
"

LBL-12350
c.~

IT[I Lawrence Berkeley Laboratory
Ii:! UNIVERSITY OF CALIFORNIA

Physics, Computer Science &" ; ,
Mathematics Division

Presented at the ACM/SIGMOD International Conference
on Management of Data, University of Michigan,
Ann Arbor, MI, April 29-May 1, 1981; and published
in the Proceedings

MODELLING SUMMARY DATA

Rowland R. Johnson

March 1981
TWO-WEEK L,?AN COpy

, Circulating Cop~
This is a Llbrar~ d for two weeks.
which ma~ be borrowe II
For a personal retention cop~, ca
Tech. Info. Dioision, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

r
oJ
r
l

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

,.0.
\
I

* Modelling Summary Data

by
Rowland R Johnson

Computer Science and Applied Math
Lawrence Berkeley Lab

University of California
Berkeley, California 94720

ABSTRACT

Several problems in specifying aggregate functions in
relational systems are investigated. We propose a solution to
these problems in the form of an extension of the relational data
model. In particular we introduce the concept of summary data.
The query language STRAND is presented in order to describe
retrieval operations on the extended model. STRAND allows a user
to formulate queries involving aggregate functions without
conceptualizing the query in terms of aggregation. Two example
applications, proposal tracking and socio-demographic databases,
are used to illustrate the concepts of the extended model.

1. Introduction

Most relational data bases have some kind of facility to

evaluate aggregate functions. In general, there are many

aggregate functions that may be applied to a given relation. A

consequence of this fact is that users often find it difficult to

understand the sematics of aggregation. Furthermore, once a user

understands the required aggregation it is often difficult and/or

lengthy to express in a query language. This paper considers the

semantics of summarized data which is a special case of

aggregated data and is found in many applications. Withthe

incorporation of these semantics into the data base model it is

* This work was supported by the Applied Mathematical Sciences
Research Program of the Office of Energy Research, Department of
Energy under Contract W-7405-ENG-48.

-}.-

possible to alleviate the user from having to understand or

express aggregations that are required by a query.

In section 2 we investigate some problems of relational

systems in terms of specifying queries with aggregation. section

3 presents a schema specification technique of the relational

'model that is similar to that of the ER model. The query

language STRAND which operates on this type of schema is then

described. In section 4 the concept of summary data is presented

as an extension of the relational model. Finally, the semantics

of STRAND are extended to operate on the extended model. Two

example applications; proposal tracking and socio-demographic

data are used throughout the paper for illustration purposes.

The concepts that are presented in this paper are embodied

in an implemented system that runs under UNIX on a PDP 11/70.

The system consists of three components. A front end parser

accepts a STRAND expression from a user. A translator that is

written in EQUEL[Allman 76] takes the output of the parser and

produces a sequence of QUEL statements. Finally, these QUEL

statements are submitted to an INGRES DBMS [Stonebraker 76] to be

evaluated. Both the proposal tracking and socio-demographic data

applications ~re running under this system.

-2-

2. Aggregation in the Relational Model

The ability of relational systems to process queries

involving aggregate functions is a powerful tool [stonebraker 76,

/'"
() Chamberlain 78]. An aggregate function takes the result of a

join and divides it into groups. For each of these groups an

aggregate procedure (such as count, average or sum) yields a

single aggregate value. The semantics of aggregate functions in

a system such as INGRES or System R are complex and therefore

require a complex query language. In actual usage, however, a

complex aggregate function is not required in most cases. The

disadvantage is that the simple aggregate function must be

specified by the query language in a way that is more complex

than necessary.

This argument will be illustrated with an example based on

INGRES[Stonebraker 76]. A similar example also exists for System

R [Chamberlain 78]. Consider the following relational schema

from a socio-demographic application.

STATE
!namelfederal!census!

POPULATION
lstatelracelsexltotallavgincl

The relation STATE represents the fact that states are grouped

into federal regions and census regions. Each tuple in the

POPULATION relation represents the total number of people and

their average incomes in a state for a particular race and sex.

The possible values for race and sex are {black, white, hispanic}

and {male, female} respectively.

-3~

Consider the question "For each federal region and sex

classification what are the total number of blacks and their

average income?". The corresponding QUEL query is shown in Fig

2.1.(,,\

range of s is state
range of p is population
retrieve(s.federa+,

p. sex,
total=sum(p.total

by s.federal,p.sex
where p.race="black" and s.state=p.state),

avginc=(sum(p.avginc*p.total
by s.federal,p.sex
where p.race="black" and s.state=p.state) /

sum(p.total
by s.federal,p.sex
where p.race="black" and s.state=p.state»)

Fig. 2.1.

A user who deals only with simple aggregate functions will

find that the syntax of this query is unnecessarily complex in

several ways. Since the target-list and the by-list are

identical there should be just be one such specification. There

are three identical occurrences of the by/where clause

specification where one would suffice. In addition, the scopes

of these by/where clauses are unclear. The nesting would seem to

indicate that each by/where clause is local only to the aggregate

function that it appears in. In fact, the query processor

recognizes the identity of these by/where clauses and replaces

them with a single by/where clause that has global status.

In addition to the above mentioned syntactic considerations

this example also illustrates a shortcoming of the relational

model itself. Note that this query has the property that the

-4-

aggregate functions compute new values for the attributes total

and avginc. All such queries with this property will have

aggregate functions with the same functional form as this

example. That is, the aggregate function for each such query

will have the form

total=sum{p.total
<BY/WHERE clause>),

avginc={sum{p.avginc*p.total
<BY/WHERE clause>) /

sum{p.total
<BY/WHERE clause> »)

It should be possible to pre-define the functional form of these

aggregate functions so that the user is relieved of this task.

The conceptual advantages of allowing pre-defined joins

become apparent with this example. There are many queries that

can be based on the relations STATE and POPULATION. However,

they will all require that a join be ,done with the name attribute

of STATE and the state attribute of POPULATION. By allowing

pre-specified joins to be defined in the schema the user may be

relieved of this task.

The solution to these problems is tWo-fold. First, the

relational model must be extended in the manner described above.

Second, we require a query language that is capable of taking

advantage of these extended semantics. In the following sections

we first introduce the query language STRAND that operates on a

relational schema. We then extend the relational model so that

the semantics of aggregate functions may be specified in the

schema. Finally, the semantics of STRAND are extended in a

-5-

natural way to operate on a schema of the extended model.

3. STRAND

The query language STRAND(~imple ~o Bead and Understand) was

first introduced in [Johnson 80J. STRAND will be used in the

next section for describing operations on summarized data. In

this section a brief review of the syntax and semantics of STRAND

will be presented. Historically, STRAND was developed as an ER

model[Chen 76J query language. The implementation of STRAND is

with a parser that translates STRAND expressions into QUEL

statements; the query language for the relational system INGRES.

It is a derivative of the earlier version of the ER model query

language CABLE[Shoshani 78J. Many of the ideas found in STRAND

and CABLE are also found in the query language PML[Shneiderman

80J which operates on a DBTG schema. Basically, these three

languages operate on schemas that are represented by a network.

That is, they are all capable of 1) forming a chain of objects· in

the schema; 2} effecting a specified restriction on the retrieval

from these objects; and 3) selecting a subset of the attributes

of these objects to be displayed.

In this paper STRAND is used on a variation of the

relational model that results ina network type schema. There

are two basic objects of such a schema; the set and the

relationship. A set may be one of two types; an entity set or

summary set. The concept of a summary set will be presented in

the next section. An entity set is analogous to a relation of

the relational model. A relationship represents a pre-defined

-6-

join between two sets.

The diagrammatic technique for representing the schema for

an enterprise closely resembles that of the ER model. Boxes

represent sets and diamonds represent relationships. In proposal

tracking, proposals and principal investigators are in a many to

many relationship. The same is true for proposals and keywords

that describe the major thrust of the proposals. The schema for

these semantics is shown in Fig. 3.1

PI PROPOSAL N MAJTHRUST·
I name! inst ~pcn! title Idor ~keyword!

Fig. 3.1 Proposal Tracking Schema

Here, PROPOSAL is an .entity set and represents the set of

proposals with pcn being the "proposal control number" and dor

being the "date of receipt". PI represents the set of principal

investigators with inst being the. institution with which they are

affiliated with. In socio-demographic data bases there are

states and counties as shown in Fig. 3.2.

STATE 1 M
Inamelfederallcensus~ ______ ~!~n~am~e~!~s~1~·z~e~!p~o~p~u=l~a~t~i~o~nUI

COUNTY

Fig. 3.2 Socio-demographic Schema

In this case STATE and COUNTY are entity sets.

STRAND expressions are constructed from 3 basiC operations
I

"') on sets; projection, restriction, and chaining. Projection and

restriction are similar to the projection and restriction.

operators in the relational model. Chaining is the n-way join of

a linear sequence of sets. These sets must be connected with

-7-

relationships in the schema.

A STRAND expression consists of a select clause followed by

an output clause. The select clause specifies th~ chaining to be

performed and consists of a sequence of "beads", one for each set

along the path. The output clause specifies the projection by

listing the attributes that are to be displayed. If an attribute

does not exist in the output clause then'it is removed via

projection.

For example, consider the question "Who is the principal

investigator and what is the proposal title for each proposal?".

The appropriate STRAND query is shown in Fig. 3.3.

select clause
/ \

bead
I
~

[PI]

bead
I
~
[PROPOSAL]

output clause

,.--------,~ ... ----------, r \
: PI.name,PROPOSAL.title;

Fig. 3.3 Basic Components of Sample STRAND Query

Restriction of a set is accomplished py allowing a bead to

have a qualification clause. For example, the STRAND query for

"What proposals have a principal investigator from LBL?" is

[PI inst=LBL][PROPOSAL] : PROPOSAL. title;

For the query "What counties in Texas have more than 1,000,000

people" we have

[STATE name=TEXAS][COUNTY population>100qOOO]:COUNTY.name

-8-

Thus far we have presented the basic syntactic structure of

STRAND. Additional syntactic constructions and dialectical

modifications are possible and often desirable. However, for

expository purposes it is useful to include two of these

additions. First, it is sometimes inconvenient to have to

specify each and every bead in a path. Accordingly, we allow

incomplete select clauses that are filled in after pa~sing and

before query processing. The query language PML also has this

capability. For example, the question "Which principal

investigators at LLL have proposals whose major thrust is

conservation?" may be formulated as

(PI inst=LLL](MAJTHRUST keyword=conservation]:PI.name;

In this case the bead (PROPOSAL] is omitted but can be inferred

by the system. Second, an output clause can become quite long.

It can be shortened by grouping adjacent attributes belonging to

the same set. For example, "What is the name, size and

population of all counties in Texas?" would look like

(STATE name=Texas](COUNTY]:COUNTY.name,COUNTY.size,
COUNTY. population;

However, the shortened form looks like

(STATE name=Texas](COUNTY]:COUNTY.name,size,population;

-9-

4. Summary Sets

An informal description of summary sets will serve to

introduce the formal aspects of summary sets. In many

applications users need to manipulate data that has already been

aggregated. Population counts in socio-demographic data bases

are examples of such data. It would be unacceptable to require a

user to aggregate the raw census data in each and every query.

In essence, a summary set represents data that has already been

aggregated. There are several advantages in using summary sets.

First, users do not have to express an aggregate function in

every query that is posed. Second, the unaggregated raw data

does not have to exist. This is especially useful in socio-

demograph1c data bases where access to the raw data would be a

violation of privacy. Third, the storage and manipulation of

aggregated data results in a significant reduction in the amount

of processing required by a query.

More formally, a summary set is the result of aggregating

some underlying entity set. In practice, this underlying entity

set does not need to exist, nor do we require that it ever have

existed. Its only purpose is to aid in the formal treatment

given here. The underlying entity set is in a one to many

relationship with some entity set E and is illustrated by the

form:

E U

~ ______ ~_1~<>~M __ ~~'C.l~I __ ~IC~n~IA~1~1 _"_'~I~A~m'
where U is the underlying entity set. We will refer to C

1
... C

n

as category attributes and AI'" Am are regular attributes.

The grouping for the aggregation that results in the summary

set is as follows.
1 2

Let U and U be entities of U with the

1 1 values of the category attributes being u
I

,u
2

, ...

2 t" lId 2 "th 1 ,u respec 1ve y. U an U are 1n e same group iff ~} U
n

and u2 are related with same entity of E and b) u~ = u~ for
1 1

i=l,n. Thus, there is a group for each possible combination of

values for C
I

... C
n

and entity of E. The results of the

aggregation are represented in the summary set by summary value

attributes. An element of the summary set is called a summary.

The form of the resu~ting summary set is

E S

~ ____ ~-m~-L'C~I~i ____ LiC~n~iV~I~l~~~IV~m~(
Here, S is the summary set and VI""'Vm are summary value

attributes. C , ,C are the same category attributes as in
1 n

the underlying entity set.

As an example, consider the underlying entity set PEOPLE in

the schema

M PEOPLE
id i race1sex l income I

STATE
Iname1federal1census 1

Here each individual person is represented by an entity in the

PEOPLE entity set. Race and sex are category attributes and

income is a regular attribute. The summary set POPULATION is

obtained from the underlying entity set PEOPLE and is illustrated

by the schema

-11-

STATE 1 M POPULATION
UI n~am~e~l]f~e~d~e~r~a~IITI c~e~n~s~u~s~It-~~<>~..!...--[1 r~afc~e~l~s~e~xSI~c~o~u~n~tII~a~v~g~i~n~c~1

In POPULATION, count and avginc are summary value attributes.

count is simply the number of individuals in each race/sex

category. Avginc represents the average income of individuals

within a race/sex category. For each race/sex category it is

computed by summing all incomes and dividing by the count.

As another example, consider proposal tracking where the

funding for a proposal is broken down by type and budget year.

The type can be personnel, equipment, or construction. Budget

year has ~he values -1 (previous year), 0 (current year), and 1

(next year). Amt is a summary value attribute that represents

the funding amount for each combination of type, byear and entity

of PROPOSAL. Fig. 4.1 illustrates these semantics

FUNDING M 1 PROPOSAL
Itypelbyearlamt~pcnltitleldorl·

Fig. 4.1 Summary Sets in Proposal Tracking Schema

In applications that require summary sets a user will almost

always desire further aggregation of a summary set. We will

refer to this operation as summarization. As an example of

summarization consider the case where a user may be interested
\ ... "/"

only in population counts and average income broken down by race-

and not sex. In this particular example the summarization that

is required is the following. The new count is obtained by

summing the counts over the two sexes. The new average income is

derived by a weighted average of the average income for the two

-1.2-

;'-i

)

'\. \ .. ,.

sexes. This summarization is depicted in Fig. 4.2 where the 6

summaries of POPULATION that are related to the entity "Texas" in

STATE are shown.

Iracelsex countlavginc
b m 15 12 1 race 1 count 1 avginc 1
w m 32 6 b 35 15.431
h m 18 16 w 42 6.951
b f 20 18 ==========> h 58 22.761
w f 10 10
h f 40 24

Fl.gure 4.2

We now consider the way in which STRAND can be used to

express summarization. It will be shown that such a query can be

constructed without conceptualizing the query in terms of

aggregation. Instead, a user simply expresses the tabular form

of the result in terms of the 3 basic operations. That is, there

is no need to specify the aggregation procedure or the grouping

on which the summarization is based. The aggregate function is

specified by the schema and the grouping is determined from the

attributes that appear in the output clause. As an illustrative

example, the following STRAND expression performs the aggregation

depicted in Fig. 4.2.

[STATE name=Texas][POPULATION]:POPULATION.race,count,avginc;

More formally, the grouping implied by a particular query is

an extension of the grouping for the aggregation from the

underlying entity set to the summary set. For any two elements

VI and v2 in the set that is the result of the chaining operation

111 let v ,v
2

, ... ,v and
1 n

V
2

,V
2 , ... ,v2 be the values of the attributes

1 2 n

in the output clause. 1 2 - l.-ff Then V and V are l.n the same group

-13-

I 2
v.=v. for i=I, .. ,n and v. not a summary value attribute. This

1 1 --- 1

method of specifying groups allows a group to be defined on

attributes from different sets. As an example of this consider

the query "What is the total funding of proposals dealing with

nukes?" The STRAND expression for this query is

(MAJTHRUST keyword=nukes](FUNDING]:FUNDING.amt;

After the groups have been formed the next step is to

evaluate the aggregation procedures on each group to form a

single summary. The specification of the aggregation procedures

are combined and represented in the schema as a single procedure.

This procedure, called the summarization procedure, is part of

the description of a summary set. Fig. 4.3. illustrates the

general form of the summary procedure.

summarization(G)
(

}

•
• •

WHlLE(AI ,A2, ... <-getnextsummary{G»
{

6

•
}

•

Fig. 4.3.

G is a parameter that represents a group. AI ,A
2

, ... ar~

variables for holding the values of attributes of the summary

set. The function getnextsummary{) returns a different summary

from the group G every time it is called. When the summaries of

the group G have been exhausted a value is returned that causes

-14-

, . ,

the WHILE loop to terminate. Finally, SVA
1

,SVA
2

, ... are

variables that hold the new values of the summary value

attributes.

is

The summarization procedure for the summary set POPULATION

summarization(G)
{

}

weightedavg (- 0.0
total (- 0
WHILE(count,avginc (- getnextsummary(G»

{ total (- total+count
weightedavg (- (avginc * count) + weightedavg

weightedavg (- weightedavg/total
RETURN(total,weightedavg)

Thus far we have described the semantics of projection and

chaining for STRAND expressions involving summary sets. In the

balance of this section we will describe the semantics of the

restriction operator for STRAND expressions involving summary

sets. In particular, we will consider the order in which

restriction and summarization occur.

Restriction on category attributes will be treated in the

same manner as restriction on attributes of an entity set. That

is, restriction of a category attribute occurs prior to

summarization. As an example, consider the query "List the pcn

and the current year funding for all proposals.... In this case

we want to sum over all three types(i.e. personnel, equipment,

and construction) but just for byear=O. Thus we have

[FUNDING byear=O][PROPOSAL]:PROPOSAL.pcn,FUNDING.amt;

-15-

Since byear is a category attribute, restriction on it must take

place prior to the summarization.

An example of restriction on a summary value attribute is

illustrated by the query "What is tJ:te pcn for all proposals with

funding greater than 100?". This query looks like

[FUNDING amt>100][PROPOSAL]:PROPOSAL.pcn;

In the case of a summary value attribute we will adopt the

semantics that restriction take place after any summarization.

Thus, for this query the total funding amount for a particular

proposal is computed and then the test is made to see if that

amount is greater than 100.

As a final example, consider the query "Which states have

more than 5,000,000 blacks and what is their average income?" and

the corresponding STRAND expression

[STATE][POPULATION count>5000000,race=black]:
STATE.name,POPULATION.avginc;

This query restricts both summary value and category attributes.

Therefore, restriction both before and after the summarization is

required. First, restriction with race=black is performed. Then

summarization takes place to form the intermediate summary set

POPULATION
Icountlavgincl

This intermediate summary set represents the count and average

income for blacks of both sexes in each state. Finally,

restriction is done with count>5000000 on the intermediate

summary set.

·-16-

,

\
if

/-'
)

'~

5. Summary

The concept of summary data has been introduced. The

semantics of summary data has been incorporated into the

relational data model. It was shown that summary data exists in

many data base applications. The advantage of the extended model

is that queries requiring aggregate functions are easy to

formulate. In fact, a query can be formulated without

conceptualizing.the query in terms of aggregation.

As a vehicle for describing operations on this extended

model we presented the query language STRAND. In addition, two

example applications; proposal tracking and socia-demographic

data bases" have been presented.

Acknowledgements

The author would like to thank Susan Eggers, Peter Kreps,

Arie Shoshani and Harry Wong for the many times they have read

this paper and for their helpful comments. special thanks go to

Mike Stonebraker for his comments and suggestions.

References

[Allman 76] Allman, E., Held, G. and Stonebraker, M. "Embedding
a Data Manipulation Language in a General Purpose Programming
Language," In Proc. 1976 ACM-SIGPLAN-SIGMOD Conference on Data
Abstractions, Salt Lake City, Utah, March, "1976.

[Chamberlain'76] Chamberlain, D. D. et. al. SEQUEL 2: A Unified
Approach to Data Definition Manipulation and Control In IBM ~.
Res. Develop. 20, No.6, 560-575(1976)

-17-

[Chen 76] Chen, P. The Entity-Relationship Model-- Toward a
Unified View of Data. In ACM Transactions on Database systems
(March, 1976) 9-36

[Codd SO] Codd E.F. Data Models in Database Management In
Proceedings of the Pingree Workshop (June, 19S0)

[Johnson SO] Johnson, R. Modelling Summary Data with the Entity
Relationship Model Technical Report 10647 Lawrence Berkeley
Laboratory (May 19S0)

[Shneiderman SO] Shneiderman, B., Thomas, G. Path Expressions
for Complex Queries and Automatic Database Program Conversion.
In Proceedings of the Sixth International Conference on ~
Large Data Bases 33-44

[Scheuermann 79] Scheuermann, P., Schiffner, G., and Weber, H.
Abstraction Capabilities and Invariant Properties Modelling
Within the Entity-Relationship Approach. In Proceedings of
International Conference on Entity-Relationship Approach to
systems Analysis and Design 210-229

[Shoshani 7S] Shoshani, A. CABLE: A Language Based on the
Entity-Relationship Model Technical Report UCID-S005 Lawrence
Berkeley Laboratory (January 1975)

[Smith 77a] Smith and Smith Database Abstractions: Aggregation
and Generalization. In ACM Transactions on Database Systems
(June 1977) 105-133

[Smith 77b] Smith, J.M. and Smith, D.C.P. Database Abstracti,ons:
Aggregation. In Communications of the ACM (June 1977) 405-413

[Stonebraker 76] Stonebraker, M. et. al., The Design and
Implementation of INGRES". In TODS 2,3, september 1976.

-18-

,
I

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

...J
C
()

i=
tJ)
o

o
()
0:::

<C

--
TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

'- -.

