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FOREWORD

The National Resource for Computation in Chemistry (NRCC) was
established to make informationm on existing and developing computational
methodologies available to all segments of the chemistry ccxmunity, to
make state-of-the-art computational facilities (hardware and software)
accessible to the chemistry community, and to foster research and
development of new computational methods for application to chemical
problems.

Workshops form an integral part of the NRCC's program. Consultation
with key workers in the field led us to the conclusion that a timely
workshop for 1980 would be one on "Recent Developments and Applications
of Multi-Configuration Hartree-Fock (MCHF) Methods." The NRCC is
indebted to Prof. Danny L. Yeager of Texas A&M University, and to Dr.
Michel Dupuis of the NRCC for organizing the scientific progrem. Their
efforts and the contributions of the participants resulted in these
Proceedings.

This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the 0.S.
Department of Energy under Contract No. W-7405-ENG-48) and under a grant
from the National Science Foundation (Grant No. CHE-7721305).

William A. Lester, .Jr.
Director, NRCC

xi



INTRODUCTION

A workshop entitled "Recent Developments and Applications of
Multi~configuration Hartree-Fock (MCFH) Methods" was held at Texas A&M
University in College Stat<on, Texas from July 15 through July 17, 1980.
It was sponsored by the National Resource for Computation in Chemistry
(NRCC) .

For many years the independent particle Hartree-Fock (HF) model has
been used with immense success to describe molecules generally in thuir
ground state, and near the equilibrium conformation. For mclecules far
from equilibrium, quantum chemists have run into the limitations of the
HF model, which often does not describe molecular dissciiaion properly.
For eiectronic excited states of molecules, the HF model ha: not been as
useful as for ~olecular ground states, because of the increasing
importance of electron correlation effects.

The Configuration Interaction (CI) method is one of the techniques
used to obtain a quantitative description of electronic correlationm.
Perturbation Theory (PT) approaches to électron correlation comstitute
another way of taking electron correlation into account. Advances in CI
and PT methods were the subject of a workshop organized by the NRCE in
1978, entitled "®Post Hartree~Fock: Configuration Interaction.™

One of the difficulties of the CI method lies in the slow convergence
of CI expansions, which often require several thousand configurations.
This difficulty is somewhat resolved by optimizing the molecular orbitals
used in the construction of a short CI eXpansion. This is the
Multi-Configuration Hartree-Fock (MCHF) method.

A concensus from the previously mentiomed CI workshop was that CI
calculations can be most efficiently ana reliably performed if they are
based on a multiconfigurational reference space. 1In additionm,
significant advances have occurred in multiconfiguration time-dependent
Hartree-Fock merhods and effcctive hamiltonian methods. For these
reasons, the organization of a workshop on the titled subject appeared
opportune for an exchange of ideas to assess recent progress and to
faster =xploration of wethods which can result in improved algoritims and
computer codes.

The Fock operator approach developed in the early 1970's, the
"Super-CI" approach, and the recently introduced exponeatial unitary
transformation approach were analyzed in detail. $everal application
areas were discussed which can benefit from the availability of MCHF
wavefunctines: 1 excited-state computatioms, ii symmetry breaking
problems, aand iii time-dependent Hartree-Fock studies, iv potential
energy svrface calculations.

xiii



The feeling emerging from these discussicns iwas that the convergence
process for ground and excited state wavefuiictions is well understood.
The selection of configurations to be included in the MCHF expansion in
order to obtain a relisble description of chemical systems, is still a
challenging task confronting theoreticians.

Michel Dupuis

Danny L. Yeagar

xiv



MCSCF USING THE GENERALIZED FOCK OPERATOR

Jirgen Hinze
Department of Chemistry, University of

48 Bielefeld, Germany

A. Golebiewski
Institute of Chemistry, Jagellonian Uni~

versity Cracow, Poland

Introduction

It has become abundantly clear that it is
necessary in many cases to use a multi-
configurational reference function, if a
highly accurate, correlated electronic
wavefunction 1is desired, either via con-
figuration interaction calculations
{single and double replacements with re-
spect to a reference) or via perturbation
theory. The best method to determine the
orbitals required to build the multi-con-
figurational reference is clearly the
multi-configuration selfconsistent fleld
(MCSCF) method ini¥ially conceived by
Frenkel1 or ﬂartreez and developed into
practical usefulness in the last decades
by many.3 The value and importance of the
MUSCF method for the effective calcula-
tion of accurate electronic wavefurctions
of atomns and molecules cannot be overem~
phasized and need not be belaboured here.

We will restrict ourselves here to a con-
cice derivation of the orbital equations
of the MCSCF method and outline the opera-
tor formalisa to obtain solutions to these
equations. To be sure, there are other
procedures to solve the general MCSCF or-
bital problem; procedures, whlch make use
either of the extended Brillouin condi-
tions satisfied by the MCSCF orbitals4 or
those, which determine the elements of a
Unitary matrix, wiiich transforms approx.
arbitals into MCSCF orbitals, using a
many dimensional Newton Raphson technigue.
These approaches, which are in the general

MCSCF case more efficient computationally
than the oﬁerator techniques detailed here,
will be described by other contributore to
these conference proceedings.

The MCSCF Equations
To derive the MCSCF equations we write the

total wavefunction ¥ for state I as a
superposition of N configuration state
functions {(CSF's) ¢ as

N
v =
v = :J OJ CJI m
where the expansion coefficients can be
determined variationally by solving the
secular equationr in matrix form

(M- gE,) Cp =0 {2)

The matrix 4 can be chosen to be the unit
matrix, since the CSF's can be constructed
to be mutually orthonormal without loss of
generality. The CSF’s are in general spe-
cific minimal linear combinations of Sla-
ter Determinants {SD's), such as to trans-
form as eigenfunction of the total spin
and other symmetry operators commuting
with the Hamiltonian. The matrix MHis de-
fined throuch its elements

Mg =< OIIHMJ> (3)

where H 1is the Hamiltonlan to be specified
below of the system considered.



The Sb's and thus the CSF's are construc-
ted out of symmetry adapted spin orbitals,
which may be to be orth 1
without loosing generality. In general
these symmetry and spin orbitals are
equivalence restricted, i.e. the same
spatial orbital (transforming as an irre-
ducible representation of the symmetry
yroup of the system) is used multiplied
with either spin function a or A {(and =
multiplied with the appropriata subspecies
function tn case of a degenerate symmetry

species).

The spatlal orbitals are in genecal chouen
to be linear combinations of ome basis

functions

=t (4)

®1 T g%t

such that they are orthonormal, i.e.
<oxlej> = 513

With the equivalence restricted orbitals
chosen orthonormal, the spin orbitals

Yioap = Ppp<(W0) (5)

where <{ip} is to represent the subspecies
and spin component corresponding to a and
B and symmetry species X, will be ortho-
normal also, i.e.

(wilpleno> = 6ljsxuapo (6)

With this choice the 5D's as well as the

C5F's will turn out to be orthonormal.

It is now convenient to introduce creaiion
and anihilation operators .Ilp and ay,,

respectively corresponding to the spin or-

bitals ¢, . These operators’ are each oth-

ers. Hertvetian conjugate and obey the anti-
commutation relations

+ +
a; ay +a;a; = 4

.

3 ij

7
+ 4+
a;, a; + ay a; = ay aj + ay a; = [e]

L

+
i
In terms of these operators we can define
reduced density operators

1. ot
vj E5 a0 34ap

and

ik g

+ +
le [T} allo o 2

luo %330 (8}
in the space of the spatial orbitals.

We will refrain from referencing symmetry
from here on, since ita introduction
should be clear, and it would only clutter
the notation.

With these definitions we can write the
total {apin free) Hamiltonian as

nd

. 1 31 1k
Ho= Ly hivy + /2 25 95k

with



%)

= - 2
1 = <04 117297 + viey>

and 9
s = copcop I'/r lopeg>

Corresponding to the density operators we
obtain the density matrix elements

Ii i

13 = ‘°1|‘j|“1’ (10}
for the MCSCF state function desired, with
a similar expression for the elements of
the secord order reduced density matrix.

These density matrix elements may be ex~
pressed in terms of the transition den-
sity elements between the configuration
state functions

TRL i
IJj = < GJle‘GK) {11}
which are independent of the detailed
form of the orbitals. We obtain

IS TR

I3 < (12)

K
gk Ca1 Cx1 Toj
and a similar expression for the density
matrix elements of higher order.

At times, in particular if wavefunctlons
for excited states are desired, it may be
convenient to optimlze the orbitals in a
weighted averaged field for several
states,a therefore it ls useful to intro-
duce the averaged density matrix elements

i Ii
rj = Iy mxrlj (13)
where the w's are the weighting coeffi-
cients which may be chosen to suite the

problem at hand with the restriction
w, =1 {14}

We will use in the following these mean
density matrix elements, which permits us
to remain general and suppress the state
index of the final wavefunction desired.

Using these definitions we can express the
expectation value of the energy

. i " 31 ik
B> = Ijghi P34 V2 I ek T 09

in a form exhibiting the orbital dependen-
ce explicitely.

variation of this expression with respect
to a change of the orkitals leads to the
MCSCF orbital equations

. 2 > = N T30
Zy Gyylog £]l¢] €41 (16)
where the €5 's are Lagrange multipliers
introduced to maintain the orthonormality
constraints of the orbitals in the vari-
ation.

The operators Glj are given as

ik am

- i
G = hrj + zkl Uk i1

13

with



h==1t/292 4V

and

vl = <o |/, (8>
k= Pk 2l

Before we discuss procedures to solve eq.
1€, for the determination of the orbitals
it is useful to note that

€31 = <0515,G 10> = <45(Fla> = Fyy (18)

can be thought of as the i, j'th element
of a general abstract Fock operator F in
the orkital space.

The necessary and sufficient conditions
for eq. (16) to be satisfied are

31 = Eij {19)
which is the same as demarding that the
Matrix ¥, defined with its elements in

eq. (18), be Hexmitian.

3c

In fact it is easy to show that

- = cydels R T

e3qegy = vptluly> = <rjelity> (20
and thus eq. (19} is equivalent to the ex-
tended Br:illouin conditions

<ni - v;l ¥Hje> = 0 (21)

satisfied by MCSCF wavefunctions.‘ ¥e have
used here the first order reduced density

operators defined thrcugh eq. (8) as gen-

eral single excitation operators, which
they are.

Solving the MCSCF equations:Ths non-line-

ar sacond order differential equations,

eq. (16}, are generally solved in matcix
form, a form obtained by expressing the
unknown orbital ¢1 as a linear combination
of basis functions xb, eq, (4). Thua start-
ing with a set of m basis functions
(x1....xm] we obta.y the orbitals through
a linear transformaticn

(o .0 b0

Pty O] = (K eeexg) € (22)

where € i3 the mxm matrix of the orbital
expansion coefficients of eq. (4). In gen-
eral only the first n orbitals, the active
set, participating in the MCSCF function
are of interest and can be determined vari-
ationally through solving eq. (15). The m-n
orbitals (Qn+1"‘°m}' the empty or virtual
set, cannot be determined uniquely with-
out auxilliary conditions. Since these or-
bitals ares not needed in the construction
of ¥, and :ransformations among them leave
¥ and therefore the energy invariant, we
need not bother about them. All we need to
determine are the first n columns of C and
thus the orbitals ¢1 through b the ac-
tive orbital set.

To obtain the active orbital set la,...pm).
using operator techniques to solve eq.
(16), we rewrite eq. (16) in matrix form
in the mxm space of the basis functions

as



n n
By 6y € =sf sy, (23)
for i=1,...n, with
[RPRE R N 1Y
65 =h 1+ il (24)

The matrices in egs. (23,24) are defined
through their elements, which are molecu-
lar integrals over the original basis
functions as follows.

The overlap matrix S

Spq = <xplxq> (25)

The one particle operator mitrix h

= - 2
hg xpl=1/2 7% + Vixg® (26)

and the two particle interaction matrix
v

1

= 1
U,pg = Trs<Xp<xcl /rlzlxs)x >Crys1  (27)

qQ

of the pend of @ on the
solution vectors, eq. (23) is non-linear.
With the operator techniques, this non-
linear problem is solved using a first or-
der iterative process. Starting with some
zero'th order €° the €'s are constructed,
and for the fixed €'s a new € is obtained
by solving eq. (23). This new € is used
in a second cycle to construct € and the
solution process is repeated until it
converges (hopefully), i.e. the input €
is equal to the output €.
We have to focus now on techniques to
solve eq. (23) with the Eij constructed

from some €° and held fixed.

a) The orthogonal gradient method.g
Given the G's we can construct the matrix

of Lagrange multipliers, i.e. the mpatrix
F of the generalized Fock operator in the
orbital space defined as eq. (18)

+ on
Fji =&y I 6y € (28)

Since Gik is zero for i>n the matrix F
has tne structure
L
@lo
7
n mxm
i.e. only the first n columns are differ-

ent from zero, it is essentially an nxm
matrix.

For the solution orbitals we shculd have
F = £t that is,only the first nxn block
should be different from zero.

In order to find a transformation which
brings us from the initial €° orbital co-
efficient matrix closer to a solution we
require that

vtr=¢to {29}
Egq. (29) is solved immediately by chosing
the mxn submatrix of the orthogonal matrix
U desired as

v=F (F /2 (30

The new orbitals are then obtained frcm
the transformed orbital coefficlent matrix



€=¢cu 3N

where U has as its first n columns the
elements of @ and the final n-m columns
are chosen to complete it to a full mxm
orthogonal matrix. This freedom to chose
the last n-m columns of U reflects the
invariance of the wavefunction ¥ to uni-
tary transformations within the empty or-
bital set.

To ensure the approach of a minimun of
<E> in this process it is important to
select the negative sguare roots of the
eigenvalues of F* F when forming

. The iterative process can Le
controlled, damped or accelerated by a
level shifting procedure by adding (in
principle) arbitrary constants d1 to the
diagonal elements of iF.

b) Direct diagonalization of F.

Recently Polezzo’o has suggested and
tested another procedure to obtain ( in
eq. (31) such that eg. (29) is satisfied
for a given IF, He suggests to find di-
rectly the singular {or principal) values
A of the non-symmetri¢ mxm matrix F to-
geiher with their associated singular
right and left eigenvectcrs W and W,
such that

n

WwEW =h (32)

Then W is given by

p=wv' (33)

Polezzo gives also a procedure, which he
believes to be satisfactory for the deter-
mination of a level shifting parameter to
speed up convergence of the first order
iterative seguence.

¢} Generalized Jacobi Diagonalization.12
If no two CSF's participating in the

MCSCF wavefunction differ from each other
by less than a double replacement the only
non zero elements of the reduced density
matrices will be Fi, ri} and r;;. With
this restriction the MCSCF orbi.al equa-
tion, eq. {16}, can be written as

n
511|¢1> = Zj[¢j> €351 (34)
with
Cp ol 13 i1
G11 h Ti + Zj(Ij rij + Kj rjj) (35)

where we have used the standard Coulomb

I, | 6,> = <./ l¢.>18,>
5 1% SRR M

and exchange operators

Kyle,> = ‘°j|"r”'°1’]°j’ (36)
We may now form a set of matrices, corre-
sponding to the set of operators Gkk in
the space of all the m orbitals which can
be constructed from a given basis. The
elements of these matrices are defined as



Gy = 0y lGyles . (37)
for i,j=1,2,..., n and k=1,2,...,n. It is
frequently possible to reduce the number
of matrices since we get for several or-
bitals k of the active set identical Fock
type operatorsGkk. The necessary and
sufficient conditions for orbitals to sa-
tiafy the MCSCF equations, eg. (39) are
now

i

- = e N
€45 = G54 Gij—o {38)

Ejl
An angle of rotation between orbitals i
and j can be calculated such as to satis-
fy eq. (38). Using the elementary unitary
matrix thus obtained all the matrices G,
in the orbital space can be transformed
and the process rer _ated until eq. (38)

is satisfied for all i and j. This pro-
cess is still first order, since the Fock-
like operator Gkk eq. (35), represented

as matrices in the orbital or basis func-
tion space are kept constant even though
they depend on the orbitals.

d) Expansion of the Orbital Transforming

Unitary Matrix
The general MCSCF equation, eg. {16},

can be solved by expanding the unitary
matrix @, which transforms initial or-
bitals {¢°%} represented by €° into final
orbitals (¢} represented by € via

(o cuntg) = (07, c0p) W (59)

or

c=cy (40)
as

U=1 + Vv (41)

with W antihermitian (antisymmetric).

To solve eq. (16) we may use the condi-
tions, 2q. (19) together with egs. (23,24)
and obtain

_ pteD - at
€417€44 = cjtksikck Cirijka = 0 (42)

where we have assumed for simplicity al.
the orbitals to be real; an assumption
which is not necessary.

Substituting now for the €'s those obtain-
ed from egs. (40,41)

c=¢" +e°v (43)

and neglecting terms of order Vz. we can
after some algebra derive a set of linear
equations for the determination of the
nonredundant elements vij for 1 s m and

j < n of the form 3

L (44)

k1 Mij, k1 Yk1 T T 915
with
(45)

evaluated as given in eg. (42) with €°'s.



The matrix elements of M can be obtained
in first order, by neglecting t.ie depen-

dence of the operaiors Gij on the ¥'s as3¢
N + _ +
Migk1 " Gjl o ij €, £+
+ +
+ cj €, € - LH € € (46)

+
- 611 L Ej + 6ik Cl [j

+ +
- Ci Gjl tk + Ci ij tl
evaluated again with €°'s. We have dropped
the superscript ° for simplicity. The

E vectors are defined as

€ -t 6, ¢ (am
i k "1k Tk
If one considers also the dependence of

the operators Gij on the V's we obtain a
second order process with the following

additional terms to the matrix elements

of M.

Mig,k1 © Mi5,k1 * 843,k1 (48)
with
B,k = 2 rmnu;.‘ 0, "¢
- c;.‘ Om Top €1 - € onmrr:ﬁ Y
v €t gy, 1ol (49)
where

Q

= 1
i, by Lg1/2(<per|!/r  lg>s>

(50)

+ <p(S|l/rI2]q>r>) € Csm
biscussion:
Obvionsly the last two procedures, in par-
ticular the last, appear computationally
much more cumbersome than the processes
outlined under a) through c}. A large set
of linear equations of dimension

n{n-1} /2 +n(m-n) has to be constructed
and sclved in order to solve for the or-
bitals in each SCF iteratious.
However, since the most time consuming
step, in a general ab-initio MCSCF calcu-
lation, is the 4-index integral transfor-
mation, a step of order nm‘, which has to
be done each iteration, it is clear that
the numbev of SCF iterations should be
kept as small as possible. This is achiev-
ed when using the method described last,
since it should be quadratically conver-
gent. The first order processes remain
important for approximation or semi-em-
pirical MCSCF calculatlons13 where 4-index
transformations can be avoided.

Finally a few words of caution appear to
be in order to prevent undue enthusiasm
in favor of the quadratically convergent
MCSCF procedures.~For large scale calcu-
lations neither M nor the integrals
needed to construct M will fit into the
fast store of a computer. In this case
efficient algorithmes remain to be deve-



loped for the construction of @ before
these procedures can be used effectively.
For the solution of the large set of linear
equations, eq. (44), a conjugate gradient
iterative method should be appropriate.
However, as for any quadratically conver-
gent process, the quadratic convergence

is reached only near the final solution.
With orbitals still far from their final
MCSCF form, it may be expidient to use
different approaches, as those based on the
extended Brillouin theorem, at least for
the first few iterations.
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A QUADRATICALLY CONVERGENT MCSCF THEORY FOR LARGE CONFIGURATION SETS

G. Das
Chemistry Division, Argonne National Lab., Argonne, I11.

Summar:

A multi-configuratfon self-consistent field
method for large configuration-sets is presented,
It consists in identifying a primary subset con-
taining the predominant confiqurations and a secon-
dary one containing the rest. The formalism
achieves near-quadratic convergence as well as a
significant simplification of the orbital-transform-
ation problem by the introduction of Fock equations
and Fack matrices.

1. INTRODUCTEON

The MCSCF methnd] 2 has, over the years, been
demonstrated to be a powerful tonl for the study fs
atomic and molecular interactions. Until recently]
however, the applicability of the method remained
restricted to a small number of configurations and
orbitals and primarily to the lowest states of a
given symmetry. Customarily this shortcoming is
compensated for by following up the MCSCF step with
a large-scale CI based on the MCSCF orbitals. How-
ever, for problems invelving a large number of val-
ence electrons as in the case of transition metal
clusters, it is very likely that the basic MCSCF
problem itself contains a fairly large number of
configurations (A 500). Further, for a practical cal-
culation it is also necessary that the correspondina
MCSCF process has a fast convergence and applies
equaily well to the ground and excited states.

The traditional method]of solving the MCSCF
Problem has been along the lines of the Hartree-
Fock theory, i.e., by deriving Fock equations for
the orbitals and solving them in consonance with
the CI-secular equation. Since this method neglects
some important coupling terms (as will be explained
later), it can run into convergence problems which
are then usually handled by some kiad of extrapola-
tion. This is true especially for the excited states
for which the iteration-to-iteration changes in the
orbitals are strongly coupied to those of the Cl-
coetficients. Recently a number of authorsé-6 have
developed and implemented methods which take this
coupling irto account. However, all these methods
involve huge Hessian matrices and large four-index
transformation of integrals. The dimension of these
matrices can be quite large depending upon the
basis set and the configuration set sizes. 0On the
other hand in the Fock equation approach the matri-
ces required to be inverted have the same dimension
as the basis set and the four-index transformation
involves only the occupied orbitals.

In what follows we will present an MCSCF form-

ulation that combines the advantages of the Fock
theory approach with the generality and the effi-
ciency of the fully-coupled orbital transformation
method.

[1. A NEW METHOD OF SOLUTTON OF SECULAR EQUATIONS
FOR LARGE MATRICES

The following method is ideally srited to the
solutfon of secular equations of large Hamiltonian
matrices in an MCSCF framework. Let us break up the
configuration set into smaller groups such that the
number of configurations 1n any one of these groups
is small enough for a straightforward "in-core",
diagonalization. We assume that the first group
contains the important configurations of the root of
the secular equation being sought as well as those
of the lower-lying roots. He also assume that the
mixing coefficients for the state in question are
approximately known.

Let {#;0) be these approximate coefficients to
be used as a starting point for the following iter-
ative process: For every group we define a secular

equation:
b P T U 13 =0 ()
?21 HZZ_A terees HZnG HZD
Ho o R ceeees B oA H
Mgl "2 "g"s  "g0
Y1 Mgz oo Hon,  Hpo™

where the elements (1,2,....n.) denote the members
of the configuration group G “and the element 0"
corresponds to the rest of the configurations. Thus

Hig = a;)‘::sné("'” <afhiis ()

where the summation goes over the configurations
outside the group G and A; is given by

-1} | yln-1)- -1),2
a(r-1d < pln ’/éﬁ ! B

The superscript (n-1) denotes that the mixing coeffi-
~ients are from the (n-1)th iteration. The secular
equation coming from the first group of configurations



is solved for the desired root and all the lower
ones. The other secular equations are solved only
for the Jowest root. The process is {terated with
each iteratfon yielding a new set of mixing coef-
ficients for the next one.

111. RESUME OF THE *FOCK' APPROACH TO THE MCSCF
PROBLEM

Based on the mixing coefficients obtained by
solving the secular equation, Fock equations re-
present extremum conditions to be satisfied by the
occupied orbitals and have the following general
expansion form:

Eigy + 55 =ZE”§SJ
with the Lagrangian multipliers satisfying the
condition

@)

G TR I
i.e.,

lEe; + £) = €tEe + 1)) (5)

He‘ have solved these equations in the past by
the following ited-acive process: Given an initiai
set of vectors ‘ci}one defings a tram;formation:

E{(n) =§:u”9§n) (6)
such that '9:,‘" satisfy the Eqs (5). This is termed

the occupies-space solution. Eq.(4) is now rewritt-
en in the following approximate form:

+
A R I

- el v {Psel0] 0

where, obvivusly, ég(n), obtained by matrix in-
version, lies in the virtual space. This part, of
the solution is termed the virtual space solution.

The new vectors after the first iteration are,
therefore, of the form:

) - Tuygef® ol ®

These are then orthonormalized and used to celcul-
ate new energy and mixing coefficients, whence the
~ew Fock equatiors are constructed and solved yleld-
ing new vectors c‘(” and so on.

1V, DEFICIENCIES OF THE FOCK EQUATION APPROACH

Although in most cases the above approach
would converge to a solution of Eqs. {4} and (5),
very often such a solution may not correspond to
an energy extremum, since the Fock operators
constructed using the new vectors may be very
different from the old onzs making this selution
unacceptable. In other words this leads to an
intrinsically non-convergent process. A modifica-
tion of the process, first intrvduced by Das’, is
to consider changes in the Fock vperator in the
steép in which the occupfed-space solution is obtain-
ed.This modification has been found very successful
over the years for the ground state calculaticns.
Except in pathological cases (involving single
excitations) the method leads to convergent solu-
tions with occasional use of 'extrapolations'.

The method, expectedly, suffers from slow
convergence, since, firstly, the coupling between
the occupied-space and the virtual space correc-
tions is left out., Secondly the changes in the
mixing coefficients are not coupled to orbital
changes. The latter is particularly important for
excited states, since such coupling may be large
enough to decide the course of the solution toward
the particular state under gonsideration. For
excited states fntroduction®ef a 1imited amount of
coupling has been shown to lead to considerable
improvement in the rate of convergence.

V. A REFORMULATION OF THE MCSCF SCHEME

I
Let us add to the occupied set {F"} a set
of orthonormalized vectors formed out of the norm-
alized vectors:

g = 6el%/ 16l

obtained from the virtual-space solution of the
Fock equations as described in 3ec ITf. Let us
consider a unitary cransfom ion amongst the
expanded set of vectors {c!0 r:

(1) (0}
i mu Vs T
1 it=1 391

Under this transformation the change in the total
energy correct to the second order in u 's (i43)
can be written as J

- 2gC 0 ‘)
SE = SEC + Z:/i,“a‘h“ab + E:b“a”b["ab - 820}

(1)

()

1

(0

u”_“ (10)



where (Ag } are the mixing coefficients obtained

with {cJ} and {sAg} , 8Myp  are respectively the
changes in {A;} ~ and H " under the transformation
(10}, 6EC s the changd”due to the changes in the
vectors alone and is given by

2

6% - 21&"“"‘“ * “k‘”l"ik"jl(sik.di * 815
e = ol O+ 0 - (IO ¢ ([0,
Firy = E'((u)‘fgo‘;ggo) :

S - a_3‘5[':.'((o)ff‘gso) + fi]

In the aocve it is understood that Ff = f3 0
if ci} is a virtual vector, Minimizing (T1) with
respect to the variation [ulsubject to the con-
straint cAW =0, .

~

(12}

where
g e (@ - (200 gyal0))s(®)
S - eyl - euM‘UL (5(0)”-1

Thus

(13)

SE = ;Z;k“ikﬂfm * 1“1k"j1(ﬁik.1i*6uﬁn)

iFk, j#
{14)
where
N - +
Bik,51 = Gik,j - ik (s
] 16
9ik 55"; ()

The transformation coefficients are obtained by
varying §E , as given by {12), with raspect to

u's:
J“;'I"Jl(ﬁik.ﬂ * SisFima) ¢ oeyy 2 0 W)
VI, A SIMPLIFICATION FOR LARGE CONFIGURATION SETS
For large sets of configurations evaluation
of M (Eq. 13) and g (Eg. 16) can be difficult.
We present a simplification as follows: As in Sec.
11 we distinguish two subsets of a given set of
configurations, one containing the predominant ones,
the pther containing the rest. We break up the
correspe'nding wavefunction accordingly:
1] N
v= QA0 + B¢ 18
ﬂzﬂ aa n%ﬂ a’a ( )

where the first sum goes over the first subset.

In the present optimization scheme during the
course of an interatfon the mixing coefficients
occurring in the second sum are kept frozen except
for normalization. Thus we shall be cancerned
with the following energy expressici:

»,
0
H
E= , Elnanbnab + 2TA K+ AcEy

(19)

where

K, = <o, |H|00>

-1 £ 2
9 = 2 8¢, .2, =
o0 affg 220 \’zas"

E = <oo]H|oo>
In solving Eq.(17) we ovtain M and g only for the
configuerations of the first subset and for #q-

VII. COMMENTS QN THE SECOND ORDER TREATMENT OF THE
MCSCF PROBLEM

In the above we have discussed an MCSCF pro-
cedure in which during every iteration we retain
in the energy expression all corrections up to tke
second order coming from the variations of the
orbitals. Barring some pathological cases (usually
tnvolving single excitations) where the third and
higher order terms dominate over the first ind sec-
ond order terms, the process is expected to con-
verge.

The convergence, however, is not guaranteed
to correspond to the root desired. For that it is
necessary to go step by step from the lowest root
of the symmetry to the one under consideration.

The absence of large Hessian matrices in our



theory makes each jterative step short enough such
that it is easier and cheaper to monitor the caurse
of the MCSCF iterations than what it would be for
a full-blown orbital transformation method4-6.
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GENERAL VALENCE BORD THEORY FOR CHEMICAL: {RCAL.sONS:
FORMULATION OF THE SOGVE WAVEFUNCTION

Frank W,

Bobrowicz

Honsanto. Research Corporation
Mound Facility*
Miamisburg, Ohlo 45342

SUMMARY

In thkis paper wé present the formulation of an MCSCF

wavefunction of the GVB {(generalized valence - bond}

type desigred to deal with the changes occurring dur-

ing chemical reactions. Aas such, this wavefunctlon
which we have labeled SOGVB {strongly orthogonal
generalized valence - bond) overcomes one of the
deficiencies of the more familiar Perfect-Pairing
GVB wavefunction (GVB-PP) while retaining much of
the computational simplicity of the Perfect-Pairing
approximation,

To understand the rationale behind the SOGVB ap-
proachl let ug first_consider the more well-known
GVB-PP wavefunction.< In s this wav
results from a relaxation of the double-occupation
restriction placed upon the restricted Hartree-
Fock {RHF} wavefunction. That is, in GVB-PP, we
replaze an RHF doubly-occupied orbital by a pair of

on

nonorthogonal singlet coupled orbitals. For ex-
ample, the RHF wavefunction
P e ks
= Aol ¢3uBu. = m
(b8
becomes
1 T
TS OAe o 49t 0 ) ¢4 aba = °1l°21| .+ (2a)

V=5
‘270 an

4]
However, while the 72rbitals in each such pair are
allowed to be nonorthogonal we require that they
be orthogonal to all other orbitals. Thus, in (2a)
we impose the constraints
<! >
UMEN

= <ayley =0 (20

if we now cxpress cach nonorthogonal pair in terms
of the corresponding orthogonal natural orbitals
such that

i T A g Ty ey + g

R TRE Y (AR W Le

*Mound Facility, Miamisburg, Chio, is d by

we obtain an HC wavefunction involving only ostho-
gonal orbitals. For example, {(la) then beomes (tak-
Ing My + A3 = 1)

2 2
¥ 2 ALy - Ay ey et
B {4}
=iy ahl} ry 2% ] .
L% | 1% |

Slnce the GVB-PP wavefunction can be written as an
HC wavefunction involving orthogonal orbitals in
which the configurations differ by at least a doubly-
occupled orbital the energy expression has a fcrm
identlcal to that of an open-shell HF wavefunction3

€= arfyeo;lblop + Elagylig Bl o

As a consequerice, solving for a GVB-FP wavefunction
is not much more difficult than solving for an RHF
wavefunction.  The essential difference iz that the
{f,a,b)} anergy coefficients involving paired orbi-
tals are functiora of the pair coefficients {i}
which must also be salved for self-conslstentcy.

In addition, there are more Fock operators to deal
with since each paired orbital has a unique one of
its own.

Because GVB-PP uses .wo nonorthogonal orbitals in
describing a typical chemical bond it serves as amn
excellent warefunction for near-equilibrium molecu-
lar geometries. In addition, it is capable of
describlng rudimentary processes such as the forma-
tion of H from two hydrogen atoms. Howvever, in
jenerai it is not flexible enough to describe typi-
cal chemical reactions. For eunyh. consider the
formation of CH 2l fron CIp and u In the sepa-
rated atom limit the two carbon p-orbitais are
triplet couplet so that

v, =
R )

1 9y |®

A - AL

& A " tpydpydy (2onB-oBa-gaa) Soy

Corporation, a subsidiary of Monsanto
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(where . . . represents all other orbitals) whereas
in the product a carbon p-orbital and the hydrogen
orbital must become singlet coupled in order to des-
cribe the C-H so that

(&b}

%ez u

Clearly, rcgardle:s of how the orbitals change, GVB-
PP wavefunction (6b) which gives a good description
of CH “Il at equilibrium can never describe the
separated atom limit. Conversely, (6a} which des-
cribes this limit cannot possibly describe a strong
C-H bond (Fig. l)}. The only way to properly des-
cribe this reaction is to employ a wavefunction
which incorporates bcth of these coupling schemes,
such as

Relaxing the constraints imposed upon the GVB-FP
wavefunction while still remaining within the frame-
work of an independent-particle modsl leads to the
unrestricted GVB wavefunction. In this approxima-
tion all orbitals are allowed to be nonorthogonal
and, while rataining the desired ovei:ll spin multi-
plicity, these orbitals are coupled in a fully gen-
eral manner.? For example, the three-electron
doublet GVB wavefunction can be written as

v [t o+ o, [RiA @
2] 42
Unfor: ly. of the ional complex-

ities involved, unrestricted GVB calculations are
pratical only for small systems, Furt-ermore, ex-
tending this method through inclusion of closed-
shell and/or perfect-pair orbitals is nontr:vial.
, GVB calculations on small but representa-

%ez| %y |
]

%7
*p

in which we must solve not only for the optimal
orbitals but for the optimal coupling coefficients
fel as well.

'
eq

(6c)

The inability of the GVB-PP wavefunction to deal
with chemical reactions goes beyond the obvious
example given above. It also extends to cases
where the coupling between product orbitals is the
same as that between reactant orbitals._An example
of this is scen in the formation of CH 24 from ¢ lp
and H 1s, since this state arises from the forma-
tion of a bond between a hydrogen orbital and one
of the carbon sp-palr orbitals {the GVB picture

of carbon has two sp-orbitals in place of the RHF
252 orbital) the product wavefunction is

{7a)

L
%2 %
sz

whereas in the scparated-atom wavefunction the hy-

brid sp-orbitals in C 'D are singlet coupled so
that

* (7b)

Since in either limit the system can be described
by a perfect-pairing coupling scheme it might be
expected that this reaction could be siudied using
a GVB-PP wavefunction. However, when GVB~PP calcu-
lations are performed we find that this is not the
case., Rather, if we start at the separate-atom
limit and move inward we climb a repulsive curve
which does not lead to the bound molecular state
{(Fig. 2}. Likewise, if we start with the molecular
state and move outirard we follow a potential curve
which does not tend toward the proper atomic limit.
Therefore, while the GVB-PP approximation is ade-
quace at either limit it is quite inappropriate at
i diate i lear jons. In order to
obtain a smoothly varying adiabatic description of
this reaction a more flexible wavefunction is clear~
ly required.

tive syatems have been performed and frcm the re-
sults 1t becomes apparent that the full generality
of this wavefunction is usually not requried. To
illustrate, conasider the simple colinear H2 + D +
H + HD reaction. Initially the system consists of
a hydrogen molecule and a deuterium atom whereas
in the products we have an MD molecule and a hydro-

gen atom, Since the reactant and product wave-
functions are
LM &, ¢
= H '8 and HD
" ¢ Yo . 2 (9a)
0 L_H

the GVB wavefunction for this reaction can be written

e [o e Y
LR B T2 I K I
% °z]

From plots of the orbital changes involved in the
GVB description of this reaction (Fig. 3)° we see
that as the reaction proceeds, orbital ¢2, which

is initially associated with the H' nucleus, slowly
delocalizes in a symmetric manner over to the deu-
terium nucleus and finally relocalizes there.
Simultanecusly, orbital §3. which is ~.itially cen~
tered on the deuterium, delocalizes in an antisym-
metric manner over to the H' center and finally
relocalizes there. The result is that orbitals 9)
and ¢, always remain highly overlapping while &3
remains nearly orthogonal to both of them. Thus,
these orbitals remaln essentially strongly orthogonal
at all times, Hoever, the couplliig between them
does not remain fixed. In fact, the coupling changes
drastically and, up through the saddle point, close-
ly resembles what one would expect were the reaction
to proceed via a purely localized orbit:l mechanism
(Fig. 4).

As the above examples have served to illustxata.e

in order to describe a typical chemical reaction it
is necessary to allow the orbitals involved in bond
breaklng/forming processes to couple with one another
in a completely general manner. However, it is
usually not necessary to relax all orthogonality
conatraints since the orbitals tend to remain strong-
ly orthogonal’ azuyway. Therefore, in the SOGVR
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approximation we allow the orbitals to couple in a
general manner, but nonetheless group them into
strongly orthogonal pairs. For example, the three-
electron doublet SOGVE wavefunction has the form of
the icted GVB w. ion but involves or-
bitals constrained to be strongly orthogonal

v g, [0 ][5

99
{10a)
i ) 4
it
<byq165> = <bpy165> = 0. (10b)

As with the GVB-PP wavefunction, it im computation-
ally conveaient to write the SOGVB wavefunctlon in
terms of orthogonal orbitals by expressing each
nonorthogonal pair in terms of orthogonal natural
orbitals. This leads to an MC wavefunction in which
each orthogonal configuration either contains only
cne orbital of a pair with that orbital being doubly
occupied or it contains both orbitals of a pair
triplet coupled. Far example, substituting (3} inte

{10a) gives
¥ =
(1la}
A 1 [ + A $21 °Zl| + Ay #1143
% %3 *n
where

A - ST E

[
YA T2 (b

=T i AT gy

and the two-pair four-electron singlet wavefunction
is

veal 0% lea 0% v
! 2
*12%21 %22%22
a%2%1 o [0t b Al ln
3 a
%2912 %22%22 *n 1% | an

subject to the constraint AjAy = AyAq. As a conse-
quence, the SOGVB energy expression for NG orbitals
invalving NGP rv/.rs 1s

NG NG
B S U RALINURY
i RIS ]
RGP NG
' ﬁ Qfﬂm 2m i <°‘m|'(1-|02m>
NG!

P gl
*I fdy, (°1m°1nl°2n"2m)

nem

+ o2 (o) 0p0184,050) 1)

(13a)
where.
hi,i = <oglhle;> = <o51T+vle,>
35,5 = (eg8;10504)
- . -1
= <o (Dog(Dir, ey (Megt2y>
K,

= (0, 0;1050))

<o, M@y, Tog (Mg (2>

and where the coefficients (f,a,b,c,d| are functions
of the configuration coefficients [A] which in turn
are functions of the pair and coupling ccefficients
A, E}e

Since (l3a) contains only diagcnal one-electron
torms, inclusion of closed-shell, perfect-pairing,
and open-shell multiplet orbitals in the wavefunc-
tion is straightforward. This is of considerable
importance since in most chemical reactions only a
few orbitals are actually involved in the bonding
process. Howev.-, nonparticipating orbitals must
also be taken into account since changes in these
orbitals can be important. To treat all orbitals
at a genuralized coupling (GC) level is unnecessary
and computationally impractical. By allowing the
SOGV3 wavefunction to explicitly include these less
correlated orbitals we arrive at a wavefunction in
which each group of orbitals is treated at an
appropriate level of correlation and with an appro-
priate amount of computational effort. Thus, gen~
eralizing (13a) to include NS clased-shell and
perfect-pair orbitals and NM multiplet-shell orbit~
als the energy expression for all N orbitals becomes
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Having arrived at the general energy expression for
the S0GVB wavefunc®ion we can now consider the task
ot developing the «quations for its self-consistent
solution. For the preseat, let us ignore the pro-
blem of optimizing the pair and coupling coeffi-
cients and concentrate on orbital optimization.
From the Variational Principle we know that the
orbitals will be self-consistent when the energy is
stationary through first-order for any changes in
the orbitals provided these changes préserve orbit-
al orthogonality at least through first-order.
Allowing the orbitals in (l4) to vary according to
the prescription

LIS MO T
1<8504>+<6310;> + <63{865>3 1) = 0 (15a}
this variational condition is found to be
m
oE s f [<5ilFil°i> * <6ilRi>] =0 11sb)

where
N
Fo= fi h + § [aj,i Jj + bj,( Kj]
NGP
vz i Loyglope ) + (050l 0] 15y
m,2m$i

and where we define the exchange-like operator
(_o;le5) by

<ol _a;10 010> = (05051080) - asay

If orbital i is not a GC pair orbital then Ry = O.
If however it corresponds to pair orbiral dyy then

NG+NM

R =l € K, ¢t
e j4im,2m ™I
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(15e)
If wa define the operator R!l by
Rl = R; <¢; | (16a)
then we can write (15b} in the more usual form
N
= . > {16b)
0 b <6i|F1.|01
i
where
F: = F, +R! (l6c)
i i i

However, we prefer to work with the quantities de-
fined in (15) since these arise directly from (14}
whereas those of (16} do not.

tow let us consider the problem of optimizing any

one orbltal while keeping all others fixed. If
only orbital ¢; is varied then (15b) becomes
= >+ >
0= <6 [F.lo> + <6;1R an

However, this is subject to the constraint that
<6;|$5> = 0 for all ¢j. Therefore, if only one
orbital is varied it Zan only be changed with re-
spect to the space orthogonal to all orbitals.
Keeping this in mind, if we isolate from (14) all
terms involving ¢; and replace this orbital with
the improved orbital

1 2,172
o) = Loy + 80.)/(1 + 49)%

2
8 = <00, |80.>
¥ i (18a)



upon expansion through second-order in A¢j we obtain
2,
e (1 +27) = «oyIF lo> + <¢|Rp>

+ 2[<A@ilFi|¢i> + <A¢i|n1>]

lag.> (18b)
+ <A¢i|t=1 + zai.iK1|A°1
where for simplicity we have taken bi,i = 0. Ex=
pressing A9; in terms of the basis space {x) ortha-
gonal to all orbitals

it

b, = i Coi Xk sc)

where

xle = 0 <wylx> =, (184)
second-oxder for the improved
of all other ones is obtained

matrix X where

the solution through
orbital in the field
by diagonalizing the

Xg,0 = <¢IFilog + <ogIRp>

Ko b = Ko = IR0+ e dRp

0.k k.0 k' i k' (18e)
Yo = P+ 2y sy ldkihe o kouo

and choosing the desired root (usually on the basis
of either lowest eigenvalue or least change).

1f ¢j is a closed-shell orbital, R; = 0. Further-
more, if we neglect the second-order self-correction
term 2a4,; <XkTKi'X1>' the X matrix simply becomes
a matrix over the Fock operator Fj. Since the Fock
operators for all closed-shell orbitals can be made
identical, solutions for all such orbitals could
then be obtained through a single diagonalization.
Since this offers considerable computational advan-
tage and since experience has shown that these terms
are relatively unimportant, we normally follow this
procedure. For open-shell multiplet orbitals these
terms do not appear in the first place. For all
other orbitals the Fock operators are different and
no real advantage is gained in neglecting these
terms.

Examining the terms involved in (18) we see that for
closed-shell and perfect-pair orbitals these equa-
tions involve only the same operator matrices that
are required far a GVB-PP calculatfon. For the re-
maining arbitals the only additional matrices re-
quired are thoSe over the GC-pair operators

(_‘bln ¢2 _}. Therefore, only a little more computa-
tTonal &ffort is required here than would be the
case for the carresponding GVB-PF calculation.

Equations (1B8) provide us with the prescription for
iteratively optimizing the orbitals with respect

to unoccupied space. There now remains the problem
of optimizing them with respect to one another.
Since the orbitals must always remain orthogonal the
only way to do this is to vary at least two of them
simultaneously. If orbitals ¢; and oj are

simultaneously venried while keeping all others fixed,
(15b) becomes

0= <6, [F,l¢:> + <5 |R.>
LARR Aad | it (19a)
+ <6, |F.[¢p.> * <6.]R.>
<8jiFsley * <8l%
subject to the condition
(19b)

m .
[<61‘|°J> + (5j|¢1> + <.S‘.|6j>] = Q.

through first-order. To obtain the ejuation for the
optimal mixing between these two orbitals we isolate
all terms involving them from (14) and substitute
the improved orbitals

1. 2,172
°i = (¢.i + AO‘-)/“ * A‘l)
(20a)
1 2,172
;= (¢, s + 4
o5 = (oy + 20,1/00 i
Realizing that if
Aoi = Yij ¢j (20b}
then we must have
A¢j b Tij &4 120c)

we expand through second-order in Yj to obtain

2
:ij“ +Yij)
= <¢i|Fi|°i> + <¢i|Ri> + <¢J.]Fj[¢j> + <°lej>
2
Yy [<¢7.IFjI¢1> + (°j|Fi|°j> + Qij]

+ 2. [<o. [F,=F o> + <¢,]R.> = <¢.[R.>]
AR I i T 204

where the second-order correction term ©ij is given
by

+:Q.s = <0, |AF . -aF j9.> + <¢.|AR.> - <¢.[AR ..
Yi3Qy = <4;laF-0Fsio; 95188, 9;18R> (21a)
and where AF and AR are the first-order changes in
the corresponding operators. For example, if either
orbital is a closed-shell or perfect-pair orbital or
if neither is a GC pair orbital

=g = -2, K,
Oij Qij Z(Bi.i + aj,J' 2 1-J)K1 ]
* (bi,i * bj,i ” Zhi.j) [Ji.j * Ki.j:| (21b}

whereas if orbital ¢j is in GC pair m and orbital 24
is a multiplet or unpaired GC orbital



Qiy = By = 2y <ergldy + Kylagy - e
Letting
C;fj): <ml|F1_FJI°j> - <¢].IR‘> - (0i|Rj)
c:;’a <wj5r‘-rj|oj> - <¢‘IF1-Fj|o‘>
- <01|R1> - <0J|R].> + ij (22a)
mixing coefficient Yij is obtained by solving
0= c:;)ly”? 1 - Ci‘? Yy (22p)

and choosina the appropriate root.

In princizle, the orbitals can be iteratively opti-
mized with respect to one another using (22). How-
cver, to redefine all affected matrix elements after
each such orbital-pair rotation is computationaily
unacceptable and experience has shown that by not
doing so the overall orbital changes tend to be too
large. To see :f there is a simple way to overcome
this problem let us now consider simultaneously
optimizing all orbitals with respect to one another
by taking the improved orbitals to be

TR T - A PLA
LI B i VK Tk (23a)

with

7 . (23b)
it
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Upon substituting these orbitals into (14) and ex-
panding through second-order in {Y;;: i>j} the re-
sult is a rather complicated expression involving
many two-electron integrals not required in either
(22) or (18), All such integrais, however, only
appear in terms involving the product of two dif-
ferent mixing coefficients. If we now content
ourselves with a pairwise rixing scheme by peglece-
ing all such mixed coefficient terms, we find that
the mixing coefficients can be determined by dia-
gonalizing the matrix B where

B0 = ¢
- -l
By,i5 = Big.0 ™ Gy
Bij,kl = 0 for ijk?
(2) (23c)
855,15 ~ Ci

20

and where C{l) and D{z.) are given by (22a}. while

diagonallzation of this matrix and choosing the
appropriate root stil) constitute only a pairwise
optimization scheme, it has been found to be super=-
ior to simple sequential usage of (22) since each
mixing coefficient Ls now weighted relative to its
importance in lowering the total energy.

Equations (18) and (2}} provide us with the pre-
scriptions for optimizing the orbitals to self-
consistency for fixed pair and coupling coefficients.
We will now turn our attention to determining these
coefficients. First of all, let us consider any
pe.fect-pair coefficients. TIf orbitals ¢), and 2k
are perfectly paired, the coefficients in (14) which
depend upon pair coefficients Ajy and Ay are

2,2 .2

foa - R
PR PR LT 1.2
b sby s -, AL L 2
1k, 2k 2k, 1k Tk T2k ke ag,)
a. . sa. . =2f
I RS
=12 0 051 00ty

= b = .f f 5 (24a)
ik " Pk T ik g
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Isolatlng these terms in (14) gives
2 2 2

. 2
B O * Aad = M Bt * A Mok ok
(24b}
* 2 Y M, ax
where
Hikoik = 2 Paw,ik * dik,ik
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Therefore, we solve for Xk and )l by diagonalizing
this 2x2 H matrix and choosing the root which mini-
mizes Ex. If there is more than one perfect pair
involved, the pair coefficients for each pair are
optimized iteratively through sequential applica-
tion of {24) until self-consistency is achieved.

We are now left with the task of optimizing the GC
pair and coupling coefficients whaich, in turn, de-
fine the {f,a,b,c,d} energy coefficients involving
GC orbitals. Tn general, the relationship between
these coefficients is not straightforward and is
most easily established by first cxpresslng the
wavefunction (ignoring all but GC orbitals) as

¥ = )': Ay oy (25)



whaze the configuration coetficients {A) are known
functions of the GC pair and coupling coefficients
A,E,. Determining the energy expression for ¥
and rearranging it to the form of (l13a) then estab-
lishes the relationship between {A} and the coeffi-
cients in (13a).

In general, the coefficients {A} in (25} are not
all linearly independent. Therefore, they cannot
be determined simply by diagonalizing the hamilton-
ian over the configwmations involved. To do this
we recast the wavefurction into the general form

NGP R
A Dy ohs = d4851

+ AT ritataitns)] 6ty

* (f- b 4y (26)

where {X} is a set of appropriate orthogonal spin
eigenfunctions. Concentrating on pair k, {26) can
be written as

= O e, Zk) £, X (),

X zs(kl) x (kl},

PR %

(27a)

where
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and where X (k) [X (k]),] is the u® spin eigen-
function in which the electronic positions of pair
k are singlet (triplet) coupied. If we now let
(1)
= X (k
wk,v (")v

ik, ik i=1,2

(3) . |
Yoo ™ P,z * (K

=2 /3 x & (k]
% = 2 Rt !

we can solve for A)y,Apy and lE(k])' by taking

{27¢c)

- (1) (2)
'*lu[ﬁ B vy 14 gy L2 80, )

3

+z Wn(( )

v (27d)
and diagonalizing the hamiltonian matrix over the
configurations involved. If we then rewrite (27d)

veLogk) [x]kw,("_,), z,‘u{z‘)‘ ]
u

(3)

+L Uk' wk (27e)
v

we can determine {£ (k), & (k|)} by diagonalizing
the hamiltonian matrix over the indicated configura-
tions, Therefore, by constructing the hamiltonian
matrix over the basic configurations of ({25) and
then by performing a series of contractions and
diagonalizations the optimum GC pair and coupling
coefficients can be iteratively cobtained. In the
course of evaluating the required matrix elements
the p of any closed-shell or perfect-pair
orbitals in the total wavefunction is taken into
account by using the modified one-electron operator

NS
h* = h+ ? £ (23,-K5)

{26a)

and the presence of any multiplet-shell orbitals is
taken into account by formalizing the matrix element
expressions for NG + 1 electrons. This leads to
terms involving the multiplet-shell exchange opera-
tor

(28b}

Early experience has shown that because of the high
degree of correlation existlng between the GC orbit-
als, it is quite advantageous to fully optimize the
GC orbitals with respect to one anotner during each
iteration of the SCF cycle. Therefore, we usually
ignore terms in (23) which mix the GC orbitals and
perform this mixing during the GC pair and coupling
coefficient optimization stage. To do this we de-
fine the improved orbitals as in (23a, 23b) but with
the summations running only over GC orbitals. Upon
substituting these orbitals in (25) and expanding
through second-order we obtain

1

Yo=Y+ EJ Yij wi_‘ + }‘;j'kz "J Ykl Ul‘.j,k" . (29a)
If we then define the matrices H and § by

Ho,n ° <YlH|¥>

H’Ij,g = HO-U = d’IHIwij)

Higuke = Viglilog> = ¥logy o> 1 855 4,0
. SG,O = <t|¥>
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(29b}
the mixing coefficients '71 : 1>3} can be obtained

through second-order in thé“energy by solving the
secular equation

{29¢)

(H-Es)y=0.

once the improved orbitals have been found we rede-
fine all required hamiltonian matrices for them

and once again solve (27) for new pair arnd coupling
coefficients. This process is continuei until self-
consistency within the current GC space is achieved.

To summarize, the SCF cycle which ve employ to solve
for an SOGVB wavefunction consists of the following
distinct steps:

1} oOptimization of all GC pair and coupling
coefficients using equations (27);
2) optimrzation of the GC orbitals with

respect to one another uslng equations
(29):

optimization of all perfect-pair coeffi~
cients using equations {29);

22

4) Optimlzation of orbitals with respect to
one another (excluding mixing between GC
orbitals) using equations (23); and

5) Optimization of all orbitals with respect

to unoccupied space using equations (18).

Steps 1) and 2) are performed together until self-
consistent. Step 3) is continued until all perfect~
pair coefficients are self-consistent. Steps 4} and
5) are performed only once per SCF iteration (i.e..,
they are not continued until self-consistent).
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LDGUGA Applied to the MCSCF Problem

The unitary group approach (UDA) to the CI
problem has proven over the last few years to be
an efficlent and effective mechod for estimating
the correlation energy in molecules. =10 as an
outgrowth of this we envisioned a :uo-steg HCSCF
procedure based on the LDGUGA formalism.l
one iteration the first step would be a CI
calculstion in which the orbitalg were "fixed".
This is followed by a computation to determine
how the orbitals should be changed to minimize
the total energy. In this second step the orbitals
vary but the expansion coefficients are Erozen.
The 1integrals are r™en transformed to the new
orbital basis and we iterate until che changes in
the orbitals and the expanslon coefficients are
suitably small. In computing the orbital changes
the two-particle density matrix and the transform-
ed integrals are needed, The ability to generate
the two-particle density matrix rapidly 1s a key
feature in our method.

Methods Used for Computing Orbital Changes

Currently we have two operational methods
for computing the changes in the orbitals from
one iteration to the next. The first involves
the symmetrizing of the matrix of Lagrange
multipliers.ll In developing this procedure
first notice that the CI energy can be expressed
in a simple form as

I ¢ lgskel + g <tlhli. 0
13ks 13ke 4 19

If a unitary transformation was applied to the
orbital basis to find a "better" sev of orbitals,
the CI energy in this new basis could then be
approximated by

Eer =

= 0 T 6,,,,U U U U,labsed] +
i5ke apea 1fk& at bk de
I D oo, <a[h|b> . (2)
1 ab

This equation is an approximation because the
density matrices G and Q depend on the orbital
basis in a compleX mannér. If the unitary
cransformation U were close to unity, then this
approximation would be fairly good. This obser-
vation suggests an iterative procedure to find the
MCSCF wave function. If For any CI calculation
che transformation U could be found that minimizes
the energy through equation (2), then the CI
calculation could be repeated in this new basis
(1.e., compute the corvect density macrrix for

this new basis). This procedure could then be
repeated until the transformation matrix
approaches unit, which should also yeild the
MCSCF wave function.

The problem then becomes one of finding a
procedure that can determine the "best" uniltary
transformation for each iteration wichin this

scheme. By assuming that U {s fairly close to
unity, U can be represented as

u=14+0P )
where U(l) i1s the first-order change in the

unitary tranaformation. When this is subscitured
into equacion (2) and all higher terms in U

are ignored, then the first order change in the
energy can be further approximated as

) - )
)5 T G, U '8 & & +
trke apma ChskelVar Shsledar
Ly (1)
Sa1sy Sckfag * SaspyVok Ban *

818 Ser? dz][“b cd] + Z ; QY i ij

1] é; J<alh|b> %)
which may be simplified to
gD 2
ijker

Ioa, @uialilys . ()
ijr 1) ir '

ljkl (4 U [rj ke) +

1f 4 times, che two elecrron energy and twice
the one electron energy is added to both sides of
equation (5) the result is

1 L 2

4E, + 2E. + E
1
1jker

[¢8]
2 g (4 v )

Gk
; Dyn
[ryske] + 1}: Q2 vy Da<xli] > +

1j£i Cyje (4 8y rike] +
1%: Q. (2 air)<,1§|j> (6

where E, and li2 are the one and two electron
energleS respectively. Collecting terms we have
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wvhere K = 4 E, + 2 E,. Now it is advantageous
to note that Ehe Lagi‘ungian matrix X is defined
as

x5 J 4 {r3:k2] + § 2 q,<clhl3>.
I Pt {7
(8)

Using this relation equation (7) can be reduced
to

1) =
k+eY 3 Txou 9)
i T ir

One rather direct approach is to flnd the unitary
cransformation U rhat minimizes the above

equation. This can be done directly using pair
rotations on X. Rewritiug equation (9) as
c e gl 2 T
K+ Ix, v, =1 Uy, (10)
ir 1
and expressing the cranspose of U as a product
of pair rotation matrices =
n an

- 1 8
1y 1B

where B 15 the wth pair rotation matrix

iy,m
between orbitals 1 and J, an iterative acheme can
be devised. For each orbital pair i and j a
rotarion angle 8 can be golved for. The largesc
of these is picked and the rotation is applied to
the Lagranglan matrilx. A new set of 8 matrices
are calculated and this process is repeated until
the angle >f rotatlon is below some threshold
value.

To find the value of the rotation for each
11 palr, wulciply X by eu and take the trace of

rhe resulting matrix. The difference between
the crace before and after rotation is

er(xl) - “‘1‘913) = Xu+xu-xucose+xusins-

cosB-X, ,51inf {12)

X X
11 Ji
Taking the derivative with respect to € on both
sides of equation (12) and equating to a Zero
glves

- * « (13
(x“+xu)sme + (le xji)cnse o ay
Solving for tané ylelds
X, X
eang = A (16)
11713

These rotations are applied until the transformed
Lagrangian is symmetric. Such an approach yields
acceptable convergence for some calculations,
typically vhen all orbitals are occupled. In
systens including virtual orbitala or orbitals of
forced double occupancy, we find that an approach

24

similar to that used by Hinzeu results in
lmproved convergence.

The additional terms required for this
method are easily obctained and can be expressed

as

¥yy = Qgyetihl + k%_ (26, [13ke}

- Gy ppgld13kE) - Gy, 112D as)
and
Zyy = Qg (etinli> - <pinlg2) + <tlnfy>
€Q,79;,)
+ & 12 Gy g CLitskR] = L133R2D) +
KT (6 = Gypp)) - (16

The pair interaction (s) can then be solved from
the quadratic equation

[4(x

417%14 Is

2
}+3 zu]” + (X=X

MEXRH
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-X,) =0 an

+ Xy 3754
for the smallest root. The unitary orbital
transformation matrix can then be given by

exp [~g]. Of course, the coefficient of the
terma presented here are obtained from approxi-
wations. Varying some or all of the terms could
further improve convergence.

The computational effort required for each
iterarion of this MCSCF scheme 1s roughly the
same as with other MCSCF procedures for large
basis sets (i.e., dominated by the integral
transformation step).

Generation of the 2 Particle Density Matrix

As stated earlier the fast and efficient
generation of the two-parricle density matrix
1s crucial for the orbital optimization stage
to be competitive with the CI portien in a two-
step MCSCF procedure. From the first Step we
have a CI vector which contains the expansion
coefficlents for the configurations. The
formula for the two-particle density matrix is

wlikk

5 1y Qe

G = c.C
1Jke Ig 1
13kR
where 1% and C_] are the CI coefficients and byy

is the coupling coefficient between these two
conf{gurations. The coupling coefficients must
be generated so ¢ may be computed. These
coefficlents are exactly the same as those used
in determining the CI energy and are defined by
loopa. The simplest method for generating the
density matrix 1s to regenerate these same loops.
The only difference here is that once a loop has
been generated it is processed differently. This
allows the density matrix to be generated via the
loop-driven algorithm. The effort required to
compute the density watrix in this manner is only



slightly greater than the effort required to
the cor d disgonalization tape."'

In the disgonalization tape generation step,
loop coefficients are combined with appropriace
integrals to form an overall loop value. This
loop value is ihen used a number of times,
determined by the loop breakdown algorithm, for
each diagonalization iteration. In generating
the density matrices, this process is reversed.
When a loop 1s generated, the loop breakdown
algorithm is used first to determine the total
loop contribution d. This total loop contribu-
tion 1s simply a sum of the products of Cy and
€j for each separate loop contribution and is
given by:

*n e

d '§ E €t Gz myti )+ " (2 b 04
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where m, and m', are the weights of each branch
of the Toop, z_'is the primary upper walk weight,
;h and x, are he number of upper and lower walks
respectively, and Y is the indexing array. Once
the total loop contribution has been determined,
its product with the loop coefficients is added
to the proper demsity matrix elements.

The density matrix elements here play a
similar role to thac played by integrals in the
diagonalizatfon tape generation step. These
elements are stored in the same manner as the M0
integrals, and a particular densicy matrix
element can be found using integral storage offset
arrays.l3 The same storage method allows a
block of density matrix elements to be computed
simultaneously with the loop-drive algorithm,

Examples of Typical Calculations

The varfery of MCSCF computations we can
perform with the LDGUGA system of programs is
fairly large. We essentially can choose any
set of configurations that can be runm by the CI
programs. Our distinct rov table (DRT) program,
which generates the configuration set, can obtain
all single or single and double replacements with
respect to one reference. It can also do this
for most two reference cases at the present.

In addition, full CI within any subspace can
be done and all single and double excitations
can be formed from it. Higher than double

excitations can also be Included if desired.

A limited amount of selection can be
performed within the configuration set. One
method is to doubly occupy or delete an orbital
from the CI portion of the calculation. We can
allow any orbital to be forced doubly occupied,
to be partially occupied, or virtual. These
"frozen" orbitals (virtual or doubly occupied)
may be deleted from the MCSCF entirely or
alloved to mix wicth the partially occupled space
as desired. For open shell systems the inclusion
of only the Hartree-Fock interacting space can be
optionally chosen,?»21

Since our diagonalization tape generation
and eigenvalue extraction programs are relatively
fast and our MCSCF iterations are dominated by
the integral transformation time, we have chosen
to use relatively large configuration sets. Our
firsc published calculatlons were on the lowest
triplet of the cyclopropyne molecule.l4 The
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configuration set consisted of 10,115 singly and
doubly-exciced configurations with réspect to the
SCF reference.

More recently we have performed a number of
calculacions on water to investigate the effects
of inclusion of higher than doubly excited
configurations in CI and MCSCF calculations. !5
The basis set we used was a standard double-zeta
basia set.l® 0(9s5p/482p), H(4s/25), and the
geopetry was fixed at the theoreticallv determined
winimum obtained from a previous set of CI
calcularions including single and double
excitatfons. Using the SCF orbltals, €l calcula-
tions including all single (S), all single and
double (SD), all single, double, and criple (SDT),
and all single, double, triple, and quadruple
excitations (SDTQ) were carried out. Also full
MCSCF calculations were carried out for each of
these four configuration sets, These results are
displayed in Table 1,

There are several significant differences
between the CI and MCSCF results. Perhaps the
greatest differences occur for the MCSCF wave
function including only single excitations. The
CI energy in term of canonical SCF orbitals is
of course identical to the SCF energy, due to
Brillouin's theorem.l? In striking concrast,
the MCSCF wave function including all single
excitations (MCS)} accounts for no less than
52.3% of the correlation energy recovered by the
MCSD wave function or about 50% of the full
correlation energy attainable with the present
basis set.

Another interesting ree-it in Table 1 is
the fact that triple excitations are roughly five
times more important within the MCSCF function
than in the straight CISDT treatment. Specifi-
cally, the energy lowering relative to CISC is
0.0011 hartrees for CISDT, but 0.0058 hartrees
for MCSDT. This means that triple excitations
can be made quite important by the MCSCF procedure.
Another way of saying the same thing is that
quadruple excitations are important, and the
annihilation (in the Brillouln-Levy-Berthier (BLB)
sense™”) of certain classes of quadruples leads
to a noteworthy energy lowering. This argument
also explains the very small energy difference
between CISD and MCSD as the annihilatiun of the
triple excitations i{s expected to produce slight
energy changes. Continuing in the same vein,
culntuple excitations are expected to be very
unimportant, and their anuihilation is accordingly
unlmportant, as seen in :che small difference
betueen the CISDTQ and MCSDTQ energies, namely
0.0006 hartrees.

In the near future we plan to perform
various calculations on the ground state of ovzone,
including MCSCF containing all single and double
excitation from one and two reference functiops.
Also in the works are MCSCF calculacions on
methylene with a configuration set including all
excitation within the valence -~pace. We are
furthermore at work imcorporating MCSCF techniques
that will converge at a faster rate than our
present programs.19s

Concliding Remarks

The '.DGUGA has been shown to be readlly
adaptable t. finding MCSCF wave functlons and
energies. Its main advantages are that it can be



used with large configuration sets and the
one and two particle yenslty matrix generacion
can be accomplished rapidly and efficiently.
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Table 1.

and guadruple excitations,

0

Coefficient C

Correlation

Toral

Number of
Configurations

of Reference
Configuration

Energy Relative

Energy to CI S+D

Energy

Wave function

0.0
0.0

-76.00 98 38

1sistent-Field (SCF)

.11 Single Excitations

Sel
[ 4

-76,00 98 38

20

0.89320
0.97874
0.97726
0.97819
0.90537

0.073 502
0.140 177
0.140 431

20 -76.08 33 39

3nl

MC .CF A1l Single Excitatiors

CI All S#D

0,600 000
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0.001 141

~76.15 00 15

-76.15 02 69
«76.15 11 SB

361
3,203
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17,678
17,678

MCSCF All S+D
CI All S4D+T

0.141 318
0.145 927
0.147 765

0.005 750

=76.15 57 A5

MCSCF All S+D+T
CI All S+DHTHQ

Q 97543
0.96797

0.007 588

-76,15 76 03

0.007 649

0.147 826

-76.15 76 64

MCSCF All S+D4T4Q




A NOVEL SINGLE FOCK OPERATOR APPROACH TO THE MCSCF PROBLEM
J. W, Mclver Jr., M. Page and R. N. Camp
Chemistry Department
State University of New York at Buffalo
Buffalo, MNew York 14214

SUMMARY

An approximately guadratically convergent
"Single Fock Operator" method for calculating
MCSCF wavefunctions is presented. The traditional
closed shell SCF equations emerge as 2 special
case of this scheme. Computer time comparisons
are made with the King and Camp method.

INTRODUCTIOK

.The closed shell Hartree Fock problem is
traditionally solved by application of the fixed

point iterative scheme,“'zw
Fleme = see n
with
el el e 1 @
until self consistency is aobtained, i.e., F(C) =
f(5°)~ Here the notation E(E°) is meant to imply

that the symmetric Fock matrix is constructed from
the square matrix C° of L.C.A.0. coefficients

obtaiced in the previous iteration. The symmetric
overlap matrix S and the diagoral matrix of

Lagrange multipliers ¢ have their usual meanings,

The above equations are a consequence of the
variational principle in the sense that, at con-
vergence, the energy is stationary with respect to
211 allowed variations of c. Although self con-

sistent solutions to these equations are varia-
tionally correct, there is no guarantee that the
use of these equations recursively from any set
of starting orbitals will lead to a con-
verged solution. Although convergence diffi-
culties have been studied and circumvented,{?
the recursive use of the above equations by and
large works very well for the closed shell case.

In disappointing contrast to the closed shell
case, the use of the recursion eqn. {1}. with egn.
{2) for open shell and MCSCF wavefunctions has
shown poor convergence. In these "Single Fock
Operator” methods, the prescription for construc-
ting F(C®) is obtained by using projection opera-
tors and/or coupling operators to obtain egns. (1)
and (2) which are variationally correct at self
consistency. But again there are no assuyrances of
convergence when used recursively.

In this presentation, we will derive & pre-
scription for forming an F(C°) which leads to
quadratic convergence of a variationally correct
solution to egns. (1) and (2) for any wavefunction
built up of orthonormal orbitals. By making some
simple approximations, & computationally attrac-
tive method emerges, a method which becomes
identical to the traditional Hartree-Fock method
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in the ciosed shell case. Preliminary calcula~
tions of a two-determinant MCSCF wavefunction for
a distorted ethylene molecule indicate that the
method is comparible to the King and Camp method

in computational efficiency. 4
THEORY

The new arbital coefficients C are obtained
from the old coefficients by e
c-cu, , (2
where U is as yet an undetermined matrix. A nec-

essary and gufficient condition for preserving the
orthonormality of the orbitals is, from (2}and (3),

¢'se = et - r @
Thus orthonormality is preserved if,
vu-1. {5)

At this point one.can proceed by minimizing
the expression E = <y|H|¥> with respect to the
elements of C (or of U) where the constraint

conditions are built in using the method of
tagrangian multipliers, This approach hawever,
has not been very successful fur problems other
than the closed shell Hartree-Fock case.

We choose not iu deal directly with the con-
strained elements of C or U, but rather we seek an

equivalent set of unc;nstra'lned (independent)
variables. Since the eigenvectors of a real
symmetric matrix are orthanormel, we view the
(orthonormat) columns of the matrix U as being the
eiyenvectors of a real symmetric matrix a.

Thus,

Q= t6)
The advantage of this approach is that the

orthonormality of the orbitals is retained simply

by keeping { symmetric. The n(n-1)/2 of f-diagonal

elements of Q may then undergo unconstrained

variations and thus form our set of independent
variables. The "single Fack matrix" of egn. {1)
is then obtained from egns. {3) and (6) as,

Fee) = ¢ aeer) ¢! ™)
To find the values of the elements Qij which

lower the energy, we expand the energy in a Taylor
series in the n(n-1)/2 off diagonal elements of

and choose the elements Qij via an approximate
Newton-Raphson procedure,

hus,
E > E(U(Q)), (8)



and in the quadratic approximation,

{optimam) _ -1 -
(1134 = - kil M N B i< (8)
where

£y = OB, o)
and 2

Mg = (O F10; 0 ) 010

A quadratically convergent scheme would
consist of calculating the first and second de-
rivatives with respect to Q«J evaluated at zero

and inverting the super-matrix M,

We instead cons’ ler only the “diagonal"
second derivatives That is, we neglect al} terms

of the form, & E/aq 30“. where i # kand J £ 1.

This is the "pairwise” or diagonal dominant ap-
proximation. Although this destroys the second
order convergence properties, it results in enor-
mous computational savings in that eqn. (B) can
now be written as

QIPEImm) < - a(aEsa0, ol (374305 )e am
where the variationally determined scaling para-
meter i helps overcome the effects of the quad-
ratic and pairwise approximations. We make no
assumptions about the diagonal elements of 0

except the simplifying one that they are non-
degenerate.

The first derivatives, eqn. (9) are rela-
tively straightforward to calculate. The energy
expression is an explicit function of the orbital
expansion coefficients which in turn depend im-

plicitly on the oij' Thus,
a0 m o My
EPEE A I
ac
= T (o ;)

v (gefe ;) (12)

It should be noted that the ith column of
VE can be regarded as the gradient of the energy
with respect to variatiuns in the coefficients of
the ith orbital:

At .

(13)

13
ac_

m
The term au/aoi in eqn. (12) can be evalu-~

ated using eqns. (5) and {6) and matrix perturba-
tion theory, Denoting differentiation with re-
spect to a particular 0 i3 by a prime, eqns. (6)
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and (5) can be differentiated to give

QU- U Q- V=0 (14)
and
vy s ufuag as)
Multiplying eqn.. (14} on the left by UJr and
letting, -

= UV (spectral expansion). {16)
We have, with the aid of eqns. (5) and (6),
VeU- ey ve =0, (7)
with

viav-o. (18)

hence V must be antisymetric. The diagonal ele-
ments of eqn. {17) give the €” and the diagonal
elements of V {zero here) are given by eqn. (18).
The off-diagonal elements of V are obtained from
the off-diagonal elements of eqn. (17), i.e.

Y = WU/l - o) (19}

Since the matrix Q° contains all zero's
except for Q;j =‘0in =1, Eqn. (19) can be written

as,

Vir = Wyl * UpUp M legy - o) (20)
Using eqns. {12}, (16), and (20), the first de-
rivatives can be written as,
3E/3Qy5 = Te (ReV)
(21}

=L L R, (U, Uy + U U} ey - 6py)
K 1k ®1 ik‘ﬁ k1 it Kk

where R = 7E'C. Thus, given R, calculating all of
the first derivatives at any value of Q requires
o(n ) operations. A large class of quadraucany
convergent methods (such as conjugate gradient or
variable metric methnds) require only the first
derivatives. When using egqn. (8), or as we do,
eqn. (11), only the values at ;-0 are needed.

Here UiJ_6 s anu eqn. {21) becomes

R R.. - R..
i i i i
_BJ.._.{._ - ﬁ—L—GL (22)
_35 ey Mo 0y
which requires only O(nz) operations. Note that

at convergence, the proper variational conditions

RiJ - RJ.1 {23)
are satisfied, since the Q
degenerate and finite.

To evaluate the second derivatives, it is
easiest to freeze all off-diagonal elements of Q
except 0,I . The matrix U is then an identity ~

matrix except,

= v.efc teo.
-V.EC.—VjE € =0

can be chosen non-



Ujgy = Ujg = cos Byj s
{28)
Uij L] 'uji a sin eij

and 8y is determined by the requirement that ]
be diagonalized,

ZQ‘ s
tan 20,, = u—ﬂ——
" T G

Under these conditions, the first derivative is

(25)

3 3E_ 30f
Nyy 04y My
cos 28
- (ByyRy) gy (26)
while the second derivanve becomes
PR TR N
=30 = 2
a5 (055 055)
] +
e (Y T G2, @n
(5 - 07

At this point, matrices F are found which
satisfy
UE =4 0G - (28)
Orbitals which share the same matrix Fi
are said to be]ung to the same “shell” and the

matrix 1l— ) is the “Fock Matrix" for shell a.
Using eqns. (3), {24) and (28), eqn. {27) for the
second derivative becomes
&L iy

Qi;

+ + +
6 Ry GRG0 G R - R vy
. 2 ’
(0 - O3

(29)

where i is in shell o and j is in shell 8, and,

Yoot (30)

ij Tt

3 o
(F - F)c2)
GU. ~ 0 B'J3Y0

The term Yij has been named the Fack correc-
tion term by Goddard et al. If we set this

term equal to zero as a further approximation,

eqn. {11) fnr the optimum value of 0 becomes
-1y -y

0, - _{__J_I..L__:]LJ_;’_ s (31}
Ta- Tt Ty

where TC'l H Ck ~u ]

CLOSED SHELL CASE
The method outlined above reduces to the
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traditional closed shell Hartree Fock method by
Judiciously choosing the elements Qi where i and
J are in the same shell. It follows by differen-
tiating the energy expression that,

Y‘E = Gfat_tf i = occupied
and

YiE = g » i = virtual
where, in the usual notation,

fﬁ:‘ H“’" + ZPCXU[Z( wir - { uojav}l ,

or (s ws 29 0y -k 2Ty, (32)

where Pf" z ool

If i and j are in the same shell {(both
occupied or both virtual) then they share a common

Fock matrix (EC or 0).

+
Rig =Ry = GG (F-F)Cy=0 (33)

for all 6;;. Thus Ug?’“"‘“’") is indeterminant if

i and j are in the same shell. These Qij's serve

only ta mix orbitals in the same shell and can te
assigned arbitrary values. While it is usually
convenient to» set them all equ2l to zero, in the
present case we choose them to be

Q= st Fls st and 5 in the same shel). (30)

If i is occupied and j is virtual, then egn. (31)
PN e (o #¥lcs - cs ¢
i 3 3T i

o, - .
J F 1 atcClce
STHARTIRE N )
ar
0y = ¢ (35)

Exactly the same equation results when i is
virtual and j is occupied. Hence in matrix form,

Qoptimun - cg‘rFE\cn \ (36)
where the diagonal elements of q are also caicu-
lated by Eq. {35).

According to egn. (7),

Eoptimum () = EC!(cn) A
and the traditional closed shell Hartree Fock
wwethod is recovered.

PRELIMINARY MCSCF CALCULATIONS

The HONDO program of King et al.( ) was
?dified to calculate the best wavefunction of the
orm

§ = ople B - et Bro,3,1,0p]0 3 -ee0 FrogFyl -(37)



This is the simplest Generalized Valence Bond

wavefunction for a system of 2(n+1) electrons.
In this case there are four shells having occupa-

TABLE 1

This Method
{1.355 sec/cycle)

King and Camp Method
(I 730 sec/cycle)

tion numbers 1, uf. °§ and 0, the last being the Cycle # Energy, Au nergy, A
virtuals, The four corresponding Fock matrices 1 -110.56805242 -110.56&)5299
are 2 -110.57000382 -110.56842031
2 2 3 -110.57018313 -110.56860177
= H 4 G(P) + % G{A)} + % G(8} , (38) 4 -110.57024124 -110.56985300
o c T T [ -~110.57025596 -110.56990704
A 2 6 -110.57023561 ~110.57015071
F = o) [H *+ G(P) + G(A)] + oy0p K(B) (39). 7 -110.57026603  -110.57017911
) ot T =T 8 -110.5702690% ~110,£7021564
B 2 9 -110.57027267 ~110.57021969
Fo = o [H + GIP) + 6{B)] + 9,95 K(A) , (40) 10 -110.57027454 -110,57021849
T T T T 1 ~-110.57026760 -110.570:26074
v 12 ~110.57027499 -110.57027184
FF=0, (41) 13 -110.57027507 -110.57027257
e 6 08, 2 W eamms s
= - t A t o + 15 -110.570275 -110.
B AN S on O e 1 14
Each iteration of the method consists of the 18 110.57027524 2110.57027524
following steps 19 -110.57027524  -110.57027524
1) Optimization of the coefficients 0, and og. 20 -110.57027524 ~110,57027524
2) Construction of the Fock matrices for the three ACKNOWLEDGEMENTS

occupied shells (cf. equations (38)-(40)), from
the coefficients, C°, obtained either from the

previous cycle or from the starting orbitals.
This has D(n‘) operations and is the rate limiting
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step.
3) Calculanon of the matrices, REFERENCES
= (Su)’rEPgo (42) ( c )J Roothaan, Rev. Mod. Phys. 23, 69
+ 2.a. R. N Camp and H. F. King (In preparationj.
= e’ (43) . R. E. Stémton (In preparation).
See A. Golebiewski, J. Hinze and F. Yurtsever,
= (o) tefee. (a4) gmg\- P:*s‘ ‘72 "1101 (1979) and references
i 4, H. F. King and R. M. C this proceedings).
4) Estimation of A°PH™M fron nformation ob- 5. F. W Bobrowicz and W. A ((iodda S,
tained in the previou: cycle, Modern Theoretical Chemistry 3, 79, Plenum,
optimm ¢ nr
Sgpg?;.;ﬁhtw" of Q o 6. M. {s and H. F, Klng, J._Chem,
D,J 0, if i and J are in the same shel1{45} P 65. 'Ill (1976) and Q.C.P.E. program

Qoptlmurn - optimum (T -T sHQ; -Q”). (46}

R 3]
e
if i and j are in differont shells.

6) Diagonalization of QoPt"'“‘" to obtain U (cf.
equation (6)). =

7) Use of eguation (3) to obtain the coefficient
matrix C

8) Test for convergence and if not converged
return to step 1

The following table gives a rough indication
of the convergence properties of the method. A
two-determinant wavefunction for a distorted (C.|

symmetry)} ethylene molecule was calculated in an
ST0-3G basis. For comparison, an equivalent
wavefunction was calculated using the King and
Camp method, Bath runs were made on a COC Cyber
174 computer (5.7 psec/floating point multiplica-
tion}. The starting orbitals were the same.



GENERALIZED MOLECULAR ORBITAL THEORY:
A LIMITED MILTICONFIGURATION SELF-CONSISTENT-FIELD-THEQRY

Michael B. Hall
Department of Chemistry
Texas ASM University
College Station, TX 77843
The generalized molecular orbital (GMO) approach is a limited

type of multiconficuration self-consistent-field (MCSCF) calculation which
divides the orbitals of a closed shell molecule into four shells: doubiy
occupied, strongly occupied, weakly occupied, and unoccupied, The orbitals
within each shell have the same occupation number and are associated with
the same Fock operator. Thus, the orbital optimization is ideally suited to
solution via a coupling operator. The determication of the orbitals is
followed by a configuration interaction (CI) calculation within the strongly
and weakly occupied shells, Results for BH3 show a striking similarity
between the GMO's and the ratural orbitals (NO's) from an all singles and
doubles CI calculation. Although the GMO approach would not be accurate for
an entire potential surface, results for spectroscopic constants of N2 show
that it is suitabie near the equilibrium geometry. In this paper we describe
the use of the GMO technique to determine the primary orbital space, but a
potentially important application may be in the determination of a secondary

orbital space following a more accurate MCSCF determination of the primary space.

INTRODUCTION

The need to go beyond the restricted, single-configuration, Hartree-Fock
{RHF) approximation] and to include electron correlation is clearly evident,
This need exists not only for quantitative accuracy but also for semiquantitative

accuracy and, in some cases, even for qualitative results. We are interested
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in the electronic structure of rather large, transition-metal systems,
especially those with metal-metal bonds and with metal-ligands bonds which
involve strong pi acceptor ligands such as dioxygen, nitrosyl, and carbenes.
In systems such as these, two factors conspire to render the RHF approximation
a particularly poor one. First, transition metals, especially those of the
first transition series, have rather compact valence d orbitals, a factor
which leads to small metal-metal or metal-ligan< overlap integrals. Second,
for the bonds described above the orbitals of the two components have similar
energy; thus, there are large rgar degeneracy correlation effects in these

systéms. )
The most direct way to go beyond the RHF wavefunction toward a correct

description of the wavefunction is the traditional configuration interaction (CI)
calculation.2 However, for very large systems the four-index transformation

and the large number of configurations n:ke this calculation prohibitively
expensive, An alternative solution would be to use fewer configurations in

a multiconfiguration self-consistent-field {MCSCF) calculation witere the

form of the molecular orbitals (MQ's) is simultaneously optimized. However,
each orbital active in this optimizacion will now reqqire construction of a
separate Fock operator or a partial four-index transformation at each iteration,
If the number of active orbitals is large, this calculation may also be too
costly. The procedure described in this paper was developed to avoid these

two problems., Qur goal is to develop a method which willlrapidly determine a
set of optimized primary orbitals, which are suitable for subsequent CI
calculations. We will begin by describing the theory, and then some results for

calculations of small molecules, which we will compare with the results of more

accurate calculations.
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THEORY
Shell Structure

For a 2n electron closed-sheil molerule the RHF wavefunction is taken
as a single determinant of duubly oceuoicod MO's,

L R R D (M

In typical applications to molecules the M0's are expanded in a basis set

E )
4 = (2
T
and the RHF emergy is minimized with respect to the Cia's by the Roothaan

o viaka

Drocedure.1 Because of the expansion in a basis set, one also obtains a
number of virtual or unoccupied M0's. Thus, the orbital space for the RHF
calculation consists of two shells; the first has n doubly occupied orbitals
while the second has m-n unoccupied orbitals. Schemétical]y, we may write
this partition as

(o7 -=- ¢, 2 bneq == 0 )0 (3)
One of the reasons that the solution to the RHF problem via the Roothaan
procedure is computationally attractive is that all of the orbitals are
eigenfunctions of the same Fock operator.

With our goal of a simple MCSCF procedure in mind, it occurred to us
that to take advantage of the computationally attractive nature of standard
M0 theory, we should continue to treat the orbitals in groups or shells, All
orbitals in each shell should have equal occupation numbers and be associated
with the same Fock operator. The previously doubly occupied shell is divided
into two shells, one, which remains doubly occupied, and another, which is
strongly occupied with variable occupation number. Likewise, the previously
wnpccupied orbitals are divided into two shells, one, which is weakly occupied

with variable occupation number, and another, which remains unoccupied. It
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is this shell structure, which can be written as

T N L R TNEL{ G L (@)
that suggested the name generalized molecular orbital (GMO) theory. As in the
RHF case the notation can be extended to open.shells where one would have an
additional shell of singly occupied orbitals (for the high spin situation).
In subsequent discussion we will refer to these shells by the following
letter designations: R for the doubly occupied shell, S for the singly occupied

occupied shell, T for the strongly occupied shell, U for the weakly occupied
shell and V for the unoccupied shell. HWe will use the corresponding lower
case letter, r,s,t,u, and v to refer to individual orbitals within their

respective shells,

Wavefunction_and Energy
One particularly simple wavefunction which satisfies this orbital

partitioning is

-

Tk ) g, A b (s)
where

e N R XN (6)
and

L K XA NP ‘ (7)

Thus, the wavefunction consists of a dominant single determinant, Voo plus
all determinants which can be constructed by replacing a pair of orbitals
in the T shell with a pair in the U shell, Yeu These pair-excited
functions are then weighted equally by the vsriational parameter.i, The

k 1 numbers refer to the number of orbitals in the I th shell. For this
wavefunction the occupation numbers, x and y, will be 2(1 - kd@) and ZkTAZ.

respectively. For the simple open shell case with kS orbitals each containing
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one electron of the same spin, we would add kS singly occupied orbitals to
both Yoo and L2
The total electronic energy for this wavefunction can be written as
E= z fiHp + f E.(apy Jpy +byy Ky ) (8)
where HI' ) 19° and KIJ partial sums are over one-electron, coulomb, and exchange
integrals, respectively.
HI=2§ his dpg = ::S:J ;s and K g = ’:f_'(ij (9)
where the sums over the lower case i and j include only orbitals in the shell

I and J respectively. The values for fl‘ a and bIJ are given in Table I.

TABLE I. GMO Energy Parameters

Type  Shell Shell / Parameter
R S T 1]
k.2 22
fl 1 3 (1 kg ) kA
-k, 2 2
R 2 1 2(1 kul ) Zka
ka2 2
. S 13 (1 kUA ) kTA
1J _ 2 -1)22
T 2(1 2k ) 2(|<T 1)
1} 0
- - ~(1-k A2 ka2
R 1 V] (1 kUA ) ka
- L(1-k A2 - 2
R S % 4(1-k A2) skph
L T “(1-3 %) ya-(kp-1)22
2
U kTA

———

1
y = (1-kaUA2)2
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Coupling Operator

Because these coefficients do not depend on the individual orbitals,
the wavefunction (equ. 5) and energy (equ. 8) are independent of a unitary
transformation of the orbitals within a shell and depend only on the mixing
between shells, Since the number of shells is small, the variational solution
for the orbital optimization may be performed with a ;oupling operator,

For each occupied shell we can define Fock operators as

Fi =f1h+§( apgdy * brgky ) {10}
and projection operators as '
Pr= 2 (lopeail ). (m
The projection operator for the virtual shell can be defined as
Pv ={1- f PI ) (12)

Following Hirao 3, we défine a generalized coupling operator as

190!
where the sums are over the occupied shells, The molecular orbitals are then

R = ? (PVF P+ PIFIPV) + ? E (eJI - eIJ)PJ(FI‘FJ)PI + ? PIF P (13)
obtained from the eigenvalue equation
R|°i>=€il¢i> (]4)
There remains considerable freedom in the R operator. For example,
one may add the operator
0= ? PIS.IPI {18)
where nl is any one-electron operator. This freedom allows us to make the
orbitals within each shell canonical over any operator we wish., Presently,
we add the following operators'to our coupling operator
PyFPy + w(PyFPyy + PUFLPL) (16)
The first term makes the virtual orbitals canonical over the same operator
as the weakly occupied ones. The second term, which is weighted by w, allows

us to vary simultaneously the canonicalization of the weakly occupied and
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virtual shells from being canonical over FU {w=0) to being canonical over
FU + FT (w=1). The latter case corresponds closely to making the U and V shells
canonical over just FT because its larger values will dominate those of FU.
The coefficient (Chl - GIJ) is taken as 219 for J > I ond corresponds to a
weighting factor for the first deriyatives. For the case w = 1 and °IJ =1
the coupling matrix will approach the usual RHF matrix as the configuration
wgighting parameter, A, approaches zero,

In the present program all the necessary Fock matrices are formed in
a single pass through the atomic integral file., These matrices are then
transformed into the GMO basis from the previous cycle, the R matrix is
formed, the canonicalization matrices are added, and a level shifting
parameter, n, is added successively to all the diagonal terms of each shell.

This final coupling matrix takes the following simple form

R shell T shell S shell U shell V shell
Fr Spr{Fpfr) ops FpFs) oy (Fp-Fyy) SRR
Fr+n orgFr-Fg) ory(FrFy) vFr a7
Fg # 2n BSU(FS-FU) oyFs
FU+uFT+3n eUVFU
Fytf p+on

This matrix is then diagonalized to form the new GMO's for the next cycle,
The value of A {equ.5) is determined variationally just prior to each

orbital cycle. The energy (equ.8) is -expressed explicitly in terms of i,

(18)

2%
E= EU +(1 - kaUA ) E] + E2

where
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Eo = ZHR + ZHT + HS + ZJRR + 4JRT + ZJRS + ZJTT + ZJTS(IQ)
Helgs - Kpp = gy - Kps = Kpy = Kpg - kg
Ey = 2Ky, (20

and
Ey = ZkplHy + 2dpy + 20qy * gy = Kpyo= Kyy = BKgy + Kyy)
-2k (Hp + 20pp + 2hpp + dgp = Kp = Kpp = 3Kgp = Kpp) - (21)

=22y - Ky
A one-dimenional Newton-Raphson iteration is used to find the value of

A for which (dE/dx) = 0O,
Computational Details

The GMO calculation is usually started from a set of ronverged or partially
converged RHF molecular orbitals. The doubly occupied orbitals of this
calculation can be partitioned in several ways. One might place all the
valence orbitals in the strongly occupied shell while keeping only the atomic
cores doubly occupied. In this situation the weakly occupied orbitals should
consist of all the antibonding counterparts of the valence shell, Thus, the
occupied space in this problem (R,S,T, and U shells) could consist of all those
MO's one could construct from a minimal atomic basis set on each atom or of the
core, singly, and strongly occupied orbitals plus a weakly occupied correlating
orbital for each strongly occupied orbital. Alternatively, one might only be in-
terested in part of the molecule such as the metal-metal bond in a metal dimer com-
plex or a particular metal-l1igand bond. In either case the strongly and weakly
occupied shells would be confined to the bond of interest and the remaining
valence orbitals would be in the doubly occupied shell.

Initially, » is set to 1.0, while n is taken to be between 2;0 and 1,0, and
is reduced as the calculation converges to values between 0.8 and 0.4. One may

begin the cycling with all the o, values equal to 1.0. However, one rapidly
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notices that matrix elements between the doubly and strongly occupied shells
and those between the weakly occupied and virtuai shell are not being reduced
on each cycie. The reason for this is that the matrix elements in these two
blocks are first order in A, while all other b]ock§ are zero order ina.
Thus, these matrix elements are inherently small and the coupling matrix

procedure does not make sufficient changes in the MO's at each cycle to reduce

these first derivatives. If one sets BpT = Oyy ° 1.0/x, all off-diagonal
blocks of the coupling matrix will be zerc order in A and tite caupling
matrix will converge. When A is very small, we may multiply the

value of 8pr and By by 2.0 or 3.0, and for some open shell problems we may
set all ers values to 1.5 or 2.0.

Comparison t> Second Order Methods

Since we have erfectively only one configuration variable, A, in our
wavefunction we will confine this comparison to a second order determination
of the orbitals. Given a trial set of orthonormal MO's, ¢, we may construct
an improved set s Via a unitary transformation.
¢c=se" (22)

where a is a skew-symmetic matrix. The optimum values of A may be
determined by a full matrix Newton-Raphson procedure

A4a=-g (23)
where the independent matrix elements of A are written as a vector
(Aij = A1), g is the gradient or first derivative of the energy with
respect to A (g1 = dE/da,), and A is the Hessian or second derivative matrix
(dZE/dA]dAm)- By solving these equations exactly, one would compiete one
iteration of a full second order procedure {neglecting the coupling between

our orbitals and our canfiguration parameter, i).
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We can most easily cumpare this procedure with our ccupling matrix
technique by making several unjustiffed assumptfons. First, we wilil expand
eA in a power series and retain only the first order term. Thus, equation
(22) becomes

$- = ¢{1 + 4). (24)
Second, we assume the Hessian matrix is diagonal so that equation (23)
can be written as

& = -01/A (25)

or returning to matrix notation for 8 we can write equation (25) as

o
iJ
If we now return to the coupling matrix and assume that the level shift
parameters are large and/or that the off-diagonal ierms are small, we
may diagonalize the matrix by perturbatiion théory. The new vectors would
then be expressed as in equation (24) and A would be
%Jﬁ!-Fﬁ}
47 I F e ()
A 11

where we have 'ised superscripts to denote the shell Fock operator and
subscripts to indicate the particular matrix element. The term 4(Fi3 - Fij)
is the negative gradient and the remainder eIJ/4(Fj; - Fig + n) represents
an approximation the inverse of the diagonal term of the Hessian. The
Tevel-shifting parameter is used to assure a positive second derivative, and
js chosen large enough to prevent the interchange of an orbital from one
shell with that of another shell (to assure small Aij values). The ®1q
values, which are always greater than 1.0, can be used to accelerate the

convergence by decreasing the estimate of the second derivative.
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Althotgh there is no way in which a coupling operator technique may
be called truly second order, it is legitimate to view our approach as a
heavily weighted gradient technique. The number of cycles of the coupling
operator necessary to converge a typical case wiil be much larger than tre
number for a complete second-order techm’que.4 However, since our effort
per cycle is very small, less than three times that for a standard Roothaan RHF
cycle, the coupling operator technique may be competitive with other methods.
This {s particularly true for situations 11ke the GM) approach which have
relatively few shells.

Configuration Interaction

We do not expect the GMD wavefunction itself to recover much correlation
energy. Our objective in solving for this-wavefunction is to obtain a set
of optimized orbitals for use in a traditional CI calculation. The Towest
level of CI, which appears reasonable, is all single and double excitations
from orbitals in the T shell to those in the U shell. One may include
higher excitations within this occupied space, such as full CI within the
active space {T and U shells) or one may introduce excitations into the
virtual space by allowing only a certain number of electrons into the V
shell.

RESULTS

One of our implicit assumptions is that the form of the optimum
orbitals does not depend very strongly on the Cl coefficients in the MCSCF
wavefunction. If this assumption is adequate, the GM) wavefunction can be
derived from an all paired doubles MCSCF5 with equal CI coefficients. Of
course, this assumption will not be completely true in many important cases. How-
ever, for systems near their equilibrium geometry whose "true" wavefunction is

dominated by a single configuration this assumption may be quite accurate.
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One way to test part of this assumption is to examine how the energy obtained
from the final CI depends on the value of A which was used in the GM)
wavefunction. Previous results for H2 indicated that the final CI energy
depended only weakly on the value of A used to obtain the orbitalsﬁ. Similar
results are also obtained for BH3 where the 15] is doubly occupied, the
Za'l and 1é are strongly occupied while the 132, 351, and 2e. are weakly occupied.
A standard double-zeta Gaussian basis’ with polarization functions (d on B,
pon H)B was used in these calculations. Figure.l shows two curves; the upper
one is the energy of the GMD wavefuncticn as a function of A. The RHF energy
corresponds to the point at A=0. The lower curve shows the energy obtained after
a CI calculation (all singles and doubles from T 'shell to U shell) with the
orbitals obtained from the GMO wavefunction. On this curve x=0 corresponds
to a singles and doubles CI calculation with the first virtual 15'2, 3a'1
and 2; from the RHF calculation. The remaining points then correspond to
the use of the weakly occupied GM0's. The upper curve, as expected, depends
quite strongly on A, but the lower curve is quite flat beyond 1=0.02. One
is forced to conclude that the final CI energy obtained from the GMO's dnes
not depend very strongly on the A value. :

A more direct assessment of the orbitals may be made by comparing
the GMD's with the natural orbitals (NO's) abtained by diagonal-
izing the first order density matrix from an alllsin.gles and doubles CI
calculation. In this calculation all of the virtual orbitals, except the
core correlating one were used in the active space. Prior to the large CI
calculation the virtual GM0's were made canonical over the weakly-occupied
Fbck operator (w was set at zero for one iteration}. The percentage of each
GMO in eacit NO is shown in Table II. Also shown are the occupation numbers

of the NO's and the GM) eigenvalues with a letter! designating the shell. As
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TABLE II. Comparison of GM)'s and NO's for BHj
M0 (set) -
eigenvalue Natural orbital / accupations
22} 3aj da) Sa} 6aj 734 8a}
1.9732 0.0151 0.0052 0.0004 0.0202 0.0000 0.0000
2aj(t)-1.7101 100% - - - - - -
3a}(u)-0.0939 - 99% 1% - - - -
433(v)-0.0029 - 1% 99% - - - -
5aj{v)-0.0004 - - - 3% 29% 67% 1%
6ai{v)+0.0014 - - - 89% 9% - 1%
7aj{v)+0.0044 - - - 7% 61% 32% -
8aj(v)+0.0093 - - - 1% - 12 98%
le' 2e' 3e’ de’ 5e' 6e' 7e!
1.9690 0.0141 0.0078 0.0018 0.0004 0.0003 0.0001
le'(t)-1.4976 100% - - - - - -
2e’'(u)-0.0043 - 100% - - - - -
3e'(v)-0.0031 - - 100% - - - -
4e’(v)-0.0005 - - - 4% 8% 87% -
5e'(v)}-0.0001 - - - 96% - 4 -
6e' {v)+0.0028 - - - - 92% 8% -
7e' (v)+0.0049 - - - - - - 100%
laj 235 333
0.0098 0.0004 0.0000
1a4{u)-0.0034 100% - -
2a3{v)-0.0009 5% 95%
3a%(v}+0.0017 - 95% 5%
le" 2e"
0.0033 0.0003
1e*{v)-0.0015 100% -
2e" (v)+0.0027 - 100%
laz
0.0014
1a4(v)+0.0004 100%



expected the strongly occupied GMO's and NO's resemble each other and are
not much different from the RHF orbitals. The weakly occupied GMD's, 152,
3&1, and 2é, have almost unit overlap with the most important. natural.orbitals.
Even more amazing is the apparent similarity of the virtual GMd's (canonical
over the operator for the weakly occupied) to the next most important NO's.
In fact the GMO eigenvalues can be used to order the importance of these
orbitals within each symmetry. Only as one approaches the more weakly occupied
NO's does one notice that they begin to diverge from the GM0's. Similar results
have been reported for HZU and N2.g

The importance of this similarity to the natural orbitals can be seen in :
Figure 2, where we have plotted the correlation energy obtained against the

number of correlating orbitals used in the CI calculation. The three choices

for the orbitals are RHF virtual (chosen by eigenvalue), GM) weakly occupied
and virtual {(chosen by eigenvalue but canonical over FU) and the NO (chosen
by oc..pation number). These are represented on Figure 2 as triangles, circles,
and squares, respectively. The well known inferiority of the RHF virtual orbitals is
amply illustrated (choosing the RHF orbitals in a different order makes no improve-
ment)., What is more striking is how closely the energy from the GMO's follows the
energy from the NO's. The two calculations diverge only as the more weakly
occupied orbitals are included.

The GMD technique has been used to calculate a number of properties
such as ionization potentials of N2 and H20,9 excited state of CHZ,ID
dissociation energy of BZHG‘II and the dissociation energy of a Mo-Mo
triple bond.12 Previous results on the spectroscopic constants for N210 in a
large Gaussian basis were only at a very low, inadequate level of CI. Table

III presents the results for the equilibrium internuclear distance, dis-

sociation energy, and stretching freguency. The basis set used in our cal-
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TABLE 111. Spectroscopic Constants for N2

Method Re(R) Dlev) . ufeh)
RHF : 1.064 4,98 2769,
M0 1,073 5.73 2645,
aMo-C1 1.103 8.82 2314,
EXp 1.098 9.91 2358,
RHF3 1.067 5.08 2757,
avB(pp)? 1.094 7.05 2421,
gvB-c1? . 1.106 8.93 2330.

aReference 14

culation was a contracted (4s, 3p) Gaussian basis7 augmented with a Slater

13 For the GM) calculation the

3d (exponent 2.81) expanded in two Gaussians.
strongly occupied shell was acg and 1r, (T shell), while the weakly occupied
shell was 39, and l'ng (U shell). The spectroscopic constants were calculated

from a five point (0.9, 1.0, 1.1, 1.2, 1.3} Dunham analysis. The improvement

of the GMO over the HF is small, but when a full CI calculation is performed
within the T and U shells (GMO~CI) the improvement is dramatic, The results at
the GMO-CI level are nearly identical to those obtained from the GVB orbitals
followed by CI in the GVB valence space.]d The small observed differences

can be attributed to a slight difference in the basis set, which is apparent

in the two RHF calculation,
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DISCUSSION

5, g'lzshow'that

The examples provided above and described elsewhere
the use of the GMD procedure to define a primary orbital space produces orbi-
tals and subsequent energies very close to those of more sophisticated tech-
niques. The procdeure is extremely efficient since it requires the construc-
tion of only two additionat Fock matr{ces beyond the number required for the
RHF calculation. In all cases we have tried, the coupling operator as described
above has converged to the required accuracy.

However, the GMO approach does have some obvious limitations. The present
formulation will not be equally accurate over the entire potential surface ;
in fact, it will be very poor as one approaches dissociation. The method
will work best near the equilibrium geometry, when the wavefunction is dominated
by a single configuration. Although we have no direct evidence, we believe
that it will be more accurate for compact molecules, where all of the orbitals
of the T and U shells are in the same region of geometric space, than for ex-
tended systems. In many of our inorganic applications to coordination com-
plexes and cluster compounds, we are dealing with just such compact molecules.
For most of the larger systems we are interested only in some part of the
molecule such as the metal-metal bond or a particular metal-ligand bond. In
these cases the GM) procedure conveniently localizes the portion of interest in

the T and U shell, while the remainder of the molecule is described by the

doubly occupied R shell.

For small molecules, more accurate. MCSCF techniques are avaﬂab]e.15
Qur procedure is not intended to compete with these methods for accuracy in
determining the primary orbital space. However, in some situations it might be

useful, after determining the primary space by a complete MCSCF, to adapt the GMO
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approach to determine a secondary orbital space. This technique could be partic-

ularly important in very large basis sets since it would allow one to discard the

less important virtual space.
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MCSCF OPTIMIZATION THROUGH ITERATIVE CI CALCULATIORS IN THE STNGLE B
EXCITATION SPACE AND MCSCF WAVE FUNCTIONS IN THE FULL REACTION SPACE -
Klaus Ruedenberg X
Ames Laboratory* and Depatrtment of Chemistry, lawa State Univeraity, Ames, IA 50011

1. ORBITAL SPACE AND CONFIGURATION SPACE

A muleiconfiguration ("MC") N~electron wave
funceion is a vector in a function space which we
shall call the MC space. It is spanned by a basis
of N-electron functions VK known as configuration

gtate functions ("CSF's"). There exists consid-
erable diversity as regards the construction of
the CSF's from orbital products and spin func~
tions, Ulctimately every CSF can be expressed as a
fixed linear combination of Slater determinants.
The simplest choice is to have each CSF equal one
Slater determinant. A reasonable sophisticated
choice is to choose the linear combinations such

chat each CSF is an eigenfunction of 32, Sz and

also belonga to the same irreducible representa-
tion as the state which is to be calculated, In
our work, we often find an intermediate choice
convenient, namely spin adapted antisymmetrized
products of orbitals (SAAP's).

In any event 1 am assuming that the orbitals
from which the CSF'a are constructed do belong to
irreducible representations (“irreps") of a
molecular symmetry group, i.e., they are of the

form ¢‘;u, where v denotes the irreducible repre-

sentation and y labels the varfous degenerate
partner functions which form a multidimensionsl
irrep. I furthermore assume that the various
orbitals belonging to a given value of Vv and u are
orthogonal, so that we have in fact
v vt
<o [o50 > 6“,5W,6w, . (1.1)
The CSF's are then functionals of the orbitals,
i.e.,
= sesgVHens
LR S ) (1.2)
and 1 furthermore assume thst they are constructed
in such a manner that the orthogonalities (1.1)
entail the CSF orchogonalities

<VK[WL> = &y - (1.3)

SAAP's have this property.

In the mulciconfiguration self~consistent~
field (MCSCF) approach the orbirals o‘i'“ are not

explicitly given to start with, but ire to be
optimally determined through calculation. Conse-~
quently, the assumption of a certain configura-
tional basis, such as that given by the ‘PK of Eq.

(1.2) does not yet completely specify these con-
figurations, it merely defines a certain formal
structure of the configuration space in terms of
!0's yet tobe determined. These MOS will be
called the configuration generating orbitals
{CGO's). The essential characteristics of the
structure of the configuration space are the num-
ber of CGO'sand the type of configurations formu-
Jated in terms of them. A particular CGO may
accur in ene, in several, or in all configura-
tions, However, since it does not have to occur
in all configurations, it is apparent that the
number of C60's, M say, is In general larger than
the minimum number of orbitals that can occur in
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any one eonfiguration, namely, 4N, where N is the
number of electrons. In actual molecular problems
the CGOS are nearly always divided into two
groups: (1) a set of “generalized core" or "closed-
shell” orbitals, all of which are doubly occupied
in every configuration, and (i1} a set of "active"”
CGO's whose occupation numbers are less than two in
at least one conflguration. Suppose there are M"
closed CGOY and M' active CGO's. If ft is intended
to free all electrons outside the closed shell
completely from the “straight jacket of double oc-
cupaney,” then one intuitively expects the number
of active orbitals not to be smaller than the
number of electrons occupying them which implies
MMM, MOOR-2MT, MON(N4M') (1.4)
The choice M=Y(N+M') corresponds to having, on the
average, exactly one active orbital available for
each open-shell electron, a case which may be
called the "extended independent particle model"
for the open-shell part. On the octher hand, the
largest configuration space that is possible for a
given number of active CGO's1s obtained when the
configuraction space basis corresponds to all CSF's
cthat can be constructed from the active CGOs with
the closed CGO's always remaining doubly occupied.
This we shall call the full configuration space
generated by the active CGO's (FAS). An important
feature of this full configuration space is that
it 1s invariant against any nonsingular, in par-
ticular, orthogonal transformacion among the CGOS.
If the active orbitals are those which can be
expected to describe a chemical reactiocn, we call
such a space the full reaction space (FRS).

In order to optimally determine the CGC's, it
is presumed that they are expressed as linear ex-
pansions in terms of a set of basis orbitals.
Since these are the functions through which, ulti-
mately, the wave funceion becowes a specific func-
tion in space, we shall call them the gquantitative
basis orbitals (QBO's). They can be molecular or-
bitals or atomic orbitals. In the lstter case
they usually are predetermined fixed superposi-
tions ("contractiona") of primicive atomic or-
bitals (PAO's), the ultimate building blocks of
most molecular calculations. It is often conve-
nient to generate from them & basis set of ortho~
normal symmetry-adapted QBO's (QBSO's) which we
denote by

AVH

2, (1.5)

Ay e
i, N
Clearly the CGO's quoted in EqQ. (1.1) can be ex-
pressed in terms of the QBSO's by the expansions
\un Aup Vit
oy = Lo, Fey
In order that :here be any variational freedom,
there clearly must be more QBO's than CCO's, Let
L be the total number of QBO's 'and let M be the
total number of CCO's. More specifically let

(1.6)

L+, be the total number of s:u and e“" in the

vth irrep, i.e., r=1.2,...,Lv, j-].,Z.....N\J s0
that
I L
L= I DL, M= I DM (.7
vy VY w1l YV



if there are I irreps, the vth irrep having the
dimension Dv' Then we have necessarily

LM, LM,
with the inequality being the usual situation,
sum in EQ. (1.6} thus runs from 1 to Lv and che

1.8)

The

transformations F:u are rectangular isometric

transformations. By complementing these isometric
matrices in some arbitrary manner to square ortho-
gonal matrices, we are introducing (L-M) addi-

tional MO's ow that are orthogonal to the €GO's.
These will be called virtual MO's. We shall also
use the rerms occupied and unoccupied MO's for the
configuration genersting and the virtual MO's,
respectively.

The multiconfigurational approximation to the
exact wave function, which is our goal, is thus of
the form

Y- ))ECK‘PK N {1.9)

vhere the ¥, are the configurstions introduced in

Eq. (1.2) and

Ec"( =1. (1.10)

In order to obtain the best possible approximarion
of this kind, two optimizations are required in

the MCSCF h: (1) The confi 1 1 expan—
sion coefficients CR' occurring in Eq. (1.9) must

be optimized (MC-CI calculacions) snd (ii) the
M0's must be optimized by oprimizing the orbital
expansion coefficiznts F:;’
{MC~SCF calculation), The latter opriwizarion is
the more troublesome oneé and requires successive
iterstions. Consequently, there exist M occupied
MO's and (L-M) virtual MO's at each stage of this
iterative process, and at each stage the occupied
orbitals are improved by mixing among each other
and by admixtures from the virtual space.

occurring in Eq. (L.r)

Clearly the MC-CI calculation yields as many
elgenstates as there are CSF's and the n-th MC
elgenvalue le therefore an upper bound to the n-th
true state of the symmetry in question. In prin-
ciple then, the orbitals can be cptimized for any
one of the states, and it stands ro reason that
the optimal orbitals will be dif{erent for differ-
ent states. This circumsiance entails a nraber
of subtie consequences. For one thing, the opti-
mal MCSCF approximations of different states are
constructed from orbitals which are not only
mutually (L.e., between different states) non-
orthogonal, but also span slightly different
orbital spaces, For another, the different MCSCF
states themselves will be slightly non-orthogonal
to each other. Both shortcomings represent no
prohibitive problems however and, these non-
or lities notwi the various ener-
gles nonetheless represent upper bounds.,

More serious is the fact that, when the or-
bicals of an upper state are iteratively improved
by lowering the energy of that state, then this MC
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eigenstate may change places energywise with a
lower state (uaually both states can be readily

recognized by their MC mixing coefficients CK). 1f

this occurs for example upon lowering the energy
of the second state, then continued lowering of the
energy of the second state will obviously result in
an oscillation between the two states. Clearly, in
such a case the goal of unrestricted orbital opri-
mization is incompatible with the requirement that
the second NC root be an upper bound. Such diffi-
culties arise from the fact that the MC space does
not have sufficient degrees of freedem Lo accom—
modate both the optimal groundstate and the optimal
excited state so that, when the second state is
optimized the approximation to the lower state
becomes so poor that its energy rises above what
started out to be the secord MC root. The best
remedy 13, of course, to give the MC space the
necessary flexibility by (1) including in its basis
a sufficient number of CSF's (which is straight~
forward) and (ii) including a sufficient number of
configuration generating orbitals (which may be
awkward), so that both states can be adequately
represented in the MC space. An alternative option
is to explicicly enforce the orthogonality to the
lower states while optimizing the orbitals of an
excited state. In any event, these problems must
be dealt with regardless of the procedure which is
being employed to achieve the MCSCF optimization.

2. VARIATIONAL CONDITIONS

A._Coefficlent Variations and Orbital Variations

It is our aim to find the optimal approxima-
tion ¥, as determined by the variation principle

S<t [H]|¥>2<8¥ [H|¥>=0 (2.1a)

while

<y|¥>a1 (2.1b)

where ¥ 1s a wave function of the type formulated

in Eq. (1.9). The variation of ¥ can be written
S¥=§

4§ (2.2)

coel“y+ urhq"
coef denotes the variation of the coeffi-
clents G :nd Sm_b denotes the variation of the
orbicals ¢ju~

tions, ss envisaged here, these two variations are
independent and the variational Cquation (2.%a) is
equivalent to the two separate conditfons [1]

where 6§

For a finite number of configura-

<6 Y|H|¥>=0 (2.3a)

coef

<8t |¥>=0 (2.3b)

I the coefficient Equatlion (2,3a), the or-
bitals are fixed and optimal and, hence, the con-
figurations WK are fixed. Consequently, this

equation ylelds, in famillar manner, the eigen-
value equation

f‘KfHIDCfECK (2.4a)

where the matrix elements



<x|u|1.>-<\rx|H|vL> (2.4b)

are presumed to be calculated with the configura-
tions constructed from the optimal orbitals,

In the orbital Equation {2.3b), the coeffi-
clents CK are presumed to be fixed and optimal.
The orbital variation of Y is therefore given by

sorhw-ﬁcxﬂk 2.5
and, since every ‘i‘ is multilinear in the orbitals
Ol » the varia:ions 6‘!‘ can be expressed in terms

of the orbiral variations Goi by means of the
following sum of “single orbital variations"

Dy Wy V) VU
sr b B Wy gy e
Ky n gy KUTPL O

where KV is the number of occupled srbitals for the

irreducible representation v. The orbital varia-
tions in turn, can be expanded in terms of the
full L-dimensional orbital basis. Choosing the
optimal occupied and corresponding virtual orbitals
as that basis, we therefore write

vV VU

ea)““- z 144 (2.7

are 1nf1n1tesima1, but not neces-
Note that they

v
where the x1 i
sarily independent, coefficients.
theore:ical-tranﬁo?m?inn properties remain intsct
during the orbital variations. Substitution of the
expansion (2.7) into Eqs. (2.5) and (2.6) ylelds

6 ‘l"[ I I X Y(visv)) (2.8)
vig 8
whare
‘P(JI*VJ)-EC -E ‘l‘ ("'¢ "‘¢ "') (-.9)

Since the orbitals form an orthonormal set,
the fixed coefficlents I:K satisfy Eq. (1.10), and

the side conditfon {(2.1b) will be satisfied 1f the
orbital variations preserve the orthonormality
conditions (l.1). To achleve this, the varied or-

bitals (¢1u+6¢1u) must be related to the optinal

orbitals ¢1p by an orthogonal transformation wnich

implies that the infinitesimal coefficier :s xi

in Eq. (2.7) are antisymmetric in their sabscripts:
A" v 0
TR (2.1¢)

and that the set of coefficients xv! given by i<!

cepresents a possible set of independent infimite-
simal parameter variationa. In view of this re-
sult, the orbital varistion of ¥ of Eq. (2.8) can
be written in the Eom

5 . ¥l VoY Y

orb y 1-1 j-1+1 1314 @.1
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where the functions ‘V\’J are defined by

“-‘I‘(vl-*vj)—‘l’(vj-'ui) (2.12)
for
J=(i+1), (1+2),(143),... oM =an occupied orbital>1

and

v“j-'r(vi»vj) (2.13)

I= (M FL) 4 (M +2) .0 »Lyma virtual orbital

We shall call these functions “singly excited MC
functions" or "MC uingle excitations,” and abbre-
viate them as MCSX's. In general, they are
neither normalized nor mutuallx orthogonal nor

even necenatilx llneuzlz independent. They are,
hwevu, orthogonal ta the MC function ¥ itself,

Lens

<v‘1’31w>-o, for all §>1 . (2.14)

B. Generalized BLB Theorem and
Single Excitation Space

¥ of Eq. (2.11) into the

variational condition (2.3b) yields

Insertion of Gorb

WL
v <w‘1’j|u|w>n‘l’ =0
v iel jei+l ]

and, since the x> occurring in these equations

13
are independent variational parameters, we obtain

<\P‘1’jlul\r>-o, for all 1<j (2.15)
The analogous varlational conditlons for the case
that the ‘!‘K in Eq. (1.9) are simple Slater deter-

minints were first derived by Levy and Berthier
[2). 5ince they are generalizations of an earlier
theorem by Brillouin [3] for Hartree-Fock wave
functions, we shall refer to these equations as
the BLB theorem. Our equations differ from the
original BLB equations not pnly in thac they are
for general CSF's but, moreover, In that the

singly excited MC functions ¥{j embody summacions

~.er the subspecies index u shown in Egq. (2.9 9). as
a consequence ol the y lndegendence of th_e x's in
Eq. {2.7). Since the \l‘\; are not always mutually
independent, the same holds true for Fqs. (2.15).

Equation (2.15) can be given an additional
interpretation if one introduces the single~
excitation (SX) space associated with a given MC
function ¥. This SX space is defined as that
function space which Is spanned by ¥ ictself
and all single excitation Functions (MCSX's) V‘;J

derived from ¥ according to Eq. (2.12). Eq. (2.15)
implies then that the hamiltoni.n matrix in the
S¥% space is block diagonal, the slement <¥|H|¥>

.
being one block and all elemeaix <W\1’1|H|WX-1 ">



Since, moreover, Y is

forming the other block.
orthogonal to all 'v;’ [{Eq. (2.14)], it follows
from this block diagonality that the MC function ¥

for ¥, regardless whether the W\; are linearly
independent of cach other or not, and that ¥ cannot
be lmproved by admixing any of the MCSX's \V\; . If
¥ is the groundstate then all ¥, wlll lfe higher

in energy than ¥ itself and ik can therefore be
tnferred that ¥ wlll be the elgenfunction with the
lowest energy eigenvaluc in the SX/CI problem. If
¥ 1is the nth excited state in a given symmetry,
1.e., if its energy 18 the n-th root of the MC-CI
problem, then it is possible thst the “'\1'3' gener-
ated from this ¥ contain sufficient admixtures from
the lower MC elgenstates so that ¥ can become any
one of the n lowest elgenfunctions of the SX-CI
problem.

The foregoing derivations can be generalized
to vield the variational conditions for those
orbitals which simultaneously optimize several
states [4].

3. OPTIMIZATION PROCEDURE

Iterative Orbital Improvement

for Fixed Coefficients

Let us assume for the moment that the optimal
MC coefficients CR of Eq. (1.9) for the sctate in

question are known, and let us consider the pro-
blem of optimizing the orbitals ¢‘1’" without

changing these fixed values CK. If the orbitals

are not optimal, but close to being so, then the
solution of the CI problem in the SX space will
yield one SX-Cl eigenfunction

Ly LI

alj 13 €3.1)

¥ mago¥+E ;.’\)
sx v i=1 j=i+1

which Is characterized by having apg close to unity
and all aj e<l. Tals elgenfunction ia readily

found by using an iterative procedure that is
effective in determining a single eigenfunction
vhich is dominated by one component [5]. If other
SX-Cl eigenvalues lie too close for numerical
comforr, the desired root can be isolated by adding
an appropriate nepative constant to the <¥|H|¥>
diagonal clement [6). Comparing the expansion
(3.1) with the expansion of Eq. (2.11) one realizes

that the orblcal variation coefficients x;j are

related to the SX-CI coefficients by the equations

x\;ra:j for i<}
x:j’ -a-“i for 1>} (3.2)
(2.

(x )%=
11 30D 1]

From this result it cap be inferred that it must
be possible to deduce improved approximations to
the optimal MC orbitals from the CI expansion of
the appropriate eigenfunction of the SX-CI prohiem.
Furthermore, iterative execution of such improve-
ments can be expected to iead to the optimal MC
orbicals.

The essential step which has to be formulated
in such an iterative scheme 1s the explicit method
for deducing the improved orbitals from the solu-
tion of the SX-CL prablem, and a variety of
formalisms have been suggested to this end. We
shall return to this question further below.

B. Complete MCSCF Optimization
In general the MC coefficients CK are not

known in advance, of course, and have to be

variationally determined at the same time as the
orbitals are determined. In general the coeffi-
cients CK are determined as the expanslon coeffi-

clents for the n-th eigenvalue of the MC-CI pro-
blem formulated in Eq. (2.4a). The matrix ele-
ments in this equation depend however on the
molecylar orbitals and, hence, an iterative pro-
cedure is required for the simulcaneocus determi-
nation of MC orbitals snd MC coefficients. The
most effective way to accomplish this is to solve
the eigenvaluve equation {2.4a) every time an im-
proved set of molecular orbitals has been found.
Hence, each iteration of the overall proced:.
consiscs of two parts: first an {mprovement of .
MC coefflcienta, and them, using these i{mprovad
coefficients, an fmprovement of the molecular or-
bitals., A very rough schematic outlime of a total
MCSCF program 18 then as follows:

(1) _Input

Data and integrals pertaining to
quantitative basis orbitals. Initial
molecular orbitals in terms of quanti~
tative basis orbitals. Spatial and
spin specifications of CSF's. Speci-
fication of desired eigenvalue in MC
space.

(11) 1Iniciacing Calculacions

Orchonormalization of inirial MO's
1f needed, Generacion of integrals
between reference MO's. Generation of
symmetry and spin information. Genera-
tion of data relevant to the SX space
and integrals between the MCSX's.

(111) TIreracion

Calculation of integrals needed
between current MO's from the integrals
between the reference MO's. Calculation
of matrix elements in the MC space and
solutlon of the MC-CI problem. Deter-
mipation of a basis in the SX space.
Calculation of matrix elementsy in the
SX space and determination of appropriate
energy elgenvector for SX-Cl1 problem.
Construction of improved MO'g.



{iv) Convergence Test

Convergence can be defined in terms
of several criteria:

(a) Smallness of the matrix elements of
Eq. (2.15). This guarantees that there
is no more change in the MC expansion
coefficlents CK within the stipulated

accuracy.

(b) Smallness of the difference between
the enetgy of rhe MC function and the
(lower) energy of the SX~Cl function.
This difference is nearly always
monotonically decreasing.

{c) Smallness of the differe.ce betuween
the energies of MC functfons of two
successive iteratfons.

(d) Smallness of the off~diagonal elements
of the matrix which generates the

new {improved) molecular orbitals

from the old orbitals.

For a satisfactory MCSCF func-
tion all these criteria should be
satisfled to a given accuracy and
must therefore be monitored.

€. The Orbital Improvement Step

For the implementation of the outlined pro-
cedure the non-orthogonality and, possibly, linear
dependence of the single-excitation functicns
‘{'\;j 15 a complication which has to be taken seri-
ously. Concretely it implies that one will first
construct an orthonormal basig, in the SX space
before performing the SX-CI calculation. Let us

call these basis functions Sx}:. The transforma-

tion from the ‘l’\;j to the SX: is non~orthogonal

and, in case of linear dependence among the \v‘ilj’
a rectangular matrix.

The most obvious choice fu. the orbital im-
provement step is to use directly the Eqs. (3.2)

to calculate the x\; from the a‘;j and this is in

fa.t the procedure of Grein [7]. The orbitsls
generated by adding the correction of Eq. (2.7} to
the original orbitals are of course mot strictly
orthogonal and have to be reorthonormelized in

v
some arbitrary manner. Since the ay, are the ex-

pansion coefficients in terms of the non-

orthogonal \P‘{J basis, they have to be recon-

structed from the Cl coefficients in terms of the

orchogonnl S)(;,J basis. If a linear dependence
v

Y "
exists betwcen the Wi » then the ag, are ou.luusly

not unique and neither are therefore the improved
orbitals.

The ALIS formalism, which was developed by
our group, is based on the following conjecture:
Function of the SX-CL problem, generated from sn
MC wavefunction with non-optipal orbitals, are
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bitals of the original MC wavefunction. This
premise has 'rd us to the following procedure [41.

First the nacural orbitals ,:“ of the initial MC

wuvefunction are determined in terms of the ini-
tial configuration generating orbitals (CGO's),
l.e.,
Vi vu v

P " ?" ¢ Uy s 6.3
in order to establish the Huxnv orthogonal trans—
formation matrices UV. Then the natural orbitals
_f:u of the 5X-CI eigenfunction are determined in

terms of the quantitactive basis orbitals. Finally,
the inverse of Eq. (3.3) is used in order to cal-

culate the new CGO's 3:" from the new natural or-
hitalsi:u. i.e.,

[
vu v N v
- 151 L (3.4)

The calculation of bath typea of natural orbitals
is based on the totally symmetric projection of
the density matrix, so that the natural orbi:als
are symmetry adapted. In this procedure, no addi-
tional reorthogonalization is required. Moreover,
the coefficients a:j are not needed: the calcu-
lation 1s carried through directly in terms of che

arthogonal sxr basis and is unaffected by possible
linear dependencies among the single excitation

functions [ The on_y point which requires

13"
careful attention to detail is the matching of the
nev natural orbitals to the old natural orbicals.
This mwatching has been Successfully achieved on
the basis of s careful analysis described in

Ref. [41.

Direct use of the natural orbitals of the
SX-CI eigenfunction as improved CGO's, as used by
Yarkony et al. [8], is only possible for those
speclal MC function for which the matrix U in
Eq. (3.3) is the identity or, on the other hand,
in the case that the MCSCF procedure fs carried
out in the full active MC space {which can become
very large) since, in this case, the MC function
(but not the gxpansion coefficients) is invariant
against orihogonal transformations among the CGO's.
This has been pursued by B. Roos [9],

A more involved way of using the density
kernel to deduce improved orbitals from the SX-CI
eigenfunction has been supgested by Ruttink and
van .enthe [101.

D. Remark

The list of references given here is far from
complete. As regards the past work, Ref. [4]
contains a more exhaustive bibliography. The
current work i{s essentislly assoclated with cne or
the other of the participants in this workshop. I
therefore feel that my i1llustrious colleagues will
be far better able to describe and quate their
contributions than I would be.



4. THE ALIS TMPLEMENTATION

The MCSCF (ormaliem developed by this research
group has been implemented within a system of
computer programs called ALIS (denoting "Ames
Laboratory, Iowa State University"} for performing
ab-ipitio quantum chemical calculations. It is
portable, dynamic, open-ended and continually being
improved and extended. Tt contains a flexible
variety of atomic orbital basis options (currently
of all atoms up to argon) and requires a minimal
amount of input information, notably the reference
CSF's of the MC space, expansiona of the initial
orbitals, specifications of the closed and the
active orbitals, specifications of the orbitala
which are to be optimized and of the orbitals which
are to be kept frozen, specification of the MC roor
to be sought and specification of the convergence
criteria,

The atomic orbitai bases preferred by this
research group are general contractions of even-
tempered Gaussian primitives E11] because of the
almost unlimited flexibility chey offer in the
choice of the number of primitives as well as in
the number of quantitative basis orbitals, and
because of the clese relationships which have been
found to exlst between the principal basis orbitals
of this type and the molecular MCSCF orbitals £121.
The efficient evsluation of the integrals between
such general contractions is accomplished by an
adaptation of Raffenetti's BIGGMOLI program [101.

The essentials of the iterative MCSCF process
have been outlined ln Ref. [4). The CSF's are
expressed as superpositions of spin-adapted
antisymmetrized products (SAAP's) and the matrix
element construction is based on the symmetric
group. A formula file is being used, snd partic-
ular care is given to the various large matrix
transformations which the mathematical process
requires.

A fair number of detailed problems have to be
properly attended to in order to obtain a program
which 1s sturdy enough to hold up under various
types of mathematical and computational stresses.
ALIS has pruved to be stable under a considerable
veriety of conditions. Experience has shown, how-
ever, that it is not particularly desirable for an
MCSCF program to be able to optimize any patho-
logical MC~type amsatz, Tt is a useful feature
that it breaks down when the Investigator chooses
an MC space which is physically unreasonable for
the problem whose solution is sought.

The ALIS system, including a detafled
documentation, 1s available through the NRCE
1ibrary.

THE METHOD OF THE FULL OPTIMIZED
REACTION SPACE (FORS)

5.

As has been mentioned repeatedly, the choice
of the MC space 1s an essential aspect for useful
MCSCF calculacions. For a number of years we have
used in our work the Full Optimized Reaction Space
and found it a very successful approach. Not only
does it always yield physically reasonable resulcs,
but it also seems to satisfy the upper bound re-
quirement. There are five essential elements to
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this method: (1) The choice of the reaction or-
bitals; (ii) The use of the full active space;
(111) The use of Raffenetti-type quantitative
basis orbitals; (iv) The calculation of the inftial
guess from a minimal set of quantitative basis or-
bitals; {v) The use of systematic macroiterations
to optimize in very large full reaction spaces.

A. Reaction Orbitals and Full Reaction Space

The full reaction spsce (FRS) ir the full con-
figuration space of the active configuration-
generating orbitals, when the latter are chosen as
resction orbitals. These are those orbitals which
for physical reasons are principally involved in
the electronic rearrangements that occur in a
chemical reactlon. They are essentially a set of
formal conceptual minimal basis set atomic orbitals
on the participating atoms or symmetry adapted
superposicions of them. In fact, since the full
configuration space is being used, only the t¢:al
number of reaction orbitala in esch irrep is re-
quired for defining the full reaction space. When
the optimal expansions of the rcactirn orbitals in
terms of the (much larger) set of quantitacive
basis orbitals have been found through the MCSCF
process, then we have the Full Optimized Reactiorn
Space (Fors) [131.

B. Raffenetti-type Quantii.zive Basis Orbitals
and Minimal Basis Set Approximstion

These quantitative basis orbitals {QBO's} are
defined in terms of primitive bases (of arbitrary
size) of Caussian atomic orbitals. The QBO's con-
tributed by a specific atom are of three kinds:
Principal QBO's, diffuse QBO's and polarization
QBO's, The principal QBO's are the Hartree-Fock
SCF A0's of the free arom; the diffuse QBO's are
the most diffuse single primitive A0's occurring in
the expansions of the principal QB0's; the polari-
zatlon QBO's are atandard polarizaclon primicives.
The advantages of such bases have been discussed
elsevhere [11,121. They do require integral pro—
grams for general contractions such as BIGcMOLI [1il,

Within the present context it is pertinent
that the principal QBO's invariably dominate the
cxpansions of the reaction orbitals after optimi-
zation in the FRS. This circumstance not only has
useful TmpIications for the conceptual interpreca-
tion but, moreover, gives rise to an extremely
simple and effective construction of the initial
guesa for the MCSCF calculation In the FRS [12].
In principle, this initial orbital set is found by
making an MCSCF calculation in the FRS with the
quantitative basis orbitals reduced to the minimal
set of the principal QBG’s. In point of fact,
since the number of principal QBO's is equal to the
number of reaction orbitals, mo orbital optimiza-
tion is necessary and a straight CI calculation in
the FRS spanned by the principal QBO's suffices.
The natural orbitals derived from the resulting CI
wavefunction invariably turn out to be excellent
approximations to the natural orbitals of the MCSCF
function in the FRS when all QBO's sre included.
Using them as starting orbitals, one fiids tiuch
faster convergence for the MCSCF proceaure than
one finds when using SCF MO's.




C. Ortimization in Large Full Reaction Spaces
through Macroiterations

When the FRS becomes very large, then one
finds that only a relatively small number of
dominant configurations determine the orbital op-
timfzation. This 18 so even though a much larger
number of configurations make non-trivial contri-
butions to the cnergy. In this context it is
pertinent that, because of the invariance of the
FRS against transformations among the configura-
tion generating orbitals, there exista considerable
freedom in the orbital choice. An effective
standard choice is to use the natural orbitals of
the wavefunction itself, since it leads to a
rapid convergence of the wavefunction in terms of
the natural-orbital-based CSF's. It is therefore
well suited to identify a set of dominant configu=-
rationa which determifi€ the optimal orbitsls.

This circumstance is the bazis for a relatively
simple optimization method for very large full
reaction spaces, which consists of a sequence of
wmacroiterations. In each macroiteration the cur-—
rent orbitals are used to generate the CSF's which
span the corresponding full resction space. A
straight CI calculation in this FRS then yields
the current approximation to the wavefunction in
the FRS. Next the natural orbitals of this approx-
imation are determined as orthogonal transforma-
tions of the current M0's, and the wavefunction is
now expressed in terms of CSF's generated from the
natural orbitals. From this expansion a set of
dominant configurations is aelected which are them
used to obtain improved orbitals through an MCSCF
calculation. The number of dominant configurations
1s increased from one macroiteratie “~ r=vtber,

Convergence occurs after two or tn- a=
tions. The first macroiteration - s
natural orbitals from the CI calsulc -..rms

of the principal QBO's as discussed in tue pre-
ceding section.

A number of applications of the described
method were diacussed in the NRCC report on the
Workshop on Post-Hartree-Fock Methods in Quantum
Chemistry [14].
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SUMMARY

A review is given »f the complete active space
{CAS) SCF method with special emphasis on computa-
tional aspects. The CASSCF wave functior is formed
from a complete distribution of a niaber of active
electrons in a set of active orbitals, which con-
stitute a subset of the total occupied space. No
selection of configurations is made, and the wave
function can subsequently comprise a large number
of terms: The largest case considered to date is
2 calculation on the 'AY state on the HNO molecule,
where the wave function consisted of 10816 spin-
and space-adapted configuration, obtained by
distributing 12 electrons among 1D active orbitals.
To be able to solve the orbital optimization
problem using such large CI expansions, a density
matrix formalism is used, and the CI problem is
solved using the recent developments of direct CI
methods.

Two approaches to the orbital optimization
problem have been developed and will be discussed:
the Newton-Raphson scheme and the super-CI method.
Convergence is normally achieved in 5-10 iterations
with the Newton-Raphson method while the super-Cl
method usually needs more iterations {typically
10-20). Fluctuations in the necessary number of
interations is, however, large in both methods,
and pathological cases can occur. They usuaily
depend on an inappropriate choice of active
orbitals.

THE CASSCF METHOD

The complete active space SCF method®~“ repre-
sents a new way of looking at the MCSCF problem.
Traditionally MCSCF calculations are based on wave
functions of a very limited size, comprising a
small number of pre-selected configurations. This
can tead to difficulties in computations of energy
surfaces {e.q. for chemical reactions), since it
rarely occurs that a1l configurations of importance
are known in advance for the entire surface.
Normatly, however, it is much easier to decide in
advance upon an appropriate choice of occupied
orbitals. This is the basic idea of the CASSCF
approach. The orbital space is divided into three

parts: the ctive subspace {labelled 1,j.k,1,..),
the active cubspace (labelled t,u,v,x,...) and the

secondary subspace (labelled a,b,c,d,...}. The
inactive orbitals are assumed to be doubly occupied
in all configurations. The remaining electrons
occupy the active orbitals, and the CASSCF wave o
functions comprises all CSF's which can be
generated by distributing the active electrons
among the active orbitals in all possible ways,
consistent with a given overall spin and spatial
symmetry of the wave function. There is thus no
selection of configurations, but the wave function
is complete in the active orbital subspace. Even

thoiigh the number of active orbitals normally is
rather limited, such a CI expansion quickly becomes
very long. With recently developed CI methods,
however, even expansions of the order of 10* terms
can be handled without any particular computational
probYems (see below). An important aspect of the
CASSCF method is that the length of the CI expan-
sion only affects the time required to solve the
secular problem, and not the orbital optimization
part. By formulating the problem in terms of first-
and second-order density matrices -~ in the small
active subspace - all explicit reference to the
individual CSF's is avoided.

THE SECULAR PROBLEM

With the large CI expansions often encountered
in CASSCF calculations it is important to have an
efficient procedure for solving the secular problem.
The special structure of the CI expansion, which is
complete in a small active orbital space, will on
the one hand allow certain simplifications which
are not possible with other general expansions,

On the other hand there are high demands on the
method in terms of being able to treat configura-
tions with many open shells, For this purpose the
graphical unitary group approach®:®, which is the
procedure adopted in the CASSCF CI section, is
particularly well suited.

In the grarkical unitary group approach
Gelfand states are used as the spin adapted confi-
quration basis. The direct CI coupling coefficients
for the one electron integrals are then obtained
as a segment product with one segment value for
each orbital within the corresponding generator
range. A similar simple formula wes also recently
obtained for the two electron integrals’s®. These
type of formulas are particularly efficient in
the cases of interest here, namely for generation
of a large number of coefficients in a small
number of orbitals.

In MCSCF procedures the same symbolic
formulas are used a large aumber of times; in
every CI iteration in each orbital iteration and
for all the points on the potential energy surface.
It is therefore important to simplify as much as
possible the use of the formula list rather than
its construction. Any diagram evaluation or index
evaluation during the process of solving the
secular problem should for example be avoided.
For large Cl-expansions it is further important
to reduce the size of the formula list as much as
possible. The information in the formula list is
usually orqanized with one coupling coefficient
for each index, where the index describes the two
interacting configurations. By instead grouping
todether matrix elements which have the same



coupling coefficient for the same integral the
formula list can be reduced to essentially half

the size andis therefore preferrable in large cases.
Further reductions in the size of the formula list
would still sometimes be important but do not seem
to be possible without drastic changes in the
method or much increased labour during the
diagonalization.

In the CASCI part, iterative algorithms will
be used, which as the essential step require the
operation of the Hamiltonian on one or a set of
trial vectors in each iteration®. It should be
pointed out that although the CI problem has to be
solved in every MCSCF iteration the tota) number
of CI iterations is usually only about twice as
many as required in one separate CI calculation.
This is simply achieved by starting with the C!
trial vector from the iteration before. In cases
with very Yong Cl expansions where the CI part
dominates the total time is therefore only twice
the time as in a CI calculation without orbital
optimization.

As indicated above the only infarmation
transferred from the CI part to the orbital opti-
mization part is in terms of the first and second
order density matrices in the small active space.
The number of such matrix elements is usually much
smaller than the number of CI coefficients and
they are also considerably more convenient to use
in the orbital optimization. The density matrices
are easily constructed in one pass through the
coupling coefficients with the converged CI
vector. In cases where there is a strong coupling
between the variation of the Cl coefficients ar¢
the varijation of the orbitals, transition density
matrices between the root of interest and closely
lying roots should also be constructed at the end
of the CI part. From these matrices the coupling
elements are easily calculated in the orbital
optimization?.

THE NEWTON-RAPHSON SCHEME

In the orbital optimization part of the
Newton-Raph.on approach we look for a unitary
transformation of the initial orbital set which
minimizes the energy. This unitary transformation
is conveniently described by an exponential para-
metrization where the parameter matrix is
symmetricl®. In order to obtain a quadratically
convergent orbital optimization scheme both first
and second derivatives of the eneray with respect
to the orbital rotation parameters are needed.
Simple formulas for these derivatives are
obtained in the form of expectation values of
commutators between the Hamiltonian and the
generators of the unitary group’!»'?, The
disappearence at convergence of the first deriva-
tives is through these formulas expressed as the
Brillonin-Levy-Berthier (BLB) theorem!?, An
important poirt which is noticed in the explicit
expressions for the first derivatives in the
CASSCF method is that integrals with at most one
index in the large secondary space are required,
see equation {(14) in Ref. 2, This means that a
very limited integral transformation is required
to obtain these gradients and this is the basis
for fast, although not quadratically convergent
methods. To obtain the exact expressions for the
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second derivatives integrals with two secondary
indices are needed, which require a substantially
longer transformation time. With the information
from the Cl-part in the form of first and second
order density matrices in the active space together
with the required transformed integrals all
derivatives required to set up the Newton-Raphson
equation system can be constructed using the
explicit formulas given in Ref. 3. The dimension
of the N-R equation system is set by the number of
parameters which are of three types; parameters
describing rotations between inactive and active
orbitals, between inactive and secondary orbitals
and finally between active and secondary orbitals.
All first derivatives with respect to other types
of rotation parameters are identically zero and
these parameters are therefore discarded in the
equation system. This removes all problems
concerned with singularities in the Hessian
matrix. A problem which can still occur in the
N-R procedure far away from convergence is that
the Hessian matrix is not positive definite in
which case the obtained rotations would not

lead to a minimum for the energy. Before solving
the N-R equations all negative and small pasitive
eigenvalues of the Hessian matrix are therefore
shifted to a smallest allowed positive value
following ~ssentially the procedure described in
Ref, 14.

The dominating step in a CASSCF iteration is
normally the integral transformation, at least in
cases where the C? expansion is not very long. As
indicated above most of the transformation time
goes into calculating the integrals with two
external indices which are only needed for the
Hessian matrix. Since it has been found that
once the Hessian matrix has become positive
definite it usually changes only marginally, a
strategy, which has been used successfully to
reduce the computation time, is to keep the same
Hessian matrix ‘in several iterations. In the
cases where comparisons have been made this
precedure increased the number of iterations by
usuclly not more than one and gave an overall
significant saving in computation time?.

We should finally comment on the fact that
although the N-R approach is a quadratically
convergent orbital optimization procedure this
process does not always lead to fast convergence.
The reations are twofold. First, the parameter
surface may be far from quadratic and second
there can be significant coupling between orbital
and CI coefficient rotations. The latter effect
has been approximately corrected for in Ref, 3
with only minor' improvement in convergence rate.
On the other hand drastic improvement in conver-
gence has been obtained by changing the structure
of the active orbital space which apparently
sometimes may lead to a more quadratic parameter
surface, .

THE CASSCF SUPER-CI METHOD

The Super-Cl method®s'¢ can be regarded as
an approximate form of the Newton-Raphson scheme.
Instead of obtaining the orbital transformation
matrix by solving a set of linear equations, one
obtains this matrix by solving a secular equation,
which corresponds to a “super~CI" expansion



including the ground state [0> plus all single
excitations {SX-states) obtained by operating on
10> with single generators of the unitary group.
The interactions between the SX-states and the
ground state is then given exactly as the BL8
matrix elements (see equations (6) in ref. 4). The
necessary and sufficient conditions for a converged
solution - the BLB conditions - are consequently
in the super-CI methad equivalent to a solution of
the SX-state problem, with all coefficients

equal to zero.

In Grein's original work?S»'¢, after solution
of the correspandiag secular problem the super-Cl
expansion coefficients were used directly to set
up the orbital transformation matrix, In the
modified version developed by Ruedenberg et al.t?
improved orbitals are obtained instead as™the
natural orbitals of the super-CI wave function.
This method is especially attractive in the
CASSCF case, as {0> here is invariant to a unitary
transformation among the active orbitals, It is
thus possible to use the NO's (selecting those
with the highest occupation numbers) as trial
orbitals for the next iteration, without auy
further manipulation. As a result the converged
solution will automatically be the natural expan-
sion of the wave function {0>.

The BLB matrix elements can be expressed
direct)y as matrix elements of a MCSCF Fock opera-
tor'® {equation (9) in ref. 4), The matrix elements
between the SX-states are, however, more compli-
cated and invelve the first~ second- and third-
order reduced density matrices for the wave function
10>¥,2, Even if these density matrices are defined
over the small active subspace only, the direct
calculation of the third-order density matrix is
cumbersome, and the size of this matrix easily
becomes prohibitely large, Also, the SX-state
matrix elements contain two-electron integrals
with two indices autside the active subspace {as
is the case also for the Hessian in the NR scheme}.
An exact solution of the super-G1 problem therefore
Teads to a computationally more complicated proce-
dure than the NR scheme.

The super-CI method then does not seem to be
competitive with the quadratically convergent NR
approach. As has been shown®s* it is, however,
possible to approximate the density-matrix formula-
ted super-Cl method such that these difficulties
dissappear to a large extent. The idea is to
replace tho Hamiltonian operator with an approxi-
mate one-particle Hamiltonian, when calculating the
matrix elements between the SX-states. These matrix
glements are then also obtained in terms of matrix
elements of the MCSCF operator, and first- and
sacond-order density matrix elements with indices
in the small active subspace only*. The calculation
of the SX Hamiltonian matrix then becomes almost
trivial. The correspanding secular problem is
easily solved using the direct €I method in combi-
nation with a Davidson algoritm®. In a direct CI
method the timing {s proportional to the number of
cycles needed to converge. This number depends
critically on the intitial guess of the eigenvector.
Since all coefficients in the super-CI wave .
function approaches zero as convergence is attained,
the number of necessary cycles decrease markedly
as the CASSCF calculation proceeds, As a consequence

the time used in the orbital optimization step
decreases with the number of interations performed.
This is also the case for the solution of the CASCI
secular problem, as pointed out in a preceeding
section. The time needed for the integral trans-
formation of the two-electron integrals, however,
remains the same, and therefore becomes a more

and more dominant part of the calculation.

The super-CI method cannot be expected to have
as good canvergence properties as the Newton-
Raphson approach. It is, however, considerably
faster, especially since fewer molecular two-
alectron integrals are needed, and therefore often
competes favourably with the NR scheme in calcula-
tions of energy surfaces were trial vectors
abtained from nearby points can be used. Typically
between 10 and 20 iterations are needed for conver-
gence to 10~% a.u in the energy and 107° in the BLB
matrix elements, if SCF vectors are used as a
starting guess of the molecular orbitals. If
CASSCF orbitals of a similar calculation (nearby
point on an energy surface, another electronic
state, etc.) are used as trial orbitals, the
number of iteration is aften much less than ten.

CONVERGENCE PROBLEMS IN CASSCF

As has already been pointed put in the
preceeding sections convergence s normally
satisfactory both in the NR and super-Cl versjons
of the CASSCF program system. Pathological case
occur, however, now and then and it might be of
interest to give some examples, which shows that
these convergence problem freauently are of a
physical origin instead of being a result of the
numberical procedure adopted.

In a vecent calculation* of the potential
curves for the 'Ig, I, and *Ng states of the N,
molecule, convergence t‘to the previously mentioned
thresholds) as obtained in 4-6 iterations for all
points on the poiential curves except in a small
region between 3.5 and 4.0 a.u., where 15 iterations
were needed. The super-Cl approach was used and the
active subspace comprised nine orbitals, including
the weakly occupied 2, orbital, The reason for the
problems was a drastic change in the structure of
this orbitals. At distances shorter than 3.5 a.u.
the 2m, orbitals has mainly p-character, describing
radial correlation effects, but at longer distances
it becomes dominantly 3d (angular correlation of
the 2p shell in the nitrogen atom). In the region
3.5-4,0 a.u. the two effects compete and convergence
is slowed down considerably. An obwious solution to
the problem is to include both correlation effects
at all distances, that is, to add a third n, orbital
subspace (or to remove aiso 2m,).

Another erxample of convergence difficulties
occurred in a calculation on the 'I* state of CN*
at large internuclear distance. With the basis set
used, and the active subspace chosen, a number of
electronic states {inctuding C+M* and C*+N)
happened to be almost degenerate. The program could
consequently not decide about the ground state, and
the choice could vary from iteration to iteration.
As a result large fluctuations of the orbital
coefficients occurred in every iteration and a
converged result was actually never reached. The
experimental energy difference between C+N* and



and C*+N is around 0.3 eV, so there is obviously
room for an improvement of the calculation,

It may also happen that a calculation
converges but not to the expected (desired) wave
function. If the active subspace includes weakly
accupied orbitals which describe dynamical (pair}
correlation effects, there is sometimes a choice
between different pair correlations, and the result
may depend on the starting quess for these orbitals.
Such a situation has occurred in calculations on
molecules containing transition metal atoms
{examples are NiH and CuF ;) where weakly occupied
orbitals can choose to correlate 3d electron pairs
on the metal atom or electron pairs on the 1igands,
depending on the starting guess.

The difficulties illustrated by the examples
given above are of a physical origin and cannot
be handled by a improvement of the orbital
optimization procedure. They are examples where
the energy hypersurfzie has several close lying
local minima, a situation which is often encoun-
tered in MCSCF calculations. One solution to these
problems would be to increase the active subspace
to include dynamical correlation effects in a
baltanced way (i.e, hoth radial and angular
correlation in N:), but this route is severely
limited, since the number of configuations increases
drastically with the number of active orbitals.
Ancther solution i5 to add a fourth subspace (the
"correlation space") which is allowed only two
holes or two particles. This space is then used to
describe pair correlation effects. In this way the
primary (occupied) orbital space can be enlarged
considerably and dynamical correlation effects
can be included to a large extent, Work along
these tines are presently in progress*®
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SUMMARY

A program system is described that optimises
a multiconfiquration wavefunction in an iterative
manner. Each iteration consists of two stages;
firstly the determination of the coefficients of
the Configuration State Functions (CSF's) in the
reference function and secondly the performance of
a Cl calculation using the reference function and
single excitations from it (Brillouin state
Interaction (BI) calculation). Two methods of
obtaining a transformation to better orbitals from
the result of this Bl calculation are implemented,
i.e. the first order method? and the density
matrix method3-5 (employing natural orbitals).

The program is in practice able to handle up
to 6C CSF's and 30 orbitals. It can handle an
additional 30 orbitals using perturbation theory.

Convergence of both orbital transformation
methods and an exponential method® are equally
good and linear (10-15 iterations for 10°2 a,u.
accuracy in the energy), so the first order method
is to be preferred on account of its simplicity
and general applicability. The four index
transformati n’ in each iteration is the major
time consuming step, so iteration times are
proportional to n® where n is the number of
orbitals,

Applications inciude calculations of the
barrier for the LiK + H 2 Li + H, reaction,*
potential energy curves for 0,%% and Cu0B, the 1A~
excited state of HO,**»?, dipole moment of cyclo-
prapenel” and of the cis-trans energy difference®
and charge distribution!! of formic acid.

METHOD

The iterative optimisation consists of the
following steps:
1) The reference function yq is determined for
the starting orbital sct {¢} by a small CI
calculation.

m

?) A1l relevant singly excited states (Brillouin
states) are formed.

¥ij = ¥oli=d) - ¢ i) (2)
These Brillouin states are neither normalised nor
mutually arthoconal. Bv solvina the general
eigenvalue problem for the set {¥,,¥ij} we obtain
the coefficients b in the Brillouin state
Interaction function

Yop = DY + L Db..¥..

BI ol T ity ijhij

Yo = LA

(3)
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3) The information contained in ¥gy is used to
obtain the transformation matrix T which
transforms the orbital basis to mOre optimal
orbitals

= a @
The following two methods are implemented:
A. First order method? Tij = by (5)
ij = by = by

Since the orbitals ¢~ are only orthonormal to first
order, an additional orthonormalisation is needed,
taking care that the most important (occupied)
orbitals are least spoiled, e.g. using Schmidt.

B. Density matrix method3~5 T = TgiT,"  (6)
where Tar and T, are the matrices of the
coefficients in the basis {¢} of the natural
orbitals of ¥gr and v, respectively. This
automatically yields a unitary transformation
matrix,

We also tried another way to obtain a unitary T
directly,

C. Exponential methods | = ¢ (¢a)
where b s the matrix of the Brillouin state
coefficients bij-

4) Replace {41 by {$“1 {(and perform a four index
transformation) and start again at 1).

The bji's are used to monitor convergence.
Usually a tﬂreshold value of 10" {for the maximum
absolute value of a bij) is used, which corresponds
to about 10-7-107% a.u. in the energy.

Perturbation theory

Instead of computing alt bjj's by solving the
full set of secular equations, one may compute the
smaller anes using second order perturbation
theory??
< Yoltlvy; > @®

bs. =
3
< VOIHIVO >< “ijl

Vij > - < Y].J.lHlYiJ. >
Treating all excitations to a certain {virtual)
orbital this way has the following advantages:

1. The dimension of the set {¥,,¥;;} needed in the
BI calculation and the total number of £5¢'s is
reduced.

2. No integ{‘a]s between the "perturbation orbital"
and other virtual orbitals ave required.

3. A1l perturbation orbitals 3re equivalent, so
onlz Z short symbolic matrix element 1ist is
needed.

. If too large a proportion of the virtual
orbitals are treated using perturbation theory
convergence is badly affected {cf. ref. 2).



ood rule of thumb is

According to our experience a r m
orbitals in this

to treat about haif the virtua
way.

MCSCF-CI

The set of CSF's, from which the singly
excited states {Brillouin states) are formed, may
be a useful set to perform a CI calculation with,
using the converged MCSCF orbitals.

Reasons for this are:
1. The H matrix for this set has alréady been
computed in step 2 of the iteration process so the
CI only involves an additional diagonalisation.

2. If ¥, contains the most important doubie
excitations, the MCSCF-CI probably contains the
most important single double and triple
excitations.

3. The resulting CI function has the same
invariance properties under orbital transformation
as the reference function ¥_, so the result is
independent of the starting®orbitals3,

The MCSCF-CI has proven to be guite effective
for 0,% in a VB model" and for LiH,3,

PROGRAM SYSTEM*

The MCSCF program consists of three programs
written for the Cyber 73-28 of the Utrecht
University computer center.

I. FINDH, a general four index transformation
program? , which contains various options to
Tocalisel3, reorder and orthonormalisel® the
orbitals, in order to provide a proper integral
input file for the iteration process. A "frozen
core”!S option, which effectively decreases the
dimension of the integral file, is included.

II. MCCODE, a program that produces a formula
tape, containing all information, which is
independent of the actual value of the 1integrals,
e.g. a symbolic matriv efement list.

The spin functions are constructed according
to the genealogical (Branching Diagram) method!8,
The order of the orbitals can be chosen freely to
yield maximal interpretability. This has also
been exploited to simplify the transformation from
CSF's to Brillouin states, by requiring that each
single excitation working on a C5F produces just
one CSF.

Extensive use is made of bit manipulations
(COC-fortran) to keep the tape as short as
possible; e.g. storing coefficient and po::tion
of an integral in one 60 bit word and storing the
occupation scheme of a CSF in one word,

II1. MrSCF, the actual iterative program that
contains TS own specialised four index
transformation routines. By a special ordering
of orbitals and CSF's, both integral file and H
matrix 1ist ~~n be processed sequentially.

Use of symmetry car be made to elimina.e
unnecessary single excitations; equivalence
restrictions can be applied by a contraction of the
Brillouin states!? and a fixed linear combination
of CSF's in the reference function can be

6

prescribed.

In order to accelerate convergence extra-
polation may be applied. The method of Sack!®
seems to yield the best results, however, usually
only if all bij's are less than ~ 5.1073

Scope

In the following we present the limitations of
the present MCSCF program. Limits due to fixed
dimensions or available space in a computer word
are underlined; other limits are approximate.

H ortitais < 60

H veriationally treated orbitals « 30

# CSF's iny, < 60 (255)
# singly excited (Brillouin) states< 300

# C(SF's {total) < 4095

H  symmetries <8

Equivalence restrictions only for two dimensional
irreducible representations. Singlets up to
quartets can be treated (0 - [ < 3/2)

# singly occupied orbitals in a
CSF in ¥oi singlets/
triplets < 4
doublets/
quartets < 5
PERFORMANCE

Convergence

In Figure 1 we give a plot of the convergence
behaviour of all three orbital transformation
methods in a test calculation on H,0 using 5
CSF'sH,

+ Density matrix method (B)
x First order method  ({A)
o Exponential method {C)

Tog (E_Efina])

-9

Y 23 4 5 6 7 B 9 1012

Figure 1. Convergence of various GBT methods.
Logarithms of Energy-final energy (a.u.)} against
no. of iterations,



Convergence in all cases is linear and quite fast
(~ 12 iterations for an energy constant to 1078
iartree),  There is little difference between the
methods.  The first order method (A), being the
simplest of the three, seems therefore to be the
best choice.

The density matrix method {(B) suffers from
the defect that it cannot optimise functicns with
singly occupied orbitals like

Lo Uegdyl - 1o, (9)
2

in t[le two orbital function space. The density
matrices for wp1 and Y, are both djagonal, so the
matrices Tgy anc To (ef. 6) are unit matrices,
whatever the value of bij Iis.

Timing.

Some timings {in seconds) for 0,** (1s shells
fr?zen. effectively 24 orbitals) are presented
below:

State MCCODE MCSCF (per iteration)
4 index total

2n (22 CSF's) 295 43 66

"nu (9 csf's) 78 47 53

Tne four index transformation is the time
determining step in the MCSCF calculations (a2 HF
caleulation on 0,7 1y in the same basis takes 16
seconds per iteration). Note the rather large
time needed to produce the formula tape (MCCODE).

APPLICATIONS

Applications fall into two broad categories,
viz. potential energy curves for small molecules
keeping inner shells frozen and rectifying
Hartree Fock deficiencies for rather larger
molecules,

In the final category first calculations on
0,** and CuD® using typically 20-3D orbitals
(effectively) and 5-30 CSF's,

The second category contains calculations on
the 'A' state of HO,* and on the charge
distributions in cyclopropene!? and formic acid®,
For HO,* a 2 CSF function was needed to solve a
near deyeneracy problem for the first excited
state. The calculations on formic acid were
only done in two molecular conformations in an
attempt to obtain a better cis-trans energy
difference. Early calculations” used a maximum
of 38 orbitals and 2-8 CSF's, where 2 CSF's
appeared to be engugh for a significantimprove~
ment in the energy-difference.  Since, however,
aipole and quadrupole moments were far from
satisfactory larger MCSCF and CI calculations are
presently undertaken!! using 10-40 CSF's and up to
50 orbitals.
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THE OPTIMISATION OF THE NON-ORTHOGOMAL ORBITALS I3t A GENERAL VALENCE-BOND WAVEFUNCTION - THE VB-SCF METHOD,

Joop H. v.Lenthe* and Gabriel G. Balint-Kurti
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SUMMARY

We present an extension of the Generalised
Brillouin Theorem! and the corresponding MCSCF
method?+3 to allow for non-orthogonal orbitals.
Essentially the same formalism as in the
orthogonal case applies, but care should be taken
to use the proper {singly excited) Brillouin
states.

Test calculations for OH indicate a good
convergence behaviour.  Several small valence-
bond functions have been investigated and the
equilibrium distance and the dissociation energy
are found to improve _-amatically upon orbital
optimisation. Application of valence-bond theory
in this manner allows us to use an accurate wave-
function to describe chemical bonding in terms of
widely used chemical concepts like hybridisation
and mixing of valence-bond structures,

THEORY
Brillouin theorem

The Generalised Briliouin theorem! for
orthogonal orbitals is well documented. We
generalise it here to permit the use of non-
orthogonal orbitals in order to show that the same
principle still applies. Consider an orbital
transformation of the form ¢ = ¢ + bij%" For
the first derivative of the energy with“réspect to
byj we obtainls2:

dE = _d_ <t|H]y> = 2 [“"IH"’ij’ -
ab;3 HF_U <1 <YT¥>
<v|H{v><wlY1j\

¥ ¥ } (I)

Where yi; is the (singly excited) Brillouin state
corresponding to the orbital mixing (see next
section). SO we get:

dE = 2 <v[H-Elv;p>
T

J <f{¥>
The requirement that the energy be stationary
yields:

(2)

Generalised Brillouin Theorem: <v[H—E|\~iJ-> =0 (3}

This Brillouin theorem can be used in exactiy the
same way as that for orthogonal orbitals2:3 to
optimise the non-orthogonal orbitals in a valence-
bond wavefunction,

* Outch Ramsay Memorial Fellow.
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Brillouin states

The main problem in an optimisation of non-
orthogonal orbitals is to avoid dependencies, i.e.
to use the correct number of degrees of freedom.
To this end we distinguish two cases for mixing
two orbitals ¢; and 05
A. The orbitals may be varied independently. 1In

this case two separate Brillouin states ¥ij and
¥3; exist, representing the two available
dggrees of freedom:

=y (i+j)
=% (j+i)

13 (@)
T
B. The orbitals may not be varied independently,
i.e. it is possible to orthogonalise orbital ¢;
to orbital ¢; without affecting the wavefunctich
In this case we have only one degree of freedom
and should use only one Brilleuin state, the 15
usual Briliouin state for orthogonal orbitals

i = i )
0f course care should be taken not to introduce
any orbital mixings that do not change the wave-
function at all. In the presented formalism this

situation is usually easily recognised by the
program.

¥ = v {ind) - ¥ (j+1)

Methad

Essentially the same method as described
previously3 is incorporated in an automated and
improved version of the valence-bond program
Multibond*, allowing for a maximum of 30 orbitals
and 1000 Slater determinants, The arbital
transformation matrix, used in the iterative
optimisation, is determined by the first order
method?»3,  As many orbitals as possible are
orthogonalised in order to imprcve convergence and
facilitate various matrix-manipulations.

The Brillouin states used may be chosen
freely, which makes it easy to impose restrictions
on the kind of orbital mixings, that occur. An
interesting case is to allow only mixings within
each atom in order to determine optimal hybrid
orbitals {i.e. distorted atomic orbitals on a
singie center).

APPLICATION

He have applied the method to the optimisation
of various valence-bond wavefunctions for OH (%1).
A double zeta + polarisation gaussian basis®
((9,5,1/5.1)»[4,2,1/2,1]) was used with exponents
of 1.0 for the polarisation functions. No
equivalence restrictions were applied so the
optimised wavefunctions depart slightly from a
pure T state.



Two types of orbital optimisation were
employed:
A. "iptra~atomic”; only orbitals on the same atom
are allawed to mix.

6, “Full": the orbitals are optimised in the
comptete function space.

Various wavefunctions* have been used. One
of them, a basic valence-bond function, is shown
in Table I, with its coefficients for an inter-
nuclear distance near to the equilibrium distance
(R=1.85 a.u.; E=~75.42022 a.u.).

Basic VB functions “Intra-atomic"

optimised at 1.85 bohr.
Orbital (a)

Table I.

no, Constituent

atomic states occupation Coefficient
1 0%y @ H(ZS) 1s22s2y2x zalP)  _g.a3s
2 o('D) @ H(ZS) 1s?es2y2x zn(®) 0.191
3 0t(200) g HT(*5) 152252(22-y2 Jxh? 0.053
3 OH(EPO) @ HT(1S) 152252(224y2)xh2  -0.028
5 07(20%) & H"  1s522s222y2 0.327

{a) 15,25,x,y,z are orbitals on oxygen, h is the
1s orbital on hydrogen

{b) The spinfunctions are 2uag-{aBtBa)a and
(«id-5a)a respectively.

Another interesting function is the covalent VB8-
function which consists of structures 1 and 2 of
Table I. The computed equilibrium distance and
dissociation energies for these functions using
various optimisations are given in Table 1I.

Also given are the number of iterations needed to
converge within 10°“ (for |bjj|; see ref. 3)
starting from the previous level of optimisation
(in brackets) and the overlap between the H
orbital and the O Zs-type orbwta\ (Sgp) and z-type
orbital (S;p), all at 1.85 bohr

calculation using all “Intra-atomic" single
excitations from a 13 structure v¥B-5CF function.
This yielded a Dy of 3.28 eV, 1t is interesting
to note that the covalent VB function, when fully
optimised, yields the same energy as the basic VB
function, indicating that allowing the ortitals on
different centers to mix can eliminate the need
for jonic valence-bond structures.

On inspection of the overlaps in Table II we
note that, upon optimisation, the oxygen 2s-
hydrogen 1s overlap is decreased, while the over-
lap between the oxygen z orbital and the hydrogen
1s orbital increases significantly. This is
consistent with the interpretation that the oxygen
2s orbital is distorizd to point away from the
hydrogen while the oxygen z orbital forms an "sp"-
hybrid pointing towards it. An examination of
the orbital coefficients indicates, that there is
a considerable s-p mixing on oxygen, but much less
than would be needed to form two equivalent sp
hybrids.
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Table 1I.  Results for various VB-functions

wavefunction optimisation (r‘_n:;;ﬁo"s) Re(bohr) De(ev) Ssh Szh

Basic (2 ) 2.20 73 051 0.4

Basic “Intra-atomic" {13) 1.87 3.28 0.31 0.54

Basic "Full" [€2) 1.87 3.43 0,30 0.54

Covalent “Iatra-atomic” {7} 1.76 1.77 0.27 0.60

Covalent "Full" (1) 1.87 3.42 0.28 0.77
Experiment® 1.83 4.62 -

(a) ~ indicates that the optimised orbitals for
the separate atoms are ysed

Convergence is quite good and the optimisation
gives a dramatic improvement in equilibrium
geometry and dissociation energy. The best
result obtained so far is with a VB-Cl1 (cf. ref.3)

* A1l wavefunctions were such that the orbitals on
the same atom could be mutually orthogonal,
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ABSTRACT:

The limiting step in many MCSCF procedures is
a requisite 4-index orbital transformation. 1In
this work an extrapolation procedure desigred tu
reduce the number of these transformations is pre-
sented. The algorithm is particularly well-
suited to an MCSCF algorithm based on the Gen-
eralized Brillouins Theorem and [terative Natural
Orbital procedure, and has implications for the
design of hybrid procedures aiso.

INTRODUCTION

In recent years Multiconfiguration Self-Con-
sistent-Field (MCSCF)} procedures’ based on the
generalized Brillouins thenrem2 {GBT) and the
iterative natural orbit313 {IND) procedure have

been developed independently by several ]ruups.4'
Although this approach has proved useful in ob-
taining compact MCSCF descriptions for ground and
excited state wavefunctions, it suffers from at
least two deficiencies:

{i) It is not a completely quadratic proce-
dure and consequently, may show poor convergence
properties toward the end of an {terative se-
quence.

{1i}) 1t becomes computationally cumbersome
for large MCSCF expansions.

The complete active space (CAS)5 approach to
MCSCF addresses the latter problnm; however, as
formulated, it is restri. ted to a full valence
wavefunction.

In this work an e .rapolation procedure
based on a partitionir of the arbital space pre-
viously used to obtai, convergence for large i1l
conditioned SCF problems is presented. The pro-
cedure is effective in reducing the number of

iterations {and, hence, the number of Nb integral
transformations) required to converge the MCSCF
wavefunction. In addition the efficacy of this
procedure suggests that a partitioning of the or-
bital space may provide the basis for a hybrid
MCSCF procedure in which first- and second-order
algorithms are combined.

in section 11 the orbital partitioning schewe
and extrapolation technique are discussed in the

context of the GBT-IND algorithm; section 111 pre-
sents the results of representative calculations
and section IV discusses the implications for hy-
brid MCSCF procedures and concludes.

GENERAL CONSIDERATIONS

The general formulation of an MCSCF procedure
based on the GBT-INO approach has been discussed

previously by several authors.’ Here, we summa-
rize the results necessary for the present dis-
cussion.

The MCSCF conditions are given by

Hel =g, df (1a)

R,
<WiJ-]|H|WI> =0 {1b)
where

He g = <Y lRleg>

M
1
v {C.e) = (¢) C (2)
ool = L owgle) G
[ (%}r::]
R,

and WiJ! is the Brillpuin single excitation7

corresponding to the mixing of inequivalent or-
bitals $; and 6. In the usual implementations of
the GBT-INO approach at the n™ step of the iter-
ative determination of ¥ (C.$}:

{a} the appropriate eigenfunction, . of
the super-CI {sc1)® matrix (H°¢1), i.e. the root
of H in the basis ['r‘, W%jl) having the coeffi-
cient of Wl. Cor maximal, is determined and;

{b) the "net" first-order density matrix4
correspanding to v?m is constructed and diagonal-
ized to define Y(n) and Q"H:Q"g(n).

At this stage an N” orbital transformation

scl
b



must be performed to continue the procedure. How-
ever, an extrapolatory subiteration is possible
based on the following abservations:

(1) Convergence of large i11-conditioned SCF
problems has been achieved by examining the behavior
of the fterative scheme in a reduced orbital sub-
space consisting of the higher doubly occupied-,
partially occupied- and lower virtual-orbitals.

{1} The natural orbital procedure tends to
Produce virtual orbitals with the praperty:

<\??5KIH[W1> —_— (see eq. 1b} {3)

N

{i43) The terms in b corresponding to the
rotation (°j‘°i) where °j and ¢; are partially

occupied in ¥' are the most difficult to sliminate
and, therefore, should be treated to as high an
order as possible.

These considerations suggest the following
alternative procedure:

{a) Following the determination of g(n}, an
L-orbital subset, s'(n). is selected corresponding
to all the occupied orbitals and {in general only)
the first virtual orbital of each symmetry.

(b) The MCSCF problem is solved {to any level
of approximation desired) in this reduced orbital
space using the GBT-IND procedure. Considerable
economies over the full N-orbital space {FDS) so-
lution are achieved in this subiteration since the

Ns transformation can be replaced by an L-N4-' and

{by using successively transformed integrals) LS-
transformations.

{c) Foilow ng this subiteration the two or-
bital subspaces are cambined to give @"(n) and a

FOS iteration performed to determine g(n+l}.

As a result of eq. 3 this procedure has
proved effective in reducing the number of itera-
tions required to achieve convergence to the
MCSCF wavefunction using the GBT-INO procedure.

In the next section we present preliminary
results of a study of the effectiveness of this

procedure, which is now in routine use.
APPLICATIONS

The procedure described in section I is
illustrated in two tables contained in this sec-
tion. The data was compiled $n the course of an
MCSCF/SCF study of the low-lying states of Mg0

which has been reported Msewherel and where the
pasis of Slater-type orbitals and configuration
state functions (CSF's) used are described.

In each table iterations are separated by
double horizontal lines. An iteration begins with
a 4-index transformation using the orbital set
¢(n) and a determination of ¢'(n+1) in the FOS
using the GBT-INQ procedure. This space is then
partitioned into a space dimension L (dencted L)
and its orthogonal compliment (denoted L) as de-
scribed in the previous section and GBT-INO pro-
cedure is continued in L. The expansion coeffi-
cients of oieL are well-behaved so that the use of

successively transformed integra1§ is permitted.
Consequently, while the first subiteration in-

volves an Nq-L transformation subsequerit subitera-

tions involve only L5 transformations. At the end

of each subiteration sequence, L and i are re-
united to give #(n+1) and the process is repeated.
Each row in the tabie is characterized by an
ordered pair (i,j) in which i denotes the total
number of N transformations which precede this
step and j the number of transformations in L
since the last NEI transform. One measure of the
efficiency of this procedure is to compare the

aggregate A” = l-cg between iterations, i.e. from

“ (n,0) to (n+1,0) with the extrapolated result

given approximately by (n,0) to {n,?). From the
tables it can be seen that the subiterations are

effective in reducing Az.
CONCLUSTONS

In th 5 work a partitioning method previously
used to achieve convergence of large ill-condi-
tion SCF problems is appiied to the GBT-INO MCSCF
procedure, The resulting scheme appears to repre-
sent an efficient method for reducing the number

of N” integral transformation required to converge
the MCSCF wavefunctfon, The success of this pro-
cedure suggests that in general a partitioning of
the orbital space may lead in a more efficient

MCSCF algorithm. For exampie, one might consider
a hybrid scheme in which a second-order procedure
is used in L while a lower (first) order procedure

{Fock nperatar‘ or CAS MCSCF approach, for exam-
ple} is used in the FOS. Since first-order pro-

cedures in general replace the N5 orbital t 'ns-

formation step by an N4 construction step, con-
siderable ecomomies could result from such a
scheme.
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Table 1: MgD 1 1" state R=3.5b, energies in

Table 2: Mg0 2 1};’ state, R=2.0b, energies in

hartrees hartrees

Tteration  E(HCSCF) E(sen) o Iteration  E(MCSCF) E(sCI) o
00 | -274.4492371 | -274.4595471] 2.40(2)" 00 | Zasssiess | 2ra.3eamna | 2.5803)°
10| -274.4560762 | -274.4609194] 5.67(3) To | -274.350425 | 3. 3508042 2_35(4)_
11| -274.4604358 | -274.4610953] 1.43(3) Y P — P A
1z | -2;a.a611132 | -274.a611566 12 TR YTy p———
20 -274.4611626 | -274.4616116( 4.10(a) 20 -274.3548483 | -274.3588632] 1.1 (5)
23| 24613407 | 2744616530 3.78(4) T,y | a7, 3548599 | -274.3648662] 1.0 (5)
22 -274.616383 | -274.4616444 22 -274.3508651 | -274.3548656| 2.0 (6)
30 | -z74.4616a26 | -274.4616703] 3.80(5)

1'Hegative of characteristic, base 10, given in

3 2744616783 | -274.4616815] 6.0 (6) parenthesis.
a0 | -274.4616:43 | -279.4616843] 2.0 (6)
a1 -278.0616827 | -274.4616854
a2 | -27a.a616854 | -274.4616854

+Negative of characteristic, base 10, given in
parenthesis.
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INTRODUCTION

It 16 assumed that multiconfiguration methods
based directly on the satisfaction of the genera-
lizad Brillouin theorem (so-called super~CI
methods)! have been reviewed earlier. It was
shown? that such methods converge quadratically
when the super CI matrix is diagonalized.

Among the early applications were all-single-
excitation (ASE) wavefunctions for atoms from He
to F 45,6, Sych wavefuncrions are of the form

N

Y=c¥ + E-l Cklaohu"‘k"'uol
Due to the crbital optimization, the N terms in
the summation constitute all possible single
excitarions of ¥ . ¥ 15 the "anci Hartree-Fock"
wavefunction, or’the Savefunction which has
maximum ln:erac:tcn wich its single excitations.
ASE wavefunctions give from 7.6% (for B) to 32.2%
(for He) of the correlation energy. Palr excita-
tion wavefuncrions of similar structure give
virctually identical correlation energies.

MULTICONFIGURATION METHOD FOR EXCITED STATES

In order to use the super-CI technique for
excited states of the same symmetry (liigher roots
of the elgenvalue problem), a level shifting
method has been lncroduced"' The super~Cl (SCI)
wavefunction is formed for the nth root of the MC
wavefunction, according to tue equation

lI n

Yooa = 1+ Fy wgy Y0
Without level shifting, none of the SCI eigen-
vectorsusuilly contain predominantly ¥'7),
causing root Elipping between E(R) and lower
roots. This can be preveated by subtracting a
root, shlff 513 cons® t q from the diagonal element
<¢ () ] ¢(n)> of the SCI marrt g)has to be
bigger than the difference E(n -E(

SELECTION OF OPTIMAL CONFIGURATIONS

The choice of configruations is critical for
MC wavefunctions with a small number of config-
urations. For, this purpose, a method to select
optimal configurations has been proposed, and
tested on several states of the NH molecule®:9:10,
I: consists of a series of CI selection steps
coupled with the ¥ SCF iterative procedure.
Starting with the lnitial orbitals and n {nitial
configurations, all their slngle and double
excltations are generated. A series of diagonal-
{zations of Hamiltanian matrices of order m+l are
performed, and those conflgurations which give an

energy lowering in excess of a parameter § are
added to the MC wavefunction. § may initially be
0.005 hartree, but can be lowered as the inter—
ation-selection proceas is continued, If
potential energy curvea or surfaces are of
interest, then the selaction has to be performed
at various points. Since the selection step is
fast, 1t was found that this method gave all
required configurations in an efficient, syste-
matic and reliable way.
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Introduction

We will describe a computer code used for
the calculation of multiconfiguration
Hartree-Fock wavefunctions, available in the
ALCHEMYL set of programs. The program
represents an implementation of a method hased
on the generalized 8rillouin theorem, also
called "Super-C1" method, which has been
reviewed earlier.2 Briefly, the MCHF
wavefunction Yy is written as a linear
combination of configuration state functions
{CSF) ok

The singly excited Bri’louin configuration
¥uc(i~3) are constructed according to

Step 2: [terative Procedure

Initia) guess molecular orbitals MO's.

i.

ii,  Transform electron rebu]sinn integrals
from atomic basis set to molecular
basis set.

iii. Construct energy matrix (nref + nsx}.

iv. Solve (nref x nref) CI to get “ag".

v. Construct "Super-CI® matrix.

We = I ak %k (1) vi. Solve “Super-CI" problem.
k
vii. New MO's = natural orbitals of
"Super-CI" wavefunction,
vitii. Back to ii. if not converged.

e (i+3) =E ag K (i73) - &(i~1) (2}

where i j indicates that the electron in
spin-orbital i has been promoted to the spin
orbital j. The "Super-CI" wavefunction ¥ is
written as

Y=+ I Cijtmcli=g) (3}
i>j

The spin orbital =xpansion coefficients are
varied until the generalized 8rillouin theorem
equations are satisfied: i.e.,

<tue g (i=3)> = 0, (4

for all i-j pairs. The iterative method uses
the natural orbitals of the "Super-CI"
wavefunction as the improved orbitals for the
next iteration, Two main steps are involved in
using the program: the first step creates the
list of configurations and energy formulas for
the corresponding Cl pronlem,3 "The second
step is the iterative process itself.

Step 1: _Eneryy Expression

i. henerate reference CSF's (nref).

ii. Generate independent singly excited
{-sx-) CSF's {nsx)

iii. Generate transformation matrix
formulas of -sx- CSF's to create
Gl 1-3)

iv. Generate formula tape for energy
matrix {nref + nsx)

v. Sort formula tape.

n

Program Description

i.

i,

iii.

v,

V.

vi.

vii,

viii,

It is open ended with no restriction
on the number of orbitals, the number
of electrons, or the number of open
shells.

It uses CSF's which are linear
combinations of Slater determinants
built from an orthonomal set of
one-particle symmetry and equivalence
restricted spatial orbitals.

It tokes explicit advantage of Coy,
D=h s, y as well as Dzh and
subgrovo symietry.

The selection of CSF's can be done by
specifying eiectronic couplings, or by
partitioning the MO space.

There is an option for "Complete CI in
Active Space" wavefunction
calculations.

The improved molecular orbitals can be
selected by maximum overlap with the
orbitals of the previous iteration.

The program generates the Hartree-Fock
canonical closed shells, usefu! for
subsequent CI calculations.

Calculations on averaged states can be
done.



Program Characteristics

i.  The iteration time is almost
independent of the number of CSF's.
The integral transformation time
represents approximately 75% of the
total iteration time.

ii.  The typical number of iterations is
less than 7 iterations to get

[Evguper c1* - Enc| < 10.0-7

A greater number of iterations is
indicative of a poor CSF selection.

iii. The practical Timit of the program is
about 150 CSF's due to a time
consuming Jormuta type generation.

Conclusion

The program is routinely used for problems
involving up to 100 CSF's and has proven to be
converging reliably. Potential energy curves
and surfaces have been calculated with CSF's
required to describe the proper dissociation
behavior for the system, although the CSF
selection is not necessarily restricted to that
choice. As an example the calculation of the
energy curve for Bgp and Mg,, using the
method of interacting cnrreqated fragments
(1CF)5 involved a 35 CSF's calculation in an
extended bas(s set of Slater atomic orbitals.
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A UNITARY EXPONENTIAL OPERATOR APPROACH TO MULTICONFIGURATIONAL HARTREE FOCK
Qanny L. Yeager
Chemistry Department, Texas ABH University
College Station, Texas 77843

1. INTRODUCTION
Recently there has been renewed interest in
the multiconfigurational Hartree-Fock (MCSCF) tech-

nique.” HWe have recently developed, coded, and

st:ud'iedz'5 an approach to MCSCF based on a unitary
operator. This unitary operator is written as an
exponential of other operators. Explicit in this,
formutation is the coupling between the orbitals
and the state expansion coefficients. By expand-
ing the expectation value of H through second
order and applying the variational principle, the
Newton-Raphson equations for orbital and coeffi-

cient optimization are derived.2’3‘5’7 In this
presentation we discuss the theoretical develop-
ment of this technique and present some results of
calculations on Be and 02.

There have been some further recent develop-

ments.4’5 Without constraining the Newton-Raphson
equations when we are far from convergence, the
technique may converge to the nearest statiomary
point or even diverge. By forcing all of the
eigenvalues of the Hessian to be positive a down-
hi1l "walk" (through second order) on the energy
hypersurface is assured. Ffor small eigenvalues,
the steplength imay be reduced. Modes that are
predominantly orbital or mixed or configurational
are damped differently. These techniques will be
discussed in detail.

Finally, it is shown how the two electron
integral transformation may be replaced by an ap-
proximate orbital transformation introduced di-
rectly into the equation that defines the second
order M(SCF approach. In this way, the number of
two electron integral transformations required to
obtain a set of MCSCF orbitals is reduced consid-
erably.

We also note the recent contributions of

other workers.a'w These will be discussed in

more detail by other workshop participants.
11. THE MULTICONFIGURAT IONAL HARTREE-FOCK PROCE-
DURE

A. Unitary transformations in the state and or-

bital space.
he multiconfigurational Hartree-Fock (MCSCF)
reference state |0> may be regarded as a member of

the set of states {|j>}
|0 = z]e > Cgo {1)
13> - :Iog> Cqj (2)
for which the coefficients C form a unitary matrix.
The states Iog> are given as
le.>= 1 a:]vav (3)
9 reg
where 1 a: refer to an ordered product of crea-
rr.g
tian operators. For convenience we consider real
orbitals and expansion coeffisients,
A unitary transformativn of the states |j»

may then be described as®
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exp{i 8) |3> = tiks{exp Shy = el (@
where

S=ir Sl Tkr<0l=10s<k]) (5)

T = exp(-8) is a unitary matrix and S a real anti-

symmetric matrix.,
A unitary transformation of the orbitals may

similarly be described as

a7 = exp(1 2)af exp(-1 ) (6
where
‘e + +
k=iEc laag-aga) )
From Eqs. (6} and (7) we get
a: = I a;r(exp-z)sr = za: Ko (8)

where X = exp(~ x) is unitary and « antisymmetric.
The set of excitation operators (a:as) and

{]k><0|} may be linearly dependent. The elimina-

tion of redundant operators a:as for a specific

reference state has been described in detail in
ref. [7].

B. The second order multiconfiguration Hartree-

Fock approach.
We will now determine stationary points on an

energy-hypersurface where variation in the orbitals
and in the expansion coefficients C §s considered.

A new reference state |6> may then be obtained by
means of unitary transformation

[0> = exp{i x) exp {4 S){0> {9)
The total energy then becomes

E(x,S) = <0|exp(-ié)exp(-i;)Hexp(i;)exp(ié)|0> =

<0|H|0> ~i<0|[Stx,H][0> + 4<0{[$,[M,51][0>

+ % <0|[<,[H,x11]0> + <O[[S,[H.x11[0>+... (10)
A statjonary point on the energy hypersurface is
obtained when SE(x,S) = 0. We get

8E(k,S) = -i<0|[85+6x,H]|0>
+ <0|[65,H,5]]0> + <O|[6x,H,c]|0>
+ QI[5,[H,021110> + <0[[sS,[H,e11[0>+.. (11)

where the double commutator is introduced. Neg-
lecting third and higher order terms, Eq. (11) can
be written in matrix notation as

"
- = (A - B)
v (12)

where we have used Eqs. {5) and {7) and introduced

the notation 0: = a:as, r>s and R: = {n><0].
W = <0|[q,H]|0> (13)
V = <0[[R,H]|0> (14)




a- <0|{Q.H,0]{0><0|[[Q.H1.R]{0>
<0} {R,[H,Q" 11|05 <0([R,H,R¥1[0> | (15)
! <0|[Q,H,4]|0><0][[Q,H1.R]|0>

' [ <0l[R.[H.QJJIO><0l[R.H.R]l0>) (16)
may be rewritten as:

Y gt ]
) (s) (v (7

An iterative procedure can now be established to
get 6E = 0. For a given set of orbitals and coef-
ficients the matrices W, ¥, A and B are calculated
from Eqs. (13), (14}, (15) and (16). The vectors
x and S are then evaluated from Eq. (12) and 2 new
coefficient matrix and a new set of orbitals are
determined from Eq. {4) and {8). The procedure is
repeated until the numerical value of W and V is
smaller than a specific tolerance., The above pro-

cedure is a second order procedure5 which performs
the variation in the orbitals and in the coeffi-

cient in a single step.6 It will be denoted as
the one step second order approach.

two step second order procedure may be de-
scribed as follows. After an initial guess of
orbitals the matrix T in Eq. (4) is determined
from a configuration interaction catculation.
then have

Eq. {12)

We
<n|H|n> = E 8n {18}
and the matrix ¥ becomes equal to zero.

The matrix « that contains the effect of vari-
ation in the coefficient matrix through second
order may then be determined from a partitioned
form of Eq. (19)

ck= (A -8 -y ly (19)

where
A = <0}[Q.H, Q" 110> (20)
8' =+ <0|[Q,H,Q]|0> (21)

<O[[[0,H],R-R]]0»<0| [R,H,R1][0>"]

x <0l[RT-R,[H,Q"1]j0~ (22)

From Eqs. (8) a new set of orbitals may be derived,
a limited CI calculation performed etc. This pro-
cedure will be denoted the two step second order
approach.

Calcuiations using these approaches and ap-
proximations to these techniques are reported in
ref. [2-4].

I11. CONSTRAINTS IN THE INITIAL ITERATIONS OF THE
MULTICONFIGURATION HARTREE-FOCK PROGEDURE

Y=

Numerical experience has shown that in the
first couple of iterations, matrix elements of the
Hessian may show a great relative variation as a
result of the initial quess of orbitals. As a
consequence, the step length of the iterative pro-
cedure may have to be reduced until the variation
in these matrix elements from one iteration to the
next becomes small. HWe use a mode damping scheme
so that we may perform a controlled waik on the
energy hypersurface.

For the one step procedure we consider the
spectral representation of the Hessian

74

a8yt =uctut (23)
The transformed Eq. (17) becomes
(F) 1 tﬁ)
- =
B v (2a)
where = .
< =u+ {K H
3 s} (25)
W [}
()
v v (26)

The matrix elements that couple the orbital and
the coefficient_optimization are in most cases
very small and x then predominantly refers to the
orbital space and S to the coefficient space. We
limit the step length that may he taken by re-
stricting the allowed size of matrix elements of
T and x. He_use different values for constraints
applied for S and x since the amplitudes of the
dominant configurations very seldom change more
than 10% during the {terative procedure, while the
orbitals may be completely changed during the
iterative procedure, e.g. if the initial guess of
orbitals contains a very diffuse orbital it may
become tight as convergence progresses. Numerical
experience has shown that it is only for a small
¢ matrix elements that constraints have to be ap-
plied, We apply a constraint whenever |e }<0.1
a.u. then the corresponding x_ {or §p) is replaced
by =0 (or %), if |x,| {or |5 |) is greater than
|:‘;| (or [S0]). Hote that the sign of k) (33) is
not changed from Fp(§p) for positive ¢ . However,
if a particular mode is predominantly orbital in
nature for these calculations we automatically
force the mode to have a positive e  (regardiess
of the magnitude of ¢_) and the sign of Eg (3%
may change when compared to (3 ).4 For an
orbital mode with negative e , x {3 ) is replaced
-0 470 L

by Kp (SP).

For some cases it may be difficult to distin-
guish between orbital and configuration modes due
to a very degree of coupling between the orbital
and coefficient space. The degree of mixing in a
particular mode is defined by the number t that is
equal to the sum of the square of the coefficients
in Ut that retates to the configuration excitation
operators R+. In the present calculation, we ar-
bitrarily define a mode to be mixed or configura-
tional if ¢ is creater than 0.3. More complex
criteria to reduce the size of the step length may
be introduced ir even more difficult cases. The
above described criteria have, however, proven
sufficient to get even the very highly correlated
excited states considered so far to converge. For
the two step procedure we similarly consider the
Hessian matrix

(aos -l ey eyt (27

and the transformed second order equatian becomes
(28)

p

x=e W



where — +
x=U « (29)

W=vtu (30)

We constrain the orbital transformation if |:p|<
0.1 a.u. in which case the corresponding :_] is re-
placed by ¥°, if <. is greater than xC. Acain,
the sign of <0 is the same as x_ unless ¢ is neg-
ative, in which case ° will have a different sign
from x_. <. is automatically replaced by <° when
°p is negative. Constraints cannot 's directly be
applied in the configuration space, :s the corre=-
lation coefficients are determined tiom a 1imited
configuration i ‘-raction calculatjon. However, a
damping in the correlation coefficient variation
may indirectly be introduced by minimizing the
coupling between the orbital and the coefficient
cptimization (minimize the effect of Y in Eq. (19}).
This can e.g. be performed by adding an arbitrary
number to the total energy difference En - ED’
which appears in the denominator of the matrix Y
in Eq. (22). We would however, point out that
constraints that are introduced in this fashion do
not represent a controlled walk on the energy
hypersurface, and we have for that reason not ex-
plored that possibility further.

Calculations using this technique are reported
in the literature.®™3 In, for example, a calcula-
tion on the second state of j" symmeiry in Cz, a

stringent damping of the mixed or configurational
modes is important.

Iv. A METHOD TO REDUCE THE NUMBER OF TWO ELECTRON
INTEGRAL TRANSFORMATIONS IN A SECOND OROER MULTI-
CONFIGURATIONAL HARTREE-FOCK PROCEDURE

Successive unitary tra:sformations of the
crbitals may be described as
5;(n+l) = e:fp(ii(n))..gxp(i:(z))expgi;(l))a:
exp(-ic{1))exp(-ic(2))..exp{-ic{n)) (31)
where (5:(n+1)} denotes the set of creation opera-
tors obtained after the n unitary transformations

have been carried out. We . :* avnress a:(n*l) in

terms of the initial set of creation and annihila-
tion operators by successive application of the
relation

exp(ix(2)) = exp(ix(1))exp(ix{2))exp{-ix(1)) (32)
etc.

Operators with no tildes refer to the original MO
basis where only an initial two electron integral
transformations has been performed,

Similarly the multiconfigurational reference
state obtained after 1 applications of the MCSCF
Newton-Raphson equation and two electron transfor-
mations can be written as

[0(m+2)>=exp( ix (1) exp(ix(2)). .explic(n})
exp(is{1))exp(is(2)). .ex?(is(n))lm
= exp{ix{1})exp(ic{2))..exp(i<{n)}]0'(n)> (33)

The Newton-Raphson equations are set vp and
evaluated using the original creation and destruc-

tion operaiors through first order in (;(1),;(2),

...,.<(n)}.5 This involves evaluating the Hessian
with respect to the updated reference state
{0*(n+1)> (but zero order in <) and W and V are
evaluated using {0*{n+1)>. In addition a term

first order in x must be introduced in W and V.
Preliminary re. s using this technique are

extremely encouraging. (see
Table 1) for the 3r;, lc‘q. and "z states of 0,

indicate that an accuracy of 107 a.u. in the
total energy may be obtained by carrying out 2-3
two electron integral transformations, which is
about half the number of transformations required
to obtain the same accuracy in the -second order

MCSCF approach. An accuracy of 10‘10 a.u. is
obtained after one further iteration is carried
out with a second order MCSCF scheme.

Numerical exarnples5

REFERENCES

<

1. A. C. Wahl and G, Das in Modern Theoretical
Chemistry vol. 3 chap. 3 {Editor H. F. Schaefer
TIT, Pienum Press, New York and London).

L. Yeager and P, Jgrgensen, J. Chem. Phys.

. 75 {1979).

- Yeager and P, Jgrgensen Mol. Phys. 39,

587 (1980).

4. P. Albertsen, P. Jgrgensen, and D. L. Yeager,
J, Chem. Phys., 1 Sept. 1980.

5. P. Jdrgenser, P. Albertsen, and D. L. Yeager,
J. Chem. Phys., 15 June 1980.

6. E. Dalgaard, Chem, Phys. Lett. 65, 559 (1979).

7. E. Nalgaard and P. Jdrgensen, J. Chem. Phys.
68, 3833 (1978).

8. C. C. J. Roothaan, J. Detrich, and B. G, Hopper,
Int. J. Quantum Chem, Symposia 13, 93 (1979).

9. B. Lengsfield II], J. Chem. Phys., to be
published.

10. R. Shepard and J. Simons, Intern. J. Quantum
Chem., 1980 Symposia Issue, to be published;
R. Shepard and J. Simons, J. Chem. Phys., to
be published.

11, €. Nellin and . Matsen, to be published.

SENIS



9L

Tabie

Multiconfigurational Hartree-Fock calculation for O,

iteration

~ e a W N =

3 -
ZQ

second order

appr. orb. trans.
E(n)
-149.6988026494(3)
-149.7370464186(2)
-149.7379417888(2)
-149.7379421299

*
2

one step
second order
E

-149.6988026494
-149.7274007471
~149.7360408815
-149.7379190965
~149.7379421202
~149.7379421299

second grder

appr. orb. trans.
E{n)
-149.6441430440(3*
-149.6749197928(2)
-149.6759382826(2)
-149.6759392410

one step
second order
E

-149.6441430440
~149.6662568385
-149, 6735764049
~149.6758765596
~149.6759392359
-149.6759392411

second orde~
appr. orb. vrams.
E(n)

-149.6682277317(2)
-149.7013552056{1)
-149.7043636264(2)
-149.7043799305

one step
second order
E

-149.6682277317
-149.6934258436
-149.7018991625
-149,7043337841

. =149.7043799292

-~149.7043799309

*E is the total energy in atomic units. The number in parenthesis is the second order approximate orbital transformation procedure indicates
the number of times the second order (exact or approximate) equations have been applied in between each two electron integral transformation.



GENERAL QUADRATICALLY CONYERGENT MCSCF THEORY
IN TERMS OF REDUCED MATRIX ELEMENTS

Clamens C. J. Roothaan
Departments of Physics and Chemistry
University of Chicago
Chicago, ll1inois 68637
and

Nattonal Resource for Computation in Chemistry
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94728

‘ and

John H. Detrich
Sciance Applications Inc.
1211 W. 22nd Street
Oak Brook, Iliinois 69521

An tmproved scheme {s presented for calculating multi{-configuration
seif-consistent field wave functions of electronic systems for whi.h the
symmetry group is simply reducible. Our formulation is based on expan-
sion of the orbitals in a basis set, but is otherwise entirely general.
The MCSCF equations are derived from a multi~state variatton principle.
In the algebraic development extensive use is made of shell and term
replacement operators, rermitting a transparent formal development in
which symmetry properties are fully exploited. The resulting scheme is
manitestly quadratically convergent in the general case. Sufficient
datail is preseanted to provide the %asis for efficient computer imple-
mentation.

DEDICATION

During the last half century or so our knowledge of electrontic
structure in atoms and molecules has grown from humble beginnings to an
extensive and impressive Lody of data. Vhile many of these data have
come from ingenious and p. nataking experimental work. other important
infarmation has been obtai:.d from theore%ical calculations of steadily
increasing sophistication and scope. Preminent zmong the underpinnings
of such calculations for molecules has bsen -- and still i{s -- what has
been called by its inventor, Robert S, Mulliken, the MO-~LCAO method: the
elactrons are assigned to molecular orbitals, and each molecular orbital
is expanded as a linear combination of atomic orbitals. While this
basic tdea waz miready very fruitful in semi-empirical calculations., it
also provided thea corner stone for what is now c2lled the a prio-!
approach, in which an atom or molecule is represented by an all-eleztron
wave function, and the full electronic Hamiltonian is used without fur-
ther approximations. The developments presented in this faper represent
in a certafn seanse the cliosing chapter of the tormal development of the
construction of wave functions by the LCAO principle. Vs consider it a
privilege to dedicate this paper to Professor Mulliken, in honor of his
numerous {nvaluable contributions to thecvretlicai molecular struicture.

1. INTRODUCTION

The description of a many-electron atom or moleculs by means of
approximate wave functions expressed in terms of Slater determinants
(SD) built up from one-electron functions, or spin-orbitale (SO}, has
great appeal. It yfelds a computationally tractable approach while
permitting a strafghtforward interpretation of the N-electron wave
functions in terms of the ronstituent S0's. The conventional Hartree-
Fock gelf-consistent field (SCF) method for atoms (Hariree, 1957; Froese
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Fischer, 1977) uses a single SD, or a minimally necessary set of Sh's to
satisfy symmetry requirements, and numerically computed orbitaisa. The
SCF concept can also be realized by 'intraducing finite expansions for
the S0's in t s of a basis set (Roothaan, 1951, 1968). This expansion
tly dominates the treatment of molecules, and has also
bean very suc ful in the case of single atoms (Roothaan and Bagus,
1963). The present paper const(tutes a further development of this
expanston technique. :

Although the SCF method often yields a good first approximation for
the electronic wave function(s) of an atom or molecule, there are many
instances when this approximation {s fnadequate. Among the many differ-
ent approaches by which cone can cbtain wava functions of highar qual:ty.
the multti-configuration self-consistent f d (MCSCF) method occuptes
a unique position as the most natural generalization of the SCF methed.
Thts approach pr rves the appealing feature of compact wave functions
constructed from a relatively small number of orbitsls, providing a
simple basis for understanding and {nterpreting atomic and molecular
phanomena.

In the MCSCF mathod one constructs term state functions {TSF} as
linear combinations of ] (CSF); the latter
are defined s« symmetry adapted linear combinations of SD's aricing from
a single configuration of orbital assignments {(Hinze and Roothaan,
1967}, In the final! MCSCF wave functioni{s} the expansions of both the
SO's 1n t of basis functions, and of the TSF's in terms of the
C5F's, hav n optimized, so as vo 'satisfy the vartation principle for
the choran s e of tha system. 8By contrast, in tha method of igy=-
ratlion interaction (CI} only the expansions of the TSF's in terws the
CSF's are optimized, while the S0's are usurlly taken as the solution
of some type of SCF calculation. .

In the usual MCSCF formulation the varfation principle is applied
to the esnergy of a single state. The idea of a ltt-gta vae 1

r was introduced by Docken and Hinze (1372) and refined by
Ruedenberg, Cheung, and Elbert {1979); upon closcr examination, ft
appears that this idea is entfrely natural in MCSCF thoory. This |
approach is particularly useful whenaver a collection of states, rather
than a single state, is relevant for a physical process; examples are
radtative transitions, thermodynamical state functions at finite temper-
aturas, target statas {n scattering situztions, etc. Thu variation
principle as formulated in this paper is even more general: it pernits
alsc a mixture of different states of jonization of the same spucics.

The detarmination of the optimal SO and TSF expansion couificients,
which constitute the MCSCF solution, §s an algebralc but nontireasr
problem, which must be sotved by iteration. Many difierent schames for
obtaining the MCSCF solution have been proposed and used., Thesc schemes
can be roughly classified into four grours. In the first group Lagrange
multiptiers, whicn are introduced to maintadn orthwnormzliiy constraints
for the S0's, pla dominant role (Veillard, 1366; Clement{ and
Velllard, 19663 D and Wahl, 1966, 1972; Hinze and Roothaan, 19673
Hinze, 1873; Wahl aud Das, 1977:; Golebiewski, Hinze and Yurtsever,
1979). 1In the second group the generalized Brilloutn theoram (Lovy and
S8erthfer, 1968) is the dominant featurs, and is invoked to formulate the
so-called - éghggg (Grein and Chang, 1971; Grein and Banerjee,
197Ss Banarjee an rein, 1976, 1977; Chang and Schwart2, 1977; Ruttink
and van Lenthe, 1977; Ruedenberg, Cheurg and Elbert, 1979}, [In the
third group exponential transformations of the S0's, or equivalent
transformations which produce the same rasults, are lntréducod: this
approach leads naturally to a Hewton-Raphson type procedure for the
determination of the S0's, and assigns subordinate rales to the Laarange
multipliers snd the generalized Brillouin theorem (Levy, 1968, 1978,
19734 Polazzo, 19753 Kuprievich and Schramko, 1975; Kendi-ick and
Hillier, 1976; Dalgaard and Jdrgensen, 1978). In the fourth group
exponential transformations sre Introduced for the TSF's as well as for
the SO's (Dalgaard, 1979; Yeager and Jdrqana-n. 1979; Roothaan, Detrich
and Hopper, 1979; Lengsfield, 1980; Werner and Meyar, 1980). This new
TSF transformstion replaces the more usual procedure of solving the TSF
secular equation system, which {s used in the first three groups. The
present paper gives a comprehensive and detailed account of the deriva-
tfon and solution of the MCSCF equations as they arise in this fourth
approach.

The simultaneous exponent{al transformations of SQ's and TSf's per-
mit a much more powarful analytical framework for the MCSCF process than
was hitharto possible., Firstly, it permits us to formulate the MCSCF

i



variational problem straightforwardly and concisely in terms of

-r variables. Hence we need not intraduce Lagrange
multipliers to maintain constraints on the variables. In fact, orbitatl
energies, as well as the total energy, no Tonger play a pivotal role in
the variational proce: they can of course be .evaluated for monitoring
purposes as the calcu fon procesds, just Jike any other interesting
quantity. Secondly, considering the variational cnergy as a Taylor ex-
panston in terms of these essential non-redundant variables, it is easy
to write down explicitly the linear and the quadratic terms. Truncating
this expansion by dropping all higher order terms, the variational
problem which remains is solved simply and directly by tho wulti-dimen~
sional Newton-Raphson procedura., The latter s equivalent to a matrix
inversion problam, which replaces the usual combination of the eigen-
value problem for the TSF's and the pseudo-eigenvalue problews for the
S0's. The Newton-Raphson process ylelds only an approximate MCSCF
solution because of the truncation, and must therefore bco used fter-
atively. It is howsvar juadratically convergent: gonerzlly about 3-4
iterations should suffice to obtain the converged MCSCF solution, which
13 in sharp contrast with the convergence behavior of the comwon first
order methads. .

The double exponential transformation effectively disposes of the
two most difficult -- and related -- obstacles encountered in tradition-
al MCSCF calculations: the coupling between the SO and TSF optimiz-
ations, and the often painfully siow rate of convergence tor worse,
divergence). ' The coupling betwaen SO and TSF optimization has been
discussed by Das (1973); Das, Janis and Vahl (1974); Chanyg and Schwarte
{1977); and Dalgaard and Jérgensen (197B}. The idea of doaling with
this coupling by use of an exponentiel transformatien for the TSF
variation, analogous to the exponential SO variation, was introduced by
Dalgaard {1979) and tndependentiy by Roothaan, Detrich and Hoppar
(1979). The conceptunl and computational advantages thal are realized
by expressing the orbital optimization process im terms of a unitary
transformation written in exponential form were First recognized by tevy
{1969, 1978, 1973), who used this approach to derivc 2n fwproved multi~
dimensional Newton-Raphson process fur MCSCF orbital optimization. The
same process was derived, without Introducing the exponential trans-
formation expliicitly, by Kendrick and Hillier (1976). VWithin the
framework of pseudo-sigenvalue problems, the work of Hinze and Roothaan
{1967) appsars to be the first succeasful attempt to formulate a multi-
dimensional Newton-Raphson process for orbital optimization.

We regard symmetry considerations as integral to the MCSCF method.
The S0's and TSF's ara required to have definite symmeiry, so that they
belong to irreductbls representations of the appropriate atomfc or
molecular space and spin symmetry groups. Consequently, Instead of
indtvidual S50's, one actually optimizes orbital shells, each consisting
of a set of S0's degenerate by virtue of symmetry. Likewise, instead of
individual TSF's, one optimizes gpectrosc P consisting of a set
of TSF's degenerate dues to symmetry. Full axploitation of symmetry re-
duces the var(attonal problem to be solved numerically to a problem in
terms cf non-vanishing non-redundant quantities only. Here we accom=-
plish ¢this w;th a conpr?h.nsiva and explicit formal algebra, under tha
assumption that the spplicable symmetry group is 3imply reducible
{Wigner, 1948, 1941), Thts covers the most tmportant cases since It
applies to atoms as well as to the vast majority of molecules. The gen-
erslizations necessary to handle the exceptions are straigatforward, but
are not presented in this papar.

In a practical MCSCF calculation the choica of the set of configu-
rations, as formally defined in terms of 50's, is of great importance
for the success of such a calculaiion, Currently available experience
in this respect has been reviewe:i by Detrich and Wahl (19€0)., There are
two specific mathods of selaction which deserve specis) mention. The
first one is the evan-replacement MCSCF mod=1 {(Roothaan, Uetrich and
Hopper, 1979). It permits MCSCr calcuiations at a total cost hardly
mor: than what is required for an SCF calcuilatton, and it s conseguent-
ly the most economical MCSCF model. The second one is tho t i]

nedel, originated by Ruedenberg and Sundbara (1976)
under the name fyl] orbital reaction space MCSCF mathod, and recently
applied by Rocs, Taylor and Siegbahn (1960) under the name gomplete
active space SCF method. This model is characterized by its conceptual
simplicity, but 1t leads to very costly calculations.

The choice of configurations, combined wilh our insistence on ‘sym-
metry requirements for the TSF's and SO's, introd s considerable com-
plexity into the evaluation of matrix elements be en TSF's of the
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Coulomb repulsion. This question has been addresscd for the cass of
atoms in the work of Racah {1942, 1943}, Ffurther work in this areas, and
aspacially the appropris extension to molecular symuelry groups,
should have a high priority in the near future. In this paper we deal
with the chofce of configurations only to a 1imited extent, primarily
inasfar as it has a bearing on the determination of a sct of essential
non-radundant variables,

Dalgaard‘s treatment of the double exponential transformation fs
carried out within tha framework of second quantization. In that regime
the natural constructs for one- and N-electron wave functions are the SO
and S0, respecttively. The explicit connections between SO's and SD°s,
and also the Hamiltentan operator, are written down in terms of creation
and annihitation operators. Thke direct use of CSF's is unnatucal; con-
sequently to date all MCSCF formalisms based on second quanifuuiion deal
with SD's rather than CSF's, and end up with a numerical variational
problem which i1s not in irreduclble form. If a further syuunetry ro-
duction 1is desired, 1t must be Imposed a postariori.

Our present tr ent deals directly with the C5F's; wave function
manipulations take place in Hilbert space {von Neumann, 19543, and in-
stead of creation and annthi{lation oporators we uzc Lhoe replzceancnt
operators introduced by L3wdin (1977). Also distinctive is our exten-

f the Trace oparaticn, and of projection opurzctors. Our
turally to a numarical vartational problen in
trreducible form, thereby providing the proper basis for the construc-
tion of a computer program of maximum generzlity, transparency and

effictency.

IT. HILBERT SPACE ALGEBRA

Thea manipulations required for the optimization of our multi-con-
figuration wave functions can best be expressed as formal operatians in
Hilbert space (von Neumann, 1955}, [In this section we review Lhe rele-
vant cancepts for this, and collect a number of general! formulas which
will be applied n the following sections to more specific nanipulations
of orbitals and configurations. In order to staie these general facts
with minfmum complextty, we use in this and the next section a notation
which i{s simpler, and -carries less Information, than whai is needed in
the fo\lnw(ng sections,

et ,‘, =],2,.,.. constitute a complete orthonormal base in the
H11bert space of our wave functions, Orthonormality is expressed by
(vql*f) = 56 . (38}

while compieteness psrmits the expansion of an arbitrary function in
terms aof the bsse according to

p=Liwme . (2)
Using Eq.{1) we easily find for the expansion coefficients
;= Lyl . (3}

Taking now the scalar product of y with another arbitrary wave function
$ we obtain

PPy = L Ctp oCyily> 3 (4
this {3 conventently restated and renamed as the closure property
Zagoeyet =S (5}

where J is the tdentity operator.
Let now 4 be s linear operator defined for the entire Hilbert

spaca. Its matrix elements with respect to the base y; are given by

A"I' = Kyl by > (6}


http://syr.iirHii.ry

Conversely, using the closure property, Eq.(5), we can express the
operator in terms of the matrix elements, namely

A - Z,'I'?ijﬁj" R (7)
where we have introduced the ;_gg1gcem§nt operators (Léwdin, 1977)
9“-1- R 7243 T B (8)

According to Eq.(7) any linear operztor # can be expanded in terms of
the replacement operators .?,-j. with the matrix elements A‘-; as the ex~
pansion coefficients. Hence these replacament operators play an analo-
gous role with respect to operators au do the basis functions Yo with
raspect to wave functions.

The matrix elements of the replacement operators are easily seen to

be
Byke = w9 > - J‘.-gJ“J- . 9)
For the product of two replacement oparators we find
"./.’“ - 8,1’0 R (1
and consequently for the corresponding gommutator
UEFaed = e - apSy - Sty - Sy ke -

r any operator 4 there exists a Hermittan conjugate operator 4%

Fo
defined by the requirement
QIAES = <Pinryy (2

where 14 and p! are any two functions in Hilbert space. It follows easily
that

’i'j - (13
and
A® = z"j?fj‘;" . 141
where
A% . a . (1s)

Given an algebraic expressfon containing operators and ordinary
(complex) numbers, the Hermitian conjugate evoression is obtained by
taking the complex conjugate of all numbers, ~.he Hermitfan conjugate of
all operators, and all oparator products in reverse order. Furthermore
any equation involving operators remains valid 1f we substitute for the
oparators the corresponding matrices, and vice versa.

There are certatn types of operators which have special signifi-
cance. They are distinguished according to proparties wilh respect to
their Harmitian conjugates and/or their efgenvalues. say A, namely.

Hermitian: Y I Ht.'j ] I-I‘-j . Y=, {16}
anti-Hermitian: X* = -X . X:,- = -X,-j . A= -2 R (17)
unitary: UM -d R Ll”"‘”‘j = f,‘j s =1, (18)
tdempotent : LA, MMy =My . 3 =1 or A=d L (w
nilpotent: a0 o MM =e . Ao 128)

where & denotes the null operator. It is eastly seen that the Hermitian
conjugate of the various operators are of the same type: ¥#¥ |s Her-
mitian, X* is anti-Hermitian, etc. Furtharmore, (& is anti-Hermitian.
and JX is Hermitian. Note also that Jf is Hermitian, unitary and iden-
potent, while > ts Hermitian, anti-Hermitian, jdempotent and nilpotent.
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In a Hilbert space of finite dimension we can always chooss the
eigenfunctions of any Hermitian, anti~Hermitian or unitary operztor so
that they constitute a complete orthonormal base. In a Hilbert space of
infinite dimension that statecment needs to be modificd somevhats; this is
due to complications caused by thea possibility of a ceontinuousw range of
eigenvalues. On the other hand, In either a fintte or an (nfinite Hil-
bert space, the migenfunctions of an idempotent or ntlpotent operator in
general cannot be chosen orthogonal, nor do they always span all of
< 1lbart space.

The exponential of an anti~Hermitian operator yields a unitary
operator. ramely

TR AR ST (21)

Conversely, given any unitary operator U we can always find an anti{-
Hermitian operator X so that Eq.{21) Is val!d. Although these facts are
rather well known, for the sake of completeness we present thz proofs (n
Appendix A,

The unitary operators are particularly fmportant for describing
transformations within Hilbert space. When all wave functions and op-
erators are subjected to a transformation by the szme unitzry operator
U, the transformed wave functions and operators are obtained by the

formal definition

Pely .

£ v’, (22)
A= upY 5

1t 15 well known that all relations between wave functions and operators

also hold for the corresponding transformed quantities.
The role of the matrix elements Uq is two-fold. On the one hand,
we reradily find for the transforncd basls Functions and replacemzni

operators
i sl
LTS LT .
. s 2,y (22;
Rp = LgpllineeYey; -
On the other hand, If we express arbitrary functions and operators, say
w and @, and also thelr transforms, ¢’ and A/, {n terms of the griginal
reference base ¥ and operators 5?-, nanely

y = Zec; .
p' = zi?ﬁ'c:' .
A Zij y..AJ.‘. .

(24)

’ ‘J [
Alm Z,‘J FopAve

e X tyes
, 4 Y o (25)
A;J’ = I"U"‘A‘{ e/ «

Egs. {23} express transformations of geometrical objects. and are
sometimes czlled active transformations. In contrast, Eqs.(o5) express
transformations of coordinates, and are sometime: called pagsive trans-
formations.

An all-important scalar function of an operator is its trace de-
fined by

we find eas!ly

Tracel#) = Z,A:; . (26}

We observe that this definition is independent of the basis chosen, as
of course it must be If we want to speak of a function of un operator.
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The t-ace 1s a linear function with respect to both scalars and oper-
ators, nramely

Trace(af + 88) = ¥Trace(d) + gTracelB) 27
where # and 8 are any two operstors, and o and 8 are scalars. Wilh re-
spect to a product of oparators, the Trace s inva nt under eyclical
permutations of thae factors in the product. It suffices to state

Trace(AS. .. &' = Trace(B... s) . (28}

since repeated application of Eq.(28) can yield arbitrary cyclical par-
mutations.

Any Hermittan, anti~Hermitian or unitary operator can always be
brought into diagonal form by choosing an appropriate basis. Since the
dimgonal elements are than the eigenvalues, we obtain in this case

Trace(d) = Z;a; t29)

where #s%, #=X or A=U, and 3,+13,... are the eigenvalues,
We obtain another interesting use of the trace by writing tha
genaral matrix element A;s of an operator # in the form .

Y
A;j - Trncc(ﬂ&j) . [}
Eq.{39) provides the basis for formulating quantum machanics as a trace
algebra {L8wdin, 1977).

Tf an operator ® (s both Hermitian and idempotent, it is cuiled a
projection operator, or projector:

Fla Papr | an

The sigenvaluss of P are restricted to 1 and ¥; tha corresponding eigen-
functions span the space and the shadow space of &, respactivaly.
These two subspaces e a null intersection, and their unton consti-
tutes the entire Hilbart space; we say that the projector § defines a
decomposition of Hilbert space into two ¢(~mplementary subspaces.

It is easily seen that, given any projector ®, ihe operator J-P {s
also a projector; it ylelds the same decomposition of Hilbert space as
does #, but with the roles of image space and shadow Space reversad.:
Thus it is also true that the image spaces of P and J-F are complenen-
taryt we say therafors that # and J-% are complouzntary projectors. A
spacial case of such a complementary pair is provid=d by ancg O,

The dimensfon of the image space, say &, is called the gimension of
the projector. Because of Eq.{28) we have

d = Trace(®) . (32>

Obviously the null operator & is the {one and only}) 4riyiyl projector of
dimension @; projectors of dimension 1 are called prinitjve; all other
prejectors are compound.

Two projectors, say ® and &, are called orthogonal when their image
spaces are orthogonal; this occurs {f and unly if PE=pP = Clearly a
complementary pair of projectors is also an orthogonal pair, but the
converse 15 not necessarily true. It is useful to generaiize il.e notion
of an orthogonal pair to an orthogonal sel of & projoctors Py,
a=1,2,...0 which satisfy

T taz)
%P " St -
Given the orthogonal set of projectors J%, 1t follows samily that
eI 9 t34)

ts again a_projector. Conversely EqQ.(34) gives the decompasttion of the
projector P into the components Py, the latter forming an aorthogonal set
of proj:ctgrs o: l.ss:; :|nens|on7. A fundamental theorem of Hilbert
space algebra states at gny m-dimensional projector can decomp

intg A gorthogonal primitive projectors. be deconpos.d
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We return now to .the replacemart operators #;, {ntrdduced before,
EqQ.(8). The off-diagonal ones, £ with ({f5, are’nilpotent; they are
often c3lled if rators. The dtagonal ones, Pi¢ for &1,2,...,
form an orthogonal set of primitive projectors. The closure property,
£9.(5), can now be restated as the decomposition of the jdentity Into

primitive projectors, namely
AL 71 /7 N (35)
Essentfally a1l our wave function manipulations will be confined to
a subspace of Hilbert space. Adopting a suitable basis, this subspace

is spanned by a subset of the basis functions ¥;, say for iS5, The sub-
space |s obviously the image space of the projector

P uliesP - (36)
For any function ¥ in the subspace the operator & acts ttke the iden-
tity, namely
Pyry {37}

while for any function outside of the subspace, that 1s, in the shadow

space, & acts Jtke the null operator. .
Given a projector #, we define for any operator # the gssocisted

projected operator by means of
Ay (28)

it is sasily sean that this is equivalent to
“ . .
A,J~-A,~J' . ieS and J¢=5 .
3,;,- o . (€5 or j+S5S .

Given a projector . If an operator A is identical with its associ-

ated projected operator ¥, namely
Py

E R N 40y

we say that the operator ta {nternyi to the image space of ?. The
cendition (49) 1s eguivalent to

AP =94 =4 1)

(39)

and also to

Aj=s i¢8 or /'.#5 . a2y
From Eq.(41) follows the commutation relation for an internal oparator
and the projector defining the subspace, namely

Mry-o (43)

1t should be noted however that Eq.(43} is not a sufficient condition
that # ts fnternal to the image space of P,

The most important application of projected operators (s the
following. Let #, 8, 8,... be a set of operators internal Lo the image
space of the projector #. and let X, J.... be any operators in gcneral.
Then in any operator product in which each genera) operator i1s v lanked
on both sides by an internal operator. w2 can replace the generul oper-
ators by their associated projected operators: vor instance

ARSI = RR8F: . (24)

An interesting corollary of Eq.{44) concerns the trace of a product
of operators. Stnce the trace involves a cyclical product, we have for

tnstance
Trace(R8d) « Tracewdsl, . €as)
because X is flanked by # and B, and J is flanked by ® and #. A special

case of this type of relation occurs in the evalvation of matrix
elements of such a product of operators betwean wave fuuctions, say ¥
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and ’. which are confined to tha tmage space of . In this case the
operator

B = g (46)
is Internal to the image space of P, hence
PIRIp> = Tracel®e) = Traceda) « Fiflp> . 47y

An obvious gereralization of Eq.(47) i3
purap> = cgulay> tam)

which will be particularly useful later on.

111. THE MULTI-STATE VARIATION PRINCIPLZ

Ordinarily one datermines (a} variational wave function{s) for a
bound state by demanding that the expactation value of the anergy for
ed Iin terms of (a) wave function{s} with adjustable
Parameters, stationary to first order for any permissible in-
finitesimal variations of these parametars. In this section we genaral-
fze this variztion principle, so that wa can determine u sot of wave
fﬁnc&ign; which jointly describe a fip! number of states of our system
(Docken and Hinze, 1972; Ruedenberg, eung and £lbert, 1973).

Let w;, (=1,2,...,m be the orthonormal set of wave functions to be
subjected to the vartation principlic. In case any of the cstates under
consideration is degenerste because of symmetry, the set ¥y, must of
course inciude a full sei of degenerate partners satisfying the appro-
priate constraints,

For the variational energy expression we adopt a weighted average
of the energies of the various states given by

E=Zowicpokip (49)

where £ ta the Hamiltonfan of the system. and the weights W, are re-
stricted by

Weew; > 8
(smy

Icwe =)

For degensrate states we expect of course Lo choose these weights

identical for the degenerate partners.

The energy must be stationiry with respect to all variations we
permit for the wave funcrions ¢;. £Among these variations we must of
course fnclude unitary transformations of the set ¢,;, analogous to what
we must rermit for the wave functions of a degenerate state vhen apply-
ing a symmetry-breaking parturbation. Hence we must allow the trans-
formation

X
y,’ = ey, -ZJ-yJ-(ex)j; N (51)
which leads to a variation of the enerqy given by
Gy v Wy X e Oy L (52

the last term representing all terms of second and higher order in the
parameters X, .

Assuming first all the weights to be different, the requirement
that §£ must vanish to first order for any permissible choice of the
paramsters XE[ yields

ki -8 L PF ts3)

The proof of thts statement {s not quite trivtal, since the X}~ are not
completely independent; i1t {s presented in Appendix B. v

if :; and ¥, are deqensrate partners due to symmetry, ons must of
course choose w;“a), and Eq.(53) no longer follows from the variation
principle. However, !n this case Eq.{53) 1s a consequence of the sym-
metry constraints on the wave functions which must be honored by the
variational process.
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If w; and y,; are not degenerate partners dus to symmetry, and we
stil, choose nh-ug. Eq.{53) follows neither from the variation principle
nor from symmetry constraints; however, we can then guarantee Eq.{53} by
carrying out an additfonal unitary transformation of the wave functions
which leaves the variationa) energy invariant. Clearly it is only tn
this Jast form that the wave functions can be fdentifled with physical
states.

Hence having adopted E£q.{49) as tha variationsl energy expression,
we have obtained the sminently reascnable result that the variattonal
condition (mplies that the wave functions myst satisfy, or may be chosen
50 as to satisfy the usual secular equation system. 1t {s furthermore
interesting to note that this fact doss not depend on the choice for the
magnitudes of the weight factors. On the other hand, thc magnitudes of
the weight factors will affect the variation with respect to parametars
other than xd;.

Finatly,” we note thiat our variation principle reduces to the stand-
ard varfation principle for a single non-degenerate state for #=i, and
to the propsar symmetry-waighted one for a single degencrate state,
choosing of courss egual weijzhts for the difierent pulincrs.

Iv. CONSTRUCTION OF N-ELECTRON WAVE FUNCTIONS
FROM OME~ELECTROM SPFIN-ORBITALS

The N-afectron wa functions we use to describe stationa states
of etoms and/or molecu are bullt from a finfte set of A on lactron
spin-orbitals (SO), where of caourse MN. The SO's axre denoted by
$a,a(@): this notation s explicit with respect to symmetry character-
istics and elactron coordinates, namely

2 tor &, 7,,..) designates symmetry specfes;

o lor F.r....) designates symmetry sybapecies:
L tor j,(,...) labels spin-orbitals not distinguishable by symmetry;

and spin

a {or $,¢....) labels slectrons, representing spac
coordinates.

For any given 1 there are definite ranges for « and for i; we say
that « and ¢ are gubordingte to ). The range of o is the degree of de-
generacy dj; ordinarily this will encompass spatial as well as spin de~
generacy. For given A{, the set of 3 degenerate SO0's is called a
shell: thus the compound index Ag is a shell index. Ve establish a
canonical ordar for the SO by taking them in dictionary ocder with
respect to the compound index Aie: in this srrangement the 30°s are
grouped in shells, and shells occur grouped by symmaetry.

2 lnAgonorﬂi wmatrices rofqr;lng to shells hasve the index structure
img . specisl case ty that of matrices which are hlocked by symmetry.
In those matrices the el nts with Afg either vanish or are—%ean(ng-
less; the non-vanishing e ents are convenlently indexed by Asf rather
than Aid;.

Jt is convenient and customary to require that the SO's form an
orthonormal set. We adhere to this practice, so that

(ih-'(nnd,”(-n N 81;.‘,9-, - "lp:"j:"ﬁ . (541
Clearly, the SO's ¢, 4i@) span an M-dimensional subspace of the Hilbert
space of one-electron functions of electron @: in general, a function
in thty subspace will be designated by gial.

Choosing now any N-membered ordered sybset from our canonical set
of SO's, we can construct the corresponding N-electron antisymmetrized

product or Slater determingnt (SD) according to
s
. - ? .
’hb.l,...l,n',l, (”')xﬁﬁ,u,v,(“""l,,:;,-”“" [ {551

where # i3 the antisymmetrizer. Specifically, # is the projector
defined by

AtV e g (56}
D ra b
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whare reprasents the distinct permutations of the slectron coordin-
stes, wf;h 8=l for sven, and gp=-1 for odd permutations.

Note thst we demand that the SD's in Eq.(55) are an prdered subset
of the full . As a rasult the SD's defined by Eq.(55) are independ-
ent; 1t is 1y n that they are in fact orthunormal. The total
number of » that can be constructed in this manner is given by the
binomial coefficient (ﬂ); they span tha SO JRAce. it being
undsrstood thet only antisymmetrized products o 0's are considered.
In general, a function in this space will be designated by P?or ‘. The
N-electron wave function(s) for ocur atom or molecule is {ara) to be
found 1n this SO product apace, which {s, of course, a subspace of the
complete Hilbert space for our problem.

Each SO is at least partially characterized by its ghel)
nymbers ®;;, which specify how many S0's of sach shell were used to
construct the SD. Obviously the occupation numbers must satisfy

M 6dy } 571
I,.-n.; =N .

Each distinct solution of Eqs.{57) specifies a gonfiguration, which s
defined as the set of SD's assoctated with that solution.

In general a configuration spans a reductble representation of the
symmetry group of the system. By subjecting the SD's of a configuration
10 8 suitable unitary transformation, wa can decompose this reducihle
representation into trreducible components. Tha linear combinationg of
SD's which result from this decomposition are called ggn;igu;;ﬂign tate
functions (C5F). To do justice to the symmetry properties we dencte the
CSF's by “,‘, analogous to @), for the 50's: here A (or E,...) refers
to symmetry species, A (or B,...) refers to symmetlry subspecies, and P
(or @i...) labels CSF's not distinguishable by symiatry. Stnce the
CSF's are obtsined from the S0’'s by a unitary transforwation, they form
3 new orthonormal base for the 50 product space, hence

BeaPion’ = Sirazee " flrgins - (58)

e CSF's have definite symmatry properties, they, rather
ars the most useful buiiding blecks for wava functions of

And because
than the SO
actual states,

In the standard version of gglf-consistent figld (SCF) theory, the
atomic or molecular wave function(s) for a particular spectroscopic term
is (are} taken to be s single CSF (& degenerate set of CSF's), and the
SO's are to be optimized. In the most commonly used vercion of mylti-
configuration !!If-ggnllfﬁsq; field (MCSCF) theory one uses in generai
superpositions o ‘s for a spectroscopic term, and the CSF expansion
:o-ffl:lc:t: .still as the S0's are to be optimtzed. In the presant
version of MCSCF theory wa represent simultancously lgxg:a! é!:ggfg-
scopic termy by superpositions of CSF's. In a practical 1 calcul-
ation one rarely uses all possible CSF's; instead onec chooses a fairly
limited set of CSF's guided by physical reasoning, past expertfence
and/or intuftion.

From our chosen set of CSF's we construct term giate functions
{TSF} according to

L STRLD TS JYR A t59)

for gtven AJ, the set of degensrate functions 1?‘ represents s spectro-
scopic term. Demanding orthonormality for our 4"s wa obtain

Fuzat¥uza = LCoplps = &5 - (60

The particular MCSCF strategy we want to use requires that we consider
at all times a set of TSF's which spans the same space as does the t
of chosen CSF' In actuality of course only one {or a Tew) of th
functions is (are} used to represent a spectroscopic terr (or terms);
the larger set s needed for rying out transformutions to achieve
successive fmprovements. Therefore the coeffictients Capr form a squars
unitary matrix which is furthermore blocked by symmetry.
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Since in the construction of TSF's from CSF's the species label 4
i3 preserved, we may parmit the number of electrons tc be a function of
A, say WN,. Hence our MCSCF model! i3 used to construci in genaral, from
a common set of SO's, many-electron wave functions representing several
spectroscopic terms of diffarent excitatfon and/or ionization. Thus the
labe! A now classifies wave functions as to spatial symmetry,
ry. and degres of lonizatien. This furthaer generalization of
the multi-state variation principle of the previous section {s feasible
and profitable since wave functions with different numbers of electrons
are now related through a common set of S0's., The shell occupation
n:-bors for the CSF's are now properly dcnoted by ’ﬂﬂ“‘ they satisfy
o course

LR LTV ¥ U } (574
Laitvpai =%

In the {deal MCSCF formulation the variation of the S0's fs re-
stricted only by orthonormality, In this paper we reatrfict ourselves in
addition to the mathematically more tractable expansion rogiwe for the
50°s. Ve adopt s set of one-elactron basis functions denaied by

Xapgi®}, in obvious anmalegy to the SQ's ﬂ‘;‘(gl: p lor g,r,...) labels
}a‘fs functions not distinguishable by symmetry, and is subordinate to

eneral, basis functions are only arthogona! 1f they have dif-
ry:s in fuct their scalar products urc glven Ly

Aaput@1 Ypgpler> = ‘“:F,‘SJH .
where 5, iz an element of the Qver! matrix, which, as the notatton
iupll-!.’?' blocked by symmetry. he overlap matriz 1s Harmittan,
namely

In g
ferent sy
{61)

y 5
. ¢
Sipg = Sy 621
Furthermere {f the basis functions are linearly independent, as they of
course must be, the overlap matrix is also positive dutinive, that is
2,.5; >0 (63)
,,c,,S,”c,,
f?r any non-trivial seat of coefficients Cap (trivial would be (;,=8 for
all g1,
PTh- S0's are now put forward as expansions in termz of the basis
set, namely
facet@® -z,,",(a)c,". ' (64}
orthonormality of the SO's yields for the expansion coefficients the
constraipts
L d
€3caS AR (65)
LpsripSapglag; " G
The MCSCF strategy with respect to the SO's 1s snalogous to that for the
TSF's. We require that the SO's #j,y and the basis functions Xapy SPEN
the same space, and carry out linear transformations of the $0's’to
achieve successive improvements. Hence the coeivicienis ¢3,; are r=lat-
od by unitary transformations {n order that Eq.(656: rern~ins valid.

V. SHELL STRUCTURE AND MCSCF MODELS

In order to carry out an MCSCF calculation on a particular atom or
molecule with & given one-electron basis set, we still huve to supply a
certain amount of stryctural jinformation which remains constant through-
out the MCSCF variational process. This structural information consists
of the number and symmetry species of the spectroscopic tarms, and thetr
wefghts, in the varistional energy formula: the number and all the rele-
ticulars of the CSF's to be uscd for the construction of the
nd, in a wider sense. all the quantities derived from this which
are used and rematn constant during the MCSCF variatlional process. The
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specification of this structural information will be referred to as the

cholce of an « The cholcs of appropriate MCSCF models for

particular physical systems or processes is m very axtensive subject,

much wider in scops than for instance the choice of one-electron basis

functions. In this paper we touch upon the questions associatad with

the dlff:r.nt models only insofar as they affect the organfzation of the
b t

tent, different MCSCF models are distinguished
from on noth.r by their invariasnce characteristics with respect to

S0 and TSF transformations. These permissibie transforma-
Ol itary, and ey presarve the sxact symmotry -~ zpecies and
subspeci the SO's and TSF’a; in the following "transformation”
will always mean “permissible transformation”, unless explicitly
specified otherwise,

In order to discuss invarfance with respect to SO transformations
tucidly, (t s useful ¢o define, at thres different imvals, fully oc-
cupted or cloeed gheila; partially occupled or fractions) shells; and
unoccupisd, virtwval or ampiy

At the first level we define th-:n categories for a single CSF {or
a set of degens ® C5F's); cleariy this ts the definition appropriate
for, and famtlia fron. ordinary SCF theory. Der~nting the threc cate-
gories by G, i and Egp, we have

-

MeCp 1f Rapac ‘.
A= Fyp if mimypas < da 166}
ac=Ep  if Mpas = ¥ .

At the zecond level we define the corresponding categories for the
set of all CS8F's -~ and thersfore also all TSF's -« of the same species,
sayA. This definition is appropriate for the rost comaon NUSCF fortu-
lation. The closed and empty shells ara defined as those thai are
closed and pty for all CSF's of species A; the iracticnal siells are
the ramainder. Thus a shell which is closed in sume, and emp(y in the
other CSF's of spacies A, becomes a fractionally ocuupicd siv- 11 a1 the
prasent lavel. Danoting the present categories by Cw F4 and EA. they
are conveniently defined in set-theoreiical langu.ge hy

Cr =M
Ey = NpEyp (673
Fy = ~CUE

where ~ represents complementation, U represcnts the union operation,
and n represents the i{ntersgctlion operatton to be repeated over all P,

Anllochl to the second level, at the third level we define the
categories for all CSF's -- and TSF's -« regardless of species. This
definition ts appropriate for cur present most general MCSCF formula-
tion. Denoting the present categories by C. F and E, w2 have

€= MG = Mplpp .
E = MEy = MpErp . t68)
FaQUE, .
We note that, progressing from the first through the third level,
ts of closed and empty shells generally decresse in size, while
actional set increases, namely
Ge=G =0 .
Epp= Eq= E (69)
o= Fh=F .

the
the

In this work we are primarily concerned with the first and third JTevels,
The third level set of closad shells, C, {s commonly calied the core.



At the first level, the CSF's Faps are invaclant under 211 SO
transformations entirely within CA, or entirely within E4p, and occa=
ztonally also under somes, or perhaps all, SO transformations within Fyp.
The best known case where the CSF's are (nvarfant under a1) SO transfor-
mations within Fyp occurs when Fyp consists solely of half-filled shells
with all spins parallel; we express this formaliy by

Fp = H . : 78>

An example of this situsation fs provided by the 4:3d’.'5 description of
the ground state of the chromium atom.

Prograssing from the first through the second to the third level,
wa note that all C5F's, and consequently all TSF's and the MCSCF energy,
will be i{nvarfant under all SO transformaiions entirely within £ or
entirely within E, and occasionally alsc under sone 50 transformations
withtin F. An obvious example of the latter {s the half-shell medel. In
this model all participating CSF's have the samg sct of half-fiiled
shells with parallel spins, that is, €q.(70) holds for ali AP. <Cilearly
H i3 then a subset of F; we write

FuHaoF ' (71

F’ consists of thoss shalls which are fractional st the third
1, but closed or empty at the first level in the individual TSF's.
So far we hsve described invariance of the MCSCF process due to in-
variance of the individual CSF's under SO transformatfons. Since the
TSF's e constructed from CSF's by a linear expansion at yet to be op-
timized, the MCSCF process will also exhibit invariance vhen an SQ
transformation leaves the linear maniiold of CLf's, rathor thun the in-
F'y, invariant; we say that such an SO transiormation jinduces
a 1inear transformation of the CS5F's among themselves. {n geners] of
course CSf transformations induced by 30 transfermziions do nol have
this speciz) property.

The most sxtreme case of this typc of i{nvariance occurs when we let
the entire $0 product space, or at least its maximal subspaces of the
required symmetry species, participate in the MCSCF process. In this
case all orthonormal sets of S0's which satisfy ths synmciry require-
ments are equivalent; the problem of SO optimization s trivially solved
by retaining whatever SO0's we have In hand, and the MCSCF solution s
obtained by carrying out a stralghtforward configuration interaction
{C1} calculation. Clearly, since SO optimization no longer plays any
role whatsosvar, this MCSCF model s somewhat of a pervarsion of the
MCSCF concept. In sddition to this, for all but very small systems with
only a handful of electrons, the model is highly impraciical due to an
unmanageably large number of CSF's.

A somewhat more practical case of this type of finvarianca occurs In
the fxgggigggllﬁ urated MCSCF mode! (Rucdenberg and Sundberg, 1976%
Roos, Taylor an fegbahn, 1984): given an assignnent of S0's for the
cors { and the empty set E, we use the 50's of the fractional set F to
construct all possible CSF's of the required symmetry species. In this
mode] the MCSCF process is invariant under al]l SO transiormations within
F, as wa'l as under those within € or within . Vhile the mode! (s at
first sight attracti{ve bscause of {ts conceptual simplicity., 1t alse
suffars from too many CSF's unless one uses only & handvul! of fractional
shells. Note that for (=E=0, where 0 is the aull sct, wo obtain the
complete SO product space model as & limiting case.

At the other end of the spectrum is the even-replacemcnt MCSCF
model. In this mode), the CSF's of a given spécles and b pecies. say
;‘p“ for a1l P, are built from an even-replaceucni set oi ¢0's; such a
sut in turn i3 ¢ acterized by the Fact that sny two SU's arc related
by sn ® eplacemeant of S0's. Note that we do no. demand that the
aven-replacement ruls holds between $SB's used ror tie construction of
CSF's of different species or subspecles.

The even-replacement MCSCF model has the following simplifying pro-
1) there are no jnvariances under S0 transformations other than
1stng from transformations within € or E, or within H if applit-
cably) 2) the 50's are always natural spin-orbitals: 3) compared to more
general MCSCF models, the number of non-~vanishing ~cliclron matrix
elements i3 drastically reduced. Thes=2 inhcrent siupliTiciiions render
this mode) much mora economical than others: in Taci calculziions Ly
this mode! are comparable in size and complexicy to ordinry £Ci
calculations.

porid
thoy
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The ratfonale for the even-replacement MCSCF model follows from two
important obsarvations: 1)} the construction of CSF's from SD's always
follows the even-repl ment rule; 2} for a two-electron system, an
exsct wave function {s always expressible in terms of an (infinite)
aven-replacemant set of SD's. The first observziion is of course =z
necessary prerequisite for the validity of the model., The second ob-
servation, combined with our hope and/or belief thal eleriron correla=~
tion is sssentially a sum of pair interactions, sucaests that the even-
replacement MCSCF model is capable of producing wave functions of high
quality, at least for s calculation involving only a single spectro-
scopic term. On the surface, this expectation Is contrary to experience
with CT calculations, where single replacements have proved to he fim-~
portant However the findings of Cl calculations are noi neccs:=arily
transferable to MCSCF calculations, in which ihe 50's huve heea careful-
1y optimized. Ve suggest that cslculations in the neai vuture be do-~
signed (n part to tiirow 11ght on this question; the retavive «conouy of
the -;on-roplaco-ont model is too tempting to leave that azvente unex~
plored.

Broadening our horizon, there is a very large variety of inter-
medfate posstbilities between tha even-replacancat and ivha fractionally
saturated MCSCF models, A satisfactory thoorecicul undes itanding und
appropriate classification of tha possible modals does noi exist av this
time. From a practical point of view, such an understanding would un-
doubtedly be very helpful {n d loping e7fectivec stratecies for the
selaction of CSF's in a wide va ty of physical problems. Conversely,
we can expact that the experience which is now accumulating from practi-
cal caleulations will help to despen our understanding of MCSCF muodels.

In analogy to invarisnce under SO transformations, the varfous
MCSCF models can be further distinguished according to invariance under
TSF transformaticns. Ffor this purpose we divide the TSF's {nto two
sets: the gccupied termg which are prasent in the energy expression, and
the unoccupied terms which are absent. In practice it (s simpler to say
that the occupied and unoccupied terms are both present in the energy
expression, with non-vanishing und vanisiiing weights, respective’y. It
will be shown later on, In connection with the dctarmination of ecsen-
tiai non-redundant variables, that the MC5CF process (s invariant under
all {(permissible} transformations within TSF subsels oF the sane weight,
and barring a nuwerical accident, under no other TS| Lransiormations.

V1. TRANSFORMATIONS OF ONE-ELECTRON AND N-ELECTRON WAVE FUNCTIONS

As discussed before, our MCSCF strategy calls for improved wave
functions in tarms of reference $0's ¥ u(d) and refcrence TSF's ¥4r4.
We need to define transformation operators which are specifically tafl-
ored to the index structures and arguments of the SO's and TSF's. Ve
must furthermors define additions) operators by surming over subspecies
and/or electrons, and discover useful properties of, and relations be-
twaen those various operators.

Analogous to the general replacement operator defined by Eq.{B), we
now defins the most elementary one-electron operator, the 80 raplacement

opaecator, by
.r“.‘m/-',(g) - |¢F”(an(¢h.‘mn ' (72)
its Hermitian conjugate is given by

»
TR fujpacatar . (73)
When forming the product of two such operators we must distinguish be-
wean the cases of the same or different arquments. For the same argu-
meni we get, analogous to Eq.(1F)

9’,,-,,),,[.(4)?,,;,),,;«::) = &“"'i’“'a"l'f‘/ﬁ(“ . (74)

For different arguments no simflar formula applies. However in general,
for either the same or different arguments, we have the very useiul
commutation ralation

9N
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- d‘,,t&,‘-,m”?,"m”,(m - 3..4,,,.”9,‘-“"”(“1 . 1153
A gne-elgctron ghell replacemant oparator is defined by
$gtar - L fimijat®? s t76)
its properties follow easily from Eqs.(72-75), namely
ﬂ,,-ma = P pta) t77)
.?;,-J-(a)’,,“(c) - J‘F&[’“j(a) . (78)

'%g(ﬂh ’,[l b} = S.‘S;Pré‘“!’,‘j(a) - s‘j?:,-l (a)? .7

Summing over slectroi arguments, we define now also the N-electron sheil
replacement opaerator

) "“'/ - i‘gf/—(n) =L, asala) (ag)

its properties follow from Eqs.(77,79,80), namely
’:"l' =Pare (851
B8 Suke? = J‘,,,(J‘,-,?,;}- - J‘/-V,;p . (823

When applying the vartation principle, the shell replacement opora-
tor® parmit us to perform the SO variations in the most lucid manner.
In fact, tha onu-elactron operators (761 are the basis operators neaded
to describe the transformetions of the individual SO's, while the
N-alectron operators (84) play an analogous rote for the Lransformations
of the TSF's which are induced by the SO transformations.

Ue define the ona-electron anti-Hermitian operator

Xta) = Zn’;”’..‘j(“’xzj.' . (83}

A naw set of SO's 13 now obtained from the reference $O°'s by the unitary
transformation

' X(a}
s = Utaigyyta) =& gyrqtar [§-7 3]

which can also be stated as 3 matrix transformation of the reference
SU's, numely

Froald) = Zji,j,,(a)l./,j,- - jp,l-_((a)(f,x)y; . (84"

Ve note that the matrices U/ and X refer to shalls, and that they are
blocked by symmatry; this is prectsely what (s neaded for a permissible
transformation which preserves the symmetry propertias of tha S0's.

From the one-electro ti-Hermitian sparators (63) w& now con-
struct a corresponding N ectron operator by means of

X X Xta) 'I’Q'Z‘UX‘/"' . (85)

Because of the commutation relations
IX(2) Xb)D = O f

(861}
Iutar Uthry =0 .
we can now define an N-electron unitary operator & by means of
Xa) X(a) X
© - Tutey = Me -er“ - . (871

Let new ¥ dbe any function in SO product space defined in terms of the
reference SO's ga;qid}. If we subject a1l SO's simultaneously to the
transformation (B4}, the resulting transformation in SO product spacs
given by
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?'-ui-cz‘? 3 (88}

wa call {B8) the induced TSF transformation.

It s remarkable that the anti-Hermitian operators which effect the
one-electron and induced N-electron transformations, X{a) and X, are so
simply related: they have the same matrix elements X;.: with respect to
their natural basts operators, f./ (a) and ’;qj. rosp‘ctlvely. Thers
is no corresponding simple relation between Ula) and ¥. This under-
scores the suparfority of the anti-Hermitian operators over the unitary
oparators in this context.

We can apply the transformatfon (88) to our set of CSF's #,,,. or
equivalently to the TSF's ¥, , to yleld

x
Eira = Uipg mCFam . } (88

Bura *USga €% -

In general the set of chosen CSF's Papa does not span the full SO pro-
duct. space. It is too much to axpect that under the transformation {89}
the CSF's (or TSF's) would transform samong themselves: the CSF (or TSF)
manifold is in general not iInvarfant under an SO0-inducad transformztion.
Howaver 1t tis possible that such invariancs occurs for gomg of the oper-
ators U; fn this case the CSFf and TSF transformations, and their inter-
connection, are given by

]
rea = upa « Zo$gatage
Eiza = ¥y » LyFmbasr g9*)
(]

Urrz = ZpoCazp YUmbaas -
The operators Y for which the CSF manifold is invariant will later prove
ta be of particular signiftcance in connection with the elimination of
non-assantial variabies.

In addition to the SD-induced transformation, the TSF's are also

transformed by varying the expansions in terms of the CSF's; we call

this the direct ISF transformation., We define, analogous to the shel)
replacement operators, the N-electron term replacemant operator

Quarr = Z1%50 ¢ 1) o
which has the matrix elements

Garz,zee = Yeaal@uur¥zp> = Szirdus (91
furthermore it is easily seen that
”
@ass = Cayr (92)
@azs¥ens = N5 iuOaxsr - (93)
C¢ 70 P = Szt @any - Seran? - (98)
Defining now the N-elactron anti~Hermitian operator
Y = LarOapsarr 195

we obtatn a new set of TSF's from the reference TSF's by the permissible
unitary transformation

’ ¥,
Yira =V = Oy (96)

which can also be stated as u matrix transformation of the reference
TSF's, namely

Y .
Lra = LEnbar - Lhae - 196"



Finnlly, wa must write down, the combined TSF transformation which
results when both the induced and the direct TSF transformation are pcr~
formed. The required formula is

x
Bipg = UV e € cyw‘“ . €97)

We observe that in gensral the operators X and y {or, equivalently, ¥
and ¥) do not commute. Hence we cannot combine the two exponents in
Eq.(97), nor can we change the order of the two exponential operators.
One clue to remember this order correctly is the notion that Y is de-
fined with respect to the reference TSF's, and not with respeit to TSF's
changed by an SO-induced transformation.

VII. WATRIX ELEMENTS OF SYMMETRICAL ONE- AND TVU-ELEFTRDN DPERATORS

Let #(a}! be a one~electron operator which {3 symmetrical with re-
spact to the symmetry group of the system. Analtogous to Eq.(61}, the
matrix elements of F{a} with respect to SO's and basis functions sim-
plify to .

q,.-,(a)lf(an#,,”(an - J,.,,,,,/F,;J . } (ons
Aapu(@)17(@) Yygptar> = J,.,,,Ffa" .

Hiere the Kronecker deltas depend only on symmetry; they are a special
case of what are called symmetry factors. The Fy(; and fi,, do not de-
pend on the subspecies, and are called reduced mat¢ix e\emezts.

Similarly, let g(a.bi=f(b,R), ajs, be a two-electron cperator_which
is symmetrical with respect to the symmetry group of the system. The
most ganeral treatment for the matrix elements of Gla,d) is considerably
more complicated than for the one-electron oparators fF{a}; the degrece
of complexity is a function of the structure of the symmetry group. We
now make the simplifying assumption that the group is simply reducible
{Wigner, 194@, 1941). Such a group is characterized by (1! tnverse
elarants are In the same class; and (2} when decomposing the product of
two {rreductible representations into a sum of such representattons, no
represantation In that sum occurs more than onca. These two properties
are sufficient to guarantee the existence of Clebsch-Gordan cuefy -
clents, which Is the main reason for the resulting simpliiications.
As mentioned before, the assumpiion that the group is simply reducibie
covers atoms and the vast majority of molecules,

For simply reducible groups the mairix elements of 5(4.6) with re-
spact to SO's and basis functions simplify to

Py cala) thrigta, b (b1, 40a)>
$acd fy[’ gla, ’,z: ‘,.}/;
- :t“’up’,np’f,: G,h‘,. Fyvllpl, . (99)
< tab
x,’,(n)x,,](bng . ”Zf”(b’tm,lm))
= LaWauppoppSn Gappun,vrps,k o
where now the Wy, vypf,x tre the symmetry factors, while G, - ¢,
and g“‘ rps, :;o {ﬂc'reduced matrix elements. ihe index‘;’,’"a‘l‘f‘leﬁ'
the oupf?ng {n:.x. identtfies the resulting symmetry species arising
from the decomposition of the product of spacies & and m4 (or ¥ and p}.
if the symmetry group is not simply reducible, a gancralization of
Eqs.(99) with 8 slightly more elaborate Index structure applies. Since
Eqs.(99) are most frequently applied to electron-electron interaction,
we shall call the two-electron symmetry f(uctor: eleciron {nteraction
coupling goefficients; they satisfy the symmetry reiutions =

W‘y’ll,piu)’,x = wup,,-,pS,x = w”s,u,.f,. . (108)

Simitarly the two-electron reduced matrix elements satisfy the symmetry
relations



Gaipj,vlpln = Colpt, ipgon } s

Bapug,vrpst T Gurpsdppga -
Using the definition of a Hermitian conjugate operator, £q.(12), we
find for the Hermitian conJugltos of the reduced matrix elements

. « F,
IIJ IJI A
. finy - Fagn (192>
Gh’pj, hpt,w * 5,./1:,,(9‘,: '

ﬂ".;,:lrps,g ']#’;’,,svr,lc H
furthermore, if the oparators #(a) and g(n,b) are Hermitian, that is

F*ay = ftay
(193}
gha ) =gy,
we have for the rlduce§ matrix elements
"J = F"l \ ]
Lipy - fapy ST

GIAF/,J"[ <" 6.\.,‘/,»‘,4 PR

Thpugrrpse = Bapuy, vrpsm -

Ve call attention to the facts that the first two Eqs.(192) are an ob-
vious restatement of Eq.{15) for the case of matrices blocked by sym-
metry, and that in order to astablish the last two Eqs.(182) one needs
to invoke the complex conjugate symuetry of the electron interaction
coupling coefficlents expressed tn Eq.(lAM).

If #(a) and G(e ,b) are the one- and two-eleciron operators of the
Hamiltcnian of the system, the reduced matrix elements FMas, . I‘,'
s -,ulpe_.. Fopmy,vrasa are often referred to as the gne- and twos
ele ﬁ and baslg fynctiong, respectively; and
since the Hamiltonian {s Hermltiln. they obviously satisfy £qs.(1041,
These Intégrals over SD's and basis functions are furtherunore relatc.d by

Fepr =X <

“I ”a“/‘f‘h A% } (105
Caiwjoohptin © ,rs"nf vhrfappg,vrps,npetus] ¢

The calculetion of qu lnd Gacpy,vhp8,x by means of Eqs.(185) s often

referres to as the 1_;&;_;__;&_25.

Within our MCS mcde s we need to evaluate one~ and two-electron
matrix elements only between wave fTunctions g{@&) vhich are confined, for
each argument a, to the space spanned by the 50°'s ¢; a}, or equivi-
tently by the basis functions XasxliQ). Hence wve can use ithc machinery
of projected operators developed ezrilier, s.436-2u), Tor the evalu-

ation of such matrix elements. Th> rele projcciors in this case are
the §0 projectors for each argument, n v .
M) =2y Hoi0 e Ly Rreaidd) Y34

so that
Siargiar = gta) . (187}

The projected one~ and two-electron operators are now defined by
Fa) = PlaifaiPar
(148)
gxa.h = ftarfibig@ 610h 1Py .

We now make the {mportant observation that any function ¥ in the SO
t.ooduct space (s, as far as the argument @ is concerned. of the type
f(a)t therefore
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Another {important observation is that Pla! cosmutes with any operator
which {s Interna! to the $0 product space. In particular, #(a) commutes
with any repliscement operator defined 30  far. or any slgebralc con-
struct thereof; it sufficus to state

£9) . Paiu,pjpth)m =0, }
1) Qa0 .

For the @ I]Hltiﬂ’rj of phystcel properties from our N-electron wave
functions we need the $otal one- and two-electron operators

{199)

s =X Sar }
X (11
& = Hlanaps§tad) = Zu,orpgla sy .
Ve define the corrasponding total proje ted one- and two-slectren
r r
73 }
2 ) {111}
§ = 1Taaaifiad) = Lapaypgtaby .

Note that all componsnts of and Aars fnternal to ths SO product
space, albait by force of different projectors. Consequently, fol'iowing
£q.(48), If 9 and € are any wave functions within, and # and B are any
operators interna! to the SO product space, then

HAFBIE> = Bufsib }
A
#1450 1¥)> « (2L S
Eqs.(112) guarsntee that 7 and ,‘9\ are prnjected operators associated with
and &, respectively. The actuzl projectors which accomplish this

correspondence are of no particular fnterest Tor our present purposcs,

and we chose to omit them.
The projected operators can now be expre=sed In terms of reducod
matrix emants and replacement operators., Aitsr somc alvelwa wve fin

a - Lyhyhye } (113
- Ii:)iﬂ'x'vl’l?ls‘u/.v\l,l,prjli,’lv‘,: .
where we have introduced the two-shell :gé\;;g-gn; gperator
’:.',.j,vl,l,r' Zas, atbLupyi¥man, pbiy, «Pacu, uip (00 20y ptd by - (114)

(112)

This operator satisfies the symmatry conditions

’;,‘u,,lvl,x - ’u,.j,vl,l,q - "‘P‘.'ifj;" . (115}
and the commutation retation
"n‘pj,v"l'k"f-’
= S ,pn ?l-;q',i‘pl,l - :pv',n- ?h',n,v[fl. x
(116}

M ’v‘,n.’l;,;,.,.ﬂ,r - f‘,'-'pn\iﬂj»vfpﬂ:* .
N Ps
Using Eqs.(111,113) we can now sxpress the matrix elements of § and
Fitween &ny two functions {n SO product space in terms of the matrix
Tements of shell replacement operators_and rcduced matrix elements. In
particular, for the matrix elements of 1 and ; between CSF's we find

= Zacil iiFare .
N PAENT P 2 %arg, 3 aji }(“7)
Bipa'§1%a0n> = Ixdacni IokptMare,dips ), vhpt,n Gujri, ptok,x



whers wa have introduced the stryctyrg congtgnts
warnsij * Ly }am
LITCRY P R L Y NY YL TR
These structure constants express how tha CSF's are constructed from the
SO‘s, and are hence constant in a gfven calculation. They satisfy the
symmetry conditions
= Mg, 2ij " Taep N } (1193
Raer,uisiptud, x = P ips, vhplx  RArehpt, ) ipy x
Putting #=& in Eqs.{118), the strycture constants reduce t> the
usual expresssions known from single configurstion SCF thcory, namely
Rarship = Syimap i o
Rarrdivh,pipt, e = 830, vk Opi, 0l 420, pijn
- ‘l":fl ‘}7‘1 7 t",“‘n/‘j" .

where the [LITRTR 1] the shell occupation numbers tntroduced before, fqs.
{57°), while € p 30,07, and X, , 3, u/j,a are the faniliar Coulomb inter-
action ggp€f(c1|h%- [ LY] exchange® n}szggg|on goefficionts, respectively.
Tﬁny :ltil?y the symmatry conditions

1128)

YRR TR DR T R LO } Gzt
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Hoat of the Coulomb and exchange interaction coefficients can be
further reduced to simpler quantities by

I RTNTR "*-"A’.l-"‘ﬁr,ﬁj ' } { i } a122)
LTRTNY R LIET WL ST Y M= Gl

35 that the only Coulomb and exchange interaction coefficients which
nevd to be established separately are those with dicFp» and #eFp. 1In
Eqs.(122), i3 the coupling index {dentifying the identica) repre-
sentytion of the symmetry group., and Xaux is a set of constants depend-
ing on the symmetry group only. s

The svaluation of the structure constants for PG, as well as the
fractionsl-~fractional interaction constants for P=Q, is a compltcated
subject. Powerful tachniques have been developed by Racah to solve this
problam for atoms {(Racah, 1942, 1943); the specifics of these technigues
are intfmately connected with the structure and properties of the appli-
cable symmetry group. To solve this problem (n gene¢ral for our present
MCSCF forma)lism, we need the analugue of Racah’s algebra for arbitrary
simply reducible groups. Such a3 general solution is not yet avarlable,
so that practical MCSCF calculations nece-sitate at present the piece-
meal calculation of the required structure constanls by spuciiic rather
than general methods.

The burden of evaluating the structure constants is considerably
less for the sven-replacement mode) than for other HCSCI moduls. It (s
sasily seen that in the even-replacemant model the onc-élcctron con-
stants batween any two CSF's must vanish:

Marpi; v 0 o P €123)
for the gensral two-electron constants with P4® the simplification I3
relatively speaking more considerable. Hamely for given APQ, that is,
for a particular pafr of CSF's, there are at most two non-vanishing con-
stants for sach value of the coupling index k. As a ro:ult, calcula-
tions with ihe sven-replacement model are significautly mare econcomical
than with other MCSCF models.

It s noteworthy that in formulations based on second quantization
it |9 unnatural and awkward to formulate the equivalent oy our tuo-shell
replacement operator (114). This s 5o Because tn the devinivion (114}

2



the two electrons must be parately fdentified: iIn seccnd qQuantization
it is not possible to k rack of individual electrons. Consequently
a3 complete symwetry raduction has not baen schieved to date in any SCF
or MCSCF theory based on second quantization.

VIIE. THE VARATIONAL PROCESS IN TEI"! OF
ESSENTIAL HOW-REDUMDANT VARIABLE

The Hamlltontan of our system, snd its projected cquivtl'ﬂt, are

given by
X-2§ - } t124)

8-7.¢ .

where J, i. i:lﬁ are the Hermitian total one- and two-alectron operators
=3 per EqB.(1185111), Our multi-state varfational snergy {5 afven by

£ < ZprBar Pura®ilura> = IachWpr pralg > o 125)
whers Dy (3 the dogres of degensracy of specias- A, and the weights are

constratned by
War=¥z3re } t126)
Taryipr =1 -

Note that in eral the energy sum contsins occupled terms with [,

and unoccupi terms with =5,
It Is useful to tntroduce the (Hermitian} weight operator & defined
by

Wel @y - 127

Obviocusly W {s internal to <ha SO product space: furthermors Wis
diagonal with respect to the reference TSF's Wazy. In the spirit of
LtSwdin‘s trace algebra (L3wdin, 1977) we coa now expixsc the MCSCF
variational energy In the mosi compact vorm, Ranely

& = Tracei) . (128)

It is to be noted that during the var.ltlcnﬂ pro:oss‘ and ’nro fixed
i h

L.

ur variational pracess. L st o -
are no auxtliary conditions for, or constra|nts on. “these vari-

A stngle variable 13 non-essential if it occurs in our energy
expressicn with vanishing coefficients. Dur sei of varialles is
essential 1f it, or any linear trancioveaion Lhervel, cousuifs no non-
nassential varfables.

We subject the TSF's In the cneray expression {125} io the vari-
atfon {97}, and transfer the tran::oru.tion operutor: Trow the wave
functions to the Hamiltonian, thu. obi i..cq Tor tha nev caercy

€ eI B, e TRV ,,, t129)

This can be rewritten as a trace, in which we carry out one cyclical
move. obtaining

&' = tencaidVore ¥ Weh, | am
Vo now u%e For the exparentis) transfornations of W and the welt-knoun
€' = Traceltw - EV.y3 + VYYD - ..
@ e gRAN . HEXIAD e 0 . (13n)
Inserting in EqQ.(131) the expansions for X and Y. Eqs.(85,95), we

obtain for £ a Taylor expansion in terms of the matFix nlaments of the
transformations, namely



R T LY H Zyerearsann
* $haguat by, pat Yagi Kt
. fa-jqu‘u/‘,qu,i/': Yor

¢ st zed Yok ¢ o0 (132}

where £ i3 given by Eq.(128), and
€aij " Tra:n('l?.?;yl) . 1133)
€xr7 = ~Trace(BVW, @urrBd (130
€rj bt ® ;'Tr-:-[lﬁlli.?;;jdl.',.ul ¢ R g1 501, (135
€ag,an0 " -Tracel W BN B D) €i36)

€arzx: = iTraceU(BEW QursY. ¥ryd ¢ EEW, @ 0. Y3900 . (137)

Note that the definitions (135,137) have been chosen 3o as to gusrantee

Gyl ” Cukldy - } <138
€A1,z =tz AL -

Since the symmetry group of our system (s sssumed to be simply re-
ductible, wa can choose our wave function representations so that atl
relevant matrices are real: furthermore Hermitian, anti-Hermittan and
unitary trices become symmetric, skew-symmetric and orthogonal, re-
spectively. For more complicated structures, llke the two-elactron re-
duced matrix elements, similar statements are applicable,

Invoking the real skew-symmetry of the transformation matrices,
namely

Kagp =Xy = -Hye } (1391
Yaer = Yazr = ~asr

we note that the energy axpression (132) obviously contains redundant
varlables. We no further that the shiew-symmetry is the gnly source of
redundancy, since there are no other condiifons which X;Q; and 73,, have
to satisfy to be valid variational variables. The redundancy s eacily
removed by col ing the terms in (132) whict contain equal and op-
Fosite matrix nts, and retatning as explicit varlalties the lowver
left triangular matrix elements X, and Yary. Ve designate the sets of
compound indices of these variables’ by 8 (for shcll rotations) and T
{for term rotations}, so that

W ;S L iy,
J 4 (148)
Ay =T |, I>»1 .

It 1s noteworthy that the formal and explicit remcval of redundancy
from the varlational parameter set is a direct cansequence of having
used the anti-Hermitian operators X and rather than their unitary
equivalents ¥ and V. This underscores once more the superiority of the
anti-Hermitian operators over the unitary operators.

It wil) be shown In the next section that the sets of non-redundant
variables X,.; and Yayy can be partitioned into subsets of essentfal and
entlaf’var1|b1os. Denoting the zets of Indices of the essenttal
es by 5' and T,, and of the non-essential varifables by §, and Ty,

S« 5,4+ 5 .
e " } (141)

TeTg+Ta
In our energy formulas the sums over varimtional variables collapse

in fact 1nto sums over essential variables only: we shall use for such
sums the simpl(fied notation



[ S
II“J' djeS,e - } (142)
Tars = EapzeT, -
In terms of the tial non-redund. variables, the new energy
can now be written in the form

£ wg- Z'.,J‘,.'/'X"- - IIIHJE“JYAr;
il'a.“z,'.u‘ag'.,.ani-xplf

f;:'ﬁu‘f‘lg‘,nl"aqin

AT IO R TA/Y 12T TR S (143

+

*

+

where
EIV "Ji/ 7Y (124)
Eyry =y - basr . (145)
Eaijpubl = aijomht = aijy b = Capiukl * 6y uth 0 (106)
£a,aL7 = €a5,4L1 < Gy aar - a50A8T 00 ATL s C1aT)

Eprs,zes = EapsEae T CAINEUX T BAILEXe * CaynEik - (14D)
while of cour also
£3;; - 840350
Av.ﬁ‘f 240,205 } (149}
&arz,zee = Ezxe ALy -

Truncating the energy expression (143) by dropping all terms of
third and higher order, the variational problem {s now properily solved
when X,.. and YAIJ satiafy

4

z;lllsh'j.ﬂ”xﬁll * IIEILE)g',th Yeue ® E)ij f } c158)
e St s Xkt + Lxabara oY = Egr;

Solving Eqs.{156#) for X,.; and 7){, is a standard problem in linear
algebra. The concatenated s of matrix elements (x‘if'y"J) is the
vector of independent variables; £q.(143) defines the “anergy hypersur-
face as a function of these variables: ('Ei-',('"‘ax" constitutes the
vactor of first dertvstives of the energy, a'iso called the gradient; and
(Eh".-‘l'El-".AI'J"AfI.J'A‘L) constitutes the (symmetrical) matrix of
secohd derivatives, aiso catled the Hessian. The set of equations {150}
has a unfque solution if and only if the Hessian 135 aon-singular. Since
the vector (x;&j.rg, } contains only essential variables, the Hessfan
betng singular siqra{s a pathological case. The latter can occur for a
variety of reasons, prominent among which are a poor choice o SO's.
CSF's, or TSF expansion coefficients, We shall assume from hera on that
w ® denling with 8 normal case, when the Hessian is non-singular. In
order to solve Eqs.(158) without unnecessary toss of accuracy. we recom-
wend the mathod known as "Gaussian elimination with pivoting*.

The solution (X3, Vars) of E;s.lls.\)) now, def ines the appropriate
unitery transformatior matrices (e¥),.; and (€¥), 2, for the expunsion
coefficiants. Since the entire process is only accurate through quad-
ratic terms \n X, and a2y dnyway, it suffices to truncate these
coafficient transfbrmations accordingly., namely

el = T;¢cy A8 v Xypi o+ 21 xr X32:) .

7,» 4 Capit Y\I JI:' Jlr)ls . (ish
Carr * LrCirrtSr * Nar * 3eagntaxp?

Note that Eqs.(151) contains full sums over al1 possible index values:

hence the set of matrix elements X.ﬂ£.7ﬁx, to be used here (s obtaind

by "padding out® the essentlal non-rkdundant sot, inseriing cppe-ite
values or zeros for the missing ones as appropriate.
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The truncatfon leaves a s)light discrepancy in the orthonormality of
the new coefficients ¢i,; and Cipr. This will be remedied automati=
cally, howaver, If these coefficients are ever used for another cycle,
since & rigorous prior orthonormalization of both sets of coefficients
is a prerequisite for a valid calculation: we recommend the well-known
Schmidt process for this.

Clearly when

Kagj 8 2eS, } (152)
ary=f . areT,

bath transformations (151) reduce to the identity, an¢ the orthonormal
input coefficients c3,; and C pr then constitute the convarged MCSCF
solution. Accordingly we d.f{na the gonvergence mezsure § as the root-
mean square of the matrix alements, nanely

£ = Ny EGH 1,',,,);“,,,* ) t153)

where Nxy is the number of essentlal non-redundant variables X3, %135,
The MCSCF process |Is then considered to have converged when /

bet (154>

where ¢ is the convergence threghold chosen for the particular calcul-
atlon.

Since in the normal case the Hessian is non-singular, convergence
occurs If and only if

Ey-' 8 N Ay e85 .
w 4 ¢ } (1551

Ky ve Al T, |

The first Eq.(155} is the ganeralized Brillouin theorsm in the context
of our MCSCF model, while the second Eq.{(155}) signals that the confi-
guration interaction secular squation system 1s satisfied by the oc-
cuplied terms.

IX. DETERMINATION OF THE ESSENTIAL NON-REDUNDANT VARIABLES

The transformations to which the N-electron wave functions are sub-
Jected in any varlational MCSCF process constitute a Lie group. which we
accordingly cal)l the varistional group. This group 1s separate and dis-
tinct from the symmetry groyp of the system, which consists of all oper-
ators which commute with the Hamiltontan. The symmetry group of course
guarantees symmetry characteristics -- species and subspecies -~ for the
wave functions which satisfy the Schrddinger equation. In our MCSCF
scheme wa take advantage of this by restricting the variational wave
functions accordingly, which in turn shrinks the vartational group from
what it would be without such an constraint. We thus obtain the per-
missible variational group, consisting of transformations which preserve
symmetry species and subspecies.

The permissibls variational group is actually the product of two
groups. The 50 induced transformations I of Eq.(8B) form a group U:
pimilarly the direct TSf transformations ¥ of Eq.{96) form a group V.
The products UV of Eq.(97) now farm the permissible vartational group,
which we shall accordingly designate by UV. Obviously Xa,; . Af€5 and
Yary + AIJET are the group parameters of U and V, respectively: together
X3z +Yary are the group parameters of UV. Corresponding to ezch of
thi‘e parameters we define the eleaentary ratations

EAVIE TR W) .
A A } (156)
Yz - Y227 431~ Curs . AamreT

In view of our earlier discussion of MCSCF models, the MCSCF pro-
cess is in fant if the operator U causes the €5f's to be trencformed
among themselves, namely

m



Ufpy » Za¥oather - i157)
where the Uszs are the matrix elements of the transformation. It is
easily seen that the op tors U which satisfy Eq.(157) again form a
group, which is of co e a subgroup of U; this subgroup consists of
non-essent (al rotati and will therefore be designated by U.. If an
elementary rotation ﬁ;‘- satisfies €q.(l57), the correspanding group
parameter X'\;j is nan-essential: this {s expressed by

Ay =S5, (158)

Uaijdars = Zahoalisy, noe
where the U,,: sme are the matrix elements of the transformation.
An 1npof{:nt special case of Eq.(157) occurs when all CSF's remain
unchanged, namely

U0 =00 - (159)
The operators ¥ which satisfy Eq.{159) again form a group, which is of
course a subgroup of Ly: we shal) designate this subgroup by . The
group parameters of U; will be designated by §;; hence
u,‘ja‘"-i‘,,A .o dje§p . (168)

The condition (164} lasds to a non-essentifal variable because if
the CSF's are invartant, so a the TSF's, and thereforz also the
energy. The cor ponding X‘U can simply be dropped from the algebra,
which is equivalent to putting x,;;-n. For the more general) condition
(158} the srgument {3 somewhat more complicated. In this case the
effect of the induced transformation of the CSF's by Ua;; can alsoc be
obtained by a direct TSF transformatian of the type ¢¥. Y The precise
matching of these two operations leads to exactly one non-essential
linear combination of the applicable X, : and some or all of the ,h:,'s.
It is not necessary, however, to nail doWn this linear combination
explicitlys it suffices to drop the offending x’ﬁi from the algebrs,
leaving the Y‘l,‘s as potentla! essential variasbles {(aome of them may
turn out to be non-essential for other reasons., see below).

We paraphrase our previous conclusions concerning shell structure
and invariance of the MCSCF process as follows. Rotations u,; which
satisfy the condition {158) but not (160} arc always entirely ‘1th1n the
sct of fractional shells F. Rotations Up,; vhich satisiy the conditions
(164) are: 311 such rotations within the re €; all such rotations
within the set of empty shells E; and gccasionally sotz cucl rotations
within the set of fractional shells F. On the otiier hand, rotations
between shells belongtng to any two different catecories out o C.P.E
cannot satisfy the condition (158}, and invarianrs of the e¢nercy under
such s rotation would be an extremely rare numerical accident. Barring
such an exceptional occurence we summarize our findings by

ayjed, of {ucc md 3jeC )

aie B and }.jG E .
AieC and Ae=F
AdieC  and )/= E

A{=F and ljc-c . r tisn

AfJ < 5‘ " Ai=F  and lj:- H

Aic B ang 1/'«::6

At=E and A‘I'G F . )
The conditions (161) Yeave unresolved the ambiguous case and

+ The resolution of this ambiguity depends on the MCSCF model .
For the half-shell model we have odel used
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Aj= O, of Aic=H and A EH
(= H d A eF
Ao L 4 t161)
1yj=S,  af el and  yeH .

NeF ane N =F,
while for the fractionally saturated model
Ay =S, of awe=F ana y=F , t161™)
and for the sven-replacement mode!l
1= 8, af =T and  jeF . (161 3

We call attention to the fact that the variational variables {den-
tified by Si, Smand S are the group parametcrs of tha nestmd groups Ui
U, and U. On the other hand tho essential variables fdentified by 54 in
general do not constitute a set of parametars of any group.

With respect to direct TSF transformations, It {s shown in Appendix
C that the necessary and sufficient condition for a nor-assential ro-
tation ¥ is gtven by

[ 4 I . {162)

The rotations which satisfy Eq.(162) form a group Vm, which (s of course
a subgroup of V. If an elementary rotation ¥4z sattisfies Eq.{162), the
:orre:ponding group parame ~r JAr3 1is non-easential: this {s expressed

y

LWV d= 0 . AlI=T, €163}
which 1s aquivalent to
(Wyr-WizWpps =28, AT, . €164)

Hence a TSF rotatfonal variable is essential {f and only {f the welights
of the two spectroscopic terms connected by the rotation are different,
as sxpressed by

ATS T, if Wr=wiy } ( s
165

ATE T, 1f Wi swr .

}t should be noted !hat tn and T tdentify the group parameters of V; and
Y. while the essential variables fdentified by T; in general do not con-
stitute a2 set of parameters of any group.

X. EVALUATION OF THE REFERENCE ENERGY, GRADIERT ARD RESSIAN

We now turn to the actual evaluation of the reference encrqy.
gradient and Hessian, defined by Eqs.(128,133-137.148~1465. in terms of
welights, structure constiants and reduced miiri:. elewmoents. Oun account of
the technigues used for this evaluavion, the 51w 1up oF quanticIes
fall naturally into three qroupz. depewding on the numb.or o, £0 rotation
subscripts; thus the three qroups consist of (&, Epqzy - ‘dlLEKL ).
faiy, 63,475 ) and Ba, L8, respeclive,

in the first group considerablv econc o 18 achieved by using as
intermadiate quantities the matrix coloenent of the Hai.ltonlan betwveen
TSF's defined by

a - )
Bzt Egpa® > = BT Tracel@, ¥ (166)

these matrix elements are obviocusly rcal symmetrical. namsiy

Hary = Mary = Hagr - (167)
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Tho reduction of £ to the utr!x alements Hpy,; needs no comment.
alogous reduction of &4y a ar3,Ic4 e usc £9.(94) to
the relevant commutators of Il. nmnely

W Tapgd = - -y 1168)
BEW:Qars 3 ¥sned = Sz Wor %3 Gy @re ~Sreansy - (168)

Using thess resuits we find after some algebra
LR P LV <178}

Bypy = 2D\(Wyr ~Wyopdgry s (171)

&ors,ine o SzDalg - o -WhusMar 1 pukaze- Iy taried
S TEL PR PR L LA L T PR N

Expressing now the Hamilitonian matrix elements between TSF’'s tn
terns of atrix slements between CSF'S we obtain

Mgy = ZpghireCaorGer - 1173y

where we have used the fact that the Capr form a ieal orthogonal matrix,
whtie the matrix slemants between CSF's are given by

Ao = Bm@idig> o (174
they are obviously real symmetrical, namely
‘AN = ‘4,. = ‘agp - t17s)

The Hamiltonian matrix alements between CSF's are now readily
evaluated in terms of structure constants and ruduced macioix sienments.
Using Eqs,.(117,119=-121,124,174) we find aficr soue aigebrs

Lppe = #ap + 574w - §5ap (176}
Kave ™ Frra * 1%arq + PPQ@ (177)
where .
/TR YL PRI YT (1781
"Ara ~Eagmuredy e o« Pra 179

(180)
(1a1)
i@ . (182)

Tam znzjcz‘, Car, % A6, M/, & 6].‘11,”,”, M
TR} I" q"d’ 3,,~_'G.‘~ F/‘,‘
Gyog = L L, 2y I-l,f"dn ain, ilpl, e piri, plvl

or the second group we use sinllar procedures. We introduce the
matrix elements of the commutator K\ P, ;3 between TSF's, namely

Higyarr = <ap IR 05 Ny >
= D" ’Tr-c-(!u;lﬂ.’..‘,:l) . 183
which satisfy
g, a1 " Magarr = -Miiar - (184>

Il::';:ducﬂan of "9’ and ‘ly’,lll in terms of these matrix elements now
"'f - zz"D‘lq"ll“j"I, . 185)
Eaifarr” 2Dy thar-Wog WMy a2 #Magiaze) . (186)

The matrix elements of i, "‘V’ betwesn TSF's are now expressed in
terms of the corresponding matrix siements between CSF's, namely
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Hayy, 4z -z,,l,,‘./.",.c,,,c,,,, . (187}

whare

‘h'j,"e = (“,‘lla &q’|‘4“> . (188)
which satisfy

Kiya0e = Kyiarq = ~Kijinar - 1189)

To express the matrix elements {(188) {n terms of structure con-
stants and reduced matrix elements we evaluaty Tirst the comnutator of
the Hamiltontan using Eqs.{(B82,113,116,1241, ohtaining
e, '..-l-l . I‘(’..-"uj - A 'P“‘j )
+ I‘z,glzul,."’u,.l,-l,q‘n Gph'a',’-wl‘ x
~Gaink by, Fukdj pmvb ) (182)

Using now Egs.(117,119-121,124,108,198) wa find after some algebra

4;.};‘” - "I'JM' *Digan - K, Ar (s
‘a.‘j,un' Rg,ara * Gayara « FHE (192)

where
(193)

Faijae " Mnsi- sy
Fa-'j, ara " 'Mpa ik "uj' Y7 277 V2 L (194)
N1y, 4P " LaLuftCap ai, pl,n " Cam, z/,,.‘,.’ﬁmy;.l.n,; . (1951
Kaif, e = Lo 2 %p ac, ke - lnqv,,-l,.)Gz;,l,,lr,- ' (196)
NTRTTRE" zpllep-"‘ue,a.;ut,ulp-,.-“,:.u/; purl, x
-a,‘-,,“,[,-',4,,,0'”‘,/-',.,[1,‘ Y . PYa . (197

The evaluation of £,,, ,uéf cun be accomplished in similar fashion.
S ’;tlng from Eq.(195), one derives a formula for the double commutater
CE¥ P, 3, %48 which is linear in the one- and two-slectron #-oper-
ators,”using again the commutation relations ($2.116). This formuls is
rather long, and since it constitutes an intermediate rescit, we om't
its explicit presentation. Since E.Quﬁlg carries no TSF labetls, wo
have now no particular need for the gexpliciy matrix elements of the
double commutator between TSF's and/or CSF’'s. Hence in this case 1t is
profitable to first carry out the sums over the CSF's and TSF's dircctiy
on the structure constants.

We define weight factors with respact to CSF°'s by

Vara * ErWarCopraar €198}

which of course satisfy

Wase " "ppe " Yaga - (199)

Using these weight factors we can now define the net structure constants

M IAPDA%PP”,'[",' . e
M = Tara,pea i arotand; - zen)
Caimsa " EApDAVALS ARI pn (202)
Xsomie " TAPDAYALP AR ok 12y
2

iy, vhpt,x " ZAra p4aPavara™alaiy, vhplx -
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The final formulas for E’é“‘if are now qlven in terms of these net
Ha

structure constants and reduce
amount of algebra we find

Exijubt = Paijpde * Flgute * 2Ry ake
. J,y’ﬂ” + z:r;,).‘,,“—x,,-ﬁ,.u - zk’,.}-"”
+ G,:].’,‘(( - zag,-/-‘,,” - ZG;’,-/’F” .
where
Fryiukd = J‘,ﬂt(n“-ﬂ,',--n)pl,g)(J'"Fu( -J;-;F,y,)
et (S £ - 8f AL
’;y;,uﬁ = 8t “)t“"z.'-’:-l’ Rrumind?
ST IL Y S Y
= 82t Frakt Fave Mand)
- r{n“'y..";...z'sz...'u...m ]
Flymkt = S mg Bace < Bk ~mye fack - Mk )
Daip pmbl = S L Ly, T4Ca, pema = €3/, v C28 vom,x* C3f, vom i)
R x (‘/l G132, vensiom, &« = 95t G')/‘J‘, Vervew, &)
- (i, v,k = ‘a',',m,x’ Cal,vanx Cat,van,x
X(A;féh')i,v-v-,k' :'iGzJ'Al,m-u.,q”
Tagirkl = Il Coiphr ™ Crimtn = Cofunkya Cpln )
X ‘GaL'JJ‘,ul,.f,x * Gh'lj,p(pl,f’ '
LT 7o J),:zxzv.“z—'\.',n-,- = z’J;ﬂ.,A'- X34 v, 0 X2L, vemx)
x ‘{;’lG acvom, veeabe ~ di€ 61/:-, vk’
- (zh;-h-,c - tlj,v.‘r‘ 21‘, BV ’al'n-,x *
L Ty e Ga v, patn’
Kagy, bt = I Fai e = Fagutie™ Eyph e Baipe,
X Caneptiyn * Crpbutyie’

Gy ule " J,l,.zgzu.,zf.',t;jl‘”J.'y.,ﬁc,’.—ﬁma!’ oppm
+ G).'»n,,arﬁx".n)4 ppu,n )
+ it ('yvm,’urp,x Crmal, eppm, &
¢ G‘yvu,mﬁf e iz, sppm)
- 3}'! Pacum, propx Tvmih, ppm X
* Gaivm, pacp, e Mvmak, capys’
- 3;'("”@'»-‘,:",,: Cromdd, eppm,
* G,y'mu,f"f,l’ Trmat, appn,n’l
G i, ki~ 2, P va-f-"";/‘,‘l, ympw,a G'arlu(lmp ]
*Macpd, Impn, & G'a,",. &, Pmpnx
”')/'ﬂl, Ympn,x ‘lf}ué, Yapu,n
"2k, Ve, x Ga}'f.!, Vg, x !
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Flx elements. After a considerable

(2085)

t2n6)

(287}
(203)

(20}

[§cd Pag 3

{211)

{2123

(213}

(z14}



5;;,‘,,.(! * Za L2y M3y, hpro,c Cacvm, pelom & o
73y, ptpely e s ivm, pop bk
* n)iﬂﬂ, alpux 63/‘!‘#,}' Lpon,x
i v, prepul e Ty v, poph
=My, mlpn,x Caivemmhpest
=y e, paps Casven, pupcl e
= Mavm, pukpn, Gﬁjn-,,u(’.,;

'"h’»’-,/-,:‘,;a'zjhp,,np(';) . {215}

XI. THE GLOBAL MCSCF PROCEDURE

At the beginning of an MCSCF cycle we have in hand, in logical
order:

1} one- and two-electron intsgrals over basis functionsi

2) spproximate expansion coefficients which define reference SG's tn
terms of basis functions;

3) structure constants which describe the construction of CSF's from
S50's;

4) lists of tndex patrs {dentifying the essential rotations or the 50°'s
and TSF's;

5) approximate expansion coefficients which defina reference TSF's in
terms of CSF's;

6) the waights with which the TSF's enter the variational energy ex-
pression.

The integrals over basfs functions, the structure constants, the
index l'ists and the watghts remain constant throughout the entire MCSCF
procedure, At the end of each MCSCF cycle we will have in hand improved
expansion coafficients, both for the S0's and TSF's, together with the
convergence measure &, to assess the quality of the new coefficients.
When §C¢, whare ¢ ts the convergence threshold chosen for the particular
calculation, wa say that the converged MCSCF solution has been obtained.

The MCSCF cycle is conveniently divided Into the following steps:
orthonormalization of the tnput expansion coefficients Cy,; and Capr.
which define the reference SO's and TSF's, respectively:

2) calculation of the integrals over sn;‘s. F.? and G;;,.J.u('l,.—. from
the integrals over basis functions, fa arfd 92 ye + respec-
by " J2ppy vrps e

3} calculation gf the r.fzyonco .n.;gy £ and the energy derivetives

i K ' . rrn g 3 ] .

4) dot‘rnvfwii!on’d"{hi l!!‘.‘“fl] rota LR matrices X;.-J'-M'Jﬁs .

423 :A7€Te, and the MCSCF convergence measure &; )
Sa) if £<¢, terminate the calculation, accepting the orthonormalized
input coefficients €,,; and Copr as the converged MCSCF solutiomg
5b} (f S)!. prepare for another MCSCF cycie, obtaining nex coefficients
Capir “{J by applying the unitary transformations (e );4;. (¢ u,,
to the 01d coefficients Capcs Chppre

The MCSCF process as described fs the multi-dimens{onal gensral-
ization of the Newton-Raphson process, and {t is therefore quadratically
convergent. This means that If we use input coefiicienls which are in
error by €. after one MCSCF cycle the new coefficlents are in error by
£%. Hence starting with an error of 18-}, we obtain an accuracy of
18°%, 18°Y, 18°8%,,.. after one, two, three,... {tecrations. And since
this behavior oniy depends on the quadratic approximatlon of our energy
surface, maxima, minima or saddle points are attainable with squal
facility.

QOccasiona)ly MCSCF procedures involving cubic as well as quadratic
terms in the vartational variables have been considered. In our opinton
this is not a particularly frultful proposition for an MCSCF scheme
Taying claim to any sort of generality.

1t should be emphasized that when choosing an MCS5CF mode! one has
to ferret out the non-assenttal variables X,.- and Yjry before pro-
ceeding with the numerical calculation. If { non-essent{a) variable s
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left ir inadvertently, the Hessian will be singular, and we e dealing
with a pathological case. Other patholozical sitvaticns, for instance
when the Hesstan becomes near-singular, invariably arc cauted by a poor
choice of parameters. Whatever the reason may be far 3 Hescian which ts
singular or near-singular, the remedy ror such a cas is Lo rethink the
problem and set It up properly, rather than to attimpt solving an 111~
behaved set of equations.

It should also be noted that it fs not at all necessary that the
Hessian be positive definite in order to guarantee a well-behaved and
stable MCSCF proce Clearly, the MCSCF process Is stable whenaver the
eigenvalucs of the Hesstan, positive or negative, do not vanish (within
& reasonable threshold, of coursel.

Finally we 1tke to emphasize that the procedures we have laid out
permit the construction of a general MCSCF program which Is equally
applicable to atoms as well as molecules, while al the same tim~ reals
tzing the maximum possible benefits from the explotlation of syum-iry.
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APPENDIX A
first we prove that if X is an anti-Hermitian operator, then
U~ ‘Z (AD)

Is unitary. Obviously X sattafies

A% S
-0 . } e
Using now Eqs.{Al,A2} we find
Wy - XX L X Loy a3

that is, ¥ 1s indeed unitary.

Next we must prova that, If Uis unitary operator, we can find
an anti-Hermsitian operator X so that Eq.{Al) 1s valiid. VWe expand ¥ (n
the operator base 'y according to

LRI LT (a4)

Using now matrix notation. the matrix Y can be diagonalized by another
unitary matrix V. Since all eigenvaiuves of L/ have unit modulus, this
diagonalization can be written in the form

vy - o F (A5)

where the matrix (F is rea) diagonal, namely
é‘l A } (a6)

g9


http://it.ua
http://Eqs.lAl.A2

we can further make the angles ¢,; unique by choosing
£ g2
From Eqs.{A5-A7) follows
us=e "
whare
X = (VYT

1t (s easily saen that A is ant{-Hermitian,
tated to & by Eq.{Al) is now given by

25X -

APPENDIX B

Starting with tha vartiation of the energy,
some algebra
3 -2 uym‘.y + £ Rt Xy

° £(4,~~ - t‘.u )lm(X/")] + O X,

injiwy -

where

Ry = piky>

(A7)

(AB}

{A9)

The operator X which is re-

(A1)

Eq.{32), we find after

U N {B1}

{82)

Stince Re(X,} und Im(x,l) are independent, and since by assumption w; f

the energy is stationary If and only if

=5 . iy .0
=8 L iy . J

which is equivalent to
hij e cypkiy> =@ i)

APPENDIX C

(83}

(B4)

From €9s.{138}, which expresses the energy fn terms of the oper-

ators describing the vartation, it
and ¥, or equivalently of %W and V. Eq.(162),
that the MCSCF process

a11so a necessary condition can be seen as follows.

is invariant for such a vartation.

is clear that the commutation of
1s a sufficient condition

That it 1s

Upon application of a general direct TSF transformation the varia-

tion of the energy i3 given by
$8 = - 2%, War - Wir VagrHagr -

1f the MCSCF process is

. {c1)

fnvariant under such a direct TSF transforma-

tion, the corresponding non-essential parameters are designated by T,

so that

LarreTyWar -Waz ez Hasr = 8 .

tc2y

We nci observe that invarfance under a direct TSF transformation
implics that Eq.(C2) must hold regardless of what we have chosen our

S0'< to be,
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provided of course that they form a proper orthonormal
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Thua, except for a rare numerica! accident, £g.{C2) must hold for .
arbitrary chotces of the matrix elements h&l,. At:=1;. Hence the varia-
tional parameters must satisfy

War ~Wyg ) Vypp =2 o AlTeT, tea
which is easily seen to be equivalent to

vyl =0
el } (c4)
Y - Iarrat,Yarr' @axy - @azr? -
which, in turn, {s aquivalent to Eq.(162).

REFERENCES

Banerjee, A., and F., Grein, 1976, Int. J. Quantum Chem. 18, 123.

Banerjee, A., and F. Grein, 1977, J. Chem. Phys. 66, 1854.

Chang, T. C., and W. H. E. Schwartz, 1977, Theor. Chim. Acta 44, 45,

Clementi, E., and A. Veillard, 1966, J. Chem. Phys. 44, 3058,

Dalgaard, E., 1979, Chem. Phys. Lett. 65, 559.

Dalgaard, E., and P. Jgrgensen, i978, J. Chenm. Phys. 69, 3831,

Das, G., 1973, J. Cham. Phys. 5B, 5184.

Das, G., Y. Janis, and A. C. Wahl, 1974, J. Chem. Phys. 61, 1274.

Das, G., and A. C. Vahl, 1966, J. Chem. Phys. 44, 76.

Das, G., And A. C. Wahl, 1972, J. Chem. Phys. 56, 1769.

betrich, J., and A. C. Wah!, }980, MCHF Yorkshop Report, National Re-
source for Computation in Chemistry. Lauvraence berkeley Laboratory.

Docken, K. K., and J. Hinze, 1972, J. Chem. Phys. 57, 4928,

Froese Fischer., C., 1977, The Hartrce-fock Mothod for Aters -- A Numeri-
cal Approach (Wiley, New York).

Grein, f.. and A. Banerjee. 1975, Int. J. Ouantum Chem. S9. 147,

Grein, f., and T. C. Chang, 1971, Chem. Phys. Lett. 12, 43.

Golebiewsk?, A.,, J. Hinze, and E. Yurtsever, 1979, J. Chen. Phys. 70,

Hartrea, 0., R., 1957, The Calculation of Atomic Structures {(Wiley. New
York). .

Hinze, J., 1973, J. Chem. Phys. 59, G6424.

Hinze, J., and C. C. J. Roothaan, 1967, Pregr. Theor. Phys. Suppl. 48,
37.

Kendrick, J., and I, H. Hillier, 1976, Chem., Phys. Lott. 41, 283.

Kuprievich, V., A,, and 0. V. Schramle, 1975, Int. J. Quanium Chem. 9,
1849.

tengsfield, B, W., 111, 1988, J. Chem. Phys. 73, 382.

Levy, 8., 1969, Chem Phys, Lett, 4, 17,

Levy, B., 1979, Int. J. Quantum Chem. 6, 297.

Levy, B., 1973, Chem. Phys. Lett. 18, 59.

fevy, B., and G. Barthter, 1968, lnt. J. Cuantum Chem. 2, 307: errata
ibid. 3, 247 (1969).

L8wdin, P.-0., 1977, Int. J. Quantum Chem. 12, Suppl. 1, 197.

Folazzo., 8., 1975, Theor. Chim. Acta 3. 211.

Racah, G., 1942, Phys. Rev. 62, 430.

Rucah, G., 1943, Phys. Rev. 63, 367.

Roos, B} O.. P. R. Yaylor, and P. £E. M. Siegbahn, 1988, Chem. Phys. 48,

Rooth » €. €. J., 1951, Revs. Mod. Phys. 23, G9.

Root n, C. €. J., 1968, Revs, Mad, Phys. 3¢, 178,

Roothaan, €. C. J., and P. S. Bagus, 19é?, in Methods In Computational
Physlcs, Vol, LI, B. Alder, 5. Fernbach and M. Rotenberg, Eds.
{Academic, New York!,

Roothaan, C. C. J., 7. Detrich. and 0. G. Hopper, 1979, Int. 3. Quantum
Chem. 513, 93.

Ruedsnberg, K., L. M. Cheung, S.7. Elbert, 1879, int. J. Quantum Chem., 16, p1069.

Ruedenberg, K., and K. R. Sundberg, 1976, in Quantum Science -- Methods
and Structure, J.-L. Calats, 0. Goscinski. J. Linderterg, and Y.
Ohrn, Eds. (Plenum, Hew York!}.

Ruttink, P. J, A., and J. H. van Lenthe, 1977, Theer. Chin. Acta &4, 97.

1o



Yetllard, A., 13686, Theor. Chim, Acta 4, 27.

von Neumann, J.. 1955, Mathematical Foundattons of Quantum Mechanicsa,
R. T. Beayer. trans, (Princeton Univers iy, Peinc=car ).

Wahl A, C., and G. Das, 1977, fn Mothod: af fluctrouic Stucture Theory,
H., f. Scheaefer, 111, Ed., ¥ol., 3 of Hodvru Vhcoruticnl Chemtstry

(Plenum, New York).

Werner, H.~Jd., and W. Meyer, 198, J. Cham. Phys. 73, 2242,

Wigner, E. P., 1948, unpublished manuscript, later tncluded in L. C.
Biedenharn and H. van Dam, Quantum Theory of Angular Momentum
{Academic, New York, 13965), pp. B7-133.

Wigner, E. P., 1941, Am. J. Math. 63, &7.

Yeager, B, L.. and P, Jgrgensen, 1979, J. Chem, Phys. 71, 755,

m



ON THE CONVERGENCE PROPERTIES OF THE DENSITY
MATRIX DIRECTED GENERAL SECOND~ORDER MCSCF ALGORITEM

w,t

Byron H. Lengsfield, IIL
Lager and Spectroscopy Branch
NASA Langley Rescarch Center, Hampton, VA 23665

Charles W. Bauschlicher, Jr.
Institute fur Computer Applications in Science and Engineering
NASA Langley Research Center, Hampton, VA 23665

The density ma:rtx directed (DMD) second
order MCSCF algorl:hm
on the fact that one can construct the Hesslan and
the gradient of the energy expression from the
unique elements of one and two particle density
matrices. With the recent development of the Uni-
tary Group CI mer,hod.’-'- denslty matrix elements
can bz obtained even for very large NCSCF Problems
without excessive computarional effort.?? Alter-
natively, one can obtain these density matrix ele~
ments by sorting a conventional Cl formula tape,®
and this technique has proven te be quite practical
for traditional MCSCF problems.

The energy of a general MCSCF wavefunction
L
¥ e 3 ckox [¢H)
3
can be expressed as follows

1
ele T ooijtet | o)
]

[¢2)]
. '73 = Diskt (1 o3 [ 9 | ok 1)
(17)2(kT}
where
[P |
LI =N (da)
ozp
1 B 11
dijke = 3 Colp SF:':“ (3b)
ozp
and SF, L are structure factors. Variations in

eqn. (2) "are introav:ed by means of exponential uni-
tary transformations'? of the molecular orbisals
[CI)

~a contribution by B. H. Lengsfield, IIT. NRC-~NASA
Research Assaciate, 1978-1980. Present address:
1BM, S600 Cottle Road, San Jose, CA %5193,

fhh:;rk was supported under NASA Contracts No. NAS1-
15810 and NAS1-14472 while in residence at ICASE,
NASA Langley Research Center, Hampton, VA 23665.
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where P, and 71 are row generators which de~

fine the non-redundant orbital and CI mixings at
first and second order respectively, (i.e., PL



generates the non-zero elements of the 1t rou of

and Ql generates the aon-zero elements of the
1th row of A?). The energy expression is thea
expanded to second order in terms of the non-
vedundant varfables of the generators of the two
unitary transformarions.

The contributions to gradient and Hessian c'an~
be obtained quite simply in terms of the P and Q
TOW penerators.
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The DMD-MCSCF algorithm {s outlined ia
Figure 1.

HCSCE ALGORITHHM
1. COMFIGURATION GEMERATION

2. C. 1. FORMULA GENERATION

D. M. SORT QF THE C. 1. FORMRAS

b

4. HESSIAM FORMWA GENERATION

5. MCSCF ITERATIONS
a. URTHOGCNALTZATION OF THE ORBITALS
b. [INTEGRAL TRANSFORMATION
€. CONSTRUCTICN AND DIAGONALIZATION OF THE HAMILTONTAN

d. CONSTRUCTION OF THE HESSTAN AND THE GRADIENT, FOLLONED
8Y THE SOLUTION OF THE LINEAR EQUATIONS

e. APPROXIMATE UNITARY TRANSFORMATION OF THE CRBITALS

Figure 1.

As noted by Siegbahn, HWeilberg, Roos, § Levv® (see
ref, 2), the density matrix elements which involve
only core orbitals need not be treated separately
and various two electron density matrix elements
in which two of the indices refer to core orbitals
may also be grouped together. The Fock operator
expressions employed by Siegbahn, et al. inr the
construction of the gradient may also be used to
advantage in the construction of the CI-orbital
portic- of the Hessfan. Furthermore, the densitv
matrix clements whose Indices refer only to core
orbitals do not contribute co the CI-orbital por-
tion of the Hessfan.



Finally ve note several advantages obtained
by employing the eigenvectors of the |lamiltonfan in
this technique. First one need not include all of
the Cl vectors in the expansion of the energy to
obtain a varlational algorithm. This, of course,
allows one to address much larger MCSCF problems.
second, the CI-CI portlon of the tHessian and the
¢l terms in the gradient are diagonal and zero re-
spr.'cnvely.' This allows the equations for the
clements of the unitary generators to be simpli-
fied. Finally, redundant varilables are not always
eastly identified in large MCSCF calculations.
However, when the root of the Hamiltonian which is
being optimized is an eigenvector of the Hamiltomi-
an, redundant variables generally give rise to
1z¢705 in the gradienc and can be easily detected.

There are perhaps two points of primary
interest in evaluating the convergence properties
of this alogrithm. The first point being the be-
havior of this procedure when poor starting orbi-
tails are employed. The second point is concerned
with the number of CI vectors which must be inclu-
ded in large problems to obtain a reasonable rate
of convergence.

In a large number of HCSCF problems one does
not possess a very good choice of starting orbi-
tals. This s especlally true if the MCSCF wave-
function contains several configurations which
differ from one another by (spin orbital) single
excitations. In this case the Hessian may posses
very small and even negative eigenvalues. Various
means have been propesed to shift the eigeavalues
(or alternatively the diagonal elenents)'® of the
Hesslan or to take a step ln the direction indica-
ted by the eigenvector which con‘esgnnds to the
negative eigenvalue of the Hesslan.® These tech-
nlques often yield disappointing results especial-
1y vhen applied to problems where the MCSCF
reference contains CSF's which differ by a single
excitation.’! instead, a super CI technique has
been found to possess a much larger radius of con-
vergence' as demonstrated in Table I. In this
method one constructs an augmented Fessian matrix
ERRAL AT analogy with the Singles Hamiltonian

SUPER - C APPROACH

Flgure 2,

constructed in Generalized Brillouin Theorem algo-
richms. It ls important to note that a density
matrix orlented approach allows this matrix to be
constructed in a much more efficient manner than
the tradltional contraction type procedures.’$~/?
Thkis method is qarucularly attractive as guadiva-
tic convergence' is very often obtained (when all

CL coupling terms are included) in this proced.re
when a reasonable set of orbitals has been obtalped.
Moreover, a simple scheme can be devised to correct
the elgenvector of this matrix, when iL is not
dominated by the MCSCF reference and further in-
crease the radius of convergence attained by this
technique.

In the followlng tables the results of several
MCSCF calculations are presented in which the num-
ber CI vectors included in the Hessian has been
varied.

BeOa'b 3 CSF SUPER C1 ALGORITHM

TABLE I,

Iteratjon  Energy (a.u.,) AE a©
ld -89.424317 - 2.56 E-1
2 -89.466285 4,20 E=2 2.29 E-1
3 -89. 495331 2.90 E-2 1.13 E-1
4 -89.503767 8.44 E-3  6.62 E-2
5 -89.505765 2.00 E-3 1.53 E-2
6 ~-89.506026 2.60 E~4 5.07 E-4
7 ~89.506033 7.99 F~6 6.57 E-7
8 ~89.506034 1.13 E-8 1.42 E-12

a
) core 40%1*, core 4050r* and core 4an’n

h)ﬂﬂuachllcher—Yarknny Basis, J. Chem. Phys. 72,
1138 (1980)

= 283, see ean. (4}

d)Damping performed, the Hessian possessed two ne-

gative eigenvalues. SCF starting guess employed.

APPROXTMATE SUPER CI°

TABLE II.
Iteration Energy (a.u) AE A

1 -89.424317 - 162

2 -89.462099 3.78 E-2 -137

3 ~89.487145 2.50 E-2 8.36 E-2
4 -B89.497525 1.04 E-2  2.93 E-2
5 -89.,501648 4.12 E-3 1.40 E-2
6 -89.503637 1.99 E-3  8.40 E-3
7 -89,504713 1.08 E-3  5.00 E-3
8 -89.505311 5.98 E~4 2,82 E-3
9 -89.505642 3.31 E-4 1.54 E-~3
10 -89.505824 1.82 E-4 8.19 E-4

a>The second order CI terms were not included in
thia calculation.

The Lmportance of including or excluding a
particular CI vector can be placed on a more quan-
titative basis by means of the simple perturbation
arguments presented below,

Consider the Newton-Raphbsen iinear equations
induced by a two CSF, two oraital problem,

C90-0 e
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where B, C and A represent the orb.-orb,, Cl-orb.,
and Cl-CI parctions of the Hessian respectively. &
and Y are the unique elements of tke generators

of the unitary transformations and g {s the orbi-
tal gradient (the CI gradfent is zero by virture of
the fact that the secular is assumed to have been

solved on the preceding iteration). We then have.l

(“' %2') Awn [¢5)

(14)

is the root being

where 1
This perturbation may be generalized

(Recall A« E? - E!
optimized.)
to account for the interaction betwecen a par-
ticular CI vector and all of the orbital mixinge.
For the purposes of this study it suffices to
consider these interactions a sum of decoupled two
by two problems and monitor the largest perturba-
tion term (C®/AB) associated with the last CI
vector to be included {n the problem., These terms
are also presented in Tables III and Iv. It is
interesting to note that this perturbation term
differs from the second-order perturbation expres-—
sion obtained by Das?' in that the energy differ-
ence appearing in the denominator is weighted a
diagonal element from the orbital section of the
Hessian.

The results of a number of MCSCF calculations

are summarized in the following tables.

3 CSF BeG CALCULATION WITH ONE CI
ROOT EXCLUDED

TABLE IIIa.

E AE 4
1 -89.424317 - 2.61 E-17
2 -89.465898 4.16 E-3 2.28 E-1
3 -89.494027 2.B1 E-2 1.03 E-1
4 -89.502397 8.37 E-3 2.82 E-2
5 -89.504267 1.87 E-3 B.63 E-3
6  -89.505109 B.41 E-4 3.71 E~3
7 -B9.505550 441 E-4 1.86 E-3
8 -89.505782 2.32 E-4 9.58 E-4
9  -89.505903 1.21 E-4 4.92 E-4
10 -B9.505967 6.3 E-5 2.51 E-4

a)Damping employed this iteration
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TABLE IIIb. BeQ 3 CSF MCSCF
Largest Sum of
Root Perturbation Perturbation
Term Contributions
1 .18 .72
2 W31 1.48
TABLE IV. FULL VALENCE ‘I STATE
oF Hgo®'®
Number of 0 30 90
CI Roots
feram 4 a oE a 2E A
1 - 9.E-5 - 1.E-4 - 2.E-4
2 -3.E~6 6.E-6 ~4.E-6 1.E-5 -5.E-6 3.E-6
3 -9.E-? 2.E-6 ~5.E=7 2.E-6 -8.E-7 1.E-7
Final = _224.514267  -274.514268  ~274.514268

Energy

‘)Yushimine-ncl.ean molecular DZP Slater basis with
a diffuse Js-function (.855) on Mg. 142 CSF's in

Cov

The maximum perturbation term (.43 ) was obtained
from the 22nd elgenvector of the Hamiltonian.

b),

The perturbation contributions of the higher
eigenvectora of the Hamiltonian are often larger
than the perturbation estimate of the contribution
of many of the lower roota of the Hamiltonian.
While the inclusion of a few of the CI vectors in
the varitional problem can dramatically affect the
convergence characteristic of this MCSCF algorichm
far from convergence. One can not expect any sub-
stantial advantage from this procedure near con-
vergence for a general (containing single 1ita-
tions) MCSCF wavefunction.

The DMD-MCSCF algorithm provides a simple and
efficient means for constructing the Hessian and
the gradient of a general MCSCF energy expression.
The studies regcrted in the paper and recent work
3n Mg0 and BeO*? indicates that this method is
capable af providing the convergence behavior
needed to perform practical quantum chemical cal-
culations.
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RECENT DEVELOPMENTS IN MULTICONFIGURATION WAVEFUNCTION OPTIMIZATION

Ron Shepard
Battelle Columbus Labs
© Columbus, Ohio

INTRODUCTION

A formal and numeiical comparison of two of
the most promising types of multiconfiguration
wavefunction optim.zation methods, the super-Cl
methods and the exponential operator methods, is
performed. The super-C1 methods display superior
convergence Lroperties when the initial wavefunc-
tion is far from correct while the exponential
operator methods possess superior convergence char-
acteristics when the initial wavefunction is close
to correct. The formal comparison of these approa-
ches suggests hybrid methods which have some of the
advantages of both methods. Unitary group methods
have been successfully employed in the implementa-
tion of a general and efficient multiconfiguration
wavefunction optimization program using these exp-
onential operator and hybrid methods and a discus-
sion of this implementation is included.

SUPER-CI METHODS

in the super-CI wavefunction optimization
method developed by Grein', the matrix representa-
tion of the hamiltonian operator is constructed
within the single excitation basis “mc) .|'Ij)}
where Jij)2(i*j - j*i)Ind.
The super-Cl wavefunction is determined from the
solution of th= secular equation:

H(sci)¥=g(sci)Yi{zei) where [SCI}=Wnofmc} +i§‘5vp'j)n)

If the orbital change §=d(1+X)% é where
xii=-xji=v(1.j) is perfo%'lm:T, thgn tﬁ'e‘eg energy of

the next iteration may be compared with the current

SCI energy:
Bees * Bear 2 22 1, 4mil) I RRO Y
Ba

Efm} ’-E[-z)rlgdg (el Ly + g.)‘}h‘.(.'j] ) kl}
) 4.
+qu§Xg1<ﬂ|HLijzﬂ)(»¢> + O

1t is apparent from the comparison of these two
expressions that minimization of E{sci) via the
SCI secular problem is equivalent to minimization
of the MC energy of the next iteration except for
the Tast second order term and the higher order
terms in the E(mc)’ expression. This expression
for E(mc)’ also assumes that any coupling of the
mixing coefficient change and the orbjtal expansion
coefficient change may be neglected in the calcula-
tion of the optimimum X parameters. A serious lim-
itation of this method is that the individual mat-
rix elements of the H{sci) matrix are difficult tc
calculate since they require either summations over
all configurations within the MC space or the cal-
culation of some 3- and 4-particle density matrix
elements. The advantage of the SCI method is that
the X parameters are calculated to lawer the energy
each iteration and not simply to extremize it.

Thus at convergence, not only is the generlized
Brillouin theorem (GBT) satisfied indicating an
extremum solution, but a change of the orbitais
vill increase the energy. The first attempt to
determine the importance of the neglected second

nz

* dinger pracedure of Das®

order terms was performed by Grein and Eanerjee].
The inclusion of coupling between the mixing coef-
ficients and crbital expansion coefficients in the
SCI equaticns was first performed by Chang and
Schwarz2. They included this coupling by appending
the excited states [/ny{ where (n|H|n}>=Eng to the

single excitation basis and solving the resulting
SCI secular problem.

EXPONENTIAL OPERATOR METHODS

The exponential operator method of Dalgaard
and Jérgensen3 is based on expressing a trial MC
uavefunctiop in terms of a glitary operatg'r B N
Ime?) = g‘xlmc) ahere .A.’ét(, L("'é'*")'ﬁé'%'rs
The orbitals used to construct the MC' are obtain-
ed as . .

Q= bt whre Kug=-Kir=&iro)

and where the Kphrameters are to be determined.
The resulting commutator expansion of the energy
expression is truncated to include second order
terms. Stabilization ~f this expression leads to
the Tinear equation B& +W =0 where

BP{,H T i([[ff,if‘ﬁii',@]f[[ﬁ,‘ Th'rs],l THJ)
is an element of the orbital Hessian matrix and

Wr.ﬁ <E";‘ﬁﬂ> is a GBT term and a component of the
gradient. Explicit coupling of the orbital change
and mixing coefficient charnge may be included using
the exponential operator notation of Yeager and

Jnrgensen4 with the trial MC wavefunctﬂ exnres)-
sed as . 23] sifive ~ el
iy e G2
= 5 5P,

Stabtlization of the resulting;se}o'ﬁd order energy
expression leads to the linear equavions involving
the full wavefunction Hessian matrix and gradient
vector { B C HY_[Q

s|W - 0/ wh'ch may be expressed as
the partitioned Hessian expressiun

(E'G‘Q"QUJ_(”_V:Q when  {nlHin?) '-'é.,,,.En

This partitioned form of the orbital Hessian empha-
sizes the relationship between the Rayleigh Schroe-
and of the corrected Hes-
sian of Dalgaard and Jgrgensen3 to the exponential
operator methods.

The advantage of these operator based methods
are that only 1- and 2-particle density matrix
contributions are required. This is due to the
fact that all the terms of the Hessian and gradient
are expressed directly as commutators instead of
simple products. All second order terms are in-
cluded so that second order convergence in the GBT
terms and the energy is observed. However these
Newton Raphson methods converge not only to energy
minima but also to saddle points and other types
of solutions for which the GBT is satisfied but
where the Hessian matrix is not positive definite.
These solutions do not necessarily correspond to
excited states of the molecular systems althougn
excited state solutions da necessarily possess a



negative eigenvalue of the wavefunction Hessian for
each lower state. The desired excited state s50lu-
tions correspond to those for which their variatijon-
al energy is minimized. These solutions are char-
acterized by positive definite partitioned orbital
Hessian matrices.

DISCUSSION OF COMPARISON

Numerical comparisons of the convergence pro-
perties of the SCI method and the exponential oper-
ator methods, both with and without the perturba-
tion coriections, reveal that the SCI method posses-
ses superior convergence properties when the fnitial
wavefunction guess i5 far from correct. This is a
result of the energy minimization approach of the
SC1 iterative procedure compared to the cnergy stab-
ilization approach of the exponential operator meth-
ods, The local convergence properties of the SCI
methods are similar to those of the exponential op-
erator methods when the perturbation corrections are
neglected. The local convergence properties of the
exponential methods are improved when the perturba-
tion corrections are included and secand arder con-
vergence is observed. The matrix construction step
of the exponential methods i5 more efficient than
the matrix construction step of the SCI methods
because the former requires only the non-zero con-
tributions of the 1- and 2-particle reduced density
and transition density matrices while the latter
requires effort equivalent to the construction of a
very large Hamiltonian matrix and subsequent contra-
ction to form the H(sci) matrix.

HYBRIO METHODS

A more detailed investigation of the exponen-
tial aperator methods and the SII methods reveals
the relationship between these solutions and sug-
gests methods which have the desivable properties of
bot:u methods. The energy expression of the

Q'A)n\q trial function may be written as
k=3 (kN) (2WYE
who/\!
and requiring&Ax=0  results in the usual linear

equation BK+U=Q. If an error of order g* is in-
troduced into this euuation however

i

to the eigenvalue problem

5wl

which is an approximation to the SCI eigenvalue
problem. The ¥ parameters may be expressed as the
solution of the linear equation :
(g-as8) K- W =0

where 24E is the lowes: eigenvalue of the approxi-
mate SEI problem. An identical analysis of the
@'*ei’lm) expanential method results in the par-
titioned equation D w0

((§-ase -Cp-207 )X ¢ ¥ =2
where 24F is the eigenvalue of the Chang and Schwarz
SCI problem, Since the addition of a constant to
the diagonal terms of the Hessian matrix shifts ail
the eigenvalues by that same constant, it is clear

then requiring™®/roieads

)
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that the SCI solution is a special case of the mode
damping or level shifting techniques of Yeager and

Jérgensen and of Dalgaard and Jbrgensen3. The exp-
ansion of £ in terms of the full second order X

F oK+ a6 g8+ Ope?)
shows the AE relationship between these two solu-
tions. The improved convergence that is made avail-
able in the approximate SCI solution results from
the fact that there are many solutions to the secu-
lar equation. The one that is chosen is the one
that lowers the energy. This flexibility is obtain-
ed however only with the sacrifice of the local
second order convergence properties. These hybrid
mathods attempt to exploit the energy minimization
characteristics of the SCI methads and the local
convergence properties of the Newton Raphson methods
by switching to the full second order procedures
only when convergence can be guaranteed. One method
consists of using .

WK z24ef K .
(s"o )(l‘) -UE(‘) until )y is small,
then“using (B-car'c ) KW@  witil onvergence is

reached. AnotRer approach is to aiways salve
(g-lkewso  or (8-1-gUAArEN)KrW 2

treating A &5 an emperical parameter {o switch from
the SCI so’ution (?z.uﬁ,\ which converges to an
energy minima to the full second order solution

( A=0 )which converges to the closest extremum
solution. Cur numerical experienceshows that the
energy may usually be gbtained from the approximate
SCI solution without switching to the second order
solution. However the fuli second order convergence
is sometimes useful for energy convergence and is
almost aiweys necessary for wavefunction convergence
{or equivalently for problems where [W|is required
to be small). These observations are consistant
with other researchers (Banerjee and Grein, Chang
and Schwarz, Lengsfield) who have reported on the
numerical convergence properties of the SCI methods.

MATRIX ELEMENT EVALUATICH

n ~
If theA: nx.,Tsoperator is expressed in terms
of the generators of the unitary group,Tm=i(€rs-)
then the matrix elements of the § and ¢ matrices
and the W vector may be expressed directly in terms
of the reduted spatial 1- and 2-particle density
matrix elements, <e1'j) and {e. kl> and the trans-

i

ition density matrices (mc|eij|r'\> and {mc leij Kl Iny
.

along with the molecular 1- and 2-electron jntegrals

hyy and (i31k1).

Bpa,rs” ths<epr> +Zh;:r(eqs)'z"qv<eps.>'2hps<eqr>

)6

~(Hep $Hp )8 o5 - (ggigg) By

+H

Y
+(HSP Hps)sqr + (Hl‘q qr

-Z_i‘i;(i.ilqr)(eps ‘”) -ZiZ'j.(qur)(epj ,is>
+2izjl(q“1$)(epi.\"‘> +Zif,.j“jlqs)<er:r,iJ')

+2§(pjl1r)(eﬁ.is) +2§j('i"|pr)<e%.i.i>



2B iites ey i) -zizjl(pjhsxeqj‘ir)

+21_Z.l1(ip|jr)(eiq’js) -25(15|jp)(eir,jq)

s ps
-ZiLJ,(WIJq)(eis,J-p) +2§(1Q|J5)(eip’jr)
-(quﬂqs)Spr -(er+Ypr)Ssq
+(Yspt¥ps)rq +(Yrq+¥ar)sp

Hrs = 2Hrs -2Hsr -2Ysr +2Yrs

In these expressions H and Y are the partial sums:

Hrs = Dhig(er)

vrs = Z3(st]ik)e.; <)
ik ri,jk
The L matrix involves transition density matrix
elements:
Clrs),n = -2Cmel (13T JIn)

= 2l e gte oy -2In; Laclejve; |9
1

+2i§(("”k)<"'c‘eis,jk + ekj,si'")

'Ziﬁ(“””(’“cl et ik %kl

And finally, if a Cl calculation is performed at the
beginning of each iteration, the ¥ matrix takes the
simple form: =

Mo = 2(E(N) = E(mc)) §n,n’

In the implementatiin of a general wavefunction
optimization procedure, no restrictions should be
placed on tie density matrix elements appearing in
these expressions. In particular, no assumptions
such as "full valence CI", "full active srace CI",
or “doubly occupied CI" should be nade. In order
to use the simplifving features of certain refer-
ence spaces when they are criployed however, it is
convenient .0 use the non-zero density matrix con-
tributions to control the construction of the re-
uired matrices. It should be mentioned that only

operators which may result in non-zero gradient
contributions need to be included in the optimiza-
tion procedure. For example, indices p and q which
correspond to molecular orbitals of different
symmetries prcduce zero gradient contributions
([H,iTN])hecause the electronic Hamiltonian opera-
tor is completely symmetric. The formalism used
by Rudenburg in the SC‘; method’and by Roothaan in
the expanential method®amphasizes this aspect., For
a given MC space, other orbital pairs sometimes
result in trivial zero contributions to the grad-
ient an¢ to zero eigenvalues of the wavefunction
Hessian matrix. These redundant variables may be
removed to reduce the Jimension of tie matrices
without affecting either the convergence properties
or the final results.

Although the 1- and 2-particle density matrices
and transition density matrices are usually spa-se,
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we have chosen not to attempt to explicitly const-
ruct them each iteration. Instead, we calculate a
contribution to a density matrix element or transi-
tion density matrix element, use that contribution
with any available integrals, and update the approp-
riata Hessian ar cradient natrix elements. When all
non-zero density contributions have been exhausted,
new integrals are made available, the density con-
tributions are again retrieved, and the process is
repeated. This procedure allows the construction
of the Hessian and gradient matrix elements to be
performed with only one reading of the integral list.
Because the unitary group procedures we have used
result in very efficient evaluation and very com-
pact sterage of the density contributions, the muit-
iple readings of the resulting short formula tape
are only a small part of the wavefunction optimiza-
tion procedure. Since the total number of formula
tape readings required each time the matrices are
constructed is equal to the number of blocks of
integrals, an attempt is made to minimize the number
of blocks of integrals wit: dynamic memory alloca-
tion using subroutine argument Tists and array off-
sets. In the case where all the integrals may be
made available at one time, only one reading of the
formula tape is required.

In the unitary group approach, a density con-
tr'lbuéiun is determined by a loop within a Shavitt
graph? Each loop is associated with many configura-
tion pairs. The number of configuration pairs is
given as the product of the number of upper walks
from the Toop head and the number of lower walks
from the loop tail. The totai contribution of a
loop to a density matrix element is the sum of all
the products of pairs of mixing coefficients which
share the loop. In the most favorable cases, there
is only one loop which contributes to a density ma-
trix element, Although this loop may be shared by
many configuration pairs, the complete contribution
may easily be precomputed before using this density
contribution in the B and W_construction. Account
must also be taken of the operator relations

ot d - _at = + 53
R Tt Y B S ICE BT 08 [ Y L B
only a unique set of loops are constructed and stor-
ed on the formula tape, the appropriate permutations
of the indices must be performed to include all pos-
sible non-zero density matrix contributions. The
¢ matrix construction may be broken into two parts

Cﬂl"l '-"1("‘”[!‘,5?’&”“} . :
=2 20 L Uy e bl E1i Tpg 110) ) U

=-1%. Chpalla n

where the construction of the L' matrix requires
only the current mixing coefficierts for the MC
state. Construction of the intermediate {' matrix
also avoids multiple references to excited state
mixing coefficients for each transition density
matrix contribution and replaces it by the indicated
matrix product which is independent of the formula
tape and integral list lengths. Since the  matrix
construction requires the transitior 1- and™2-par-
ticle density matrices, or equivalently the density
contributions from the primitive configurations, its
construction becomes the dominating matrix construc-
tion step as the number of configurations in the MC
space is increased.

In aur implementation of the unitary group
approach, the configuration 1ist is specified by a
distinct row table {DRT). The DRT is constructed

~



automatically by 2 small interactive program which
requires only a Timited amount of spatial symmetry
and orbital occupation restriction information.
The formula tape which corresponds to this [RT is
then constructed and used by either the CI program
or the wavefunction optimization program.

SUMMARY

We have found that the unitary group approach
used in our wavefunction optimization programs re-
sultsin not anly efficient matrix element construc-
tion but also general and flex i ble configuration
specification for many molecular systems. Wavefun-
ction optimization procedures using second order
methads and hybrid methods consisting of approximate
SCI methods and second order methods have been
implemented. Wavefunctions corresponding to both
ground and excited states of the same symmetry
have been obtained and reported using these methods.
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FORMAL AND NUMERICAL CONVERGENCE COMPARISON OF SCI AND EXPONENTIAL METHODS

Dr. Ronnie Shepard and
Battelle Memorial Institute

Columbus, Ohio 43201

FORMAL COMPARISON

By examining the forms used to describe modi-
fications in the orbital and configuration expan-
sion coefficients, the energy functions which are
made stationary, the resultant equations to be
solved, and the iterative procedures which are com-
monly employed in solving such equations, we see
the similarities and differences among the super
CI(SCI) and exponential MCSCF methods.

The SCI method can be viewed as using a trial
variational wavefunction written as a linear com-
bination of the curvent (in the iterative scheme)
MC wa_ve_functjon XD|D> plus single excitations
Xij(I+J - j*i)|0>"= |ij>. The SCI secular equation

resulting from making the energy of this trial
wavefunction stationary yields an eigenvector which
is then used to generate modified MCSCF orbitals.
The modification of the CI expansion coefficients

[0> = ] o [#g> s then achieved by performing a
cI calfulation using configurations |¢g> involving

the “new" MCSCF orbitals. The fact that both or-
bital and CI expansion coefficient optimization are
achieved through solutions of secular problems
(which have the well known eigenvalue separation
properties) makes the SCI method look promising for
use on excited states. Critics would remark that
the SCI does not treat coupling between orbital andCI
coefficient variaticn ina balanced or fully coupled
manncr and that the SC1 energy expression i

certain terms X3 ‘;;<”I?Hfii'f-j*?\fkn??*”?g:es
which are second or ur in the orbital variation par-
ameters Xjj. This ictier fact makes the SCI method
not quadratically cuivergent.

The exponential MCSCF method expresses the
modification of the orbitals (exp(ia}} and CI co-
efficients (exp(iS}) in terms of exponential uni-
tary transformations. By expanding the MC energy
through second order in X and S (thereby neglecting
third and higher order factors) and making the re-
sultant expression stationary with respect to var-
jations in A and S, one arrives at a set of linear
algebraic equations for the parameters in i and S.
This method is quadratically convergent since its
energy expression contains all terms in x and §
through second order. However, it is not varia-
tional since the "energy function" which was made
stationary is not an upper bound to the true
ground-state energy. The coupling between orbital
and configuration mixing coefficient optimization
is treated in a balanced or coupled manner in this
exponential approach. However, the fundamental
assumption that second order in A i equivalent
{in an energy sense} to second order in S remains
to be tested. .-

Given the basic working equations of the SCI
and exponential MCSCF methods, one next must
attempt to find stable iterative procedures for
solving these equations. In solving the SCI equa-
tions, one is faced with choosing the eigenvectors
of the SCI and CI secular equations which are prop-
er for the state of interest and with damping the
modifications of the orbitals resulting from the
SCI secular problem. One is 2iso faced with ortho-
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normalizing the MCSCF orbitals on each iteration
because the transformation matrix resulting from
the SCI secular equation is not unitary.

Several procedures have been suggested for
solving the linear equations obtained in the expo-
nential method.” The so called one-step procedure
involves solving the coupled linear equations for A
and S and then using the 1,§ values to transform
the MC wavefunction. Damping is often employed to
accelerate the convergence of this process. If the
orthogonal complement MC wavefunctions {|n>} are
chosen to diagonalize H, <n{H[m> = Som E", and the

block of the Hessian matrix arising from
<0|[S,[S,H]1|0> becomes diagonal. Tais then per-
mits the linear equations for X and 5 to be decoup-
led, thereby reducing the dimension of the matrices
to be handied. This procedure is still viewed a< a
one-step approach. In the most common two-step
approach, one obtains the CI expansion coefficients
by diagonalizing H within the full MC space {|0>,
|n>}. Then, given |0>, one solves the partitiuned
Tinear equations (which have been partitioned to
eliminate S in favor of 1) for the orbital modifi-
cation parameters x. The S parameters are not ob-
tained from the linear equations. Such a procedure
is called two-step because it involves computing
the CI coefficients (from the CI secular problem)
and the A parameters {from the linear equations) in
two sequential steps.

Because the SCI achieves both Cl coefficient
and orbital optimization via secular problems, one
can monitor the state to which one is converging by
following the eigenvalues of the SCI and CI secuiar
equations from one iteration tc the next. In the
exponential methods, whose working equations are
not secular equations, one can also monitor conver-
gence to a specific state by examining the number
of negative eigenvalues of the Hessian matrix.

NUMERICAL STUDIES

He have carried out a large number of exponen-
tial and SCI I'CSCF calculations on ground and ex-
cited states of Be, HCN, HCF™, HgHz. and CSHA using

MC wavefunctions containing single and double exci-
tations. We have examined the convergence rate of
these two methods under several sets of conditions
for ground and excited 'S Be atoms and HCN.

1. By freezing the CI expansion coefficients
at their optimal conv.:rged values, we explored
their rates of converjence and ranges of r~nverg-
ence for orbital optiitization. The latter was
achieved by using star.ing orbitals which were suc-
cessively further and further from the proper con-
verged orbitals.

2. The SCI method vas compared to a two-
step methnd in which the coupling matrix elements
between orbital and CI coefficient optimization
<0 [S,[*,H]]{0> were neglected and the CI coeffi-
cients were determined via a secular problem.

3. The full (including <O/ [S,[1,1]1]10>) ex-
ponential two-step and one-step procedures were al-
so compared 0 the SCI method.

The results of these exploratory calculations to-
gether with our recommendations and observations



congerning optimal implementation of MCSCF wave-
function gptimization techniques will he put forth
in the second part of tnis presentation,
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MCHF CONVERGENCE USING INCOMPLETE SECOND-DERIVATIVE INFORMATION

Harry F. King and R, Nicholas Camp
Department of Chemistry
Acheson Hall
SUNY at Buffalo

Buffalo, New York

Orbital optimization is achieved using a
generalized conjugate gradient algorithm due to
Hestenes, Eq. (5). The R matrix consists of
exact first derivatives with respect to orbital
rotations. An arbitrary amount of second de-
rivative information can be incorporated into
the F matrix., Efficient computation of R is
described. An application to the nitric oxide
dimer is discussed.

INTRODUCTION

We are certainly impressed by the second-
order MCHF methods of Jorgensen, Dalgaard and
Yeager! and of Roothaan, Detrich and Hopper,?
out somewhat dismayed at the prospect of
viorking with the full second derivative matrix
ior large basis sets. Thus Dr, Camp and 1
tlecided to try our hand at writing our own
HCHF pragram in which the Newton-Raphson
equation is replaced by one invented by Hestenes.
The Hastenes algorithm contains an arbitrary
positive definite matrix, but for rapid conver-
gence it should be at least a rough approxima-~
tion to the inverse second-derivative matrix.
We will have more to say about this presently,

We call our MCHF program HONDO -ince it
is an extension of the single-configuration
SCF program with that name. It is a working
program but still far from being a rinished
product. HONOO presently employs a variational
wayefunction corresponding to what 8jorn Roos
calls "complete Cl in the active space.” The
orbital space §s partitioned into three
subspaces: NC inactive {(alias "core" or
"spectator"”) orbitals with fixed occupation
numbers equal to two, Ny active orbitals with

variable occupation numbers, and !\'v virtual

orbitals with occupation numbers equal to_zero.
Let there be N spatial orbitals and NlOtal
electrons sa that e

W= N+ N+ Ky
total
I‘Ie

(1}

= 2N+ M. (2)
The CI expansion includes all configurations
with a given spin that can be constructed for
Ne electrons in N, orbitals. In writing the

program we have focussed on applications in
which N is an order of magnitude greater
than N,, e.g. M.100 and Na=2 to 6. Although

we have yet to carry out calculations for such
systems, we are thinking specifically of
transition metal complexes. Please keep in
mind that the active orbitals constitute a
small fraction of the total number of M.0.'s.
Thus it is significant that HONDO performs the
four-index transformation and computes various
density matrices only for the small set of
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active orbitals.

In the absence of point group symmetry the
number of independent first derivatives with
respect to orbital rotations is

Ne = NNy + NaN, o+ NN (3)

An upper bound on the value of Nf is N/3, and a

typical value is approximately N2/5. Thus the
number of unique second-derivative matrix elements
is about K“/50. The size of the second-derivative
matrix is approaching that of the two-electron in-
tegral file. We want to work with much less
second derivative information than that. An
obvious suggestion is to use only the diagonal
elements, but there is probably a better tactic
than that. We are certainly open to suggestions.

We have further comments to make on three as-
pects of this work: (1) method of orbital optimi-
zation, (2) computation of derivatives with respect
to orbital rotations, and {3) some applications ta
the computation of ground and excited state poten-
tial energy -.rfaces.

ORBITAL OPTIMIZATION

HONDO employs the exponential operator nota-
tion of Bernard Lery.® Let & be an N-dimensional
row vector whose eiements ar€ real, orthopormal,
spatial orbitals. Let A be a real parameter and A
a real N by N, antisymmetric matrix. A unitary
transformation on ¢ generates a new set of orbi-
tals ¢ (A). -

G0 ) = 2 U(A) = & exp(MA) (a)

A "major cycle" in our method consists of a one-
dimensional search with fixed A that minimizes the
Cl energy with respect to the variable lambda.
First let us discuss the computation of the
optimum Jambda value, then we will return to the
more interesting matter of determining the search
direction A. The derivative (dE/d)) at i=0Q is
easily computed from first derivative information
computed in the previous major cycle, The program
then evaluates E{(1} and (dE/dA) at A=1. This
constitutes a "minor cycle” and involves a four-
index transformation, construction and diagonali-
zation of the CI matrix, and computation of first
derivatives at A=1. One minor cycle requires
about as much CPU time as three to four ordinary
closed-shell 5CF cycles. Knowing the energy and
its first derivative at two points determines a
cubic approximation to E(X) from which values of
\min and E(.\min) are estimated. If A has been
well chosen then pin s sufficiently clnse to
unity and the search is terminated after one minor
cycle. Otherwise, the CI energy and its deriva-
tive are recomputed at the predicted lambda, the
results are fitted by a cubic spline, and the
process is repeated until convergence of the one-
dimensional search has been achieved. 1t is rare,



in practice, that a major cycle requires more than
two minor cycles. This one-dimensicnal search
plays an important role in the theory described
below, it is also responsible for the remarkable
stability of the convergence algorithm even when
the starting orbitals correspond to a second
derivative matrix with one or more negative eigen-
values. (This situation has been epzountersd
startir)\g from an apparently reasonabie initial
guess.

The A matrix For the nth major cycle is
computed By the following algorithm based on a
generalized conjugate gradient method invented by
Hestenes® for the solution of large 1inear systems,

e(n) =F B(") + b("‘” &("‘” (5}

Like A itself, the R matrix is antisymmetric.
Element Rij s the First derivative of the (I

energy with respect to a rotation of the ij-th
pair of orbitals. The theory assumes only that F
is a positive definite Hermitian matrix.® The
first term in (5) by itself corresponds to Newton-
Raphson when F is exactly the inverse of the
matrix of second derivatives. The second term
effectively accumulates information from previous
majer cycles and so corrects for errors in second-
orde. terms and for third and higher-order effects.
Hestenes derives the following expression for the
b coefficient:

(6)

pln-1) 2 pld, (n-1)

(n)

vhere
KU ER ).

(7)

In effect the Newton Raphson equation has
been combined with the iterative conjugate gradient
method for solving large linear systems in such a
way as to eliminate the explicit appearance of the
second derivative matrix from the formalism. To
show this, let us set 1. the Newton Raphson equa-
tion in N¢ dimensional space. Let x be a vector

in this space that denotes the orbitals. For
esample, we can pick a set of reference orbitals
and define any others in terms of these by an
exponential unitary transformation U = exp(A”).
Then x consists of the independent elements of A”.
e.g. the elements in the lower triangle. Simi-
larly let r, consist of the independent elements

of R evaluated for the reference orbitals. (We
are aware that there exist Unitary matrices that
cannot be expressed by the exponential formula
with A" restricted to being real. That problem is
easily overcome by adopting a suitable phase
convention.) Let M be the Ne by Ne matrix of
second derivatives with respect to elements of x.
Expand the CI energy through quadratic terms.

- 1- +
E(x) =E -rox+1/2xM+ ... (8)
In this notation the solution of the Newton
Raphson equation is x=h where
(9)

Hh = rye
Equation (5) is based on the generalized conjugate
gradient method of Hestenes which yields h as the
Timit of a finits, converging sequence of vectors

5“ » X Z). «ves h. Each major cycle in our

124

method generates a new member of the sequence. In
effect we redefine M at each step to be the second

derivative matrix at the new x ") 50 as to correct
for cubic and higher order terms in {§) as well as
for errors associated with non commutivity of
rotation operations. The Hestenes algorithm is
one of a class of methods for solving Targe linear
systems such as {9). Each of these iterative

methods generates the vectors (H"l. n=1,2,3,...1}
for some generator v. This is known generally as
a "Krylov sequence” or Krylov space. At each step
h is approximated by the best vector in the Krylov
Space according to some criterion, Following
Hestenes our criterion is that x minimize the
generalized norm of the residual. The residual
vector corresponding to {(9) is re " Mx.
h-x|#'K Mlb-x>

(10)

Here H can be ang positive definite matrix.
{Dc not confuse H with the arbitrary matrix F
introduced above.) A particular choice of H
discussed by Hestenes and employed by us is H

= M"!. This tends to avaid overemphasis of small
components of h-x corresponding to large eigen-
values of N, Tt follows imeediately that this is
equivalent to minimizing the quadratic approxi-
mation to (8) in the Krylov space. Our method
replaces this step with minimization of E(x)
itself using the one-dimensional search technique
already discussed. In the absence of higher order

<ryHxHirg-tho = <

terms this reduces to the Hestenes algorithm. The
A matrix in {S) corresponds to the change in x
A.(n'r’l) . 5(") + an

and g(") corresponds to the residual vector
evaluated for the current orbitals x'™.

It is, of course, unnecessary to generate

the M matrix explicitly if there exists an equi-
valent, alternative technique for extending the
Krylov sequence. This is, in fact, what we do by

explicitly computing 5("). Notc that if one drops
higher order terms from (B8) then the negative
gradient is just the residual vector.

rx) =r, - Mx (12)
A Newton-Raphson method using the Hestenes algor-
ithm evaluates the right hand side of (12), we
evalyate the left hand side. The explicit matrix-
vector multiplication is several times faster
computationally than evaluation of r. On the
other hand we completely avoid constructing M and
at the same time pick up a small advantage from
the fact that we effectively redefine M at each
major cycle and so correct for non quadratic
effects more frequently.

Hestenes shows that (5) together with (6)
minimizes E(x) in the Krylov space, in particular,
it minimizes {10) in the subspace spanned by the
two terms in (5). Our computational experience
shows, however, that the CI energy is not always
well minimized in this two-dimensional subspace
when b is computed by (6). This is almost cer-
tainly due to the neglect of cubic and other
higher order effects not considered ty Hestenes.
Thus we have recently replaced (§) with a two-
dimensional search procedure that minimizes the



Ccl energy with respect to the coefficients of both
terms in (5). This two dimensional search has
sometimes resulted in a marked improvement during
early MCHF cycles, but is a waste of time in later
cycles. A simple test could be coded into the
program to improve efficliency in this respect.
This is just one of several {llustrations of the
need for a general “tui.e up" of the program,

Improvement in the selection of the F matrix
is of central interest. To date we have employed
only diagonal F matrices whose elements are com-
puted by a simple finite difference formula ap-
plied to R matrix elements for consecutive major
cycles, This has actually worked reasonably well,
but we suspect that certain small second deriva-
tive elements should be computed accurately, We
want to maintain an exceedingly sparse F matrix,
but we would certainly be willing to include a
small number of off-diagonal elements if we could
only identify the really important ones. We hoped
to generate some discussion at this meeting con-
ceruing what second derivative information is of
greatest importance.

COMPUTATION OF FIRST-ORDER TERMS

The CI energy is given in terms of integrals
over M0's as follows: (
E=€  +% (il )i P+ 1 (i3)fke) pi2)

nuc © 5 n ij 13ke ijke®
@) (3
where P and P 2re one and two-particle density
matrices respectwely. They are related by:

2 .
stz =3° - § g Pio * Pie Piid * Pijkp-
pl2) (2) (2) )
Pijke = Piike = Paij = - (15)

It is important to appreciate that P, is non

zero only if 211 four indices are in the active
space, for the problems under consideration it
requires a trivial amaunt of core storage to hold
the non zero elements of P~ and the corresponding
two electron integrals, Only those elements in
the active-active block of the symmetric, one-
particle density matrix are needed since the
others are given by:
P1j = 261._j if i and/or J are spectators, (16)
Pij =0 if i and/for j are virtuals, [4F2]
iet the orbitals vary according to (4) for
fixed A and variable A. Consider the CI calcula-
tion to be repeated for each X. We want the
values of E and dE/d) at each step during the
variation.

alx+ ) = 300 1+ cd + 0(eD)] (18)
(A + €)= E(M) +2 s)i: L Goihgld) Ay Pig *

s s (i5)]ke) A Pfiia +0(2). (19)
i*ijke

Note that first-order variations in the density

matrices make no first-order contribution to the

enerqy by virtue of having diagonalized the CI

matrix. It follows immediately that

dE/dD = tr(AR") = } tr(AR), (20}
where
Ry~ = 22 (1 Ingld) Py ¢ a2 (731K e}

rR=r" - % (22)

To evaluate the R matrix substitute (14) into
{21) and separate the resulting expression intc
w0 terms. The first term contains everything not
invelving P° contributions. Computationaily,
evaluation of this first term is in every respect
like the evaluation of a closed-shell Fock matrix.
It can be evaluated in an AC basis using point
group symmetry® and a PK file,’ and then be
transformed to an M0 basis. For large basis sets
this incurs the same 1/0 charges and just slightly
less CPU time than for an ordinary SCF cycle.

The second term, i.e. the P~ contribution to
R*, is evaluated in a mixed MO, “AD basis. It
reduces to evaluation of the inner product of a
pair of H-dimensional vectors.

4 j£ (3731ke) Piy = ufl \ B,y Coi- (23)

Here C is the MO coefficient matrix which ex-
presses the MO's, bya in terms of AQ's, Xg-

X = {Xys Xgs =ev0 Xg) (24)
e=xt (25)

Euluahon of (22) is performed for each element
of R® in the active-virtual and active-spectator
blocks. This is a fast step. The B matrix has R
rows and Ny columns.
By =4r: {aj |k} pukl (2-8,,) (26)
J ke

Evaluation of (26) is not a heavy computation,
There are N, terms in the sum. {(See Table 1.)

The two- e'lectrun integral, (ojllke}, is preserved
from the penultimate step in.an earlier four-index
transformation. The number of such 3/4 trans-
formed integrals is N x "t' For small problems
these can be held in core.

Ncte that the strategy is to divide the
computation into two types of terms, The first
involves only one-particle density matrices, and
these are evaluated in an A.0. basis. The second
involves only aciive orbitals, and these are
evaluated in an M0 basis, This organization has
also proved useful for the computation of energy
derivatives with respect to nuclear displacement,
i.e. analytic gradients.



TABLE 1. DIMENSIONS OF ARRAYS
Na Np Nt Nq
2 3 6 6
3 6 18 21
4 10 40 S5
5 15 75 120
6 21 126 231
7 28 196 406
8 b 288 666

N, = number of active orbitals
N_ = number of unique pairs

N, = Ny x N = number of unique triple indices

1]
N_ = number of unique P° elements

POTENTIAL ENERGY SURFACES FOR A WEAKLY INTERACTING
BIRADICAL SYSTEM

A variety of experimental evidence indicates
that nitric oxide forms a dimer in the gas phase
with an association energy of about 2 kcal per
mole of dimer. Its structure has not yet been
determined, but the nitrogen-nitrogen separation
is almost certainly unusually long. Yarious
features of the electranic structure can be ex-
pected to more nearly resemble that of a transi-
tion state complex rather than that of a normal
covalently bonded molecule. Unlike a transition
state complex, however, the dimer is far more
accessible to spectroscopic observation.® These
weak complexes would seem, therefore, to pravide
interesting test cases for quantum chemical
methods.

The ground electronic state of N0 is a dou-
blet pi state. Thus there are four nearly de-
generate w* orbitals in the dimer for two elec-
trons. Not surprisingly, earlier calculations
using single configuration SCF theory yield a
qualitatively incorrect description of the dimer
structure. We have recently begun a rather ex-
tensive exploration of the ground state potential
energy surface using Ne = 2 and Na = 4, less
extensive calculations are being carried out for
the low-lying excited state surfaces. We wish to
discuss some rather puzzling aspects of these
results. In particular, this level of theory
predicts a completely repulsive ground state
surface.
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. INTRODUCTION

The unitary group formulation of the many-body
prnblenl is a viahle alternative to the Slater
determinant and second quantized formulation when
the Hamiltontan is spin-free. In the unitary group
formulation the Hamiltonian is expressed as a Her-
mitfan second-degree polynomial in the infiniresi-
mal generators of U{p), where ¢ Ls the nuaber of
spin-free orbitais. Each Lrreducibly invariant
representation space of U{p) is uniquely charac-
terized by a partition of a non-negactive integer
and the associated Young diagram. Each space is
invariant under the Hamiltonian. so the partition
is a quantum number. The Pauli-allowed spaces are
characterfzed by Young diagrans contafning no more
than two colusms such that the particle number, N,
is given by the number of squarea and the spin, S,
is given by one-half the difference in the lengths
of the two columns. Thus the Pauli-allowed
irreducible invariant spaces of U(p) are pure spin
states and spln projection fs not Tequired. These
spaces are spanneg by either Gel'fand states or
penerator states,® and the matrix elements of the
Hamiltonfan over either set of basis vectors are
evaluated straightforwvardly by standard Lie alge~
braic techniques.- The unitary group farmulation
has been shown to ke directly applicable to large
CI calculations.® Further, the unitary group
formulation provides a basis for various many-body
theories.

In previous papers we have given the unitary
group formulation to sipgle-configuration SCE,>
muleiconfiguration SCF,6 and <oupled-cluster
theories. The present paper is a review and an
extension of these ideas. Sectfon II contains a
review of the relevant unitary group theory. Sec-
tion IIT contains a bricf outline of the unitary
group formulation of MCSCF theory. In Section 1V
we tre1t the effective Hamiltonian for a mulcicon-
figurational reference (primary) space, a device
for enfolding states from the external secondary
space Into the multiconfigurational primary space.
In Section V these two concepts are combined into
an MCSCF cffective Hamiltonian. We ocutline in the
appendix 3 test calculation for H20 with a double
zeta basis,

T[. THE UNLITARY GROUP FORMULATION
The group
Ue) = {x,v,z4...d, xf = x7? (2.1

is the set of all unitary transformations on a set
of ¢ orthonormal spin-free (freeon) orbitals:

v i, =1 to o} (2.2)
The group clements have an exponential form
x = ¥ uhere 87 = <X (skew Hermitian) (2.7
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vhere X i8 an element of the Lie algebra,

LAU(p) = {X,Y,2,...] (2.4)

This nonassociative algebra is closed under the Lie
product (commutator),

[X,Y] € LAU(p) (2.5)
The Lle algebra has a basls given by

LAU(p): {Egg; T,8 = 1 to o} with

Els = Er (2.6)

vhose elemencs satisfy cthe Lie pruduct

[ErssErul = SqeEry = Srufes (2.7
The covering algabra is

CAU(P): {1,E g, Epgbeys---) = E(4,T)  (2.8)

vhere i is the degree of the element in CAU(0} and
T labels the indices.

The unitary group many-electron Hamiltonian,
which lies in CAU(D}, is

H=H +V 2.9
with
-]
# =T ) hegErg (2.10)
s
and
<]
v o= S 13 S Z Vrstu(ErsBey = SgeBry)  (2.11)
rsctu
where
heg = <rylhglsg> (2.12)
and
Vesea = <tylergingglspley> = v 2.1

turs

The Hilbert space of this Hamiltonian is the rep-
resentation space of U(0):

v = Ov 1
.t 3,0%

where each \l‘.‘,nI is invatiant under CAU(p) and
where {\] is a partition of the positive integerN,

RS ISP PR ¥ | (2.15)

{2.14)

with
(2.16)


http://f2.ll

<]
T Aa=x 2.1
ta1

{1] is graphically represented by a Young diagram
Yu(M], with ¥ boxes where the ith nou has Yy boxes.
Zach invariant space is spanned by f, {\]) Gel'Eand
states labeled by Gel'fand tableaux constru:ted by
adding integers to YD{A]} in nondescending order
along rows and in descending order down columns
and there exist explicit formulae for the evalua-
tion of matrix clements over Gel'fand states, where
=ach Gel'fand state can be represented by a Paldus
array and a walk on a Shavitt graph {see Appendix).
For the Gel'fand basis represented by
P (1p, diw = 1) (2.18)
a matrix elemenc, <F|H|F’>, has a closed form
iven as a funetion of the ualks corresponding to
TF> and |F/>%

For large systems it if 7f|:en impractical to
deal vith the full space Vj even after limiting
the number of allowed excitatlons. Thus we parti-
tion the full space into a primary (or reference)
space and a second (or virtual) space:

2 (P> dim = dp} ®Vgiexs
dim = dQ)

Vg = \'
{2.19)

For the primary space thete is selected a small set
of states which interact strongly with the zero
order ground state. Frequently the primary space
is selected sy first dividing the orbitals into
three classes -- (a) core, lnactive frozen {inter-
nal); (b) active, valence, mixed (internal); and
(c) external, empty ~- and then retaining for che
primary space only those states with configurations
that employ (a) and (b). This primary space has
been called the complete active subspace (CAS),8

We will represent this orbital parclcioning by

V) = Viroraar 2 UL 18500k, 000, 000
dim = 01}

@ Vexrernal ¢ le> jer?,te>,.
dim = p,} (2.20)
Furthermere,
Vinternay = Veore ! {{e>, | le™>, o0
dim = o}

@ Vaived : (m>,jw> im0

dim = o} (2.21)

where

D =0y +pg = Oct Ayt D (2.22)
An example of this partitiloning is given for the
water molecule in Appendix A.

Within this partitioning scheme we obtain
three dist{nrt classes of single execications frum
our primary space, c+e, m+e, and c+m. Further-
mare, we obcain the relatlons
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EelP> = Ene[P> = B [P> = 0 (2.23)
and

Eer |P> = 28500 1P> (S
(Recall that our primary space ~~ntained al! -on-

figurations involving core .nd nixed (valen.
orbitals only and that our core orbitals were all
doubly occupied.) Usirg (2.23) and (2.24), we can
caleulate nonzero matrix elements for the primary
space.® For another choice for the primary space,
see Appendix B.

11I. "{CSCF THEORY

In the present section we give the unitary
group formulation of MCSCF theury, which will
also serve to introduce section V.

The variational state is constructed as
follows. We apply the state and orbital variatfion
simultaneously. However, since [5,T] ¢ 0, the
order of application is significant. We follow
previous work” and apply the state variation first.
The varfational state }0> is then

18> = eTef|o 3.1
where T and § are orbital and state varfacion
operators, respectively. The energy of this state
is

ED) = <O|n|d> = <0|e”Se~TheTeS |0> 3.2)

where H 1» defined by (2.9). On applying the
Baker-Campbell-Hausdorff expansion, and including
only terms ’g eecond order, (3.2) becomes
E@) = <olt|o> + <o] [w,T1{0> + <o0| [H,51{0>
+ %OIIIH.TI.TH'» + <ol 1[,51,5710>
+ <o [[n.1],51]0> (3.3
The energy is an extremum when
SE(G) = <o (H,8T1]0> + <0 [n,65]]0>
~ <0][85,R,5)]0> - <0] [6T,H,T]|0>
- <0{[(6T,n1,5871|0> - <0| ({T,H),85]]0>
=0 (3.4)

where we have used the symmetric double commutator
defined by

[AB.CY = 2 [[4,B1.C] + [4,[8,C1) (3.5)

Thus to second order the extremum of E(5) (3.4) is
defined by the matrix equation

I Yes Crs,r’s” Crs,K’ Tyege
- -

| veo Ckyrrsr Cgpe | \Sgeg ) (1.6

where, using the orbital classes of Roos et aI..s



Hes = | Wee

YWem

W (3.7)
Crs.t's' = Cce,c'e’ Cce,c'm’ Cce,m'e’

Cemycrer  Cemyerme Cemymee

C!ue,c'e' cme.n:'n' Cme,n’e' (3.8
Cce,l(
Ces,k = 1 Cem,k
Coe .k (3.9
and
CK.rs = (CK,ce Cl(,l:m cl(,me} (.10}
The e’ements in (3.6) are defined by the equations
Weg = <0[[Egy,H1]0> (3.11)
Vyo = <ofrlo><k|,u1lo> (3.12)
Crs,res’ ® <0'[[':sr'*"’al"s’”(»
- <0 [Egy H,Egrys 110> 3.13)
Crg, g = <Ol [IE, 1, [k"><0]1]0>
- <0|[[Egyp,H), [0><k’[1]0> (3.14)
Cg,r’ss = <Ol [[Eprgs,H],|0><k[1]0>
- <0 {[Egs s, H1,]0><k*]]0> (3.15)
and
Cr k" F <0 (|o><k|,8, |k*><0|}]0>
- <0|{]o><k|,H, |0><k’|1]0> (3.16)

The expliclt cxpressions for these elements are
glven elsewhere.

We can rewrlte equation (3.6) In condensed
form:

SHEN
SRS

where the values of T and S will be used to update
the orbical coefficlents and confipuration
coefficlents, respectively. Calculations are
carried out iteratively until W and V vanish (or
become less than the convergence criterion), That
W vanish is equivalent to the Brillouin-Levy
Berthier condition (BLB).l0 When V vanishes,
orthogonality of the multiconfigurational states
is insured.

.17

or

(3.18)

129

Tar palevtation: begin wirh an SCSCF deter=~
minacisn of che c:yitals and a diagonalization of
the cesultlng repre.entution of H in the primary
space to obtain initial multiconfigurational
states, The lteration can be carried out in one
or two steps.

One-Step_Procedure

a. Compute W(1), v(1), ana ¢V,

b. compute T(1) and s{1) from (3.18).

c. Compute new orbital and configuration
coefficients.

d. Repeat steps (a) through (c) until sell-
consistency is obtained.

Two-Step Procedure

In a two-step procedure the orbital and state
coefficients are obtained separately. This is
done by setting V = 0. The new state coefficients
will be obtained via a Hamiltonlan diagonalization.

When V = 0 in (3.6), we obtain
] { }(3.19)
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Crs,r’s’ Crs,k* Tyege

[ Sk’o

or
~tpa) = {Crg e HTpo g} + {Cpg gr HSgrg)
(3.20)
and
0 = {Cg,pegr HT oo b+ G o dsgrgl 3221
Then from (3.20) and (3.21) we obtain
fpg} = ((Cra,erae) * {Crg g/ HE 4o
{c,(.r.s,))n,,s,) (3.22)
or
(T = = ((erg,par )+ (Cpy o Hlger) ™!
(CK',,S,))"N,S) (3.23)
Furthermore, now
aar = S,k ) - £) (3.26)

as the Hamiltonlan is dlagonalized between itera-
tions. The steps in the two-step procedure are

a. Diagonalize H to obtain configuracion
coefficlents.

b. Compute Cg (3.12)-(3.15) and W (3.11).

c. Obtain T from (3.17).

d. Compute new orbital coefficients.

e. Repeat steps (a) through (d) until conver~
gence is obtained.

The optimum procedure fnr carrving out an
MCSCF calculation is a subject of active debate. 11



Yuesttons in need of further investigation are
orbital space selections and hence parritions, as
well as techniques for dealing with convergence
difficultties., When the orbital space hecomes large
enough, thelr guality becomes unimportant; however,
the problem becores too large to handle. What we
nronose in the next sectlen {3 to combine MCSCF and
offective Hamiltonian theories to bring in the con-
tributions of a larger orbital space without
drastically increasing the size of the MCSCS calcu-
lation.

THE EFFECTIVE HAMlL‘A'ONIAl'l12

.
One technique for the construction of an
effective Hamiltonian 1s hy means of an exponential

and the Baker-Campbell-Hausdorff (BCH) expansion

= 6 et %.1)
= H+ (0,6 + 4 [[H clg] + ... %.2)
where
elp><q], lo><p|
G = or
€ Cal(p) 4.3
and require that
Pl = @ = 0 4.4)

uheref and & are projection operators for Vp and
Voo respectively. We can employ two methods for
the construction of M4 vhere G is determined either
by perturbation or by coupled-cluster {variational)
theory.

Perturbation Th2ory

1. We perform a perturbation expansion of »W
and G :

W ] N 4.5
n=0
and
¢= § ¢® (6.6
n=0

Substituting (4.5) and (4.6) into (4.2) we obtain

{0}
¥ a6+ 0 6@ 4.7
MY oy (10,6 .8
HD L 0 o) 4y oYy

+ [[uo,c‘”],cm], ete.(4.9)

1
2

2. The explicit form of G (4.56) is defined by
the canditions

()]

G =0 (4.10)

and
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M . ey - 0 6,11
We take
g p 5 6l gieseql - lowep(} (w12
PV QEV, Q
3. The representation of Hon Vp Ls then given
by
{0) 0
o - & pEp (6.13)
(1)
Rop? = Vo (4.14)
@ 5 fy LoDy o)
Hopr g {Vql"GPQ Veq Gprq
(¢ (1)
-36- )“m PQ
A (1) (1)
- _( , - Rt Q} (4.15)
etc.
Using (4.7) and (4.8) we obtain
A}
V.. @ (4.16)
PQ - 9
P Q
Thus (4.16) becomes
- z J_Q_._ _..J_’Lu_. .7y
(€2 - (2 - Q)

Higher order terms are obtained in a similar
manner,

Couypled Cluster Theory
For the complete active space decomposition

0 > Fptl >} L Fpt S E prees (4.18)

L
vhere h, h',,.. are active orbitals which are
occupled in | >, the highest wright (single
reference) state and

o { FQ+| >} FY S By By By B By

(4.19)

and where care {s taken to generate a set of lin-
early independent states. The effective Hamil~
tonian is defined

k> = £ k> (4.20)
where
z +
k> = PR, Fp'l > eV, (4.21)
1s a multiconfigurational reference state. Then
PHIK> = £, k> and Qx> =0 (4.22)

In (4.1) we take


http://qn.il

z * (4.23)
74 %Fq
where G includes cne-, two-,...particle clusters.
Then by (4.2) and (4.23)
+

< IFQ(H +{6l 4.0 FR B 2= 0

3 ‘r) ) (0]
which i{s solved iteratlvely with W= H & -»G
UV K B ™ etc. The matrix elements of the

resulting products of generators over the highest
weight state are evaluated algebraically®,

Y. MCSCF-EH THEORY

{4.24)

We propose to combine the MCSCF and effective
Hamiltonian approaches. In principle this pro-
cedure will provide the best definitfion of the
primary space, thercby reducing the size of the
Hpq rerms and reducing the number to be included
in the effective Hamiltonian,

He take the same variational state as before,
16> = eTeS|o> 5.)

whete now we compute its energy using an effective
Hamiltonian

E@) = <0)e e THeTeS 0> (5.2)
= <0|e-se-Te-GHeGeTeS|0> (5.3)

= <o|u|o> + <o|[H,61]0> + <0|[H,S}]0>
+ <ol (1,T1[0> + £ <0]((n,61,61|0>
+ 3 <oltm,s1,910> + L <ol tim,11,m1 0>

+ <0]{[n,61,51]0> + <0]{{n,6],T]|0>

+ <o0]([n,T1,51[0> (5.4

The most genearal treatment would be to solve
for ¢ as a third variational parameter (along with
T and S§). This would Increase the size and com-
plexity of equatfon (3.17). Although this
completely variational procedure would be bounded,
it appears to be too cumbersome, and 50 we choose
to use a predetermined G (from either perturbation
or coupled cluster theory). An extretum of the
enecgy then occurs when

SE(3) = 0 = <0]{(H+ [n,6]),851}0>
+ <O [(H+ [H,G]),8T)[0> - <0 [6S,H,5]|0>

- <0|{8T,R,T)n> + <0}11H,T],85) 0>

+ <of ({H,6T]s)|0> (5.5)
or, In matrix form,
Wtw T
- = {c} (5.6)
v+ v s

where C, W, and V are defined by (3.21)-(3.25) and
the new terms are
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W' = <O| [Egy, [H,G)]]0> (5.7

v = <o|[|o><k],(H,611l0> ¢5.8)
We now reach convergence when
<0| [Egy, (H+ [H,G])1]0> + 0 (5.9
and
<ol []o><k[, (H+ (R.6))]]|0> = <k|(H
+{H,6])]0> + 0 (5.10)

Equation (5.9) is simply a BLB condition for
our truncated effective Hamiltonian (i.e., =
= H+[H,C)), and (5.10) insures that the states
determined diagonglize the effective Hamiltonian.
This process is to be carried out self-consistently
Since the procedure yields a new set of MCSCF
orbitals and primary space basis vectors, we must
compute an updated effective Hamlltonian (i.e.,
update the G's) each iteration. As with conven~
tional MCSCF there are both "one" step (5.6) and
"two" step forms, Within the two-step procedures
there are two classes:

a. Uncoupled. Je (1) perform a conventicnal
MCSCF calculation to obtain orbitals (section 1)
and then with those orbitals (2) calculate an
effective Hamiltonian (section 4) to obtain con-
figuration coefficienta. We repeat steps (1) and
(2) until we reach self-consistency.

b. Goupled. We now set V + ¥’/ = 0; then equa-
tion (5.6) becomes

{Teg} = - ((c,,,,.,l) + (G5, g Hoggr V!

(g, prsr ) TH G ) .11
Then we (1) obtain orbital coefficlents from (5.11)
and (2) obtaln configuration coefficients from an
effective Hamilconian calculation. We repeat
steps (1) and (2) until we reach self-consistency.

A self-consistent MCSCF effective Hamiltonian
is a unique object and provides the optimum conden-
sation of che quantum mechanical information
content of the system which can be encapsulated
within a given primary space and should provide a
valid basis for chemical interpretation.

APPENDIX A - Hy0

We propose to test our procedures onH20 (Cpy
symmetry) using a double zeta basis and a 361
dimensaional Vg composed of sll single and double
excitations (of 1A} symmetry) from the closed
shell singlet ground state. We propose to parti-
tion the orbitals on the basis of their SCF
energles and obtain an 11 dimensional Vp:

Basis: double zeta 0(9s 5p/4s 2p) H(4s/2s)
SCF Ground State: (la1)? (2a,)? (3a,)? (1b,)?
(1b,)? ; symmetry--singlet Ay .

Full Space: All single and double excitations,
Dimension = 361 configurations.
Symmetry = singlet Ay



SCF Orbital Energies:

1=la, -20.559 3elb,
2222, - 1,361 4=3a,
Selb,
6=8a,
7=lb,

Orbital Partitions:

Vearet (1220}

-n.717
-0.567
~0.506
0.218
0.310

Vmixed: ([3>.]4>,[5>,]6>, {72}

Vompry®

Configuration Space Partition:

8=2h,

9=6a,
10=2b,
1i=7a,
12=3b,
13=5a,
14=ha,

18>, 19>, (10>, ]11>, |12, 13>, 14>}

Vp dimension = 11 Vg dimension = 350
(Primary Space) (Secondary Space)

PRIMARY SPACE

; %
|31%;
& L]
00|

[]
21

.
&)
7]

QrnoaE
)
S CIR)

mojnn
&l Bl
15581 1518
7] (9]
(sls] [717]

oginojon
(@31 [zl K13l
S| RIS &
(3] (A |313]
(2]7] (318) (507

CISTMED WOW TARLE - 4zD - savwswe pach

L B

sroxre irrapre

TYY RS

SHAVITT GRAPH

4 3 2 1 [)
b:0 18 21@321032183210

118,
1)
124

L RN RNy

0.866
0,891
0.915
1.223
1.233
1.675
43.325
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APPENDIX B - THE PAIR-PRIMARY SPACE

The pair-primary space extends the number of
actlve orbitals but is of smaller dilmensfor than
the corresponding complete active primary space.
This space is based on the concept of geminals (see
for example Linderberg or Goscinski®?), and it may
>rovide 2 better surface for a dissociating mole~
cule or a transition state. The difference between
the two formulations can be illustrated by a four-
electron, four-orbital nonsymmetric space:

Orbital Particion
Vpixea: {11%.]2>,]32}
Vampey® (4>}
Configuration Space Partition
Complete Active Space (CAS) - Vp dimension = §

Vp(CAS): {

Pair Space {PS) - Vp dimension = 3

wes: (BBE)

The form of the PS-MCSCF equations is simpler
than those for CAS-MCSCF. For PS calculations GUGA
is no longer necessary, as the resulting MCSCF
equations depend only on the weights (occupation
numbers) of the Gel'fand states. (For details see
Hatsen and Nelin.l%)

The use of the pair-primary space i{s applica-
ble to certailn (symmetrical) symmetry states.

The extension to non-singlet states s under con-
sideration.
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STABILITY CONDITION OF THE MCHF ENERGY AND CHOICE OF THE STARTING VECTORS

B.

Laboratoire de chimie, ENSJF, 1, rue Maurice Arnoux ,
92 120 Montrouge, France,

An approximate stability condition of the MCHF
energy is derived, [t leads to a criterium for the
choice of the starting vectors.

1. Second derivatives

if the matrix of the MO components in a Eixed

l':]x-o h

basis is written in an exponential form
C =exp (X) ,

then the useful second derivatives of the tatal
energy with respect to the xii 's matrix
elements are™ §

“(ind)

+E aB,v6

*(dir)
E aB,yé

v 3 < v lkBamal>, v6-8vd, uhv, >

<y lfda-dBy. Aue>< v lfdv—o), v, >

Ml -5 s -5
i, ", W T
" i . .
WD) ays = < Vol (Bag®NCis-8n ]y, >
."(ind)
£ e

Ké0

. r o m e :
where a , 8, Y , § are creatian operators,
a ,B8 ,y , 6 are annihilation operators,
[ ]' means the anti-commration, *o is the

eigenfunction of the CI corresponding to the
state under congideration and the wK's (K # 0)

are the remaining eigenfunckions.

nedi
The first term, E (dir) af ,v8, is obtained

by differentiating the MO's alone and the second
one comes from the Ci coefficients.

2. Stability condition

It is seen on these expressions that for a
diagonal second derivative (a= y , 8= &) the
second term is always negative. Therefore, a
necessary condition for the stability of the
energy is

"(dir) "{ind)
E uB,aB>lE as.uﬂl

We introduce now the following hypotheses

i b, has a Teading component -90. This allows coe

to introduce the following notation

- i,3,k ... are the indices used for the core
vrbitals (never substituted)
- t,u,v .., for the active orbitals occupied
in ¥

» . : N
- Suv™... for the active orbitals not occupied
i b
m "o
- a.bye ... for virtual orbitals

ii) The most important components of ¢  are

)
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Eo_EK

obtained by closed shell double substitutions of
type t t ~ & E®, Thus

- @

Y, # a°¢o+)éau.¢

ian' >> la, ol

iii) Al che waveruncrions Y. have a leading
component like wo (no near °* degeneracy).

1t appears from these hypothesgs that the

contributions of the diagonal matrix elements
of H to second derivativesof type (tfa , (a)
are smaller than the the contributions of the
off diagonal matrix elements of H  that have

a cofactor of ctype a, a, =
Thus
wedi
(dir)
E fa, ta *2a, a",(KM Ke)

"({ind) 2 _
E LA L [k # 17 /(EE 9

where K is an exchange integral and Kt is
the exchange operator for the orbir.al'f‘[.
Then, using

3 P Keen / EE

a ¥ 1

]

e



we find for the stability condition Refererices
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The last above condition, Eq.(3) is satisfied if 4. E. Dalgaard and P. Jorgensen, J. Chem. Phys.,
the orbital C. is sufficiently diiferent . 69 , 3833 (1978)

from (O ,. Indecd, if 7, looks like (F[l;?l"\as
. )
Kpeo # Ko = “Kt):'a'

and the condition is not satisfied.

Starting vectors satisfying Eq.(3) can be easily
constructed (et,, is obtained by using the same

PR . ' s .o
corhipations of basis AO0's as in ‘ft \with

appropriate changesof sign)and then project:
in the space complementary to te[. Then (Pa
is obtained by Schmidt orthogonalization with
respect to ‘Pt and ?[.,An example of such

a procedure is given in Table I for an MC HF
calculation of CH, in a double ¢ basis wvere

b is exactly givem by Eq. (2). The first
two lines give the SCF wvectors of F, symmetry

which were leading to a near unstabilicy (E"v107%)
due to the contribution of E (ind), The lasc
two lines give the starting vectors of FZ

symmecry obtained by projection as described just
above : these vectors lead to convergence m

5 iterations with a single calculation of £"

{at the first iteration) and the final vectors
are differing from these starting vectors in
decimal places that arebelow the ones given in

the Table.
Carbon Hydrogen
2p 2p’ Is 1s!
SCF M0's ‘ﬂ::' -:f; -x:g? -ff l:g;‘
MCHF M0's &. ;: :;3 -f? -:gg

Table I. SCF and MCHF MO's on CHA in a double %
basis.

Tt is concluded that

i) it is easy to obtain starting vectors satis-
fying Eq.(3) for which neglecting E"(ind) wiil
result in no hidden unstahility and conscquently
will allow quadratic convergence ;

ii) The Eq.(3) also provides a theoretical

expl nation of the character of the M0's that
are generally out coming from MC HF calculations.
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RESPONSE FUNCTIONS ASSOCIATED WITH MULTICO!NFIGURATIONAL REFERENCE STATES

Esper Dalgaard
Department of Chemistry
Aarhus Universiry
DK-8000 Aarhus C, Denmark

SUMMARY

The linear and quadratic responss of an
atomic or melecular system to an external pertur—
bation is studied within the framework of time
dependent multicoafigurational Hartree-Fock theory.
A time dependent reference state is set up as
{¥> = exp(iMexp(ix) |0>exp(-ict), where A and x are
Hermitian operators, which generate unitary trans-
formations of orbitals and expansion coefficients,
respectively, in the MCHF ground state, [0> =
E[og>cgo. When the variation in time of A and k

is derived from Frenkel's variation principle, the
response functions are consistent with Ehrenfest’s
theorem :—t <slolp> = <p{30/3t|y> ~<y|[(0,H] 4> for
arbitrary one electron operators. wue to this
feature the dipole length and veloeity expressions
for the oscillator strengths of electronic transi=-
tions will give the same result apart from basis
set truncation errors. The emphasis is on linear
response, but quadratic response functions are
defined and a method for their calculation within
MCHF theary is desecribed.

"TRODUCT 10N

Descriptions of the dynamic response proper—
ties of many electron svstems in terms of the :ime
dependent Hartree— and k. ctree-Fock theories
occurred in the literature almost 3s early in the
history of quantum mechanics,as the corresponding
ground state approximations. Over the years, the
random phase approxination, which is equivalent to
the time dependent Hartree-Fock approack, has
remained a popular tool for estimages of the fre-
quency dependent pnlacizabilities.” Formally, this
method has the av*ractive features of gauge

invariance® and variacional derivation" from a
bounded functional, and for closed shell systems
for which the Hartree-Fnck atate is stable, the
results are generally quite satisfactory for the
lowest lying transitions and the corresponding
ogcillator strengths.

Deficiencies in the time dependent Hartree-
Fock approximation are nimerous, however, partic—
alarly with regard te the continuous part of

photoabsorption spectraj and to the lacking self-

consistency of the polarization propagator, '’

The method fails completely if the Hartree-Fock

state is uns:AbleB, and this is probably the moct
serious problem in the molecular applications.
Naturally, many improvements have been developed
to include correlation effects, Most of these
treat the electron interaction in a perturbative

9
manner. i L
The purpose nf this contribution is to re-
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port on a recently fornmulated generalization of the
time dependent Hartree~Fock approximarion, which is
based on a multiconfigurational representation of

ground s:a:ew'u:
N

- 1
o> zgl [¢g>Ceq 149)

where ]¢g> denotes a single determinant or a symme—
try projected single deierminant. Improved opti-

mization p:ocedure:lz"3 as wnll as encouraging
numerical results from relatively large scale MCHF

calcula:ions“ of atatic molecular properties
indicate thac dynamic response functions might be
calculated effectively in terms of t. variables of
MCHF theory. Initial numerical results seem to

justify such expec:atmns.w

Our aim is to analyze the response of the
system to an adiabatirally switched on perturbation
of the form {170):

W(E) = v expl-ilwrinlt) + Viexp(-ilww+inlt)  (2)
As an ansatz for a time dependent reference state
we introduce the expression
ju> = ujovexp(-iet) 3)
The state vector |y> will also be of the multicon-
figurational form if the unitary operator U is
constructed as

U = exp(il)exp(ix) )
where A an® ¢ are Hetmitian operators, which pener~
ate transfurmations of orbitals and expansion
coefficients Cgo respectively:
exp(ic) 10> = Jlo ><4, [exp(ix) [0> s
iMle > = [§ (0> 6
exp (i )Ims I@E( ) (6)
Explicit expressions for A and k will be given
later. Presently, we take A = A(t), « = «(t), and

€ = €(t) to be the basic variables of the theary.
Frenkel's variation principle 2s modified by Lang-

hoff, Epstein, and l\'arplus,15

Re <&y|i -H-ulw =0 (7)
yields the folloving requirement on the operator
v,
+ +

2 Im<SU U> + 6<U (H+W)U> = 0 (8)
The phase function g(t) shall not concern us here
since it does not enter the calculation of response
functions. Equation (8) does nut in gen..al corre-



spond to a minimization of a positive semi-definite
measure of the error introduced by the ansatz for

]UP.A but this variation method is convenient to
employ in practice. It reduces to the ordimary
Rayleigh-Ritz vaiiation principle in the static
limit, an aspect vhich ensures that the dynamic
polarizabilities wil' cqual the static polariza-
bilities at zero-fruquency as obtained from

coupled MCHF calcu).al:ions.w’lEl

In the next section we discuss the formal
spectral representations of linear and quadratic
response functions, while the remaining parts of
the paper is devoted to the.r calculations in the
MCHF framework.

11. ELEMENTS OF RESPONSE THEORY

Response theory is a standard topic in
quantum mechanics and statistieal mechanics.
An account on the subject, which is particularly
useful for our purpose, has leen written by

Zubarev.17 Assume for the moment that [0> is the
exact unperturbed reference state and [i> the
corresponding solution to the time dependent
Schrddinger equacion in the presence of the per-
turbation given by equation (2). The result, which
we shall need is then that the expectation value
at time t of an arbitrary Hermitian operator R
takes the form

<p|R|¢> - <o|R]0O> = 9)
2 Re [ds<<R(t); V(s)>>exp(-iEs)

+2 Re [fdsds'<<R(c); V{(s); V(s')>>exp(-iE(s+s'))
+2 Re [fdsds'<<R(t); V(s); V' (s')>>exp(~iEs-iE's')
+one

where the integrations over the time variables
s, 5' are from — to #=, Several definitions have
been introduced here. First, R(t) and V(s) are
operators in the interaction represemtation, i.e.
R(t) = exp(iHt) Rexp(-iHt), and E = w+in while
E' = -w+in. The quantities in the double brackets
are the linear and quadratic response functions

ar propagators in terms of time variables.!7»18

Zubarev defines the retarded two-time propagators
or Green's functions as

<<R(E); V(s)>> = -i<0|[R(t), V(s)]]0>0(t~s)  (10)

and it seems natural to extend this concept to
include quadratic response functions. Thus, we
define the three cime propagators as

<<R(t); Va); V' (s")>> = an
- <0[{[R(t),¥(s)1,V"(s")]|0>0(t-5)0(s-5")

In equations (10) and (l1),0 denotes the Heaviside
step function, G(1) = 1 for T > 0 and zero for
T< 0 . It is generally most convenient t?eemplny
the Fourier transforms of the propagators ~, and
since these are functions of time differences
only, the transforms are obtained as

<<R;v>>E = (12)

fdt exp(iET)<<R{0) sV (~1)>>
and

<(R;V;v+>>EE' = (13)

[fdude! exp(il—:ﬂil:‘r')«R(O):V(-t);V+(-1')>>

The functions <<3>>, and <<; j>>__, are anmalytic in
the upper half of :fie complex pldne. Introducing
formally a complete set of states {|m>}, which are
eigenstatea of H, we find that the spectral repre-
sentations may be written

<<R;V>>E = (14)

3 (S0R|m><m|v[0> _ <0{V]m><m|R}0>,
E-EmeO E+Em-Eo

and

<RViVTr, = (15)
E <0|R|m><a [V |m'><m’ |v* |0>
E+E _Em‘EO E -Em,ﬂ-:o)
) <g+:++g>q:.£v m;>:::|'_i;; 0>
o' O m O
-7 9wl o' ><n’ v* 0>
(E+E +Em-Em,)(E -Em"ED
- I <0]v* [m><m|R|m' ><m* [V]0>
(E+E™+E -E ) (ET+E ~E;)

0

Somewhat simpler expressions can be established for
the special cases <<R,V,¥»>> and <<V,V,V>>; these
will not be delt with here.

It is apparent that the poles and residues of
the linear response functions provide transition
energies and transition moments for transitiuns
involving the ground state directly. In addition,
the quadratic response functions furnish us with
transition amplitudes between two excited states.
Such amplitudes are ggeded for the description of
two-photon processes ~, which are of much interest
within cthe field of laser spectroscopy, and also
for calculations of radigfive lifetimes, except far
the lowest excited state” . There is therefore
ample motivation for extending current efforts in
the theory of propagators to include the quadratic
ones.

Most approximate calculations of progagtors
have been based on the equation of motion ~*

}:«R;v»E = (16)
<0{[R,V]|0> + <<[R,H];V>>E

A similar equation connects the linear and quadratic
response functions

+

(E+ET) SRV >0, = an
+ +

<<[Rr,V];V >+ <<[R,H];V;V >>pn

Formally, we may express the connection between the
two types of propagators as a moment expansion



+
= <AV >,
n=0 (£+£")"*!

g (18

+
<<R;V;V >>E

where A = ()" (1) "R, V). Here H denotes the super-
operator which on an arbitrary operacor has the
effect HX = [NH,X]. Equation (18) suggests approxi-~
mation schemes for the quadraﬂc response functions
in terms of Padé approximants“", but this aspect
will not be pursuad here.

Introducing the Fourier transforms of the
propagators into equation (9), we find that

<y|R[y> = <0|R]0> (19

+2 Re[<<R;V>>E exp(~iEt)
+ <<R;V;V>>EE exp(-i2Et)

+ <<R;V;V‘>>EE, exp(2ne)] ...

where E = w+in and E* = -w+in.

In the time dependent multiconfigurational
Hartree-Fock formalism, the response functions will
be expressed in terms of the operators A amd « in
equation {4) as calculated from equation (B8). As
shown previcunly“, a perturbation expansion of the
type

A= AL + A(2) +... (20}

K = k(1) +x(2} +...

derives from equation (8) only if the unperturbed
reference atate |0> is fully optimized so that the
generalized Brillouin theorem
<0|{SA+Ex,H]]0> = 0 @)

is valid. Then we find from equations (3) and (4)
that

<¢|R|Y> = <0]R|0> 22)
+ i<0}[R,A(1)+Kk(15][0>
+ i<0][R,A(2)+<(2)]]0>
<0|[[R,ACL) ),e(i7 0>
10} {IR,A(D],A(D) )}0>
<0 [[R,k(1)1,x(1)]]0>
*oees

The next section is devoted to the equations
from which A and « are calculated. The resulting
MCHF propagators are im SubSequeat sections ideati-
fied by a comparison of equations (19) and (22).°

11i. TIME DEPENDENT MCHF EQUATIONS

Consider now again equations (3), (°), and
(8). The objective of this section is to deduce the
perturbation expansion indicated by equation (20)
from equation (8). We assume that our unperturbed
reference state has been fully optimized as dis-
cussed by professor Yeager at this symposium.

Following a suggestion by Linderberg and
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Ohrn7. we Firsc express the operators A and x as
linear combinations of Hermitian operators Aj and

<5
- N o= K 23
A ZIJAJ,K EbJJ (23)
with real coefficients a; and b.. For orbital
transformacions we need the set
(26)

(l\jJ = [(a:a‘n;lr); i(a;as-a:arﬂ

where a denote electron creation operators refer-
ring to"an orthonormal spin orbital basis set

(¢ (&) |e=1 .,M}. Transformations of expansion
coefficiencta {C__} in equation (1) "are generated by
the elements of%°the set

{5} = Ulggo<o, 1+19,,><0 [sile><0 . [-i[0;><0 1}
(25)

Detailed deacriptions of how to carry out these
transfomfiaﬂ in practice have been provided
previously.™?

A general infinitesimal change in the unitary
operator U is given by

8U = i(x+ WU (26}

where x and ¥ are given by the equations

x = ['ds exp(ish)Shexp(-iah) @n
0

K = flds exp(iax)Sxexp{~isx) (28)
0

and

R = exp(iM)K exp(-isA) 29

The operator K has the same form as K but is
expressed in terms of the transformed orbitals. It
will prove convenient shortly to employ variations
8A such that x = A.. Tn order to find such varia-
tions, we first de ine the superoperator AX = [A,X]
so that equation (27) reads

X = flds exp(isx)GA (30)
0

= Y

(i) o
L tenr 7 e
The numbers (i)"/(n+1)! are the coefficients for
the Maclaurin expansion of the function f(x) =
(exp(ix)-1)/ix. Let d_ denote the Maclaurin
coefficients for the reciprocal funmction 1/f(x)
and take SA to be

SA =T d (M)A
“ZD MOWN &3}

This sum is convergent if all eigenvalues, 0., of
A lie in the interval 0 < Bj < 2m, a requirelent
vhich can always be fulfilled since those eigen-
values in connection with orbital transformations
alvays occur as exp(i®.). For thig choice of A

we obtain y = A, as desired. Similarly, we may

choose Sk such that ¥ = K5 = exp(i/\)Kj exp(=iA).



Employing equations (26), .., {(31) in equation (8)
ve conclude that Frenkel's variation principle in
the present context becomes equivalent to the
equations

<wll\jlw'> + <w'IAJ,Iw> - (12)

-i<w|[l\_‘-,H+u”w> (all j)

<w|'?jlw>+<wl*~j|w> - 33)
(all j)

~i<y|[R, ,Hewl{y>
3

An interesting observation can be made here, namely
that when equations (32) and (33) have been solved
for A agd k then the generalized Ehrenfest's
theorem

S <wloly> = <b32v> ~i<y] lo,mem) 4> et

will hold for any operator, which is a linear
combination of the gemerators A, and K, . This
result will be used in the next)sectioh to
demonsktrate the equivalence of the dipole length
and velocity expressions for oscillator strengths
within time dependent MCHF theory.

So far, ve haye assumed that the set (A}
contains all the H° generators, a_a_, of the
unitary group U{M) of all pcssiblg lsmiury trans~
formations of the spin orbital basis set, but this
set is often highly redundant. If there is a sub-
set of generators {A!}C{A.} which ure generators
of a subgroup of U(M’ and Jif

N
Aleg> = 'Zl g ><tg 1A 10> (39
&=

then this subser, {A!}, may without loss of genera-
lity be omitted in the representation of A as

given by equation (23). Such generators provide no
additional flexibility in the ansatz for [y>. The
set {«,} given by equation (25) is also redundant.
A nonrddundant set of generators for unitary trans-
formations of expansion coefficients, C_, in
equation (1) is conveniently expressed $8 terms of
a set of states {|n>) which spans the orthogonal
complement of the reference state |0> within the
subspace spanned by the manifold {[¢ >, g = 1,...,
N}. This set may be chosen to be g

{Kj) a {|n>¢0]+|0><n];i|n><0|-i{0><n|} (36)

Elimination of redundant variables is essential
for the following, since otherwise equations (32)
and (33) would not provide a unique solution for
the variables {a.,b.} which are iacluded in our
ansatz for |¢>. fora more detailed description of
the identiFication of the redundant variab}fslihh
reader is referred to recent publications.” *™°*

Finally, we are prepared to set up equation
systems for the calculation of linear and quadratic
response properties. Using equation (20) in (32)
and (33), and collecting terms of the same arder
in the external perturbation, we obtain a set of
first order equations as

i<[/\j,f\‘1)+:.(l)]> - < L0ALHL AW (D )> =
-i<lgu)> (37)

i<[-<j.ﬂ(l)n2(l)}> - <['<j.[H.A(l)ﬂ<(l)]]>

= -i<[<j,H]>

while the second order equations become

i<mj,A(z)+'<(z)1>—<[(Aj.u1,m)».<<z)1> - (28)

<UL M), A+ ())>

+ <(I\j.l\(l),i\(1)) + (I\_‘-.K(l).i(l))>

+ <lALAM L] + HALALE RD]>

+ 7 <LLIALHEL A LA + 26(1) 1>
i
H

+

<[[[I\j.H].K(l)l.K(l)]>

and
i<[-<j.h<2)+.'<(z)1> - <l A@=@ = (9
<oy T AW MT> + <Lk A ]k 1>

+ § kg, T LA >

7 <bx [HAMD T, M) +2¢(1) 1>

In these equations a "." is used to designate the
derivative vith respect to time and we have intro-
duced the abbreviation

+

(Ao 2R = ATLA;LALAT + § LTA;,ATLA)

All expectation values are with respect to the un-
perturbed reference state |0>.

The non-linear orbital relaxation effects
which are included in the time dependent MCHF
formalism appear explicitly in the equations for
the quadratic or second order part of the operators
A and k. These terms, i.e. the last four parts of
equation (38) and the iast three parts of equations
(39) are spurious in the sense that they would
vanish identically, if A and k were linear combi-
nations of true excitation operators. A detailed
analysis of those terms will be prblished elsewhere.

Two special cases of equations (3B) and (39)
may be of interest. IF the operator A everywhere
is replaced by the unit operator, the present
method becomes equivalent to the configuration
interaction approach and the non-linear response
terms are obtained from

i<|»:j,n'<(2)]> - <[-<j.[u,.<(2)]]> - (40)
<[Kj.[H.K(1)]]>

On the other hand, if K is replaced by the unit
operator and the reference state [0> is chosen to
be the Hartree~Fock state then the random ph se
approximation is recovered. In this case equation
(38) becomes

i@ - <LlA;,H, A 1> = (61)

+ & <AL KLAM LA 1>

‘[U\j M1LAL)]
since the expectation value of the preduct of any
ﬂ'uree particle~hole excitations or deexcitations
will vanish. Equation (41) is equivalent to the
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the non-linear time dependenc Hartree-Fock
equatjons recently described by Tillieu and Groenen-
dael®”, using effective one particle operators and
Lagrangian multipliers.

IV¥. NCHF RESPONSE FUNCT1ONS

Turning now to the problem of solving equa-
cions (37), (38), and (39) for A and x we first
observe that a vnique solution requires a boundary
condition. Since the perturbation operator vanishes
when ¢ tends ro minus infinity the appropriate
boundary condition is

lim Jyo<p} = [0><0| (42}
o

or equivalently

lim A=linx =0 (G

g [

The form of the perturbation operator W(t) and the
linear nature of equations (37) allow us to conclude
that the time dependence of the first order opera-
tors A(1) and «(1) will be

A1) = alliE) exp(~iEt) + o’ (L;E)exp(~iE't)  (44)
<(1) = B(1;E) exp(~iEt) + BT(1;E)exp(-iE't)

where E = w+in and E' = -w+in. The following
expansions apply for the frequency dependent opera=~
tors a and 8

a(LE) = | aj‘(mj )
SEY = 1
B(1;E) = ¥ b (E)xj

We find then that equations (37) become replaced by
the requirement

E< [Aj-u(l)fﬁ(l)1>'<[[Aj,H1.u(1)*B(l)]’ - (46)
- i<[l\j,vl>

E<[Kj.u(1)+B(1)]>-<[<j.[ll.a(l)'ﬂ(1)11> - “n

- i<lk;,vl>

When the expansions for a{l) and 8(l) in terms
of the generators A, and x, are .ntroduced in (46)
and (47), a linear System Of equations is obtained
for the variables a. () and b." (E). Standard
methods may be employed to invert the coefficient
matrix for this sysctem for each energy value, but
if the spectral representation ovf the response
functions is desired, it is most convenient to em—
ploy 2 set of macrix transformations suggested by
Linderberg and Ohrn for a generalized random phase
approximation’.

We assume in the following that the operators
a(l;E) and B(1;E)} have been determined. A compact
formula for the MCHF linear response functions can
then be inferred from equations (19) and (22):

<<R;¥>>, = i<[R,a(1;E)+B(1;E) ]> (48)
Equation (46) may be viewed as a direct consequence

of the generalized Ehrenfest's theorem, equation
(34),which in the present scheme is vslid for all

nne-elgn(ron operators (even if some of the genera-
tors a a . are redundant and therefore omitted in
the ansafz for IVD). Thus, it holds that

E<<R;V>>p - <<[R,H]5¥>>, = <[R,V]> (49}

if R is a one-electron operator. Suppose now that
an operator P is related to R through the Heisen-
berg equation

iP = [R,H) {50)

as, e.g., the dipole moment and linear momentum
operators. Since

<<[R,H];v>>E - <<Il;[H.V]»E {51)

for the exact propagators,and alse for the approxi-—
mate ones obtained in the MCHF scheme,we have a
sequence of identities

EZ«R;I»E = JE<<PiR>> (52)
= <<P;P>> + i<[P,R]>

According to equation (14) the linear response have
poles of firat order ac transition energies w, =

E -E . The oscillator strength for the tunliiion
ld»?.l'il in the dipole length formulation

£Li0n) = ZE g0 {<olR]3>(? TE)
while the dipole velocity formulation reads
£v;0e0) = 2e;-2) " |<o]p) > |2 e

Atomic unita are used here, and R and P denote the
dipole moment and linear momentum vector operators,
respectively, The residue at wy of the propagator

SPe<R;R>>, = (55)

<<R R >>. + <<ny;ky>>£ + <<R_iR >>

equals the square of the transition moment <O{R|J>.
Therefore ve see that

E(Li 09 = Fu Reslspecinos ] (56)

¥y

2
3
= 2w T ResIspeeRsoo ] 2 £(V000)
All vesidues above are evaluated at cthe pole u,.
It follows that apart from a possible violation
of equation (50) due to the finite orbital basis
the two expressions for the oscillator strengths
are equivalent in MCHF theory. In fact, all the
various formulations are equivalent in the present
scheme24 and the Thomas~Reiche-Kuhn sum rule
EE(0+J) = <N > holds as wellll. These features of
time dependenE MCHF are attracrive, but it should
be pointed out that Kobe3 Tecently has demonstrac—
ed, on the basis of gauge invariance, that it is
the length form of the interaction between charged
particles and radiation, which must be used, when
the unperturbed Hamiltonian is chosen in the usual
manner .

Changing now the topic to the quadratic re-
sponse functions, we consider again equations (38)
and (39). The right hand sides of these equations


http://particl.es

contain the oscillatory Eactors exp(-i2Et),
esp(~i(E+E'}t), and exp(-i2E't), where as in equa-
tion (44) E = w+in and E' = -w+in. The operators
A(2) and k(2) must therefore have the form

A2) = a(2;E)enp(~i28e) + o’ (Z;E)exp(-i2E't)

+ Y(E,E')exp(~i(E+E')t) (57)
and

K(2) = B(2;E)exp(-i2Et) + B'(2;E)exp(-i2E't) (58)
+ U(E,E"Yexp(~i(E+E')¢t)

The operators u{2) and £(2) should satisfy the
equations

E<[A0(2+8(D))> - <07 B)a(2)+B(D)])> = FJ, (E)
(59)
2l~:<[<j.u(z)+e(2)]> - <l-<j,(H,n(2)~B(z)ll> = G;(B)

while ihe operatars y and u should be a solution
to the system

(BB <[hg ysul> = <{[75H], vrul> = Fo(E,ET) (60)
(E+E')<[(j,y+u]>-<[Kj.[H,T‘u]]> = Gj(E.E')

The four fupctionals F.(E), G.(E), F.(E,E') and
G.(E,E') are iden:iﬁed by in taduciﬂg equations
(d) and (44) in the right hand sides of (38) and
(39). We shall not need the explicit expressions
for these functionals in the present discussion
but we note that they can relacively easily be
calculated from the tgo*electrnn transition dgnsity
matrix elements <¢ |arar.as.as|0g.> and the first
order variables a. ‘(E) and h.l(E). When expansions
analogous to thosd applied fdr a(l) and B(1) are
introduced in (59) and (60}, we get equation
systems of the same form as the first order equa-
tions and the same computer code may be used for
their solution.

Finally, we compare equations (22) and (19) in
order to obtain expressions for the quadratic re-
sponse functions
= i<[R,a(2)+B(2)]> (61)

<<R3V;Vo> - :
R;V;V. w+in,w+in

- b<[iR,a(1)1,a{1)+28(1) 1> ~3<{{R,E(1} LBV ]>

and
+
Vs 62
2Re<<R;V;V PP weing-urin = 2
. -
Vs + <RV
<<R3ViV > wtin,—wrin RV —wtinwein

= te[R,yud> = <[[Ra(D)], 8% (L ]>

-<[[R,a"(1)], BO]>

- e@®,a(1),a’(1))> - <(R,3(1), 8%(1))>

Equation (62) indicates thar it may at times be
moTe convenient to use am alternative to the forms
(11) and (15), namely

G(RV'GEE") = JeRiVi¥'os ., ¢ JeeRsV VoLl (63)

The definition (11) appears to be a natural
extension of Zubarev's retarded Green's functions
and it also seems to give the simplest spectral
representation for a non-linear responsg function.
On the other hand, the Function <<R;V;V >»__, has
a singularity for E+E' = £ ,~E  where both m and
m' denote excited states, hit® ann sgch singulari-
ties are absent in the function G(RVV ; EE'). A
more complete deacription of the calculation of
quadratic responee functions within the time
dependent MCHF theory will be published elsewherc.

V. DISCUSSION

Multiconfigurational Harcree~Fock merhods
have enjoyed an increasing popularity during the
last decade ae a natural means of iacluding
correlacion eftects, when descrisgng the electronic
structure of atoms and molecules® . The present
symposiun is a manifestation of this fact.

Several authors have found the MCHF method
useful for the generation of an orbital hasis set,
vhich improves the convergence of a configuration
interaction expapaion., Such calculations are gem—
erally directed toward highly accurate descriptions
of a few low lying states and to a lesser extent
toward the dynamic response functions, albeit
mainly for economic reasons. This study has been
incited by the progaga:oc methods as developed for
quantum chemistryl3 and at the same time by the
difficulties thar those methods encounter, when an
explicit ground state represemtative is abandon-
ed.6,7 I would like to advocate the view that well
defined propagator approximations emerge in a
natural way within the vime dependent MCHF frame-
vork. Recent numerical results for oscillator
strengths and excitation energies for the 0, mole-
cule obtained by Albertsen, Yeager and Jorgénsen??
support this view. These authors employ an MCHF
propagator formalism, which is equivalent to the
presept formulation for the linear response func-
tions .

So far, no computations have been made for the
quadratic response functions as defined here. How-
ever, the rapid development of laser spectroscopy
in the non-linear domain calls for theorerical
descriptions of second order processes. 1f seems
that the functions <<R;ViV >>__, or G(RVV ;EE')
given by equations (11) and (B3), respectively,
will be useful tools for such descriptions.
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MCSCF REFERENCE STATES FOR RESPONSE FUNCTIONS

Prof. Jack Simons
Department 6f Chemistry
University of Utah
Salt Lake City, Utah 84112

GREEN'S FUNCTIONS

Untit quite recently Green's function (GF) and
other response function developments have been re-
stricted to single configuration SCF or first-order
Rayleigh-Schrédinger perturbation theory reference
wavefunctions. Following the lead of Yeager and
Jérgensen, David Chuljian and the author have been
able to farmulate one-particle GF theory far an
MCSCF reference function |0>. The choice of ioniz-
atior operator manifold p*, p*in><0|, where {|n>}
is the MC orthogonal complement space, gives rise to
quite tractable expressions for the elements ¢f the
GF matrix. By choosing the MC space to include ail
single and double excitations out of one of the
dominant configurations of |0>, we are able to sig-
nificantly simplify the transition density matrix
elements which appear in our working equations.
fact, we have been able to Tink this MC based GF
program to our unitary group MCSCF programs quite
easily.

ENERGY GRADIENTS
The fact that a converged MCSCF wavefunction
0> obeys the Generalized Brillouin Theorem makes
such wavefunctions especially attractive for use in
calculating how the energy E yaries when | the mole-
cule's nuclei are moved from , to Ry + u By
conechng the 3N-6(I} nuclear dlsplacement vectors
(whuse lengths are t0 be determined) into a

o, one can express the Hamiltonian at

1n

smgle vector
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R+ 3 in terms of orbitals centered at K: Hy

weda e 7 W22 pere al cnntams both the

Hellmann-Feynman factors | <o, IT Ir-R 1" ]ojﬂ j
i,

and the atomic bas1s function derivnt-lve terms

R <Xal|r-Rbl' [%e>. Likewise, R 2} contains both
killds of second derivative terms, but neither A

nor H 2 contain any effects of MCSCF orbital vari-
ation or CI coefficient variation. These latter
effects are treated via the exp(i}) and exp(iS) op-
erators. The resultant energy expression, when made
stationary with respect to variations in X and S,
gives rise to,the fo]lomng,‘expressi?s\ ?through sec-
undorderinﬂ) E=E +a . <0}

i cofil®e . . wEE, S8 a7 (F5EE -4
where 4-B is the MCSCF Hessian matrix (at R) and

and § are Generalized 8rilTouin-Tike mﬁsu glements
1nvolvin9 the Hamiltonian derivative H!

<olti* .80 105, & = <ofgins<0f M1 y05. This

quadriatic form in a can then be used to find sta-
tionary points where 3E/3a = 0. It should be not-
iced that the orbita) and CI expansion_ coefficients'
responses to the nuclear displacement a are computed
]n a coupled MCSCF method; we do not resort to us-
ing single configuration coupled SCF to estimate
the orbital changes .




AB INITIO CALCULATION OF THE EFFECTIVE VALENCE SHELL HAMILTONIAN
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ABSTRACT

The study of molecular electronic structure
has been divided into two separate and often acri-
monious branches, ab initio and semiempirical the-
ories. We have shown that the clue to providing a
rigorous theoretical basis for understanding and
systematically improving semiempirical methods of
electronic structure lies in the study of the struc-
ture and properties of the effective valence shell

Hamiltonian, ‘K". ! Kv can be calculated by pure-
1y ab initio methods, and its eigenvalues, associa-
ted with the valence states of interest, are exact~-
ly equivalent to those generated by the solution of
the full 'olecular electronic Schrédinger equation.
The resul*s of our recent calculations of XV are
of interest both as a novel ab initio formalism and
Far the insights they provide into the hidden under-
lying assumptions of semiempirica) theories. The
pursuit of this work naturally leads into the use
of multiconfigurational self-consistent-Field (HCSCF)

methods to provide input for }(v calculations.

INTRODUCT ION

Given a set of orbitals which is partitioned
into core, valence, and excited orbitals, it Is
possible to define an effective valence shell Hamii-

tonian, K Y, which is an exact transformation of the
original Schrodinger equation for the states of in-

terest (the valence states).? The orbital space is
assumed to be large enough to accurately describe
the valence states which in zeroth order are repre-
sented in terms of linear superpositions of config-
uration functions containing a full core and a par-
tially occupied set of valence orbitals. The re-

. v . . v
sulting ﬂ has the following properties: {1} ¥
contains explicit reference only to the designated
valence shell orbitals. Nevertheless, the eigen-
vatues of H Y are exactly identical to the corres-
ponding valence state energies {i.e., potential en-
ergy surfaces) which result from the solution of the
full molecular electronic Schrodinger equation with-
in the given orbital basis. (2} The exact eigenval-
ues of K" are obtained from a full valence space
configuration interaction (CI) caiculation, so Y
is the quantity which is mimicked through parame-
trizations of the model Hamiltonians, 'K;. of semi-
empirical valence methods.” Hany semiempirical
3 Vs are fit directly to a form which ignores the
valeflce C1 because of the added expense. (3) in
addition to the usual one- and two- electron effec-

v .
tive operators (¥} and ®Y;), K also contains
three-, four-, ..., Nv-electron effective operators

v v hich have no counterparts |
(“ijk'KUkl"")“‘ A P in

semiempirical theories. Here Nv is the number of

valence electrons. (4} H Y uses the same set of or-
bitals to describe all valence states of a system

including all charge states.s'5 The fiozen nature

of the valence orbitals in the calculation of KV
significantly differs from conventional ab initio
methods where the orbitals vary with the state and
charge of the system. However, the same integrals

of the effective many-electron operators of J(' may
be used for all of these valence states since XV
is formally exact. We have numerically verified
this fact, as described below, by using one set of
orbitals to calculate all valence excitation ener-
gies and jonization potentials of the fluorine atom

from F+7 through F” with an average deviation from
experiment of 0.27 eV.

In this paper we present a survey of our ,(v
calculations for the fluorine atom and for the CH
molecule preceded by a brief discussion of the the-

ory of J‘(v. A discussion {s also given of several
calculations which are planned or in progress that
require the use of multiconfigurational self-con-
sistent-fleld (MCSCF) methods to generate a reason-
able set of valence orbitals, Since the calcula-
tions for fluorine and CH involve third order quasi-
degenerate perturbation theory we are able to ad~
dress questions of convergence and to analyze the
effects of three- and {the never-before-calculated)
four-electron effective integrals. Our calculations
for CH provide the first ab initio test of the fund~
amental transferability hypothesis of semiempirical

methods . é
THEORY

Definitions

In order to define R Y for an N electron sys-
tem, it is necessary to first describe the subspace
of the full N-glectron Hilbert space within which

HY exists. This subspace is called the valence
space and is spanned by the set of all N-electron
symmetry adapted Slater determinants which have all
core orbitals fully occupied with Nc = N-Nv core

electrons and the remaining Nv valence electrons

distributed amongst the valence shell orbitals in
all unique ways. The basis of orthogonal comple-
ment space, or excited space, incorporates all other
possible configurations. These are characterized

by having at least one vacancy in a core orbital
and/or at least one occupied excited orbital,

Emphasizing this partitianing of the Fuli N-
electron Hilbert space, the Schrodinger equation in
matrix form is represented by

/cp p
--l= B - Q)
W
) M \‘u f
where C, and C, are cozfficient vectors in the val-

ence (Pg and :chted (Q) spaces, respectively. Using
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the well known transformation described by Lowdin 7
praduces a representation of the exact Y which is
defined on the valence space and which has the ma-
trix representation,

Bep= (Hppohp g (EL go-Hog)” uuplc =EC, (2)

Since all configurations in the valence space
have 2 full core and no reference to any excited
orbital, they are totally specified by their valence
shell configuration. Therefore, v makes expli-
cit reference only to. valence orbitals. It can be
shown that Y of (2) has off-diagonal matrix ele-
meats between configurations which differ by more
than two valence spin orbitals. - In operator
language, these two observations mean that
must have the form

Nv N,
X E. +ZJ(? + éii; K

v

Nr Nr (3)
+ _L g‘
31 Huk
i j-l kq
, Nv Nv Ne ”
LI L g + e
1§24 kar £z
where Ec is the correlated energy of the bare core,
and J{‘i'. ", K :jk' ..., are effective one-,

two-, three-, . up to Nv-electron operators.

Relationship to Semiempirical Model Hamiltonians

The similarity between equation (2} and the
general form of the complete valence shell CI inter-
pretation of semiempirical methods is striking. The
general iuea of these methods is to postulate the

existence of a model Hamiltonian, HH ., which is de-
fined an the valence space and has eigenvalues which
are the valence state energies. From this descrip-

tion it is obvious that HY is the object which is

being mimicked by semiempirical 1(;"'5. in semjem-

pirical theories it is further assumed that 1'(; is
composed of effective one- and sometimes two-elec-
tron operators; however, three-and higher-electron
operators are always ignored. Semiempirical theor-
ies then consider the individual integrals of the
effective one- and two-electron operators between
valence orbitals to be parameters that may be ''adjus-
ted" ta Include correlation effects and to reproduce
the valence state energies. The parametrization
scheme for these effective integrals incorporates
empirical data based on the particular hrand of
chemical intuition used by the method's iaventor at
the time of its conception. With each scheme is
associated a differeat acronym, and consequently the
entire collection of semiempirical methods appears
as alphabet soup to the uninitiated.

In an effort to understand the theoretical basis
of sem{empirical theories, we have calculated, from
first principles, both the valence state energies
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and the integrals of the effective one-, twoj threes

and four-electron operutors of HY petween the val-
ence orbitals. By analogy with semiempirical the-
ories, we designate these integrals as true para-
meters. Our calculations are designed to address
the following questions: (1) How well can we cal-

culate the valence state energies; and, does -Kv
have the potential to be a viable ab initio method?
(2) How do the true parameters compare with semi-
empirical parameters? Especially, how large are
the nonclassical many-electron effective integrals
which arc ignored in semiempirical methods? (3)Are
the one-center true parameters really transferable
between molecular systems with similar environments
as is assumed in semiempirical theories? (4) What
is the effect of many-electron effective operators
on the calculation of excitation energies and ion~
ization potentials?

Perturbation Expansion for

. v
The energy-dependent representation of 7( in
equation (2) has several nice properties which are

discussed alseuherel-z; However, it suffers from

the drawback that individual configuration-incepen=-
dent true parameters cannot be directly calculated,
This is particularly important for making compari-
sons with semiempirical methods. Hence, Iwata and
Freed introduced an energy-independent generalized
perturbation expansion couched in the ianguage of

second quanl:izatlun,3 With subsequent modifica-

tions, which significantly improve the convergence
properties of the expansion, it is possible to de-
rive formulas for the individual true parameters.

These true parameters have the following physically

appeal ing prnpertles : (1) The true parameters
are independent of the valence electron configura-
tion. (2) The true parameters are independent of
the number of valence electrons. This parallels
the use of semiempirical parameters which are inde-
pendent of the molecular environment and the net
{or local) charge of the system. (3) The true para-
meters can be evaluated within a theory which utit-
izes matrix energy denominators, thus eliminating
the necessity of tedious resummation of dominant
terms through all orders in perturbation theory.
Properties {1) and (2) mean that after the true
parameters are calculated once for a given set of
valence orbitals, they can then be used to evaluate
the energies of all valence states of all charge
states of the system.

Using the simplest form of our generalized
quasi-degenerate many-body perturbation theory
{GQOMBPT) in which the energy denomimators are taken
to be strict)y diagonal, our expansion reduces to a
symmetrized version of 8randow's diagrammatic per-

turbation theory. A1) of our calculations to date
use this form. In second order our method is equiv-
alent to a Ek-type calculation of Gershgorn and

Shavitt,” and in thrid order the off-diagonal ele-
ments of Hllll in equation (1) are kept in lowest
order of perturbation theory.

The explicit details of third order GQDMBPT and
the calculation of Y will be presented else-
where with emphasis on the formal theory of GQDMBPT,
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TABLE |. Selected effective integrals (true parameters) for fluorine in av.
lations for the indicated ion.
13 and the empirical values are in Reference 12. s, x. y, z are shorthand notation for 2s, sz' Zpy, sz.

Atomic basis orbitals are ohtained from ground state RWF calcu-
Both second and third order results are presented to indicate convergence.

MINDO/3 values are from Reference

F [ e 3 £ Empir-

True Parameter nd 3rd 2nd 3rd 2nd 3rd nd 3rd nd 3rd ical HINDO/3

E. -2054.97  -2055.05 -2054.97 -2055.05 -2054.98 -2055.05 -2054,98  -2055.05  -2055.00 -2055.05 -2057.11
<s1'K‘i’ls> - 185.57 - 185.80 - 185.2% - 185,40 - 1B4h.98 - 185.12 - 18491 - 184,98 - 184.92 - 1B4.92 - 1B5.13 -129.86
<x| H‘i’[p - 169.28 - 173.54 - 169.33 - 171.6h - 169.91 - 170.96 - 170.37 - 170.82 - 170.79 - 170.79 - 171.19 -105.83
<sx] *,(‘i’j| sx> 31.85 33.76 31.50 32.62 FLICH 32.02 3N.5h 31.80 N2 31.68 31.63  17.25
‘S‘IK‘;J'] x> 5.82 6.00 5.73 5.80 5.70 5.70 5.7 5.68 5.69 5.65 5.56  4.83
<xy|1{‘i’j| xy> 31.86 35.46 31.61 33.73 31.82 13.01 32.19 32.77 32.68 31,67 32,66 W9
<xy| ?(‘{J.| yx> 1.40 1.49 1.42 1.48 1.46 1.48 1.50 1.49 1.51 1.49 141 0.90
<sxy|3(‘§jk Isxy> ? -2.03 -3.19 -1.86 -2.63 -1.7% -2,27 =177 -2,08 -1.90 ~2.00 -1.90
<sxy]3(‘i’jk Jsyx> 0.06 0.09 0.07 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06
<5,y|}(‘i'jk |xsy> -0.30 -0.3% -0.26 -0.30 -0.24 -0.25 -0.23 -0.23 -0.17 -0.24 -0.23
<m|K§jk |xyz> -2.63 -4.50 2.4k -3.75 -2.36 -3.29 -2,k -3.07 -3.00 -3.08 -2.79
<xyzm‘i’jk | xzy> -0.10 -0.15 -0.10 0.1k ~0.09 -0.14 -0.10 -0.14 -0.14 -0.18 -0,13
<zyxs|H ‘."jky_[zyva 0.37 0.30 0.25 0.21 -0.02  -0.07
<ayxs| Y ‘i’j el yzse> -0.02 -0.02 ~0.02 -0.02 -0.03 -0.04
<zyxs| }e‘{jkl]zsy)o 0.01 0.00 -0.01 -0.01 -6.0 0.04
<zyx5|3(";jkl]my> -0.02 -0.01 0.01 0.01 0.04 0.04

a. <owe] Y}l .ﬁj agargdr, o (U0 Y, Iy G2 x 0y (3)2()]
v
b. <ab:dlKijulwxyz> - ;JJ

dr;dr,dr, dr

* i *
e @ ()b (J)e (K)d*(2) K‘l'jkl [w(l)x(J)Y(k)z(l)-w(l)x(l)y(k)z(])-u(k),((j)y(i)z(g_)w(k)x(g)y“)z(jn



convergence properties of the expansion, calcula-
tional difficulties in third order, and sgzclal
techniques used in computer algorithms. [

TABLE 2, Average deviation from experiment of all
calculated valence excitation energies and ioniza-

tion potentials for all charge states of Fluorine,

g:g?::l 2nd order 3rd arder 3rd order“
Base

F 0.86 0.41 6.90

P 0.72 0.39 5.75

F 0.69 0.56 5.16

F*3 0.74 0.68 4.99

7 0.59 0.27 4.96

S
“without three-and four-electron true parameters.

CALCULATION FOR THE FLUORINE ATOM

in addition to the questians raised in the last
section, our calculations for fluorine are also de-
signed to be a stringent test of the convergence
properties of the perturbation expansion. The cai-
culation begins with the choice of a primitive basis
which for fluorine consists of 5s4p2d Slater type
fuactions (STF's) and is unchanged throughout atl
calculations. Quantum numbers and exponents for the
basis set are reported in reference (11}. We deter-
mine five different sets of atomic orbitals from re-
stricted Mart-ee-Fock {RMF} calculations for the

ground states of F, F+, FH, F+3, and F"7 all using
the same primitive basis. Each of these is used in
a different third order approximate calculation of

uv. The 2s and 2p atomic orbitals are designated
as the valence shell orbitals, The zeroth order
Hamiltonian, Ho' for the perturbation expansion

H= o+ V} is chosen to be the N-electron operator

which is the diagonal portion of the Fock operator
constructed from the {Is)2 configuration for each
atomic orbital basis. Note that only for the orbi-

tals obtained from the £*7 RHF calculation is the
(Is)z Fack operator truly diagonal. The diagonal

elements of the {1s)“ Fock operator are the 'bare
core' orbital energies.

Values for selected ab initio true parameters
through third order are presented in Table 1 alang
with a uniquely determined empirical set of true

2
parameters = and one example of a set of semiempir-

ical parameters“3 Because there are 46 valence
state energies to be reported for each calculation
we list, in Table 2, just the atomic orbital basis
and the average deviation from experiment for all
known excitation energies and ionization potentials,
A more thorough report will be made elsewhere. 15
From Table {, there are several important obser-
vations. (1) Some of the three-electron true para-
meters are as large as 3 eV! (2) There is approxi-
mately an order of magnitude reduction in the size
of the four-electron true parameters relative to the

three~electron ones. (3) Notice the conspicuous
absence of three- and four- electron semiempirical
parameters. (4) There is a large discrepancy be-
tween the ab Initio true parameters and the semi-
empirical HINDO/3 parameters. (5) The empirical
true parameters represent the theoretical limit ofl
infinite arder complete basis fuaction calculationst
A comparison of the ab initio and empirical true
parameters shows that convergence is better for
atomic orbitals that are determined from RHF calcu-
lations in which the subshell is not more than half
full. This is also demonstrated in Table 2; and
can be explained on the basis of the structure of
the theoretical expressions for the true parameters.
This fact is more evident with different choices of
1 .95 Finally from Table 2, the effect of ignoring
tRree-electron true parameters are important for
describing intrashel] and intrasubshell correlations
(in this case 2s ~+2p and 2p+$2p).5,

carcuLation of KV for cH

We have performed two distinct types of calcu-
lations for CH; the first is used to test the ap-
llcability of ab inftio effective Hamiltonian meth-
ods for calculating the valence properties of mole-
cules, while the second is designed to Investigate
the degree of transferability for the true parame-

ters of # Y. The primitive basis set for both cal-
culations is a ks3pld STF basis on carbon with a
2slp STF basis on hydragen. Bath calculations are
performed at the ground state equilibrium Internu-
clear separation of 2.124 au. The valence shell or-

bitals for each "v calculation are taken to be the
20 , 30, 1nx, Iny. and 40 molecular orbitals ab-

tained from a RHF caltculation for the ZH ground
state of the neutral molecule.

Birect Calculation

The first CH calculation is straightforward
and follows very similar procedures to those used
in the fluarine calculation, except that we report
the results from only one molecular orbital basis
and we use an average bare core orbital energy in
Hy for the valence shell orbitals. The second and

third grder HY results for valen.e shell ioniza-
tion potentials and excitation energies are pre-
sented in Table 3. Since we did not have access to
an MCSCF wavefunction, special pains are taken to
determine the 40 vi cual orbital from a VN-I poten-
tial. This is necessary to insure that the 4g or-
bital has the character of a valence shell orbital.

Otherwise, nonconvergence of the “V expansion be-
comes a problem. 1D Averaging of the valence shell
orbital energies is also important for convergence

of the Ky expansion for CH.

Constrained Calculation

As a preliminary investigation of transfera-
bility, we compare the one-center twa-electron ef-
fective integrals, gemerated for the valence shell
of a pure carbon atom, with the corresponding effec-
tive integrals extracted from a calculation for CH,
In order to make a valid comparison, it is impor-
tant that the valence space for the pure carbon
atom and the carbon in CH be as similar as possible.



TABLE 3. Excitation energies, fonization potential, and electron affinity of CH in eV, Calculations are

at internuclear separation of 2.124 au. The 2I'l ground state energy of CH is in au.

Direct Constrained ._ b
Experi-
Seate 2nd 3rd 2nd 3rd ¢t ? mental
cu(zn) € -38. 4642 -38.4014 -38.4515 -38.3983 -38.4103 -38.490
g 0.673 0.479 0.778 0.491 0.67 0.742
2 2.9 3.08k 3.9 3.305 2.93 2.88
2" 3.445 3.2 3.530 3.224 3.28 3.19
Z5* 4.433 4.080 4,644 4.055 4.02 3.94
o 7.668 6.379 7.988 6.408 7.31
ot (o)
.3
n 1.535 0.845 1.302 1.147 1.14
n 3.529 2.821 3.336 3.105 3.18
I 13.482 12.383 13.417 12.461 11.65 (2)
o (30)

'a 1.054 1.578 1141 1.542 0.845
e ¢ 10.488 10.411 9.972 10.586 10.64
E. A% 0.937 0.820 0.241 - 0.376 1.238
p. e.f 3.884 2,690 3.539 2.621 3.65

a. €I data for CH is from ref. 16 and cHt is from ref. 17. b. Ref. 18. c. Ground state energy for CH.
d. tonization potential. e. Electron affinity. f. Dissociation energy (using pure carbon calculation).

TABLE 4. One-center two-electron effective integrals from pure carbon cal-
culation and corresponding effective integrals from consirained CH calculation in eV,

Integral Pure Carbon Pure Carbon Constrained CHh
Calculated Empirical [ T

‘“'3{711 ss> 18.42 17.47 18.34

<sx| K“/J[ sx> 18.96 18.20 18.94 19.33
<sx]')(;'j| xs> 3.20 3.10 3.68 3.15
(ss[}f‘;ﬂ x> 3.34 2.48 3.89 3.08
<xx} }(‘l'j] xx> 20.98 19.93 2t.22 22.25
<xy| }(‘I’jl xy> 19.32 18.47 19.64 20.32
<y | M \:j( yx> 0.58 0.52 0.63 0.65
<lx|‘xrj’ yy> 1.08 1.23 0.99 1.27

a. From ref. 12.
b. There are two columns for the constrainza Lh calculation because the atom 2p orbitals

are split by linear symmetry into ¢ and % orbitals.
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This arduous task is accomplished as described be-
low. Atomic orbitals are determined from RHF calcu-
lations separately for the pure carbon 3p ground
state and for hydrogen. The carbon atomic orbitals
are used for an KV carbon atom calculation. Then
an unorthodox RHF calculation for the 21 ground
state of CH Is carried out such that the valence
shell orbitals of CH (20 , 3, lnx . my , and 4o)

are constrained to be representable by the basis
which is the union of the C and H atomic valence
bases. This set of molecular orbitals is fed into
the -approximate Y calculation for CH. This re-
striction on the valence space produces orbitals
which are less than optimal, therefore the rate of
convergence for this constrained calcuiation is
slower. Valence excitation energies and lonization
potentials are reported in Table 3 with those from
the direct calculation.

The Y for tH is then back transformed to the
nonorthogonal atomic valence orbitals to enable a
comparison between the carbon atom two-electron
true parameters and the corresponding one-center
two-electron cifective integrals of CH. (See Table
4) included in the table are the carbon atom true
pzrameters. There are two columns associated with
the constrained CH calculations in Table 4 because
rhe atomic p orbitals are split by symmetry into g
and w orbitals.

Results

Unlike the case for fluorine atom , there is
not sufficient experimentai data to determine a set
of empirical parameters for CH as a check for the

Hv true parameters individually. 2 The same
trends for the true parameters, noticed in fluorine,
are present in CH also. Calculated values for the
vertical excitation energies and ionization poten-
tials from both calculations are compared with the
C! results of Lie, Hinze, and Liu for CH 16 and

Green et al for ¢H* 'Tin Table 3. Also in Table 3
are the experimental adiabatic quantities of which

we are aware.

Table 3 indicates that our HY calculations are
in excellent agreement with conventional Ci results,

and hence we conclude that Y can be applied with
accuracy to molecular systems. Table 3 also demon-
strates, as expected, that the constrained calcula-
tion is not as well converged in second order; and
consequently, at Jeast a third order treatment is
required to make accurate predictions.

From Table & we see that the idea of transfer-
ability is not incansistent with aur calculations.
However, there remains much work to be done before

this aspecr nf )‘Qv is more fully understood and can

be utilized.
THE FUTURE

In contrast to the relative insensitivity of the
]’( v expansion to the choice of atomic orbital
basis in first row atoms )ike fluorine, molecules and
Jarger atoms {i.e., transition metals) require a
more accurate zeroth order description of the orbi-
tals. To insure convergence of the v expansion
for these systems, especially polyatomic molecules

and molecules at large internuclear separations, it
will be necessary to begin with an MCSCF procedure
to determine the valence (and excited) molecular of-
bitals.

Some of the work, which is planned but remains
to be started and/or finished in the continuing

saga of J( v’ involves a series of third order KV

calculations for NH and OH as well as CH. A ser-

ies of third order HY caleulations will be presen=
ted For selected first and second row atums.znﬂvught
has been glven to an RY calculation for a heavier
diatomic 1ike CN, CO, or FZ'

One planned project is to calculate a set of

potentisl curves for the valence states of CH.
This constitutes a stringent test of the usefuiness

of our ab Initio ¥ method for molecules as both

a direct first principles calcuiation and as a
source of insight into the fundamental basis of semi-
empirical theories. The calculation will provide
the first ab initio investigation of the bond length
dependence of two-center semiempirical-iike effec-
tive integrals. Obviously a calculation of this
type must begin with MCSCF wavefunctions.

Another large project is the calculation of HY
for the ™ shell of butadiene. This calculation has
been delayed since Iwata and Freed finished their

benchmark investigation for ethylene.zz Westhaus

has since published }(V ethylene calculations using

a differunt formalism.23 With the knowledge obtain-
ed from calculations on fi st and second row atomic

and atomic hydride systems, and the experience gained
through implementation of the third order expansion,
we now have the technology to undertake the calcuia-

tion of H YV for butadiene. This will be the first
ab initio test of semiempirical @ ~Hamiltonian the-
ories for a syitem with an extended T-valence shell

using }(\. 1he orbiiuis are by necess.!ty deter-
mined fror a three configuration valerce MCSCF cal-
culation. Mciivated by analogy with the semiemper:
ical mu' iconfigura“ional work of Eaker and Hinze,
a set of well localized = orbitals can be obtained.
These localized orbitals will facilitate the inves-
tigation of semicmpirical assumptions concerning
model T -Hamiltonians.

Preliminary calculations for titanium have re-

cently been reported. Transition metals zre par-
ticularly interesting for three reasons. (') Scmi-
empirical theories have been unsuccessful tor these
systems, (2) little experimental data is available,
and {3) not much ab initio work has been done on
their correlation energies, especially for excited
states. We plan to continue our work on titanium
and also to investigate iron since it resides at the
other end of the first transition metal series.
SUMMARY
N . Pt A

To reiterate, our calculations show that is
an accurate and novel ab initio method for small sys-
tems. It is particularly interesting and exciting
since one calculatiop of the effective integrals
yields all valence state energies of all charge
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states accurately.

The calculation for atoms already provides a
first principies check of the one-center integrals
of semiempirical theories. The large discrepancy
noted in Table | is explained by an averaging of
effective three- and four-electron integrals into
the one- and two-electron semiempricial parameters
in analogy with the way that two-glectron integrals
are averaged into the ane-etectran Fock operator. 6

Finally, our calculation for CH shows that
HY can be applied accurately to molecules, It
provides a test of transferability and will generate
an ab initio bond length dependence for two-center
effective integrals which can be compared with
semiempirical theories,
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MCSCF FOR EXCITED STATES
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Two basic types of configuracion interaction
(C1) calcularieas are routinely used in accurate
ab initio celcuis:ions. They are the First Order
CI' (FOCI) and the oil single and double excita-
tion C1, CI(SD). Im both cases the orbitals are
inicially optimized usin§ a limited MCSCF. Recent
advances in MCSCF Theory® now permit MCSCF calcu-
lation containing 200 CSF's to be performed with
little effort in excess of the previous simall
MCSCF calculations. Thus, it is now possible to
optimize the orbitals for a FOCI, by performing a
full valence MCSCF (FVMCSCF). If the FOCI is too
large and a POLCI? ( a POLCL 15 best viewed as a
FOCI with CSF selection) is to be used or a CI(SD}
15 to be run, the FVMCSCF can be employed to iden-
tify the dominant configurations in the wavefunc-
tion. FVMCSCF calculations are performed at var-
ious points on the surface, the natural orbitals
(NO's) obtained and FVCI repeated in the NO basis.
The union of all important caonfigurations is chen
used in a small MCSCF. This MCSCF is followed by
either the POLCI or CI(SD), using the orbitals ob-
tained In the small MCSCF. By performing the
FVMCSCF, one simplifies the procedure for {deuti-
fying the important CSF's which should be included
in the MCSCF.

Limited MCSCF calculations followed by CIL cal-
culations ave a standard treatment for the lowest
state In each symmetry. One exception would be
when transition moments are desired. In this case
a common ser of orbitals would be used, but even
in this case the separate MCSCF orbital optimiza-
cion followed by CI is usually performed to cali-
brate the common orbital set. 1In principle one
could use the same tcchniques on the higher state.
of a given symmetry, but in practice new problems
arise, As one optimizes an upper root, the de-
scription of the lower root is degraded. Thi: can
lead to a flipping of these two states and the
loss of the upper bound to the desire root.

*a contribution by C. W. Bauschlicher, Jr. Work
was supported under NASA Contracts No. NAS1-14101
and NAS1~14472 while in residence at ICASE, NASA
Langlev Resecarch Center, Hampton, VA 23665

-
"NRC-NASA Rescarch Assoviate, 1978~1980. Present
address: !3M, 5600 Cottle Road, San Jose, CA 25193,

+.\lfrr.-d P. Stoan Research Fellow. Work wias support-
ed bv the Mr Farre Office of Sclentific Research
(AFUSR-79-0073) and the National Science Fourdation
(CHE-7824153) during the course of this re: .arch,

Hinze" has proposed optimizing the orbitals
based on the averaged field of the states of inter-
est. He also noted that one must compensate for
the pnorer description of the orbitals by adding
additional CSF's. The addition of CSF's to the
MCSCF greatly increased the size of the CI{SD) and
can quickly make the problem intractable. If the
configuration list is not increased, it seems un-~
likely the states treated by averaged field method
will be as accurate as those state for which an in-
dependent optimization of the orbitals is per-
formed. Averaging all states of interest would en-
counter problems Lf all states but one were well
described by one set of orbltals. The average
field technique would treat one state more pcorly
than the rest. While the averaged field technique
avoilds the problem of variational collapse, it wmay
not treat all states equivalently for a configura-
tion list small en.ugh to allow a CI(SD). Ideal-
1y, one would like to perform an independent var-
iational calculation on each state. Grein® hss
noted 1f variational collapse begins to occur, a
small CI would indicate which CSF's are needed to
keep the lower roots in place. While in principle
the MCSCF could become prohibitively large, in
practice this does not appear to be a problem. We
find for ilonic systems such as BeO, MgO, and Ca0
that FVMCSCF - FOCI calculations yield poor separ-
atlons between the low-lying states and instead a
limiced MCSCF followed by CI(SD) was employed.

The addition of the CSF's needed to prevent varia-
tional collapse can make the CI(SD) prohibitively
large. Also for a FVMCSCF - FOCI if an upper root
collapsed, the addition cf the CSF's needed to
prevent lue variational collapse would represent a
redefinicion of the valence space., Liu® has found
that in some cases the addition of extra orbitals
to the valence space in a MCSCF - FOCI calculation
can actually yleld poorer results and therefore
should be avoided.

Qur general procedure is to perform a FVMCSCF
at several representative points on the surface.
The important and marginally important configura-
tions are Included in a small MCSCF. Those CSF's
with a coefficient smaller than 0.1 at all points
are dropped and the final CSF list is chosen.

This final list is used in an MCSCF and followed
by a CI{SD). 1f one is only considerlng the low-
est root, repeating th: FVCl in terms of NO's can
simplify the indentification of the important CSF,
but for several roots this is not advisable. In
Be0, for example, in the NO basis the 1!I*state
would be described by



162 2% 30% 4c® 1n* m
10% 20% 3% 50° 1 (¢3]
102 20% 30% 40?102 20 (&)

but the second and third roots would be nominally
described as

(&)
(5

102 2% 3% 4o 50 1
102 202 36% 40?2 1n 21
Starting from (1), {4) and (5) provides a good
description of the first and second roots, but
starting From (1), (2) and (3) for the first root
would necessitate adding other CSF's to describe
the second root.

The cases where it is impossible to perform
separate optimizatious an higher roots fall into
two categories: 1) the FVMCSCF calculation col-
lapses and in 2) the limited MCSCF undergoes var-
iational collapse. In the former we do not add any
additional configurations. 1n the case of Cal

1Z+ states, we overcome this collapae by performing
a FVMCSCF (where 80, 90, 100, 37 and 47 are va-

lence orbitals) on the lowest ‘E+ state, obtained
the natural orbitals, then used these NO's in

FVMCSCE for the 2'E* with the 80 orbital frozen

to be the BO NO. The important CSF'a from both
roots included fn an MCSCF calculation, and the
orbitals optimized for the lst root. The aecond
root orbitala are then oprimized with the 8a or-
bical to be the 80 orbital of the ground state.
The second case where the limited MCSCF collapses,
arises when the roots are close and the margtnal
CSF's of the first root are important in preventing
root flipping. If the number of CSF's to be added
1s too large, we freeze an orbital (or orbitals) to
he an orbital obtained in limited MCSCF calculation
of the ground state. Since we have performed the
FVMCSCF calculations we have some measure of the
severity of these constraints.

We have noted that if the marginally impor-
tant CSF's are added to the MCSCF, the energy of
che limited MCSCF ia within a few milli-hartrees of
the FVMCSCF. For Mg0 the number of CSF's need to
approach the FWICSCF is less than 15 CSF's for all
the low lying states. In order to minimize the un-
certainty in our calcuiations we avoid CSF selec-
cion whenever possible and if forced to select we
keep the cumulative 7 selection threshold an order
of magnitude smaller than the accuracy we seek
(1 milli-havrree accuracy). For this reason we
choose to include only the important CSF's in the
MCSCF - CI. Calculations for MgQ using an STO ba-
sis set show that this procedure yields Re's and
Te's in excellent agreement with experiment.

#e shouid note a few technical aspects of our
procedure. The FVMCSCF is wade possible by using
a second-order MCSCF procedure. Instead of solv-
ing the simultaneous equaticns, we employ & Super-
CI technique with a procedure for damping the
eigenveccor far from convergence. In our impli-
mation a variable number of CI roots can be in-
cluded in the Hessian. We find that far from con-
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vergence including all lower roots Improves conver-
gence and only near convergence are all roots cou-
pled in and quodratic convergence observed. The
inclusion of all lower CI vectors is an Lmportant
aspect of the second order MCSCF treatment of ex-
cited states. Thia {5 to be contrasted to the cra-
ditlonal generalized Brillouin theorem MCSCF where
one often needs to shift the dlagonal clements of
the Super - CI Hamiltonian in order to prevent root
flipping. In the case of higher rnots of ionic
molecules the lower state orbitals or the orbitais
of a non-variational SCF de not always provide a
good set of starting orbitals. In these situations
the use of damping, can be very important. In some
cases, the rvoots filpped as the higher root orbit-
als were optimized. However, convergence was ob-
tained in these canes by freezing orbitals in the
lower root for a few iteration and the eliminating
the conatraint. In the cases where the apparent
variational collapse was a result of a poor c! ‘ice
of starting orbitals, thia procedure worka wei
However one must be careful that this procedure
does not lead to a local minima. We should also
note that we have found corresponding orbitals very
useful in comparing two sets of orbitals. For ex-
ample, by computing the corresponding orbitals’ be-
tween the lowest root and a root jus: 78 it under~
goes variational collapse, it becomes trivial to
obscrve which orbital or orbitala differ in the two
statea.

The preeedure discuased in this paper are
based on the asaumption that MCSCF calculations
containing more than a few hundred CSF's are not
routinely posaible, however Sl:huefet”has Tecently
reported an MCSCP including more than 10,000 CS5F's
Since Schaefer i1s using a first order methed to op-
timize the orbitals, it is not clear that reason-
able convergence will be obtained for a CI(SD) us~-
ing a general MCSCF reference. Second order MCSCF
techniques? have been shown to provide excellent
convergence for a general list of CSF's and this
method in principle could be used to treat problems
including large numbers of CSK's. However, the
amount of work needed to construct the Hessian and
solve the simultaneoua equations could become pro-
hibitively large. If these techmiques lead to the
ability to routinely perform very large MCSCF cal-
culations, the need to perform a separate CI cal-
culation will be eliminated for most caleculations.
However, the procedurea described will still be
useful in derermining the list of reference config-
urations and an initial set of orbitals for the
larger MCSCE,
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THE PROJECTION OF BROKEN SYMMETRY WAVEFUNCTIONS
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I. INTRODUCTION

There are a number of problems for nhich the
simplest qualitatively .‘.\CCPp[able wavefunction is
written as a linear combination of nonorthogonal
Slater determinants; i.e. in valence bond (VB) form.
For example, Jackels and Davidson™ showed that cer-
tain portions of the NOZ potential energy surface
are preferably described as "resonance" combinations
of the tuo valence bond structures,

which arise as broken (spatial) symmetry solutions to
the Hartree-Fock equations. The principal advantage
of a nonorthogonal expansion of this form is that all
of the polarization, or left-right correlation ef-

fects, implicit inm the broken symmetry determinant are

included in cthe wavefunction; a CI expansion based on
symvetry restricted orbitals requires high order ex-
citations in order to span the same space, On che
other hand, if the VB structures need to be "dressed"
with additional cocrelations, a nonorthogonal expan-
sion quicklv becomes i{mpractical. A compromise
MCSCF/CL expansion for N0, has been suggested by

Engelbrecht and Liu,‘ and is discussed elsewhere in

these proceedings. In the present contribution,

the encouraging results of an application of the
valence bond model ta the low-lying excited states
of pyrazine and para-benzoquinone are presented,

and the features of the correspond{ng otbital trans-

which make these “pro-
“projected spatially-
calculations porsible

for large systems ace outuned.s

formation of Amos and Hall®
jected broken symmetry,” or
unrestricted Hartree-Fock,”

LI. CORRESPONDING ORBITALS
Let the orthonormal set of n occupled spin otbi~
tals which define the left-hand determinant, ‘I‘L, be

denoted by N:il, and those defining the cright-hand

determinant ¥,_, by (WRL These two sets need not be
related, but for e applications considered here
they are connected hy a symmetry operation, in Noz.
e.g.,

r_5 .t

=0 -

Y yzwl ’ .

where ﬁxz is the reflection operator which sends one

oxygen into the ocher. The problems associated with
evaluarion of the Hamiltonian between the two deter-
minants arise hecause the ruo sets are not mutually
orthogonal. Amos and Hall, hnuever, showed that it

is possible to generate two new sets of orbitals, de-
fined by the unitary transformations

(a3
(0105000 = i b

and
r.r r ro.r r
(101.102,---0“) = Wyl dV
such that the transformed overlap matrlx

- 2 ,r

SU = (®1.¢J.) = éud‘
is diagonal. The matrices U and V are determined
by solving the eigenvalue equations

§S_+u1 =du

2
i1
+, 2
.dlvi N
with
U= (ul.uz,...u“)

V= (vi.v )

200V
In this basis, the determinantal overlap is simply
) piq
S R = (‘I‘L,VR) = [‘1 d1 N
and the Hamiltonian matrix eleu\e;t is

Hp = (YY)

p+q

=):nh

P '
- “K ¥ ”x 35
T T

where p and q refer to the number of a and @ spin-
orbitals, respectively, and

ptq
-15 .
LR
5

4 P
L
ki
- Py
RIS

ke, ]

- _ [ r
h —ﬁi(l)hol(l)d*rl‘

- 2 r

T ff‘i‘”%‘“ %'Ji(l)w;(Z)dr‘chz
oy =_[/:’{(U°l(l) IO
iy i i ru 3 148 112
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In praccice, Eq. (1)} is evaluated from appropriately
defined transition density matrlces and the orfgi-
nal one- and two-electron integral list. The time
required for the cntire procedure is roughly equiv-
alent to that needed for an SCF lceration.

Before discussing the results, it is important
to point out that the corresponding orbitals also

aid in the interpretation of the wavcl’unctton.ﬁ
Because they maximize the overlap between pairs,
they bring the two orbital sets into maximum justa-
position withaut changing either wavefunction, thus
permitting a straightfarward analysis of what
really differs between VI. and VR' This 1s 1llus-

trated in Table I, where the eigeavalues di are pre-
sented for the corresponding orbitals associaced
’

with the mirror image 241 broken symmetry solu-
tions fn NO,. Notice that only two orbital pairs

have a < 0.99.

paired" g electron. Ome partner is a combination
of py and P, functions strongly localized on the

The 9a” 8 ser describes the “un-

left oxygen, the other member is its' mirror image,
In terms of the original broken symmetry canonical
molecular orbitals, it is predominantly the open
shell 9a’ orbital (88%Z), with some admixture of
8a” (72), and 7a” (52). The only other orbital to

markedly differ betwcen ¥, and \I‘R is the 2a”" orbi-
tal, an anti-bonding combination of Opx orbitals.

It is certainly not surpcising that a 7 orbical

1s the most responsive {polarizable) to the locali-

zation of the ¢ electron. 3n
Table T also contains an analysis of the “A

broken symmetry determinant in “VOZ' a mixture of

3A2 {n_»7%) and 351 (n,+m¥). If differs from No,

in two major respects. First of all, the localiza-

tion is not so strong. The unpaired o electron

has substantial amplitude on the carbon center.

Secondly, the polarization effects are limited to

the o space. The open shell #* prbital is nearly

a symmetry function.

Table I. Corresponding Orbital Overlap Integrals® in
{ “
nuz(zh ) and cul(’A )

5
LOL
2
Orbital &
o 8
1a',1a") 1.0000 1.0000
(2a',2a%) 1.0000 1.0000
(3a", 1.0000 1.0000
(6’ 1.0000 1.0000
{5a',5a") 0.9999 0.9999
s ,6a') 0.9999 0.9999
(7a',72%) 0.9994 0.9955
{Ba',8a%) 0.9977 0.9941
0.9903 0.0470
0.9886
0.9992 2.9992 0,9999 0.9993
0.8597 0.8597 0.9999 0.5973
0.9992

rhe calculations were performed vith the bases of ref. 2
st C,, peowetries: N0, T = 2,458, O = 100%; €O, © =

- 1284,
2.39a,,8 = 128

These examples should demonstrate that an
analysis of this sort has advantages for defining

a suitable one-electron basis for further CI.
In mueh the same spirit, Martin, Davidson, and

I-Iggers8 have compared SCF wavefunctions in the
absence and presence of a perturbing electric
field in order to define an appropriate CI basis
Similarly, a corresponding orhital comparison of
the symmetry restricted Hdrtree-Fock (SRHF) de-
terminant with the broken symmetry wavefunction
should be of assistance in determining an active
space for an MCSCF calculation.

T11. LOCALIZED EXCITATIONS IN PYRAZINE AND PARA-
BENZOQUINONE

Table II summarizes a recent theoretical sl:udy3

of the 13 (nsnn) excired seates and :he,_f&l.onic

states of para-benzoquinone (PBQ), 0O =% = 0,
The SCF calculations wete performed at the experi-
uental geometry, and, aside from slight differences
attributable to the larger (double zeta) Gaussian
basis set used in the present work, reinforce the

earlier conclusions of .h:m)unan.9 The "anomalous"
correlation energ.es associated with the symmetry
restricted ASCF reaults (SRHF, columm 1) are re—
moved by the broken synmetry wavefunctions (col-
umn 2).  The n3mk excitation energles are now
roughly correct, and the ionization potential ig
underestizated by *1 eV, an amount typical of an
oxygen lone pair correlation energy., The g-u
spliteings in the VB arproximation are of the order
of & few hundred wavenuambers, nearly an order of mag-
nitude smaller than the SRHF results, and in general
qualitative agreement with the experimental observa-

10
tions. Note that the gerade coupling of the exci-

tatlons lies lower in each case.

Excleation Fnatgies in PBG (eV)*

Table 11

l‘nnuon SCr(n’h) SCF(CIV) Su v Eupr.

)(H-I.l ,.ll Lrrid L9 ".‘2!!0-) 1.9 H Jlb
B, eiecoes”! vt et

Yoy By s s 2 2w®
W, sioten! +100e! -secat

ey B, 1L 61 oot s 99"

b, 200 vis0en +2e00eat

“AlL eslculations uete performed ot the experimencal geometry vieh
Dunotng's (18,2p/2u] contraction of Huzinaga's (Sa,Sp/ts) st of prim=

hemlstey, 16, Elestro usture 4b Inftlo
i e by Ho F. Sohaefes, TIT (Plenus, Sow York, 19757, The
flcut wntey tor 4 glven gabr of tranvitbons I8 the excicatlon energy
FeRative tu 4 totul vy of -319.11635 a.u. far the ' pround stata
nd (he svcond Is tha patr spliteing fa cu ' b

ket 10,

0. Uouglerty and S. P. HeGlymn, J. An. Chew, Soc
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The interrction between the localized excita-
tions is larger in pyrazine, N, primarily be-
cause the distance between the nitrogen lone pairs 1,
is smaller, and the overlap between them larger,

Although the system 1s thus cloger to a "delocalized"

(MO) limit, Wadt and Goddard n discovered that the
SCF equations still prefer broken symmetry solutions 3

for the 1'3(:1-'"*) and 2n states, Table III shows

that the VB model accurately predicts the excitation 'S
energy to the lowest singlet and triplet but it con-
sistently underestimates the experimental splittings

by about 0.5 eV. The CI excitation energies of Wadt 5.

and Goddard,u estimated from independent ¢ and 7

space calculations in the SRHF one-electron basis,

fall roughly half-way between the VB model and ecx-
periment. It is interesting to note that the SRHF
splittings in this case are in good agreement with 6
experiment; the net effect of the broken symmetry )
{s simply to Jepress the center of gravity of the ex-

citation energy by 1~2 eV. Jackels and Davidsonl 7.
observed similar behavior for the two lowest elec-
tronic states of “02‘

In summary, the VB approximation appears to pro-
vide reasonably accurate excitation energles and
splittings for pnly a modest increase in computa- 9
tional effort. If more accurate studies are required, '
the natural orbitals of the VB wavefunction should
provide a good one-electron basis for more sophisti-~
cated CI calculations. The coupling of the localized
excitations with nuclear distortions of blu symmetry
have been examined far the J(nwt) states of PBQ and 10,
the l(n-vn*) gtates of pyrazine and will be reported
elsewhere.

The author is indebted to E. R. Davidson, D. A.
Kleier, and W. R, Wadt for many helpful discussions.
This work was performed under the auspices of the
Department of Energy.

11,

12,
Table 1II. Emcttetion Energies In pyrazine (ev)”
Transteton  SCP(D,)  SCF(C,) Sy, vB Expt.
ey Ty, e 360 -.97 3.2 3.2
% e
5, 628
b
o) My, 536 w25 -8y .82 2.8
7.18 W86 xs,s8
3 n.32 .27 22 a8l 9.61°
2 1000 11.35¢
b, 105
f e at th 1 geometsy vith

“ Te ¢ the exp
double-zete quality Gausaise basis set (sre ref. ). The excitation
anargles aca relstiva to & A, ground acate coerhy of -262.58320 a.u.
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A PRACTICAL GUIDE TO APPLICATIONS OF THE MCSCF METHOD

John H. Detrich and Arnold C. Wah!
Science Applications, Inc,
Oak Brook, I11inois 60521

1. INTRODUCTION

The considerable virtues of the MCSCF method are

now well recognized and need not be exhcrted here.
Also the formal analysis and its receni development
underlying MCSCF technology is well covered in the

major papers of this workshop and in the litera-

ture 1721 ang will not be repeated. Rather, this
paper will concentrate on the practical applica-
tion of the MCSCF method with specific attention to
three important and somewhat subjective questions:

b
2)
3)

We will begin with an inventory of MCSCF calcula-
tions intended to illustrate various choices made
on specific systems and to assess how extensively
the MCSCF method has been applied (Table I). We
shali summarize the choices made in regard to the
above three questions in MCSCF calculations made
since 1966. These questions have often been down-
played or orly vaguely discussed in published work
even though they must be faced and are essential to
the success and in fact mere execution of any MCSCF
calculation. We hope that a guide to this practi-
cal experience will prove useful in implementing
the new generation of MCSCF technology now under
development in various laboratories.

the choice of configurations
the choice of initial orbitals, and

the design of the basis set.

Table I is not intended to be complete however we
believe that it is representative of practical
MCSCF applications performed during the past one
and one half decades. We welcome comments and
criticism drawing our attention to calculations and
novel ideas we may have missed.

11.  APPLICATIONS INVENTORY

It is valuable as a guide and background for cur-
rent workers to inventory the MCSCF caiculations
performed to date on various systems using the
severa) MCSCF strategies. In Table I we have
arranged these calculations in chronological order
to track progress and indicated some characteris-
tics of the computations performed. These are:

1) how were the MCSCF configurations chosen.

2) how many configurations were included in the
MCSCF process.,

3) how many configurations were included in the
CI step.

4) was a potential curve or surface generated.

5) were properties generated.

6} were excited states handled.
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We see from this table that since the first mole-
cular MCSCF calculations there has been a steady
evolution and improvement and the method has been

applied to excited states , electron affinities ,
extended to heavy diatomics , and polyatomics ,

orbital and mixing coefficients have been coupled ,
more and more configurations have been included in

the MCSCF process , and the method has been joined
with a Targer CI step using the generated MCSCF

orbitals (MCSCF/CI) .

An evaluation of each calculation reported will not
be made in this paper however it should be pointed
out that many of the calculations cited achieved
chemical accuracy, some did not, and others were
model test calculations. The reader is encouraged
to assess for himself from the literature the
merits of various approaches.

A1l of the above represents progress however it is
not clear what the most effective thrust of MCSCF
technology should be. With this in mind, we will
proceed to our discussion.

II1. CHOICE OF CONFIGURATIONS

Among the major advantages of the MCSCF method are
the possibility of relatively short confinurations
1ist and the resuliting chemical interpretability.
In Table I the criteria used for the selection of
configurations for inclusion in the MCSCF process
is indicated. This selection process has ranged
from one of trial and error to schemes which in-
corporate the physics of molecular formation and
excitation. Below we give a brief description with
key references for each configuration selection
scheme:

Tr1al and Error: configurations are
tried in the MNCSCF 1ist and retained if
ticy produce a lowering of

the energy or significant mixing.

T&E:

INTU: Intuition: configurations are selected
on some chemical or physical basis spe-
cific to the particular system under
study.

CI-SORT: A CI is performed and configurations with
mixing coefficients larger than some
threshold are included in the MCSCF 1ist.
New MCSCF orbitals are aenerated and sort
can be repeated. Usually only a few Cl
iterations are reauired.

LR-10-A: Left-right in-out, and angular correla-
tion of an electron pair: 3 MCSCF orbi-
tals are chosen to provide these three
types of correlation for each electron
pairs treated. Often used in selection
schemes which follow.



PD:

00C:

ove:

ICF:

FRs:

CAS:

SRFY:

PE:

Proper Dissociation: the minimum number
of configurations required to dissociate
the molecyle to Hartree-Fock fragments
are included. This concept was intro-
duced in the OVC and GVB methods. [t
would seem foolish not to include these
configurations in any MCSCF 1ist.

INTER:

INTRA:
Optimized Double Configurations: Proper
Dissociation when only 2 configurations

are required. !

Optimized Yalence Configurations: This
scheme involves a "base" function which
accounts for proper dissociation. In
addition there are MECE (Molecular Extra
Correlation Energy} configurations which
vanish in the dissociated atoms. These
include: Interatomic doubles, split-
shell charge transfer, and valence charge
redistribution terms. The OVC selection DCE:
scheme has been the most widely applied.h6.22

INTER-
INTRA:

Interacting correlated fragments:
"designed for weakly interacting systems®
- so far Bez and Mgz and Hez. A series

of wave functions with increasing levels
of correlation. “balanced" inclusion of
inter and intrafragment correlation: in

the Bez calculation this is 252-~2p2 for
Be atom and in the Mg, caleulation this is
352*3p2; for He atom in He2 it is Isz~252
or 297,23

GVB:

Full Reaction Space. Preceded the CAS
medel, and is very nearly equivalent to
it. The FRS model seems to be mare
flexible in that open-shell orbitals in
the dominant configuration need nat be
included in the_reaction (or active)
orbital space. 24

or CASSCF: Comp'ete Active Space SCF
method: Basically, specification of the
CSF list involves only symetry specifi-
cation and orbital 1ists for inactive
(or core) arbitais and active orbitals.
The active orbitals generate all possible
occupancies and spin-couplings in con~

struction of the CSF Tist, 25

Symmetry Restricted Full Valence: Not
completely clear. Apparently includes
only molecular arbitals {symmetry re-
stricted) which can be manufactured from
the valence shells of the constituent

atams, 21

Pair excitations. Consists of including
configurations generated by replacing
each doubly and each singly occupied
orbital in the reference configuration,
one at a time, by another orbital.5

ASE:
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CI-SEL:

Interatomic excitations only: involves
double excitation with each electron
coming from separate fragments or atoms.
Also referred Lo as dispersion excita-

tions. 26

Interatomic excitations only: involves
simultaneous excitation from same frag-
ment or atom., Accounts for changes in
atomic correlation which is important

for high accuracy and long range poten-

tials. 26

Inter-Intra coupling: involves excita-
tion which couple the above two classes
of configurations. [Important effect in

Jong range potential s.26

Differential Correlation Energy Method:
includes only those configurations which
contribute directly to the correlation
energy difference. These include con-
figurations involving the "active"
orbital and an "excluded space" effect.
The idea 1s similar in spirit to the OVC
method for potential curves;it may pro-
vide a reasonable starting point for
MCSCF calculations of spectra, slectron

affinities and ionization potentials. 27

Generalized Valence Bond. In its origi-~
nal form, this approach deals with the
atomic orbital distortions describing
bond formation between constituent atoms
in the molecule, hence it has more ia
com™n with unrestricted Hartree-Fock
type appraaches than MCSCF. However, the
GYB wave function can be re-expressed as
a superposition of configurations and
handled by MUSCF methods. This approach
has relatively vecently been adopted for
computational conveniznce %%d brings GVB
into the MCSCF mainstream,

Starting with m basic MC configuration
functions (CF) (Proper dissociation,
curve crassings, etc.} all singly and
double excited CFs are generated, and
for each one the {m + 1} dimensional
Hamiltonian matrix is diagonalized.

CFs giving an energy lowering in excess
of some threshold are added to the MC
list. New MCSCF mixing coefficients and
orbitals are generated, and new select-
ions are performed, unti) the MC list
stabilizes. For excited states of a
given symmetry, occasional selections
for the next lower root are performed
and important CFs are alsp added to the
M 1ist. 13

A1l Single Excitations. Applied to atoms,
and consists of including configurations
generated by replacing single orbitals in
the reference corbfiguration by a (corre-
lation) orbital, 9



MO-ORDER: Molecular Orbital Order. Assigns rough
molecular orbital energies to orbitals
on the basis of intuition and
axperience, then selects configurations
with particularly Jow energy sums.
Appears well-adapted to handle negar-
degeneracy and valence effects. 3

CMC: Complete Multi-Configuration.
all double excitations from the reference
configuration with singlet spin paring.
There appear to be two distinct varients,
depending on whether localized or symmetry
adopted orbitals are used. 31

BMC: Bond Multi-Configuration. Double excitations
to correlate orbital pairs for a single
bond, i.e., intrabond correlation, 3L

BOMC: Bond and Dispersion Multi-Configuration.
Adds to BMC double excitations one each
from differing bond pairs, i.e., cross-
bond correlation. 31

There is much to be learned from the work listed
in Table I and the concepts discussed above. Among
the most obvious lessons are:

1) Changes in the correlation energy of a pro-
perly chosen core can be neglected.

2) It is reasonable as a starting point for the
MCSCF/CI procedure to select configurations
to account for the lolecular Extra Correla-
tion Energy {include proper dissociation).

3) Often additional configurations must be in-
cluded to describe significant changes in the
intra-atomic correlation energy.

4) High accuracy (better than .1 ev) requires
many more configurations than those pres-
cribed by simple rules. The MCSCF/CI proce-
dure appears to be an effective method for
achieving such higher accuracy.

5) Molecular properties can often be affected by
configurations which do 1ittle to the poten-
tial curve or surface.

6) Sometimes even qualitatively correct results
cannot be obtained with simple configuration
selection rules.

7) What is Tearned about configuration choice
from the first member of an isovalent series
can be used efficiently in subSequent mem-
bers.

8) It is difficult to apply simple configuration
selection rules to polyatomic systems.

IV.  BASIS SETS FOR MCSCF CALCULATIONS

Most of the art of basis set deuign developed for
single configuration SCF calculations is directly
applicable to MCSCF calculations. The reason for
this is that effective correlating orbitals span
the same space as the orbital they are meant to
correlate. Thus basis sets of double zeta quality*
with polarization functions are usually adequate.
Obvious attention however, must be given to proper
design and testing of basis sets for excited
states, ions, and weak interactions. For weak
interactions the basis set expansion errors in the
dissociated atoms must be significantly smaller
than the magnitude of the interactions. For heavy
atoms this requires basis sets better than double
zeta quality. With the expansion method there are
often special cases and surprises.

Finally, since it seems to be perennially forgot-
ten, good basis sets are essential for achieving
reliable and accurate results. CI or MCSCF pro-
cedures, no matter how extensive, cannot compen-
sate for expansion errors in any predictable way.

V. CHOICE OF INITIAL ORBITALS

No single decis:on is as crucial to the successful

convergence of both the SCF and MCSCF processes as

the choice of starting orbitals. Many schemes have
been tried which include:

1) the use of virtual SCF orbitals,

2) orbitals obtained by maximizing coupling in-
tegral between dominant and excited config-
urations,

3) orbitals obtained by maximizing overlap of
correlating orbitals with correlated orbitals.

4) orbitals based on intuition,

5) the concept of in-out, left-right, and angu-
tar correlation, and

6) other ideas.

Some of these have been done manually and others
automatically programmed. Experience has shown
that it is well worth the effort to start the 13
MCSCF process with the converged SCF orbitals.

Also starting guesses can be aided by converged
calculations on other states of the same system or
other me. ers of an isovaient series. None of the
above schemes is fool proof and the construction of
initial orbitals in the MCSCF process is clearly an
area needing significant attention.



VI.  CONVERGENCE AND TIMING

One of the major advantages of the new MCSCF tech-
nolagy which has been emerging over the past several
years is anticipated increases in the efficiency of
convergence of the MCSCF process. In order to eva-
luate and document these performances, some sort of
standard test case is required to monitor conver-
gence behayior. Not only is the number of config-
urations important but also the time required for
each interaction and the starting orbitals used.

In Table 11 we suggest a list of parameters which
should be included in convergence assessment and
would be useful to have in the literature. Sample
values are given for CN”and CUE using the CDC 6600

version 3% of the BISON-HC 35 code.

VII. FUTURE GOALS

Consideralie attention is being given by several
groups to tre efficient formalism, implementation,
and convergence properties of the MCSCF procedure.
We can realistically anticipate continuing impro-
vements and success in these areas. However, it
is our belief that more attention is needed in the
three areas which have formed the focus of this
paper. Spécifically:

1) Systematic configuration selection rules
should be developed and explored, Ideally
successful rules should be amenable to
automation and be incorporated as a user
option into the computer program.

Systematic initial orbital selection rules
should be developed and explored. These
2150 should be incorporated into the computer
program.

2)

Despite our successes, basis set uncertain-
ties for new situations or molecular envir-
onments remain a limitation on accuracy, re-
liability, and level of confidence. Much
greater effort should be given to the devel-
opment of numerical or semi-numerical pro-
cedures for molecules thus eliminating basis
set anxiety.

3}

We hope that in this brief contribution to the
NRCC-MCSCF workshop that we have drawn your
attention to not only past work, but also to
several important challenges facing computational
chemistry in this new decade.
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TABLE I.

A DIRECTORY OF ATOMIC AND MOLECULAR MCSCF AND MCSCF/CI CALCULATIONS

Configuration Number of Number of Potential
Atom or Molecule Choice MCSCF MCSCF/CI Curve or Properties Excited References
Criteria Configurations Configuratinns Surface States
N 2 No D.R. Hartree, W. Hartree and
B. Swirles, Pni), Trans. Roy.
Soc. (London) A238, 229 (1939)
He 6 No J. Vizbaraite, J. Sirancs, V.
Kaveckis and A. Jucys, Opt.i
Spectroscopiya, 1,277 (1956).
Li 5 No P. Jucys, J. Vizbaraite, J.
Batarunas and V. Keveckis,
Lietuves TSR Mokslu, Akad.
Darbai, Ser.B 2,3 {1958).
Be 10 No =
H. ] 2 Yes Ko No £.R, Davidson and L. L. Jonmes,
2 J. Chem. Phys. 37 1918 (1962).
R opc 2 Yes Yes No G. Pas and A. C. Wahl. J. Chem.
2 ove 4 Yes Yes Phys. 44, 87 (1966).
Liz opc 2 Yes Yes No G. Das and A. C. Wahl, J. Chem.
ove 4 Phys. 44,87 (1966).
3 onc 2 Yes Yes No G, Das and A. C. Wahl, J. Chem.
z Phys. 44, 87 (1966).
Be-0 iscelectronic 252»2p2 2 No No £. Clementi and A, veillard J,
series Chem. Phys. 44, 3050 (1966).
Liy, ove 7 Yes Yes No G. Das, J, Chem. Phys. 46, 1568
(1967).
we it ,ee2” 8%, <Y, 10,10,9,9,9,9, various No N. Sabelli and J. Hinze J. Chem.
R+ 06 9,9 Phys. 50, 684 (1969).
“é odc 2 Yes Yes Yes W. 7. Zemke, P. G. Lykos, and
A. C. Wahl, J. Cnem. Phys, 51,
5635 (1969).
F2 ove 6 Yes Yes No G. Das and A, C. Wehl, J. Chem.

Phys. 56, 3532 (1972): Phys.
Rev. Letts. 22, 439 (1970).
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Configuration fumber of Yumber of Potential

Atom or Molecule Choice MCSCF MCSCF/CI Curve or Properties Excited References
Criteria Configurations Configurations Surface States
te, INTER 9 Van der Ko No P. Bertoncini and A. C. Wahl
INTRA 20 Waals Phys. Rev. Letts 25, 991 (]970)
uzcoz CHC No No No B. Levy, Int. J. Quant, Chem.
BOMC 4, 297 (1970).
Hali BMC 4 . Yes Yes No P. J. Bertoncini, G. Das, and
ove A. C. Wanl, J. Chem, Phys. 52.
5112 {1971).
LiHe INTER 5 Van der Ho No G. Das and A. C. Wahl, Phys.
INTRA 7 Waals Rev, A3, 825 {1971).
fe,li,Be ASE & PE 3,8 o No F. Grein and T. C. Chang, Chem,

Phys. Letters, 12, 44 {1971).
Lik INTER 15,6,4,5 Yes Various Yes K. K. Docken and J. Hinze, J.
(Weighted Chem. Phys. 57, 4928, 4936
avg. ref) {1972).

He,Be ASE & PE 2-7 No Yes T. C. Chang and F. Grein, J.
Chem, Phys., 57, 5270 (1972).
B CAS 28,17.26,12 . 0sc. Yes L. Sibincic, Phys. Rev.AS,
Strengths 1150 {1972).
] INTU, TE 9,5 Fine struc- No J. Detrich, Phys. Rev. AS,
ture 2014 (1972).
05 OVC-INTRA No Electron af- HNo W. T. lemke, G. Das, and A.
finity C. Wahl, Chem. Phys. Lett.
\ 14, 310 (1972).
D; PD 8 Yes No Yes M. Krauss, D. Neumann, A. C.
Wahl, G. Das, & W. Zemke,
Phys. Rev 57, 69 {1973).
NH ove 8 Yes Yes No W. J. Stevens. J. Chem. Phys.
58, 1264 (1973).
CH ove 8 Yes Yes No P. Julienne and M. Krauss,
Molecules in the Environment,
J. Wiley Page 354 (1973).
CH, CMC No No No B. Levy, Chem. Phys. Lett.
c,t, BMC 18, 59 (1973).
C,_H6 BOMC
HZU ove 8 Yes No Yes R. P. Hosteny, A. R. Hinds,
A, C. Wah) & M. Krauss, Chem.
Phys. Lettr. 23, 9 {1973)
Li,Be,B,C INTRA 1-8 No Polariz- No A. J. Stevens & F. P, Billingsly, Il
abilities Phys. Rev. A82,236 (1973).
Be-F ASE 3-4 No No F. Grein and T. €. Chang, J. Phys.

o
B. Atom, Molec.Phys. 6, |.237 (1973)
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ConfigLration Number of Number of Potential
Atom or Wolecule Choice MLSCF MCSCF/CT Curve or Properties Excited References
Criteria Configurations Configurations Surface States
CH INTU % 4147 Yes various Na G. C. Lie. J, Hinze and B. Liu,
J. Chem. Phys.59,1872,1887(1973).
CN ove 17 Yes Yes Yes G. Das & A, C. Wahl, J. Chem.
Al0 ove 10 Yes Yes Yes Phys. B1 1274 {1974)..
ArH INTER 10 Yan der Cross Ho A. F. Wagner, G. Das and A. C.
o7 2 Waals Section Wahl, J. Chem. Phys, 60, 1885
{1974).
Ney INTER 9 Van der Yes No W. J. Stevens, A. C. Wahl,H.A.
Waals Gardner and A, M. Karo, J. Chem,
Phys. 60, 2195 (1974)
OH ove 14 Yes Yes No W. J. Stevens, 6. Das, and A, C.
Wahl, D. Neumann ang M. Krauss,
J. Chem, Phys, 61, 3686 (1974).
FH ove 8 Yes Yes No D. Neumann and #. Hrauss, “ol,
Phys. 27 917 (1974).
] ove 7 Yes Yas No F. P. Billingsiey and . Krauss
dJ. Chem. Phys. 60, 4130 (1974).
co ove 9 Yes Yes tio f. P, Billingsley and M. Krauss,
J. Chem. Phys. 60, 4130 {1974).
no* ove 9 Yes Yes No F. P, Billinysley and M. Krauss,
J. Chem. Phys, 60, 2767 (1973).
He - F ASE & PE 2-4 o No F. Grein and A, Banerjee,Chem.
Phys. Lett. 25, 255 (1974).
Be INTU 2-5 No Yes F. Grein and A. Banerjee, Chem.
Phys. Letters, 31, 281 (1975},
Li,B INTU -8 Ho Yes F. Grein and A, Banerjee, Int.
J. Quantum, Chem. Symp. 9, 147
{1975},
4] INTU, TE 10 Fine struc- No J. Detrich, Phys. Rev. All,
ture 1498 {1975}.
N0, ove 8 99 Yes Yes Yes G. D. Giliespie, A. V. Khan.
A. C. ..hl, R. P. Hosteny,
and M. Krauss, J. Chem, Phys.
63, 3425 (1975).
YH ave 4 Yes Yes Yes G. A. Henderson, G. Das, and
A. C. MWahl, J. Chem. Phys. 63,
2805, {1975).
LiZH INTU 8 30 Yes flo Yes W. B. England, N. H, Sahelldi,

and A. C. Wahl, J. Chem. Phys.
63, 4596 (1975).
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Configuration Humber of Number of Potential
Atom or Molecule Choice MCSCF MCSCF/CI Curve or Properties Excited References
Criteria Configurations Configurations Surface States
(:02 CI-SORT 5 200 llo Yes Yes W. B. England, B. J. Rosenberg,
P. J. Fortune, and A, C. Wahl, J.
Chem. Phys. 65, 694 (1976).
HgH INTER 7 Yes Yes Yes G. Das, and A. C. Wahl, J. Chem.
INTRA Phys, 64, 4672 (1976).
H20+ CI-S0RT 17 99 Yes Yes P. J. Fortune, 3. J. Rosenberg,
and A. C. Wahl, J. Chem, Phys.
£5, 2201 (1976).
OH ave 17 61 Yes Yes No J. 0. Arpold, E, E. Whiting, and
L. F. Sharbough J. Chem. Phys.
84, 3251 (1976).
LLY CI-SEL 14 Yes Yes Yes A. Banerjee and F. Grein, J. Chem,
Phys. 66, 1054, 2589 (1977).
Nay ove 8 Yes W. J. Stevens, M. M. Hessel, P. J.
Bertoncini and A. C. Wahl, J. Chem.,
Phys. 66, 1477 (1977).
N0,.80,", KO, CI-SORT is 99 tio @. Das, A. F. Wagner, and
Wahl, J Chem. Phys. 66, 4917 (1978)
c1o ove 61 825 Yes Yes No J. 0. Arnold, E. E. Whiting and
S. R, Langnff J. Chem. Phys. 66 ,
4459 (1977).
LiH, INTU, TE 3.4 168 Yes No No P. J. A. Ruttink and J. H. + a
Lengthe, Theoret. Chem. Acta 44,
97 (1977).
Liy ove Yes M. L. Olson and 0. D. Konowalow,
Chem. Phys, 21, 393 (1977) ibid.,
22, 29 (197775 D. D. Konowalow
and M. L. Olson, J. Chem, Phys.
67, 590 (1977); 71, 450 (1979).
I2 OVC-INTRA Yes Yes G, Das and A. C. Wahl, J. Chem.
Phys. 69, 53 (1978).
Lin ove 10 Yes Cross No A. F. Wagner, A, C. Wahl A, M,
Section Karo, and R. Kreijci J. Chem,
. Phys. 69, 3756 {1978).
HDZ INTU,TE 2 Yes No No J.H. van Lenthe and P.J.A Ruttink
Chem.Phys. Lett. 56. 20 {1978).
0, OVC + INTRA 76 Yes Yes G. Das, A. C. Wahl, W. T.
lemke and W. C. Stwalley J.
Chem. Phys. 68, 4252 (1978).
HeH, ReH, ArH INTER Van der Cross No G. Das, A. F. Wagner, and A.
INTRA Waals Section C. Wahl, J, Chem. Phys. 68,
KrH, XeH INTER-INTRA 4917 (1978).
HH CI-SEL 9,13 Yes Yes Yes A, Banerjee and F.Grein,Chem.

Phys. 35, 119 {1978).
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Configurations
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Curve or
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States

References °

Ca0

Ha,

34

Cul

Be

BeO

Li2

INTU

M0 Order

FRS

ovc
PD
Ty

GVB

Ci-Sort

Qe

INTU, TE

PD

CAS

GvB

2

1465

3854

2500

3573

2047

Yes

Yes

Yas

Yes

No

Yes

Yes

Ho

Yes

No

Yes

Yo

No

Ho

No

No

Yes

No

Transition
Moments
No

Yes

Yes

Yes

Yes

o

No

No

No

No

flo

No

No

No

Ho

Yes

Yes

No

No

C. W. Bauschlicher and D. R
Yarkony, J. Chem. Phys. 68, 3990
(1978).

W. England, J. Chem. Phys. 68,
4898 (1978).

L. J. Cheung, K. R. Sundberg,
and K. Ruedenberg J. Am. Chem.
Soc. 100, 8024 (1978), Int. J.
Quantum Chem, 16, 1103 (1979).

S. Kato and K. Morokuma, Chem.Fhys.
Lett. 65,19 (1979).

D. Neumann and M. Krauss, Me®.
Phys. 37, 1661 {1979).

K. Tanka and M. Yoshimine, J.
Chem. Phys. 70, 1626 (1979).

S. R. Langhoff and J. 0. Arnold
J. Chem, Phys. 70, 852 (1979).

T. H. Dunning, Jr., W. P. White
R. M. Pitzer, and C. W. Mathews,
J. ¥Fol. Spect. 75, 297 (1979)

W. B. England and W. C. Erm
J. Chem, Phys. 70, 1711 (1979)

0. D. ¥onowalow, WM. E. Rosen-
krantz, and M. L. Olson, J.
Chem. Phys. 72, 2612 (1980).

J. H, van Lenthe and J. L. M.
smits, Recueil, J. Roy, Rether-
tands Chem. Soc. 99, 130 (1980).
D. H. W.'den Boer and E. W.
Keleveld, Chem. Phys. Lett. 69,
389 (1980).

D. L. Yeager and P. Jgrgensen,
Mol. Phys. 39, 587 {1980).

D. L. Yeager and P, Jgrgensnn,
Mol. Phys. 39, 487 {1980).

C. W. Bauschlicher, Jr. and

D. R. Yarkony, J, Chem, Phys.
72, 1138 (1980).

B. H. Lengsfield 11I, J. Chem.
Phays. 73, 382 (19803.
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Conhguratwn Number of Humber of Potential
Atom or Molecule Choice MCSCF MCSCF/CI Curve or Properties Excited References
Criteria Configurations Configurations Surface States
Liq 4 No No Yes B. H. Lengsfield IlI, J. Chem.
Phys. 73, 382 (1980).
Bel SRFY {CAS 81 No No Yes B. H. Lengsfield 111, J. Chem.
Phys. 73, 382 {1980)/
can MO Order 8 6102 Yes Yes Yes W. B. England, Chem. Phys. in
. press).
sez CAS 1832 11688 Yes No No Blomberg, Siegbahn and Roos
{pre~-print).
Be 106 1148 No ves R. Shepard & J. Simons (pre-
print}.
cst INTU 2 Yes No No R. Shepard and J. Simons {pre-
print).
CSHZ C1-S0RY 6,8 AL Yes No No R. Shepard, A. Banerjee and J.
Simons (pre-print).
Ny CAS 726,948,950 Yes No Yes B. Roos {pre-print).
cco GVB 16 2523 Yes No Yes S. P. Waich, J. Chem. FPhys.
72, 5679 (1980).
OH + H, GvB 6 4560 Yes No No 5. P. Walch and T. H. Dunning
Jr., J. Chem. 72, 1303 (1980)
In,Cd,Hg LR-10-A palarizabilities Yes M. E. Rosenkrantz, W. J. Stevens
M. Krauss and D. Konowalow, J
Chem. Phys., 72 2525 (1980).
Be, ICF Yes No Ho B. Liu and A. D. Mclean, J.
. Chem. Phys. 72, 3418 {1980).
HZO CAS 1380 Yarious Yes B. Roos (pre-print).
PbO ove 9 Yes H. Basch, M. Krauss, W. J.
Stevens (to be published}.
cN DCE 17 41 Yes No A. C. Wahl, E. S. Sachs and
J. Detrich, Int. J. Quantum,
Chem. {1980).
N OCE 15 26 Yes Electron No A, C. Wahl, E. S. Sachs, and
Affinity J. DBetrich, Int. J. Quantum

Chem. (1980},



TABLE 11

TOTAL
BASIS ITERATION TIMES THRESHOLO
SYSTEM SET #QRBS 4CONFGS cPU 10 #ITERATIONS VECTORS EESCF n MACHINE CODE
oo 4s2pld 9 15 20 25 23 1078 530 600 CDC 6600 BISON-MC
+diffuse
I:O,'z 3s20 15 19 3 16 12 1078 434 207 cOC 6600 BISON-MC

1126, 600-662 « 1881 D4 5N



