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Abstract

This paper reports on the comparison of some difference schemes for
the computation of discontinuous solutions of scalar comnservation
laws with nonconvex flux terms. Compared are the Random Choice
Method, an upwind scheme, a version of Godunov’s method and the
second order Lax- Wendroff scheme with artificial wviscosity term
added. For the problems of petroleum reservoir modeling, combus-
tion phenomena and shock-detailing, the RCM seems to provide the
most useful data.
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In recent years some:interesting new developments have OCCﬁrred in the
ioﬁg-s;ahding problem of acdurateiy computing solutions of partial dif-
ferential équations, primarily systems' of hyperSOIic‘ conservation laws
centering afound the so-called Random Choice (or Glimm’s) Method. Based on
an elegant mathemat;caivconstrucfion of Climm [1965],‘an'efficient and suc-
cessfui computational scheme has been devéloped by Chorin [1976;1977]. It
has been ﬁsed with sétisfying success in the modeling of coﬁbustion waves,
other kinds of shock phenomena, and in petroleum reservoir modeling_by.Cho-
rin ésee above), Colella [1979], Concus and his co;workers [1979], and oth-
ers. The problems treated with the Random Choice Method imvolve Burgers”’s
equatioh, the Buckley-Leveretf equation, and one- and multiedimgnsionalvgas
dynamical equations, with and without reécting gas chemistry. -As this work
progresses it becomes more evident tﬁat it 1is dimportant -to know the
behavior of computational schemes in the 1ittle-under3tood éituatidas

involving non-convexities in the appropriate flux terms of the equations.

Since not many analytical results are known about the systems

described above and even fewer concerning the convergence of numerical

schemes to the correct entropy producing solutions, it is essential that
the behavior of numerical solution methods be tested in situations where

some idea of comparative accuracy (in whatever appropriate sense) can be

gauged. One goal is to work with the simplest, yet still physicaily signi-
. ficant, situations and this paper is such an‘attempt. The results indicate

.that many phenomena -- such as convergence to non-physical solutions, loss

of resolution at shocks, and contact discontinuities -- can be studied, and
comparisons can be made for some different methods, but some other

phenomena cannot be distinguished well. Thus more delicate experiments



must be conducted. I would like to thank Alexandre Chorin for a variety of
illuminating discussions during the course of the work on this paper, and

for the original suggestions that led to its initiation.

This paper describes some computational solutions for various schemes,
such as Lax~-Wendroff, Upwind, Godunov and Random Choice, when applied to a

model of the Buckley-Leverett equation, namely

u, + (f(u))x =0 u(0,x) = uo(x) : (1)

Q%éfl = a(u), then in regions of smoothness, Eq. (1) is equivalent to

If
u, + a(u)ux = 0. Eq. (1) appears in .the study of the flow of two immisci-
ble fluids through a porous mediﬁm in the absence of capillary pressure or

gravitational forces. The explicit‘form of f(u) in the model equation is

2
u

f(u) =

u2-+ c((l-u)2

In the case of o0il and water, for example, the correct equation is

u +
t

o

(F(w) =0

where' Q is the total flow, b+ is the porosity, ~and
£(u) = 1/[1 + dhko(ﬁ)/kw(u)], where k,(u) and k (u) are the relative
perﬁeabilities of sand to oil and sand to water respectively; d = Pu/PO
is a coqstant, with E, and Mo the viscosities of water an& oil respec-
tively. We refer the interested reader to Concus and Proskurowski [1979]
for more details. We ;ake d = %3 §'= l. Towards the end of thé paper, a
few preliminéry results for a non-monotone, non-convex flux function are
described. These show failure to converge to the appropriate entropy

preserving solution for all the first order schemes except the Random
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state'uR propagating with speed

Choice Method. : .

As described in Concus and Proskurowski [1979], the solution of the
Riemann problem for Eq. (l) can be given explicitly. 1In Figure 1 £(u)

will be seen to be a monotone: an inéreasing function of u < ([0,1] with

-one inflection point (I 0.378), dividing a region concave up (on the left)

from one concave down (on the right). Here we will describe the solution.

" If the chord joining f(uL) and f(uR) on the graph does not éross the
graph of f(u), the solution is either a shock or a rarefaction. If a(uL)

is greater than a(uR), there is a shock connecting the state up to the

dx
dc - SL,R where
< ) f(uR) - f(uL)

.L,R uR - uL

If a(uL) is léss than a(uR)'then there is an expansion wave connecting up

~

and Up- On the other hand, when the chord cuts the graph of f(u), there

are the two cases described below.

In the case where u, is greater than u_, construct the convex hull,

L R

H(u), to f(u) as shown in Figure 1. The wvalue Uy

(Z 0.556 when uR is 0.05) is such that

) f(uR) - £(uy)

S
M,R up - uM

o af . o )
is exactly equal to ia (uM) a(qu. Then it is known that the uﬁlque

plecewise continuous solution for any u. > u is given by:

L R
) . dx
< e 1 —— = -
(1) u 2u; oa shock propagating to .the right with speed qc SL,R

(11) up > u,; a shock (contact discontinuity) propagating with speed



dx ;
ac - SM,R followed by a rarefaction connecting u, to u.

In the case where uR is greater than uL, construct the convex hull,

h(u), to f(u) as shown in Figure 2.

The general solution is given in great detail in the previous refer-

ence.

Section I

In Section I we describe some experiments with the popular Lax-

Wendroff scheme, with viscosity, in a 2-step version.

n+tl/2 1 n n At .n n
Yiprsz T2 (e T Uy ) - opgCEyyy - D)

. ' n+l
u

n At ( fr1+l/2 _ fn+l/2
3 Y5 T Ax j+1/2 j=1/2

)
where f: = f(u:) and then

~0+l  otl At n+l n+l
5Ty ek BB By
is the new value. The second term on the right of the last equation is a

standard form of the artificial viscosity. :

The main result is the construction of Riemann problems for the
Buckley-Leverett equation that produce unphysical solutions, i.e., that
have expansion»shocks. Thus we see that the the L-W scheme is an inap-
proprﬁ;ﬁe tool for use in such §tandard applications as reservoir modeling
unless additional, and no doubt subtle, safeguards can be found. 1In Figure
3a-d we see the solutions tov the problem with data ‘0.55 = u  and

L

0.05 = Up+ Clearly, two shocks are progressing, one with slightly slower

c

-



. speeds Measurement shows that the -speed of the large shock is-to within

reasonable. accuracy what one would get from the Jjump conditions with

= 0.62 and u_ = 0.05, and the smaller shock is progressing as would a

YL R

shock with u = 0.55 and up = 0.62. The first should have speed approx-
imately 1.46, the second should be 1.18, while the true speed is 1.48.

These differences are detectable in the data.

This is equivalent to allowing discontinuities.whose chords cut the
graph of £, which is not all&wed with-our\chgice of uL, up by virtue of
known results on uniqueness due to Oleinik. Most significantly a compari-
son of the computed shock speed for the left and right shocks shows that
the computed waves are not juét a single wave prdpagating-with the correct
Speed ﬁhat happens to exhibit overshoot, Thus this second order method is
inapplicable, without further corrective steps Being taken, even to the

Riemann problem. Other numerical experiments demonstrate that this conver-

gence to the non-physical solution is-numerically stable.

Section I1

The principle class of difference schemes that can be shown to con-
verge to the physically significant solution 1is the class of monotone

methods. Those results appear, for example, in Harten, Hyman and Lax[1976]

and in Crandall and Majda[l980]. Such methods are necessarily of first

order. Thus a comparison of the perfo;pénce of some typical first-order
schemes with regard to the sharpness and shape stability of the face is of
interest in the useful case of the Buckley-Leverett equation and can give

guidance for work on more difficult situations. For example, in combustion



modeling, where the flux.functions exhibit several types of non-comvexity
and even discontinuity, a detailed knowledge of the shape of the face is
highly importantq. It is also not known in general which methods produce
the correct physically relevant solutions. In this light any evidence pro-
duced by a study of this single non-convex model sheds light on more

intractable cases.

Since most variations of the upwind scheme reduce to the simplest for

monotone flux functions we have

nt+l n n
uy ue = AQ (ECug_ 1 ))u
ug T ACEG) - £y )

o

for the Buckley-Leverett equation. For more complicated flux functions,
with stagnation points (£°(d) = u) or non-comvexities for example, more

general schemes, such as that of Majda-Crandall  [1980] are needed.

The behavior one hopes for when computing such discontinuities 1is a .

sharp or at least a stable profile propagating with the correct speed.

Again we ran trials on the model Buckley-Leverett equation with the data

u = 0.55, up = 0.05. Figure 4 shows the results of computation and the

results in the next table are drawn from it. Table 1 lists the width W

of the transition zone against number N of steps.

Table 1
N W
25 8
50 10

75 11

-~



L 2N

100 12
125 14
150 | 14
175 15
200 S
225 16
250 16
275 17
300 17

325 , 18

Of course, one expects this poor behavior because the shock is in fact

nearly a contact discontinuity. As shown in our remarks about the solution

the

of the Riemann problem with data u_ = 0.05 and up greater ‘than u

R M’
true unique solution is a contact discontinuity followed by a rarefaction.
Unfortunately, in the non-convex case it is just such details of the solu-
tion that one would like to see. ‘Trials with a slightly larger value of
uL give results that cannot qualitatively be ‘distinguished f;om the

u, = 0.55 case, and thus important information is lost.

Section III.

An attempt to improve the resolving abilities of computational methods
can be based on building some features of the exact solutions into the
method. Such a method is the one devised by Godunov. A version for omne

convex scalar equation appears in Majda and Crandall [1980].

The idea of the methbd is to use the conmservation law in integral form
0 f Irht + (f(u))di = Ihdx - f(u)d

to give an exact value for the integral of u(x,t +/A\t) between jAx and
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k/Ax and use this to compute some average for u?. The method has the vir-
tue that the solution used in computing the inﬁegral is advanced exactly if
the Courant-Friedrichs-Lewy condition is satisfied. The process proceedes,
following Crandall and Majda, like this. Let data be given as a step func-

tion

+m
u (x) = 2 u.X,
0 i
J=-—®
n . ' - .
where a < u, <b, and X is the characteristic function of

3 o
(3=1/2)Ax < x < (j+1/2)\x. Now advance the solution u(x,t) exactly by

solving
u + (f(vw)) =0
t X
u(x,0) = uo(X) s

and using the flux balance relation

’

0 = f udx - f(u)dt
C

where C travels counter clockwise around the box

0<t<Ar , (-1/2)Ax < x < (F+L/2)x .

We have

(3+1/2)Ax At
0= u(x,0)dx - [ £(u(j+1/2)Ax,t))dt
(3-1/2)x 0. ‘
(§+1/2)Ax At
- T u(x At)dx + I £(u((3-1/2)Ax,t))de .
(3=1/2)Ax 0

We now define u?*l by the relation
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(j+1/2)At '
ur.l+l =A—i T u(x At)dx .
I B aYAx
Thus
(j+1/2)Ax
WSt B -&1- «( T £(u( (3+1/2)Ax,t)dt -
J ] (j-172)Ax
(j+1/2)Ax _
f(u((j+1/2D)Ax,t)de ) .
(j-1/2)Ax

Invoking the Courant-Friedrichs-Lewy condition |é§5 max |£°(u)| < 1, now
: a<u<b

guarantees that the solution u((j-l/Z»ﬁx{Sﬁ) is determined by u;_l and
a v
u. L]

]

The Riemann problem determined by the two values u?-l’“? is scale

~invariant and so u((j-~1/2)Ax,t) is comnstant for 0 < t < /At. Thus

WO u;‘ -%x-t- (£(u((3-1/D)A2At) = £(u((3+1/2)Ax,AL))

or in short hand

n+l _ n _At_( n+1 n+l

Ui =Y TAx CEerz2 T R )

= 0.55, u_ = 0.05) 1leads to the

An experiment on the same data (u R

L
results shown in Figure 5. One can see that the resolution of the front is
qualitatively similar to that of the upwihd scheme; not producing a sharp
face and smearing the transition region over larger and larger numbers of
mesh points. Similarly, experiments with up > Uy show that it is diffi-

cult to tell the difference between a shock and a contact discontinuity

followed by a rarefaction, the solution predicted by the analysis.
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Section IV. Random Choice Method

The Random Choice Method (RCM) approximates the solution to (1) by
first advancing the solution at each step exactly, as does the Godunov
scheme. Then, instead of smearing the solution to obtéin the piecewise
constant approximation, it samples the solution in an interval and assigns
that value to be the new value of the approximation. Success depends on a
careful choice of the sampling strétegy,'and attention to boundaries if
they are present. The use of the RCM as a computational tool, as developed
by Chorin [1976,1977] aﬁd others, was based on a theorem of Glimm [1965]
that prd;ed the convergence of the method for strictly nonlinear f(u)

vdzf
(i-e-,,;:§ # 0) and initial data differing little from a constant. The RCHM
approaches first order accuracy, as experiment shows, propagates shécks
sharply, and is stable. There is some uncertainty introduced by thé sam=-
pling procedure, limiting, for example, thé Enowledge of the locaﬁion of

the shock front to be 0(h), but this appears to be within accptable

bounds.’

let a be an element of a quasirandom sequence. At a given time
step tj the true solution u(x,tj) is approximated by a step function as

in Section III, i.e.,

+m

~ n
u(x,t,) T 2 u.x. .,
j=—m

%y being the characteristic function of (j-Y9)Ax < x < (j+ ¥ )Ax.  One

advances to the next time step ¢t

j+1 in two stages, going first to tj+-V2

as follows:
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1) Choose Itj - tj+1| = At such that the Courant-Friedrichs-Lewy

condition

%t-_'max fa(u)| <1

u

to assure that there are no interacting waves.

2) Solve the equation (1) exactly from t:j to jj+ 1/2. This 1is in
fact a series of Riemann problems since there are no interacting waves.

Call the solution w(x,t).

3) Construct, as our approximation - at tj+ 1/2 s the function
v(x,tj+ 1/2):
+@ 1
viz,t,, )= 2 v, 1V,
Tyl 3727
where
n+ 1/2

= w(jAx+a_,t
Vit Yo w(ilxtay, i+ 1/2)
and yj is the characteristic function of jAx < x < (F+1)Dx .

Notice that the same number a is used for all j..

One then proceeds to construct ugﬂ'l by starting with v(x,tj+ 1/2)
" at step tj+ Y, and advancing to.. tj+1 :

For a we choose the van der Corput sequence:

Let



14
be the binary expansion:of the integer n.- Then

a = S ikz-(k+l)

Figure 6 shows the propagation of the shock front for our data
u. = 0.55, u, = 0.05." We see a sharp profile whose position .is accurate

L R

to within one mesh width of the theoretically computed position.

Section V

. The conclusions of our analysis arevthése. The dangers of convergence
to physically false solutions are real in ones even in actual compufations.
The second order method employed_here failed in a typical physically signi-
ficant case. In the case where the true nature of the solution is more dif-
ficult to see, conclusions based on thé computed data become even more
unreliable. Likewise, thg relevance of the computed solution, even in the
case where it is known that the computéd solution converges to the true

physical, as for example in the experiments mentioned before.

The question of the validity of the computation appears even more
sharply when we consider examples where nonmonotone schemes are used. Some
experimental calculations with the previously valid first order methods on

the flux function

uB, : . 0.8<ux<l

with B = 1.3, = 3.5, and ££(u) = (u-0.2)(u-0.8) show interesting results.

-
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The data u, = 0.95, u

L = 0.05 leads to a situation where the convex

R
hull joining the function wvalue at 0.95 to the function value at 0.05
requires the solution to consist of two shocks separated by a rarefaction.

The convex hull is represented in Figure 7. The shock speeds are given by

taking the slopes of the chords.of the two linear segments of the hull.

When applied to this problem the upwind method»shows severe instabil-
ity and really can not bé comﬁared with the other methods in any useful
fashion. The Godunoy method and the RCM method are plotted in Figure 8a-d
and Figure 9a-d. It is clear that the RCM pfovides the closet approxima-
tion to the theoreticai qualitative solution. However, these are prelim-
inary calculations. and more evidence is needed in cases of non-monotone,

non-convex flux functions.

Thus, of the methods chosen for comparison, the simple tests conducted
indicate that the RCM method, though only of first order, promises a supe-
rior ability to model accufately the classes of phenomena discussed in the

introduction.
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XBL 783-309

Figure 1. Shows the function f(u), the point of

tangency Uy and the convex hull H(u).
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Figure 3a.

Shows plot of Lax-Wendroff solution

compressed 120x in direction of x-axis:.

50 steps.
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UPWIND METHOD

INITIAL DATA

9,550
2,050
9,050
8,850
2.050
2,050
a,850

8,050

8.050

00053_

2,558
8,050
2,058
2,059
2,050
2,050
2.0850
2,050
2,850
0,050

S@ STEPS

. 8,550

8,558
0.550

0.503

0,050
8,850
2,250
0,050
0,050
2,059

9,559
8,550
9,558
9,435
2,058
8,058
8,050
2,050
9,050
2,050

100 STEPS

8,550

8,550

9.550
3,550
0.558
9541
0,959
0,059
2.950
9.0850

8,550
8,550
9,550
8,550
9,550
8,536
9,058
9,058
3,050
2,058

158 STEPS

2,558
2,559
0,550
2,550
8,55@
8.550
2,558
3,547
2,050
9,059

9.559
2,550
8,550
@.550
8,550
9,559
2.559
8,550
8,550

8,549

8,550
2,550
9,550
8,550
2,550
0,550
2.550
2,546
9,050
2.059

- 280 STEPS

9,550
8,559
8,559
9,550
0,550
9,558
9,558
9,559
2,558
8,548

9,558
2,050
2,058
2,850
9,050
2,8%80
0,058
8,050
9,050
2,050

8,558
8,558
8,558
8,146
9,050
9,058
2,050
9,058
2,059
9.8%8

9,559
8,558
8,558
2,558
2,558
9.530
2,050
8,050
2,250
8,0%0

9,558
3,550
2,559
8,550
9,558

8,558

8,550
9,544
0,058
8,050

8,550

8,550

2,550
9,550
9,550
2,550
9,550
8,550
9,558
ﬂ.54§

BUCKLEY=LEVERETT

8,550

8,058
9,050
B,050
0,058
0,050
2,050
0,858
8,050
2,058

9,550
8,550
9,550
0,051
2,050
2,059
3,050
9,050
8,850
2,050

8,559
2,550
8,550
9,550
2.558
8,518
0,059
0,059
2,059
9,058

2,550
9,550
8,558
2,558
2,559
8,550
2,559
8,542
8,0%0
2,050

8,550

8,559

9.550
9,550
8,559
9,559
9,558
0,553
2,559

9.547

9,558
8,058
9,0%9
2,050
9,059
9,050
8,859

9,058

8,059

9,050

2,559

8,550

8.550
8,050
9,050
9,250
9.0850
8,058
9.850
8,059

9,559
8,559
2,550
0.550
2,550
2,494
2,050
9,850
2,050
2,050

8,550
8,550
2,559
2,550
2,558
9,558
9,559
9,538
9,050
0.050

9,559
0,558
0,550
2,558
0,5%0
9,559

GQSSO'

9,559
8,546

8,558
2,050
28,0509

8.0%@

2,050
8,059
2,050
2,059
2,050
2,059

01550
9,550
8,558
9,050
8,050
9,050
8,058
9,059

0,050

8,050

9,558
2,558
8,559
8.550
8,550

8,397

2,250
2,859
2,850
2,059

9,550

9,559
9,558
9,550
2,550
2,550
2,558
2.534
8,058
2,059

8,558
8,559
9,550
2,559
8,55a@
0,550
2,550
2,559
9,550
8,54

23
EQUATION

9,550
9,050
28,0580

8,050

2,050
2,08%0
9,850
8,850
2,050
8,850

9,550

9,550
9,549
8,08%0
2,059
2,058
8,059
2,050
9,052

2,850

9,558
9.550
9,550
8,550
8,550

9.,100

2,050
28,058
0,059
9,058

0,550
9,558
8,552
9,558
8.558
9,550
9,550
8,527
2,050
2,059

0,550
8,558
2,550
8,550
9,550
8,558
2.550
2,550
8.558
2,543

B;SSB
2,050

8,050

2,050
8,058
2,050
2,050

8,050

2,050
8,050

9,550
8,559
8,548
2,050
91353
8,050
9,050
2,050
8,050
2,050

9,550

8,550

92,559
8,550
8,549
8.0%9
0,058
8,050
8,050
2,050

9,550
9,550
9,550
8,559

2,550

2,558
8,550
2,514

2,050

9,850

2,558
2,550
2,.55@
8,550
9,558
0,559
8,559
9,550
9,550
0.590

Figure 4

9.558
8,0%9
2,058
2,050
8,0%0
2,0%@
9,958
0.0590
2,050
0,050

2,559
2,550
8,547
2,050
0,050
8,850
0.85@
6,058
8,058
2,058

9,550
8,550
9,558
0.558
B.549
8,259
0,059
0,050
9,058
2,0%0

9,559
9,550
8,550
2,552
2,559
2,559
9,558
0.484

8,050

0,059

9,559
2,550
8,558
0,550
9,558
2.558
8.550
9,558

9,550

0.5}7

8,550

8,0%8
8,850
0,050
0,850
2,050
2,850
p,850
2,950
ﬂoﬂSﬂ

2,550 @
8,559
9,545
8.,0859

8,050

2,958
9,050
9,050

50050

9,859

9.550
2,5%0

8,550

2,558
9,548

8,050
8,850
9,050
2.9050
2,050

2,550
2.550
0,550

9,599
2,558

8,552
2,549
0,336
8,050

2,859

0,550
2,558
2,550
8,559
8,558
8,550
8.558
9,550
8,550
0532

2,950
8,850
2,0%0
28,0850
0,0%0
9,050
8,0%0
0,050
9,050
00059

8,550
8,550
2,541
2,050
2,050
0,059

8,050

9,050
8,059

'iBSQ

2,558
8.558
9,550
8,5%0
9,547
8,059
8,058
0,050
2,050
5.050

9,550
8,558
2,558
2,550
9,550

08,550

8,549
2,869
0,850
9,850

2,558
2,558
2.%50
8,550
2,550
2,550
2,559
2,558
2,550
U.s;ﬂ

8,850

2,058
0,059
8.059
2,050
0,050
9,850
9,058
0,050

9,250

9,550
8,559
8,53%
8,050
9,850
8,050
2,058
2,050
2,050
ﬂoﬂ?ﬂ

9,559
8,559
2,550
2,550
9,546
2,050
9,050
0,050
2,050
9.050

8,550
8.550
8,550
8,550
9,550
9,559
9,548
0,050
90,0850
8,058

9,550
9,550
8,550
8,550
9,558
9,558
9,550
8,550
2,549
9,589

0,050
9,050
2,050
8,050
8,059
2,059
2,050
9,050
2,050
2,858

9,550
2,550
8,524
2,050
2,059
2,950
9,050
9,050
8,05%08
2,059

8,558
8,550
8,550
8,550

8,544
8,058
9,058
9,858
9,058
8,058

9,550
9,550
8,558
9,556
0,550
8,550
8,548
2,050
.850
2,850

8,558
9,5%50
2,559
2,550
2,550
9,550
0,559
9,550
8,549

8,070



GODUNOV METHOD

INITIAL DATA

¥.550
2,959
¥.954
8,454
8,050
8,050
8,052
3,159
0,459
3,059

d¢55¢
8,454
d4959
3,059
4,459
2.859
8,059
3,050
4,959
9,859

5@ STEPS

0.554
44559
Be549
J.050
d.4580
B.050
B3.854
¥.350
Y4950
/% LYY,

‘¥,5502
¥,.559
9,548
Y
3.059
2,959
4,950
3,059
@.ﬂSﬂ
A.959

198 STEPS

D554
¥e554
W.550
3.550
4,550
2.102
3.050
3,450
d.4d50
2.,95@

8,550
B.55¢
44559
4,558
he549
B.0652
8.05¢
B.058
2,054
Q,95@

1S9 STEPS

d+559
B.550
84550
84550
@.559
8,559
de559
'60527
B.05¢
JeIS58

d,559
¥.554¢
D.558
de554
D554
HWeS550
¥.5509
N.914
0,458
A,254

299 STEPS

445598
34550
#,550
3,559
d4.55¢
Be554
Y4559
3,559
3.559
B.543

Je550
3,559
2,559
#.550
B.559

3,550

d.95504
3,559
de559
WeS49d

de550
0,059
YUY
0,459
b¥,U58
2,050
44059
Y.158
V.05
d.059

2.554
B,55@
U.5Q7
2.950
2,958
2,259
4,050
B.ASY
N,058
0,054

8,559
0,550
3,559
He550
¥eS549
0,859
9,450
2,050
Ye959
B.454

B.55¢
Be550
B.598
U,554
9,554
B,5%9
d.55Y
g.484
0,950
Be 50

¥eS554
P.,554¢
8,554
P.5502
0,559
0,554
¥We550
WeS5Y
V559
0.537

BUCKLEY=LEVERETT

d.559
P.9d50
v.4d59d
B.450
B,858
4,050
@.¥50
2,852
9,959
3,059

9,559
2.559
0,545
0,050
N,85@
3,059
3,953
B.,058
LY
B.057

8.553

8,550
d.554
0,550
8,548
2,058
¥.459
2.258
4,950
2.959

34550
B.552
2,559
¥,558
Y554
A.559
0,549
Ve336
B,050
B,950

B.550
8.559
B.558.
2.559
8,550
2,559
H.55@
B.559
2.559
P.532

2,559
3,950
9,4d5¢
4.e50
8,458
2,050
2.05¢
2,058
8,859
8,359

¥.550
2,559
0,541
2,058
0,959
9,950
9,450
2,854¢
2,859
¥,35¢

¥.,550
2,553
4559
¥,550
Ve547
2,959
2,454
a.059
B,958
B.950

BeH59
de559
B.S54
2,554
v,552
8.550
BeS49
B.,069
d,05@
de US4

V.559
8,554
V.554
2.558
2,559
B,55¢
B.550
B.550
d,554
¥,524

9,950
3,354 -
8,350
8,859
8,859
2,059
9,252
0,350
9,959
2,959

4,359
M,552
3,535
9,358
0. 05@
8.959
04450
84059
2,450
.05@

9,554
2.55¢
P,550
4,550
8,546
¢.05¢
2,950
2,959
0,453
0.@59

8,554
84559
B.550
¥,559
2,554

¥4548

d.953
2.9532
Be0SY

3,554
B.559
34554
4,559
B.550
2,559
0.550
Py 5548
2,549
YeSH9

24

EQUAT LON

¢.a5@
2.050
R.459
3,058
2,059
2.058
0,850
2.05@
9.258
2,259

2.55@
¥.550
B.524
8.452
d.050
d.058
B.050
d.059

9,459

@.959

B.559
¥.55¢
8,550
B.550
U544
0,059
2.08S0
A0S
V.050
2,050

d.554
3,552
Q.553
YeS54
2,553
B.559
2.543
B.050
Ae¥54
B.259

24559
2,559
@.559
.55
¥,559
8,559
P.553
8,554
2.549
Bb.u470

8,050

2,050
4,050
2,059
3.958
3,059
3.925¢
2.250
9.354@
2.250@

A.5592
8.550
2,543
B.959
8.a5¢
LY
6,250
g.05@
9,950
2,059

34550
8,550
8.550
A,550
2,541
@2,95¢
h,059
#,058
2,059
9,050

3.55¢@
3,550
3.554
2,559
2.5580
d.547
2,050
1.350
3,059

B,558
3,559
2.55¢
4.559
34550
2.559
d.550
2,55@
2,549
0.259

Ficoure 5

8,059
P.N59
8,958
2,250
Be05@
2.854
A,050
2.050
V.50
2,459

0.559
f2.559
Be435
3,050
Be0S3
2.4959
B.850
B.050
We05@
Be254

9.550
B.550
“e550

P.550

Ge536
2.250
B.050
8.9059
8,059
@.05¢

B.558
B.559
@.559
8,550
B.55@
#.550
de546
@050
B.050
d.454Y

P.550
2.550
2,552
0.550
2.559
7.550
2,550
0.554
¥.548
@.856

2,052
0.350
8,450
Aa.,85@
2.054
2,858
2.059
2,850
d.a5@
B.359

2,553
2,559
A,146
BeA5Q

'D.954

P9854
2,950
g.05@2
B.9592
2,359

A.550
2,559
0,550
B.550
deS3¢
2.259
PeVSHE
A.954
Be454
2.435¢

d.550
ReS50
BD,552
Be.95¢
A.55¢
B.554
A.S54d
8.959
B.350
@e9350

@e554
3,559
¥.55¢
A.554
U550
8.559
P.,5549
2,559
B.548
A,d5¢

0.450
.05
2,054
2.08592
E.QSE
2,050
8.05a
2.9542
2,858
0,859

3,5%@
2.550
B.9WS1
A.,052
B850
¥.050
B.450
A.0517
B.959
A,4549

A,S92
#4550
@055'&"
B,554
¥eS518
9,259
B.259
4.25¢
3005'1,
0.850

P.55¢
2,552
d.552
de9554
Ae5%0u
3.55%
Be54d2
3,45
d,459
e HSG

4,552
2,552
2,559
9.552
A,559
¥,552
8,953
W,559
6,547
a.,959

2.,054@
v.u5¢
3,854
3.252
8,659
7,258
24259
2,259
2.850
2,059

.55
N.5502
g.zs”
3.05¢
24450
2.€59
4.050
4,952
B.v50
A, 58

1,554
n.559
eSS
RAeS5:A
4494
3.,¢50
d,a50
AeASH
Ve "SI
De¥HR

HAeH54
ReSHA
Ae550
beS5¢
Be599
2,55¢
Y
3,099
deiH1

de D59
?OSSA
Ne55¢
B,55¢
de 59V
3.554
N,55¢
A,559
A.5406
Y

4o
2,050
eS8
oS0
o549
d.059
VenSd
2,054
4,450
B850

0.552
2.55¢
de¥iSY
Bde159
@ed¥
Be SV
PeiS¢
1ea54
d,45¢
ded5¢

de554
J.554
eSS

« 954
ﬂ.\')SU
P50
P.2%9
e
BeH2

¢e 59
LE.SS.J
Pe9952
¢e55%
Ve550
e 99¢
14534
¢eA59
AeAS2
'Ao’ﬂs'{’

de950
“953'4,
24554
BeS52
Je9554
De558
BeH34
?e S5
LT

v
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ey
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INITIAL DATA

8.550

2,058

2,059
2,050
0,050
0,050
9,059
0,050
2,059

Sa
0,550
9.550
9,550
8,559
9,050

. 8,050

8.050
2,050
0,050
9,050

34559
2,050
8,050
9.050
9,050
0,050
8,058
0.0850
2,050
v,0508

STEPS
9,550
9,558
9.550
8,550
8,050
9,050
2,050
90,058
9,050
P,058

100 STEPS

0.550
9,550
B9.5580
.550
0,550
0.550
8,059
8,050
0.0509
2,050

9,550
2,550
0.550
0,558
2,558
8,550
2,850
8,050
0,050
2,050

158 STEPS

9,550
B.550
0,550
8.550
8,550
0,550
9,550
P.550
0.058
2,050

"9,550
2,550
8,550
9,550
9,550
0,558

0.559

9,558
2,058
2,050

200 STEPS

0,550
2,559
3,559
3,550
8,550
8,558
8,559
8,554
8,559
8,550

8,550
0,550
0,559
9,558
9,550
8,559
9,550
0,550
0,558
8,550

8,554
0,050
4,050
8,05¢
8,850
8,050
8,850
0.059
¥,85¢
0,050

8,550
0,550
8,550
0,550
0,050
9,050
0.050
0,050
0,050
8,050

0.550
0,559
0,550
8,550
0,558
0,550
9,050
9,050
P.050
0,050

9,559
2,550
A,550
8,550
2,550
8,550
0,550
2,559
0,059
9,050

8,558
0,550
8,550
0,559
8,550
¥,550
8,559
2,55¢
0,550
0,550

2,550
8,950
28,850
0.050
8,050
8,050
0,050
2,058
0,059
0,050

9.550
8,550
2,550
0,550
9,059
8,050
2,059
9,050
0,050

2,558
9,550
9,550
0,550
8,550
0.550
2,050
9,850
9,050
9,050

2,559
2.550
8.550
3,550
8,559
8,559
8,5%@
8,559
8,050
2,059

9,550
2.550
8,550
9,558
8,550
0,550
0,550
8,550
9,550
8,550

8,550
2,059
0,050
8,850
8,050
9,050
9,050
2,050
8,050
0,059

B.550
8,550
8,559
0,050
0,050
8,059
.050
2.050
2,050

2,550
8,550
0,558
8,550
0,550
8,550
0,850
0.050
9,050
0,050

9,550
0,550
0.559
9,550
2,550
3,550
8,550
p,550
9,059
90,0589

2,558
2,550
8,558
8,550
9,550
8,550
0,550
0,550
0,550
0,550

2,550
2,050

9,0850.
0,050

0,850
0,050
2,050
8,050
0,050
3,050

0,550
8,550
0,550
8,059
2,058

0,050

2,050
8,850
2,050
0,858

2,550

'5.550

2,558
8,550
0,550
0,550
8,050
0,050
2,050
0,850

8,550
2,.5%0
P,550
8,550
2,550
8.55@
8,558
8,558
2,850
0,050

31550
9,550
9,550
8,550
9,550
2,558
9,558
0,550
9,550
9,559

2,550
P.050
8,050
8,050
g.,050
2,050
8,050
0,850
8,650
8.050

8,550
0,550
2.550
9,050
9,050
0,050
9,850
8,050
2,050
9,858,

2,550
9,550
2,559
0.550
9,550
2.550
9,050
9,050
2,050
9,050

9,550
2,550
0,550
8,550
9,550
0.550
9,550
8,550
0,050
2,050

0,559
8,550
2,550
8,550
2.550
GQSSG
0,550
2,550
8,550
0,559

Figure 6

. ; : 25 ’
_RANDOM CHOICE METHOD  BUCKLEY=LEVERETT EQUATION

9,550
0,050
2,050

0.050

8,050

0.050

2,050
B,050
a,a50
8.050

8,550
9,558
8,550
2,050
2,050
2.050
2,050
0.0850
28.a5@
9,050

8,550
8.550
9,559
2,550
0,550
8.850
2,059
0,050
2,050

8,050

8,550
2,550
8,550
0,558
B.55¢
2,550
0,550
0,550
9,850
3,050

8,550

8,550

2,552

8,550
2,550
2,550
9,550
9,550
9.550
8.550

2,550
8,050
2,050
0,050
0,050
P.050
0.050
2,950
d,850
V.059

8,550
a,5%@
P.550
8,050
8.050
2,859
2,058
6,059
2,050
B,050

0,550
2,558
B.550
8,550
8,550
P,058
0,050
P.050
8,050
2,058

9,550
8.550
2,550
8,550
9,550
2,550
2,550
8,550
2,050
P.050

9,550
P.55@
8.550
2,550
8,550
2.55@
2.550
2.,55@
8,550
2.,550

2,550
8,050
02,0850
0.250
B.850
9,050
8,050
2.059
2.050
2,850

@,550
8.5580
34559
2,059
9.050
2,050
0,050
0,050
0,250
9,050

2,550
8,550
0.550
0,550
9,558
2,850
9,050
2,050
2.050
P,050

9.550
8,550
8,550
9,550
9,550
8,550
2,559
8,559
2,050
2,050

2,550

2,5%@
2,550
8,559
2.554
2,550
2,550
8,550
2,559
9,550

,55@
2,050
2,050
0,050
9,050
0,050
2,850
0,058
9,050
8,058

0,550
8.55@
8,550
2,059
8.95@
8,050
2,850
8,850
0,858

2,550
8,550
2,550
2,558
8,050
2,050
2,050
8.050
8,050

8,550
2,550
9,550
9,559
9,559
9,550
0,550
8,55@
9,050
8,050

2,550
2,550
2,558
9,550
0,550
9,550
2,550
2,550
8,559
8,550

2,050
¢,050
2,050
2,050
2,050
e,@58
2,850
2,050
2,050
9,058

8,559
2,550
8.55@
9,059
0,058
?,050
2,850
9,850
2,850
0,050

98,550

2,554
2,550
2,55@
.550
9,850
2,050
8.850
2.0850
2,050

3,550
2,550
2,550

8,550

2,550
8,550
8,550
0,059
8.0259
G'GSB

9,558
8,550
9,550
2,558
8,559
0.550
8,550
8,554
8,550
8,558

9,050
9,050
2,058
9,850
2,859
2,050
0,052
0.050
0,050
.25

8,550
0,550
2,550
2,250
8.850
0,050
9,050
2,850
8,050
8,050

8,550 -
0,550
8,550
2,550
2,550
2,050
2,050
8,058
0,050
0,850

2,550
28,5580
8,550
8.55¢
0,550
2,550
8,550
8,050
2,050
2,052

2,558
2,558
2,550
8,550
9,558
8,558
3,550
2,550
2,550
8,558
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and its convex hull,for uR=0.05, uL=O.95.

- } ] i
LOCUL' ——t r————t————
Fo 4
- 4
> -
- 1
o.e05 -1 -+
I 1
L J
L ‘ ]
C.60C0 =~ -t
i J
. I ]
L |
A2 -+
- p
c.200+4 -+
L ]
- L
-~ PR P | P T IO S S G NV SN RN S U SN T AT S A S SR S E S S
g.0¢¢ t t t 1
¢.c0C c.20¢ 0.40¢ 0.600 c.8o00 ooc
Figure 7. Shows the function £f(u) described in text
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Figure 8a. Shows Godunov scheme with shock on left.
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Figure 9a.

Shows RCM

with 2 sharp progressing shocks.
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