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CORIOLIS EFFECTS IN NUCLEI ,:, 

F .. S. Stephens 

1. Introduction 

Coriolis effects are not very common in our normal experience. Perhaps 

the most familiar object where these effects are large is the gyroscope or the 

"top", as the childhood-toy version is usually called. The sidewise precession 

of a leaning top under the influence of the downward pull of gravity is indeed 

a striking behavior, and one whose mystery testifies to our unfamiliarity with 

Coriolis effects. A less common example, but one much more analogous to the 

nuclear effects I want to discuss, is a ship's gyrocompass. In this case the 

tendency of a spinning gyroscope (whose axis is kept in the plane of the earth's 

surface) to align its axis with that of the rotating earth, is used as a navi-

gat-ional aid. A particle in an orbit of a rotating nucleus has a similar 

tendency, as we shall see. In the case of rotational nuclei, Coriolis effects 

are much more apparent than in our everyday experience, and it is the purpose 

of these lectures to examine what we know about such effects. 

It is easy to estimate the maximum Coriolis energy of a particular 

particle in a rotating nucleus. For a particle orbit having angular momentum, 

j, in a nucleus with spin, I, and moment of inertia, d, this energy is given by: 

h2 
E (max) ::::::: 2 

2
f"i I j 

Cor d 
(l) 

In rare-earth nuclei there exist orbitals with j as large as 13/2, and 

h2/2~ is around 0.01 MeV. Thus when I is only 7/2, the maximum Coriolis 

··.,. 
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energy is almost 0. 5 MeV~ or quite co.rr,tparable with th.e energy- separations 

between particle s.tates in such a nucleus. This indicates that :for these 

favorable cases the Coriolis effects can be expected to affect the nuclear 

structure significantly even for such low spins. Equation (l) also shows 

clearly that these effects become larger with increasing spin and also with 

decreasing moment of iriertia·. 

In the present lectures I want to review the Coriolis effects in 

nuclei, beginning with cases where they are relatively small; that is, good 

rotational nuclei (small h2 /2'J' ) , low-j orbitals, and relatively low spin values . 

. 18-=t. 
-~: example of this type is the famous case of -w. Then I want to proceed 

to some intermediate cases where j is large, I is moderately large, but h2/2~ 

remains small {rotational nuclei). 235 These cases are U and the odd-A Er 

nuclei. With these as background I will then describe two situations that 

we have proposed might correspond to cases where the Coriolis effects have 

changed the nuclear structure in a major way. The first of these is the case 

where j is large, I is moderately large, and h2 /2 ;" becomes large; that is, 

in the more "Vibrational" nuclei. I will consider mainly the odd-A La, Au, and 

Tl nuclei in this category. 'l'he other situation is that of very large I 

(-20) in rotational nuclei 1 where these effects can be shown to provide one 

possible explanation for the peculiar behav:ior recently observed ·in even-even 

nuclei. Throughout these discussions I will try to emphasize the physical 

effects occurring rather than the mathematical detail, although some of the 

latter will be essential. 

It is important to keep in mind that in all these cases we are treating 

just ~ physical system, a particle coupled to a core that is deformed and can 

rotate. In the first cases I will discuss, the deformation of the core is large 

- ,. 
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and the part~cle is strongly .coupled to it so that as the core rotates the 

particle follows. 'l'he Coriolii.s effects are then a small perturbation on the 

rotational spectra. In the last cases~ the couvling to the deformed shape is 

weak and/or the rotational freq;uencies" are large, so that the particle cannot 

follow the core rotation, resulting in Coriolis effects that completely obscure 

the simple rotational bands. It is certainly true that at some point, as the 

coupling decreases (S gets smaller), this rotational model will cease to apply 

to nuclei, but in order to find that point we must first understl¥ld just what 

the model implies clear down to the limit of zero coupling. Furthermore, there 

is some intriguing experimental evidence that suggests the model applies rather 

well at surprisingly weak couplings for at least some special states. 

2. Coriolis EfffFc;ts" as Perturbations in Rotational Spectra 

2.1. 183w 

1 A. Bohr ) discussed Coriolis effects in his original paper on nuclear 

rotation in 1952, but it was some four years later before A. K. Kerman2 ) 

18-:t_ 
applied these ideas to a specific case, namely -w. I want to begin with 

this case, both because of its historical interest, and because it illustrates 

the effects in a simple case where only two bands are involved. The basic 

equations necessary to understand nuclear Coriolis effects are very simple, 

provided the deformed core is assumed to be axially symmetric and furthermore 

that K = Q for all the low-lying states. The Hamiltonian of the system can 

be written: 

2 
H-H +""!:_2 

p ~2~.; 
~ i ... 

(2) 
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where H is the Hamiltonian o;f the particle in the absence of rotation (a 
p 

Nilsson3) Hamiltonian for example} • OJ" is the moment of inerti.a of the axially.... 

+ 
symmetric core, and R is the rotational angular momentum of the core (rotation 

is not allowed around the symmetry axis}. A coupling between the particle and 

the rotation comes about through the sharing of the total angular momentum 

between the particle and the core. This can be expressed by: 

+ + 
R = I 

+ 
j (3) 

One should clearly distinguish between the particle-rotation coupling which 

we are discussing, and the particle-core coupling, which is contained in H • 
p 

(The major part of the particle-core coupling is spherically symmetric and 

of no interest here; however, if the core is deformed, then there is also a 

coupling to the deformation, which we discussed at the end of the previous 

section.) Putting eq. ( 3) into eq. (2), gives the usual expression for the 

rotational nucleus: 

h
2 

[ . 2] h2 
E·12 > - n2] H = H + 

2
8" I(I+l) - K .. + H + 29' p c 

(4) 

where H is the Coriolis operator which is given by: ,c 

H 
h2 [i~j "- n

2
] 

1\2 
r+j- I_j+] = -2- = - 29' + c 23"' (5) 

These are the general equations which we will use repeatedly later on, but for 

the present case of good rotational nuclei they can be further simplified. 

For such cases, n is a constant for a given band, as is <-J2> • These m~ 

therefore be included in H , giving: 
p 
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2 

H = Hp • + ~· r ( I+l ~ + He 

The matrix elements of H can be written: 
c 

(62 

(7) 

yhere the matrix element, (. Q±liJ±In}, must, in general, be calculated from 

the detailed (e.g. Nilsson) wave functions. For the special case where j is 

a gopd quantum number, these can be written: 

(8) 

Generally, H is non-diagonal, connecting bands that differ in n by one . c 

unit. However, as is well known, there is a diagonal contribution to bands 

with n = 1/2. These rather simple basic equations will be used to treat all 

the cases of Coriolis coupling mentioned. 

The 183w case tre.ated by Kerman involved only two bands with Q = 3/2 

and n = 1/2 and is shown in fig. 1. The initial bandhead energies, Hp', 

Kerman took as parameters, as he also did the initial h2 /2~ value for each 

band. In addition he took the Q = 1/2 band decoupling parameter to be 

adjustable. For a given value of t;hese five parameters he could than calculate 

the initial energies of the levels in each band. For the parameters of his 

final f~t, these are shown in fig. 1. Taking as a sixth parameter the value 

of < n = 3/21 j+ l.n = 1/2 ) , Kerman diagonalized the 2 x 2 matrix for each spin, 
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·giving the shi.:f'ts shown in :fig. l. As is usual, the levels repel each other; 

levels of a given spin moving equal distances up and down. The experimental 

energies are listed at the edges of :fig. l, and it can be seen that the :fit 

is indeed excellent. Kerman also considered some 20 Ml and E2 transition 

probabilities, achieving reasonable success at the expense of 5 additional 

parameters. 

Subsequent work
4'5) on 183w has tended to confirm the basic principles 

of the Kerman analysis, though some problems have arisen. 
4 

Rowe } showed that 

various rotation-vibration (~K = .±2) admixtures of the type found in even-even 

nuclei in the region of 183w permitted one to obtain fits as good as Kerman's 

over a rather broad range of the parameters (though he obtained better fits 

for two particular sets of parameters). Brockmeier et al. 5 ) later showed 

that including other Nilsson states could also significantly af,fect the fit. 

There are probably two conclusions to be drawn from this case: 1) there is 

clearly a significant Coriolis mixing of these bands; and 2) ·the details,. of 

this mixing are probably not very well determined due to the many parameters 

involved, and the possibility of contributions from a number of additional 

effects. 

There are many other cases of moderate Coriolis mixing of two or three 

close-lying bands. The single-particle-transfer reactions have proved to be a 

powerful method for such studies since they give more direct evidence on the 

wave functions of the observed bands. However, I do not want to pursue such 

detailed analyses. The purpose of discussing this case was. 1) to displi\Y'',the 

analysis of Coriolis effects in a simple case and 2) to show that even in a 

case of low h2/2~, j and I, appreciable Coriolis effects occur. We will now 

go on to cases where the effects are larger and, at the same time, the 

/". 

~· 

\ 
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calculations are much less ambiguous. 

2.2 

The unique-parity high-j orbitals within each major shell provide much 

the best cases to observe and understand large Coriolis effects in nuclei. It 

is essential to appreciate the reasons for this. The most obvious factor for 

these orbitals is that the Coriolis matrix elements increase approximately 

proportional to j for low values of n, as shown by eqs. ( 7) and ( 8). For the 

j
1512 

orbital, which is involved in 235u, this implies matrix elements around 

18-:t_ 
5 times larger than that found by Kerman for '"'W. This situation is typical 

for all the high-j orbitals, and leads immediately to the conclusion that any 

study of the largest Coriolis effects will involve these orbitals. The second 

fUndamental reason for choosing these orbit.als is that they are well separated 

from any other orbitals of the. same .parity, so that, to a very good approximation, 

j is pure. This can be verified from the Nilsson wave functions of: 

i) the h1112 orbital in the 50-82 shell, ii) the i
1312 

orbital in the 82-126 
.• 

shell, and iii) the j
1512 

orbital in the shell beyond 126. This means not 

only that the above pure-j estimates for the Coriolis matrix elements are about 

correct,but.also that all properties of the c<:>mponent states of these orbitals 

can be calculated with much higher than average reliability. To say it 

slightly differently, the properties of these states are not much affected by. 

the small admixtures of other j-values, and hence not sensitive to the exact 

size of these admixtures. Yet another favorable aspect for the component 

states of a high-j orbital is that they will not Coriolis mix very much with 

states from other orbitals. This is both because of the pure j-value and 

because these other orbitals are at least one major shell removed in energy. 

We can summarize the properties of.the high-j components as: l) they comprise 
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a closed set of states whose Coriolis interactions among themselves are the 

largest possible; 2) they have very weak Coriolis interactions with states 

from other j-shells; and 3) their properties can be calculated with the 

highest reliability of any states in deformed nuclei. 

One point about the reliability of calculated properties is illustrated ~ 

in fig. 2. Here we show the components of an h1112 orbital as a fUnction of 

deformation3). These components would be one of the closed sets of levels 

mentioned above. One sees that since they come from a given orbital (h1112 ) 

their relative energies are independent of the shell model parameters in the 

calculation, and depend only on the energy splitting of this orbital with 

deformation. This gives much more reliable relative energies than would 

otherwise be the case. To get the energies of the components one simply goes 

to the appropriate deformation, sey 13 = +6 .275, and reads off the energies at 

that deformation. A line on fig. 2 has been drawn to show these energies. 

In addition to 13, one also needs to know the location of the Fermi surface, A 

and the pairing gap, 2~, in order to calculate these energies as they might be 

expected to occur in a particular nucleus. The appropriate equation for the 

observed energy E(Q) in terms of the eigenvalues from fig. 2, En, is: 

(9) 

There is also a UV-factor6) to be included on the Coriolis matrix elements due 

to the pairing, but that is a small correction. 

If we pick a Fermi surface near the Q = 7/2 level and apply eq. (9) to 

the eigenvalues of the j
1512 

Nilsson orbital at S = 0.275, the bandhead energies 

shown in fig. 3 result. We can then construct rotational bands on all these 
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bandheads according to eq. (6)- whe~e Hp' is equated with E(Q). The first 

few of these are shown for each. band on fig. 3. The matrix elements, 

< nnl j± In } I as calculated from the Nilsson wave functions are also shown on 

fig. 3; and, by comparison with eq. (8), they can all be seen to be within 10% 

of the pure-j values. The procedure then is to pick out from each band the state 

of a particular spin, I, and diagonalize the resulting matrix. For the j
1512 

shell this will be an 8 X_ 8 matrix if I >_15/2, and smaller if I< 15/2. 

Three things shou~d be pointed out especially on fig. 3. First, a 

pattern much like this results from any high-j orbital. An h
1112 

orbital, for 

example, would have two fewer bands (13/2 and 15/2) and "v 30% lower matrix 

elements, but otherwise would be very similar. The second thing to note iS 

that Coriolis effects are much bigger for the low n bands. Not only are 

the energy separations of the bands smaller here, but also the matrix elements 

are largest. Thus the very largest Coriolis effects will occur in low-n bands 

of high-j orbitals. Finally, the Q = l/2 band has very anomalous spacings. 

Large decoupling factors always occur in these high-j orbitals, so this is a 

general feature. These anomalous spacings are transmitted to the Q = 3/2 band 

in the mixing process' and then on to the n = 5/2 band in a second order 

process, etc. The resulting anomalous spacings in the higher-Q bands are a very 

characteristic and important feature of the mixing we are describing here. 

There are three favorable circumstances that make 235u a very good case 

for studying such Coriolis calculations. The level scheme worked out from 

Coulomb excitation studies7 ) several years ago is shown in fig. 4. The first 

favorable feature is that many levels are observed in the j
1512 

component 

bands. Threebands, Q = 5/2,7/2, 9/2, are seen and there are a total of 15 

rotational spacings in these bands (bandhead energies are not included in the 
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fits in this case). A secbnd advantage is that anomalous spacings coming from 
I 

the mixing with the n =1/2 band are observed in both the n = 5/2 and 1/2 bands. 

This information alone te.lls some rather specific things about the Corioifs matrix 

elements. Finally the B(E2) values between then= 7/2 ground-band and both 

the n = 5/2 and n = 9/2 bands were determined. If one assumes that these B(E2) 

values result only from collective E2 transitions introduced by the mixing, 

then they give immediately the admixed am.pli tudes, and hence the Coriolis matrix 

elements involved. The assumption that the non-collective B(E2) values can be 

neglected is very likely to be essentially correct, but effects of 20% or so 

in the deduced mixing amplitudes cannot be excluded. Consideration of these 

features, and the other known E2 and Ml relative intensities, makes the 235u 

case a real test for our description of these Coriolis effects. 

I do not want to discuss the details of the calculations for 235u, but 

only give an indication .o'f the kind c5f; results :6btain.ed. Figure 5 gives 

the results for the rotational energies where only one adjustable parameter 

was used. This plot is designed so that it gives a straight line for a 

rotational band if the band :follo'IY's.the equation, 

(10) 

where the intercept of the line on· fig. 5 would be A and the slope would be . ' 

B. We use the plot because it can show the rotational energies on a sufficiently -' 

sensitive scale to see easily the anomalies in then= 5/2 and 7/2 bands. In 

the calculation all bandhead energies and matrix elements were taken from the 

Nilsson wave functions except the matrix elements, (5/2IJ_I7/2·)and 

<7/2lj_l9/2), which were determined from the B(E2) values as described above. 
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2 The one parameter wash /2&r, which comes into all the rotational band energies 

(eq. (6)) and matrix elements (eq. (7)) except the above two. The results 

clearly show the correct anomaly coming from the n = 1/2 band into the n = 5/2 

and 7/2 bands. 
2 However the final effective h /2~values for the Q = 5/2 and 

9/2 bands are not correctly given. 

The results of a three parameter fit a~e shown in fig. 6. Here the 

matrix elements, (5/2jj_l7/2} and <7/2lj_l9/2}, were allowed to vary from 

the values indicated by the B(E2) values but their ratio was held constant, 

and the matrix element, ( 3/21 j_l5/2 } , could vary. The former of these went 

up by 20%, and the latter went down by 20%. The fit here is excellent (note 

the expansion of the ordinate scale). Also the known relative Ml and E2 

transition probabilities were adequately given by wave functions from this fit. 

This fit is a very strong indication that we know how to make this kind of 

calculation. One minor puzzle comes out, whose solution is not at present 

understood. The matrix elements, ( 5/21 j_l7 /2. } and ( 7/21 j_l9/2 } , have values 

only about half as large as expected. This result comes from the measured B(E2) 

values almost completely unambiguously. This kind of effect on the Coriolis 

matrix elements near the Fermi surface has been observed in other similar 

cases, and is the outstanding remaining mystery in such calculations. 

I have discussed the 235u case in some detail for two reasons. 

First to show rather carefully how one treats such a j-shell, and secondly, 

to try to convince you that one does know how to make these calculations. I 

now want to go on to cases where the effects are bigger, but the data more 

meager. 
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2.3. Odd-A Er Isotopes 

. The calculated and experimental spectra of three odd-A Er isotopes
8

) 

are shown in fig. 7. These data are for the lowest positive-parity band in 

these Er nuclei, and this band is clearly composed of heavily admixed components 

of the i
1312 

neutron orbital. One sees a reasonably normal n = 5/2 band in 

l65E 1· · 163E d b d "th . t d l 1 d r, large anoma les ln r, an a an Wl some lnver e · eve -or ers 

in 16~r. The calculations were very similar to those described for 
235u, 

except that here no data were available on higher bands. Nevertheless, the 

three parameter fits shown are impressive, and leave no doubt that tli.e spectr-a 

are basically correctly interpreted. Figure 8 shows the rotational-energy 

plots like the ones just discussed for 235u. 165 The plot for Er looks much 

like that of 235u until one appreciates the ordinate scale. These effects are 

much larger than those in 235u, and become still larger in 163Er and 
161

Er. In 

the latter case the inverted levels show up as negative points on such a plot. 

We can understand why these effects are big and get bigger with decreasing 

mass number. The rotational constant, h
2 
/2ft, which comes into the Coriolis 

matrix elements (eq. (7)), is about twice as big here as in 235u and is increasing 

with decreasing mass number in these Er nuclei. 

2. 4. SUIJD!lary 

In the Er nuclei the Coriolis effects are producing large distortions 

in the rotational bands. These effects can be calculated in some detail, as 

we have seen, but it now seems more useful to broaden our perspective on this 

problem rather than to study in detail such fits. There is no difficulty 

in solving eq. 4 for any deformation (except exactly zero) and it seems 

.. 
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essential to understand, in a general way, the nature of these solutions. 

If they contain some new regularities, then it is necessary to know just 

what these are so that they could be recognized if they occur in the Er {or. 

other) level schemes. Along the same line it would be interesting to under-

stand the physical process occuring in these distorted bands. These questions 

will be taken up in the next section, and in the beginning of section 4 we 

will return briefly to these Er nuclei and examine them from a somewhat 

different viewpoint. 
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3. Coriolis Effects in Nuclei with Small Deformations 

Whether the Coriolis effects will be large or not in a particular case 

depends on the relationship of the rotational energy given by, 

E rot 
h2 

= 2 :/ I(I+l) (11) 

and the energy separation between interacting states, that is the splitting 

between components of the j-shell of interest. We need to be able to estimate 

this relationship easily, and thus need to extend our mathematical framework a 

little further. That will be the first objective of the present section. 

3.1. Calculations in Nuclei with Small Deformations 

In cases where the Coriolis effects are large, we must use eq. (4) 
' 

rather than the simplified eq. (6). There is some problem here, as the so 

called . 2 -t2 2 "reco1.l term", h /21 [ <J > -n ] , may already be empirically contained in 

the evaluations of H • However, the simple limiting solutions are not reached 
p 

if the recoil term is not explicitly taken into account, so that in this sec-

tion, at least, we will use the full eq. (4). 

It would be convenient to be able to evaluate H in a simple way. 
p 

This quantity can be expressed by giving the energy of the system as a function 

of n; that is, as a function of the orientation of j to the symmetry axis of 

the core. For a core with quadrupole deformation, the Nilsson calculations 

correspond to an evaluation of these energies as was mentioned (see fig. 2), but 

if the deformation, S, is not too large (i.e. if j is pure), then we can use 

the limiting approximation6): 
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(12) 

The numerical coefficient, 206/A1 / 3 , in eq. (12) gives reasonable agreement 

with the Nilsson, solutions for the h1112 and i
1312 

orbitals up to around 

S = 0.3, and a comparison of these two values for £Q is given in fig. 2. Since 

we consider only a single j-shell, the E0 (n~j) can be taken to be zero. 

Using eqs. (4), (7), (8), (9), and (12) we could diagonalize a given 

j-shell for any value of I; however, there are four parameters to be fixed: 

2 
h /2 , S, X, and b.. We can reduce these four parameters to two essential ones 

in the following way. There is a very general empirical relationship between 

h
2
/2J and S (as defined from the E2-transition lifetime) that essentially all 

even-even nuclei follow9). For the purpose of our survey we will use this 

relationship to eliminate one of these variables. This gives: 

MeV (13) 

We use S explicitly here only to interconnect h2/21 and £Q' and one could take 

the point of view that eqs. (12) and (13) just define an empirical relationship 

between these quantities. That is to say, if we pick a value for the splitting 

of a given j-shell according to eq. (12), then eq. (13) does nothing more for 

us than pick a value of h2j2j that a real nucleus with the selected value for 

the splitting would be likely to have. However, some deformation is implicitly 

required for eq. (2) or (4) to have any physical meaning and it may well be that 

this is a physically real parameter. Of the remaining parameters, ~ is not very 

important and we take it always to be 0.8 MeV; so that there remain just two 

parameters S and A. 
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We now have a simple set of equations that can be diagonalized for any 

values of I, S, and A. Before we look at some of the detailed solutions, let 

us considerthe,limiting cases of large and small values for S. For large 

S (~0.3), the Coriolis effects are relatively unimportant since h2;2rr is small 

(eq. (7)) and the different Q components are widely separated (eq. (12)). This 

results in the usual strong-coupling limit of pure rotational bands with good 

Q values. As we move toward smaller S, the Coriolis effects become more 

important and perturb this structure, mixing n values. This is the process we 

examined in section 2, and our model was shown to be reliable in this region. 

At the other limit, S ~ 0, h
2/21 is large and the Q separations are essentially 

zero, i.e. H. is a constant (eqs. (9) and (12)), and although the diagonaliza
P 

tion of eq. (4) appears complex, eq. (2) is now transparent, giving the result 

that the energies are just those due to the rotation of the core. It is, of 

course, true that the core of an odd-A nucleus is somewhat different from that 

of the adjacent even-even nucleus due to the blocked level, but we ignore that 

for the moment. In this limit there are states at each core energy having 

spin values that range from IR- Jl toR+ j, and R is a good quantum number. 

This is just the spherically symmetric limit, and was discussed by Vogel10 ). 

Near this limit, eq. (4) gives results identical to those of a weak-coupling 

. 11) ( ) model with apart from the pairing effects a pure quadrupole-quadrupole 

particle-core interaction. The relevant feature of such a model is that the 

core state is split into a multiplet centered on the core energy, but not 

otherwise dependent on that energy nor on any other property of the core. Thus 

even though the pure-rotational core energies given by eq. (4) are not realistic 

for this region, the splitting of the core levels will be reasonable, if the 

·~· I 

~ 
i 
i 
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real interaction is quadrupole-quadrupole (plus the pairing effects) and if 

our estimate of the effective quadrupole strength {eqs. (12) and (13)) is 

about right. Thus we will also examine eq. (4) in this region of small a-values, 

but we should at best only take seriously the positions of the various levels 

relative to the position of the related core state. 

We now want to examine the solutions to eq. (4) as a function of S and 

A. Our first objective will be to show that in the heavier elements a study 

of the interesting new physical situations really does not require any varia-

tion of A. The argument can be made with reference to fig. 2. For very large 

Coriolis effects, h2/21 must be large, which means S must be small (eq. (13)). 

However, once we are past the region of Sn, S is only small at the beginning 

or end of major shells. Ip the middle of major shells one finds regions of 

large deformation--the rare-earth and actinide regions. Since the unique-

parity high-j orbitals lie more or less in the middle of the major shell it 

follows that regions of very large Coriolis effects occur only if A is quite 

low or quite high in this orbital. When A is in the middle, the nuclei have 

large deformations, and the Coriolis effects are minor perturbations and 

already basically understood. Furthermore, it can be seen from fig. 2 and 

eq. (9) that for pure-j wave functions the regions of low and high A are 

identical if one just interchanges the prolate and the oblate side. This is 

not exactly true for the Nilsson solutions (solid lines), but is a rather 

good approximation in that case. Thus the interesting new situations can be 

studied using only a single value for A, and we have chosen a value corre-

spending to the bottom of fig. 2, -4.5 MeV. This is below the entire orbital 

for lSI < 0.3. For very high A values (top of fig. 2), we then only interchange 

the prolate and oblate sides. For comparison with particular cases, it is 
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clear one should use A values as close to reality as possible, but the present 

single choice will show all the new effects. Note that for our choice of A, 

low Q values, and hence large Coriolis effects, occur on the prolate side, and 

high Q values, with smaller Coriolis effects, on the oblate side. 

The solutions of eq. (4) for the h
1112 

orbital with A = -4.5 MeV 

(fig. 2) are shown in fig. 9. The ordinate here is the eigenvalue for spin, I, 

minus the lowest I = 11/2 eigenvalue, divided by E2+. Only the yrast levels 

(lowest energy for each I) are plotted except for the second lowest I = 11/2 

state. The spin sequence I= j, j + 2, j + 4, ••• has been darkened to help 

make these levels stand out. At S = 0, the degenerate solutions having the 

core energy values are apparent. A region of possible application for a weak

coupling model is seen between -0.1 < S < 0.1, where the splitting of the core 

multiplets is less than the core -energy separations. Outside this region such 

a model could not be expected to apply. On the oblate side, where the Coriolis 

effects are weak (due to th~ large separations b~tween Q components, eq. (12), 

and the small matrix elements, eq. (8)), a recognizable Q = 11/2 rotational 

band develops very quickly. The order of levels is correct all the way from 

B = 0, and by B= -0.15 the band spacings are becoming rather close to the 

rotational ones. This is clearly what should be expected, since the Q = 11/2 

level is nearest to A, and the Coriolis effects are weak on this side. 

On the prolate side the situation is more interesting. The Q = 1/2 

level is nearest to A over the range of B values plotted, so that the lowest 

levels are tending toward the energies for such a band. But the Coriolis 

effects are large on this side, and even at S= 0.3 the levels are rather far 

from those of an Q = 1/2 band. The outstanding feature on this side is the 
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coincidence of the energies;of the "favored yrast" states (I= j, j + 2, 

j + 4, ••• ) with those of the core states for essentially all S-values. Note 

that the separations between these levels are very small compared to what one 

would expect for any normal rotational band--as may be judged by those at the 

same S on the oblate side of fig. 9. These levels lie very low in energy for 
yrast 

their spin value; thus the name, favored. The favored/band of high-spin states 

is important because there seems to be experimental evidence accumulating that 

it occurs frequently in odd-A nuclei. In the next subsection we will examine 

the physical effect responsible for this behavior. A final comment about 

fig. 9: if j - 11/2 is added to all spin values, then it would apply approxi-

mately to any high j-shell. Thus the process we are interested in, is a very 

general one. 

3.2. The Physical Effect 

The physical picture for the oblate side of fig. 9 is rather simple. 

Here the Coriolis effects are weak and the particle follows the core rotational 

motion even for rather small values of S, and thus the usual strong-coupling 

description applies. At, or very near, the center of fig. 9, where S is very 

small, the particle does not feel the core rotational motion at all since the 

coupling to the deformation is small and the rotational frequency is large. 

This is exp~essed by the degeneracy of all the orientations of the particle 

·angular momentum relative to that of the core. In this region the rotational 

energies are very high (eq. (13)) and the model we are discussing is not likely 

to be applicable. A guess as to the limit for applicability of the present 

model might be something like lSI > 0.1 (E2+ < 1 MeV). The interesting region 



-20-

occurs on the prolate side of fig. 9 where the particle is neither completely 

decoupled from the rotation nor strongly coupled to it. We will be particularly 

interested in the favored yrast band on this ~ide because so far most of the 

experimental data available are for such levels. In order to make up the I 

value, these levels must have R nearly parallel to j and we saw in fig. 9 that 

they coincide with the core energies out to very large S values. These are the 

properties that seem to be important to understand. 

To demonstrate the physical effect involved for these states, we need 

only consider qualitatively a particle coupled to a rotating core. The princi-

pal influence of the rotation on this coupling can be expressed by introducing 

the Coriolis effects, and these depend essentially on the Coriolis force, pro-

-+ -+ -+ -t portional to R x j, where R and J are the core and particle angular momenta. 

-+. -+ But for those states where R ~s coupled almost parallel to j, achieving the 

maximum I, R X r is nearly zero. Thus the rotation has little effect on the 

coupling of the particle to the core for this orientation of the two, and.the 

energy changes of the system just reflect the core energy changes. This is the 

reason we refer to such a band of levels as rotation-particle decoupled, or 
or 

just "decciupled". We will use this name more/less interchangeably with "favored 

yrast"; however, the former name implies this interpretation, whereas the latter 

does not imply any particular interpretation. 

This argument can be illustrated using fig. 10, where we show a wheel 

(representing the high-j particle) on a turntable (a blurred-out rotating core 

where the axis of the core lies in the plane of the turntable). In fig. lOa 

the angular momenta of the two are perpendicular, producing a maximum Coriolis 

-+ -+ 
force (R x j). Thus the wheel (particle) "feels" the rotation of the turntable 

• I 
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(core). The resultant force is in a direction which tends to produce the con-

figuration in fig. lOb, where the two angular momenta are parallel and the 

Coriolis force on the wheel thus vanishes. In the orientation represented in 

fig. lOb, the wheel can no longer feel, or interact with, the rotation of the 

turntable. They are decoupled. 

Another illustration of this point is shown in fig. 11. In the upper 

portion the usual strong-coupling scheme is represented. Here j precesses 

around the nuclear symmetry ( z). axis with constant projection Q. A mixture of 

R values is required to construct a good total angular momentum, I. If this 

state lies lowest in energy it is because the energy advantage in the state 

Q is so great that R values larger than the minimum one can be afforded. There 

are really two coupling schemes represented in the lower part of fig. 11. In 

the first, R is a good quantum number of the system, and its direction is 

specified by the fact that it has zero projection on the symmetry axis. It is 

shown in fig. 11 as being parallel with the rotational axis (or x-axis) which 

is similar (especially at high spin values). This scheme corresponds to the 

spherical limit, which wasdiscussed in some detail above, and requires a 

mixture of Q values, as indicated. The third scheme is a very interesting one 

and corresponds to sharp projections of j on the rotational axis. The decoupled 

states are the ones where this projection is a maximum, 11/2 for the h
1112 

orbital we have been discussing. Mottelson12
) has pointed out that this is a 

simple coupling scheme which might apply to all the levels at moderately large 

rotational frequencies. Infact, around f3 = +0.2 on fig. 9, the solutions to 

eq. ( 4) do correspond to this coupling scheme with remarkable accuracy. For 

example, at f3 = 0.2 the lowest I = 11/2 solution "contains" (square of the 
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of the overlap integral) 98% of the state having a projection of 11/2 on the 

rotation axis; whereas it contains only 46% of the R = 0 state and 55% of the 

Q = 1/2 state. Thus, it is mueh the best represented in the first of these 

three coupling schemes. The present scheme and the one with sharp R values 

are similar, and become virtually identical for large spin values, but the 

solutions to eq. (4) around S = +0.2 on fig. 9 clearly correspond much more 

accurately with the present scheme. Both schemes give very nearly the R(R+l) 

relative energy spacings of the core for the favored yrast states, and this 

can perhaps help explain the very flat behavior with energy of these states in 

this region of deformation. 

3.3. Odd-A La Nuclei 

Gamma-ray studies13 ) on the light odd-A La nuclei following Sn(
14

N,3n)La 

reactions revealed a cascade of stretched E2 transitions, in each La nucleus, 

having energies very close to the values for the Ba nuclei with one less proton. 

Studies of the Ba( 4He,t)La reaction14 ) indicated that this cascade was based 

on an 11/2 state. Fig. 12 shows the energies of these cascades compared with 

the even-even Ba nuclei. The correspondence is remarkable, and provided the 

main incentive for studying eq. (4) at lowS values15 ). If one used the even-

even Ce nuclei for comparison instead of the Ba ones, the correspondence would 

be rather similar, as the even-even energies are not changing very rapidly with 

proton number in this region. It has been suggested15 ) that these states com-

prise the decoupled band based on the h
1112 

orbital. Unfortunately there is 

no information on the location of the other negative parity states in the La 

nuclei. 

fi 
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Qualitative evidence on the spectroscopic factors from the ( 4He,t) 

reaction tends to support this interpretation. In the deformed coupling scheme, 

transfer of a particle from the ground state of an even-even nucleus to an 

odd-A one populates states with R = 0. Normally the R = 0 state is distributed 

equally over the (2j+l)/2 component bands of a j-orbital. However the Coriolis 

mixing, which we are discussing, builds up the R = 0 amplitude in the lowest 

I = j state, until it is a pure R = 0 state at the spherical limit. This 

behavior is consistent with the observed spectroscopic factors in the La nuclei, 

but a quantitative analysis of the data has not yet been made. 

In fig. 13 the results of a calculation are shown which look very much 

like those shown in the prolate portion of fig. 9. Actually, in fig. 13 the 

Fermi surface is kept exactly at the n = 1/2 level at all deformations. This 

is about 2.5 MeV different from fig. 9 at 8~ 0.2, and just shows the insensi-

tivity of the results to the exact location of the Fermi surface, provided it 

is below the entire orbital. In the La nuclei, A is probably somewhere between 

these two values. If 8 is fixed at 0.25, fig. 14 shows the effect of varying 

A. The relative spacings of the favored yrast states are not very much affected 

until A gets up to about the Q = 5/2 level, then they begin to rise sharply 

toward their rotational values. Only when A reaches the 9/2 level or above, do 

the spectra have reasonably good rotational bands for this S value. 

3.4. The Au Region 

Before discussing the nuclei in the Au region, .we should add one more 

aspect to our mathematical framework. One of the serious drawbacks of eq. (2) 

is that the core spacings are always those of a rigid rotor, i.e. they follow 
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eq. (11). It is easy to relax that requirement somewhat if we use instead of 

eq. (2): 

' 
(14) 

where B and C can be varied to give approximate fits to the relevant even-

even nuclei. Small effects due to such things as centrifugal stretching, and 

perhaps quadrupole vibrations of the core can be included in this way. Although 

more complex mathematically, eq. (14) can be diagonalized in just the same way 

as eq. (2). 

For the nuclei in the Au region, we will fix S and A in a particular 

case, so that there remain no adjustable parameters. We fix S by averaging the 

value for the two adjacent even-even nuclei. For this value of S, A is fixed 

at or near the level corresponding to the correct number of particles according 

to the Nilsson diagram. Thus for each odd-A case we calculate two spectra, 

corresponding to either a prolate or an oblate shape for the nucleus. Within 

the framework of our model, these are unique predictions for each case. 

We will now discuss briefly our conclusions about this region of the 

periodic table. We will first consider the h
912 

and h
1112 

proton orbitals. 

A portion of the Nilsson diagram for protons is shown in fig. l5, which con-

tains particularly these orbitals. The Tl and Au nuclei have A values around 

3 or 4 MeV on this figure, and this lies completely below the h
912 

orbital for 

lSI < 0.2. Thus the situation described in constructing fig. 9 is applicable, 

and we need only change J from 11/2 to 9/2. The calculation for the correct J 

and A is shown in fig. 16. The similarity to fig. 9 is apparent. For the Tl 

nuclei we use a IBI value of 0.11, which is taken from the Hg nuclei. Since 

i 
. i 
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the odd proton is, in this case, lifted out of the 50-82 shell, we have not 

averaged the Pb and Hg values. One set of dots in fig. 16 shows the location 

of the levels of 199Tl, taken as representative of the lighter Tl isotopes and 

normalized to the lowest I = j calculated level. The rotational-bandlike char

acter of these levels has previously16) been noted, and, according to fig. 16, 

immediately requires an oblate shape for these states. This, also, was previously 

proposed. The calculated energy spacings are considerably wider than those 

observed, but this is largely corrected if one diagonalizes eq. (14), dashed 

lines in fig. 14, instead of eq. (2), with Band C adjusted to approximate the 

198 lowest few Hg levels. A more detailed comparison of these levels is shown 

in fig. 17. It seems that the prediction of: (a) rotational bands in Tl 

nuclei; (b) the approximate h 2/21 value of these bands; and (c) the sign and 

rough magnitude of the deviations from a purely rotational spectrum, are rather 

convincing for a calculation with no adjustable parameters. To show that our 

calculations go over into the region of large deformation in reasonable fashion, 

we have also indicated in fig. 16 the predictions for 179Re, where S is taken 

180 178' . 17 
from W and .. Os, together WJ. th the observed states · ) • A lower A.-value 

should be used for Re, but this would make very little difference here. Again 

the order of levels is correct, as is the approximate spacing of these levels. 

In this case the prolate shape requires a spectrum between the decoupled type 

and one having n = 1/2. Our interpretation of these levels is consistent with 

that previously made17). 

The situation for the h
1112 

orbital is shown in fig. 18, and is quite 

similar to that of fig. 9, except that the oblate and prolate sides are reversed. 

This reversal is seen in fig. 15 to be a result of the fact that A. is now above 
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the h
1112 

orbital rather than below it. The predicted position of 195Au is 

196 194 
indicated, with S taken from Hg and Pt, and the experimental points are 

again shown as dots
18

). In this case an oblate shape is clearly indicated by 

the decoupled-type Au spectrum. Again the order of levels and spacings are 

surprisingly well given, and are improved somewhat by the use of eq. (14), as 

the more detailed comparison of fig. 19 shows. However, the reversal of the 

of the I = 13/2 and 9/2 states does not come about easily, as far as we can see, 

for purely oblate shapes. Since /.. is not entirely above the h
1

·
112 

orbital at 

S ~ 0.2, we readjusted it for 179Re as shown in the lower portion of fig. 18; 

however the differences are really not very large. The previously identified 

~ = 9/2 band in 179Re is shown to be in rather good agreement with the calcula-

tions for a prolate shape, although the moment of inertia of the band is 

underestimated. This is not surprising since it always happens for these high-j 

orbitals in well-deformed nuclei if the Coriolis strength is not reduced some-

what compared with the ~priori estimates. 

19 Our recent experimental results ) on the high-spin states inthe odd-A 

Hg nuclei also seem to indicate the presence of decoupled bands. A series of 

two or three stretched E2 transitions were observed in lB9,l9 5,l97 ,l99Hg whose 

energies approximated those of the adjacent even-even nuclei. In some cases 

it could be shown that these cascades terminated in the well-known i
1312 

isomers. 

This is precisely what one would expect from the i
1312 

orbital around S = 0.1 

according to the present calculations. Thus in Tl, Hg, and Au, the high-j 

orbitals seem consistently to occur with oblate shapes, having either the 

decoupled or near-rotational type of spectra. 

• I 

i 
I 
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3. 5 • Summary 

It seems to us that the model of a particle coupled to a non-spherical 

rotational core works very well for the high-j orbitals in the region just 

below lead and also in the La region. Most of the data are on the favored 

yrast states, but some data exist on lower spin states. It is not very clear 

at present just what this agreement means. Three possibilities occur to us: 

(1) the least general would be that the picture is valid only for states of the 

naximum I, that is for the high-spin yrast states which are generally the ones 

observed experimentally; (2) it might be that out of some more general model there 

does emerge a set of core states that look like rotational states and 

couple as we describe, but other core states would also be present giving rise 

to additional states beyond those we calculate; and (3) the rotational core 

states may be the only low-lying ones and thus, for the high-j orbitals, our 

calculations are both valid (approximately) and complete. The lower-spin states 

in Au suggest that perhaps more than (1) is true, but much work remains to 

decide just where the truth lies~For lower-j orbitals the situation is even 

less clear. Extensive calculations have been made by Malik and Scholz20 ) in the 

mass region, A = 25-80. The results of such attempts are generally encouraging 

although the data were nowhere sufficient to provide an altogether convincing 

picture. The high..,;spin yrast states have not been studied there, and so far 

they are the only ones for which there is extensive data that support the model 

in a very specific way. 

Even within the model there are a number of approximations. It is 

fairly easy to show that some, such as the assumption of pure j-values are 

not serious. The three that seem to us most likely to be serious are: 
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(a) the use of a perfect rotor Hamiltonian for the core (eq. (14) represents 

only a very limited attempt to relax this); (b) the neglect of the effect of 

the odd particle on the core parameters; and (c) the restriction of the core 

to axially symmetric shapes. We cannot estimate very specifically how serious 

any of these are likely to be. Thus, the model we discuss seems to have some 

very promising aspects, but much work remains to be done; first to understand 

the model more completely, and second to understand the limits of its appli

cability to nuclei in the region of small deformations. 
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4. Coriolis Effects in Even-Even Nuclei 

There are some indications that the Coriolis effects in the high-j 

orbitals also play an important role in the high spin states o.f even-even 

nuclei. It is not difficult to see that this might be the case. If one con-

siders the question of which two-quasi particle (2qp) states of an even-even 

uucleus are likely to lie lowest in energy at spin 20, then the maximum Coriolis 

energy given by eq. (1) becomes an important factor. If both particles are in 

a high-j orbital, then eq. (1) applies, approximately, for each particle, and 

a total eriergy lowering of 5 MeV is reasonable to expect for i
1312 

particles, 

It seems clear that such an energymight be decisive in establishing these 

states as the ones that are systematically lowest at such spin values. Later 

in this section we will try to show in some detail why an understanding of the 

lowest 2qp states may be important for these spin values. It is clear that we 

do not yet fully understand the yrast states in even-even nuclei around spin 20; 

however, the present discussion, supported by detailed calculations, suggests 

that they could well be strongly influenced by Coriolis effects. 

The present section will be divided into three parts. First I will 

summarize the experimental data bearing on high-spin states in even-even nuclei. 

Second, I will try to show, using odd-A nuclei in the Er region, that a high-j 

particle in this region would tend to be largely decoupled at the spin values 

Jrrvulved. Finally, I will discuss the results of our two-particle Coriolis 

calculations and compare them with some other interpretations. 

l1 .1. Experimental Data and Interpretation 

Of the two types of data bearing on the question of very high spin states 

in even-even nuclei, the older one has to do with the de;...excitation cascade in 
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product nuclei folloMing heavy-ion compound-nucleus (HI,xn) reactions. This informa-

tion has recently been summarized and some of its implications about the nature 

of such high-spin states discussed21 ). The gamma-r~y spectra from these product 

nuclel almost invariably consist of a set of discrete lines on a continuous 

background. In rotational and vibrational nuclei the lines correspond to the 

t transitions in the ground-state collective band (gsb) , and represent the last 

steps of the de-excitation. Thus the gamma-ray transitions between the high-

spin states are in the continuous background. Up to now very few direct studies 

of this continuum have been made, so that the information about the high-spin 

states is based on observations of the transitions between lower-spin states-

i.e., the discrete lines. The following points, made in ref. ~1 A,are relevant 

to the present discussion: a) the maximum spin observed in the gsb ranges from 

around 16 for rotors to around 6 for vibrators, and this maximum is character-

istic of the particular nucleus (not of the reaction); b) however, when heavy 

ions are used to produce the compound nucleus (bringing in high angular momentum) 

then the gsb is fed mostly at or near the highest observed level, whereas with 

light projectiles the feeding pattern is related to the distribution of angular 

momentum brought in by the projectile; c) the mean time interval between the 

reaction and population of the gsb in rotational nuclei is very short, < 10 psec; 

and d) very high-spin isomers--I 5 20 h--have never been observed. It should 

be emphasized that these are features observed in (especially) rotational and 

vibrational nuclei, and would not apply, without modification or qualification, 

to closed-shell or near-closed-shell nuclei. 

tThe gsb refers to the collective band based on the ground-state configuration 

of a particular nucleus. For the even-even nuclei considered here, this is a 

completely paired configuration--zero quasi-particles~-, and the levels of this 

band are the yrast levels at low spin values. 
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To understand these four points, the de-excitation was described in 

21 
ref. ) as consisting of three cascades, whose existence had been previously 

22 
proposed by Grover ) based on numerical studies of the process.· These are schem-

atically indicated in fig. 20. Since the initial energy (20 MeV) and level den~ 

sity are high, a statistical cascade (I) consisting mainly of high-energy dipole 

transitions is expected to occur first. This carries off around half the excit-

ation energy but very little angular momentum and is terminated by coming into 

a region where the level density is no longer high. This region is located just 

above the yrast level and would be ~ 10 MeV for I ~ 35 in the above example. At 

this point the cascade is forced to begin carrying off angular ~omentum and 

follows, more or less closely, the yrast levels down in spin. This is called 

the yrast cascade (II). At some spin the yrast levels become those of the gsb 

and an energy gap develops between these levels and others of the same spin. 

At this point the population shifts rather suddenly into the gsb through which 

it cascades (III) to the ground state. fig. 20, which is taken from ref. 21 ), 

shows the essential features of these three cascades. For lighter projectiles, 

where less angular momentum is brought in, the length of the yrast cascade short

until it is essentially absent in reactions induced by 4He. ens, 

Two interesting conclusions were drawn in re·f. 21 ) about this de-exci ta-

tion. First, the very short feeding times and absence of isomeric states with 

high spin indicate that energies in the high-spin yrast region must be very 

smooth and the transitions between these levels must be enhanced over the 

single-particle value if they are E2. (Other choices for the predominant 

multipolarity turn out to be much more difficult to explain.) Furthermore, 

to avoid the generation of discrete lines in this region, the population must 

be spread over several (> 5) levels. It was suggeste~1 ) that the presence 
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of rotational bands admixed by the strong Coriolis force present at these high 

23) . spins might produce such features. Mottelson has po1nted out that the spec-

trum of an asymmetric rotor is a particularly simple one fulfilling these 

requirements of the yrast cascade, but a model for the de-excitation based on 

21) this suggestion has not been published. The second conclusion of ref. was 

that the feeding point of the gsb was near its intersection with other levels. 

No other way could be found to explain the population patterns. This inter-

section implies a major change in the nature of the yrast levels above this 

spin value. 

Very recently A. Johnson et a1~4 ) have found some irregularities in 

the rotational energy spacings of rare-earth nuclei just in the region of spin 

where they are populated heavily in these (HI,xn) reactions. These are shown 

in .fig. 21, where the moment of inertia for several rare-earth nuclei is plotted 

against the square of the rotational frequency. The irregularity, called back-

bending or S-shapes, is apparent. This seems to be a fairly general behavior 

in this region of the periodic table, and it lends very strong support to the 

previous proposal that a major change is occurring in the yrast levels near this 

point. Johnson et al. suggest that this change is due to the phase transition 

associated with the loss of pairing correlations predicted by Mottelson and 

25) 
Valatin to occur at around this spin value. I would like to point 

out that a simple, very general interpretation of this behavior is that the 

ground band is intersecting some other level or levels. This interpretation 

probably can be equivalent to that of Mottelson and Valatin if 

the band inte1·sected is one with no pairing correlations. Since this point is 

an important one for the present arguments, I will discuss it briefly. 
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In the general case where the ground band intersects another band, 

the features of the rotational spacings can be reasonably well characterized. 

Fig. 22 shows the simplified situation of two bands with constant--but different--

moments of inertia around their intersection point at I (16 in this case). c 

We want to follow the lowest band, and if there is no interaction between the 

bands we simply change suddenly from one to the other at I • When plotted as c 
"+. 2 
~ ~· w , this makes a discontinuity as shown by the dashed line in Fig. 23. 

This discontinuity causes lower values of w
2 

above Ic if~~~ > (Ic + 2)/Ic. 

This might generally be the case around I = 20 since (I + 2 )/I is then only 
c c 

As an interaction is introduced between the bands, the discontinuity is 

l"O<mJed, first into an S-shaped curve like A in Fig. 23, and then with increasing 

interaction, like Band finally C. This range covers the observed behaviors, 

those of Johnson et al.·being of the S-shaped variety (A orB in Fig. 23), where-

as most previously measured ones appear to be more like C. Thus, for intersecting 

bands, the occurrence of S-shaped curves depends on two factors: (1) the 

difference between the effective moments of inertia of the two bands at their 

intersection point, which determines the transition to be made,and (2) the 

strength of the interaction between the bands which determines how sharply this 

transition is made. 

To summarize, the above di~cussion shows that there is good evidence 

for a major change in the nature of the yrast levels of rare-earth nuclei 

somewhat below I = 20, and furthermore, that at higher spin values a new very 

regular structure develops. Both types of information on these high spin levels 

have been shown to be consistent with an intersection of the ground band with 

another band (or bands). The interesting physics is in what kind of a band is 
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intersecting the ground band, and so far two different answers have been given. 

~~'he Mottelson-Valatin argument would suggest that a band with no pairing correla-

26 tions is the one lying lowest·after this intersection. We have suggested ) 

that the intersecting band may be a 2qp band composed of particles in high-j 

orbitals (due to the enormous Coriolis energies available to these bands at 

such high spin values). In the next subsection I will try to show that in the 

Er region, at the spin values where these S-shaped curves are observed, it is 

reasonable tosuppose that particles in the i
1312 

orbital would be decoupled. 

He: will then go on in section 4.3 to see what such decoupling means in an even-

4.2. Decoupling in the Er Region 

The decoupled state, described in section 3, is one where the particle 

angular momentum, j, is parallel to the core angular momentum, R. In this 

situation there is no Coriolis coupling between the particle and the core. Thus, 

if a core is rotated at different frequencies, the energy changes of the system 

are just the differences in core rotational energy. That is, the energy spacings 

of the decoupled system are just those of the related even-even core. We saw 

this behavior in the odd-A La, Au, and Hg nuclei in section 3. We now want to 

examine the odd-A Er nuclei to see the kind of behavior to be expected in that 

region. 

The high-j orbital involved inthe odd-A Er nuclei is the i
1312 

neutron 

orbital. Fig;. 24 shows the rotational energies, in units of h2 /21, expected in 

bands based on this orbital for the strongly-coupled and the decoupled schemes. 

On the left is the usual rotational-band picture with the correct relative 

.• 
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(~nergies. If D is less than 13/2, then there will be levels lower than the 

one shown at I = 13/2, but the relative energies of the levels shown is in de-

pendent of that. The I = 17/2 to I = 13/2 energy difference is 
h2 

32~. On the 

right side of fig. 24 are shown the favored yrast levels of the decoupled 

scheme. Here the I = 17/2 to I = 13/2 energy difference is just the even-even 
h2 

l = 2 to I = 0 energy difference, namely 6 21 o Thus,· it is easy to see that 

a measure of this particular energy difference, relative to that of the adjacent 

vv1:n-even nuelei, gives a very simple and direct measure of how decoupled the 

i 1312 particle is. 

In fig. 25 I have made a plot of the 17/2- 13/2 energy difference 

divided by E2+ (as defined to be the average of the two adjacent even-even 

nuclei) as a function of neutron number for nuclei in the region of erbium. 

The coupled and the decoupled limits, discussed above, are shown, and the solid 

points represent the known nuclei. It is apparent that on the right side of 

fig. 25 the points are about midway between the two limits; whereas, on the 

left side the nuclei are essentially completely decoupled. Tentative data on 

155 . 0 do t th t ot t 0 t th d 1 d 1° ot f th 0 Er' 1n 1ca es a 1 , oo, 1s a e ecoup e 1m1 or ese sp1ns. The 

open points show the effect of going to higher spin values in the Er nuclei. 

The second highest point represents (E2112 - E1712 )/(E4+ - E2+), and so on 

157 (except in the case of Er, where the order is inverted). At higher spin 

values the points are clearly nearer the decoupled limit; so that, by the time 

one is four units of spin above the minimum, all the Er nuclei are within 20% 

of the decoupled limit. I should point out that the coupled limit on fig. 25 

moves down as the spins increase, so that the approach to the decoupled line 

is not quite so impressive as it appears on the figure. Nevertheless, the 
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three heavier Er nuclei move down rather strongly at the higher spins even if 

one plots as a percentage of the difference between the limits. It is clear 

why the higher spin values and/or the lighter Er nuclei approach the decoupled 

limit. 
2 

Eq. (1) shows that the Coriolis effects go up with both spin and h /~. 

2 H The increase :l.n h /2..; is rather sharp as one moves toward lower neutron number 

in this reGion. 

The relevance of this discussion to the even-even nuclei is as follows. 

It is possible to show, in lowest order, that if you couple two high-j parti-

cles to their maximum J, (2j - 1) then the degree of decoupling of the two. 

particles at spin I = J should be similar to that of one particle at spin, 

I = j. This would say that in a 2qp state, based on i
1312 

particles, with 

I = J = 12, we might expect the amount of decoupling indicated for the solid 

points in fig. 25; that is, they should be decoupled around N ~ 90, but inter-

mediate at N ~ 98" However, going a few units of spin higher than 12 should 

produce essentially complete decoupling for all the nuclei in this region. 

This simple and direct evidence enables us to make predictions about the energy 

of the 2qp states which are independent of the detailed calculations we would 

otherwise have to use. (Note, however, that the calculations describe these 

odd-A Er nuclei rather well, fig. 7o) The calculations have been done for the 

· .- 26 ) d · th lt th t b I even-even cases , an g1ve e same resu -- a y = 16 or so all these 

cases should be essentially decoupled--but'I believe that fig. 25 is perhaps a 

more convincing argument for this. We now want to see just what this means for 

an even-even nucleus. 
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4.3. The Even-Even Nuclei 

In fig. 26 I have drawn simple estimates for the energies of three 

bands in an even-even nucleus. The solid line is the ground-state band with a 

constant value of h
2
/2j of 15 keV. The dashed line is the estimated curve for 

the decoupled case. Here I have estimated that it takes 1.5 MeV to remove a 

pair of i
1312 

particles from the pairing correlations. Then it takes some 

additional recoil energy (eq. (4), see also section 3.1) to decouple the parti-

cles. This can be estimated to be about 1 MeV. Thus by expending about 2.5 MeV 

we have two i
1312 

particles that can be oriented in any direction to give any 

spin value up to I = 12 without further expenditure of energy. This is indi-

cated by the flat portion of the dashed line in fig. 26 out to I = 12. Beyond 

I = 12 additional angular momentum can be added by rotating the core with 

angular momentum, 2h, 4h, etc., and I have taken the ground-band value of h2
j2j 

to extend the decoupled curve in this region. On this naive picture it can be 

seen that the ground band intersects the decoupled band around I= 12, and we. 

have proposed that this is the intersection the experimental data have indicated. 

A failure of the decoupled band to decouple completely will raise that curve 

in fig. 26, and produce an intersection at higher spin values, in better agree-

ment with the data. The dotted curve in fig. 26 represents the Mottelson-

Valatin case. Here I assumed 2.5 MeV was required to destroy all the pairing 

correlations in the nucleus, and then rotation could occur with the rigid body 

moment of inertia-- ""7 keV. This line also intersects the ground band and 

could produce the experimental intersection. Fig. 26 is quite schematic and 

certainly one should not try to estimate from it which intersection occurs at 

lower I values. In fact, probably neither of these two upper bands exist at 

low spin values as a discrete band. Nevertheless, fig. 26 can give an overall 

impression of the situation I will be discussing. 
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I will describe briefly the mathematics used in the even-even case so 

that one has some idea of what is involved. In fig. 27 the coupling scheme is 

indicated, where two particles with angular momentum, j, couple to a total J, 

which then couples with R to give I. The projections of the two j values on 

the symmetry axis are labeled n
1 

. and n2 • Fig. 28 shows the lowest few i
1312 

component levels, in a situation where A is between the 3/2 and 5/2 components. 

The left side shows the main configuration of the even-even ground state, and 

the right side shows a 2qp state of the type we are discussing. This state has 

K = 1, and is connected to the ground state by a large Coriolis matrix element 

-. ::e ::.":;:e we have discussed. If we consider only the lowest three levels in 

fig. 28, n = 1/2, 3/2, and 5/2, and generate all the 2qp states possible, then 

the resulting spectrum is shown in fig. 29. The Fermi surface was assumed to 

be between the f2 = 3/2 and 5/2 states in this figure. All the non-zero Coriolis 

matrix elements have been shown as lines between the connected states. One sees 

that with only three f2 values a complicated pattern develops. However, this 

system can be diagonalized in just the previous way; and, in fact, the full 

i
1312 

orbital has beeh studied
26

), including all possible (49) 2qp states. Also 

the lowest 4 f2-levels have been used to construct all possible 2qp and 4qp 

states, and this system was also studied; so that, we have a reasonable idea 

what to expect from the calculations in these even-even cases. It should per-

-+ -+ 
haps be noted that eq. (4) applies to such a system if J is substituted for j, 

and one needs only the additional relationship: 

-+ -+ -+ 
J = j(l) + j(2) (15) 

The reliability of these 2qp calculations is not expected to be much worse than 

that of the one-particle case (section 2). 
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The lowest two solutions of the even-even case (with the Fermi surface 

located as in fig. 28) are shown in fig. 30 for three different S values: 

B = 0.3, solid lines; B = 0.2, dashed lines; and S = 0.1, dotted lines. The 

B = 0.1 case should not be taken too seriously, since the model is not so 

likely to apply here, but it was included to show the trends. In all three 

cases the 2qp (largely decoupled) band starts out around 2.5 MeV, is rather 

flat out to I ~ 12, and then goes up with about the ground-band h 2 /2:1 value. 

In all cases it crosses the ground band; however, for the S = 0.3 case the 

crossing is very smooth, and not so apparent since the levels repel each other 

and do not get closer together than about l MeV. Nevertheless, plotted on an 
. 2 :J ~ w plot, the ground-band line in fig. 30 does have a typical "kink" in 

ic; (not quite an S-shape). The earlier intersections in the S =0.2 and 0.1 

cases are caused mainly by the wider ground-band spacings which are just due 

2 
to the larger h /2~ value used. One sees that the kink, which was not even 

visible for S = 0.3, becomes very large for S = 0.2, and pathological (though 

probably not at all reliable) for S = 0.1. The numbers on fig. 30 are the cal-

culated total populations passing through each state. These are obtained from 

the (collective) B(E2) values and energies obtained from the calculations, where 

equal initial population was assumed in all (50) levels at I = 30. The cal-

culated populations look very much like the experimental ones, in general. The 

feeding in all cases comes in around the intersection point. The reason for 

this is easy to understand, and will be discussed briefly, since it is a simple 

and very general argument. 

In fig. 31, we indicate the lowest few solutions from the matrix diagon-

alization for spin I, and label them m = 1, 2, etc., according to energy. The 



-40-

same is done for spin I + 2, with n as the labeling index. The Coriolis inter-

action varies slowly with I, for large I, so. that the main difference between 

the matrices for I and I + 2 is that the initial energies of each state differs 

by the rotational energy--as in eq. (4) or (6). Thus the main difference in the 

solutions will be this difference of a rotational energy, which is quite smooth 

with I. To higher order, if the interaction is increasing with I--the Coriolis 

interaction is approximately linear with I--then in the energy region of interest 

the I + 2 states will be lowered with respect to the I states, and the mixed 

band will be compressed in energy over the input bands. Since the difference 

between the I and I + 2 matrices is small, the lowest solution from I will have 

a wave function similar to that of the lowest solution of I + 2, etc. 

We now consider the B(E2) values between the states indicated in fig. 31. 

The wave functions for a given solution, IIM,m), can be written: 

IIM,m) =L 
K 

(16) 

where the ~(I) are the calculated amplitudes, cf>K signifies a particular input 

configuration--Oqp or 2qp in our cases--and the .AJ~ is the usual rotational 

wave function. The B(E2) value between two such states can be written: 

B(E2;I + 2,n + I,m) = L I< IM' ,miM(E2;~.t) II + 2 M,n > 1
2 

llM' 
(17) 

where M(E2,ll) is the usual E2 operator. In evaluating eq. (17) it is clear 

that the B(E2) values between components cf>K and cf>K' are of single particle 

strength or smaller unless K = K', in which case they are the enhanced rota-

tional values, Keeping only the enhanced terms gives: 

B(E2;I+2,n + I,m) = 1giT Q~ [~(I+2 K 2 OII+2 2 I K >ai(I) a~(I+2)] 2 
(18) 

For large I the above Clebsch-Gordan coefficients are virtually independent of 
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K, and approach the limit, /:3.nj. Eq. (18) can then be written: 

3•5 B(E2; I+2,n + I,m } ~ 8•167T 

The remaining summation in eq. (19) looks like the one occurring in an 

orthogonality integral, which would be written: 

L ~(I) ~I (I) = 
K 

0 m,m' 

(19) 

( 20) 

Since we have argued above that the states n look much like the states m for 

n = m, it follows from eqs. (19) and (20) that 

B(E2; I+2,n + I,m} ~ 1~§7T Q~ om,n (21) 

that is, the transitions having solid lines in fig. 31 have the full rotational 

strength, and those with dashed lines vanish. It is easy to see that transi-

tions of the type I+2,n + I+2,n 1 also vanish, since in this approximation the 

Clebsch-Gordan coefficient again factors out and the sum in eq. (19) now really 

is the orthogonality integral. These are precisely the selection rules needed 

in section 4.1 to bring the population down in spin very quickly, but keep it 

spread over several bands. The population then feeds rather sharply into the 

ground band at a critical spin value. The reason for this is that the ground 

band intersects the 2qp bands rather sharply near this spin value and the assump-

tion that the matrices look nearly the same for adjacent spin values is then 

not valid, particularly relative to the ground band. Thus, at the point where 

the ground band intersects other bands, not only does the developing energy gap 

(with decreasing I) favor population of the ground band, but the B(E2) values 

for this population also peak in just tbis region. This seems to provide a 
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very general explanation for rapid population of the ground band near this 

point, in accordance with the observations. 

To show that the present calculations can really fit the detailed 

rotational-band spacings, I have compared in fig. 32 a calculation with the 

158 27 data on Dy taken by Tieberger et al. ). There is one parameter in the 

calculation. It was made at a tiine when we did not include the recoil term in 

the diagonalization, in which case the Coriolis effects turn out to be too 

strong. Thus for the calculation shown in fig. 32 all Coriolis matrix elements 

were reduced by a factor of 0.7, which was adjusted to give the kink at about 

the right place. Inclusion of the recoil term has very much the same effect, 

with no parameter involved. The agreement in fig. 32 seems excellent, and 

could be easily improved by varying slightly some of the other numbers going 

into the calculation. The slope on the experimental curve at very low spin 

values is probably a feature that does not come naturally out of such a model. 

It is, perhaps, the effect of the rotation on the moment of inertia--the so-

called Coriolis anti-pairing effect. But at higher spin values, around ·the 

kink, the present calculations can account very well for the behavior. 

It is easy to make predictions using this model, since the calculations 

are rather.simple. Two expected trends will be discussed. First, the Coriolis 

effects are very sensitive to A for reasons discussed in section 2. They are 

large for low A values, and small for high A values. Fig. 33 shows the results 

of diagonalizingihe even-even case for various A values, keeping everything 

else fixed. One sees fairly violent behavior (S-shapes) for low A values, 

moderate behavior (kinks) for intermediate A values, and quite smooth behavior 

for high A values. There is some hint that this trend may occur in the 
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experimental data, but much more data on heavy Yb, Hf, and W nuclei are needed 

to test this. 
2 . 

Another prediction we can make is that when h /2~ becomes larger 

and A is low the S-shapes can become quite large (see fig. 33), resulting in 

apparent moments of inertia that temporarily exceed the rigid body value. 

This kind of behavior seems unlikely on a pairing-collapse model. Thus data on 

still lighter Er and Dy nuclei might serve to distinguish between these models. 

4 • 4 • Summary 

It seems that this model, which takes into account Coriolis effects in 

the 2qp states, can account very nicely for the experimental data existing in 

the light rare-earth even-even nuclei. This includes data on both the heavy-

ion feeding and the detailed rotational spacings. The agreement seems so close 

that one can perhaps make an even stronger statement of the situation, as 

follows. If the events occurring around I = 16 in these even-even nuclei are 

not due to Coriolis effects, then one must assume that something has seriously 

weakened the Coriolis force; because all the simple calculations and expecta-

tions from the odd-A nuclei suggest th~t rather large Coriolis effects should 

be present. This statement is not quite so strong as it might sound, since 

there are some reductions of the Coriolis matrix elements in odd-A nuclei that 

are not yet really understood. If these reductions should become much larger 

in the even-even nuclei, then the effects I have described would only occur at 

higher spin values. However, at.the present time.it seems most likely to us 

that the observed features are these Coriolis effects. 
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5. Conclusion 

We have traced the Coriolis effects in nuclei from the point where 

they are small perturbations in good rotational spectra, to the point where 

they apparently dominate the low-energy spectrum. The situation for a par

ticular case depends on the relationship of the rotational energy to the energy 

coupling the particle to the non-spherical part of the potential. If the 

latter energy is much larger, good rotational spectra exist, whereas if it 

vanishes the system is spherically symmetric with no energy splitting of the 

::~...:.2.-:::.plets formed by coupling a particle to a core state. With the assumptions 

and simplifications made in sections 2 and 3, it is easy to make calculations 

anywhere between these limits. Adjacent to each limi.t, one finds regions where 

a perturbation treatment could apply. This would be a particle-core weak 

coupling model near the spherical limit, and a Coriolis perturbation approach 

near the good rotational region. If the Fermi surface is near high-Q levels, 

then the two perturbation regions merge into each other, and one changes rather 

quickly from a spherical region into one of reasonably good rotors. But if the 

Fermi surface is near low:...n states then the Coriolis effects are large, and 

t:1ere is a broad region where neither of these schemes is very good. In this 

!·egion another coupling scheme applies where the particle angular momentum has 

sharp values along the rotational axis (or x-axis). In this case the lowest

lying states of a given spin have the particle angular momentum parallel to this 

axis, resulting in the so-called decoupled levels. These levels are easily 

recognized by the fact that their energy spacings are just equal to those of 

the even-even core, and it appears that levels with this property occur rather 

commonly in heavy odd-A nuclei. It may also be that such configurations are 
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involved in the yrast states in even-even nuclei at very high spin values. 

Much remains to be learned about this kind of calculation and how it applies 

to nuclei, but at present this approach looks quite promising. 
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Figure Captions 

Fig. l. Th 
18~ t .. b d t t b . e -w ro at1onal an s as rea ed y Kerman. 

Fig. 2. The solid lines are the Nilsson solutions for the h1112 orbital 

(p = 0.70) as a function of deformation. The dashed lines are the energies 

given by eq. (12). The vertical line marks B = +0.275, and its inter-

sections with the Nilsson lines represent the energies of the various com-

ponent levels at that deformation. 

Fig.i 3. The j 1512 bands in 235u (as calculated from eqso (6) and (9)) prior 

to the Coriolis diagonalization. The matrix elements of the operator j± 

as calculated from the Nilsson wave functions are also shown. Only a few 

rotational levels of each band are indicated. 

Fig. 4. Levels Coulomb excited in 235u. 

Fig. 5. · Rotational spacings of bands in 235u. The points are the experimental 

data, with the height of a point covering the error limits, and the lines 

correspond to the spacings obtained from the one-parameter Coriolis calcula-

tion. 

Fig. 6. This plot is like fig. 5, except (1) the lines correspond to the 

three-parameter Coriolis calculation, and (2) the ordinate scale has been 

doubled. 

Fig. 7. The experimental and calculated positive-parity levels in 161 ,163,l65Er 

according to ref. 8). 

Fig. 8. Rotational spacings of the positive-parity band in the three Er 

nuclei. Some other bands are plotted on this figure but are not relevant 

to the present discussion. 

! 
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Fig. 9. The results of diagonalizing eq. (4) for various S values are given 

,, 
for the lowest state of each spin up to I = 23/2 (the second I = 11/2 state 

is included). The ordinate is the eigenvalue less the lowest I= 11/2 

eigenvalue, in units of E2+, and the abcissa is S. The Fermi surface, A., 

is below the entire orbital for this calculation. 

Fig. 10. The Coriolis effects on a spinning wheel constrained to turn with a 

turntable (a) tend to produce the configuration shown in (b). For the 

argument made in the text, the axis of the wheel in (b) should also be 

fastened to the turntable. 

Fig. 11. The three coupling schemes are indicated. At the top is the strong-

coupling scheme, with sharp projections on the z axis. At the bottom there 

are two schemes, one with sharp values of R, and the other with sharp 

projections of j on the rotational (vertical) axis. 

Fig. 12. A comparison of ground~band levels in some Ba isotopes with the 

negative-parity bands'in the neighboring La nuclei. In most cases (energy 

zero in parentheses) the La 11/2-level is not the ground state, and its 

energy has been subtracted from all levels shown for that isotope. 

Fig. 13. Like fig. 9, except that the abcissa is S (top) or the cube root of 

the total splitting of the hli/2 orbital in units of E2+ (bottom). The 

Fermi surface, A., is always located on the n = 1/2 state, so that in the 

limit of very large S, the levels will become a pure n = 1/2 band with a 

decoupling parameter of -6. The dots show the effect of diagonalizing 

eq. (14) instead of eq. (4), where Band C were adjusted to fit the lowest 

few levels in 
126

Ba (see section 3.4.). 

Fig. 14. The effect of varying A. is shown for a fixed value of S = 0.25. At 

the top, the location of the h1112 component levels is shown. 
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Fig. 15" A portion of the Nilsson diagram for protons in the region of Au. 

The main interest here is in the h
912 

and h
1112 

orbitals, which are fully 

drawn. The ground states of Au and Tl are in the s
112 

and d
312 

orbitals 

which are partially drawn • 

. :~g. 16. Solution of eq. (4) for the h
912 

orbital. Only the experimentally 

observed levels were drawn. The dots correspond to the experimental data 

from 199Tl and 179Re. The dashed lines correspond to solutions of eq. (14). 

Fig. 17. A comparison of the experimental negative-parity levels in 199Tl with 

those calculated according to eq. (4) and eq. (14). The dashed levels are 

tentative and should probably not be considered very seriously. 

Fig. 18. Solutions of eq. (4) for the h
1112 

orbital with >.. adjusted for Au 

(top) andRe (bottom). The dots show the experimental data for 195Au and 

179Re. 

Fig. 19~ A comparison of the experimental negative-parity levels in 195Au with 

those calculated according to eq. ( 4) and eq. ( 14) •. 

Fig. 20. Excitation energy is plotted against angular momentum in a nucleus 

(with mass around 160) that is the product of an C
40Ar,4n) reaction. The 

populated energy and angular momentum range is shown, together with the 

proposed cascade pathway to the ground state. 

Fig. 21. The reciprocal of h 2;2'i/ (defined from the transition energies) is 

plotted against the square of the rotational frequency for several light 

rare-earth nuclei. The value of hw is, to a good approximation, just the 

transition energy divided by two. 

Fig. 22. The solid lines show the energies of two rotational bands as a 

function of I. The bands have different moments of inertia {h2/2d
1 

= 15 keV, 
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h2f2j2 = 10 keV) and are arranged to intersect at I = 16. The dotted and 

dashed lines show the energies of the mixed bands resulting from cases B 

and C, respectively, in fig. 23. 

Fig. 23. 
2 

The ratio jfj2 is plotted ~· w for the two bands in fig. 22. The 

horizontal lines connected by a dashed line correspond to no mixing between 

the bands, C corresponds to inter-band matrix elements comparable to the 

~aximum gsb-2qp ones used in our calculations, B to matrix elements 3 times 

smaller, and A 

jiP (4I-2) . 
(EI-EI-2) 

to ones 10 times smaller. We have used 
. 2(I-l)(EI-E1_2) 

and hw ~ (4I-2 ) , which differ slightly from 

those others have used, but not significantly. 

Fig. 24. Rotational-level spacings to be expected from an i
1312 

particle in 

(left) a normal rotational band and (right) a decoupled band. 

Fig. 25. The I = 17/2 to I = 13/2 energy difference in units of E2+ is plotted 

against neutron number in the light Er region. The coupled and decoupled 

limits for this quantity are shown •. 

Fig. 26. Simple estimates are shown of the ground-band energy in an even-even 

nucleus (solid line), the energy of the decoupled state based on two i
1312 

particles (dashed line), and the energy of a state with no pairing correla-

tions (dotted line). 

Fig. 27. The coupling scheme discussed in the text. It should not be inferred 

from this sketch that all these quantities have sharpvalues simultaneously. 

Fig. 28. Placement of particles in the states based on the i
1312 

orbital in an 

even-even nucleus with a Fermi surface, A. The left side of the figure 

represents the most probable situation for the ground state, whereas the 

right side shows a low-lying 2-quasiparticle state. Many levels from other 

orbitals would be intermixed with these, but for simplicity are not shown. 



-52-

Fig. 29. The ten states possible considering only 2qp states in the Q = 1/2, 

3/2, and 5/2 components of the i 1312 orbital plus the ground state (Oqp). 

'l'he interconnecting lines show the locations of non~zero Coriolis matrix 

elements. 

Fig. 30. The lowest two solutions of the even-even case for S = 0.3 (solid 

lines), S = 0.2 (dashed lines), and S=O.l (dotted lines). The numbers 

represent the .total population passing through each level. 

Fig. 31. A schematic illustration of the lowest three solutions for spins I 

and !+2, with some of the interconnecting E2 transitions indicated. 

Fig. 32. A comparison of the calculated and observed values of 21/h2 ~· 
158 . 

rotational frequency for Dy. 

Fig. 33. The variation of the calculated rotational properties with the 

Fermi surface, A, is shown. 
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