
1
'"",_1.,

.
- ,,•'

\

l'

LBL-12378
C'.d-

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics, Computer Scienrt9e~\&:~:~;;ATORY
Mathematics Division FEB s ,1983

LIBRARY AND
DOCUMENTS SECTION

Presented at the Seventh International Conference on
Very Large Data Bases, Cannes·, France,
September 9-11, 1981; and to be published in the
Proceedings

DATA MODELS AND DATA MANIPULATION LANGUAGES:
COMPLEMENTARY SEMANTICS AND PROOF THEORY

Harry K.T. Wong

March 1981
TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Data Models and Data Manipulation
Languages: Complementary Semantics and Proof Theory

Harry K. T. Wong

Computer Science and Math~matics Department
Lawrence Berkeley Laboratory

University of California, Berkeley, CA 94720

LBL-12378

_. This work was supported by the Applied Mathematical Sciences Research Program
of the Office of Energy Research of the U.S. Department of Energy under
Contract DE-AC03-76SF00098.

Proceedings of the S.eventh International Conference on Very Large Data Bases,
September 1981.

Data Models and Data Manipulation
Languages: Complementary Semantics and Proof Theory

Abstract

We present briefly a language which integrates the

description of a data model, data manipulation language and

integrity constraints into one coherent framework,

resembling that proposed by several recent papers in the

field of semantic data models. We then give two for mal

specifications of the semantics of the model and DML: one,

based on states and sta·te transactions, intended for

d·atabase implementors and programmers, and one, based on

axioms and partial correctness assertions intended for

verifiers who wish to show that the system maintains

integrity constraints. Most significantly, we sketch the

proof that the ded•u.cti ve theory is sound and compl.ete and

hence "matches" the state transition semantics.

iii

•

...

1. Introduction

The proliferation of data models in the last decade and

especially the increased sophistication of the so-called

semantic data, models (see for example [Tsichritzis &

Lochovsky81]) has led to problems which are reminiscent to

those arising after the explosion in new programming

languages during the 1960's. Because the description of the

data models (DM' s) is usually presented in an informal,

English discussion, potential database designers may not be

clear exactly what a ·correct database must look like, and

neither systems implementors of languages supporting these

DM' s nor their users are sure of the exact meaning of the

constructs, especially those in the data manipulation

language (DML). Furthermore, the recent interest and

importance of databa·se mappings makes it even more urgent

tha.t DM' s be giv:en a clea•r, correct and comple·te

description. As in the case of programming languages, the

answer lies in formal descriptions of OM's, and their DML's,

which should augment the informal discussions as final

arbiters of what the model means~

Just as in programming languages where we want to

describe the meaning of type declarations and groups of

statements, in database management, we wish to present the

semantics of schema declarations and DML's. In the case of

databases the permanent nature and importance of the actual

data, contrasted with the transient nature of transactions,

1

make it even more important to express conditions on what

are the valid states of the database (e.g. keys must be

unique in relational theory).

In a landmark paper, Hoare and Lauer ([Hoare &

Lauer73]) argued that by providing several formal

descriptions of the semantics of programming languages, one

may reath a wider audience of potential Language users. For

example, even assuming that programs map machine states to

other states, one can define the meaning of a program b to

be (i) the relation Rb of all initial-final state pairs

(relational semantics) (i i) the relation Pb of assertion

pairs (a , P) such that if b is started in a state with a

holding, and b halts then P is true in the final state

(partial correctness semantics; and (iii) the predicate

transformer [b] ([Dijkstra76]) etc. As noted by Greif and

M;eye,r ([Grief & M'eyer79]), in each case there may be several

ways of specifying the semantics: inductively, deductively,

axiomatically, etc.

Th& multiplicity of descriptions is useful for various

audiences. Thus the state vie·~ is closest to the needs of

the database implementor. On the other hand, the partial

correctness assertions (PCA' s) provide a useful tool for

proving properties of the applications programs. In the

database domain this ability may play a crucial role in

dealing with integrity constraints ([Hammer & McLeod75]).

One of the purported advantages of centralized databases is

2

"'

..

the control over the "quality" of data and its correctness.

Given constraints such as "all employees must earn no more

than their managers", one could check after every database

update to see if this ~onstraint is maintained.

Alternatively, if access to the data base is restricted to

take place through pre-defined transactions, we can prove

once and for all that each transaction maintains the

integrity constraints and then be assured that the integrity

assertion is valid at all times without the need for further

checks. The verification of such program properties is

usually done using a proof theory (e.g. [Hoare69]).

However, this must be shown to be at least consistent to the

usual state-change semantics in order that the proofs have

any connection with the actual implemented and running

system.

Alth.ough [c:r ief &· Meye·r 7'9] i.nc:Hca•te tha·t the way in

which the various semantics and presenta·tions depend on each

other may be quite subtle (and were omitted in [Hoare &

Lauer73]), the work of [Cook78] has indicated a very nice .J

way to show the appropriation of the deductive theory:

soundness and relative completeness.

The goal of this paper is then two-fold. First, we

present a data model which is the kernal of the TAXIS model

[Mylopoulos, Bernstein, Wong80], but which closely resembles

a number of other recently introduced models ([Smith &

Smith79], [Codd79]), and we define the intended semantics

3

through a mathematical model with well-formedness

constraints expressed both directly and through axioms in an

assertion language which specify conditions on "admissible"

database states. Secondly, we define a DML for expressing

transactions over the above data model, and specify the

semantics of the language constructs in two ways:

relationally and through partial correctness assertions

(PCA' s). For the latter purpose, we describe an extended

assertion language for stating PCA's about programs and

present a deductive theory of the Floyd-Hoare style for

proving PCA's. Most significantly, we give the principle

new steps required in showing that the proof theory is both

sound and complete in the sense of Cook ([Cook78]), a step

missing from many other specifications (e.g., [Gardarin &

Melkanoff80]).

As a result, among othe·rs, we give the first "'correct"

axiomatization for For-loops, deal appropriately with

attribute updates and obtain an assertion language whose

proof theory can also use the aforementioned defining axioms

of the data model.

We conclude by briefly comparing our work with other

semantic specifications for databases with similar goals to

ours and summarizing our results.

4

..

2. The TAXIS Data Model

2.1 The Schema

TAXIS is an object-oriented language for describing

databases and application programs, called transactions. As

a modelling tool of some slice of reality, TAXIS assumes, as

do most recent semantic models, that our conceptualization

of the world is populated by objects which are inter

related, and it is the goal of the database users to capture

the current state of our world knowledge (i.e., what are the

objects whose existence is asserted and how do they r.elate

to each other). I.n TAXIS, relationships between objects

will be expressed through (factual) properties which are

functions (e.g., john's age is 24).

The description of the database, and its current state

is made more manageabl.e by describing f irs·t a schema to

which all database states must conform. In TAXIS this is

accomplished by defining classes to which objects must

belong and specifying for each class its "definitional

properties", i.e., the allowable properties which its

instances may have, together with any restrictions which the

property values must satisfy.

Note that a class, like a relation ([Codd70]), plays a

dual role:

5

as a set name, it defines an extension - collection of

current instances.

as a type definition mechanism, it restricts the

description of its potential instances in terms of

properties and property values.

TAXIS allows for the description of several types of

data classes.

(a) a number of basic (built-in) classes such as INTEGER

and STRING.

(b) f init;.ely de.f ined classes, resembling PASCAL subrange

and scalar types, defined using a syntax like

define AGE : = cl 0::160 I} ;

or

de.f~ge SEX.:= cl male, female I} ;

define DIGIT ={I '0','1', ... ,'9' I}

(c) form defined classes, obtained by "concatenating"

together strings of other classes, e.g.

define PHONE NO. : z DIGIT \@ DIGIT \@ DIGIT \@

cl·-· I} @DIGIT@ DIGIT@ DIGIT@

DIGIT ;

Note that in all of the above cases the set of

instances of a class is fixed once and for all and the

instances of the class have no properties.

6

..

(d) variable classes, resemble relations; they describe

potential instances in the way that relation schemas or

PASCAL record types do, by describing the properties

(attributes) applicable to its instances and classes

(domains) which act as the range of property values.

For example,

define variable-class PERSON with

name:
address:
age:
spouse:

PERSON-NAME;
ADDRESS-VALUE;
AGE;
PERSON

In add'iti.on, one may make further restrictions on

possible property values by

specifying a subset of properties as keys (i.e., all

instances of the cla,ss must have unique combination of

key-property values)

s·pecifying a subset of properties as immutable (i.e.,

not modifiable by upda·te operators)

specifying an integrity constraint an arbitrary

formula in the First Order Language to be defined

below; For example,

key (name, addr.ess)

immutable (name, address, sex);

! (Vx) (is(x,PERSON) :::l ·cx.spouse = X))

7

TAXIS provide two special variable classes, ANY, which

by definition, has as instances all instances of all other

variable classes, and NONE, which has no instances. For

descriptive purposes, if c is a variable class and p one of

its properties with definitional property value (domain) D,

then Coop can also be used to refer to D.

The instances of classes in TAXIS are called tokens

(tuples in the relational model) and, as mentioned, they

have factual properties and values conforming to the

definitional properties provided for by the classes which

they belong to. If t is a token and p a property, top is

used to refer to the value of property p for t. TAXIS has

special token nothing to indicate "no value" (vs unknown for

missing value, see [Mylopoulos & Wong80]) and special binary

predicate is which evaluates to true iff its first argument

is a token instance of the second argument, which is a

class. A database state can then be defined extensionally

by the is predicate, by storing all current instances of

classes, and the property values for all these tokens.

8

2.2 Well-formed Database States

The following is a list of conditions which all TAXIS

database must satisfy in order to be well-formed. Like the

uniqueness of keys for relational databases, these

conditions are part of the definition of the TAXIS data

model and hence must be captured in the semantic

description.

(1) Fer every token t and every property p there is at most

one token a such that top = a.

(2) For evezy propezty p and classes C,D such that Coop =

D, it must hold that for every instance t of c, there

is an object a such that top = a, and either a is

nothing or a is an instance of D.

(3) For every property p, and tokens t and a, if top = a

th,en. th;e;re e•x .ts·,t e.Jtas!Sie'S· C ana c·o;01JP· s.uch th:a·t t is am

instance of C and a is an instance of Coop.

(4) No two instances of C may have the same combintion of

values for the key properties and not all key

properties can have nothing as value.

(5) All tokens which are instances of variable classes are

also instances of ANY;

9

(6) NONE has no instances.

3 . An FOL for Describing the Database: L
2

In order to state conditions on the data model,

including integrity assertious, and for later use in the

DML, we define L2 , a First Order Language (FOL) with

identify by specifying, as usual, the constants, variables,

function symbols, predicate symbols, terms and well-formed

formulas (WFF's) of the language.

Constants and variables come in three sorts

token

cla-ss

Constants: numbers, strings, , all scalars listed in

finitely-defined classes or obtained by

concatenation in form-defined classes.

va,riables: n., m, x, y

Constants: ANY, NONE, INTEGER, STRING, all class names

de-fined;

Variables: X, Y, Z

property

Constants: all properties mentioned in variable class

definitions

Variables:

10

Note that one cannot name directly tokens belonging to

variable classes (tuples), but one can use tuple variables

x,y ranging over the class ANY (viz surrogates in [Codd79]).

Among the functions and predicates we include all the

standard ones dealing with numbers and strings (e.g., +, -,

;, *, mod, (, >, 1, substr, ...). In addition, the factual

property value function o maps tokens and properties to

tokens, while oo, the definitional property value function,

maps classes and properties to classes. Finally the

predicate is relates tokens to classes, and equality = is

a·ssumed to have its s.tandard meaning for all sorts.

The terms of the language are defined recursively in

the normal way with infix notation for all functions.' In

addition we restrict "tuple expressions" of the form eop,

when p is a prope·rty, so tha·t in all such cases e must have

the form x or xop1 , or x·op 1op2 or w.here x is a tuple

v;.ilriae,Ie ana· p 1 , p 2 , . . . a.r.e· prope·rty names.

Atomic formulas are obtained by applying binary

predicates is, •, <, > to terms, and WFF' s are defined by

combining atomic formulas with logical connectives v, /\, ... ,
=>, .. , and quantifiers \1 and 3.

Integrity constraints are then WFF 's in thi.s language

L2 and an additional well-formedness condition on a TAXIS

11

database is that it must satisfy the constraints stated.

4. Semantics of the TAXIS Data Models

4.1 Interpretations

To give the semantics of a data model involves mapping

from the syntactic objects defined in Sections 2 and 3 into

a domain of mathematical objects. The tranditional way of

doing this is by defining the notion of nstaten. In our

case, we start by defining a schema model DB as a 7-tuple:

where

B is the domain of- tokens, consisting of the union

of

Q - the natural numbers

'* t - the strings ove·r alphabet t

1' an infinite linearly ordered domain

distinct from Q u r'*

i - the special object in ~, greater than all

other elements in ~-

is a domain of entities, containing two special

elements 0 ,1 c c

is a domain

p-valiS a partial function from e X ~ e

12

A state a of a schema model DB is then a 3-tuple (delta,rr,~)

where

0 is a function from variables to e u e u ~

rr iS a partial fUnCtion ~ X ~ ~ e

~ iS a relatiOn between e and e (i.e., a SUbSet Of eX e)

An interpretation I is then a mapping from a TAXIS data

schema into DB states as follows:

I maps constant numbers and character strings into their

A * normal meaning in r.r and I:

l maps scalar constants into distinct elements of ~

I () = l

I maps classes into distinct elements of e
I (ANY) = 1 c

I (NONE) = 0 c

I (oo) • p-val

I maps each property into a distinct element of ~

All standard numeric and string operations are mapped into

the corresponding mathematical functions

...... gets its usual interpretation

An interpretation I of the schema is then extended to

an interpretation Ia into DB state a = (O,rr,~) as

13

I (x) = O(x) for all variables x
0

I (is) = ...
0

I
0

(o) = TT

The interpretation is then extended to terms, formulas

and WFF's of following methods of Fregean

4.2 Admissible Models

At this point we can complete our definition of the

TAX Is data model semantics by expressing well-formednes.s

const.raints which must be satisfied by a·ll databases. We

can do this by placing direct restrictions on the

"admissible states and interpretations".

For example, in addition to the obvious restrictions

that numbers and character sequences be mapped in the.

natural way to numer.als and s<trings and similarly for thei.r

respective operations, we must have

- in all states o, I (t) a
... I (INTEGER) for any token

expression t iff I
0

(t) E ~

- in all states o, I
0

(t) ... I(STRING) for any token

* expression t iff I
0

(t) E t

- if C is the finitely-defined clases {li::jl} where i and j

are numerals, then iff

14

..

are scalar constants, then I (t) .. I(C) iff
0 .

if c is the form-defined class C "C "···"C lc- 2c- c- n'

I
0
(t) .. I(C)

Li ... I(Ci)

iff I
0

(t) = L l I L 2 I • • · I Ln

then

where

- for every t in T, t ... lc iff t .. d for some d in e, and

t ~ Oc for no t.

The restrictions on property values from Section 2. 2

can be stated as conditions on states:

for every p in ~ and c, d in e s·uch that p-val(c, p) ... d, and

t € ~. either "(t,p) = i or t ... c and there exists t' € e.
t' ... d and "(t,p) = t'~

for every p in ~. t in ~. t' in e. if "(t,p) = t' then

there e'xist classes C',d in e .such that p-val(c,p) = d, t ...

c and either t' • i or t' ... d.

- for every p in ~. "(i,p) - l;

if Dis a variable class with key proper~ies q 1 ,q2 , ···,qr

then for every t and t 1 such that t ... I (D), and t 1
...

I (D), "(t,I(q.)) ~ "(t 1 ,I(q.))
1 1

"(t,I(q.)) ~ i for some i
1

for some i and

if ~ is a WFF which is stated as an integrity constraint,

15

Finally, the variable o must map token variables into

e, class variables into e, and property variables into ~-

Alternatively, one can impose these restrictions on

interpretations and states indirectly by stating them as

axioms in L2 and then considering as admissible only those

interpretations which make the axioms true. In fact we will

give axioms schemata which depend in part on the actual data

model being defined in order to avoid second order

expressions.

Tl is(n, INTEGER) for every number n

(Vx) (is (x, INTEGER) ::J x=l V x=2 V ...)

T2 is (s, STRING) e·xactly for sequences of characters

enclosed in quotes

T3 if C E {li::if}, then

T4 if C- {I k 1 ,x2 ,···,kn I} then

~ (X , C) " X • k l V X"" k 2 V • • • V X = kn

TS if c- c1 @ c2 ... @em' then

is (x , c) .. (~x1 , · · · , xm) (is (x 1 , C 1) 1\ · · · 1\

iS (X , C (\ X • X 1 I X 2 • • • I Xm)
- m D'•

T6 (Vq)(VY,Z)(Vu)(Yooq=Z 1\ is(u,Y) ::J

[(5jv) (is(v,Z) 1\ u
0

q=v) V u
0

q • nothing]

16

..

T7 (Vq) (Vu,v) (u
0

q = v ~ (~Y,Z)

(Y
00

q = Z A is(u,Y)

A (is(v,Z) V v = nothing)) and

(Vq)(Vu) (1 (is(u,ANY) ~ u
0

q =nothing) and

(Vq)
0

q = nothing

T8 : (Vu)((3Y)is(u,Y) "is(u,ANY))

(Vu) (1 is (u , NONE))

T9 if q 1 , ... ,qm are the key properties of class c then
.

(Vx.,y:) [is(x,C) A if:l(y,C) ~- - (xoq
1

= yoq 1 A

A x~oqm•yoqm) J A 1 (xoq·1 -= l. 1\ xoq2-=l.., •••)

TlO : .p for every integrity constraint .p

ln order to be completely r igor·ous, one would of course

ha-ve to prove that the two preceding d:e·f initions of "·well-

fo.rmedness" a:re equiva,lent. In the inte•rest of brevity,

this step will be omitted here. In addition to giving a

second read.ing to our cond.itions, one which may be more

understandable to some audiences, the axiomatic version will

be useful when proving properties about the programs running

on the database.

5. The TAXIS DML

One of the advantages of the TAXIS model is that it

integrates transaction definition into the database design

17

framework. This is done by defining a relatively simple

DML, consisting of a number of simple statements and rules

for building compound ones. In these statements, one can

use expressions whose syntax is identical to that specified

Simple Statements

1. no op -- nil.

2. assignment -- <variable> := <token-expression>.

3. token insertion-- insert x inC with p1 :e1 , ···,p ,e;
- -- n n

where x is a variable, C is one of the variable

classes of the

properties and

schema, are all its

e · · · e are token express ions. i' ' n

The effect of this statement is that variable x is

assigned as value a new token which is inserted

int.o cl~sses C a•nd ANY and for wh i.ch x p . = e
1
.•

(i)· 1

4. token deletion --delete it;

where t is a tuple expression. Its effect is to

remove the token referred to by t from all

classes, including ANY, and set all property

references to t to ~.

5. property update top := e;

where t is a tuple expression, p a property name

and e is a token expression; the effect is the

obvious one of ensuring that top = e

18

.,

..

..

6. object retrieval

where x is a variable, C, one of the variable

classes defined, p
1

, ... ,pm are its key properties

and e
1

, ... ,em are token expressions. The effect

of this statement is to assign the variable as

value the unique token instance of c with property

values e 1 , ... ,em' if it exists, nothing otherwise.

In TAXIS, one can define complex statements using a

number of standard control structures:

8. conditional if e t;hen s·
1

eis·e s
2

;

where e is (quantif ie·r free) formula in L
2

•

9. For-loop -- for x in C do S od;

where x is a· variable, C a cla-ss, and S a

S'tat.ement; the operations in S are e·xecuted once

fo·r. eve.·ry ins·tanee ejf C a<nd it is a·ssumed tha·t S

does not alter the set of instances of c, and that

the final effect of the loop is independent of the

order in which one stepped through the instances

of C.

10. grouping-- beg~n s 1 ~ ... ,S end.
- n --·

Finally TAXIS allows assertions to be

interspersed with the statements of the transactions; if any

of the assertions fails during program execution, an error

is considered to have occurred.

19

In order to limit the size of this paper, we have

chosen not to deal with variable declaration, parameter

passing and exception specification in TAXIS. In any case

these features are totally standard and have been

extensively studied elsewhere ([London et

al.78],[Ernst],[Cook78],[Levin77]).

In the remainder of the paper, we aim to give the

semantics of TAXIS programs in terms of state transitions

and then propose a set of axioms and rules of inference for

proving assertions about programs. In order to gain

confidence in the appropriateness of our rules, we will

present proofs of soundness and completeness for some of the

more novel constructs in the language.

20

..

..

..

..

6 . Relational Sematics of TAXIS DML

Let DB be a schema model for a TAXIS database and let I

be an admissible interpretation as defined in Section 4 .

Since TAXIS programs are assumed to be deterministic, then

with every statementS we associate a partial function M1 (S)

from valid states to states which represents the sematics of

that program. [1] This is done recursively by defining M1

for the primitive statements first.

Let o be a·oB-state (O,u,~) and let 0 1
• (0 1 ,U 1 ,~ 1) be

M1 (S)o; then for

Rl. s 5 nil, o' = o

R2. S 5 x := a, then u 1 = u, ~~ • -,

X O'===O [2) with 0 1 (X) = I
0

e

R3 S 5 insert x in C with pi:e,
X

0 I === 0 [2]
call it k;

with 0 1 (X) = min{tlt € i'-{l}(t,ANY)·e~·}

~I - ~ u { (k, I (c)) , (k, I (ANY)) }
0 c .

R4 s !!i de·lete X where X i.s assumed to a tuple expression

Let k = O(x) (hence k ~ it);
X

then 0 I --= 0 with 0 1 (X) = l,

.,.I - ... -{(k,c) I c in C}

[1) If the resulting state is not valid, M(S) is assumed
to be undefined at that point.

[2) The not at ion f =~= q indicates that f and g are
identical except possibly at argument w.

21

(k ,q)
"' ===="with "'(k,q) = ~ for every q in ~;

(Note that well-formedness requires that there be no k'

such that "(k',q) =kino).

RS. s = w·p := e

Let k = I (w), k = I
0

(e)
0

then O' = 6,~· = ~, and

"' (k,p) = k with 1T = 11' otherwise

R6 S ~ get object x from C with pi = ei

~· • ~, "' • " and

6' •== 6 where

l~
k if there is k such that k ~ I

6'(y) = and 7T(k,pi) = I
0

(ei)

otherwise ;

22

..

..

The meaning of compound statements is then defined

t:ecut:sively by:

RS M (if a then sl else 52) C1

{ M (51) C1 if Icr(a) is true

M (52) C1 if Icr(a) is false

R9 M(fot: y in C do S od)o = o if thet:e is no k in r:? such

RlO.

that K ~I (C),
0

othen~ise let k , · · ·, k be 1 n
a·ll the

elements of f in increasing ot:det: such that ki ~ I
0

(C)

M

Define states o 1 , ···,on+l' o 1 , ···,on as follows:

o -= o'

0'.
1

begin

{

= o. with I
1

(y) = k.
1

51; 52;

M (51)
.

M (5)
1

C1

0.
1

... , sn ~ a

M begin 5
2

;

if n = 1

=

5 end C1 n if u > 1

Finally, asset:tions allow the pt:ogt:ams to pt:oceed only

if they evaluate to tt:ue

Rll M(!a)o -

{
iff I

0
(a) is true

undefined otherwise

23

These rules are assumed to determine the standard

relational semantics of TAXIS programs, utilizing

terminology of [Grief & Meyer79].

7 Partila Correctress Semantics

7.1 The Assert ion lanugages L 3 and L 4

Following the tradition of Floyd-Hoare logic, we will

define an assertion language for talking about properties of

programs. This language has two parts : a language L3 for

making statements about states and then L4 , a language for

making 'partial correctness assertions' (peas) about

programs in the traditional pre-, postcondition form.

We will extend L2 L3 by allowing new symbols whenever

o and is appear in L2 . In both cases we find i.t simpler to

d,e·s,cr ibe the new f:.u•nrc.ti.om and p.redi.ca.te symbols a-l.lowecd.

thr ou.gh s impl.e· · g:r.ammar s.

The grammar

E := o

E :• E [E1 ,p,E2] for every property name p generates new

function symbols which will be allowed to appear in L3

wherever o appeared in L2 . The intended interpretation of a

o [b,q,e,] p is for it to have value e if a=b and q=p,

otherwise continue to be aop.

24

..

"'.

Similarly, the grarnrner

M := is

M := M [e D] where e is any L3 term and D is a class

generates new predicate symbols which are allowed to appear

in

L3 whenever is appeared in L2 _

Formally, we extend interpretation to

interpretations of L
3

by d.efining I
0

(f) for f generated

from E by

if f = o then I (f) = 11
0

- if f

where

<§' ~,z·.l:,2'2.}e'i'f'Z:1 = lG, (a•} am:el: z2 = l.c:J.(pr) t:lil.en I.G, (e)

e!Ji,Sie' lQft)

In a similar vein, I
0

(m) is defined for predicates

generated from M by

if m -is then l
0

(m) - Io is .. ~

i.n

if m - m [a.: e] , Io (m) = Io <iii> u { (I
0

(a), I
0

(e)),

(I
0

.(a,), r
0

(ANY))}

- if m - m [-a] , I (m) • I (m) -
0 0

- < o o <a> , d > I d in e 1

The language L4 of partial correctness assertions is

then defined to contain formulae of the form P{S}Q where P

and Q are assertions from L3 and s is a TAXIS statement.

25

The infinitive meaning of the construct P{S}Q is tht

whenever P holds in state o and the execution S holds in ..
state o 1

, then Q holds in o 1 • Stated more precisely, we

will say P {S }Q is valid under interpretation I into model

DB:
.
. I P{S}Q iff for every DB-state o, if I

0
(P) is true

(written ~~ P
0

) the :I Q
0

where 0 1 = M1(S)o, if 0 1 exists.

For convenience, we shall henceforth assume a fixed

interpreta,tion I and drop subscript I.

In order to prove assertions about general programs one

will provid:e a set of axi.G>ms and rules of inf.erence which

will allow us to deduce formally ("prove") statements of the

form P{S}Q. For each pr imi ti ve statement of TAXIS, we

provide an a•xiG>m schema a·s fol.l.ow.s:

A·l Q { nil } Q for any pr ed'i.ca,te Q

A2 Q < ejx > { x : • e } Q

A3 (Sj y) (- (y - nothi.ng) is (y, ANY))

r. <is [y,e], o [y,q
1

,e
1

J ••• [y,q ,e] I o, y/x> . n n

insert x inC with q. • e.} Q where y does not occur in Q
- 1 1

26

..

AS. Q<o(w,p,e]/o>{wop:=e}Q

A6. (3t) (toq. ""' e. ~ Q<t/x>) V
l l

- (3t) (toq i ""' e i) ~

Q <nothing I x >){get object x from C with q. - -- ~
e. }Q
~

For compound statements, we offer the following rules
of inference (again schemata}:·

A7.

AS.

A9.

P{S1}Q,Q{S2 }R

P{Si;S 2 }R

P{if a then s 1 else s 2 }Q

~V't:) (!.! (t, z) :i ~ (t, c)) ~- .!.§. (X, z) ~ R { s} R <!.! [X, z] I.!.§.

R<NONE/Z>{for x in C do S od} R~C/Z>

where Z does not occur in s

p { s . ; 52; •.. , s }Q
··AlO. 1

. n P{beginS1 ; ... ,Snend}Q

All. P{!a}a A P for assertion a

Finally, we add the inference rule

27

Al2 . P=>P ' , p ' { S} Q ' , Q '::::>Q
P{S}Q

The proof of some pea :P{S}Q will admit lines from the

deductive theory of L3 (which includes the theory of numbers

and the axioms of the data model TI to TID) as well as the

theory of L4 (axioms and rules Al to AlO) and the rules of

standard first order logic.

28

"

8. Soundness and Completeness of the Proof Theory

In order to have confidence in the pea derived using

the rules from the previous section, we must show that they

conform to the semantics of the TAXIS programming language,

described in Section 6. In other words, we have to prove

that the theory is sound:

if : P{S}Q then I=IP{S}Q .

To do this, it is sufficient to verify all axioms and

rules of inference presented. We will do so only for axiom

A3 and rule A9; the other proofs are quite similar and

straightforward.

Assume a fixed interpretation I for the remainder of

the p·r.oof. To ver i.fy a,x iom A3 , w.e ml!l,s,t s·how that i.f w.e I.e~t

R be

(3y) (-(y =) 1\- is(y,ANY) 1\ Q < yjx,

then I=IR{insert x inC with pi : ei}Q. Le·t a be any state

where R is true and· let a' • M(insert x inC with p.:e.)a.
-- 1 1

To begin with note that in order to show that

implies

29

where o and T are arbitrary states, it is sufficient to show

that I
0

and IT agree - everywhere except at 11 1 , • • • ,pn and

that I (a.) = I (0.). In our case, by the assumption that
0 l T l

is true, there exists token j such that 0 (y) = j,
0

j p J., not j 1 I (ANY)) (and hence by the semantic

restrictious in Section 4.2, not j 1 d for any d in C);

furthermore, by definition of L
3

, I
0

(is[y:C]) =

and I
0

(o[y,p1 ,e1] ... /o)=g

Therefore, defining

o" = (0","", 1 ") such that 6"(x) = j,""(j,p1) = I
0

(e 1) and

... n = u { (j, I
0

(C)), (j, I
0

(ANY))} and o" = o otherwise, we get

(by our note above) that I nCQ<x;x,is/is,o/o>
0

since

1Ci7(Q;<y/x, is[y,C:]ji,s·,. ar[y,p1_,.e,
1
]' Je.)) wa.s aiSI.S\\!llrn.ecd t0 l;):e·

true. On the other, the s·ema..n.tics of in,s,e,rt (R3) show o' to

be equivalent to o" since the replacement of j by k makes o"

identical to o'. But then by our definition, Q is also true

in o' since we only consider equivalent states.

Next, to verify the soundness of rule A9, lat R be a

predicate and let o be a state such that R<NONE/R> is true

in o. Then, considering the definition of relational

semantics R9 in Section 6, let T s o except that

6T(Z) = d,d, a distinct value from all other classes and

1 = ...
T · 0

But this means that Z has no instances in state T

and I (R) msut be true because it has the same values for
T

30

•

I
0

(NONE) and IT(z). (If R<NONE/z> was true in o then R could

not have had expressions of the form Zoop).

Letting k1 , · · ·, kn be the instances of C in o, define

states T 1 , ... , T n+ 1 , T 1 , · · · , T n, T 1 , · · · , T n according to the

following diagram

insert y in Z Tn+l

But then the predicate (V

t)(is(t,z) :::1 is(t,C)) 1\ is(y,C) 1\ is(Y,e) 1\ is(y,Z) is also

true in 'T1 , s that R<is[y,Z]/is> is true in

T
1

by the premise of the inference rule. One can then

repe.a·t the a•rg:nment in sta.tes T 2 , etc. until we reach T n+l

wnce~J:.e R is, tJ:,e:e: a\f:lc:i: z };):a;s tm'e stame s;e)t e•f i\lil'Sit·a,J'lc·e!s· 0<f c

doe•s in on+l since· s is not a:llowed to alte·r the s:et of

instances of C. But the R<C/Z> is true in on+l since, as we

noted before, R does not ha-ve express ions of the form

Zooq •
Conversely, one would want to have some confidence that

all pca•·s which are true of a program can be derived u.sing

the proof rules. That is we wish to show the completeness

of our proof theory:

if . I P{s}Q then P{s}Q. But of course, the

incompleteness of the proof theory of numbers assures that

31

this cannot be the case. Instead we use

Cook's definition of relative completeness:

Let

Sps(Q,S) = {r I there exists o such that F
1
Q(o) and m(S)o = r}.

Then L3 is expressive relative to I and L2 if for every

assertion Q and program S, there is an assertion Q in L
3

which is true exact~y in the states in Sps(Q,S). We will

denote Q by Sps(Q,S).

A proof system for TAXIS program is then complete in

the sense of Cook if fo·r eve·ry interpretation I such that L
3

is expressive, F 1P{S}Q impli.es T P{S}Q where T is the
ri rl

set of all assertions L in L3 such that F 1L.

Considering axioms Al to A6, note that for each

primitive statement s
0

and predica•te Q, the axioms pres·cril:>e

a p.r.ed.tca·te wh.lch w.e can d:en0te a.s [SllllQ, su.ch that

[S 0 JQ{S
0

}Q. The important observation is that if a is any

state such that Q is true in M(S
0

)a then [S
0

]Q must have

been true in o. But then, if R is a predicate such that

F IR{S 0 }Q, then whenever R is true in a, [S
0

]Q is also true

in a, i.e., FIR~ [S
0

]Q. But then R ::1 [S
0

]Q is probable

since we assume an oracle above provability in L3 and

[S0]Q{S0 }Q by the axiom, leading to R{S
0

)Q by inference

rule All.

The inference rules are proven complete by induction on

the size of the program s. We will consider only the novel

32

..

rule A9, since the others have already been treated in the

literature [Cook 78]. The completeness of rule A9 is of

independent interest since there are a number of proposed

rules for For~loop ([Hoare & Wirth?],[London 78],[Gardarin &

Melkanoff]) which are demonstrably incomplete [Borgida 81].

Consider then arbitrary predicates P and Q and

statement sequenceS such that F
1
P{for x inC do S od}Q. In

order to obtain P{for x in C do S od}Q, it is sufficient to

find predicate R and variables Z,y not occurring free in S,

P, or Q such that

(i) F I (Vt) (is (t , z) ::> i.s (t, C)) 1\ is (y, C) 1\ - is (y, Z)

1\ R{S}R < is [y,Z]/is >

(ii) F
1
P ::> R < none/Z >

To this end, define R to be Sps(P, for x in Z do S od).

Then, F P :::. R < NONE/Z > since by the summation of For

loops, (R9), for x in NONE do S od !! nil and Sps(P,ni.l) = P .

Also F R < C/Z > :::. Q by our assumption and definition of

Sps. This leaves (i) to be proven. Let o be any state

where (Yt) (is (t , Z) :::1 is (t , C)) 1\ is (y , C) 1\ - is (y , Z) 1\ R is

true. By definition of R as strongest post-condition, there

exists such that p is true in and

M(for x is z do s od)o0 = o and let o' = M(S<y/x>)o.

33

• Finally, define o
0

to be identical to except that

~ n = ~0 U {(I
0

(y),I(Z))},
00 0 0

and let

• o" = M(for x in Z do S od)o
0

• Then, by definition of Sps, R

• • must be true in a0 • Furthermore, o differs from o' only by

the fact that y is an instance of Z in o". This is true

because of our careful restrictions on the relationship

between S,C,Z, namely

(a) S is independent of Z (so it is not affected by is at

Z)

(b) s does not alter the value of y nor the instances of C

(so is (y,C) in o 0).

But then, if R is true in On , then R < is[y,Z]/is >

must be true in o', concluding our proof. o

We conclude by remarking that, as elsewhere (e.g. ,

[London 78]), we do not capture the complete aspects of

implementation issues in our relational and pea semantics.

In particular, constraints such as uniqueness of keys, non-

dangling references, etc., are not checked explicitly in the

specifications in Sections 6 and 7. There is, however, no

theoretical obstacle for incorporating them in the rules.

34

..

t

10. Conclusions

We have presented in this paper the semantics of a

kernel of the TAXIS database model and data manipulation

language. This language is prototypical of the more recent

data models ([Codd 80],[Chen 76]) and in addition integrates

into one coherent framework the schema description, the DML

and integrity assertions. We presented the "relational"

semantics of the TAXIS model, by describing a mathematical

model for its schema, including constraints on admissible

database states, and by specifying the sta·te transition

semantics of the DML cons.tructs. Based on this mathematical

model of the semantics, we built up an exiomatization and

proof theory with integrity partial correctness assertions

about. TAXIS programs with axioms about the schema and the

p·r0o·f theory of the First Ord:er Predicate Ca.lcu.lu.s with

identity for integ.ers and str ing:s.

and relative completeness of our

gained some confidence that this

inconsistent with the relational

By proving the soundness

proof theory, we have

specification is not

semantics and that it

provides a useful tool for proving properties of programs of

a DML.

By omitting this last step, previous exiomatizations

have fallen short of the derived standards. For example,

the axiomatization of a DML in [Gardar in & Melkanoff 79],

intended for a similar domain, is not complete and possibly

35

not sound. Their rule of inference for assignment,

DO: Q < f/x > <e = f}Q ,

is either incomplete, by not dealing at all with triple

attribute value updates such as z0age : = 20, or it is not

sound since the assertion

·-

provable by the rule DO, is not true when z0spouse = y.

Also, the inference rule for For-loops

(DS)

is incomplete because although

(true){for x st- do x age:= l}(Yy)(y0age v. 0) (*)

is clearly valid, the only way to prove it would be to find

such tha·t, among others, and

y> (y0age " 0); but true ::l P1 means P1 is a tautology and

yet, under any sensible interpretation true ::l (Y

y)(y0age" 0, thus showing that no such P1 exists and that*

is not provable.

In conclusion, we feel that theoretical exercise such

as that carried out above is an important aspect of the

definition of data models and their manipulation languages,

one which provides indispensable support for real-life

36

..

..

...

applications by presenting consistent and complementing

views of the model aimed at diverse audiences such as

systems designers, applications programmers, and verifiers.

Acknowledgments

We are grateful to Steven Cook, Charles Rackoff, and

John Mylopoulos for revealing discussions and important

pointers to the literature of program verification.

Special thanks to Carole Agazzi for her excellent

typing.

References

Borgida, A., "Variations on the theme of Floyd-Hoare axioms
of For-loops", unpublished manuscript, DCS, University
of Toronto, February 1981.

Casanova, M. A., P. A. Bernstein, "A Formal
Reasoning about Programs Accessing a
Database", ACM Transactions on Programming
and Systems,-r,3 (July 1980) .·

System for
Relational

Languages

Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks·", £!Q! 13,6 (June 1970) .

Codd, E. F., "Extending the Relational Model of Data to
Capture More Meaning", ACM Transactions on Database
Systems, 4,4 (December 1979).

Cook, S. A., "Soundness and Completeness of an Axiom System
for Program Verification", SIAM J. Comput., 7,1
(February 1978).

37

Earnst

Gardarin, G., M. Melkanoff, "Proving Consistency of Database
Transactions", Proc. 1979 VLDB (October 1979).

Greif, I., A. R. Meyer, "Specifying the Semantics of While
Programs: A Tutorial and Critique of a Paper by Hoare
and Lauer", M.I.T. Laboratory of Computer Science, TM-
130 (April 1979).

Hammer, M., D. McLeod, "Semantic Integrity in a Relational
Database System", Proc. 1975 VLDB (August 1975).

Hoare, C. A. R., "Axiomatic Basis for Computer Programming",
12,10 (October 1969).

Hoare, c. A. R., P. Lauer, "Consistent and Complementary
Formal Theories of the Semantics of Programming
Languages", Acta Informatica, 3, pp. 135-155, 1973.

Hoare, C. A. R., N. W-irth, "An Axiomatic Definition of the
Programming Language PASCAL", Acta Informatica, 2,4,
1973.

Levin, R., Program Structure for Exceptional Condition
Handling, Ph.D. Thesis,-- DCS, Carnegie-Mellon
University, 1977.

Lond.on, R., et al., "'Proof Rules for the Programming
Lang.uage EUCLID", Acta Informatica, 10, 1, 1981.

Mylopoulos, J. , B·ernste in, P. A. , H. K. T. Wong, "A Lang,uag.e
Feature for the Design of Inte.ractive Information
Siys·tems", ACM Transaction on Database Systems, 5,3,
1980.

Mylopoulos, J., H. K. T. Wong, "Some Features of the TAXIS
Data Model", Proc. 1980 VLDB, Montreal, 1980.

Oppen, D., Program Verification and Logic, Ph.D. Thesis,
DCS, University of Toronto, 1975.

Smith, J. M., D. C. P. Smith, "Database Abstractions:
Aggregation and Generalization", ACM Transactions on
Database Systems, 2,4, 1977.

Tsichritzis, D., F. Lochorsky, Data Models, Academic Press,
to appear in 1981.

38

••

'\

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or t.he Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

.;; ~
TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.... - -i-

