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* 

-TO RELATIVE PERMEABILITY PARAMETERS 

G.S. Bodvarsson, M . J .  O'Sullivan, and C.F. Tsang 
Earth Sciences Division, Lawrence Berkeley Laboratory 

Univer i i ty  of Cal i forn ia  
Berkeley, Cal i forn ia  94720 

INTRODUCTION 

I n  two-phase flow through a porous material, t he  movement 
of each individual  phase i s  retarded by the  presence of the 
other ;  the degree of in te r fe rence  depending, among other  things, 
on the volumetric proport ion of the two phases. This phenomenon 
is  expressed mathematically by the  sa tura t ion  dependent r e l a t i v e  
permeabili ty funct ions bl and k,, f o r  the l i qu id  and vapor 
phases respect ively.  Because the two phases move d i f f e r e n t i a l l y  
(weighted by the r e l a t i v e  permeabili ty functions) the mixture 
behaves l i k e  a f l u i d  with a saturation-dependent "effective" or  
to ta l  kinematic v i scos i ty  Vt given by: 

- = - + -  1 krl krv 
V 1 V 

V V 
t 

where V i  and Vv are the kinematic v i s c o s i t i e s  of the l i qu id  and 
vapor phases respect ively.  Similar ly ,  t h e  enthalpy transported 
by the mixture depends on the r e l a t i v e  permeabili t iy functions and 
is d i f f e r e n t  from t h e  in-place enthalpy. 
hf is given by: 

This "flowing" enthalpy 

where h i  and hv are the l i qu id  and vapor enthalpies  respectively.  

f mass and energy i n  a geothermal reservoir  
s t rongly  influenced by the  magnitude of the t o t a l  kinema 

v i scos i ty  and the  flowing enthalpy, which i n  turn  obviously 
depend on the nature  of the r e l a t i v e  permeabili ty functions 
*(equations 1 and 2). Unfortunate he funct ional  forms of k r l  
and k,, i n  terms of l i q u i d  s a t u r a  
known and are very  d i f f i c u l t  t o  d 
iments o r  f i e l d  data. Various prelimina curves have been 
assumed and used by a number of modelers 

S i  are not present ly  
e from laboratory exper- 

n t  work thre roblems are con dered; (1) the 
t and hf to  variations i n  the r e l a t i v e  

permeabili ty functions; (2) the  determination of V t  and hf 
from well-test da ta ,  following which a method of is suggested 
t o  use these r e s u l t s  together with theo re t i ca l  p l o t s  of k r l  and 
krv versus hf t o  deduce the general  shape of the r e l a t i v e  
permeabili ty functions is suggested; and (3) the e f f e c t  of the  

ti 
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r e l a t i v e  permeability functions on the pressure decl ine and 
flowing enthalpy build-up during a constant rate production test. 
It is shown that the cha rac t e r i s t i c  rise i n  the flowing enthalpy 
from i ts  i n i t i a l  value t o  a s t ab le  value a f t e r  a moderate time is 
st rongly influenced by the  dependence of hf on S i  (and hence k r l  
and krv on Si ) .  

PREVIOUS VORK 

Various invest igators  have studied the  r e l a t i v e  permeability 
functions. 
curves has been reported, among others ,  by Corey (1954), Chen e t  al., 
(1978), and Counsil and Ramey (1979). 
Ramey (1978) used flowrate and enthalpy da ta  from t h e  Wairakei 
geothermal f i e l d  i n  New Zealand t o  obtain information about the 
r e l a t i v e  permeabilty ameters. Numerical modeling s tud ie s  of 
the s e n s i t i v i t y  of re 
curves have been reported by Jonsson (1978), Sun and Ershaghi 
(1979) and Bodvarsson et-al.,  (1980). 
i l l u s t r a t e d  e f f e c t s  of the r e l a t i v e  permeabi l i t ies  on the pressure 
drop and enthalpy var ia t ions  during production from a s ingle  w e l l  
by considering r e l a t i v e  permeability curves suggested by Corey 
(1954) and Grant (1977) . 

Experimental work t o  determine the r e l a t i v e  permeability 

Grant (1977) and Horne and 

voir-behavior t o  r e l a t i v e  permeability 

Final ly ,  Sorey e t  al., (1980) 

SENSITIVITY STUDY 

Various r e l a t i v e  permeability curves f o r  steam and l iqu id  
water have been proposed i n  the literature (Corey, 1954; 
Chen et  al., 1978; Home and Ramey, 1978; and Counsil and 
Ramey, 1979). However, s ince  the suggested curves vary widely, 
the choice of r e l a t i v e  permeability curves t o  be used i n  s tud ies  
of geothermal systems is ra ther  a rb i t ra ry .  
s tage i t  is important t o  determine which cha rac t e r i s t i c s  of the 
relative permeability curves are s igni f icant .  

Therefore a t  t h i s  

In the present study a t t en t ion  is mainly confined t o  either 
Corey type curves o r  s t r a i g h t  l i n e  curves (see Figure 1). 
most important cha rac t e r i s t i c s  of these curves are the "cutoffs" 
where steam or  water becomes e i the r  f u l l y  mobile or  immobile 
(four possible  cutoff 6 ) .  

The 

We have conducted a s e n s i t i v i t y  study t o  determine the 
r e l a t i v e  Importance of each of the cutoffs.  The approach used is 
qui te  simple; f o r  horizontal  flow (no gravi ty)  the r e l a t i v e  
permeability curves influence reservoir  behavior only through the 
flowing enthalpy, h f ,  and the  t o t a l  kinematic v i scos i ty ,  vt .  
Therefore, by observing the  e f f e c t  of the individual cu to f f s  on 
these quan t i t i e s ,  t h e i r  r e l a t i v e  importance can be determined. 
In  this s e n s i t i v i t y  study, f i v e  s t r a i g h t  l i n e  functions are 
considered: 
w h a t  .we cal l  the  "X" curves, which correspond t o  the c 
any cu to f f s  (broken l i n e s  in Figure 1). 

four possible curves each having one 30% 
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Figure 2 shows-the e f f e c t  of the cu to f f s  on the  flowing 
enthalpy. For comparison the "X" r e l a t i v e  permeabili ty curve is 
shown as the th ick  so l id  l ine.  The f igu re  shows that when 
considering flowing enthalpy, t he  immobile l i qu id  cutoff  is much 
more important than the  other cutoffs.  

Figure 3 shows the e f f e c t  of the  cu to f f s  on the total  
kinematic v i scos i ty  ( u t ) .  Again r e s u l t s  based on the "X" 
r e l a t i v e  permeabili ty curves are included f o r  comparison. 
t h i s  case,  both of t h e ' l i q u i d  water cu to f f s  are considerably 
more important than the vapor cutoffs.  
percentage deviat ion from the  **X" curve ( the  th ick  so l id  l i n e ) ,  
t h e  immobile l i qu id  water cutoff is more s ign i f i can t  than the  
f u l l y  mobile l i qu id  water cutoff.  
are not very important. 
importance of the cu to f f s  are obtained by Sun and Ershagi (19791, 
i n  considering t h e  heat output from a one-dimensional system. 

In 

However, i n  terms of the  

The vapor cu to f f s  again 
Similar  conclusions regarding t h e  

WELL TEST DATA 

During w e l l  tests i n  a two-phase reservoi r ,  the downhole 

of the  'curve v a r i e s  with reservoi r  conditions 
oes not follow a s t r a i g h t  l i n e  (Theis curve) 

a dec l ine  curve similar t o  t h a t  shown i n  Figure 4. 

because the  mobil i ty  changes as the sa tura t ion  changes near the  
w e l l .  
can be used t o  ca lcu la te  the mobil i ty  a t  the corresponding 
pressure using the  formula: 

Nevertheless, t h e  slope a t  any point  on the  decl ine curve 

[31 kH 2.3034 - =  
4m ut 

(See Garg, 1978; Sorey e t  al., 1989; o r  O'Sullivan, 1980.) 
flowing enthalpy of the produced f l u i d  typ ica l ly  follows a curve 
l i k e  that shown i n  Figure 5, r i s i n g  from an  i n i t i a l  value t o  a 
higher s t ab le  value a f t e r  a moderate time. 
ments of pressure and flowing enthalpy thus enable the determination 

The 

Simultaneous measure- 

provided kH is known (e.g., from a n  in j ec t ion  

n 

By making these  ca lcu la t ions  f o r  a number of values  of flowing 
enthalpy ( e i the r  a t  d i f f e r  
d i f f e r e n t  production rates 
can be obtained. 
s a tu ra t ion  S1 is not known and cannot be measured s a t i s f a c t o r i l y ,  
the  r e l a t i v e  permeabili ty curves cannot be obtained i n  terms of 
the  saturat ion.  

RELATIVE PERMEABILITIES VERSUS FLOWING ENTHALPY 

times during t h e  test o r  by using 
l o t s  of krv and kr- versus hf 

However, because the corresponding l i qu id  

Although conventional relative permeability curves cannot 
be obtained from f i e l d  data ,  the p l o t s  of k r l  and k, versus 
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hf,are useful. 
curves and Corey curves (Figure 1) are shown i n  Figures 6 
and 7. 

Theoretical p l o t s  of this type f o r  the "X" 

A t  present the Corey r e l a t i v e  permeability curves are 
most widely used i n  reservoir  numerical modeling. 
i l l u s t r a t e d  i n  Figure 1, indica te  that under two-phase conditions, 
where both phases are mobile, t he  mobili ty of each phase is 
severely retarded by the  presence of the other. 
individual  relative permeabi l i t ies  never reaches unity,  
where one of the f l u i d s  is immobile. The other curves s 
Figure 1 are the "X" r e l a t i v e  permeability curves. 
curves, t he  mobili ty of each phase is a l i n e a r  function of the 
sa tura t ion ,  and no cu tof fs  are present. 
the other extreme; that is, t he  phases are independent of each 
other  and t h e i r  mobi l i t i es  are only a function of t he i r  volume 
fract ion.  
l i k e l y  extremes of what the real r e l a t i v e  permeability functions 
may be. 

The curves, 

The sum of the 

For these 

The "X" curves represent 

Thus these r e l a t i v e  permeabi l i t ies  represent  the  

Figure 6 shows the flowing enthalpy as a function of 
the l i qu id  relative permeability f o r  the Corey and "X" curves. 
The f igure  shows that although the two curves have d i s t i n c t l y  
d i f f e r e n t  cha rac t e r i s t i c s ,  they enclose a r e l a t i v e l y  small 
zone. 
da ta  w i l l  f a l l  within this zone. 
when p lo t ted  against  flowing enthalpy f o r  the Corey and the "X" 
r e l a t i v e  permeability curves (Figure 7), a l s o  illustrates the 
basic difference between the two cases, although the curves are 
fu r the r  apart .  

It is probable that k r l  - hf values determined from f i e l d  
The vapor r e l a t i v e  permeability, 

The comparison of f i e l d  r e s u l t s  with the curves shown i n  
Figures 6 and 7 should give a clear indicat ion of whether the 
r e l a t i v e  permeability curves a t  the geothermal f i e l d  i n  question 
more closely resemble the Corey o r  the "X" r e l a t i v e  permeability 
curves . 
THE RISE I N  FLOWING ENTHALPY 

As explained earlier, the  flowing enthalpy i n  a constant 
rate w e l l  test reaches a s t ab le  value a f t e r  some t i m e .  Sorey 
e t  al., (1980) studied the  rise i n  flowing enthalpy using an 
approximate ana ly t ica l  method and found it  depended s t rongly on 
which r e l a t i v e  permeability curves were used. 
semi-analytic technique developed by O'Sullivan (1980) t o  make a 
more de ta i l ed  study of the e f f e c t  of the r e l a t i v e  permeability 
curves on the rise i n  the flowing enthalpy. In order t o  explain 
the main fea tures  of the r e s u l t s  a br ief  ou t l ine  of the basic 
equations is required. 

Basic Equations 

We have used a 
i? 

t 

Using the  transformation rl = r/ t the mass and the energy 
balance equations for  a two-phase system can be wri t ten  as 
(O'Sullivan, 1980): 
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- dQm a am 
da 2 drl + - -  = o  141 

+ - -  a ae = o  151 - dQe 
dn 2 da 

I n  equations (4) and (S) ,  
accumulation terms, respect ively,  where 

and 4 are the mass and the energy 

The dens i ty  ( p )  and enthalpy (h) of the f l u i d  mixture are defined 
as : 

P = PISl + PVSV 

h = <PlhlS1 + pvhvSv)/p [9  1 

The mass (Qm) and the  energy (Qe) f luxes  can be wr i t t en  
(ignoring conduction) as: 

1101 

[ I l l  

Qm = % 

where the mobil i ty  Tm is given by T m =  k/Vt. Using Qm, p, 
and S1 as independent var iab les ,  equations (41, (51, (101, 
and (11) can be combined t o  yield:  

Equations (12) and (13) w i l l  be used as a bas i s  i n  the following 
discussion . 
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Numerical Studies 

The phenomenon of s t ab le  enthalpy during a constant rate 
well test has been observed i n  w e l l  da ta  from Wairakei and 
i n  numerical simulations of w e l l  tests (Sorey et al.,  1980; and 
O'Sullivan, 1980). 
flowing enthalpy can be obtained by considering equation (13) i n  
the  l i m i t  as n -> 0 ( l a rge  times) which y ie lds  simply: 

Analytical ve r i f i ca t ion  of a long-time s t ab le  

- dhf 0 or  hf = constant 
dn (141 

As n -> 0 and hf approaches i ts  constant value, equation (12) can 
be approximated by: 

dS1 
dh f 

Q m d r ,  
[151 

dS1 

In  the  above der ivat ions,  the  chain ru l e  for  p a r t i a l  d i f fe ren ta t ion  
has been used i n  the formula: 

ah ah 

dr, [161 

The second term on the r igh t  hand s ide  of equation (16) i s  
small and therefore  t h i s  equation can be used i n  a d i sc re t e  form 
t o  approximate the rise i n  flowing enthalpy as follows: 

1171 

The accuracy of t h i s  formula i s  confirmed by independent 
calculat ions.  
change i n  sa tura t ion  up t o  the t h e  when a s tab le  value of the  
flowing enthalpy is reached. 
dependence of Ahf on the r e l a t i v e  permeability curves is 
obvious. 
a l so  Ahf, is dependent upon several  other  fac tors ,  including 
i n i t i a l  conditions (T, S i ) ,  porosity,  mass flowrate and t o t a l  
kinematic mobility. The relat ionships  between Ahf and these 
parameters must be establ ished before Ahf can be used t o  
invest igate  the shape of the r e l a t i v e  permeability curves. 

In equation (171, AS1 represents  the t o t a l  

From equation (17) the  strong 

However, the  sa tura t ion  change AS1, and therefore  

Figure 8 shows the rise i n  flowing enthalpy versus the 
i n i t i a l  flowing enthalpy for  th ree  i n i t i a l  temperatures. The 
curves i n  Figure 8 show tha t  the rise of flowing enthalpy i s  

a 

2 

V 
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dependent upon the i n i t i a l  temperature and the  i n i t i a l  s a tu ra t ion  
i n  the reservoir .  The dependence on the i n i t i a l  temperature can 
be explained by considering equations (12) and (17). 

The sa tu ra t ion  changes given by equation (12) are more 
pronounced a t  lower temperatures (o r  equivalent ly  a t  lower 
pressures) ,  pr imari ly  due to  the lower to ta l  kinematic mobili ty 
(T,) a t  lower temperatures. Consequently, t h e  flowing enthalpy 
changes w i l l  be l a r g e r  a t  lower temperatures (Equation 17). 
dependence of Ahf on the i n i t i a l  s a tu ra t ion  can be explained 
using Figure 9. For the Corey relative penneabilty curves,  the 
change i n  flowing enthalpy is most pronounced a t  medium values of 
s a tu ra t ion  and the  rise i n  the flowing enthalpy is therefore  
l a r g e s t  a t  those i n i t i a l  s a tu ra t ion  values. 

The 

The rise i n  flowing enthalpy a l s o  depends on the porosi ty  
Q and the mass flow rate Qm. 
t h a t  i n  Figure 8 ,  but a higher porosi ty  is used i n  the  simulation 
(Q = .25). 
ones shown i n  Figures 8 and 10 using a n  approximate ana ly t i ca l  
procedure. 
rise i n  flowing enthalpy than the curves shown i n  Figure 8 and 
10. The d i f fe rence  is due t o  the approximations involved i n  
der iving t h e  ana ly t i ca l  expressions used by Sorey e t  al. 

Figure 10 shows a p lo t  s imi la r  t o  

Sorey e t  al., (1980) developed curves similar t o  the  

Their curves i n  general  show a considerably smaller 

The re la t ionship  between the rise i n  flowing enthalpy and 

nd several values of i n i t i a l  sa tura t ion ,  I n  a l l  of the 
the lower the porosi ty ,  t h e  g rea t e r  is the  rise i n  

porosi ty  is shown i n  Figure 11 f o r  an i n i t i a l  temperature of 

enthalpy. In  cases of high i n i t i a l  l i qu id  sa tura t ion ,  a 
l i n e a r  re la t ionship  between the rise i n  flowing enthalpy and 
(l-Q)/Q is  observed f o r  porosi ty  values higher than Q = .05. 
A t  lower i n i t i a l  l i qu id  sa tu ra t ions  non-linear e f f e c t s  are more 
pronounced. We have confirmed these r e s u l t s  by an  independent 
a n a l y t i c a l  study, but e l imi ted  space does not allow elabor- 
a t i o n  of t h i s  work. 

tween the mass f lowrate  and the 
enthalpy is shown i n  Figure 12. Three curves representing 

d i f f e r e n t  values  of the i n i t i a l  s a tu ra t ion  are shown, but  in  a l l  
three cases, t h e  i n i t i a l  temperature of 250% and a porosity of 
0.05 was used. The curve epresenting +high i n i t i a l  
(S i  > .80) show a n  approx t e l y  l i n e a r  re la t ionship  
flowrate and t h e  s t a b l e  flowing enthalpy, but at  lower i n i t i a l  
s a tu ra t ions  ( S i  ,641 a more non-linear behavior is observed. 
The near l i n e a r  l a t ionsh ip  a t  high i n i t i a l  l iqu id  sa tu ra t ions  
can be derived a n a l y t i c a l l y  by considering equations (12) and (17). 
A t  high i n i t i a l  sa tura t ions ,  t h e  der iva t ives  dhf/dp and 
dhf/dS1 are negl ig ib le  for  the Corey r e l a t i v e  permeability 
curves (see Figure 8 ) ,  and equation (12) can be wri t t en  as: 



dSe 

dn 
n- = -  - 

The terms i n  the numerator and denominator of equation (18) are 
almost constant a t  higher i n i t i a l  l iqu id  saturat ions.  Consequently, 

and from equation (17) ,  

I201 
% 
Tm 

Ahf a - 

The s l i g h t  non-linear e f f e c t s  i n  the high i n i t i a l  s a tu ra t ion  
curves shown i n  Figure 11 are probably due t o  the  f a c t  t h a t  Tm 
decreases s l i g h t l y  with pressure and saturat ion.  

I 

Sorey e t  al. (1980) observed a near l i n e a r  re la t ionship 
between the flowing enthalpy apd f lowrate  from wells i n  Wairakei, 
New Zealand. Their use of l i n e a r  p lo t s ,  such as the one shown 
i n  Figure 11, t o  obtain the i n i t i a l  reservoir  enthalpy f o r  the 
w e l l s  i n  New Zealand is w e l l  j u s t i f i ed .  However, i n  the case of a 
low i n i t i a l  sa tura t ion ,  l i n e a r  aproximations may be somewhat i n  error .  

In l i g h t  of the preceeding discussion it  is clear that the 
rise i n  flowing enthalpy is complicated by various fac tors  such 
as the porosity,  f lowrate,  and the  i n i t i a l  conditions. However i f  
a l l  of these fac tors  are known, the  change’in sa tura t ion  may be 
approximated and the  slope of the hf versus S 1  curves (dhf/dS1) 
determined (equation 17). 
regarding the  re la t iave  permeability parameters. 

This i n  turn w i l l  y ie ld  information 

Calculation have been carr ied out fo r  several  d i f f e ren t  
For example, Corey curves and relative permeability curves. 

l i n e a r  curves which produce the same flowing enthalpy but a 
d i f f e ren t  gradient f o r  dhf/dS1 a t  a pa r t i cu la r  i n i t i a l  s a tu ra t ion  
have been investigated.  Work on the problem is continuing. 

CONCLUSIONS 

The primary r e s u l t s  obtained i n  t h i s  study are as follows: 
1 

1) 

2) 

The l iqu id  cu tof fs  are the most important cha rac t e r i s t i c s  
of the r e l a t i v e  permeability curves. 
The re l a t ive  permeability parameters can be determined 
from f i e l d  data i n  terms of the flowing enthalpy, and 
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compared t o  theore t ica l  curves (e.g., Corey and "X" 
curves 1 
The rise i n  flowing enthalpy can give information 
regarding the  r e l a t i v e  permeability curves providing 
parameters such as WI and 4 are known (e.g., from 
in jec t ion  .and interference tests). 

3) 

NOMENCLATURE ' I 

C r  
h enthalpy 
hf = flowing enthalpy 
h l  
h, 
H reservoi r  thickness 
k = permeability 
b1 = r e l a t i v e  permeability of l iqu id  phase 

%I =. thermal conductivity 
m 
P = pressure 

r = r a d i a l  dis tance 
61 = l iqu id  sa tura t ion  
S, = vapor sa tura t ion  
S re  = res idua l  l iqu id  sa tura t ion  
S, = res idua l  vapor sa tura t ion  
t = t ime 
T = temperature 
(I = porosity 
p densi ty  of vapor li 
p i  = l iqu id  densi ty  
p r  = rock densi ty  (kg/m3 
pv = vapor densi ty  
U e  
vt t o t a l  kinematic v i scos i ty  

= spec i f i c  heat of rock 

= enthalpy of saturated l iqu id  
= enthalpy of saturated vapor 

= r e l a t i v e  permeability of vapor phase 

= slope of semi-log pressure response 

= mass flowrate per uni t  thickness 

= kinematic v i scos i ty  of l i qu id  water 

= kinematic v i scos i ty  of vapor 
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FIGURE 1. 
relative permeability curves. 
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FIGURE 2, 
enthalpy and liquid saturation for linear 
relative permeability curves. 
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FIGURE 3. The relationship between 
kinematic viscosity and liquid saturation 
for l inear relative permeability curves. 

FIGURE 4. Pressure transient behavior 
luring a well test in a two-phase 
reservoir. 
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FIGURE 6. The relationship between 
flowing enthalpy and liquid relat ive 
permeability for Corey and "XI' 
relat ive permeability curves. 

FIGURE 5. 
test in a two-phase reservoir. 

Flowing enthalpy during a well 



m -  

I 

z - 13 ... 

2600- 

2400 - 
* 

C 
3 

- 

0:l 6 2  0:s OA O h  d6 0; de 0.; 1.0 

X B L ~ I ~ - ~ 5 ~ 3  
krv 

FIGURE 7 .  The relationship between 
flowing enthalpy and vapor relat ive 
permeability for Corey and "X" 
re la t ive  permeability curves. 
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FIGITRE 9 .  The relationship between 
flowing enthalpy and liquid saturation 
for the Corey re la t ive  permeability 
curves. 
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FIGURE 10. The relationship between 
the rise in flowing enthalpy and the 
i n i t i a l  flowing enthalpy for a 
porosity of Q = .25. 
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FIGURE 11. 
and the rise in flowing enthalpy. 
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FIGURE 12. The relationship 
between flowrate and the rise 
in  flowing enthalpy. 


