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ABSTRACT 

For the largest class of grand unified models based on simple 

gauge groups, the presence of anomalies not only results in unre-

normalizability, but in addition means that there are charged, 

massless fermions in the theory. Conversely, the absence of charged, 

massless particles in such models guarantees the absence of anomalies. 

For models outside this class, if there are anomalies but no charged 

massless fermions, the anomalies occur only for rather exotic currents. 

* This research was supported in part by the Director, Office 
of High Energy and Nuclear Physics, Division of High Energy 
Physics of the U.S. Department of Energy under Contract No. 
W-7405-ENG-48. 
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It has long been known that the renormalizability of spontaneously 

broken gauge theories is destroyed by the presence of anomalies. 1 

Accordingly, many model builders have required the absence of 

anomalies as a fundamental principle. 1 ' 2 Thus, in the prescient 

paper of Georgi and Glashow on SU(S), the absence of anomalies was 

regarded as something of a surprise. 3 (Of course, as their future 

work showed, the absence of anomalies in the model was easy to 

understand in terms of the SO(lO) model). Similarly, in the SU(7) 

technicolor model of Farhi and Susskind, the fermion representation 

was required to be anomaly free so that the reducible representation 

carried by the fermions was Z* + 1?* + ~ (This again is easily 

understood in terms of the 64 dimensional representation of SO(l4)) •4 

The constraint that models have no anomalies significantly 

reduces the possibilities. This was exploited by Frampton who 

showed that insisting on many of the desiderata proposed by Georgi 

5 
resulted in the absence of any solutions at all. 

It might be objected that these requirements of Georgi2 and 

Frampton5 are too restrictive and in particular that the absence 

of anomalies is somehow a "formal" requirement that ought to be 

ignored since anomalies represent an extreme short-distance 

pathology which might somehow be cured by new physics (gravity?) 

which is not relevant at low energies (like the grand unification 

mass!). 

This very short note is intended to demonstrate that the 

requirement that anomalies be absent has a much less formal 

significance: theories with anomalies have particle content not in 

accord with what we see in nature. In particular, for a large 
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class of models, if there are anomalies there are (electro-

magnetically) charged particles with only one chiral state, that is, 

charged massless fermions. 

The demonstration of these facts is entirely straight-forward. 

The works of Georgi and Glashow6 _and of Okubo7 show that for semi-

simple gauge groups (thus excluding SU(2) x U(l) ) , only SU(n) 

factors can result in anomalies. We henceforth confine ourselves to 

the consideration of·simple groups with anomalies (i.e. SU(n) ). 

Banks and Georgi,
8 

and Okubo7 have shown that there is really only 

one anomaly for such a model in the following sense. We take as 

our fundamental fermion fields all the left-handed fields including 

both fermions and antifermions. The generators of the (reducible) 

representation are indicated by Ta' Tb' etc. The anomaly of the 

currents Ja' Jb, and J c is proportional to Tr. ( { Ta ,Tb} Tc I so 

we write 

Aabc{R) Tr ( { Ta,Tb} Tc 1 
we define the symmetric tensor dabc by 

dabc = Tr ( { ta' ~} tc 1 ' 
where ta' ~· and tc are the particular matrices for the fundamental 

representation of SU{n). As mentioned above, Banks and Georgi, 8 

and Okubo7 have shown that 

Aabc(R) A(R)dabc 

Okubo's proof may be paraphrased as follows. Let us write the 

SU{n) commutation relations as [ta,tb] =if b tc so for any 
a c 

representation, R, with matrices Ta .. we have as well 
1) 

' 
;> ... ~ 

(1) 

(2) 

(3) 
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[ a b) . f c T ,T = 1 b T • a c A vector operator belonging to the representation 

R is a set of matrices Va .. (where i and j run over the same values 
1) 

as in Ta .. ) satisfying 
1) 

the commutation relation [ Ta, V~ = i f b Vc. 
a c 

Consider the matrix elements of V: (Rj I Va I Ri). These are 

determined up to an overall factor (the reduced matrix elements) 

by the Wigner-Eckart theorem to be equal to the Clebsch-Gordan 

coefficients, except that there may be more than one way of making 

the final representation R, out of the product o.f the initial 

representation R and the adjoint representation (carried by the 

vector operator V). Thus the number of independent vector operators 

in the representation R is simply the number of times R occurs in the 

product of R and the adjoint representation. 

Now the adjoint representation is given by [ Ta d.] b = - i f b 
a J c a c 

where the structure constants have been arranged to be completely 

anti-symmetric. Let Ta be the matrices of any representation, R, and 

define 

D :b = Tr ( ha' Tb } Tc } 

This is a vector operator belonging to the adjoint representation. 

To prove this, conjugate all the T's by exp(-iaTe) ~I - iaTe. 

This leaves the trace invariant so we have 

. f c . f c 1 ead Ddb + 1 ebd Dad 

or, 

e c 
Tadj'D 

. f d 
-

1 ecd Dab 

i f Dd 
ecd 

Thus both Tad' and Da are vector operators belonging to the adjoint 
a J 

representation. But there are only two independent ·vector operators 

.. , 

C"-. -~ 
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belonging to the adjoint representation because the adjoint occurs only 

twice in the product of the adjoint with itself for SU(n), n > 2. 

This last fact is familiar for SU(3) where 

8 x 8 = 27 + 10 + 10 + 8 + 8 ·+ 1. It is easy to show that it is 
l 

true for higher n simply by examining the Young tableaux and seeing 

that there are precisely two ways of fonning the adjoint (one column 

of n-1 boxes, and one column of one box) from the product of two 

adjoints. 

a 
Since T adjbc - i fabc is antisymmetric in b and c, while 

Dabc is symmetric, it is clear that the Dabc for different 

representations must all be propor_tional to each other. In 

particular, they are proportional to the Dabc obtained from the 

fundamental representation. Thus there is only one anomaly, A, 

to calculate. 

In particular, we can calculate A by determining the trace of 

( { Ta,Tb} Tc ) for any choice of the T's as long as dabc is 

non-vanishing. Suppose then that we take for each T the matrix Q 

representing the electromagnetic charge (which is a generator for 

grand unified theories). We. then have 

Tr Q
3 

2A dQQQ 

Thus if A =F 0 and dQQQ =F 0, then Tr Q3 =F 0. But we can calculate 

Tr Q3 directly. The uL contributes (2/3)
3 

for each color etc. while 

- 3 3 the (ulL contrubutes (-2/3) , etc. Thus we see that Tr Q = 0 

unless there is a charged fennion lacking its chiral partner •. Such 

a fennion is destined to remain massless since it cannot become a 

full Dirac particle. 

(4) 

"(:~ '-=...; 
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This result can equally well be stated in the contrapositive 

fonn: if d * 0 QQQ 
and every charged fermion has both chiral 

pieces, the representation is anomaly free. Thus in the SU(5) 

Georgi-Glashow model once it is seen that the u, d, e and ve fit 

into the ~ + l9 it is unnecessary to check that the anomalies 

cancel. To see that dQQQ =F 0 it suffices to find any representation 

for which Tr Q3 =F 0. In particular, for the 5, Tr Q
3 

= 8/9. 

Similarly, in the SU(7) technicolor model, that it is possible to 

assign the electric charges consistently establishes that there is 

no anomaly. 

If there is an anomaly, but no massless charged fermion we 

must have dQQQ = 0. This can certainly not occur if SU(5) is 

simply extended in the usual technicolor fashion. On the other hand, 

it is easy to construct models with this property by putting all 

the fennions into the fundamental representation of SU(n), which 

always has an anomaly. Thus we can take SU(l5) and put the·usual 

fifteen fennion fields associated with u, d, e and v into the 
e 

fundamental representation. Clearly Tr Q
3 

= 0 for this 

representation. Moreover, with this embedding of Q in SU(l5) 

we will have Tr Q3 
= 0 for every representation by virture 

of Eq. (3). 

This crazy SU(l5) model does illuminate the peculiarity of 

having dQQQ = 0. The generator Q is still embedded within SU(5) • 

We can of course regard the 1~ as ~ + l9 under this SU(5). Thus 

by our previous analysis we can see that there are no SU(5) 

anomalies, that is, for the SU{l5) dabc = 0 not just when 

Ta = Tb = Tc = Q, but whenever all three lie within the usual SU(5). 
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