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Abstract 

It is shown how two popular approximate dynamical models--the 

semiclassical perturbation (SCP) approximation and the infinite order 

sudden (IOS) approximation--can be combined in a consistent way that 

includes the correct features of both. Application of this unified 

SCP-IOS approximation to the reaction path Hamiltonian model of 

Miller, Handy, and Adams [J. Chern. Phys. ~. 99 (1980)] leads to 

extremely simple, explicit formulae for the reactive S-matrix, product 

state distributions, etc., which can be readily applied to polyatomic 

systems. Initial numerical tests on a simple model problem indicate 

that the model is of useful accuracy. 
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I. Introduction 

Although rigorous, numerically exact calculations for inelastic 

and reactive molecular collision processes are becoming increasingly 

l 
feasible nowadays, there is still the obvious desire to devise 

simple approximate theoretical models that are as quantitatively reliable 

as possible. This is particularly true when one is dealing with the 

dynamics of polyatomic systems, for which rigorous approaches become 

unfeasible. This paper considers two such approximate models that 

are currently receiving some attention--the infinite order sudden (IOS) 

approximation
2 

and the semiclassical perturbation (SCP) approximation
3
--

and shows how they can be combined into a "unified" model that reproduces 

both of them in the appropriate limits. (The SCP approximation is also 

essentially equivalent to the "strong-coupling correspondence principle" 

of Percival and 1Qchards, 4 which is essentially equivalent to a semi

classical approximation of Levine and Johnson, 5 which is essentially 

equivalent to approximations developed earlier by Cross.
6

) 

Section II first summarizes the SCP and IOS approximations i~ a 

consistent notation, and Section III describes their synthesis. Section 

IV shows that application of this unified SCP-IOS approximation to the 

reaction path Hamiltonian model
7 

for polyatomic reaction dynamics leads 

to exceptionally simple expressions for product state distributions, 

tunneling probabilities, etc. Results of calculations using this 

approximation are described in Section V, and one sees that the model 

is capable of a reasonable level of accuracy. 

.. 
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II. Summary of the SCP and IOS Approximations 

A. Semiclassical Perturbation Approximation 

The notation here follows that of reference 3, where the SCP 

result is derived as a first-order perturbation approximation to 

8 the initial value representation of classical S-matrix theory. 

As noted in the Introduction, though, there are other routes to 

the resulting expressions. 

Consider the classical Hamiltonian describing a general 

inelastic collision process for a system of F degrees of freedom: 

H(P,R,n,q) + E(n) + V(R,n,q) (2.1) 

(R,P) are the coordinate and momentum for relative translation, and 

(n,q,) = (n.,q.), i=l, ... , F-1 are the action-angle variables for - - ~ ~ 

the F-1 internal degrees of freedom of the collision partners. 

E (n) is the internal energy of the collision partners as a function 

of the action variables (i.e., the quantum numbers), and V 

is the interaction potential. The interaction potential is 

divided into a zer~ order term that is independent of the angles 

q and can thus cause no inelastic transitions, plus a perturbation 

which can, 

V(R,n,q) 

In applications v0 is often assumed to be independent of the 

internal action variables n. The most generally correct way of 

(2.2) 
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choosing v
0 

is as the phase average of the full interaction 

potential, 

(2'IT)-(F-l) l'ITdq V(R,n,q) 
0 - - -

this is equivalent to the distorting potential of the distorted 

wave Born approximation in quantum mechanics.9 In applications, 

though, v
0 

is often chosen by a simpler prescription. 

The S-matrix element for the n ~ 
-1 

within the SCP approximation by
3 

S (E) 
::2 '::1 

where (with h=l everywhere) 

f:.n 

n 

~2 transition is given 

R(t) is the zer~ order translational trajectory determined from 

2 
~~ + E(n) + v0 (R,~) 

i.e., R(t) is the inverse function of 

.• 
(2.3) 

(2.4) 

(2 .5a) 

(2.5b) 

(2.6a) 



t(R) = ±1 dR' 

< 

-5-

where E is the total energy. n
0 

is the WKB elastic phase shift 

determined by v
0

: 

k h].l [E-E:(n)] 

Equation (2.4) has the form of a Fourier transform in the angle 

(2.6b) 

(2.7a) 

(2.7b) 

variables 3o of an exponential of a time integral of the perturbation 

th 6V, where the time dependence of 6V is determined by the zero--

order Hamiltonian H0 ; i.e., R(t) is given by Eq. (2.6), and 

n(t) 

q (t) 

where 

w 

= 

n (constant) 

~Q + Wt 

as(n) 
an 

Approximations based on Eq. (2.4) have included rotational 

3 
excitation of polar molecules by electrons, rotational excitation 

. . "d 11" . 10 d 1 "b . 1 . . 11 
~n atom-rlg~ ro.tor co ~s~ons, an a so v~ rat~ona exc~tat~on 

in molecular collisions, and the results obtained have in general 

been quite encouraging. Even though the model is based on first 

(2.8a) 

(2.8b) 
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order perturbation dynamics, the exponential form of the semiclassical 

expression for the S-matrix elements means that the perturbation 

is incorporated, at least approximately, to infinite order, as 

is characteristic of other exponentiated first order theoriesl2 

B. Infinite Order Sudden Approximation 

The semiclassical version of the sudden approximation (SA) 

results from Eq. (2.4) by setting w=O in 6V; i.e., it is assumed 

that the internal motion is frozen during the translational 

motion; 

2in0 I 
--=-e------o- O d~O exp[-i6~·~0 - ±'l dt 6V(R(t),~'~O)] 
(27T)F-l 

(2.9) 

or this can be written more suggestively as 

(2.10) 

where 

(2 .11) 

The infinite order sudden approximation can be obtained by 

identifying Eq. (2.11) as the first two terms of a Taylor's 

series and then "unexpanding" the series. Using the fact 

that the elastic trajectory R(t) is the same for t<O and t>O, 

• 

.. 
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and changing the integration variable in Eq. (2.11) from t to R, 

gives 

-kR + 1 dR' h~[E-£(~)-V0 (R' ,~)] 
< 

-1 dR' 

< 

with R~. To lowest order in ~V one observes that Eq. (2.12) 

is equivalent to 

n(~0 ,~) = -kR +1 dR' lzll(E-£(~)-V0 (R',~)-~V(R',~,g0 )] 
< 

which is the infinite order WKB phase function to which Eq. 

(2.12) is the expansion to first order in ~V; i.e., nCg
0

) 

is the WKB phase shift for the translational motion computed 

with the internal motion frozen. This is emphasized even more 

clearly by noting that Eq. (2.13) is the translational phase 

integral, 

-kR + 1 dR' P (R' ) 

< 

where the translational momentum P(R) is determined by energy 

conservation using the total Hamiltonian with n and q held fixed, 

E 

(2.12) 

(2.13) 

(2.13') 

(2.14) 
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The IOS corresponds to using Eq. (2.13) in Eq. (2.10). 



.. 

• 
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III. The Unified Approximation 

The advantage of the IOS approximation over the SCP is that 

it includes the "perturbation" .to infinite order in the phase 

function n, and if the collision is indeed sudden--i.e., if the 

internal motion is infinitely slow compared to the change in 

the translationalmomentu~-then 6V is included correctly to 

infinite order. The SCP approximation is more correct, on the 

other hand, by including (approximately) the effect of motion 

of the internal degrees of freedom during the collision. The 

IOS is thus best for collisions involving "hard wall" interaction 

potentials, where the duration of the collision itself is small 

compared to a period of the internal motion, while the SCP is 

better when the interaction is effective over an extended range 

and motion of the internal degrees of freedom thus an important 

consideration (e.g., in resonance energy transfer). The goal 

here is to combine these two models in such a way to incorporate 

the correct features of both of them. 

A way of doing this is rather obvious from the way they have 

been presented in Section II: in the lOS expression, Eqs. (2.10) 

and (2.13), one simply re-introduces the zer~ order of motion 

of the internal degrees of freedom, i.e., makes the replacement 

~0 ~O + Wt 

in the integrand of Eq. (2 .13). Equation (2.10) still applies, 

but now the phase function is 

(3.1) 
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-kR + ! dR' ,fz~ [E-£(~)-V(R' ,~, 20~t(R')) J 
< 

th 
where V = v0+~V, and whe~e t(R) is determined by the zero--

order Hamiltonian, i.e., by Eq. (2.6). It is clear that 

Eq. (3.2) incorporates the lOS limit if w + 0 and also the 

SCP limit if Eq. (3.2) is expanded to first order in ~V. 

This unified SCP-IOS model, i.e., Eqs. (2.10) and (3.2), 

could be applied to the rotationally and/or vibrationally 

inelastic collision processes that have been treated either by 

the lOS or SCP approximations, with little increase in difficulty. 

An even more sophisticated version of this approach, and 

presumably more accurate (but also more complicated to apply), 

would be to use numerically computed classical trajectories 

tc determine the time dependence of q(t). In this case the 

phase function n(~0 ,~) would be given by 

t2 t 

-PR I + f2dt 
. 

n<~o·~) R(t) p (t) 

tl tl 

t2 -! dt R(t) 
. 
P(t) 

tl 

with t1+~oo, t
2

++oo, and where R(t), P(t) are determined by the 

classical trajectory generated by the full Hamiltonian of 

Eq. (2.1), with the initial conditions 

(3.2) 

.. 

(3.3a) 

(3.3b) 
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g(O) = So (3. 4a) 

• n(O) = n (3.4b) 

... 
R(O) R< (the classical turning) (3. 4c) 

point 

p (0) 0 (3.4d) 

The S-matrix elements are still given in terms of n by Eq. (2.10). 

It would be interesting to explore the accuracy of the above 

approximation for rotationally and/or vibrationally inelastic 

collisions of atom-diatom or diatom-diatom systems and for 

collisions of atoms and diatoms with solid surfaces. 
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IV. Application to the Reaction Path Hamiltonian 

Application of the SCP-IOS approximation of the previous section 

leads to particularly simple results for the S-matrix if the reaction 

path Hamiltonian model of Miller, Handy and Adams7is used to describe 

the dynamics. The reaction path model is an extension of ideas 

introduced first by Hofacker1~nd by Marcus1ior describing a chemical 

reaction as motion along a reaction path. If the reaction is dominated 

by a single saddle point region--i.e., a transition state--then the 

reaction path1is conveniently defined as the steepest descent path 

(if mass-weighted cartesian coordinates are used) through the saddle 

point leading from reactants to products (cf. the "intrinsic reaction 

16 
coordinate" of Fukui, et al.). In terms of the reaction coordinate 

s, the mass-weighted distance along the reaction path, and the 

normal coordinates {Qk}' k=2, •.• , F, for vibrational motion normal 

to the reaction path, and their conjugate momenta, (p ,Pk), k=2, .•. , F, . s 
7 

the explicit form of the classical Hamiltonian derived by Miller et al. 

is 

H(p ,s,P,Q) 
s - - F 2 

[ 1 + L Qk Bk 1 (s) ] 
k=2 ' 

v
0

(s) is the potential energy along the reaction path, {wk(s)} the 

frequencies of transverse vibrational modes, Bk k,(s) coriolis 
' 

(4 .1) 

• 



• 

" 
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coupling functions which.couple vibrational mode k to vibrational 

mode k', and Bk 1 (s) curvature coupling functions which couple 
' 

vibrational mode k to the reaction coordinate (which _ is labeled 

as mode k=l). Eq. (4.1) applies to the case of zero total angular 

momentum, so that F = 3N-6 where N is the number of atoms of the 

system; the Hamiltonian for non-zero total angular momentum has 

7 
also been given, but is more complicated. 

To cast this Hamiltonian in the form of that in Sections II 

and III, one transforms from the vibrational coordinates and 

momenta (Qk,Pk)' k=2, •.. , F to their action-angle variables (nk,qk), 

( 4. 2a) 

(4.2b) 

and the reaction path Hamiltonian becomes 

H(p ,s,n,q) 
s - -

1 F 
2 lP s - L Bk k I ( s) 

k,k'=2 ' 

[1 + 

(4.3a) 

(Here the diagonal elements Bk k(s) are defined by 
' 

= - . ) (4.3b) 
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In the present case the reaction coordinate s plays the role of the 

translational coordinate R of Sections II and III, and it varies from 

- 00 to -too during a reactive collision. Thus the expression for the 

S-matrix element for the reaction from state ~l of reactants to ~2 
of products which is equivalent to Eqs. (2.10) and (3.2) is 

S (E) 
~2'~1 

where 

(2TI)-(F-l) 
27T 

r d~o lo 

p. (s) is determined by energy conservation, s 

H(p ,s,n,q) E 
s - -

and with the Hamiltonian of Eq. (4.3) this gives 

p (s) 
s t Bk,l (s) {¥:k ~ 

k=2 Vw:<s: 

(4.4) 

(4.5) 

wk, (s) 

( ) sinqk(s) cosqk, (s) 
wk s 

where V is the vibrationally adiabatic potential 
a 

(4. 6a) 

• 

.. 



u 

V (s) 
a 
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(4. 6b) 

To complete the model one must specify the s-dependence of the angle 

variables, and the simplest assumption is that it is the vibrationally 

. th 
adiabatic phase determined by the following zero-- order Hamiltonian, 

this gives 

where 

H
0

(p ,s,n) 
s -

I2[E-V (s 1)] 
a 

The variables {qk(O)}, k=2, ... , Fare the integration varibles 

~O of Eq. (4.4). 

The S-matrix given by Eqs. (4.4)-(4.7) takes an especially 

(4.7a) 

(4.7b) 

simple form if one neglects the coriolis coupling elements Bk kt(s). 
' 

(They are often less significant than the curvature coupling.s 

Bk,l(s), and in any event it will be discussed below how they can 

be included.) The expression is 
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+ i 1 ds 12(E-Va(s)] 
= 

Bk 1 (s) , 

(4.8) 

Each factor in Eq. (4.8) is a phase factor times a Bessel function 

of order ~nk, and the resulting transition probability is thus given 

by 

p (E) = Is (E)I
2 

n2,nl ~2'nl 

F 

J~n ( IYk I )2 Tl (4.9a) 
k=2 k 

where 

I lz[E-V (s)) ~ 
i<\ (s) 

yk e .(4.9b) B (s 
k,l k ) a 

-00 

Equation (4.9) provides an extremely simple estimate of the 

distribution of final quantum states resulting from the reaction 



" 

... 

... 
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provided, of course, that one has the necessary properties of the 

reaction path, i.e., v0 (s),{wk(s)}, and {Bk,l (s)}. Equation (4.9) 

also has a simple relation to the classical mechanics of the problem: 

ly I is the average classical cha.nge in the classical action variable 
k 

<tm > k classical (4.10) 

and as a function of 6nk, the Bessel function J 6nk (jykj)
2 

has its 

maximum value at L'nk = jykj. The most probable change in the 

quantum number nk is thus the average classical value. 

The quadratic coupling elements, i.e., Bk k', of Eq. (4.6) 
' 

can be taken into account using the trick of Miller and Smith.
3 

This is illustrated by considering here the case F=2, i.e., the 

collinear A+ BC ~ AB + C reaction. Equation (4.6~) reads 

P (s) s 
h [E-V (s)] 

a 

(i;;i 
[l+K(s)ywr;)-- sinq (s)] 

W' (s) (2n+l) sin2q(s) 
4w(s) 

(4 .11) 

where K(s) = B2 1
Cs) is the curvature of the reaction path, and the 

' 
reactive S-matrix element is thus given by 

X 

i¢0 2 
= _e ldq 

27T 0 0 
exp{-i6nq0 + i /: ~n+l J_ds /2[E-Va(s)] K(s) w(s) 

-00 

w' (s) } 
4w(s) (2n+l) sin[2q0+2o(s)] (4.12) 
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The difficulty here is the appearance of a first and second harmonic 

of q
0 

in the exponent of the integrand, and the way to deal with it 

is to introduce a new integration variable and a delta function to 

compensate for it: 

2'1T 
-+ r dq 

Jo o 

The delta function is expanded in a Fourier representation, 

1 
2'1T 

00 

L: 
k=-00 

so that Eq. (4.12) becomes 

-ik(q -2q ) 1 0 e 

exp{-i(Lln-k)q0 

+ i [ ds /2[E-V}s)] K(s)J¥fli sin[q0+0(s)]~ ldq1 expl-ikq 

- i Icodsw'(s) ( .r: } 
~ 4w(s) 2n+l) sin[q1+2u(s)] (4.13) 

Each of the two integrals is now a Bessel function, the price being 

paid is that one now has a sum of such terms. The explicit result 

for the transition probability is 



c;, 

,,. 

where 

-19-

p (E) = Is (E)I
2 

n2,nl n2,nl 

00 ik(2n
1
-n2) 

12: J 6n-2k( I Yll) Jk ( I Y 21) I 2 = e 
k=-= 

yl 1 ds 12 [E-Va (s)] K (s )-Jiiiil 
-00 

e io(s) 

y2 - - 1 ds w'(s) (2n+l) 
4w(s) 

e 
2io(s) 

If the w' term is neglected, then y 2=o, so that only the term k=O 

contributes to the sum, and the simpler result is regained: 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

(4.15a) 

Conversely, if the reaction path is approximately straight, so that 

y1=o, then the only term which contributes to the sum is k = ~n, so 

that 6n is required to be even , and 

Hm 
y -+0 

1 

i.e., without reaction path curvature, there is a selection rule 

6n=O, ±2, ±4, 

(4.15b) 
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This trick can be used in general to evaluate integrals involving 

first and second harmonics of the angle variables that appear in 

Eqs. (4.4)-(4.6). 

As a final note, it is interesting to see that the present 

model can also be used to determine tunneling probabilities if the 

energy E is below the maximum of the vibrationally adiabatic potential 

V (s). Equations (4.4)-(4.8) still apply but with the modifications a 

that the factor 12 [E-V (s)] is imaginary, a 

I2[E-V (s)] ~ i/2[V (s)~E] a a 

over the region of s for which E < V (s). This introduces imaginary 
a 

terms into the phase factors, which are effectively the tunneling 

probabilities. th The imaginary part of the zero-- order phase ¢
0 

of 

Eq. (4.8), for example, is the vibrationally adiabatic barrier 

penetration integral, 

I < 

12[V (s)-E] a· 

so that the factor exp(~¢0) gives rise to the vibrationally 

d . b t. t t 1' b b '1' ll Th . ' a 1a a 1c zero curva ure unne 1ng pro a 1 1ty. e rema1n1ng 

factors in the expression for the S-matrix thus provide 

corrections to the vibrationally adiabatic tunneling approximation. 



0 
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V. Example: Collinear Vibrational Excitation 

To illustrate the potential usefulness and expected degree of 

accuracy of the SCP-IOS approximation to the reaction path ·Hamiltonian 

model, calculations have been carried out with it for one of the 

standard inelastic scattering benchmarks, namely the Secrest

Johnson1~ollinear model of He-H2 vibrational excitation. This is 

a non-reactive process, but it is nevertheless possible to treat it 

via the reaction path model. 

In the usual reduced units the Secrest-Johnson1~amiltonian is 

H(P,R,p,r) 
2 2 

R_ + £_ + 1_ r2 + ea(r-R) 
2~ 2 2 

(5.1) 

2 
and ~ = 3 , a = 0.3 for the He-H2 case. Figure 1 shows a contour 

plot of the potential surface V, 

V(r,R) (5.2) 

in the mass-weighted cartesian coordinates 

(5 .3a) 

Y = r (5.3b) 

Also shown is the reaction path which was determined by following 

the gradient of V (in the mass-weighted cartesian coordinates) 

down from a position high up on the repulsive wall; different 

initial points were tried until a path was obtained that was 

essentially independent of the initial point over the energy 
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region of interest. 

The only modification needed of Eq. (4.14) for the vibrational 

transition probability is for the fact that the non~reactive trajectory 

in s is from s=+oo to 0 (defined as the classical turning point) 

back to +oo, rather than s=~ + +oo as for the reactive case. It is 

not hard to show that the appropriate modifications of the collision 

integrals y
1 

and y 2 are 

1 ds 
( ) y2n+l -io(s) 

yl lz[E-Va(s)] K s w(s) 
e . (incoming part) 

0 

+ Ids h [E-V (s)] K (s) f2?+~ io (s) e (outgoing part) 
0 

a w s 

or 

]ds /2[E-V (s)J ( ) ~'l..n+l yl = 2 
K s w(s) coso(s) (5.4a) 

a 
0 

and 

co 

Y2 + £ds 
w 1 (s) (2n+l) -2io(s) (incoming part) 
4w(s) e , .. ~ 

I. 

o6 

Ids 
w 1 (s) (2n+l) e2io(s) (outgoing part) 
4w(s) 

0 

or 



-2i 1 ds 
w' (s) 
4w(s) 
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(2n+l) sin2o (s) 

The vibrational transition probability is thus given by 

IL: 
k=-'XJ 

with y 1 and y 2 given by Eq. (5.4). For the present application 

IY2 1 is so small that only the term k=O makes a significant 

contribution to the sum in Eq. (5.5a), so that one in effect has 

i.e., it is the coupling due to the curvature of the reaction path 

which causes the vibrational excitation, and for this example the 

coupling due to the variation of w(s) has neglible effect. 

The results of Eq. (5.5) are given in Table I, along with the 

(5.4b) 

(5.5a) 

(5.5b) 

exact quantum mechanical results of reference 18. Some of these results 

are also shown pictorially in Figure 2. The SCP-IOS approximation to the 

reaction path model is seen to provide a reasonable, semi-quantitative 

description of the vibrationally inelastic process over a wide range of 

energies and also for large ~n transitions. Its attractiveness, of course, 

is its applicability to systems of considerably higher dimensionality, both 

reactive and nonreactive, and the degree of accuracy produced for this 

example gives some confidence that the results obtained for these more 

general applications will be usefully accurate. 
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VI. Concluding Remarks 

The purpose of this paper has been to show how the semiclassical 

perturbation approximation can be combined in a simple and consistent 

way with the infinite order sudden approximation, and then to apply 

this "unified" SCP-IOS approximation to the reaction path Hamiltonian · 

of Miller, Handy, and Adams. The approximation will be correct in 

both the sudden limit, i.e., when the motion of the internal degrees 

of freedom is slow compared to the translational motion, and in the 

limit that adiabatic perturbation theory is valid, i.e., when the 

motion of the internal degrees of freedom is much faster than the 

translational motion. Since it is correct in these two opposite 

limits, it is reasonable to expect it to have useful accuracy in 

fairly general circumstances. The results of the calculations described 

in Section V tend to B_ear this out. 

Our interest in the overall approach described in this paper is 

that, given the necessary quantum chemistry information about the 

reaction path, it can be easily applied to model the dynamics of 

truly polyatomic systems. A variety of applications are in progress. 
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Figure Captions 

1. A contour plot of the potential surface of Eq. (5.2) in mass-weighted 

coordinates [Eq. (5.31)]. Also shown is the reaction path. 

2. Vibrational transition probabilities P (E) as a function of 
n2,nl 

final vibrational quantum number n2 , for n1 = 0,1,2 ... and three 

different values of the total energy E. 
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Table I. Vibrational Transition Probabilities 
a 

E = 10 E = 8 E = 6 E = 4 E = 3 

nl n2 QMb SCPc QM SCP QM SCP QM SCP QM SCP 

0 0 0.060 0.0249 0.204 0.2254 0.538 0.573 0.892 0.8818 0.978 0.964 

1 0.218 0.1813 0.434 0.334 0.394 0.254 0.108 0.0635 0.0221 0.0141 

2 0.366 0.2366 0.291 0.148 0.064 0.0288 0.00122 0.00071 

3 0.267 0.120 0.071 0.0246 

4 0.089 0.0275 

1 0 0.218 0.1813 0.434 0.334 0.394 0.254 0.108 0.0635 0.0221 0.0141 

1 0.286 0.0805 0.034 0.0197 0.244 0.422 0.850 0.905 0.977 0.987 I 
N 

"" 2 0.009 0.0641 0.220 0.314 0.345 0.237 0.0418 0.0248 0.000898 0.0015 I 

3 0.170 0.232 0.261 0.139 0.037 0.0139 

4 0.240 0.1141 0.051 0.0143 

5 0.071 0.0184 

2 0 0.366 0.237 0.291 0.1477 0.068 0.0288 0.00122 0.00071 

1 0.009 0.064 0.220 0.314 0.345 0.237 0.0418 0.0248 

2 0.207 0.109 0.0388 0.0248 0.347 0.579 0.955 0.982 

3 0.018 0.075 0.250 0.336 0.233 0.1411 0.00133 0.002 

4 0.169 0.236 0.189 0.0858 0.006 0.0027 

5 0.0239 0.0766 0.016 0.00397 

6 0.0064 0.0069 



References for Table I. 

a The quantities listed are the vibrational transition probabilities P (E) for the model problem 
n2,nl 

described in Section v. 

b The exact quantum mechanical results of reference 18. 

c The results of the present SCP-IOS approximation to the reaction path model. 
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