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Examination of vertical and radial magnetic fields from a horizontal-

loop electromagnetic system over a layered model with a conductive surface 

layer shows an anomalous response at frequencies just below those where the 

field behavior asymptotically approaches the plane wave response. In particu-

lar, a pronounced trough, or minimum, develops in the phase response of the 

vertical component (loop-loop system). An example of this is shown in Figure 

1. The vertical field, Hz, and its phase, <Pz• for a transmitter-receiver 

separation (R = Tx - Rxl of 300 m, a loop radius of 56.4 m, and a unit 

dipole moment are shown as a function of frequency for a uniform half-space 

of 01 = 1 S/m (curve D) and for the case of a conductive overburden layer of 

thickness 50 m and 01 = 1 S/m overlying a half-space of o2 = 0.02 S/m 

(curve A). The frequency-domain solution follows the development of Morrison 

et al. (1969). 

If the surface-layer conductivity is greater than the basement conduc-

tivity, then for a given transmitter-receiver separation the value of the 

phase at the minimum, <Pmin, and the frequency at which it occurs, fmin, 

constitute a unique point on a plot of <Pmin versus fmin for various thick-

nesses, h1, and conductivities, 01, of the overburden layer. Figure 2 

shows such a plot for a transmitter-receiver separation of 250 m, a loop 

radius of 1 m, and a basement of infinite resistivity Co2 = 0). This plot 

is effectively independent of the resistivity of the basement as long as it 

is at least 100 times that of the overburden. For ·any arbitrary sounding, 

only <Pmin and fmin are needed to determine uniquely the conductivity and 

thickness of the surface layer. With modern equipment, a phase accuracy of 

±1° and a frequency accuracy of a few percent would clearly locate a point in 

o, h spape quite well. 
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To test the efficiency of this approach to overburden profiling in a 

realistic situation, we have applied it over a two-dimensional model in which 

there is an abrupt change in overburden thickness (Figure 3) and over a model 

in which both the thickness and the conductivity of the overburden change 

abruptly (Figure 4). These results were obtained using the finite-element 

program recently developed by Lee ( 1978). Figure 3 presents the model along 

with 4>z at five frequencies for five transmitter-receiver separations taken 

in a profile acres~ the region of abrupt change. The five values of q,~n 

· " 1 " As can be seen, the ( ,~,mzin, are plotted on F~gure 2 and marked Profile • ~ 

fmin) points make a smooth transition from h1 = 50 m to h1 = 75 m while 

staying very close to the line 01 = 1 S/m. Considering that for profile 

position 1 the receiver is only 50 m from the discontinuity and for position 

5 the transmitter is only 50 m from the discontinuity, this system gives 

remarkable resolution. 

Figure 4 is the same as Figure 3 with the exception that both the conduc-

tivity and thickne"ss of the surface conductor change abruptly. The phase 

minima for this model are plotted on Figure 2 and marked "Profile 2." The 

conductivity and thickness were changed so that their product, 01 • h1, 

would remain constant. This was done for comparison with results that might 

be obtained from a least-squares inversion of data from such a model. For 

such cases, unless a data point happens to fall right at the phase minimum, 

the statistics of the generalized inverse would indicate that only the 

product 01 • h1 could be accurately resolved, whereas the q,z minimum seems 

to show no such ambiguity. The phase minima of Profile 2 make a smooth tran-

sition from 01 = 1, h1 =50 to 01 = 0.666, h1 = 75 and determine both 

·-t 
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parameters very accurately at 50 m on either side of the contact. Profile 2 

also serves to illustrate the fact that models of constant a • h produce 

min · vertical lines on plots of $z versus fm~n. Figure 2 also shows that as h 

approaches R, the separation between lines of constant h decreases, prompting 

the suggestion that R be )2h for an accurate estimate of h. 

It is worth noting two sources of error in the profile points plotted on 

Figure. 2. The first is due to estimating $~in with only five data points, as 

shown in Figures 3 and 4. (The restriction to five data points was done mere-

ly to minimize the high cost of running the two-dimensional models.). The 

second is the numerical error of the modeling program, which amounts to ±1 

degree of phase. 

In conclusion, a microprocessor-controlled profiling system which would 

"' . ,~.min search for a minimum in ~z and then either calculate ~z or compare stored 

$~in values with the measured values could be used to provide fast and accu-

rate surveys of conductive overburden. The system would be_ capable of deter-

mining a,, h1 and the location of discontinuties in a, and h1• For greater 

accuracy in determining the locations of discontinuities, the transmitter-

receiver separation could be shortened at the expense of penetration depth. 
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Figure Captions 

Fig. 1 Vertical field amplitude and phase for models A and Di 
transmitter-receiver separation 300 m. 

Fig. 2. Plot of ~~in versus ~in for surface conductive layers. 

Fig. 3. ~z trough at five profile positions spanning discontinuity in 
surface layer thickness. 

Fig. 4. ~z trou~h at five profile positions. spanning discontinuity in 
surface layer conductivity and thickness. 
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