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ANALYSIS OF TWO-PHASE GEOTHERMAL WELL TESTS 

C. W. Miller, S. Benson, M. J. OtSul l ivan ,  K. Pruess 
Ea r th  Sciences Division, Lawrence Berkeley Laboratory 

Berkeley, C a l i f o r n i a  94720 Univers i ty  of California 

thod of designing and analyzing pressure 

It is t he  in t en t  of t h i s  work t o  inves t iga te  and 

reservoi r  o r  wellbore i s  f i l l e d  with a two-phase 

s 

;i 

trast t o  the  numerous wellbore flow models t ha t  have 
n reported i n  t h e  l i terature8-10. A dercr ip t ion  of 
numerical model is given i n  reference 6 and a b r i e f  
line of an e a r l i e r  version t h a t  did not include t h e  
p between the  phases i r  given i n  reference 11. 
BORE solves f i n i t e  d i f fe rence  approximations f o r  the  
lowing mass, momentum, and energy balance equations: 
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and 

The s l i p  between the  phases, vv-vE, is  calculated 
based on a modified version of t ha t  given i n  
Orkiszewskir2. The f ' c t i on  f ac to r  is  calculated 
according t o  Chisholm@ For the  cases run here,  
conductive heat  loss from the  wellbore was ignored 
(u - 0 ) .  

The vers ion of t he  program GEOTHNZ used here 
solves fo r  r a d i a l  flow only. 
t he  mass and energy flow i n  a geothermal reservoir  
a r e  

The equations governing 

and 

The v e l o c i t i e s  v i  and v: a r e  calculated using Darcy's 
law as: 

For the  calculat ions of t he  pressure drawdown, the  
r e l a t i v e  permeabili ty functions a r e  assumed t o  have t h  
form suggested by Corey (1954) where 

[7a 
4 

kra = s; I 

7b 

and 

s* a - 6%- sat) /a  - sQr - S,J [ I C  

with SQr - 0.3 and Svr I 0.05. 

approximations of t he  above equations (4-7) are solved 
assuming tha t  cap i l l a ry  pressure is negl igible ,  t he  
f l u i d  and rock are i n  loca l  thermal equilibrium, and 
conductive heat  t r ans fe r  is  negl igible .  

F i n i t e  difference 

In each of the four cases run, t he  calculat ions 
were ca r r i ed  out fo r  a constant r a t e  of mass productic 
a t  wellhead, and f o r  a constant r a t e  of mass productit 
at the  sandface (no w e l l  t r a n s i e n t s  considered). The 
pressure t r ans i en t  d a t a  was analyzed according t o  the  
analysis  method given below. In addition, the calcu- 
l a t e d  durat ion of wellbore s torage (derived below) i s  
compared t o  the  t i m e  a f t e r  which simulated downhole 
pressures with and without wellbore e f f e c t s  coincide. 

DESIGN AND ANALYSIS OF TWthPHASE WELL TESTS 

The problem with the analysis  of pressure 
t r ans i en t  da t a  from a two-phase reservoir  is  t h a t  t he  
d i f fus ion  equation descr ibing the  pressure reeponse ii 
the  reservoir  is highly non-linear. 
s a tu ra t ion  va r i e s  i n  a porous medium, the  r e l a t i v e  flc 
of the water and steam phase and the  compressibil i ty ( 

t he  mixture both change. For a two-phase steam-water 
f l u i d  a t  8MPa the  i s en tha lp i c  compressibil i ty is  
about 5 x 10'f/Pa f o r  high l i qu id  saturat ion,  it is 
1 x 10'7/Pa f o r  low l iqu id  sa tu ra t ion ,  but it is only 
about 1.3 x 10'9/Pa fo r  s ing le  phase compressed 
l i qu id  a t  t h i s  pressure.  The e f f e c t i v e  compressibil i t  
of a two-phase f l u i d  can be enhanced by a f ac to r  of 1 C  
o r  more i n  a porous medium due t o  the  heat i n e r t i a  of 
t he  rockl4. Also, t he  change i n  t h e  "total" kinematic 
v i scos i ty ,  V t ,  defined as 

When the  steam 

1 
V 
t 

can be large.  
Corey type, equations 7a-7c, and at a pressure of 
8 MPa, t he  t o t a l  kinematic v i scos i ty  va r i e s  from 
1.3 x l O Y 7  at Sv - 0 t o  1 x a t  Sv - 0.3, 
t o  4.6 x 10-7 at 8, - 1 (using Skr 
A t  higher pressures the  v a r i a t i o n  can be greater .  
However, t he  compressibi l i ty  and t o t a l  kinematic 
v i s c o s i t y  a r e  primarily a function of saturat ion.  
Therefore i f  one can design a test such tha t  the 
pressure changes occur over a region where the satur- 
a t ion  is  r e l a t i v e l y  constant,  a reasonable estimate of 
t he  t ransmissivi ty  (kh/Vt) may be made. 

For r e l a t i v e  permeabili ty curves of the 

0.3, Svr 0.05) .  

For a r e se rvo i r  t h a t  is  produced at a constant 
mass flow r a t e  and assuming small changes i n  satur- 
a t ion  the  pressure response of t he  system has been 

d i f fus ion  equation 
shown 1 t o  be governed by the  following l inear ized 

When t > 25+pCtrw2/(k/vt), t h e  so lu t ion  t o  t h i s  
equation is  approximated by 

The l i nea r i za t ion  of t he  non-lineaf d i f fus ion  equation 
t o  give equation (9) depends on t h e  assumption t h a t  t h  
va r i a t ions  i n  (k/vt) ,  i n  p and i n  C t  a r e  small. 
s t a t e d  above, these q u a n t i t i e s  have l a rge  va r i a t ions  
when the  stem sa tu ra t ion  changes. 
f lowrate from the  r e se rvo i r  is increased, t he  satur- 
a t i o n  around the bore does change i f  t he  f lu id  i s  two 

As 

When the  mass 



z 
S 

phase. 
depending on t he  i n i t i a l  s a tu ra t ion  around the  well, 
t h e  in-place sa tu ra t ion  w i l l  steady out.  It is p a -  
s i b l e  t o  t r e a t  the  i n i t i a l  change i n  $team sa tu ra t ion  
i n  the  same manner as wellbore storage is  t rea ted ;  
namely, one needs t o  determine the  duration for  which 
these  va r i a t ion  p e r s i s t  and t o  make sure  a l l  of the 
d i t a  ana lys i s  i s  performed a f t e r  t he  changes no 
longer e f f e c t  the  data.  
do not take place u n t i l  10% a f t e r  t he  t e s t  has begun, 
pressure da t a  p r io r  t o  these  changes can be analyzed. 
The problem is t o  determine a t  what times a%/ar - 0. 
Then, equation (10) can be applied and from the  slope 
of t he  s t r a i g h t  l i n e  on the  p VI. log ( t )  
kh/Vt can be determined. 

Using t h  
been shorn5 t h a t  

However, a f t e r  a c e r t a i n  amount of time, 

I n  t h e  case where such changes 

p lo t ,  

s i m i l a r i t y  va r i ab le ,  II - r/G, it has 

l i m  Bf/dn 0 1111 
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rapid. Wellbore storage e f f e c t s ,  though, can be 
grea te r  o r  less than t h i s  t i m e  for  a%/ar I 0 t o  
hold t rue .  

One method of t e s t i n g  a geothermal reservoi r  is  
t o  f i r s t  flow the w e l l  a t  a slow steady r a t e  u n t i l  t h e  
sa tu ra t ion  around the  bore i s  approximately constant.  
The i n i t i a l  flowing of t he  well must be long enough so 
t ha t  pressure. changes i n  the  reservoi r  t h a t  occur 
during the  test w i l l  pene t ra te  only the  region where 
the  enthalpy is approximately constant. 
has defined a rad ius  of inves t iga t ion  as 2 E t  where 
D -k/@CtPvt.) The flow should then be increased 
(or  decreased) t o  a second constant value. By having 
the  well flowing f o r  a time before the  test is begun, 
it is possible t o  decrease both the  e f f e c t  of temper- 
a tu re  changes in  the  w e l l  during the  t e s t ,  the  osc i l -  
l a t i ons  tha t  occur when a well is i n i t i a l l y  opened, and 
t o  insure tha t  aS,,,/ar E 0 around the  bore. Now, it 
is  possible t o  do a buildup t e s t  where the  well is 
completely shut in.  However, as pointed out by Sorey 
e t  al.5,  t he  region around the  bore becomes sa tura ted  
with l i qu id  so 5, around the  w e l l  w i l l  not be 
uniform, and a question a r i s e s  as t o  how such da ta  
should be analyzed. 

( P r i t c h e t t l 6  

This implies t ha t  a t  l a t e  times in  place sa tu ra t ion  
will approach a constant value because the  flowing 
enthalpy is  primarily a function of the  r e l a t i v e  

curves which are in turn a function of 
Sy.  No rigorous der iva t ion  has been done t o  d e t e r  
mlne when H can be assumed t o  be Constant. However, 
O'Sullivanlf ca lcu la ted  Sv as a function of t/r2 
f o r  a number of ' cases*  An example of one of h i s  
ca lcu la t ions  is given i n  Figure 1, h e r e  the  l iqu id  
sa tu ra t ion  i s  p lo t ted  as a function of rl. For t h i s  
case,  4 0.2, k - 1 x p i  8.6 ma, 
w 0.14 Kg/s.m, or 9 2650 Kg/m3 and C r  1.0 
KJ/kg K. The ComPreSsibilitY of the  rock was ignor 
For Sv < 0.5 (o r  Sg > 0.5; l i qu id  sa tu ra t ion  is 
p lo t t ed  in the f igure)  the saturation changes are O 
when t/r2 - lo3. For high vapor sa tu ra t ions  t h e  
changes i n  Saturation do not s t a r t  u n t i l  105 
and a re  not over u n t i l  t / r 2  - 107. A s imi l a r  p l o t ,  
was obtained by O'Sullivan f o r  the  case where p i  
3.0 ma, k 9 2.4 x 10'13m2 and the  o ther  parameters 
approximately the  same as  above. 

approximately constant by using the example p lo t ted  in 
Figure 1. 
k/gvtpCt. 
of S,, and t h i s w l r i a t i o n  is already taken i n t o  
account i n  the  solution. 
function of t he  r e l a t i v e  permeability curves used and 
the  pressure. 
were used in t h i s  ca lcu la t ion .  
t ha t  these  r e l a t i v e  permeability curves approximateb 
describe the  stean/water flow, then it is possible t o  
assume'that one obtains the  time when H constant 
by using Figure 1 and sca l ing  t / r 2  by k f 4 ,  As kh 
w i l l  not be known u n t i l  a f t e r  t he  pressure analYSiS is  
done, one must estimate h and a l c u l a t i n R  k , ,  chec 
make sure the  ana lys i s  wa$-done f o r  t he  time when 
asv/ar - 0 ,  For a w e l l  of rad ius  0.09 m, and fo r  
k/4 - 5 x 10-13 and a r e se rvo i r  pressure of 8 W a ,  
the  changes i n  enthalpy were over a t  about 10s f o r  
S, < 0.5,  while 'for S,, > 0.5, t he  changes occurred 
from lo3 t o  lo5 s. 
t i m e  of these changes w i l l  be g rea t e r ,  and fo r  k/4 
grea te r  than 5 x lO'I3, t he  changes w i l l  be more 

. 

It is  possible to  estimate when s, 
The parameter t / r 2  sca l e s  approximat 
However, pCt is primarily a function 

The parameter K i 6  a 

Corey r e l a t i v e  permeability curves 
Therefore, assuming 

For a k/g Less than 5 x the  

WO 

'She state-of-the-art ana lys i s  technique fo r  
two-phase we11 tests has been reviewed by Pr i tche t t16 .  
He suggests t h a t  a drawdown, a buildup, and an injec- 
t i o n  test a re  needed. 

measured, and from the  buildup test, the  slope of the  
s t r a i g h t  l i n e  on the  p vs: log [(t+At/At)] is deter- 
mined. 
= d a t e d  from the  average of these two slopes (p*), 

From the  drawdown test the  slope 
Of the straight l i n e  On the  p lo t  Of P vs* lodt) is 

The t ransmiss iv i ty  of t h e  reservoi r  i s  cal- 

kh A(w) 
[ 121 

the  sa tu ra t ion  

- t -  
4np* t V 

The t o t i 1  kinematic v i scos i ty  depends 
around the  bore. 
determining the  sa tura t ion .  Instead he suggests t ha t  
kh be measured independently by an in j ec t ion  test. 
Then given kh, the relative permeabilities can be 
determined from the flowing enthalpy by using 

P r i t c h e t t  does not give a method of 

13al 

13bl 

approach. 
des i rab le  t o  ac tua l ly  run an i n j e c t  ion test. 
a s t r a i g h t  l i n e  may be seen on t he  semilog plo t  while 
wellbore storage is sti l l  important. 
deep with a rad ius  of .09 m, a kh = 6 x lO-12m3, 
and with two-phase flow throughout t he  w e l l ,  wellbore 
storage can last on t he  order of 5 hours. (This 
neglects any storage e f f e c t s  of fractures.)  Lastly,  
t he  dura t ion-of  wellbore storage may be orders of 
magnitude d i f f e ren t  between a buildup and a drawdown 
because, i n  a buildup, the  f l u i d  i n  the  well separates 
out i n to  a l iqu id  and gas phase. 
of a two-phase mixture is  usua l ly  l a rge r  than the  
compressibil i ty of each phase reparately.  

F i r s t ,  many times it is ne i the r  possible or 
Secondly, 

For a well 2000 m 

The compressibil i ty 
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Assuming tha t  an i n j ec t ion  test cannot be done,' 

t he  following t e s t i n g  and ana lys i s  technique was 
followed i n  the  examples. 
l a t ed  i n  a l l  cases because it is  possible t o  e s t ab l i sh  
a region where as,,/& z 0 around the  bore. 
downhole pressure and the  flowing enthalpy must be 
measured as a function of time. The downhole pressure 
is p lo t ted  as a function of log ( t ) ,  and the  transmis- 
s i v i t y  o f  the  reservoi r  is  determined from the  slope 0:  
t he  s t r a i g h t  l i n e  tha t  is p lo t ted  i n , t h i s  graph. Giver 
t he  value of kh/Wt, the  duration of w6 lhore  storage 
(ignoring f rac tures )  is ca lcu la ted  t o  determine whether 
the  da t a  used i n  the  ana lys i s  were a f fec ted ,by  yellborc 
storage.  An estimate of wellbore storage *rill be giver 
below. 
permeability w i l l  be determined by ca lcu la t ing  Wt. 

analys is  is  tha t  we know the  r e l a t i v e  permeabili t ies ai 
a function of S,,. 
us  t o  determine the  r a t i o  of r e l a t i v e  permeabili t ies 
fo r  water and steam 

A drawdown t e s t  was simu- 

Both the 

Once the  proper kh/Wt has been found, t he  kh 

The c ruc ia l  assumption made in  t h i r  pa r t  of the 

The flowing en tha lpy  permits 

In  wr i t ing  down equation 14 it was assumed tha t  
hv, # 0 . 
Uv, H,, w i l l  be known. I f  bg and km a re  given 
as a function of S,,, then, knowing €If, t h e  sa tu ra t ion  
can be determined. Figure 2 i s  a plo t  of Hf VI. S,, 
f o r  p = 4.5 MPa using k. and krv as  given by 
equations 7a-7c. 
can be calculated as well as  the  absolute permeability 
thicknesr,  kh. . 

I f  t he  pressure is known, Vg, H+, 

Since krg and krv a re  known, U t  

I f  t he  r e l a t i v e  permeability functions a re  not 
known, two lower e r t imater  fo r  kh can be made. 
equations 13a, 13b, khkrg and khkrv can be 
computed, both of which w i l l  be smaller than kh. 
Rowever, usually not both krg and krx w i l l  be much 
l e s s  than one so t ha t  t he  l a rge r  of the  two quan t i t i e s  
khkrg and khk, w i l l  provide an estimate fo r  kh 
i t s e l f  . 

Using 

For a11 of the  case6 c81culated here,  t he  C o n y  
r e l a t i v e  permeability curves were used. In one case 
(case 3) t he  e f f e c t  of using o ther  permeability 
curves was investigated., 
l a t i v e  permeability curves fo r  s tem-water  mixtures arc 
not well known. It is also recognized tha t  they 
may be dependent on the  rock type i n  which a geothermal 
resource occurs. Our point is  tha t  i f  these r e l a t i v e  
permeability curves were b e t t e r  known, a p laus ib le  
methodology f o r  obtaining the  i n  s i t u  r e se rvo i r  para- 
meters is ava i lab le ,  It i r  r t r e s sed  tha t  more work i r  
necesrary t o  obta in  these  curves. 

It is recognized tha t  re- 

DUR~TION OF WELLBORE STORAGE 

A6 s t a t ed  above, wellbore storage phenomena in  
two-phase geothermal wel l / re rervoi r  ryrtems can last 
fo r  severa l  hours. The duration of wellbore rtorage i a  
proportional t o  both ( 8 p / a p ? ~  and (kh/vt)-I. 
Becaure the  tranlrmirsivity of geothermal reservoi rs  is 
usua l ly  g rea t e r  than the  tranemisskvity of o i l / gas  
formations, wellbore storage i n  l i qu id  f i l l e d  reser- 
voirs tends t o  be shor te r  than i n  hydrocarbon reser- 
voi rs .  However, for  two-phase geothermal reservoi rs ,  

t he  compressibil i ty e f f e c t s  of t he  stem-water mixture 
i n  the wellbore are an order of magnitude l a rge r  than 
o i l  and gas systems because of phase t r a n s i t i o n  ef- 
f e c t s ,  In  addi t ion ,  wellbore storage ca lcu la t ions  i n  
the  petroleum l i t e r a t u r e  neglect energy changes i n  the  
w e l l .  We w i l l  define both an i sen tha lp ic  and an 
i sobar ic  wellbore storage term. 
phenomenon p e r s i s t s  u n t i l  both of the  above wellbore 
storage cont r ibu t ions  have become negl ig ib ly  small. 

Wellbore storage is Over when the  sandface flow- 
rate is  approximately equal t o  t he  surface flowrare. 
For an isothermal well, Rarneyl' determined tha t  
when t D  > 60 CD, t he  e f f e c t s  of wellbore storage 
can be neglected. 
t o  estimate the  i r en tha lp i c  wellbore storage t i m e  
by defining an average i sen tha lp ic  compressibil i ty i n  
the  wellbore. 
be determined by ca lcu la t ing  when energy changes i n  thc 
ue l1 , a re  over. However, heat l o s s  out of the  bore will  
be ignored although it can be important. 

The wellbore storage 

We w i l l  assume a s imi la r  formulatior 

The i sobar ic  wellbore storage term w i l l  

For 8 change i n  mass flowrate a t  wellhead, t he  
sandface mass flowrate can be ca lcu la ted  by using the  
continuity equation and by in tegra t ing  it over the  
length of the  w e l l .  

L L 

0 0 

or 

I151 
0 

Changes i n  den r i ty  in t he  we11 are a function of 
pressure and energy. 
E, equation (15) is wr i t t en  ae 

Bewriting ap/at i n  terms of p and 

where Cg = yp) PF E and 8 - $$) p. The duration 

of energy and pressure changes w i l l  be estimated 
separately.  

The d i f fe rence  i n  wellhead and the  downhole 
nass flowrate due t o  pressure changes only is 

dP 
w s f  w8 + A JP% dx, [171 

h e r e  CE and p a re  functions of x. 
Jellbore rtorage d i e s  out,  dp/dt w i l l  be a ve ry  weak 
Eunction of x and it is  poss ib le  t o  rewr i te  equation 

0 

Rowever, as 

(i7) 

I181 
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I f  t he  wellbore s torage coe f f i c i en t  is defined 
as 

then equation (18)can he wr i t t en  as i n  t he  petroleum 
l i t e r a t u r e  

dP 
w = w + v T ~ . .  (201 

Defining C,, - and t,, = 2 

s f  S 

V F  1 k t  

P , f W  Cthrw s 8  'RVt 'w 

and assuming t h a t  t he  e f f e c t s  of wellbore s torage on 
the  downhole pressure changes w i l l  be over when t D  > 
~ O C D ,  then 

- -.- 
V F  

I211 " (hr) kh/vt 

The f a c t o r  kh/vt i s  measured d i r e c t l y  from the  slope 
of t h e  p VS. log (t) p lo t  and given the  steady s t a t e  
i n i t i a l  condi t ions i n  the  well ,  t h e  average value of 
(ap/ap)E i n  it can be determined. 
(ap/ap)E and not (l/p)(ap/ap)E which is meraged in 
t he  bore. 

use (ap/ap)E o r  (ap/ap)H o r  something else. Garg 
and P r i t c h e t t l  have shown t h a t  (ap/ap)E/p and 
(aP/ aP)& can vary by a f ac to r  of 2 a t  high pres- 
sure  when the  f l u i d  i s  compressed l iquid.  However i n  
t h e  two-phase region no l a rge  va r i a t ions  
con t r a s t  t o  what one might expect. It is 
show t h a t  

Note it is 

There may be some question a s  t o  whether 

I n  t h e  two phase r e g i a  (ap/ap)E i s  much l a rge r  than 
(aP/aE) /P while i n  the  compressed l i qu id  region 
these  terms are more comparable. 
es t imate  f o r  two-phase wellbore s torage,  one can use . 
e i t h e r  (ap/ap)E o r  tap/ap) 

Therefore , as an 

For the  changes due t o  any energy increa8es or 
decreases i n  the  well ,  t h e  

Wsf = ws 

Wellbore s torage due t o  energy changes 
over when dEldt :: 0. 
bore is  ignored, then 

If t he  heat  1086 out of t he  

'SULLIVAN, AND' K, PRUESS 5 

aE 
c 

P a t  

As long as t he re  is a s i g n i f i c a n t  change i n  the  flowin1 
enthalpy from the  reservoir,' wellbore s torage e f f e c t s  
w i l l  p e r s i s t .  
constant,  then the  addi t ional  time f o r  t he  energy 
changes i n  the  well t o  steady out is j u s t  t he  t i m e  for  
a p a r t i c l e  t o  t r a v e l  through the  wellbore or.L/v,,. 
This average ve loc i ty  is  defined as 

However, once Hf is  a p p r o x i k t e l y  

J 
0 

I f  pv P: ws/A, then Vgve w,/Ap'. However i f  
pv is  s t i l l  varying i n  the well then a more conser- 
vat ive est imate  would be t o  use w,f/A f o r  pv. 

Wellbore storage e f f e c t s  well p e r s i s t  u n t i l  

60'4; 

er the  flowing enthalpy is  
constant from the  reservoir  which ever,  is greater .  I n  
a l l  t he  analyses done below, 8 check w i l l  be done t o  
determine i f  wellbore s torage is over. 

EXAMPLE 

To consider t he  e f f e c t s  of t he  wellbore flow on 
the t e s t i n g  of geothermal r e se rvo i r s  and t o  consider 
nethods of determining the  permeabili ty of such 
reservoirs ;  four d i f f e ren t  examples were considered. 
(See Table 1 for' t he  i n i  ial conditions.) For a l l  t he  
cases run, jc 3 x lo-&, h = 80 m, + = 0.15, 
Cr 1.0 W/kg K and pr = 2000 Kg/m3. The 
viscosi ty  of  t he  l i qu id  and steam phases were cal- 
culated with 

.8/(T+133.15)] Pa. 
'L 

l V  
= ( 9  + ,035T) x Pa.s 

respect ively7. 

A drawdown pressure t r ans i en t  test was simulated 
,y f i r s t  flowing the  w l l / r e s e r v o i r  system f o r  24 houri 
a t  5 kg/r. (The flowing enthalpy , pressure , and vapor 
saturat ions at the  sandface a f t e r  t h h  i n i t i a l  24 houri 
Ere a l s o  given i n  Table 1.) Subsequently the  flowrate 
pas increased from 5 t o  30 kg/s i n  the  f i r s t  two case1 
and from 5 fo 15 kg/s .in cases 3 and 4. 
:est  was then run up t o  10 hours. 
Elowrate a t  wellhead and a constant f lowrate at the  
sandface were considered. When the  w e l l  flow was 
included, t he  well was assumed t o  be 2000 m deep with 1 

radius of 0.09 m. Both skin e f f e c t s  and heat  l o s s  from 
:he wellbore were ignored althrough they both can 
influence w e l l  test t r ans i en t  data.  Table 2 summaritel 
:he calculat ions.  

The drawdown 
Both a constant 
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For a l l  the examples, the  following method of 
analysis  was followed. 
compressibi l i ty  dens i ty  term, PCH, was computed 
a t  the  flowing condi t ions i n  the  w e l l  before the 
f lowrate  was increased. 
l i n e  segment on t h e  p lo t  of the  Pdh vs. log ( t )  was 
measured. The l i m i t s  of t h e  t i m e  over which t h i s  
s t r a i g h t  l i n e  segment was chosen is l i s t e d  i n  Table 2, 
where t i  is the  time f o r  the  beginning of t h e  segment 
and t 2  i s  the  end of the  segment. Note t h a t  two 
analyses were done f o r  both examples 2 and 3 t o  il- 
l u s t r a t e  the  e r r o r  i n  kh i f  the  wrong s t r a i g h t  l i n e  is  
chosen. 

F i r s t  t h e  average value of the 

Then the s lope of t h e  s t ra igh  

Using the  measured slope, t h e  t ransmissivi ty ,  
kh/Vt, and t h e  durat ion of the  i sen tha lp ic  wellbore 
s torage e f f e c t  (using equation 21 and designated by 
t H  i n  Table 2) were calculated.  
wellbore s torage because of energy changes during t h e  
test is  bes t  determined by monitoring the  flowing 
enthalpy. However, a very rough est imate  can be made 
by assuming t h a t  it p e r s i s t s  f o r  a time equal t o  
L/vave a f t e r  t h e  enthalpy from t h e  reservoi r  is  
constant .  
energy changes are important is given i n  the  t a b l e  and 
designated tp. I f  t h e  s t r a i g h t  l i n e  segment chosen 
occurs while wellbore s torage was important, t h e  
ca lcu la t ion  of kh/Vt should be repeated using the  
cor rec t  l i n e  segment. 

The durat ion of 

A rough estimate of t h e  t i m e  when these 

Now, given the  flowing enthalpy and downhole 
pressure a t  some point along the  s t r a i g h t  l i n e  segment 
and assuming Cory r e l a t i v e  permeability curves, when 
t h e  f l u i d  is  two-phase i n  t h e  reservoi r ,  t h e  vapor 
s a t u r a t i o n  around t h e  bore was calculated.  Given t h i s  
Sv, the  t o t a l  kinematic v i scos i ty ,  V t ,  was computed 
and i n  t u r n  kh was determined. The com uted values  fo  

t h e  ac tua l  simulation ( see  Table 2). 
kh were compared t o  the  kh of 2.4 x 10- P %13 used i n  

HOT WATER RESERVOIR 

The f i r s t  case considered is a hot water reser- 
voir ,  where the  f l u i d  f lashes  i n  the  bore during the  
well test. 
increase i n  mass flowrate t o  30 kg/s, is given i n  
Figure 3. Results f o r  both the  constant flowrate a t  
wellhead and at the  sandface are plot ted.  The calcu- 
l a t i o n  f o r  kh gave 2.6 x lO'%3 and the  isenthal-  
pic  wellbore s torage las ted  3.2 x lo3 s (54 minutes). 
The ca lcu la t ion  f o r  the  t i m e  u n t i l  energy changes 
can be neglected is j u s t  the time f o r  a f l u i d  p a r t i c l e  
t o  t r a v e l  through the  bore. Because the  f l u i d  flowing 
from t h e  reservoi r  remains s ing le  phase, t h e  flowing 
enthalpy a t  t h e  sandface is constant. I n  t h e  pressure 
drawdown simulation, when the  flowrate was increased, 
the wellhead enthalpy decreased i n i t i a l l y  and then 
increased back t o  t h e  enthalpy before  the  f lowrate  
change. 
W/(wsf) i  o r  60 minutes i n  t h i s  case (P  :: 400 
~ m 3 ) .  

end of wellbore s torage,  exce l len t  agreement was 
obtained between the  ca lcu la ted  kh (2.6 x 10-12m3) 
and t h e  a c t u a l  kh (2.4 x 10'12m3) used i n  the  
simulation. It is a l s o  possible  t o  ca lcu la te  4Cthre2 
f o r  t h i s  case. Using t h e  i n t e r c e  t of the  s t r a i g h t  
l i n e  segmeat with t = 1 s, OCthreg was computed 
as 1 x 10'10m3/Pa. The value used f o r  t h e  simu- 
l a t i o n  was 1.45 x lO'1%?/Pa. 

The downhole t rans ien t  pressure a f t e r  t h e  

A conservative est imate  f o r  the time is 

Because the  ana lys i s  f o r  kh was done a f t e r  the  

The d i f fe rence  

between these  numbers occurs because the  f i n i t e  g r i d  
used around the  wellbore introduces a s l i g h t  sk in  
e f f e c t .  

In  many cases, because of the  high flowrate and 
high temperatures i n  a geothermal w e l l ,  it i s  diff iculc  
t o  keep t o o l s  downhole f o r  extended periods of time. 
Many tests cannot even be run f o r  one hour, and as we 
see from t h i s  case, wellbore s torage is not over u n t i l  
one hour. To obtain a good estimate of kh, the  test 
would have t o  be run a t  l e a s t  t en  hours. Data from a 
shor te r  test can only be analyzed i f  proper allowance 
is made f o r  t h e  change of sandface f lowrate  with 
t i m e  . 

I f  the  f l u i d  i n  t h e  reservoi r  remains s ing  e 
phase, t h e  reservoi r  parameters, kh/V and $Cthrw 1 
can be calculated even when t h e  sandface f lowrate  is 
varying as long as t h i s  f lowrate  is  known. It is  
possible  t o  solve f o r  t h i s  sandface f lowrate  i f  both 
t h e  wellhead flowrate and t h e  downhole pressure are 
measured. However a t r a n s i e n t  wellbore simulator must 
be used f o r  t h i s  calculat ion.  It is not possible  t o  
use some average compressibi l i ty  i n  t h e  well and then 
compute t h a t  the  mass e x i t i n g  the  bore is PC(dpdh/dt). 
No one pressure measurement is c h a r a c t e r i s t i c  of the  
average pressure change i n  t h e  bore. I f  t h e  t r a n s i e n t  
pressure change i n  the  bore were independent of posi- 
t i o n ,  then t h e  i n i t i a l  s lope of a log bp vs. log ( t )  
p lo t  would be u n i t y  as derived i n  t h e  petroleum liter- 
a ture .  P lo t ted  i n  Figure 4 i s  log kp vs. log ( t)  €or 
t h i o  f i r s t  case. We see t h a t  the  i n i t i a l  s lope of t h e  
p lo t  i r  g r e a t e r  than 1 indica t ing  t h a t  the  t r a n s i e n t  
pressure changes i n  the  bore are a funct ion of posi- 
t ion .  The change i n  pressure made at wellhead takes  
about 20 s t o  "arrive" downhole a f t e r  which the  down- 
hole pressure rises abruptly. (More d e t a i l e d  discus- 
s ion  of t h i s  phenomena is given i n  r e f .  11) 
pressure response approaches t h e  downhole pressure 
change expected when dp/dt is not a funct ion of 
posi t ion.  The average compressibi l i ty  of the  f l u i d  i n  
the w e l l  is changing a l s o  during t h e  test. Therefore d 

t rans ien t  wellbore flow model must be used t o  obtain 
the sandface flowrate. 

The 

Using the  simulator WELBORE, t h e  ac tua l  sandface 
f lowrate  can be calculated.  Wellbore e f f e c t s  can be 
eliminated, allowing reservoi r  proper t ies  t o  be deter-  
mined from a var iab le  rate ana lys i s  technigue. W e  havc 
done t h i s  using a computer program c a l l e d  ANALYZEL8. 
This program performs h i s t o r y  matching f o r  pressure 
t rans ien t  d a t a  of a system of wells, based on t h e  Theic 
solut ion.  
mize the  d i f fe rence  between a set of measured pressure 
points  and a set of ca lcu la ted  pressure points. The 
calculated pressure points  a re  generated by varying the 
t ransmissivi ty  ( k h / V )  and t h e  s t o r a t i v i t y  ((YCth) ( o r  
given YCth, t h e  sk in  is var ied) .  

It uses a least squares technique t o  mini- 

The program is designed f o r  t h e  ana lys i s  of in te r -  
ference and production tests i n  s i n g l e  phase, f luid-  
saturated hydrothermal reservoi rs .  It is used t o  
analyze d a t a  from j u s t  one production well i n  t h i s  
case. Given the  sandface f lowrate  f o r  t h e  f i r s t  15 
ninutes (ca lcu la ted  with the  wellbore simulator), t h e  
sandface flow and t h e  downhole pressure where input t o  
the program ANALYZE. 
6andface flowrate and the  downhole pressure as a 
€unction of t i m e .  
Zalculated pressures a f t e r  a bes t  f i t  was obtained. 
h e  best  f i t  gave a k h / V  2.8 x 10'8m3/Pa.s and 

Figure 5 shows both the  ac tua l  

Included on the  f igure  are the 



9 
F 

I 

C 

SPE 9922 C.W. MLLER. S.M.BENSON. M.J. C 

a $Cthre2 - 7 x 10 '9m3/Pa. 
used i n  the  simulation were 2.7 x 10'8m3/Pa.s, 
bCthreZ - 1.45 x 10"m3/Pa.s). 
i s  a good f i t  consider ing t h a t  it is very s e n s i t i v e  t c  
e r r o r s .  The r e s u l t  f o r  khlp is q u i t e  accurate. Note 
t h a t  t h e  pressure d a t a  f o r  t h i s  f i r s t  15 minutes woulc 
be use less  without such a technique f o r  evaluat inn t i n  
dependent sandface flow due t o  wellbore s torage as 
wellbore s torage is  not over f o r  60 minutes. The 
pressure d a t a  from 102 t o  103 s p l o t s  as a f a i r l y  
s t r a i g h t  l ine .  I f  no d a t a  were taken afterwards, the  
subsequent change i n  s lope would not be noticed. I f  
t h i s  d a t a  were mistakenly analyzed assuming constant 
sandface flowrate, t h e  kh/p value obtained would only 
be 6.5 x 10'qm3/Pa.s. 
would he severa l  orders  of m&gnitude off, on the  ordei 
of l . t ~ l O ' ~ .  Recause of the  l i m i t  at present on the 
time of keeping a t o o l  downhole i n  a geothermal f i e l d ,  
a method for evaluat ing time-dependent sandface flow- 
r a t e s  is  of grea t  p r a c t i c a l  value, as it allows good 
est imates  of kh/v and gCthrz t o  be made from short  
tests. 

(Again, t h e  values 

This l a t e r  quant i ty  

The value f o r  4Cthre2 

HOT WATER RESERVOIR WITH U f I N G  

I n  t h e  second example, t h e  i n i t i a l  reservoi r  prer 
l u r e  was lowered somewhat so t h a t  f lash ing  around the  
well would occur during t h e  well test. 
drawdown i n  t h i s  case is  given f o r  a constant sandface 
flowrate and a constant wellhead f lowrate  i n  Figure 6 .  
For t h e  former case, t h e  pressure drawdown follows the 
s ing le  phase case u n t i l  the  first g r i d  block 8 t a r t 8  Le 
f lash  (at  about 150 s). A t  250 s, t h e  next block 
f lashes  and t h e  pressure begins t o  drop a t  a f a s t e r  
r a t e  because of t h e  decrease i n  t h e  t o t a l  k i n h a t i c  
mobility. 
drawdown curve occur because of f i n i t e  space dis- 
creteness. 

The pressure 

Small o s c i l l a t i o n s  about the average of 

This  is a well known e f f e c t ,  which can be 
d by using a f i n e r  gr id .  

The second case (constant wellhead f lowrate)  given 
in t h e  f igure  shows t h a t  t h e  downhole pressure does no 
start t o  drop u n t i l  a f t e r  20 s. (The propagation of a 
j is turbance throuph the  compressible two-phase mixture 
in the  wellbore is slow.) For t h i s  p a r t i c u l a r  case, (I 

s t ra ight  Line is ohtained from lo2 t o  104s, and the  
:hange i n  s lope of the  drawdown curve when t h  
roir begins t o  f lash  is completcIy masked now 
the o s c i l l a t i o n s  t h a t  occurred i n  the  c a l c u l a  
:onstant sandface f lowrate  are damped out  by the  
uell.(The same gr id  was used i n  both cases). X t  is no 
possible t o  r e l y  on changes i n  the  downhole pressure t 
predict when f lash ing  begins i n  the  reservoi r  during 
B test. Heasurementn of  the  flowing enthalpy with the 
downhole pressure are needed t o  de tec t  f lash ing  i n  the 
bore. 

For th in  case, it i n  very import 
the durat ion of wellbore rtorage. On 
to use t h e  810pe of t h e  l i n e  from lo2 
although t h e  calculated value of  kh/vt might not be 
Ear o f f ,  t h e  determination of kh would be inaccurate  a 
ieen i n  Table 2. 

The flowing enthalpy needed t o  d 
ra r ies  Considerably when 
Clash i n  t h e  reservoir .  
me hour, t h e  ca lcu la t ion  f o r  kh 'gives 1.2 x 10-r2m3, 
m l y  h a l f  of the  ac tua l  value used i n  the simulation. 
Ihe second ana lys i r  f o r  kh f o r  t h i s  case 2 given 
tn t h e  t a b l e  shows t h a t  a mre reasonable value of kh 
is bbtained (2.8 x 10-17-3) when the  ana lys i s  is  

t h e  f l u i d  f i r s t  s t a r t s  t o  
I f  the test wai run on1 

ULLIVAN. AND K. PRUESS 7 

done a f t e r  wellbore s torage is  over (1.1 x lo4 8 ) .  
The ca lcu la t ions  for khkrg and khk, give t h e  lower 
estimate on kh. 

A check must be done t o  insure t h a t  t h e  energy 
changes i n  t h e  bore are negl ig ib le .  
f lash ing  i n  t h e  reservoi r  can occur a t  any t i m e  
during the  test i n  t h i s  case, t h e  best  method i s  t o  
a c t u a l l y  monitor the  wellhead enthalpy u n t i l  
s tead ies  out. No est imate  was made f o r  t h i s  time f o r  
t h i s  example. 

LIOIIIR MM1NATF.D IWO-PHASE RE SERVDIR 

However, because 

it 

The t h i r d  example is a l iau id  dominated but two- 
phase reservoir .  Refore the  i n i t i a l  24 hours drawdown 
t h e  i n i t i a l  steam s a t u r a t i o n  was 0.19. After  the  
24 hours, t h e  average sa tura t ion  around t h e  bore out t 
approximately 10 m is 0.29. When the f lowrate  is 
increased t o  15 kg/s, the  vapor s a t u r a t i o n  increases  
t o  about 0.4. It is evident from t h e  test it would be 
hard t o  determine the  in-place vapor s a t u r a t i o n  becaus 
t h e  t e s t i n g  i t s e l f  changes t h e  sa tura t ion  condi t ions i 
t h e  reservoi r .  

When t h e  flow f r &  the  reservoi r  is  increased, 
t h e  enthalpy from t h e  reservoi r  increases. 
there  is usual ly  a s l i g h t  delay depending on t h e  
condi t ions i n  the  r e s e w o i r .  Therefore, t h e  downhole 
Dressure starts t o  drop while the enthalpy of the  f l u i  
en te r ing  t h e  well-remains f a i r l y  constant. TRe sand- 
face flowrate is slowly increasing. However, once the  
flowing enthalpy starts t o  increase,  t h e  i n t e r a c t i o n  o 
t h i s  flow with the  wellbore f l u i d  flow Droduces a very 
i n t e r e s t i n g  phenomenon i l l u s t r a t e d  i n  Figure 7. The 
pressure drops u n t i l  t h e  flowing enthalpy i n t o  t h e  we1 
starts t o  increase. A t  t h i s  point ,  because the  energy 
in t h e  bore is increasing, t h e  mount of mass t h a t  can 
be taken from the  bore increases .  Recause less mass 
must come from the  reservoi r  t o  keep a constant mass a 
wellhead, t h e  downhole pressure r tops  droDping and 
remains on a plateau u n t i l  t h e  flowing enthalpy from 
the  r e s e r v o i r  s teadies  out. 
must come from the  reservoi r ,  so t h a t  downhole pressur, 
starts t o  drop again. However, wellbore s torage is  no 
necessar i ly  Over yet  as only the  energy changes are 
negl igible .  It is  s t i l l  necessarv t o  c a l c u l a t e  t h e  
isenthalpic  m l l h o r e  storage term. 

However, 

Subseauently, more f l u i d  

Again two analyses were done f o r  t h i s  example as 
piven i n  Table 2. 
f o r  t h e  t i m e  period from 1 x lo3 t o  3 x lo3. 
However, wellbore s torage was estimated t o  last a$ 
l e a s t  6.2 x 104s with t h i s  analysis .  The ca lcu la ted  
kh pave a very low value (6 x 10-13~13). 
the second ana lys i s  was done at t h e  l a t e r  times, t h e  
calculat ion f o r  kh was c loser  (2 .9  x 
that  a c t u a l l y  used. 

I n  one case,  the  ana lys i s  was done 

When 

t o  

The ana lys i s  shown i n  Table 2 used Corey r e l a t i v e  
Dermeabitity curves. The ca lcu la t ion  foz kh using 
a l te rna te  r e l a t i v e  permeability Curves was a160 
gone f o r  t h i s  example. 
l a t ions  f o r  the  Corey r e l a t i v e  permeability curves witt 
:wo d i f f e r e n t  i r reducib le  l i a u i d  sa tura t ions ,  t h e  
8trainht  l i n e  r e l a t i v e  permeability curves (krg 
1 - SV, Pry, + kTV - 11, Grant's curves19 (k;g 
B S*4 where S t  is eiven by equation 7c, h g  + k, 
9 l! and the  extrapolated curvesz0 of  Council and 
lamepl ( h g  - 1 - Sv/0.3 f o r  Sv < 0.3, otherwise 
+& 0 ,  krv (8, - .2)/0.0 for  Sv > 0.2, 
crv = 0 f o r  Sv < 0.2.p W see t h a t  d i f f e r e n t  

. 
Table 3 summarizes t h e  calcu- 
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values of t he  i r reducih le  l iqu id  sa tu ra t ion  with the  
Corey curves does not a f f ec t  the  ana lys i s .  Also both 
t h e  s t r a i g h t  l i n e  permeabili ty curves and Grant 's  
curves give s imi la r  r e s u l t s  fo r  t h i s  case. 
there  is a very l a rge  d i f fe rence  i n  the  ca l cu la t ion  fc 
kh when the  d i f f e ren t  r e l a t i v e  permeahili tv curves arc 
assumed. we conclude tha t  fo r  an accurate estimation 
of kh when in j ec t ion  t e s t i n g  cannot be done, some 
reasonable estimate of what r e l a t i v e  permeabili ty 
curves apply is important. 

However, 

A buildup case was a l s o  simulated for  t h i s  exampl 
and t h e  downhole pressure change i s  o lo t t ed  i n  Figure 
9 .  The pressure change is  g rea t e r  than f o r  t he  d r a w  
d o n  case hecause the  change i n  flowrate W ~ R  from 15 I 
0 ka/s while i n  t h e  drawdown case it was from 5 t o  15 
kp/s. mat should he noticed from t h i s  graph is tha t  
wellhore s torage  seems t o  last  a much shor t e r  t i m e  foi 
a huilduo than f o r  a drawdown test. Wen the  well is  
shut i n ,  t he  steam and l iqu id  phases separa te  out i n  
t h e  bore. Tbe COmOreSSihility of each phase is  much 
less than t h e  COmDreSRihilitv o f  a well dispersed 
two-phase mixture. Phase changes occur easier i n  the  
two phase mixture r e su l t i na  i n  a longer wellhore 
s torage  phenomenon. However, i t  is  d i f f i c u l t  t o  analvzt 
a hiiildup da ta ,  when the  f l u i d  is  two phase i n  t h e  
r e se rvo i r  hecause the  l iqu id  forms a t  t he  hottom of tt 
well and the  l i qu id  sa tu ra t ion  around the  bore is  LOO2 
Small amounts of l i au id  can flow from the  w e l l  back 
i n t o  the  r e se rvo i r  during the  huilduo test. 
the buildup test mav look more des i rab le ,  it is  very 
hard t o  determine V t  when Sv around the  bore is  
such a s t rong  function of posit ion.  

Although 

VAPOR MUINATED nm-pusx RESERVOIR 

In  the  four th  examole, an i n i t i a l  steam s a t u r  
a t ion  of 0.78 was assumed. Af te r  24 hours of produc- 
t ion,  t he  steam sa tu ra t ion  v a r i e s  between 0.7 and 0.82 
around t h e  hore. As  indicated above (Figure 11, when 
the steam sa tu ra t ion  is high, changes i n  enthalpy can 
x c u r  at verv l a t e  times. 
ieen h e t t e r  t o  i n i t i a l i z e  t h i s  case f o r  a longer 
t i m e  . 

It would orobably have 

Figure 10 is  a p lo t  of t h e  drawdown pressure vs. 
: i m e  hoth considering the  wellhore flow and neglecting 
i t .  A t  these  hieh i n i t i a l  s a tu ra t ions  and using Coreg 
relative permeabili ty curven, only stem f l o w s  i n  t h e  
*ell .  The average comaress ih i l i ty  i n  the  w e l l  is much 
Less than i n  the  o ther  cases. The i sen tha lp ic  cont r i -  
mt ion  t o  w l l h o r e  s torage  only l a s t s  6 5 0 , s  and t h e  
:est  need only he run fo r  one hour. 

Over t h e  t i m e  span t h a t  kh/Vt was ca lcu la ted ,  
Ip i s  approximatelv constant ind ica t ing  tha t  energy 
:hanges i n  the  wel l / reservoi r  are not important. 
Iowever, a t  about 7 x lo9 8 ,  the  drawdown curve 
iuddenly starts droooing at a g rea t e r  r a t e .  A check o 
he flowing enthalpy shows tha t  some l iou id  is start- 
ng t o  flow. The f iau id  sa tu ra t ion  around t h e  bore i s  
LOW g r e a t e r  than the  assumed i r reducih le  l iqu id  
ia tura t ion  (0.3 here) .  
he hore when t h e  system is  i n i t i a l l y  a t  a pressure 
ha t  is  above t h e  maximum steam enthalpv point as i n  
h i s  case. To analyze the  drawdown curve a f t e r  7 x 
.03s, it is  necessarv t o  wait u n t i l  t he  flowing 
mthalpy from t h e  r e se rvo i r  s t ead ie s  out. 

Condensation occurs around 

* 
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A geothermal r e se rvo i r  simulator and a t r ans i en t  
wellbore model have heen coupled t o  generate a s e r i e s  
of drawdown h i s t o r i e s  f o r  various tvpes of two-phase 
reservoi rs .  Estimates of wellhore s torage  times have 
been made. Pressure dec l ine  curves have been analyze( 
with ana lv t i ca l  methods and with computerized curve- 
matching for var iab le  flowrates.  The following result  
have heen ohtained. 

Vellbore storage e f f e c t s  i n  two-phase drawdown 
tests can last  f o r  severa l  hours, during which 
t i m e  t he  pressure response is  cont ro l led  hv the  
va r i ab le  sandface flowrate. 
t o  o i l  and gas wells, t h e  sandface flowrate does 
not always approach the  sur face  flowrate i n  a 
monotonic way producing a temperary plateau i n  t h  
downhole pressure t r ans i en t  curve. 

Monitoring of t he  flowing wellhead enthalpy is 
e s s e n t i a l  fo r  meaningful r e su l t s .  

I f  t he  drawdown test is  appropr ia te ly  designed, 
pressure t r ans i en t s  are governed by a l i n e a r  
d i f fus ion  equation and a determination of t h e  
total  kinematic mobi l i ty  can be made. 

A t r ans i en t  ve l lbore  model allows f o r  an evalua- 
t i on  of t he  t o t a l  kinematic mobi l i tv  from short  
t i m e  tests which are dominated by wellbore storag 
e f f ec t s .  

The r a t i o  of r a l a t i v e  DermeahilitieS f o r  w a t e r  an 
steam, krk and krv, can be determined a s  a 
function of flowing enthalpy. 

Absolute permeabili ty thickness and t h e  in-place 
vaoor sa tu ra t ion  around t h e  wellbore during t h e  
test can be obtained i f  t he  r e l a t i v e  permeabili- 
t ies a re  known as a functcon of Sa tura t ion  or 
a l t e rna t ive ly ;  

t he  r e l a t i v e  permeahili ty curves can be de te rn ine  
i f  t he  absolute permeabili ty and in-place satura- 
t i o n  are known. 

Aowever, i n  contrast  

L = a rea  of wellbore 
' 

It = i s en tha lp i c  compress ih i l i tv ,  ( i /p)(ap/ap)R 

:r 
I = spec i f i c  energy 
' = f r i c t i o n  f ac to r  

' = spec i f i c  enthalpy 
oermeahili tv 

rk = r e l a t i v e  permeahili ty of l i qu id  water 

, = length of wellbore 

* = s lope  of p vs.  log ( t )  p lo t  

i = e f f e c t i v e  wellhore rad ius  

= t o t a l  compress ib i l i ty  of r e se rvo i r  

= compress ih i l i ty ,  ( l /P)(aPIao)E 
9 heat capac i ty  of rock 

= r e se rvo i r  thickness 

= r e l a t i v e  permeabili ty of steam 

= pressure 

= wellbore rad ius  

= r a d i a l  d i s tance  
= sk in  
= sa tu ra t ion  

fir = i r r educ ib l e  l i qu id  sa tu ra t ion  
iv = i r reducib le  steam sa tu ra t ion  

= time 

t 
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'T = temperature R. fauld, T.L., Aup. 1974. "Vertical Two-Phase u - heat transfer coefficient 
v - m a s n  averaged velocity 
vkl = Farcy liquid velocity 

Steam-Water Flow in Geothermal Wells", J. Pet. 
Tech., V. 26, p. 833442. 

vvl = barcy steam velocitv 
w = mass flowrate 
x = axial distance 

B = (iip)(apiantp 
TI riJt 
@ - porosity 
p density 
)r absolute viscositv 
V = kinematic viscosity 
ut total kinematic viscosity 

RlrRSCRIPT 

dh - dovnhole 
f = flowing 
i = initial 
L = liquid 
r = rock 
sf = sandface 
s = surface 
v = vapor 
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TABLE 1 - .Initial conditions and downhole 
conditions after twenty-four hours of 
production for the four examples. 

Case Case Case Case 
1 2 3 4 - - - -  

pi(MPa) 12.70 11.1 10.0 10.0 

v24(MPa) 12.34 10.74 8.94 9.26 

Hi(HJ/kg) 1.400 1.400 1.433 1.700 

(Hf)24(W/kg) 1.40 1.400 1.566 2.736 

(%)i 0 0 0.19 0.78 

(%)24 n n 0.29 0.70-0.82 

a. - 
TABLE 3 - Analysis of pressure transient data €or 
case 3 using different relative permeability curves. 

Council 
Cory Cory Straight and 

(str=.3) (str-.7) Line Grants b e y  -- 
S, 0.42 0.19 0.89 0.33 0.296 

k,L 0.034 0.033 0.11 0.12 0.01 

0.26 0.270 0.89 0.88 0.12 

i/vT 5.9~105 5.9xi05 1.9~106 2.0~106 2.2.105 3 

kh 2.9~10'~~ 2.9~10'~~ 8.75~10'13 3.5~10'~~ 7.5~10'~~ 

TABLE 2 - Analysir of pressure transient data - 
Case Case Case Case Case Case 
1 2 2 3 3 4 

- 
pc(s2/m2) 1 . 3 ~ 1 0 ~  1 . 1 ~ 1 0 ~  i.ixia-4 6.OX10-5 6.0~1n-5 8.0x10-6 

tl (SI 3,000 300 i0,oon 1,000 10,000 700 

HF(W/kg) 1.40 1.39 1.41 2.03 2.06 2.75 

p(ma) 10.8 9.3 7.8 6.7 4.5 8.0 

T(C) 310 3n5 293 2R2 257 295 

s, 0 0.18 .26 .40 0.42 0.7-1.0 

khkr,(n3) -- - 
I 

i.oxin-12 -- 5.6~10'13 4.2~10'15 

7.7~10'13 2.7~10'12 khkly(m3) - -- 1.7~10'1~ -- w 

t p  ( 8 )  n-1600 -- -- -- n-3600 2x103-2x105 

UT(m2/s2) 1.3~10'7 3.nxlO-7 5.6~10'7 1.3~10'~ 1.7~10'~ 4.9~10'7 

kh(m3) 2.6~10'~~ 1.2~10'12 2.8~10'12 6x10'13 2.9~10'12 2.9~10'12 
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Figure 1. Liquid saturation response for constant mass 
oroduction from the reservoir. Curves are labelled 
wit!? initial liquid saturations (ref. 15). 

(XPL 804-7018) 
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- 
relative permeability curves with Sllr - 0.3 and Svr - 0.05. 
(XSL 811-2126) 
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Figure 5. Sandface flowrate and drawdown pressure for example 1. 
Calculated pressure match using ANALYZE is also plotted. 
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