T 225€ 3129 call kheigen(pump,u,nst)
) s257 Ge—152—4=1rnct
2225 {§=4rex-1,1)
2258 123 e = U p 153 2
zzee {f(csave.ne.) go tc 2121
2T P ETE= P % b
233 NI —
2202 oddmrax=2¢
£Z2E —6 O E2—4=1 a5t
2324 itestit=inti{l.5+1z2(1)-12(1))
2225 4 flites it eg Rt i tes it S} I ge3 o242
2325 oédmar=mas ‘real{e(i)j,cddmax)
2337 pe—to—SbE—
£322 5243 evertas=maz.real(e(i)),evenmax)
ladcbado] :7"‘.9 SRtinue
g212z de G2€% i=1,nst
2211 itestitzintf2 5+37 74 -42(13)
2212 if(itestit.ne.(2*(itestit/2))) gc to 3EE@
s e B B L A = =
2312 sC€0 continue
271¢ ol I call \-:_ir"_u:rlh“-r-"lrpj rvrel ol
d * ¥ " ¥ AT
221¢€ céll relgen.punyrecl,urecl,nyly
>y 4~ Ar Z4AT (e L
2213 ii=jndxii.1}
ladedinilio] eotfA N o rnad1 {33 Yk
alelb¥a S R R e ST TRV AL S S R
2iz z12e ec{i{i=pumpr2d(iil*1222222
- ..
c
= new fer tte tipe-cdevendent ;C_;ri;m ol —tlis Prég
c B}
-
o2zl de¢ 222 it=1,nt N
G
2lc:s t=itt-(it~1,%dt)
77 £ /(o rtL f%\ C;nJGL Cl132
c calculate exnl/pump®7)
-
ciz4 se=2.¢
e3e5 RV S
222 do 142 i=1,rst
ca e a-rryTle 4 it teo-1a)
ot oty T v vovtT3 7
22z . sc=g5-e- §)%q
P PR
- 5o Lty
e de 142 i=1.,nst
SRR T fd-fpdy iyt
2332 142 dm{ifi=ully) *
R i 1 treecl{dt V= ¢ fom
SV T SER AT 5/ 5 um
cXl4 dc 154 i=1,nst
2T T v-1 L -Gl S, § I
BELE de—3on S=tomot
g3Z5 s¢=¢.@
22327 de-151 k=1, 05t
A {k=irdx{i,k)
~r~0 FR TS I SN S M U
Toost T eIy
2352 151 se=ss+ar'ix)*conjgluijk))
Lot SN | 1=~ A“\— ra
voTT o= LR ol
z2sz do 153 3i=1,nst )




ST T,
2 R ST

#oore Cuslnent Forme, Inc. av

[y N o/ ()

'.",4:'?_':._;.‘_33" 1"_ < S T “ex. LR T PN AT e T . i v o -
P - . T RN .
3 o 7; ~ ~oTzmat LT e DT T = - ‘,‘;.\. - "‘ 282 -
e e ksian s ANt mpeen i e e 4 e+ S e e e A 4 e = e =
IRZTR 27-Czt-16%3 18:22:35 VAX-11 TORTAAN IV-FLUS V1,2-Z22
Lt orfrrr-s
L. ety - .
Lo 3 RIS ITE
2344 153 driiji=r(J)
nts 2 ~ I L2 43
TUOITT L=k 4 BRI RIS
d print $¢3
d print S24, (ww{J), J=1,nst)
o 0. ferrpata2f1a £
£I4< S ferratrafts5—
c
fadc Wkl £ L= 2
SL=2
2343 dc 144 i=1,nst
2355 fizindxii 41
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Appendix C.
This Appendix presents in tabular form data that cannot be

readily converted to figures (for example, the sizes of different

matrix elements in the density matrix).

Zero-order 4k~quantum, one cycle

i At = 0,02 to 2.50
o p

Zero-order 4k-quantum, two cycles

13 At I = 0.01 to 1.25
o P

First-order 4k-quantum, one cycle

13 ot I = 0.01 to 1.25
o P

Zero-order 4k-quantum, 64 cycles

ﬂﬂgATpH = 0.0005 to 0.0625

Third-order 4k-quantum, 4 cycles

B3 At I = 0.0005 to 0.0625
o P

Third—order 4~quantum, 1 cycle

I3 At I = 0.0005 to 0.0625
o p

Tables of Computer Data for'Selective,Sequences
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“Consider a 2%¥n by 2%%p effective Hamiltonian = S

E describing an n spin 1/2 system. Matrix elements are

pumped in the time€ available (if courling constants are

given) or assumed to be everywhere equal in magnitude

with random phases. Phase shifts create a sequence which
Is n-quantum selected to any desired order. This program

functicn of t. the propagator and coherence selectiv-

“calculates the density matrix which is produced as a

ities.;and the n-quantum Signal magnitude.” e e

""" Enter 1 for time reversal, @ otherwise: T T
(2 means WAHUHA,S means isotropic time revercal
—~and 4 surpresses zero-quantum) S

1

"Enter tE€ numbeT of spins (¥ implies benzene;:
4

"Enter the order of coherence which is selected: ~— ST
4

"Enter the number of cycles, the order of the se-" "~
quence, and 1 1f symmetrization is desired:

1 ] e T

how many different values do you want?( le.125)
Ly g e L 2 i S

Enter the initial value for time, in .1 msecs:

Enter 1 to incremernt time, 2 to increment cycles:

0.2200 : R S

1
Enter the time increment:

—— — " how many H# S Should "dbe averaged over, to minimizeT T T 7

any peculiarities due to a particular choice of random

0.CLLP B T

phases 7
5

Enter any two Dvositive integers < 3276R

T T 1287 234 - ““ T




The density matrix for t = @.5000 is:

4 up> 13 up> !3 up> I3 up> I3 upd 12 upd 12 upd> 2 up> 2 upd 2 upd> 12 uwpd '1 und 1 upd 1 ued

<4 up, 1241 95 110 141 85 131 134 103 7?3 157 171 218 243 179 329 _ 1336__ _
g =165 Selen -%8 158 -86° -64" -151 =6 172 123 -49 1eg”  -171 -31 141
T upr g5 3359 78 13 43 1t3 83 1€2 2E 114 g6 177 i¢9 g 1¢1 275
165 [ 159 57 =161 -76 -98 198 -16 16€ -92 185 -69 151 -1€9 42
<3 up! 110 78 899 9 23 183 20 33 82 66 89 95 143 124 57 171
99 =153 ] ~586 -149 =56 91 14 -65 -118 ~-52 20 -22 -127 163 €9
TS up, 13T 1T g 121 18 145 137 197 53 5% 35 62 115 64 158" i3¢
78 -57 5€ ) 87 123 166 =123 159 -86 -98 -83 ~35 =151 115 €9
<3 up! 85 43 23 18 883 118 136 133 29 52 131 96 132 &5 37 164
=158 161 149 =B7 g =98 143131122 =T B D V1 B v-3 - ~63 "I v T
<Zupi  IBT TET IBY 1406 ~T18 [:5] &7 11T 47 36 47 €2 41 97 148 115
86 76 5%  -123 93 ] -14  -159 33 ~-91 22 72 -81  -179 11 -5
<2 up! 134 83 20 187 136 €7 17 37 23 44 36 41 32 237 92 75
: 64 98 91T T=166 143 14 180 1467116 175 =182 {4 Ti7? 27 =55 3
TTupT Uy 1562 33 1g7 133 T %7 () 11 52 23 %) 23 74 78 222
. 151 ~-158 ~14 123 -131 158 ~14€ 2 -109 -3 128 -11 149 101 -29 -13
<2 up| 73 6" 82 55 29 47 23 11 a7 52 58 121 123 119 53 115
i & —16 65 =159 =122 =33 116 182188 T1L 144 =t5 5% -23 55 127
TZTUP T 157 TI% B5 55 57 35 13 5 53 1 TS 13— 111 123 155 1F
-172  -168 118 86 1 91  -175 3 -111 180 ~116 ~1€ 175 28 1€3  -163
t
<2 up! 171 96 89 35 131 47 36 22 55 €5 33 125 121 163 85 225
=123 9950 98 73 =22 162 =103 =143 115~ 1B@ =55 119 =33 132 557
T Up ZIE 177 g5 ¥4 o6 E2 Z1 33T TIeT I3 195 917 5T 75 TF TT
49  -105 -20 88 123 -72 -26 11 65 16 55 130 16¢ 22 - 14¢€ 124
<1 upi 243 109 143 115 132 41 32 23 123 114 121 51 894 47 10 a3
=108 3 22 397122 T Bl 117 TSl49 T TESIT SIS T S119T  S1E@TTTTIBR T SILT =RB7 T
EQ Q'Y J . 77 T2% B¢ B 57237 74 115 194 183 33 37 B3l Ieded 133
171 -151 127 151 €0 179 -27  ~181 22 -28 36 -22 143 182 1€1 -Cs
<1 up! 329 181 57 100 g7 145 92 78 83 155 85 . 3¢ 19 67 253 52
31 160160 =115 =73 -11 58 28 =55 =1E3% =132 =136 B7 =17 102 i2a 77
o U ISIE 275 T7T 180 TFY TS 75 227 II% 16 225 TG T3 ) gek:] Ty 1285
-141 -42 -69 -69 =170 6 - =3 13 =127 168 -55  ~-i¢4 -23 65 -1Z8 1a¢

~ *
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""AVERAGE propagator selectivity....

T g3 438 T 497289 T32.614 0 T24.373
19.426 16.125 12.765 11.994
12.61% g.t1228 B.6262 7.8514
7.2120 €.FE33 6.1872 5.7782
T T TBI4g1€ 5TP739 T 4.7804 T4.8159 T T T
4.27€€ 4.2589 2.8€01 3. €779
STTTTTT3T5183 373558 3.2129 " 3.p804 T
2.0574 2.3428 2.736¢ 2.5352
2TE4CY 24554 ZI3734 2. 2565
2.2242 2.1561 2.0921 2.09318
1.5749 170212 173706 1782z~ T T T
1.777€ 1.7349 1.6945 1.65€3
——— o —1.62¢2—— —1.8861—1.5538 - ——"1.5232 ~ -~ -
1.4543 1.436¢ 1.4419 1.4165
TITIT 13717 T.3504 123387
1.3122 1.2942 1.2773 1.2€13
177451 —1:7315 IZ178 T T T1iZe4r T
1.19232 1.1324 1.191 1.1533
11482171382 —1.1258 —1.1199 0 ¢ - e
1.1113 1.1231 1.295% 1.0574
172576 1.0733 T PE72 172610 -
1.0521 1.2495 1.2442 1.8392
—— " T T1T@345 T T 1TE3gET T 1TBIZ6Z T T T T1.5:228 -
1.0153 1.2163 1.0127 1.2114
179055 110079 17QZEE T 1.@35€ — o ~T S
1.2249 1.0244 1.0042 1.0041
1.9241 1.Y943 1.004E 172358 -
1.2253 1.6257 1.00€1 1.908€4
172067 1.2659 1.8Q71° T T.gevE s T
1.2074 1.0275 1.027€ 1.¢277
1,207~ ——1.¢3801.8¢83— ——1.p2587 ~ - T ———
1.2¢35<




289
T AVERAGE coherence selectivity.... T
"" — £35.33 7 T TT143.33 ©5.¢fz¢ T w1745 T T
57.412 47 .344 41.020¢2 35.663
31.8¢F1 237655 2€.0¢23 T 23.836 -
21.978 2¢.382 13.997 17.781
‘‘‘‘‘‘ 16.73¢ 15.74€ 14.884 T " 14.103 o
13.3=2 12.74. 12.138 11.58¢
T T T T 11,2837 12.571 1¢. 1117 — S.C747 T T
9.2602¢ 8.8€39 8.4843 8.1195
- 7. 7€E7T 7.4283 7.2998 €.78B1€
6.4720 6.1734 5.8827 5.5003
‘5J22€E2 T T D.RBEBZ2TTT T 4.B2227 7T TTT4.55217 S
4,3121 £.07€61 3.8583 3.€327
. 3.42367 S.e238 302312 T T 2.8482 T - -
2.6743 2.5094 2.35329 2.2277
- 2.2778 1.64342 1.825%2 1.vi61 T
1.6153 1.5238 1.439E 1.3621
- T1.29¢7 1.224¢ 1.1€287 7 1.1048 7 N
1.3521 2 .9¢8€3 2.95291 2.9¢911
T T T TTTTTTTTTE . 8736 @.358978 T @.B4BB7 T T £.34296 “—‘
0.32411 ©.832749 0.82027 2.81233
J.B3335 @.79324 J.752081 J.7€382
£.75637 0.7438¢ 0.73331 ©.73738
A Y @.7EC2B T T 373256 @.7g204 -
@.7971€ g.797€7? 2.7225¢ ¥.78514
_‘ T . 77271 — 2. YEg7Y T BUv3vvE .71 T 7
P.€32¢5 2.66574 2.€6374€ 2.6€798
J. 0815 D .EBZ23Z 2.69203 Z.62534 o
¢.C483€ g.57132 2.6920¢ £2.7131¢€
- €.73643 277174 p.81229 g.55¢2¢
p.90210 2.94274 2.98321 1.0233
172541 1.13842 1717128 ‘1,133 T T T
1.153




T T AVEFRAGE’ n’—quant'izrﬁ_ué_ién alﬁmagn ftude. ..U

—— e —

0. 64173E=P2 " 0.25692E-01 "O.57V3BE-P1 T ©.12232 T T T T T
£.159¢4 8.22735 0.20€E56 £.39582
2.49412 U.E0236 g.71327 P.83149 -
£.98357 1.078¢ 1.2031 1.3273 '
14459 TTT1.5664 1.6782 S B4 V=0 A
1.878¢€ 1.9€46 2.0396 2.102%7
27188 T TT2719@1TT T 22137 T T TTZ2.2236 - T
2.22032 2.2032 2.1738 2.1324
2.2799 2.9175 1.9462 1.8672 -
1.7819 1.6916 . 1.5975 1.5011
TUTT1U4034 T T T1L368598 T 12082 T T T 1.1146 — o
1.92249 - 0.85488 0.85103 0.77185
Teo69771— TR.62880  @.E65825 T @ .5RTeE T T T T
0.42415 0.40634 £.26341 0.32508
©.251¢2™ W8 .2€883° ©@.23430  ©2.21091
0.19234 0.17225 £.15633 P.14226
TTRJS12878 T TTTTT6.11866 T T @.19878 T ©.99Y31E-@1 T T T
0.91622k-01 ©.84272F-01 3.77€04E-01 ©.71564E-01
T T T E.66118E-901 7€ .61245E-P17 PUS693ZE-81T C 9.53171E-@1° T T T
9.49955E-21 ©.47274E-C1 0.45111E-01 0.43442E-01
P 42232E-01  ©.41437E-01  ©.41001E-01  €.4¢852:i-01
0.40949E-01 2.41189E-81 0.41505E-021 ©.41824E-01
©.42081E-01  ©.4221€E-P17 ©8.42184E-01 ©§.41953k-@1~ 7 — 7T 77
0.41519%E-01 ©.40835CE-021 2.40M237E-01 P .39022E-01
BT37887E-01T Q. 3672ZE-P1T QU35576E-P1T T @ .34518E-017 7 T T T
0.22620E-91 0.32951E-81 0.22573E-91 0 .32537E-01
0 32885E-01 0 .33E45E-P1  U.3483ME-Y1 0 .3€444F-01
©.38474E-01 P.269¢CF-01 B.4369CE-021 P.45806E-01

T T ©.32218E-€17 ©.86183E-017 "2 .SQC24E-P1 "0.932691E-01

€.65732€E-01 8 .65872E~-01 2.74023E-01 £.78151E-01

8.97152E-01

C.SP2@3E-P1 T ©.5384BE-P1 Q.TVEBZE-P1  ©.61658BE-01 T 7
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forsider—a =¥ r—by ¥ nefifective—amittonter
d descritirg an n svin 1/2 system. Matrix elemerts are

prmper I the—time—avettabte—if—<ourtingconsterts—=Te
given) cr assured to be everywhere equal in magrnitude

PR W PO - | In - Py h ol W A £ }— I

¥ I it T&TCOm—DoasSesS TSt sSnITUS Creatle a sequenTe wWiilTh

is n—quentum selectea to any desired order. This prcgram
— ————————eatettates—the—densitymatrir—whiecr—is—produced—as—ea

furctior of t. the preovnagator and coherence selectiv-

Hties—emdt—the—rmr—-yuantrr—sigrelregnituwde

3 21 0 4+ ) .
_— ———Enter~—t—for—time—Teversal,—2otherwise:

(2 rears WAFUZA,3 means isotropic time reversal,

AV
AN C ST PP eSS SeES —ZeTUg Ta T iU

1
— P ter—tre—rurber—of—<dinrs—F—iToites—berzene
4
b $ du oo P £ I I b > o - -
- - LT 1L |70 90 == O 25 G O 4 ol AR G5 § LI TvireT willrUlln 475 SR i G <IN P S S
4
i — ) h T o - s | nd Fo ¥ ol
D¢ "R S v T UT] Ul Uy Ito, VITE Ul JdF ¢ |SD QEENN VRAR SANNRN od
quence, and 1 if syrretrization is desired:
(>} A o §
- L 1Y% o
hcw meny cdifferent values do you want?(.le.12%)
125 - -
Enter the iritial value for time, in .1 msecs:

L 240
L1 1TL o

Enter 1 to ircrerent time, 2 to increment cycles:

k|
1
e

'3

Ent tke time increment:
2 B,

R

1
Y

e

bov—maTy s —shouid—te—eveTagte over, tuTmiritize
any peculiarities due to a particular choice of random
pheses—?

1

Enter ary two rositive integers < Z27€E8 :
+23 234




The density matrix for t = ©@.3729 is:

-—————‘A*upf*a—uw“hpr“ﬁwpﬂﬁ‘vpr*hw“ﬁpfww—“ TuEyTiZup>” ‘?‘vpr*r*m'*im?—*ﬁ'w—*rmﬁ*———“—

<4 vpl 407 - 96 144 135 141 123

157 €1 13 132 - 143 06 249 112 9z 1738
s 2333 £974:3 3 1S X4 T2 71 g1 50132 L34 T 17% 44 P gV
e p 3322 ——149 140 115 23 37— 1 13 2 Y X 1622143
144 [} 165 113 155 -111 ~123 127 -87 ice =72 99 ~34 123 -187 30
<3 up: 144 €1 816 12 ? 142 39 87 95 53 €4 141 122 €S 111 12¢
tord 165 A Y 1€9— 33 (&) It 3¢ 137 7 R =18 =T =1t o7
<3 up—— 186331 —— 87— 26— RE——13—191 1¢ 72 53 2a 161 T2 TES—173
99 -113 143 2 143 54 -176 -124 46 -114 ~-16 -121 -15 -125 120 36
<3 up! 141 22 ? 28 912 G4 12€ 21 15 L 1¢6 12¢ 94 °9 32 159
7 +Eo—15¢8 pa 2 2 TP 8 e —3% 121 22 =T =7 er = 14 e
“Znp A FE—4 R4 PR F4—43 J4——67 28— 23— —%¢ \°k 3 €2 12 pikes o
122 111 83 -54 102 2 ~1e -157 27 . -43 34 3 ~-121 -174 48 -12
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- “Consider a 2%%n by 2%*n effective Eamiltonian
B describing an n spin 1/2 system. Matrix elements are

pumped “in the time available (if coupling constants are

with random phases. Phase shifts create a sequence which
is n-quantum selected to any desired order. This orogram

T calculates the density matrix which is produced as a
function of t, the proragator and coherence selectiv-
ities, and the n-quantum signal magnitude.

Enter 1 for time reversal, 2 othervise:
(2 means WAQUHEA,3 means isotrcpic time reversal,
T ard "4 suppresses zero-quantum)

1

Enter the number of spins (@ implies benzene):
4

Enter the order of coherence which is selected: -
4

T T 7 7TEnter the number of cycles, the order of the se-_
quence, and 1 if symmetrization is desired:

1 1 1
how many different values do you want?{.le. 125)
T 1285 E
Enter the initial value for time, in .1 msecs: ) .
""""""" 2.2102 T o )
Enter 1 to increment time, 2 to increment cycles: B o
1
Enter the time increment: e o
T T 8.2102 S B

’ ' “"how many E's should be averaged over. to minimize
any peculiarities due to a particular choice of random

phases 7
1

Enter any two positive integers < u2708 :
T TTTT T 123 24




The density matrix for t = ©@.3780 {53~

14_up> 13 wp> 13 upd> I3 up> {3 up> 12 upd {2 up> 2 up> R up> 12 up> 02 wp> 1 upd 1 wpd {1 upd !l upd o up>

<3 up! 498 164 58 3 13 187 13 43 45 28 157 ) 59 112 132 1957
2 -85 __-177____153 -4 -43_ _-123 -3 =123 151 -96 -85 . &2 40 -RQ __ 177

<3 up! 164916 38 51 31 134 8¢ 107 2 Be €5 113 62 272 22 134
E e 154 25  -138 -8 a1 <168 11€ 155 -1326 110 21 -159 ~11 17

<3 up! 58 36 932 23 18 133 102 86 21 Y] 71 52 71 1¢2 133 35 )

177 -154 2 34 -133 -23 e 144 55 -3 -57 __-133 -49 =117 81149

<3 up} - 43 51 23 908 8 154 103 a2 123 _59 59 €2 76 119 171 114
=153 —25 <34 ) 13 146 14¢ -34 174 18~ =173 -82 173 152 123 -156

<3 up! 13 71 i8 8 9c4 23 54 135 62 43 £9 58 go £3 €7 74
. . %8 128 133 . -13 ¢ -o1 -84 138 141 137 _-104 141  -173 111 €€ 21
<2 up! 187 174 133 154 23 57 33 72 3L _21 22 71 93 79 140 £2
43 8 23 -14€ o8 @ . -17 -155 45  -13% —43  -1a7 11 145 -1% 174

<2 up| 18 80 . 102 1es T4 33 3 35 14 37 B 31 21 162 az 71
123 -41 =110 -142 84 _ 17 182 132 ~f4___ 164 -144 45___ =111 E5 __~146 _-189

<2 uv] 43 107 86 92 135 79 35 27 13 _17 19 24 75 a3 87137
31 160 -144 34 -138 155 =132 ) -5 ) °g -129 28 99 -76  -122

<z upl . 45 T2 Z1 123 €2 31 14 13 3 13 13 4€ 47 103 24 77
123 ~116 -85 ~174  -141 . -45 64 &5 e ¢4 147 =G6 142 19 . 93 61

<2 up! 2€ a6 43 59 43 . 21 32 17 17 13 24 102 @7 122 42 19
-151 -155 2 .-18 -137 133 ~1564 9 -94 123 -149 g -14¢ 1e8 ~-17¢ =73

<2 up! 157 €6 71 58 €5 22 12 19 13" 24 a1 123 125 103 ) 172
a6 136 57 178 104 43 144 -g7 =147 142 159 -8 153 23 -13 -21

<1 _up! 05 113 50 63 53 71 31 24 45 172 103 951 36 27 11 6
85  -11¢ 133 a3 ~141 137 4% 129 €6 -3 3 193 175 57 15¢  —124

<t up! 59 Y] 71 56 39 23 21 7G 3y a7 175 T 29 P 32
-52 2149 =178 178 -11 118 -2 =122 142 =158 =175 192 _ -199 -59 3

<1 vp! 112 77 192 119 63 79 162 g2 1432 122 103 VAl 23 ago az 73
40 159 117 =152 -111 =145 -50 BN 12 C1ea -23 -57 109 132 -170 163

<1 up! 153 70 133 121 €7 143 . 82 37 v a2 xR 11 23 33 CNS 115
69 11 ~51 _ -123 _ -66 15 146 75 75 1tg 13 =155 59 179 132 -374

<3 uo! __1RE? 124 85 114 74 €9 71 132 77 1% 182 7€ a3 72 118 403
~127 ~17  ~149 156 -21 -174 ) 158 129 -€1 L9 21 124 -59 -1C3 174 1P2
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T "AVEIRAGE prcpagator selectivity.... B
T T 11281, 2314.3 1252.0 792 .42 448.9¢
311.27 ce£3.25 174.29 137 .45 111.7
51.421 Pe.e2? €5.2€2 55.837 45,436
42.429 37 .413 33.218 29.€54 2€.€19
T Tt T <4 .823 zl1.745 16.774 15.244 16.519
15.1€8 12.2€5 12.289¢ 11.92€ 11.259 L
T T 1z..275 9.5¢€€3 8.2228 8.8374 7.832
?.3158 5.3714 6.464¢ 6 .25 5.7491 .
5.43227 5.1427 4,3715 4 E22¢ 4.35857
4.16E7 3.G617 3.7696 3.5591 3.410%
T T T T T R.2583 5.12538 2.955h8 2.330¢ 2.722
2.5324 2.4673 2.2532 Z.25€2 2.157% B
— T T 2.¢€648 1.27€3 1.2928 1.3145 1.7427 -
1.57582 1.51273 1.5525 1.4951 1.4423 .
1.2213 1.5123 1.287%8 1.285¢€ 1.2161
1.178¢ 1.1428 1.1¢092 1.977€ 1.2479
D s e e 2.85:25 £2.562«9 7.04407% £.202345
2.932365 £.22572 2.8€321 2.,35572 2.84499 o
T T Z.23574 2.52513 2.3221¢ 7.8124¢€ 2.21€27
————— =2 31471 ?.31434 2.815%4 ¢.31631 £.51823
. 2247 £.82522 2.223F°7 2,83352 2.33754
T T T T T T 241587 6.34560 ¢.8424 ¢.85285 4.835€14« o
D LEDR22 28I R2353 2.585911 7.35733 ¢ . R7P229
2.E572ED 0.874i€1 B.57622 v.87744 £.57826 T
¢ .573283 Z2.37337 2.5879492 Z£.38049 ¢.833122




347583, BG93.3 2EE5.2 214.9 1332.4

>

5E7.14 710.€3 £44.04 429,72 347.75
£85.73 £49.18 2¢3.783 174 .92 151.53 I
132.€2 116.¢1 123.79 o2.722 . 83.322
5.210 £3.223 €2 .298 5€.753 52,275 e
47.935 44 .233% 42.99¢ 33.251 35.425
32,234 22.8732 . _28.,92F 27..119 25.488
23 .907 . 22.€3% 21.374° 2p.218 19.151
15.164 . 17.249  16.39% 15 .624 14.353 o
14.1€9 12.518 12.926 12.331 -7 11.791 -
11.282 12.5832 . 19,345 G,01¢2 -~ - Q.4378
9.2549 2.7233 3.3427 7.9965 ° 7.6590 T
7.33C8 7 2ESE E.7725 _&,4937 g, 22321 B
5.582¢ 5.7152 5.4728 5.2418 5.90128
4.42381 4.6223 4.4218 4.2¢90 4.024¢ o
) 2.8433 3.5€672 3,495€ 3.223¢ 3.167¢
2.2123 2.3535 2.7115 2,5€98 2.4341
z.3248 £.1312 2.2540 1.5523 1.8475 T
1,72452 1.59323 1.9654  1.4527¢ 1.4281 L _
1.3555 - 1.2712 1.2125 1.1596 1.11392
1.2714 1.2345 1.90218  ¢.97579 2.951z4
T T 2.6343 2.092322 2.C1756 2,01€6€2 2.91932 T
2.62534 2.92537 2.94573 3 .9642% 2 93326
Tt T 1.6252 1.€526 1.2533 1.2396 1.1225 T
1.1571 1.1825 1.,2272 1.259¢ 1.2971
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AVERAGE n—-quantum signal magnitude....

o pzORTR—22 2. CR331F-21 §.57252F-21 2. 14130 2.18723
T Tp.22428 2.3733%1 0.59231 2.40287 2.558322
2.71378 %.33539 2.95522 1.£993 1.2375
. 1.3739 1.5225 1.8671 1.2118 1.9555
2.2973" ' 2.23€1 2.3711 2.5014 2.6262 o
T T 2., 7446 2.8561 2.9500Q 5.2556 3.1426
3.2225 3.,28901 3.3432 . 3,3372 3.4354
— =T 3 4E57 Z.4952 3.4952 3.4952 2., 4861
3.4682 3.4412 3.42652 5 .2534 2.3132
3.25€61 3.1923 3.123€ 3.2491 2.97@273
2 .23€6 2.7597 2.799€ 2.€169 2.5222 ) ]
— z.425C Z.3:34 2.2303 2.1516 2.233%7
1.¢350 1.8352 1,7432 1,8459 1.5564 o
e 1.4638 1.3774 1.2914 1.2282 1.1273
1.240€ 2.0748% 2.92313 £.33466 $.75943 _
¢.7275%2 ¢ .E4559 7.52361 3.541€4 .45297
2.44754 2.48532 2.36€17 ¢.3322€ 9.20688 L
¢ .20840 ?.22379 ¢.21264 ¢.19239 g.17C41 - -
¢.15225 2.13585 2.12137 2. 12816 ¢,26727E-21 _
—~~0.86824E-21 ©.782R84E-21 2.785¢€E-81 2.€3957Ei-21 0.583345-01
2.535425-61 (.4Q4C35E~21 ¢.45613CE-81 7.4%374E-%1 g.41175E-¢1
2.334C1E-21 2.32233E-21 ©.37521E-21 2.37131E-21 2.37245E-21
2.37693E-91 @.3S527E-231 ©.39721F-21 2.412£9%-21 ».43162%-01
—————-——¢.45335E-C1 €.47927E-C1 2.5275CkE-¢1 €.533C1E-¢1 ¢.5727C8—01
2.62377E-21 G5 ' -

-

C,65€34E-31 2. €3655F-21 §.227538-01 A, 7€2I7R-21
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et PN I Fe 3 A - £
PVl $ S V) AFURAREE VDU <Al I P LRV b SR 0 § [ O3 SORS ) SN VDT TULUT UL

S orsidepr—a e Ein—ry-—= 35 np—effeetivetariltoriar
F descr 1bing an n spin 1/2 system. Matrix elemerts are
}E‘rbﬁ‘?cd ip—tre—time- avaitabie {11 ..117}111-15 constants—ere
given) cr assumred to be everyvhere equal in magnitude
Aith—ra-dom—Pphases——rhase—shifts—ecreate—a——sequerce—which
is n- quentum selected to any desired crder. This program
—catleulates—the deasity matriz—whiehis produced—as—a-
function of t, the pr opagator and coherence selectiv-
Hies ent-—tee—n—guarntuor—signed mernitude
En-ter—1—for-tirereversaly—HB—otherwises
(2 mears WAEUFA,3 means isotroric time reversal
Lﬁf}ﬁ‘i SEPPresses e ro—guentuny
1
— ———————fnter—tho-—number—of—Spins—{Z—imoltes—berzenei+
4
rr-ter—tre—opder—of——eoherrree—wkieh—its—selertesd
P
x

3o
LITTT ST

quence, and 1 if symmetrization i1s desired:

AW, ro.! A

~ Tz A A&

how many different values do ycu want?(.le.125)

s T2 >
1T

he iritial value for time, in .1 msecs:

Enter 1 to increment time, 2 to increment cycles:

1

Enter the time increment:

H ‘35

~——————phases—72

—how many H—s—stouwid—oe GVtXTgt’C’I overy—to-rimirtze
any Decullarltles due to a Dartl*ular choice of random
1

Enter any th Tcsitive integers < 327E8 :

L—- L. o
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12332
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e
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~152
[ 7
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122¢
13
e
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-69
Teco
130
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-79
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B
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oJ
133
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16¢
g
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Ted
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oo
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100
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e
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89
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Py
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“1—upt

<1 up
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fe;

The density matrix for t

<3 up!
<2 up|
<2—upt
{2 up}
<2 upi
\E—UVE
<2 apl
<1 up!

F~upt

<4 upji
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Cocnsicder a <%%p by z2%%n effective Zamiltcnian

. doscTi1llng arn T Sbin 1/c systerm. FMelrix elemcris are
pumped in the time avellable (3 tyvicel ccuvling is (127

C.<z aL2) or assuneca 10 ce everywnere €equal 1n 1agnifuce
with rardom phases. Phase shifts crcate a sequence which

ic n—-cnentun seleclted tc euy cesired craer. This preogram
calculiates trhe density matrir whicrh is rroduced as a

“TUNCTUICL 0f U. tne Dr0DAgelol <nd Concrence Selectiv-—
ities, end trhe n—-Grentum signel masnaitude. :

Irter 1 fcr a random propagatcer:

!
ater tre numter of svins (& implies tenzene):

T
zrter tne order of coherence which is selected:
Enter the nurmter of Cycles, the corcer of tre se-
IeTnIE, ehl 1 11 SynnhcuiilZation 1S dcsicfed:
4 3 1
Focw many aifferenl values do you wanl?i{.1€.iz2)
125
rtntier tne initiel velue for time, In .1 msecs:
v.olZt
zuter 1T 1o arcremznl 1Ime, 2 To 1Increment Ccy~l2s:
1
Enter tte {ire IZrcrerert:
.0l s

ho« marv £°s should te avsraged over, tn miriTize
¢y pPECLIIer1V1€ES Cuf 1o & pverticdler chcice ¢i ranacm

~

rhases 7

1

)y

Tnter ary two vositive Integers < ZZ7F

o




308

St T ST e 6 E ORI A IO RS NI VG R T B, PR RN A T TV,
2 2 e 2 2 ¢ @ 2 2 2 2 z ? 2 @ __grI-
€5 2 ) 3 2 2 3 e 2 2 2 2 ) 2 0 et 1dn 9>
2 EER [} ¢ 2 ¢ [ 2 2 2 [ e 2 2 e 0
g 2021 2 2 " 2 2 2 2 2 2 2 2 2 2 2 dn 1>
2 2 z @ I Jd 2 ¢ 2 e 2 2 2 2 ¢
e e ) 2 2 2 ¢ ¢ 2 2 2 ] 9 2 2 ydn 1>
0 2 ) CET 2 e 2 2 2 2 2 9 2 9 2 0
2 S 2 [ 3chd S ¢ [ 2 2 2 2 23 2 a 2z 2 ‘dn 1y
2 2 ° 2 241 2 2 @ 2 2 2 2 2 2 2 2
¢ ¢ 2 2 ecat e 2 I3 ] e 2 e 2 2 2 ¢ vda 1y
¢ A e ) [ ? ¢ 2 P) ) @ 2 o 2 2
2 2 2 2 2 2 2 2 ) 2 2 z 2 2 2 'dn 2y
)
¢ ? » o ¢ ¢ 0 0 ) 2 e 2 ¢ 2 A
2 2 & p) e 0 2 @ 2 ¢ 2 2 ) ) o idn 2>
¢ ) ¢ 2 e ¢ v ¢ e 2 e 2 [ [ 2 2
2 2 g 2 2 4 j A o] 2 2 2 .2 2 2 e 'dy 2>
2 2 2 “ 2_ 2 2 2 2 ¢ 2 2 2 2 Q. 2
z ) e 2 a ¢ 2 ® 3 e e 2 ) 8 2 2 idn 2>
2 3 2 2 2 ) ¢ P [ [ 2 e 2 2 2 2
z 2 4 2 2 2 2 2 2 2 2 2 _n 2 2 2 idu_2>
2 2 2z 2 2 I 2 2 2 2 2 2__ 2 2 2 e
] 2 2 2 2 e 2 ) 2 3 ) 2 2 e 2 2 1dn 2>
a 2 e K 2 3 2 ) e ¢ [ 2 [ e ) )
g 2 2 2 2 2 2 2 I 2 2 gzl 2 2 2 2 S U
e 2 2 2 2 2 2 @ 2 2 2 2 2 2 2 2 .
2 b 2 2 e ¢ ¢ 2 2 ] e [ gcer @ 2 2 pan ¢
¢ 2 2 4 ) e 2 3 2 2 2 2 2 2 2 e o
0 2 id 2 2 o ¢ 2 2 2 2 2 2 2221 2 R dn o>
N4 2 2 2 2 2 7 ¢ e 2 4 ) 2 2 2 2
2 2 2 3 2 e 2z 2 ) 2 2 2 ° 2 ga21r ¢ vdn ¢
FER P 2 2 2 ¢ . ¢ ¢ ] [ [) [) 0 e eer
€81 2 2 Q 2 2 2 2 < 2 2 2 2 2 2 BS tdn_ %
dn 27 dAn 1) da 1) <dn 13 dn 1] «dn g «dn gz, «dn g «dn g, <dn g} <dn 2} <dn ¢} <dn ¢} ¢dn ¢! ¢dn ¢! <dn %!
HACTAY M) = 1 J0J XYJIPU A3[SU3D 3yl




the ders VY natslx for t = J 3805 s T

4 upd 13 up> 13 up> 13 upd i3 up> 1z upd 12 wpd> & up> 12 vpy 12 wpd 12 up> i1 vpd 11 wpd 1l np> 11 ynd 12 vrd

T 1] 0 1 4 T ¢ 1 T 2z { T 1 I 1577
? d [ J [4 [ C 2 3 P 4 2 2 135 Q 123

<3 up! 2 1222 ] 2 2 7 3 2 3 2 1 1 1 1 J 1

|9 T ] ] 4 ~135 -15¢ 1) -50 =3 ] Z 4 ) 14 4

NV oI v 1 190 v I [ T 3 1 T T Y J T ] K]

[4 4 2 2 2 ~10€ ~-101 38 -3 2 142 © 2 2 Z 3

< uv} 1 4] 0 1229 2 7 4 7 4 2 1 1 1 1 1 [4

J 7 4 [°B [4] Id -2 -151 83 -7 J KB o 2 '2_ ]

X3 7 z 2 1% 127 % z 5 Z z T 4 3 ! 1 4
' b 2 2 2 2 1232 124 -5 =172 -57 A [ 3 3 4 D

<€ up, 1 7 4 ? 4 4] 9 '} [} 2 2 3 2 [3 3 1

4 135 ¢35 4 -13¢ [9 2 [ [ J [%) - 1o -1477 &1 154 [}

TCuT < 3 T 4 7 '/ 5] S 7 2z ° 5 4 ki Z T

? 162 101 z -124 [/ Z 2 7 ] 2 -164 25 ~5 -15 >

<2 up. 1 8 3 7 5] [} ‘3 2 4 2 ] 2 2 3 1 a3
—3Z B31¢] —=E 151 5 P 1) ] 3 3 J A 12 =172 2

T 4 3 T 1 z z T z M 4 7 3 T 3 B 4

2 €6 33 -55 132 [ Q 3 [4 2z d 11€ -4X -173 -3 2

<2 up, %] z 1 2 Z .9 4 2 Z Q ) 3 5 9 ) J

3 3 ) 77 7 b4 4] A ot 3 3 3 TI7 11 & <

LR 7 T T T T 7 —v 4 C 3 4 = My T = T

[ 2 -140 4 Q 2 3 [ < Z M 1£7 4 -127 =47 °

l 71 up! | 1 1 ) 1 2 3 5 2 5 3 3102 ) z 2 2
v 4 %] J 3 13 1TT =07 =118 ‘3 177 1=7 J 2 N J

T T T T B 1 T Z Y 2 & 5 3 4 1507 P e 1

J e [} o) 2 147 =25 ?d 47 -117 -4 [ 152 3 2 9

<1 up! 1 1 1 1 1 6 ? 3 3 e 4 ¢ 21202 ¢ 1

| =135 ) P T 7 =44 ITTITEZ 175 117 I W ) 133 z T
TIPS T 1 [ T T 3 < T 3 3 Z ] M J Te¢ST 1

Q 2 Q 2 [} ~164 13 164 93 -7€ 47 2 o 2 132 .

<¢ up) 1983 1 4] 2 Q- 1 1 4 e 8_ 1 4] 1 1 1 2¢3
1= 4 4] [4 R4 4 [ P4 U 7 J ¢ T -51 K3 137

60¢



310

AVZRAGTF propagater selectivity....
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A3L coherence selectivity....
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T " Consider a £¥%n by 2¥%¥n effective Familtcnian
Y describing an n spin 1/2 systerm. Matrix elements are
T T T TpumpedTinTthe time avalldble (1f coupling constants are
given) c¢r assumed tc be everywhere equal in magunituce
with ra~dom ptases. Phase shifts create a sequence which
is n-guentum selected to any desired order. This program
T T "Tcalculdtes the density matrix wrich {s produced as a
functios cf t, the propagator and coherence selectiv-
- {ties; and the m=quantunm “Signdl magnitude .

Enter 1 for time reversal, D otkerwise:
.2 means WAHAUEA,3 means isotropic tire reversal,
T Tandg s 2T suppresses zero=quantum B

4
_ Thter tEe rnumber of spids (¢ impliés vénzene): T
4
Inter the order ¢f coherence which 1s selected: Tt o T

4
- T “Enter thenumter of C¢ycTles, the order of the se-~ ~
aqvence, and 1 if symmetrizeticn is desired:
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Appendix D. Residual Nonselective Terms for Selective Sequences
In this Appendix the size of the first non-nk-quantum selective
operator from a j-order nk-quantum selective sequence, which is

.= (3+1)
(—1Mi tc)nns

» is estimated.

To simplify the calculations phase cycling and symmetrization
are combined into one operation, which turns a (j-2)-order nk-quantum
selective subcycle (j odd) into a j-order nk-quantum selective cycle
requiring 2n subcycles (Figure II11.2), assuming perfect phase shifts
and no timing errors. As in earlier calculations, the propagator

for the j-order nk-quantum selective sequence is expanded in powers of

. , S AL . . .
tc. The first nonselective term is 1ﬂ(3 l)tc, which is proportional

to t (j+2) .
C

i+
J 2are nk—-quantum

(3+2)

All other terms proportional to tC

selective, so the only possible nns term proportional to tC

=i+
is (iJ(‘(J l)tc)nns' The product of the propagators for the subcycles
4 .
has several terms proportional to (tci)J 2=(tC/2n)J+2; they are:

Iu(t )= —iZiFj+l)t (D.1)
i C

1 ii ci
_ = (0 (3,3 (I (0), 2 (D.2)
1§j(3(i ij I, J{j ey

2 (D.3)

1 (OF D575 (0,
2 i 1 i i i ci

_.Z_("s;f'.(l)jf_(j—l)“’—{_ (j-l)}—(.(l))tZ_ (D.4)
1<3 1 J i | ci

2114 1 1 i ci
3

. 3 e
+(1/2)i§j>kt cit@/ D55 07 )

. 3
+(1, i

I, . t” .
i>j>k " ci

—(0)={0)=. (j-1) 3. (0)z (3-1)=. (0),z (3-1)3 (0)=(0) (D.6)
ottt R, T J{‘j 7o)

wi/6)e3. @ O (O3 G153 (03 (=D (0),3 (G-1)3 (03 (0)y
iciv i 1 i i i i i i i

(D.7)
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} j+2 .
plus terms not proportional to (tc)J . We will assume that the subcycles

are themselves constructed by phase cycling and symmetrization, so that

_— . .t
ﬂ&(JiZJ ) - 0 for all j', and terms (D.2 - D.5) vanish. In addition,

terms (D.1) and (D.7) are unaffected by a phase shift of ¢ = 27/n, so
they are nk-quantum selective, Finally, term (D.6) contains many nk-

quantum selective portions; for example I i"(o)iﬂ(O)ik(J_l)

idj<k 3 is nk-

quantum selective of i and j are in the first half of the cycle and k is

in the second half.

The construction of the subcycles implies ﬂi(o) = ig(o) and Hig(j_l)ﬁ=
E G-y and therefore (| (ifi(o))zicj G-1y2y _ <u3ci(°)3cj (J"l)ifk(o)m 2

22 ?» . Straightforward counting arguments show that the

operator ik(o)i:(o)ik(J—l) occurs (% n2 + 1 n + k2 - k - 2nk) times; the

J 2
operator iﬁ(o)ij(J-l)i‘(o)
i. 3j k
the operator iﬂ(J_l)il(o)i'(o)
i i k

7 G-1) 5 (0)
I3, @

occurs (4nj - 1 - 2j2 + 23 - 2n) times; and
1

occurs (-:zj-n2 + =n + i2 - i - 2ni) times.

2

If all of these numbers are just added randomly, an overestimate is

produced. For example, if i = j = 1, the nns part of the summation
7 (0)z. (0)7, (3-1) . ) .
7 (O3 (O -
k§l 1 1 K , which contains (n-1) terms, is the same size as a
. . = (0)3, (0), 7 (3-1)
H I LK = 0.
single term, since (( 1 1 )(k K ))nns 0
In fact, all of the matrix elements have the general form
n-1 .
m;Oamelme, where 6 is a multiple of 2m/n. For the nns terms, it can be

shown that

n-1 .
((z amelme)z ) = n( <an2 ) - (a) 2y (D.8)

m=0

The summations yield:

= (5+1) 2 2, = (0). 2= (5-1
Wl 3=1),, 2. 6
(3 e e~ F@T @ ) i, b “e

c
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2 1 -
F) =ex n” - 207 + 5 sd 9 a 2 (0.9)

' =(0),2 £(§-1) =(0), 2 7.,(3-1), . .
Asguming L @(7) ﬂhns I (H7) Uﬂﬂﬁ’nnsﬁ implies:

13 1o p@n @Oy H.'}{j(:” Ve (D.10)

Since i‘j) is proportiomal to tcj, one expects that if tc is

g3+ Z(3+
"small' lx‘j Dy s ax53+3) (assume the cycles are symmetrized, so that

7(3+2) vanishes) and if t, is "large", li(j+l)ﬂ << Ii‘j+3)ﬂ. The

interesting value of t_ is the one which makes ﬂi(j+1)l "~ lﬁ(j+3)u; if
t:C is much smaller than this critical value, convergence is expected.
Assume that one has a (j=2)-order nk-quantum selective subcycle

which is known to converge, so that ﬂﬂ(o)ﬂ >> ﬂﬂ(z)l and ﬂiﬁj—l)ﬂ >>
nns

=(j+
|K(J l)l . To create a j-order nk-quantum selective cycle requires

lﬂ(j+l)ﬂn was calculated
by examining the term in the propagator proportional to ti+2.
J+4

largest nns terms proportional to tg

increasing the cycle time by a factor of 2m.

The

, under these assumptions, are:

nns

(_iﬂ(1+3)tc + %_itc3(cﬁ(j+l))cﬁ(0))2 + 7#O7xG+D7x0) ﬂ(j+1)cﬁ(0))2))

= z

[ @E DR OF 707
1>3>k>L>m "3 "

+ permutations) t5 + small
i nns

ci
terms.

(p.11)

Again a subhstantial fraction of the r.h.s. cancels or is forced
to be selective., Most of the remaining terms on the r.h.s. cancel with

terms such as ﬂ(j+l)(ﬂ(o))2 on the 2.h.s. The result is that, if



g(3+3) 5D, Thus. =
. nrls y

=(0) 2
f JC( m~1, ts that |
( tc) one expects a s

converging (j-2)-order nk-quantum selective subcycle implies convergence
for the j-order selective cycle if uﬁ(o)tc" << F(n)pl.

Equation (D.10) can be used iteratively, to calculate the first nns
term as a function of successively lower-order terms. To begin the
iteration, however, an expression for ﬂi(z)ﬂnns for a first-order
selective sequence (Figure 2(b) with W$ nonselective) is needed. It

has been shown that (equation (III.16)):

t t t
@y o G )(f . [ a /2 dt, . (eI, (t.)i
= . . t
nns c t =0 3 £ =0 2 £ =0 1 int® 3" int" "2 int(tl))nns
3 2 1 :
ﬂint in this expression is H&, as discussed in relation to Figure III.3.

This can be rewritten as

=(2) . 3 1 1
=) = (-i/2nAT Y(AT)(C I 4+ I+ T )@, . K )
nns 1 P i<j<k 2 i=3<k 6 i=j=k ¢(i) ¢(3) ¢(k)’ nns

where ¢(i) is the value of ¢ during ith subcycle. Since the operators
M&(i) are nonselectiye, only a few terms in the summations are forced

to be nk-quantum selective (note, however, the sum with i=j=k is nk-
quantum selective, as are a few of the terms in the other sums). The
possible values of 1i,j and k divide into two sets:

a) i and j are both in the first half of the cycle and k is in the
second half, or i is in the first half and j and k are both in the
second half. In this case the sum over the isolated index reduces to
n 70,

b) i, j and k are all in the same half of the cycle. In this case
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no further reduction is possible. By construction of the sequence,

M&(i) 0 (3) If one assumes <IX‘ ¢( ) ¢(J)”> = <"ﬂ"(l) 5(3) X “),

straightforward algebra then gives:

2
[ I I n”
H ATP vy < ¢(1) ¢(J) ¢(k)AT 25 4 8 <I¥ ¢(j)ﬂ¢(k)"
(D.12)
7{0) (0) (0) 2,
K@(i)mé(g)n AV k¢ “"ﬂ$(i) (3 )n B aaad 1 K¢y ¢(i)) I is expected
s 1 5% (%m0t < 1))

Let HM¢(1)E2 = aK“ﬁ(O)"z (see Section 3.6.1). This implies

3.3 222
a1« @0 70, 2, ek n(0), 2
ola p 8 P

2,7(0) 2,1/2
ns S 13 hac ATPH )

(D.13)

The first-order sequence should converge if "(ﬂg(ZnATp))ZH LV I

because equation (D.12) then gives 172 )ATp"nns << 1. Combining this

with earlier results, one expects a j-order nk—quantum selective sequence

which is constructed from %—(j+l) phase cycles and %—(j+l) symmetrizations

j+
(and therefore has a cycle time t = (2n)(J l)/zATp) to converge if

I, (2007 )) 2l < 1 ana 1P (2n) (j“)/zmp)zn - U(J—((O)té)zu <« Fmt

¢

These constraints are intended to be conservative, and Chapter IV

shows that this is indeed the case. The size of the first nonselective

j+l)u , is

term, ﬂﬂ( ons
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1 +1)/2 =(J-1 74 ]
17+ ),nns(Zn)(J ) ATP < F(n)ﬂhij NnnSlGK(O))ZU(Arp)3(2n)3(3+l)/2
R TR T VAL Feme

- r@? 1701 1@ s )2 % an GHHED

' 2
- F) D272y "’TC(O)ATP)Z" G=1)/2 5 3%/ 443=5/4
(D.14)

and |R§2)lnns is given in equation (D.13), so
2

2 2.2 3.3
x (n 0;3‘1; IJ_C(O)ATPIZH G—{(O)ATP)ZHZ nalzK (T}C(o) p)3“2)1/2

(D.15)

We define the selectivity, S, to be Kllzﬂiio)l/ﬂi(izl)“, which is
=(0)

to a typical nonzero

J'C(O)t
[od

the ratio of a typical nonzero matrix element of X
matrix element of Ck(j+l))nns' We would like to calculate S as

approaches the limit of convergence, which is ﬂ(i‘o)tc)zﬂ 49 F(n)—l

Since t _ = (Zn)(j+1)/2ATp, n(i‘O)Arp)zu N (2n)‘(j+1?r(n)'1, and:

. 2
S = Kl/Zli(O)|/|ﬁ(J+l)unns - /2 (o3 /AHT/4

2 2 3
« @e s 2 pi @O inE @ nHYE (0.16)

Equation (D.16) is the same as equation (III.39).



Appendix E. Some Matrix Relations

This Appendix will only treat properties of matricies that are

101,102 .
and are required

not listed in standard linear algebra textbooks
for the calculations of this work.
E.1 The Norm of a Matrix

The general definition of a norm of a n x n matrix A is a real-

valued function A -+ Al such that:lOl

Al > 0 unless Aij = 0 for all i, j (E.1)
laal = lal 1A, where A is any scalar (E.2)
1A + Bl < 1Al + IBI (E.3)

Many choices for a norm are consistent with equations (E.1-3). The
most useful choice for coherent averaging theory is:9

/2 /2

A= (§le1jlz/n)1 = (Tr(a AT )y/m?t (E.4)

By inspection, IIf = 1, where I is the identity matrix. Several
properties of this norm derive directly from the definition of the trace

of a matrix; for example, lAl is invariant under umitary transformation.

Thus, if A=U A U+, ial = (Ai§ )1/2, the root-mean-squared eigenvalue of
A, and 1A™ = (Aiim )1/2, which is the square root of the (2m)th moment

of the eigenvalues of A. This implies 1a™1 Z_IA|m.

Other useful properties are:

-}.
(Te(U U )/n)l/2 = 1, where U is any unitary matrix.

/2 12 _ .ty

1. Hut

(Tr(aT A)/n)

L]

(Tr(a AT )/n)?

+A+" (from property (2)) = IBAl if A and B are Hermitian.

2. lal
3. 1IaBl = 1IB
Property (1) implies that this relation is also true if A and

B are unitary; however, it does not hold for general A and B.
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4. Again let A =U A U+, where A is diagonal (i.e. A is a normallo2

matrix). Then

2

_ 2 1/2
= (35, (A9

/2 /2

1AMl = (Tr(ama) /o) 2 = (traZa?y/m?t /n)

ii

2

Y2 _ 121 = 144 .

< qud  adh  m

Since the norm is invariant under unitary transformation this
2 2
implies that }ABI < 1Al = 1B}, where A and B are any two

similar normal matricies.

/2 /2

LTV NG | t
(Tr(A ABB )/n) = (EJ(A A)ij

1/2 = nl/zﬂAﬂ 5

s. lasl = (Tr(ABB+A+)/n)1

t 1/2
(BB )ji/n) 3

so 1aBl < nl/zlAﬂ iBl.

<@ (A*A)ij>(§j<BB*)ji)/n)

6. If A and B are two different matricies, but nothing else is

known about them, then (AB)ij is the sum of n numbers which are

2 2
. i | ABI ~n (I B .l
expected to add randomly This means that | AB ij n Aik ki
I2

k

E.2 Exponential Operators

cnlAa 12y (1B 1%) so IABI ~ 1Al IBI.
i kj

The exponential of a matrix is defined by the Taylor series:lo3
exp(A) = 1 + A +A%/2+ . . .+ A%l + . . . (E.S)
Exponential operators arise naturally in the solution of the density
matrix equation of motion, and frequently expressions such as exp(iAt)
Bexp(-iAt) must be evaluated. Clearly the unitary transformation which

diagonalizes A also diagonalizes exp(A), so if A =U A U+ then

exp(A) = U exp(A) U (E.6)

(exP(A))ij = 61j exp(A)ii
If A cannot be diagonalized (either because it is not normal or

because the diagonalization would be too cpmplicated), calculation of
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exp(A) is difficult. The Taylor expansion (E.5) only converges rapidly
i1f 1Al < 1, since FA™! >> 1Al i5 possible as explained in the last
section. Fortunately, angular momentum is the generator of rotations,
and this fact often makes explicit calculation unnecessary. For example,
exp(-iIxﬂ/Z) Iz exp(iIxn/Z) corresponds to a rotation of Iz by m/2 about
;he x-axis, and is therefore equal to-Iy.

Frequently an expression such as exp(A+B) must be simplified. 'If
[A,B] = 0, then exp(A + B) = exp(A) exp(B); otherwise the expressions
are complicated. Some useful expansions are:103-105

exp(a+3) = exp(A)exp(B)exp(( B,4] /2)exp(z ([A,[A,B]] + 2[B,[4,B1])...

(E.7)

exp(A)exp(B) = exp(A+BH{ A,B)/2 + [A,[A,B]]/12 + [[A,B],B] /12 + ...)

(E.8)
exp(A)B exp(-A) = B + [A,B] + [4,[a,8]]/2! (E.9)
A).. - B
(exp(a+B)) , = (exp(a)), 6, + Bij(exp: )lf A E"P(A)n)
11 T %45
+ I BikBk. { exP(A)ii - eXp(A)ii _ exp(A)kk - EXP(A)ijl
koAgy 7 Ak A1 T Ay A T Ay f
+ ... (E.10)

In equation‘(E.lO) A is assumed to be diagonal, and B is assumed to
be combletely off-diagonal. Equation (E.7) is usefwl when the commutators
cén be readily calculated; for example, if [A,[A,B}] =[B,[A,B]] =0
then exp(A + B) = exp(A) exp(B) exp([B,A]/2). Equation (E.10) is useful

1f 1Al >> 1BF, because the expansion is in powers aof 1BN/lAl.



E.3 Tables of Commutators

= jiI
[Ix, Iy] i1, (cyc)

1 =1/2+1; (1, 177 = (1, 1

[r, 11 =1 -1°;

(1, 1°1 = -1%5 117, 1°% = -17
0 1/2 0

- (1/2 0 ) Iy - <;/2
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(E.11)

(E.12)

(E.13)

-i/2 Lo (12 o
z 0 -1/2

(E.14)
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