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Abstract 

Using the Empirical Pseudopotential Method we have 

calculated electronic charge densities as a function of 

position in the unit cell for ZnS in a zincblende and 

ideal wurtzite structure. A comparison of the charge 

densities reveals the presence of a net polarization in 

.... 
the ideal wurtzite structure. Two representative k 

points are found whose total charge density is in very 

good agreement with the charge density obtained by 

summing over many points in the irreducible part of 

the Brillouin zone. 

I. INTRODUCTION 

1 
In a recent paper J. P. Walter and M. L. Cohen reported a 

calculation of electronic charge densities for seven diamond and zincblende 
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semiconductors using the Empirical Pseudo potential Method (EPM). 

In particular they studied and described the various trends in bonding and 

ionicity forGe, GaAs, ZnSe, a-Sn, InSb, CdTe, and Si. 

In this paper we wish to compare the electronic distributions in 

two different crystal structures of the same compound. Thus we have 

calculated the electronic charge density as a function of position in the 

unit cell for ZnS in the wurtzite and zincblende structures. Tte charge 

density was obtained individually for each valence and conduction band 

and for the sum of the valence bands from a band structure calculation 

using the EPM. Although we do not contend that the charge densities can 

reveal physically accurate quantitative details since the differences between 

zincblende and wurtzite are so small, they can certainly provide interesting 
potential. 

information about short and long range effects arising from the crystalline/ 

In Section TI we give a description of the Empirical Pseudopoten-

tial Theory and a discussion of the validity of the wavefunctions. In Sec-

tion III we proceed to discuss the calculational method used in obtaining 

the charge densities and in Section IV we describe and interpret the 

results. In Section V we give discussion of charge densities obtained 

-from representative k-points and in Section VI we make some concluding 

remarks. 

II. PSEUDOPOTENTIAL THEORY AND WAVEFUNCTIONS 

In this section we shall give ::1 brief description of the various 

aspects of the Empirical Pseudo potential Theory whir.h a rL~ r·eleva nt to our 
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calculation. A much more thorough and extensivP treatment can be found 

in reference 2 . 

In the EPM and other one electron theories one assumes that the 

crystal is made up of rigid tightly bound spherical ions and a system of 

valence or conduction electrons. It is the latter group of electrom which are 

of interest since they · are responsible for the physical and chemical 

nature of the crystal. One now separates the total one electron crystal­

line potential into two parts: (1) a set of spherical3 potentials centered 

on the atoms which makes up the ''cores", and (2) the potential every-

where else in a region outside the spheres called the interstitial region. 

In region (1) the potentials are strong in the sense that they have bound 

core and valence wavefunctions. In region (2) the potential is comparably 

weak and slowly varying. Thus inside the core the valence electron wave· 

functions will be atomic-like with many oscillations due to the large kine-

tic energy caused by the deep potential well, whereas in the interstitial 

region the valence electron wavefunctions can be taken to be plane-wave 

like. 
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In the pseudolX)tentia l theory one begins by expanding a E loch 
.... 

valence wavefunction 1/J ~r) in terms of orthogonalized plane wave::; v,r.. 

(OPW)'s: 4 

.... 
·~ -(r) = v,k 

where C!'k is defined from Eq. (1) and 1/J .... k is a tight- binding Bloch c, 

core wavefunction which is a solution of the total Hamiltonian with 

energy E • If one now operates on c Eq. (2) with this Hamiltonian 

one obtains a SchrBdinger equation for ~in terms of an effective poten­

tial V eff which has two contributions: (1) a local attractive potential 

due to the atoms and (2) a nonlocal repulsive potential which projects 

~on to the core states. In most ca:;es it is a good approximation to 

take repulsive potentials to be local which in turn simplifies matters 

considerably. This V ff which is now presumably small throughout the 
. e 

crystal and can be considered as an empirical pseudopotential which can 

be described usually in terms of a small set of parameters called form 

factors. The pseudopotential is then obtained by fitting the form factors 

to experimental optical data? This is called the Empirical Pseudopotential 

Melhod (EPM). 2 ' 5 The cpk is called a pseudowavefunction and, 

although Eq. (2) is now no longer valid, cp k for all practical 
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purposes is taken equal to l/J -k outs1de the region of the core. 6 Thus the v, 
essence of the p3eudopotential rrethod is to remove the strongly negative 

core potential and substitute it with a much weaker potentia 1 which will 

give the correct valence energy eigenvalues of the crystal. At the same 

time removing the atomic like wiggles of the valence wavefunctions inside 

the core leaving the correct valence wavefunctions outside the core. Since 

the core is usually very small, approximately 0.2 of the nearest neighbor 

distance, the pseudowavefunctions should be able to provide relevant in-

formation about bonding character, symmetry, and long range interactims. 

ill. CALCULATIONS 

In this section we shall set up the secular equation for the 

pseudopotential Hamiltonian and desctibe the method used in obtaining 

the electronic charge density. The SchrlSdinger equation is taken as: 

(3) 

and, using Bloch's Theorem: 

-+...... ~ ..... 
._.. ik·r ;;= -... -iG·r lf1 ;:(k r) = e d. ( G , k) e ·· 

n, n 
(4) 

where the set £ aj is the set of reciprocal lattice vectors for the parti­

cular lattice in question. Usually it is only necessary to take about 90 

plane waves in the expansion for 'fi{ to obtain good convergence for a 

charge density calculation? 
.... 

Now V(r) is the total crystalline pseudopotential so that it can 



be written as a sum of atomic pseudopotentials: 

v (;) = r ' T). v(r - R - "F)..? 
~A 

6. 

(5) 

where R is a real space lattice vector, t>.. is the position 

of the A th atom in the primitive cell and T 'A v(Y:) = v 
1 
(r) or v

2
(r), depen-

-+ 
ding on whether A denotes an atom of type 1 or type 2. Since V(r) has 

the periodicity of the lattice we can take: 

(6) 

-+ 
and if we use Eq. (5), V(G) can be expressed as: 

(7) 

where SS and SA are the symmetric and antisymmetric structure fac­

tors and VS and VA are the symmetric and antisymmetric form factors 

given by: 

(Sa) 

(8b) 

(9a) 

(9b) 

' ., 
: -~ 
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where n is the number of atoms in the primitive cell of volume n and 

P~ is +1 or -1 jf ).. denotes an atom of type 1 or type 2. Here we have 

assumed that the form factors are independent of energy, and sine e the 

atomic potentials are ta.ken to be spherical, the form factors are functions -of I G I only. If in addition we place the center of our coordinate system 

in such a way that the atoms of type 1 interchange their positions with 

atoms of type 2 under spacial inversion, then s8 and SA are both real. 

The s:=cu.Br equation is now easily obtained from (3) using (4), (6) and (3) 

and has the form: 

(10) 

where 

(1 7) 

In order to obtain good convergence in the calculation of energy eigen­

values and dipole matrix elements, it is U:sually8 adequate to diagonalize 

only a 25 x 25 matrix where 25 plane waves, are taken directly into account 

and the effect of 80 more plane waves is brought in through the use of a 

perturbation technique due to LBwdin.9 

In reference 5 iL is shown that for a 

zincblende crystal it is only necessary to consider six form fadors in the 
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exPansion of V(-;). The reason for this is that the form factors become very 

small after a certain cutoff IG0 I and higher V(G) can be accounted for through 

variations in form factors with lower G's. Therefore V(G) for IG I> !"G
0
1 

can be neglected. For the cubic 

case one can take 
10 IG0 I~-~ = 16 whkh leaves five possible lc I' s in 

the range 0 < !51 < !Go,. However, for some of these ra' 's the struc­

ture factors are zero so that one is finally left with just three symmetric 

and three antisymmetric form factors a.s p:trameters. 

In the hexagonal case one has fifteen !G I' s in the range 

0 < I G I < I'G0 I and if one considers the effect of the structure factors one 

would be left with ten symmetric and nine antisymmetric form factors. 

However instead of varying ninteen parameters BErgstresser and Cohen 
11 

used the form factors from the cubic case and interpolated to obtain the 

form factors ci the hexagonal case. This method was able to account well 

for the optical spectra of three hexagonal crystals and it is 

these form factors that we used in our :-;tudy of ZnS. 

Tre two crystal structures are shown in Fig. 1, with the wurtzite 
direction and 

structure aligning so that the c axis is in the z· / the zincblende structure is 

aligned with its (1 1 1) direction in the :.:. direction. TlE difference between the 

two structures occurs first at third nearest neighbors. 

All the crystal parameters us£~d in our calculation were obtained 

from Wycoff. 12 
In the zincblende case one only needs the lattice constant 

c 
a to specify the size of the structure; [or ZnS we take a "-' 5. 41 A. In c c 

0 

the wurtzite case, however, one needs three parameters: ah = 3. 811 A, 
0 

ch =_ 6. 223 A and u = 0. 375. Th~~ values for ch and u are for a 

• I 

.. 
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an ideal structure, i.e. perfect tetrahedral coordination . 
• 

We now have in principle all the information necessary to obtain 

the charge density. Since the wavefunctions are known as a function of 

band index we can postulate a "band" charge density: 

BZ 

= e L, 4' ~ k (I:) lfn 1{(;) 
n ' ' 

( 11) 

B. Z. 

= e ) [I:_ ri *(c- r,k)ol (G,k) 
~ C k n n 

(12) 

The total charge density is then given by 

= L Pn (r) (13) 
n 

where the sum in (13) is over the valence bands. 

The expression in Eq. (12) is a general result; however, the 

procedure involved in evaluating this expression depends on the symmetry 

properties of the crystal studied. The zincblende charge density calculation 

was carried out exactly as in -reference 1. The wurt-

zite charge density calculation will now be described in some detail. 

• The Brillouin Zone (B Z) for the hexagonal structure and its irreduci-

-ble part are well known. Although the energies E (k) are exactly the same 
n 

at related points in the BZ, the wavefunctions in general are not. Our 

procedure was to calculate the tp .... k in one twenty-fourth of the zone at n, 

48 points and obtain the rest of the If -k by rotations of 71'/3, inversions n, 
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and mirror reflections in k space. In order to find how the <f ... k trans-. n, 
form one must go back to real space and study the symmetry operations 

of the crystal. Since the wurtzite crystal has a symmetry classification 

of P6
3
mc, any rotations of 11'/3 in real spaceJmust be accomp:1nied by 

certain translations. Once the space group elements are found, the p!'o-

cedure to find the transformed wavefunctions is now simple. Let us 

assume that R- 1 is some rotation in the point group in the negative sense. 
< 

In orderto make U a symmetry operator of the wurtzite crystal we must 

take generally: 

(14) 

-+ 
where T is the approp1'iate translation operator with eigenvalue t'R. Now 

tfn, k(r) has the form: 

( 15) 

However 
...... ~ _., ...... 

10 kJU .... r) __ ik· u r r (G ... k-) iG • U r 
'fl i:"\ e L-.J <X. , , e n, _., n 

( 16) 

G 

is also a solution to H with exactly the same eigenvalue as Thus 

-we wish to find k' such that: 

-= if. -k(Ur) n, ( 1 '7) 

From (14) and (16) we have: 

l i 
, I 

i 

i 
I 

i ... 



(.; (J I ~~ ~ 
) ~~ o~} ~ '.) (;I <v ... ~ \) () 

and Eq. (19) follows from the fact that the set {G} is equal to the set 

[R-J ,G1 Now since 

_,.. _.. .,... _. 
_,. ik I • r r r;fi'. ~ iu • r 

lfn,k'(r) = e y"'fltu,K')e 
G 

11. 

(18) 

(20) 

a comparison of (20) with (19) reveals that if we let k' = Rk we obtain: 

(21) 

which is the required transformation expression. 

To obtain a transformation expression involving the inversion 

operation we must use the concept of the reversal symmetry. Thus we 

look at 

(jl :. k(r) ~ ell{· r ~ ...:er ,kle -iG· r (22) 

If we now compare (20) and (23) and take K' =I k= -ltwe obtain: 

* - C\ = ex. ( -G, kJ 
n 

(23) 

which is the desired expression. 

Finally we need to find the transformation expression for the mirror 

reflection operator. If we choose the mirror plane to be the plane defined 
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by r, M and A then we will have all the transformations necessary to 

span all of k spilc:<:: in:.:;idc the Brillouin zone. In real space this mirror 

plane becomes plane I shown in Fig. J. D: is clear that this mirror 

operator M is by itself a symmetry operator of the crystal. Thus pro-

ceeding as before: 

-+ - .... ...... 

lfn, R(Mr) eik· Mr 4:= rx. (G, k}e 1G·Mr (24) = 
n 

(; 

-- -+-+ 
-+ iMk·r ~ oc n (MG 'k) e iG . r (f. k(Mr) = e (25) 

n, 
(l 

From this it follows that: 

(26) 

and we now have all the transformations equations needed to obtain the 

wavefunctions throughout the Brillouin zone. 

N. RESULTS 

It would be appropriate at this point to say something more quantita-

tive about the size of the Zn and S cores. The electronic configuration 

of the Zn and Scores is 1s22s22p03:>23p63d 10 and 1s22s22p0 respec­

tively. Using the wavefunctions obtained by Herman and Skillman
2 

we 

found that: 

(i) 909{: of all the Zn core eledrons art1 within a radius or l% 1:K· or Ult~ 

.. 

' . 
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nearest neighbor distance. In p:l..rticular this radius contains 86% of 

the 3d shell, 93% of the 3p and 3s shells and approximately 100% of the 

rest. 

(ii) · 90% of all the S core electrons are within a radius of 0. 16 of the 

nearest neighbor distance. In particular this radius contains approximately 

88% of the 2p and 2s shells and approximately 100% of the ls shell. 

We are confident that for such small cores the wavefunctions are 

quite adequate. 

A. Cubic. 

In the cubic case, chains of bonds !hat lie in a plane only occur in a 

zig-zag pattern. If one sights along the direction of any bond one sees 

the same symmetrical distribution or environment of atoms. Thus the 

effects of this environment through long range electrostatic interactions 

will be along the direction of the bonds and the short range tetrahedral 

symmetry will be preserved. 

We found the charge density of ZnS in the zincblende structure to be 

very similar to that of ZnSe obtained by Walter and Cohen. 1 Because of 

this similarity we show in Fig. 2 only a contour plot of the total charge 

density. Trere is only one type of plane of interest and that is the (11 0) 

plane or the plane formed by the dotted lines in Fig.1b. Tre charge 

density was evaluated on a grid of over 1500 points. In Fig. 3 we show 

a contour plot of the total crystalline pseudopotential, obtained from (6), 

in the same plane as the charge density. The potential was evaluated on 
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a grid of over :1500 points and the zero of potential was chosen arbitrarily 

such that the avL~raq c c r·ystalline potential is ZE-)ro. The tetrahedral 

symmetry in Figs. 2 and 3 is evident. The amount of charge around the 

S atom within a radius of 3/4 the nearest neighbor distance is approxi-

mat ely 7. 3 e, and only 2% of this charge is in the core region. 

E. Hexagonal. 

In the wurtzite structure we have four atoms in the unit cell so that 

we have eight valence bands. We found that the charge density of bands 

1 and 2 are almost identical so that in Figs. 4, 5, o, and 7 we show con-

tour plots of Lhe charge density for l)ands 1, 3, 4, ~), 6, 7 and fl. In 

Fig. 7 we also show a plot for the hypothetical situation where the con-

duction band is full of electrons. The plane in these figures is the 

(1 1 O) plane or plane I in Fig. 1a. The charge densities were evaluated 

on a grid of more than 4000 points. We notice that bands 1 and 2 are 

very s-like whereas the rest of the bands have pronounced p-like 

character. In particular bands 6 and 8 are almost pure pxy -like and 

p -like respectively. We also notice that the character of the conduc­z 

tion band is almost free electron-like although there still is some locali-

zation around the S. atoms. In Fiq. 8 we show a plot of the total charge 

density in plane I. In this plane the atoms form square wave-like chains 

of bonds which cannot be found in zincblende. The zig-zng patterns in 

the cubic ca::-Je, however, can be found in the (1 0 l) !JlanP. or plnne [I 

in Fig. la. A contour plot of the tot:1l charge density in this plane is 

• 
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• shown in Fig. 9. In Figs. 10 and 11 we also show contour plots of the 

total charge density in planes III and N. These planes help provide a 

three-dimensional view of the charge density. Comparing Figs. 8 and 9 

we noticE? immediately an assymmetry in the electron distribution. Al-

though the ionic cores are in a perfect tetrahedral arrangement the 

charge density is not. There seems to be a difference between bonds in 

the z directions and bonds in the other three corresponding tetrahedral 

directions. Firstly the maximum charge density occurs only for bonds 

in the z direction and secondly the charge density is pushed slightly out 

of the bond for those bonds which are not in the z direction. This asym-

etry is actually a direct manUestation of the potential. This is clear in 

Fig. 12 in which we show contour plots of the crystalline pseudopotential 

in plane I. 

Actually these results are not surprising. In the zincblende structure 

the environment of each bond is the same for all bonds. In the wurtzite 

structure, however, this is not the case. If one sights along a bond in the 

z direction all the atoms which affect it are placed symmetrically, in 

planes perpendicular to the z direction. The net effect of these atoms is 

then directed along the bond. If one now sights along any other bond not 

in the z direction one finds an asymmetrical distribution of atoms. The 

net effect of this type of environment is not directed along the bond, but 

actually directed slightly out of the bond. To show this in a simple way 

consider the following model. We a:;sume we can construct a ZnS crystal 



out of two types of constituents: (1) positively charged 7n cores with 

a charge of 2e- and (2) S cores surrounded by a perfect tetrahedral 

distribution of electrons as in Fig. 2 of the cubic charge density. The 

net charge on this second part being -2C?-. We are thus taking implicitly 

into account the short range interactions and we shall be interested in the 

effect of long-range electrostatic interactions on the bond electrons of 

type (2) constituents. If we now arrange these constituents in a zinc-

blende structure and calculate the net electric field acting on th(~se 

electrons we find of course that the field is directed alon<J the bond 

preserving the tetrahedral symmetry. However, if we construct a wurt-

zite crystal out of these constituents and calculate the net electric field 

on the electrons in the diagonal bonds we find that the field is directed 

primarily along the bond direction apart from a small z component which 

has the effect of pushing electrons out of the bond in the positive z diree-

tion. This is exactly what we find in our charge densitiE:~s. 

This asymmetrical distribution of charge in "ideal" wurtzitewill 

produce a polarization. We can calculate the dipole moment p per 

primitive cell analytically using the fourier expansion of the chargf) 

density. We find: 

-19 p ftJ 1 0 esu c m . (27) 

This is only about 50 times smaller than a usual ferroelectric-like 

BaTi0 3. Although we do not expect our value for p to be accurate we 

do believe that there will be a resultant polarization. This polarization 

• 
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will then change the electronic and core positions so that the crystal reaches 

a lower energy state and the polarization is minimized. This tempts one to 

suggest that the nm-ideal cja ratio found' in real crystals results from changes 

in the crystal structure to reduce p. W8 are in the process of further inves­
tigations alone these lines. 

VI. REPRESENTATIVE k VECTORS FOR TOTAL CHARGE DENSITY 

... 
The idea here is to find a few k points whose charge density will 

give a good approximation to the total charge density. Baldereschi 14 

first proposed this and obtained one representative K point which gave 

an approximate total charge density for compounds in an fcc lattice. 

Chadi and Cohen15, using wavefunctions expanded in terms of Wannier 

--functions, obtained three representative k points at whose weighted sum 

of charge densities gives better agreement than the Baldereschi point. 

In this section we wish to present a simple method of obtaining the 

same conditions for the k points without using any wavefunctions. Let 

f'C;) be defined in the following way: 

" ... -+ f (k,r) (28) 

where p<.k.,~ is the charge density of the point k and f.. T ~ represents 
.... /'<. 

the set of point operations for the point k. Now fr;.Ci) is a periodic 

-function of k, so that we can expand it in the following way: 

A fi': 3 '}" A -; ~ ii{ •1 
p\k,r; = yf(k,r1e . 

..t: 
Now since f (k,?) = p(TK, r) , 'f(1, r) = p(T 1, r). Therefore 

(29) 

-+ -,. ...... 
f(k, r) = f f(J.' ~ J;. eik· T J. (30) 

A-+-+ p (k, r) 
-+-+ _..~ 

= ~ p(f., r) '{ (k,J.) (31) 

..1-
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where f(O, ?) is the total charge density in question. Thus if we could 

find a k0 that makes all the $ (k,1) Pqual to zero for 1 1- 0 then 

"- -p(k0 , r) would be exactly equal to the total charge density. We have 

found that p(k,?) is a slowly varying function ofk so that we expect the 

p (1,?) to decrease in magnitude as 111 increases. Th= object then is 

to find a k"0 which will make as many of the 56~0 ,1) for small 111 equal 

to zero as possible. The Ealdereschi point gives ~ equal to zero for 
and Cohen · 

the first two 111 shells. The Chadi/scheme gives '( for the first seven 
..... 

shells equal to zero. In this calculation we obtained two k points for an 

hcp lattice which give ~ equa 1 to zero for the first ten shells except for 

the fifth shell. The total charge density we obtained using the average charge 

density of these points, agrees very well with this calculation. 

The points are given by: 

kl = (~3 ~3 1) 
4 ' 8 ' 4 

(- .J3 - .J:3 1 ) 
k~ = \B ' -s- ' 4 

and the components are with respect lo the primitive reciprocal lattice 

- -+ -+- A A 
vectors A, E, C for hexagonal with A • B = 0. 5. 

VII. SUMMARY AND CONCLUSIONS 

We have obtained the charge dertsities for Zn..S in th(~ :.dneblende ;md 

ideal wurtzite structures by summing over 4B point~; in tlw irredudbl(: 

part of the Erillouin zone. We have found that we can obtain very good 

• 

.. 
i 

I .. 
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agreement with our calculation for the wurtzite total charge density (which 

- -used many k points) if we only use two k 

. ( ..f3 ..f3 1 ) . ( . ..f3 ..f3 1 ) 
pomts 4 , 8 , 4 and <s' --8-,4 . 

The charge density for ZnS in the zincblende structure was, as 

expected, very similar to that of ZnSe. In the ideal wurtzite case 

we found that we have a net polarization. This was shown to 

be reasonable and cannot be restricted by symmetry arguments. The 

effect of this polarization will be to displace the electrons and cores from 

the ideal configuration to a configuration with less energy and a minimum 

polarization. It is therefore tempting to suggest that this may be the 

reason why no known wurtzite crystals have been found to exist with an 

ideal c/a and u. 
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Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

FIGURE CAPI'IONS 

(a) Wurtzite and (b) zincblende crystal structures. The wurtzite 

structure is aligned with the c axis along the z direction and zincblende 

is oriented with the (1 1 1) direction pointing along the z direction. 

Total charge density for ZnS in zincblende structure, (1 1 0) plane. 

Crystalline pseudopotential for ZnS in zincblende structure, (1 1 0) plane. 

ZnS wurtzite charge density- bands 1 and 3, (1 1 0) plane. 

ZnS wurtzite charge density - bands 4 and 5, (11 0) plane. 

ZnS wurtzite charge density - bands 6 and 7. (1 1 0) plane. 

ZnS wurtzite charge density - bands 8 and 9, (1 1 0) plane. 

ZnS wurtzite total charge density in plane I, (1 1 0) plane . 

Z.nS wurtzite total charge density in plane II, (1 0 1) plane. 

Fig.'' 10. ZnS wurtzite total charge density in plane IIJ, (O 0 1) plane. Only the 
S atoms lie in this plane. 

Fig. 11. ZnS wurtzite total charge density in plane IV, (1 0 0) plane. Only the 
S and Zn atoms in the center of the figure lie in this plane. 

Fig. 12. Crystalline pseudopotential for ZnS in wurtzite structure in 

plane I, (1 1 0) plane. 
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.----------LEGAL NOTICE---------...... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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