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ABSTRACT 

The previously proved results that every analytically renor-

malized Feynman integral is a regular holonomic function suggests 

that the S matrix should be locally expressible as an infinite sum 

of regular holonomic functions. A regularity property R is formulated 

that expresses the condition that the S matrix be locally expressible 

near each physical point p as a convergent sum of regular holonomic 

functions, with each term enjoying some of the regularity properties 

of a corresponding Feynman integral. This property R holds at every 

physical point p that has yet been analyzed by the methods of 

axiomatic field theory or S matrix theory. Some analyticity properties 

of unitarity-type integrals are then examined under the assumption 

that the S·matrix satisfies property Rand a weak integrability condition. 

These results rest heavily on so~e recently proved properties of regular 

holonomic functions. 
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. 1. INTRODUCTION 

Sato [1) has conjectured that the S matrix satisfies a holonomic 

system of (micro)-differential equations with characteristic variety 

determined by the Landau equations. Support for this conjecture has 

been adduced by Kashiwara and Kawai [2), who have shown that the 

analytically renormalized Feynman function FG(p) associated with any 

Feynman graph G satisfies such a system of equations with characteristic 

variety confined to the extended Landau variety l(G)t. 

The Feynman functions enjoy an important additional property: 

they are regular holonomic functions. A regular-holonomic function 

is, by definition,a hyperfunction that satisfies a holonomic system 

of linear differential equations with regular singularities. Kashiwara 

and Kawai [3) have developed a microlocal theory of holonomic systems 

with regular singularities, and have shown, as an immediate by-product 

of their theory, that the Feynman functions FG(p) are all Nilsson class 

functions. This fact had been believed previously, but the proof had 

been blocked by technical difficulties. (Private communication to T. K. 

from Professor J. Lascoux and Professor F. Pham.) 

The fact that every Feynman functions is a regular holonomic 

suggests that the S matrix may be expressible as an infinite sum of 

regular holonomic functions. Indeed, Kawai and Stapp [4) have shown 

on the basis of the general S-matrix discontinuity formulas and weak 

analyticity requirements that each point P in a large part of the 

physical region has a complex mass-shell neighborhood ri(P) such that 

the kernel of the connected part of the S matrix restricted to rl(P) 

can be expressed in the form 

or 7 
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Sp(p) L a ( G£Gp G,P p)FG(p)' (1.1) 

where the functions aG,P(p) are holomorphic in n(P), and Gp is the 

collection of connected graphs G such that P lies on the positive-a 

Landau surface ~(G). This result immediately entails.the weaker 

condition that SP(p) can be eXpressed in the form 

Sp(p) L s ( 
G£G G,P p), 

p 

(1.2a) 

where sG,P(p) satisfies on rl(p) ·a holonomic system with regular singu-

larities whose 

characteristic 

characteristic variety Ch(SG' P(p)) is confined to the 

variety Ch(FG(p)) of the system that FG(p) satisfies. 

ch(sG,P(p)) <ch(FG(p)), (l.2b) 

and whose singularity spectrum is confined to the singula~ity 

spectrum of FG(p), 

S.s.(sG,P(p)) C S.S.(FG(p)). (1.2c) 

At the previously examined points P only a finite number of 

nonvanishing terms occur in the sums (l.I} and (1.2a), and hence no 

convergence problem arises. But for any point P lying, for example, 

on a three-particle threshold any equations of the form (1.1) or (1.2) 

must contain an infinite number of nonzero terms. Hence the question 

~ ' :!..\ 



•1: .) 

4 

of convergence must in general be considered. 

A formulation of property (1.2) that incorporates an appropriate 

convergence condition is provided by the following definition. Let P 

be any point in the original real domain of definition of the S matrix. 

'rhen the regularity property~ consists of the following four conditions: 

1) There exists a complex product-neighborhood Qi(P) x Qf(P) 

of P arid a set of bounded operators Sp and SG p(for all G£Gp) that 
' 

transform square integrable functions defined over the initial real 

domain Q~(P) into square integrable functions defined over the final 
1 

real domain QfRf(P), where J:(P) is the restriction of Q.(P) to the 
J J 

real mass shell. 

and 

2) The sum L SG p converges absolutely to Sp in the sense that 
G£Gp ' 

ISp - L s I + 0 
G£G G,P 

p 

(1.3a) 

G£~ 1
5G,PI + Bp <co p • (1.3b) 

3) The kernel of SG p considered as a hyperfunction SG p(p) 
' ' 

defined over Q~(P) x ~(P) is regular holonomic and satisfies (1.2b) 

and (1.2c). 

4) The kernel Sp(p) of SP is the restriction to Qi (P) x Qf(P) 

of the kernel Sc(p) of the connected part of the S matrix. 

The appropriateness of the converge condition specified in ~ 

is discussed in section 2. 

~- ) 
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The purpose of this paper is to derive conditions on the 

singularity structure of unitarity-type integrals under the condition 

that the scattering functions appearing in the integrand enjoy 

regularity property Rp for certain critical points P in the domain 

of integration. These critical points are the critical points 

associated with the so-called u 0 points of the integral. Subject 

to the validity of property R~ at these critical points our result 

extends to many u = 0 points the earlier result [5] on the 

singularity spectra of unitarity-type integrals at u i 0 points. 

This extension to u = 0 points constitutes a significant 

improvement over the earlier u # 0 results. Indeed, there are many 

unitarity-type integrals for which the u = 0 points cover the entire 

domain of definition. For these integrals the earlier u # 0 result 

entails no domain of analyticity at all, whereas our result, when 

applicable, restricts the singularities to well-defined codimension-

one subvarieties. 

The property ~ required for our result has, as noted above, been 

derived at many points P from S-matrix a·rguments. In fact, the 

stronger property with sG,P replaced by aG,PFG has been obtained 

at these points. Similar results have been obtained also from 

axiomatic field theory [6]. These stronger results are in accord 

with Landau's suggestion [7) that the singularity structure of the 

S matrix is given correctly by the Feynman integrals, quite apart from 

the validity or nonvalidity of the perturbation theory in which they 

first arose. 

The condition tbat property Rp holds for every physical point 

P is called property R. This property can be regarded as a specific 
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and precise formulation of Landau's suggestion. 

The special examples mentioned above yield instead of property 

R the stronger property R5 , which is R with SG p is replaced by 
• 

aG,PFG. Thus one might wish to regard RS as the precise formulation 

of Landau's suggestion. However, this stronger property RS is not 

compatible with the convergence condition (1.3). This will be 

explained in section 2. The essential point is that the conditions 

(1.2b) and (1.2c) on sG,P(p) hold not only for aG,P(p)FG(p) but 

also for the similar functions associated with the contractions of 

G, and, moreover, for any finite linear combination of such functions. 

This flexibility is needed to maintain the convergence property (1.3): 

the analogous convergence condition does not hold for the expansion 

(1.1). 

Property R is also a specific and precise formulation of Sato's 

conjecture. It adds to Sato's general holonomicity requirement an 

appropriate convergence condition, and also the requirement that the 

singularities of the holonomic systems be ·.regular. 

Property R is, lastly, a very reasonable ansatz for the physical

region part of the maximal analyticity property of S-matrix theory 

[8]. For this property R is compatible with the stringent requirements 

of macrocausality. Moreover, the previous studies [4, 9, 10] suggest 

that the S-matrix requirements of unitarity, macrocausality, and 

Lorentz invariance require the presence of no singularities other 

than those allowed by R. Furthermore, they suggest that if only 

those singularities permitted byR. are allowed then all these 

singularities must in fact be present, provided no special selection 

rules intervene. 

~ ·-:·' 
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To prove that property R is in fact compatible with the general 

S-matrix (or field-theoretic) principles one must know the singularity 

'structure of unitarity-type integrals under the condition that property 

R holds. Sections 3 and 4 are addressed to this problem, and in part!-

cular to the preliminary problem of extending with the aid of 

property R the earlier u I 0 results on the singularity structure of 

unitarity-type integrals to the more delicate u = 0 points. Our 

earlier works have made clear that some analyticity property beyond 

that provided by macrocausality is needed to cope with these u = 0 

points. 

An alternative approach to the u = 0 problem has been developed 

by Iagolnitzer [11]. It is based on a different assumed regularity 

property. Whereas the present approach is within the general 

framework of maximal analyticity, where the ultimate aim is to 

impose the strongest analyticity assumption compatible with the 

other general principles, Iagolnitzers approach is based rather on a 

In both strengthened formulation of the macrocausality principle. 

approaches one is faced with the task of verifying the compatibility 

of the assumption with the other general principles. Our assumption 

is known to be compatible with all cases that have yet been studied, 

and also with the possibility that the S matrix is locally expressible 

as a sum of renormalized Feynman functions with analytic coefficients. 

Iagolnitzer's property has not yet been shown to be compatible with the 

well-understood analyticity properties near the leading two-particle 

threshold. If that property can be shown to be compatible with this and 

the other detailed results so far derived from field theory and S-matrix 

theory then we would expect Iagolnitzer 's approach to be complementary to 

our own. ,, 
! 
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We conclude this introduction with a brief review some termi-

nology connected with Landau surfaces. 

A Landau graph G is an oriented graph each edge (or 

line) R. of which is associated with a particle-type label tR.. 

The graph. G is completely specified by giving for each edge R. of G 

the corresponding particle-type label tR.(G) (which fixes the mass 

mR. = m(tR.)' and distinguish a particle from its antiparticle) and 

for each edge R. and vertex j of G the incidence matrix element 

ER.j(G) = [j:R.], which is +1, -1, 0 according to whether the edgeR. 

terminates, on, originates on, or is not incident upon vertex j. A 

v·ertex of G is an internal vertex if more than one edge is incident 

upon it and is an external vertex if. exactly one edge is incident 

upon it. An external vertex j is an initial or final vertex 

according to whether the one edge incident upon j originates 

or terminates on j. The edge incident upon an initial or final 

vertex is called ·an initial or final (or edge) respectively. 

The initial and final lines are called the external lines, and 

the other are called the internal lines. Vertices with no edges 

incident upon them are excluded.. Vertices with exactly two lines 

incident upon them are called tl'.tvial vertices, and are excluded 

unless otherwise stated. 

A Landau diagram D is a spacetime diagram obtained by assigning 

to each vertex j of some corresponding Landau graph G = G(D) a 

spacetime point xj and assigning to each edge R. of G = G(D) an 

oriented spacetime line segment that runs from point xj-(R.) to 

+ 
point xj+(R.)' where [j-,R.] = ± 1. Each line segment R. of Dis 

.. 

9 
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required to have positive Lorentz norm jx j+( R.) - x j -( R.) I > 0, and 

is associated with a momentum-energy vector pR. that is defined by 

the conditions 

mass-shell and 

that pR. be parallel to xj+(R.) - xj-(R.) 

positive-energy conditions p~ = m~ and 

and satisfy the 

P_q,,O > 0. The 

final condition on D is that momentum-energy is conserved at each 

internai vertex j: 

2: [j: R.] P_q, 
R. 

0. (1.4) 

The unique graph G(D) associated with any spacetime diagram D 

is constructed by extracting from it the incidence matrix and the 

set of particle-type labels. 

The 4n-vectan formed from the n four-vectors P_q, associated with 

then external lines of Dis denoted by pext(D). 

The Landau surface L1 (G) consists of the set of the vectors 

Pext(D) for all D such that G(D) = G: 

L1 (G) = {p ext (D); G(D) G} (1.5) 

The positive-a surface L1 (G) is the subset of L1 (G) obtained by 

imposing on the diagrams n1 in (1.5) the condition that for each 

line R. of D the vector ~.J+(R.) - j -(.R.) has positive time component: 

0 0 
xj+(R.) > xj-(R.). 

.,..+ + 
The Landau surface L

1
(G) is the closure of L1 (G). 

These geometric definitions will be supplanted in §3 by 

equivalent algebraic ones. 
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2 • CONVERGENCE 

We begin the discussion of convergence by considering a simple 

example in which there is only one kind of particle, which is a 

spinless particle, and in which all connected parts involving less 

than 'six particles vanish. Then the only contributing graphs G that 

give positive-a Landau surfaces that intersect the three-particle 

normal-threhold ·surface in a 3-to-3 amplitude are the graphs Gn of 

the kind shown in Fig. 1. 

P,~ 
::~ 

~:: 
~Ps 

Fig. 1 The (n + 1)-vertex three-particle-threshold 

graphs Gn. 

1 

In this example the formula for the discontinuity around the three-

particle threshold asserts that in some real neighborhood of any three-

particle threshold point P = ( P1 , ••• , P6) one has 

+ -
Sc(pf, pi) - Sc(Pf, pi) 

J + -5c(pf, pm)Sc(pm, pi) dpm, (2 .1) 

where Pf = (pl' P2' p3)' Pi= (p4, Ps• p6)' Pm = (p7' Pg• Pg), and 

the functions S+(pf' p) and S-(p , pf)) are, respectively, the limits 
c m c m 

of the kernel of the connected part of the S-matrix from above and 

·.:t ? 
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below a cut placed on the positive real axis Re z = x ~ 0 in the 

variable 

z (p) ( 2 2 
P1 + P2 + P3) - 9m · (2.2) 

. o ; 2 + The p. for jdl, ... , 9} are mass-shell four-vectors with p. = m + p., 
J J J 

and 

( 
3 ) 

9 d p. 
dp = IT 3 0 

m j=7 (2n) 2pj 

For real pf one has 

3 
j(2n) o(pl + P2 + P3 - P7 - Pg - pa) dpm 

2 
w(z(pf))z(pv) Y(z(pf)) 

(2.3) 

(2.4) 

where w(z) is analytic in z, and nonzero near z = 0, and Y is the 

heaviside function. Then the function 

f(z) 2 i -ni 
w(z)z [ 2n log(ze )] (2 .5) 

is analytic near the origin of the cut z plane, with the cut again 

:;;, + -placed along x..-o, and the boundary values f (x) and f (x) of f(z·) 

from above and below this cut satisfy 

f+(x) - f-(x) w(x) 2Y(x) • 

-~ -. .-

(2 .6) 



-~ 
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For any Lorentz-invariant function a(p) analytic near the three-

particle threshold point P the function 

s (p) 
c [ i a[n+l](p)fn(z(pf))l 

n=O J 

4 4 ) 
x (2rr) o (p1 + P2 + P3 - P4 - Ps - P6 

·is a solution of (2.1) near P by virtue of the identity 

n n n-1 m n-m-1 
(f+) - (f-). =· I: (f+) (f+ - f-) (f-) 

m=O 

(2.7) 

(2.8) 

The function a[n+l](p) is defined only on the restricted mass shell, 

and hence is a function of the variables z(pf ), n(pf)' and n(pi), 
1 

where n(pf) and n(pi) are z-independent "angular" variables. It is 

. [~J I~ I > defined by the equat1on a (p) =<n(pf) a ( ) n(p.) , where the 
z pf 1 

operator an+l "is the (n + 1)-th power of the operator a , which is 
z z 

defined by the above equation for the special case a[l](p) = a(p). 

Solution (2.7) has the general form 

L~o an(p)fn(z(pf))) (2. 9) 

4 4 ) 
x (2rr) o (p1 + P2 + P3 - P4 - P5 - P6 • 

where the functions an(p) are·holomophic near P. This general form 

holds also for the Feynman function FG corresponding to any contributing 

graph G (i.e., any connected graph G each vertex of which connects at 

least six lines). Thus Landau's suggestion is naturally interpreted 

.... 
~ _h 
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in our example as the condition that the function Sc(.p) should have 

this form (2.9). 

Accepting this condition and substituting the form (.2. 9) of S c (p) 

it into (2.1), and using the fact that the functions fn(3} for 

n = (0, 1, 2 ••• ) are linearly independent, in the sense that no 

nontrivial linear conbination of these functions multiplied by 

analytic functions vanishes, one obtains, using (2.8), recursion 

relations that imply that (2.7) is the unique solution of (2.1) on the 

restricted mass-shell variety {pjp~ = m~, P1 + P2 + P3 = P4 + ~5 + p6}. 

We shall not attempt to derive the uniqueness of solution (2.7) 

from the weaker property R, but rather accept on the basis of 

Landau's suggestion that solution (2.7) is the physically appropriate 

solution. 

Solution (2.7) provides a simple example of property ~· The 

connection is made by identifying the term a[n+l]fn(2rr) 4o4 of (2.7) 

n 
with the term sG,P of (1.2) for G = G • Then in some sufficiently 

small real product neighborhood n(P) of P the sum (1.2) is absolutely 

covergent in the operator sense (1.3) due to the decreasing factors 
2·n . 

(z ) • On the other hand, if this same sum (2.7) were to be 

arranged in the form (1.1), i.e. as I:aG,P(p)FG(p), then it would not 

in general converge. The convergence in the form (2.7) is due .to the 

fact that each independent function fn occurs just once in (2.7), as 

compared to an infinite number of times in the rearranged form (1.1). 

The' parsimonious arrangement (2. 7) avoids the divergence associated 

with the' .infinite multiple counting of like terms. 
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In the context of the Landau condition that Sc(p) should be 

. formally representable in the form (1.1) one may describe the 

rearrangement that converts the divergent formal sum (1.1) to the 

convergent sum (2.7) as follows: for each Feynman function FG(p) one 

L . 
exhibits a "leading part" F G ,P(p) by subtracting from F G(p) a sum 

of products of analytic functions times functions F (p), where the 
Gl 

G
1 

are contractions of G: 

L 
FG,P(p) FG(p) - La l (p)F l (p) 

G ,G,P G 
(2.10) 

This equation permits a formal rearrangement of (1.1) into the form 

L L 
L aG p(p)FG P(p) = L SG P(p), (2.11) 

G£~ ' ' G£~ ' 

where the sG,P(p) satisfy (1.2b) and (1.2c). However, this sum (2.11) 

L converges only if the leading parts FG,P(p) are appropriately 

defined. 

1 ( + )n In our example the leading part ofF (p) is F (p) = f (z(p)) • 
Gn Gn 

This function is characterized by the close connection of its behavior 

near the point P to that of the phase-space integral associated with 

Gn: both functions have, up to logrithmic factors, the same power-law 

fall off x4n when the point x = 0 is approached along the positive 

real axis. 

The close c·onnection between singularities of Feynman integrals and 

those of phase-space integrals is not accidentaL It is demanded by 

the constraints imposed on the singularity structure of the S matrix 

by unitarity. In particular the S matrix is required to have 

~·· 
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singularities that cancel the explicit singularities ·arising from the 

phase-space factors that occur in the unitarity equation, and in the 

more complex equations that arise by combining the cluster de.composition 

property of the S-matrix with multiple applications of unitarity [9]. 

The explicit singularities of phase-space integrals thus become the 

"driving terms" ·that force the S-matrix to have singularities [9]. 

And these s~trix singularities must be of such a form as to be able 

to cancel the explicit singularities associated with the phase-space 

factors. 

In our example the function SG p(p) can be identified as the part 
' 

of Sc(p) that exactly cancels the purely positive-a part of the 

singularities arising from the phase-space integral associated with 

G. This can be seen as follows. Iteration of (2.1) gives the 

expression 

s+ = 
c 

- n 
L (Sc) , 

n=l 
(.2 .12) 

which converges absolutely in some sufficiently small real product 

neighborhood of P in the operator sense that the sum of the norms of 

the terms on the right-hand side of (2.12) converges. Inserting 

solution (2.7) into the left-hand side of (2.12), and the analogous 

- + -solution with f replacing f into the factors Sc on the right-hand 

+ -side, and using the representation (f - f ) for the phase-space 

factors (2 .4) occurring on the right, one obtains an identity: every 

term on the right-hand side containing a factor f can be paired 

with an identical term of opposite sign, leaving precisely the sum (2.7). 

.. 7 
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n [n+l] + n 4 4 
Moreover, each term SG, P = a (f ) (2~) o of this remaining sum 

(2.7) enters only once on the right-hand side, and appears in precisely 

that term that has the phase-space factor (f+ - f-)n corresponding 

Gn. 

There is a generalization of the expansion (2.12) that expresses 

+ any connected part Sc as an infinite sum of unitarity-type integrals 

involving only the functions S- [9]. In this sum there is for each 
c 

GEGP precisely one term that corresponds to a bubble diagram that 

reduces to G when each bubble is replaced by a point vertex. And in 

the unique unitarity-type integral there is percisely one point K(P) 

in the domain of integration that gives a contribution to the integral 

at point P. The pair (P, K(P)) defines a point in the domain of 

definition of each of the functions S- occurring ·in the integrand 
c 

of this unitarity-type integral. At these points each Sc has an 

analytic background term. The constant parts of these background 

terms combined with the conservation law and mass-shell constraints 

give a contribtuion to the integral that is a multiple of the phase-

space integral corresponding to G. There must be a contribution to 

S+ that cancels that positive-a part of the singularity associated 
c 

with this phase-space fact-or. Our example shows that the logrithmic 

factors associated with SG p can be different from those associated , 
with the phase-space factor, which at least in its simplest form has 

no logrithmic factors at all. However, the remaining power-law 

behavior of SG p is the same as that of the associated phase-space , 
factor. 

• _) 
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This equality of the power-law parts suggests that one can formu

late in the following way a small part of the idea that sG,P is that 

part of Sc that is generated by the unitarity-induced phase-space 

factor associated with graph G:, if for some r > 0 the restrictions 
0 

to real multispherical domains !P. - P.! 
J J < ro (all j) of the phase-

space integrals corresponding to the graphs GEGp have, for all 

r < r , norms having bounds of the form 
0 

nl 

Dp(S,) G 
bG p 

r , 

where n~ is the number of vertices of G, then the norms of the 

similarly restricted operators SG p have bounds of the form , 

1 
nG bG p NG 

Dp"': Cp) r ' (log r) 

(2.13a) 

(2.13b) 

for all r <r!, for some constaints c; and r! > 0, where NG is the 

number of internal lines of G and A is the maximum value of the 

analytic parts of the scattering functions S-/(2n) 4o4 in the relevant 
c 

domains. 

This bound on !sG,PI is far stronger than what is needed to prove 

the convergence property ~· To see this observe first that the 

result of Ref. [12] implies that for any·P the set of graphs 6p 

corresponds to a set of space-time diagrams Vp that consists of a 

finite set of space-time diagrams v; together with the diagrams,that 

can be formed by taking some diagram D of v; and inserting extra 

vertices on special subsets of space-time lines of D. Each of these 

special subsets consist of a set of space-time lines of D that are 
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all parallel. Thus the inserted vertices correspond to zero-energy 

processes in which all the initial and final particles are at rest 

in some frame, namely that frame defined by the set of parallel 

space-time lines. The insertion of these zero-energy vertices does 

not alter the kinematics, and hence infinite numbers of them can 

be inserted. The convergence. problem arises only because of the 

infinite sets of diagrams that can be formed in this way by the 

insertion of zero-energy vertices. However, these zero-energy 

vertices correspond to operators whose norms fall-off as some power 

of P, the radius of the real multi-spherical domain centered on the 

zero-energy point defined by (P, K(P)). For the simplest case of 

a 2 - to - 2 vertex the fall off is according to the first power of 

3n-5 
p, and for the general n·.- to - n vertex the fall-off is like P 

There is no essential loss of generality in considering the case 

' in which Vp consists of just one diagram, and in which this diagram 

has just one set of parallel lines: the modifications needed to 

pass to the general case are simple. Suppose the set of parallel 

' lines consists of N lines. It is then sufficient for our purpose 
El 

to use a single bound of the form c1 P for all n - to - n vertices 

' with n < N and for all P < P1 , where P1 > 0 and £ 1 > 0. 

Suppose K is the number of ways in which a vertex can connect 

some subset of the set of N · lines. Then for some constant c2 

and sufficiently small P2 > 0 one has 

E n E 
k (K C p 1 ) < C p l 

n=l I 2 

for all P < P
2

• The sum on the left-hand is a. sum of bounds on the 

-·>_.,-
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norms of the infinite set of operators corresponding to the infinite 

set of ways in which the zero-energy vertices can be inserted into 

the set of N' parallel lines. 

Let r be the radius of the real multi-spherical domain 

jp. - P. I <r (all j) centered on P. The condition r = 0 forces 
J J 

p = 0. Hence it follows--from the ~ojasiewicz inequality--that 

f 
p < (Cr) holds for some C and f > 0, in the domain r < r~ for 

some r" > 0. 
0 

[See Ref. p.l97] Thus for some sufficiently small r
0 

our condition (2.13a) on the norms of the phase-space factors 

associated with the phase space factors GEGP holds, with each 

zero-energy vertex contributing a factor eirE for some E > 0. 

Then the resultant condition (2.13b) on the norms of the jsG pi 
' 

give the required convergence property ~· since a contraction 

of the domain r < r to 
0 

r E r N' 
to (~) (log ~) , which 

' E N
1 

a domain r < r
0 

= r
0

/).. converts r (log r) 

for any fixed £>0 and N
1 

is smaller than the 

original value for some sufficiently large A. Note that the number 

of lines NG can increase no faster than N' times the number of 

vertices. 

This argument uses only a very small part of the condition 

stated on the norms jsG pi• and makes the convergence condition~ 
' 

appear to us very reasonable. 

The present work is based principally on property ~· However, 

the above arguments suggest the likely validity of a stronger property 

~ that includes also the condition sG,P = a~,P F~,P where the leading 

part F~ p of FG has the form (2.10), and is subject to norm conditions 
' 

7 
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of the kind (2.13). This property, is considerably stronger than 

R, since it specifies not only the locations of the singularities 

of SG,P but also their natur~ to the extent that the nature of the 

singularities of the leading parts F~ P are specified. 
' 

Landau's .original suggestion [7] included the idea that the 

Feynman functions should determine both the location and the nature 

of the singularities of the S matrix. Thus the property RL can be 

regarded as a precise formulation of Landau's suggestion that incor-

porates an appropriate convergence condition. 

This property RL can also be regarded as a very reasonable ansatz 

in the frame~ork of analytic S-matrix theory, which can be regraded 

as a development of Landau's suggestion. For the notion of maximal 

analyticity is essentially an instruction to impose the most 

stringent analyticity properties compatible with unitarity, 

macrocausality, and Lorentz invariance. Property RL is much more 

stringent than R, yet it appears, on the bases of the many studies 

done between the time of Landau's 1959 paper and now, to be fully 

compatible with these S-matrix conditions. Further studies like 

those of [4] examining in detail the compatibility of RL
1

with 

unitarity are needed. These demand an understanding of the singularity 

structure of unitarity integrals, under the assumption that RL holds. 

Although the present work rests largely on ~ we do require also 

the local integrability of the relevant integrands. This local 

integrability property appears plausible in its own right. Yet it 

does not follow immediately from ~· which says nothing about the 

nature of the singularities. · In our examples the required 

local integrability is shown to follow from the results of [4], or, 

' 
21 

L alternatively, from the Landau postulate R 

.., _,, 

A complete formulation of RL would demand the specification 

of the leading parts F~,P of all Feynman functions FG. Since only 

very limited use is made here of RL we shall not develop the general 

theory but will be content to specify F~ p in a· few simple cases. 
' 

These cases cover those thar occur in our examples. 

4 
Suppose the Feynman function fG = FG/o has, near P, the form 

fG(p) a(p)(w(p) + ;:r o)a + b(p) (2 .14a) 

(a non-integer) 

or 

fG(p) a(p) (w(p) + ;:r o) \)log 'ljJ(p) + b(p} (2 .14b) 

(v non-negative integer} 

Then the leading part of f~,P(p) is this same function with b set 

equal to zero. 

If a connected_graph G can be cut into two connected parts G' 

and G" by cutting through a single vertex then 

L 
fG,P 

fL • fL 
I I 

G 'l! G" ,P" 

where P' and P" are the parts of P that refer toG' and ·G", 

(2.15) 

respectively. Equation (2 .15} can be used iteratively to obtain the 

leading parts of the Feynman functions corresponding to iterated 

graphs such as those occurring in Fig. 1.· 



22 

For a triangle graph G, and a point P lying on the intersection 

of the triangle singularity surface L~(G) the two-particle normal 

threshold surface L~(G'), where G' is a contraction of G, the 

L analysis of [4] (See Eq. 4.2) suggests that FG,P should be a non-van-

ishing analytic function times log{(x
1 

+/:I 0)+ x
2
), where x

1 
and 

x2 are the variables discussed there. 

Added Note After this work was completed we received a communication 

from D. Iagolnitzer kindly informing us that our assumption that the 

general solutions should have the form (-2. 9), whic~ we extracted from 

Landau's suggestion, and which follows also from RL, is entailed in 

a field theoretic context by. a consideration of the Bethe Salpeter 

equation. Details can be found in a forthcoming paper by J. Bros, 

.D. Iagolnitzer, and D. Pesenti entitled Non-Holonomic Singularities 

of the S-matrix and Greens Functions. (Saclay Preprint Dph-5/81/8 

Submitted to Comm. in Math. Phys.) In that work these authors have 

independently examined in great detail the model discussed from a 

slightly different viewpoint in beginning of this section. The present 

work deals explicitly with the fact, stressed by those authors, that 

the S matrix cannot be a single holonomic function: we assume only 

that it is locally a convergent sum of regular holonomic functions. 

1: 
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3. MICRO-LOCAL ANALITICITY OF BUBBLE DIAGRAM FUNCTIONS 

To fix the notations, we first recall the definition of Landau 

equations associated with the signed Landau graph G having n external 

lines, n' internal vertices and N internal lines. Each internal 

line LR. carries a sign Of:= + 1 or - 1), which is distinct from its 

orientation. In what follows we label each external vertex by the 

same index r that labels the (external) line incident upon it. The 

graph G is assumed to be partially ordered and connected. 

Definition 3.1. A set (p1 , ••• ,pn; u1 , ••• , un) d;f (p; u) consisting 

of n real four-vectors pr and n real four-vectors ur is said to be a 

real solution of the Landau equations associated with G if and only 

if there are sets of real four-vectors kR. (R. = 1, ••• , N) and 

v.(j = 1, ••• , n') and real scalars a.(R.= 1, •.• , N) and 8 (r = 1, ••• , n) 
J ~ r 

such that the following relations (3.l.a) - (3.l.f) are satisfied: 

.. 

n N 
~ [j:r]p + ~ [j:R.]k = 0 

r=l r R.=l R. 
,j 1, •.. , n' 

2 - k2 
pr - r' p > 0 r,O ,r = 1, ... , 1r 

k
2 

- m
2 

= 0 R. R. , kR.,O > 0, R. = 1, ••• , N 

vj+(R.) -vj-(R.) aR.kR., R. = 1, ••• , N 

u 
r - [j(r):· r](vj(r) - 8rpr)' r 

aR.aR.;;;.o, R.= 1, ••• , N 

• 

1,. • ., n 

7 

(3 .La) 

(3.l.b) 

(3 .l.c) 

(3 .l.d) 

(3 .l.e) 

(3 .l.f) 
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The relations (3.l.a) - (3.l.f) are called Landau equations. The set 

of vectors (p; !=iu), where (p; u) is a real solution of Landau 

equations is denoted by £(G). 

~ ~ Remark 3.2. We regard £(G) as a subset of i-~T~ • 

regarded as a cotangent vector at p. 

That is, u is 

Definition 3.3. The projection n(£(G)) of £(G) to ~4n is denoted 

• • • • r;-;; 4n 4n 
by L(G), where n ~s the canon~cal proJect~on from i-lT*~ m~ . 

Definition 3.4. [£(G)]t denotes the set of all complex vectors 

(p; u) that satisfy the relations (3.1) except for the inequalities, 

and (L(G))~ is its projection onto ~4n. 

Definition 3.5. The set of equations obtained by replacing the 

condition (3.l.d) with the following conditions(3.l.d') is called 

the set of pre-Landau equations: 

vj+(R.) - vj-(R.) - ag_kg_ = wg_ (3.l.d') 

here wR. is a real four-vector. The set of all vectors (p, k; ~l(u,w)), 

where (p,k; u,w) is a solution of the pre-Landau equations, denoted 

by K(G). This set K(G) is called the pre-Landau variety associated 

with G. 

Definition 3. 6. If (p; u) (p; 0) satisfies the Landau equations 

with some aR. # 0, then p is called a u = 0 point for the graph G .. 

If (p, k; u, w) = (p, k; 0,0) satisfies the pre-Landau equations 

(and hence the Landau equations) with some aR. f 0, then such (p, k) 

is called a u = 0 solution for the graph G. 

.. 
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.... 
~'' 

The set L(G) is contained in the reduced mass-shell variety 
n 2 
1: £ p = 0, p = 0 and p 0 > 0 (r = 1, ••• , n)}. 

r=l r r r r, 
M { ~4n; 

r = p 
def 

Here and in what follows cr denotes [j(r) :r]. Furthermore Mr is 

non-singular outside Mexc d~f {pcMr; all pr's are parallel}. Hence, 

if we denote Mr- Mexc by M', then we may regard the Landau 

equations (3.1 e)-(3.l.f) as defining a subset of ~1 T* M' under 

the convention that (p; ~lu) and (p'; ~lu') define the same 

point in ~1 T* M' if and only if both 

and 

p p' 

u - u' 
r r - era - YrPr (r 1, ... , n) 

(3.2.a) 

(3 .2b) 

hold for some real four-vector a and real scalars yr(r 

(See e.g. [13] p. 115 for the detailed arguments.) 

1, ... , n). 

To state our main results (Proposition 3.16 and Theorem 3.17) 

we fix our notations concerning the bubble diagram function FB(p), 

and the bubble diagram amplitude fB(p). This latter function is 

obtained from FB(p) by factorizing out the over-all energy

momentum conservation o~function factor o
4
(1:[j(r):r]pr): 

r 
FB(p) = fB(p)o

4
(1:[j(r) :r]pr) .• See [4] for the definition of 

FB(p) and the notations which are not explained here. 

Each bubble of the bubble diagram B is labelled by an index 

b(l ~b ~b), and each (explicit) internal line of B is labelled 
. 0 

by an index i(l ~ i ~ i
0
). The mass and the energy-momentum 

four-vector associated with the i-th internal line of B are denoted 

byvi and qi' respectively. We deonte by G(B) the Landau graph 
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obtained from B by replacing each bubble with a point. For any set 

of Landau graphs Gb(l ~ b ~b) we denote by®Gb the Landau graph 
o B 

obtained by inserting Gb into the b-th bubble of B. And define 

a(b) to be + or - according whether b-th bubble is a plus-bubble 

or a minus-bubble. Each graph Gb must have the same set of external 
b 

lines as bubble b. We denote 
b 

that fit into B. For {cb} 0 

b b=l 
Landau graphs {G~} 0 

, where 
b=l 

Example of B, G(B) and~ Gb: 
B 

8 

by G(B) the set of all sets {Gb} 0 

b=l 
in G(B) we denote by C({Gb}) the set of 

G~ is Gb or its contraction. 

:z 

Fig. 2. A bubble diagram B 

)" 

GCBJ: 

® Gb 
8 

when 

G2 

27 

Gl = ~
I 

q2 

+ q3 ~ 

·X 
ql q4 

and G3 • ~K. 

Figure 3 Some Landau graphs 

In what follows we denote by ~G(B) (p, q) the integrand of the 

phase-space integral associated with G(B), with the over-all energy-

momentum conservation a-function being factorized out: 

~G(B) (p, q) 

jo 

II 
j=2 

i 
4 . . 

0 + 2 2 
0 {L[J: r)p + L [J :i)qi) IT o (qi - ll~ ) 

r r i i=l 1 

(J ~·, 

,I 

(3 .3)' 
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where p lies in the reduced mass-shell variety Mr and j
0 

denotes the 

number of internal v~:tices of G(B). We denote by MG(B) the 

subvariety of Mr x m 0 outside of which $G(B)(p, q) vanishes. The 

complexification of MG(B) is denoted by M~(B)" If a point (p, q) in 

M G(B) is not a u = 0 point for G(B), then MG(B) is non-singular 

near the point. We deno.te by MG(B) ,reg the set of all such points. 

If a point p in Mr is not a u = 0 point for G(B), then the bubble 

diagram amplitude fB(p) takes the following form by definition: 

i 

I b 0 4 
fB(p)= llo sb (p' q) $G(B) (p' q) .II d qi 

b=l ~=1 

(3 .4) 

where sb(p, q) denotes the scattering amplitude (or its complex con

jugate if e(b) = - 1 associated with the b-th bubble of B and the 
b 

product 11° sb(p, q) is a distribution on MG(B)" 
b=l 

Before beginning the study of the singularity structure of the 

bubble diagram functions, we introduce some notations concerning a 

bubble diagram B and present some preparatory results. 

Definition 3.7. (i) R(b)d~f {r; 1 ~r ~n,[b: r]l 0} 

(ii) I(b)d~f{i; 1 ~ ± ~ i
0

, [b: i] I 0} 

(iii) p(b): the 4(#R(b))vector obtained from (pi, ••• ,pn) by 

deleting those p such that [b: r] = 0. Here {UR(b)) de~otes the 
r 

number of elements in R(b). 

(iv) q(b): the 4(#I(b)) vector obtained from (q1 , ••• ,qi >.by 
0 

deleting those qi such that [b: i] = 0. 

(v) -(b) d h f C4(n+i0 ) t4(#R(b) + #I(b)) Let w enote t e map rom (p,q) to · 

~efined by assinging (p(b), q(b)) to (p, q). 

• ""\ 

~· 
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~ 4(n+i ) 
Let M (b) denote the subvariety of ~( ) 0 defined by r p,q 

E[b: r]p + E[b: i]q. 
r r i ~ 

0, 

2 
pr 

2 mi for r such that [b: r] I 0, 

2 ,2 
qi = ~i for i such that [b: i] I 0, 

(3.5.a) 

(3.5.b) 

(3.5.c) 

We denote w(b)M«(b) by Me d(b). It follows immediately from the r re 
« ~ c 

definition that MG(B) = ~1Mr(b) holds. Throughout this section we 

always assume that the bubble diagram B satisfies the following 

additional condition: For each bubble b of B, there are at least 

two incoming lines and at least two outgoing lines incident upon b. 
() 

(3 .6) 

Lemma 3.8. Let B. be a bubble diagram and let P
0 

be a real point in 

M~(b1) for a bubble b1 of B. Let U be a sufficiently small neighbor

hood of P
0

, and let ~(p, q) be a holomorphic function defined on U. 

Assume that~ has the form ~{p(b1), q(b1)) and that L(b1)d~f 
-1 " n a: · a: ~ (0) " U MrCb1) is a hypersurface ofcUf\M/b1). Then 

· n a: c 
L(b1) n. {~01 Mr(b)) does not contain an open subset of MG(B)" 

Proof It suffices to show the following property P: there exist an 

open neighborhood U(b1) of w(b1)(P
0

) in M~ed(b1 ) and a continuous 

map f(b1) from U(b1) to M~(B) such that iii(b1)f(b1) is the identity map 

id. :For the relation iii(b
1

) f (b
1

) = id implies that set w(b1) (L(b1)) 

-1, It ' 
contains f(b1) (L(b1) {) MG(B)), while the continuity of f(b1) implies 

-1 c 
that f (b1) L(b1) {) MG(B) contains an open set of U(b1) if 
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L(b1) A M~(B) contains an open 

is a proper analytic subset of 

set of M~(B). Since w(b1){L(b1)) 

~ 
Mred(b1 ) the theorem follows from 

property P by contradiction. 

In what follows, we say a bubble b of B is downstream (resp., up-

stream) from b
1 

if b can be reached from b1 by moving in G(B) in the 

direction (resp., anti-direction) of the lines of G(B). The map 

f(b
1

) is constructed by just allowing any change in the final 

(= outgoing) p;s and qfs of b1 to propagate downstream through the 

bubbles b of B, and allowing any change in the initial (= incoming) 

p;s and qis of b1 to propagate upstream through the bubbles b of 

B. To show that this propagation is possible we allow all of the 

change of energy-momentum coming into each bubble b that is downstream 

from b
1 

to go into the energy-momentum vectors associated with some 

two preferred lines outgoing from b. The existence of such lines is 

guaranteed by (3.6). Then what we have to show is the existence of 

a solution (p, p') of the following equations (3.7.a) ~ (3.7.d) that 
~ ~ 

depends continuously on (E, P) for (E, P) sufficiently close to 

some original value, which by a suitable choice of coordinate 

system can be taken to be c~. 0) with ~a strictly prositive 

number. In the following equations m1 and m2 denote the relevant 

masses. 

2 ~2 2 
Po - p = ml, (3.7.a) 

,2 ~ ,2 2 
Po - p . = m2' (3.7.b) 

p
0 

+ p~ = E, (3.7.c) 

.. ~" .~ 
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; + p' P, (3.7d) 

2 2 2 2 2 2 
Denote m1 + p2 + p3 (resp., m

2 
+ (P2 - p

2
) + (P

3 
- p

3
) ) by A 

(resp. B). Then it suffices to show the existence of a continuous 

solution (p
0

, p
1

) of the equations (3.8) and (3.9) below, where 

a continuous solution is required to depend continuously on the 

parameters (A, B, E, P1): 

2 2 
Po - P1 A. 

2 2 
(E - po) - (Pl - pl) 

From (3.8) and (3.9) one obtains 

(3.8) 

B. (3. 9) 

2 2 2 2 2 2 2 2 
4(P1 - E )pl + 4P1 (E - Pl +A- B)pl + (E - Pl +A- B) 

2 
Po 

- 4E
2

A = 0 

2 
pl +A. 

(3.10) 

(3.11) 

Since P~ I E
2 

holds on sufficiently small U, the existence of a 

continuous solution of (3.10) and (3.11) follows. This implies the 

existence of the required f(b1). Q.E.D. 

The following lemma is a variant of Theorem 2.8 of [14), 

designed to be suitable for our purpose. 

• \) 
') , 
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a: R. • Lemma 3.9. Let U be an open subset of a: and let U be def1ned by 

Ua: () IRR.. Let x. (x)(j = 1, ... , m) be holomorphic functions 
J 

II: defined on U which satisfy the following two conditions: 

x.(x) is real-valued on U. 
J 

(3.12} 

grad x. (x) JMa: (j = 
J 

1, ... , m) are linearly independent at each 

point in Ma = {xe:Ua: · 
def ' 

x. (x) = 0 (j = 1, ... , m)} 
J 

Let M be the manifold given by {xEU; x. (x) = 0 (j 
J 

(3.13) 

= 1," •• ' m)} and 

let f be a regular holonomic hyperfunction on M which is locally 

summable and with characteristic variety A. Let tji(x)(JO) be a 

holomorphic function defined on ua: which is real-valued on U and 

vanishes on n(A). Let N be a submanifold of U defined by 

{xe:U; ~ (x) = ... = ~ (x) = 0 (d < m)}. Then gd~f tO( Xd+l (x)) ••. 

o(x m (x) ) is a well-defined hyperfunction on N and its singularity 

spectrum is confined to the following set: {(x; f,;)e: ~1 S* N; there 

exist a sequence x(V) in 11, c(V) in 0: and c.(v)(j = 1, ..• , m) in ffR 
J 

which satisfy the following: 

x(v) ~ x (3.14.a) 

c(v)tji(x(v))-+ 0 (3.14.b) 

m 
c(v) grad +(x(v)) + ~ c.(v) gran x.(x(v)) + s 

j=l J J 
(3.14.c) 

• 
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.... 
-" 

The vector f,; in (3 .14 .c) is. identified with a cotangent vectors 

of N at x by the usual rule, namely, by being considered modulo 
. d 

vectors of the form .~1 a. grad x.(x) with a. in IR. 
J= J J . J 

This lemma follows immediately from Theorem 2.8 of [14]. In case 

n(A) is of codimension .1 in UC the function ~can be taken to be a 

defining function of n(A). Then the result is independent of the 

choice of ~. 

4i 
In what follows we choose MG(B),reg as M and M' x m 0 

as N. 

Thus we chooseR.= 4(n + i
0
), (p, q) as x, d = n + 4 m = n + i

0 
+ 4b

0
, 

xr(x) 
2 2 n • 

p - m (r = 1, ••. , n), X +.(x) = ~ e:rpr J"-1 
r r n J r=l • 

(j = 1,2,3,4)' 

( ) 
2 ,2 . 

X = qi - 1.1 i (i = 1, .•• , xd+i i ) and Xd+i +(b-1) j 
0 0 

:!:[b: r] p . 1 + ~i· [b: i]q .. 1 (b = 2, ..• , b , j = 1,2,3,4). 
r r,J- 1,J- o 

Definition 3.10. For a bubble diagram Band a set of Landau graphs 
b 

{Gb} 0 that fits into B, K ({cb}) is, by definition, the following 
b=l 4i 0 

subset of /:1 S*(M' x IR 0
): 

(i) 

4i 
{(p, q; l=l(u, w)e; /=1 S* (M' x ~ 0

); 

(p, q)e:MG(B),reg 
b 

(ii) (p, q) is au= 0 point for some ® G'b with {Gb} 
0 

B b=l 
C({Gb}) • 

in 

(iii) For any function ~ that (a) is holomorphic but not 

identically zero on a complex neighborhood na: of (p, q) in M~(B) 
a: 

(b) is real valued o~~(B), reg n n , and (c) vanishes on 

b 

sd~f 
0 c l c V [(n(Ch(fG ) () MG(B) () n , 

b=l b 
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where fG is the Feynman function FG with the conservation .s 4 
factored 

out, there exists a sequence of complex numbers c(v), 

8r(v)(r = 1, ... , n), ai(v) (i = 1, ••• , i
0
), complex four-vectors 

vb(v) (b = 1, ••• , b
0

) and complex vectors {p(v), q(v)) which satisfy 

the following conditions (3.15.a)- (3.15.e:).} 

q; 
(p(v), q(v)) e: MG(B) 

(PCv), q(v))-+ (p, q) 

dv) (p(v), q(v))-->- 0 

(3.15.a) 

(3.15.8) 

(3.15 y) 

~[b: r]vb(v) + 8 (v)p (v) + c(v) -¥-- (p(v), q(v))-+ ur 
b r r pr 

(r = 1, ..• , n) (3.15o) 

~[b: r]vb(v) + a.(v)q.(v) + c(v) ~ (p(v), q(v))-+ wi 
b ~ ~ i 

(i 1, ... , i
0

) (3 .15. e:) 

Remark on (iii). Since ~(Ch(fGb)) is a proper analytic subset of 

~(b), Lemma 3.8 guarantees the existence of functions~ that vanish 

on S and are not id-entically zero on n~ (\ ~(B) . If for any such ~ 

the reality condition is satisfied and (3.15) cannot be satisfied 

then (p, q; ~l(u, w)) does not belong to K
0

({Gb» 

Definition 3.11. For a bubble diagram B and a set of Landau graphs 

b 
{Gb }~1 that fits into B, K1 ( {Gb }) denotes the set of all points 

• ~--~ 

..-' 
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(p, q) of that satisfy the following two conditions: The 

. b 
point (p, q) is a u = 0 point for ~ Gb with {Gb }b=~ in C( {Gb}). (3 .16) 

There is no open neighborhood w of (p, q) in MG(B) such that the 
bo 

product ~l sb G ( )is an integrable function on w. Here sb G ( ) 
• b' p,q • b' p,q 

the function obtained by factorizing out the conservation a-function from 

the function associated with Gb and point (p,q) that appears in the 

expansion (1.2.s) of sb' the scattering amplitude, or of its Hermitian 

conjugate if cr(b) = - 1. (3 .17). 

Definition 3.1.2. A point ·(p, q) in MG(B) is called a tame point with 

respect to a bubble diagram B, if it belongs to MG(B),reg and if it is 
b 

not contained in K1 ({Gb}) for any {Gb}b=ol in G(B). We donote by MG(B) ,tame 

the set of all tame points with respect to B. 

Definition 3.13. M d(B)d=f{pe:M'; p is not a u = 0 point for G(B), goo e 

and for each q such that (p, q) is in MG(B)' the point (p, q) is 

contained in MG(B) } ,tame. 

Definition 3.14. For a bubble diagram B, K(B) is, by definition, the 

u r-: 4i 
closure of {Gb}e:G(B) [KCf Gb) U K0 ( {Gb}}] in v-1 S*(Mx IR O). 

Definition 3.1~. For a bubble diagram B, A(B) denotes the subset of 
4i 

~1 S*M' given by {(p; ~lu)e:~l S*M'; there exists qe:ffi 
0 

such that 

(p, q; ~l(u, 0)) belongs to K(B).} 

Now our main results are stated as follows: 

Proposition 3 .16. Let B be a bubble d.iagram that satisfies the condition 

bo 
(3.6), and let {Gb}b=l in G(B). Let (p, q) be a point in MG(B) ,reg 

that is not contained in K
1

({Gb}). Then 
b 

0 
(~1 sb G ( )) ¢G(B) is zero as a microfunction on 

• b'_p, q 

.. 
l..i / 
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11-l(w)- [{G\}e:~Gb}) (K(~Gt,h_;K0 ({Gb})] for an open neighborhood 

w of (p, q) that does not intersect K1({Gb}), Here 11 denotes the 
4. 4:fo 

projection from /=1 S*(M' x IR la) toM' x IR • 

Theorem 3.17. Let B be a bubble diagram that satisfies the 

condition (3.6). Then, on the condition that the scattering 

amplitude.has the property R, fB(p) regarded as a microfunction is 

. -1 
zero on 11 M d(B) - A(B), where 11 denotes the projection from goo 

.'-1 S*M' toM'. 

Proof of Proposition 3.16. First consider a point (p, q) close 
. bo 

to (p, q) and that is not a u = 0 point for any <ll> G \ with { Gb}b=l in 
B 

C({Gb}). It then follows from the definition that (p, (j) is not a 

u = 0 point for any Gb. Hence 

£ (G{) s.s. sb,Gb,(p,q) C ct,e:C(Gb) 

holds in a neighborhood of (p, q). In this case, by the general 

theory of microfunctions ([15] Chap. I), or, essential support ([16]), 
. ~ 

we can conclude that S.S.[( ~l sb,Gb,(p,q))<I>G(B)] is confined 

{Gb}~({Gb}) K(~ Gb) in a neighborhood of (p, q). (See Iagolnitzer 

[17] and Kawai-Stapp [4] for the detailed argument in this case.) 

Next consider a point (p, q) which is au= 0 point for somef Gb 
b 

with {Gb}b=~ in C({Gb}), but is not in K1 C{Gb}). Lemma 3.9 applies 

to this point. That is, the singularity spectrum of 

(n sb' G ( )) <I>G(B) is confined to K ({Gb}) at that point. Thus 
b b' p,q . 0 

we have verified that (rrsb G ( ) )<I> G(B) is zero as a microfunction 
' b' p,q 

;~ 
.... 

..... t. 
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outside { cJ:C ({ Gb}) (K Cf G 'b) V K
0
({ Gb}) • This completes the 

proof of Proposition 3.16. 

Proof of Theorem 3.17. Since pis not au= 0 point for G(B), 

4qi 
fB(p) has the form J{¥, sb(p, q))<I>G(B)(p, q) ~ d • Since we may 

change the order of summation of absolutely convergent series, we 

may assume, on the basis of the property R, that ~ sb<I>G(B) has the 

form 

.r. n s <I> 
(K},) D b,~~),(p, q) G(B) 

in a neighborhood of a point (p, q) in MG(B)· Since (p, q) is a 

tame point with respect to B by the assumption, Proposition 3.16 

implies that 

~ n s <I> ~kb) b b,Gb(~),(p, q) G(B) 

is zero as a microfunction outside K{B) • Then it follows from the 

general result on the integration of microfunctions ([15] Chap. I, 

Theorem 2.3.1) that fB(p) regarded as a microfunction is zero 

outside A(B). This completes the proof of Theorem 3.17. 

Remark 3.18. The above proof shows that what is needed is not the 

full property R, 

that is a u = 0 

but merely R(p, q) at each point (p, q) in MG(B) 

bo 
point for some ® Gb with {Gb}b-l in G(B). 

B -
We do not presently have much detailed knowledge about the 

geometry of A(B), particularly because of the need to consider 
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the closure of the union of infinitely many varieties. Note, 

however, that only finitely many terms are needed in the expansion 

(1.2a) if no n(~3)-particle threshold is relevant at the point in 

question •. (Zimmermann [18]. Cf. [4] and references cited there.) 

In such circumstances the singularities of fB(p) can be attributed 

to each Landau graph ~ Gb' on the supposition that the scattering 

amplitudes satisfy the property R. 

The following examples illustrate the effectiveness of our 

results in resolving u = 0 problems. A geometric study of A(B) will 

be given in section §4. 

Example 3.19. Let B denote the following bubble diagram. 

P1 

8 P2~ 

P3 Ps 
'f 

Figure 4 A bubble diagram B, 

Let G1 and G
2 

be the following Landau graphs. 

~ ~e 

Gl 

G2 

PI 

p2 

39 

ql 

q2 

Figure 5 Several Landau graphs 

I> 

Suppose that the masses associated with pr(r = 1, ••• , 6) and the 

internal lines of G1 G2 are all equal to m( > 0). Suppose 

further the following conditions on ~i(i = 1, 2, 3) and m. 

,.1- I> .. i - ~2 m 

JJ:3 <m 

9m2 _ JJ:32< 8 ll:i2 

Define M by ~ (= ~2) and ~ by ~J' respectively, 
2 

Since q3 

(3.18) 

(3 .19) 

(3 .20) 

2 
~ 

holds, the sets L(G
1

) (and L(G
2
)) can be described in the (s, o) -plane 

2 2 
as below (e.g. [19], p. 60). Heres= (p1 + p2 + p3) = (p4 + Ps + P« 

and o = (q1 + q2) 
2 

'_; ") 
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S ~ I 
I 

I 

8 

A 

F 

)? 

40 
(.) 

') 

--c 
,.. ..... ""' 

/ 
/ 

Figure 6 Singularity Surfaces. 

u 

6 

In Figure 6, L~(G1) {= L~(G2)) denotes the leading positive-a 

Landau surface (i.e. all ai are strictly positiv~, corresponding 

to G1 and the coordinates of the points A, B, ••• , Fare given 

as follows: 

A: 2 2 
(9m , 4m ) , 
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B: 

•) 
.... 

--Jl 

2 2 2 
(10m - ll , 4m ), 

2 2 2 2 2 
C: (9m , (9m - ll )/2), D: (9m , 4M""'), 

E: (s
0

, 4M2), F: 
2 2 

{ (2M + ll) , 4m ) • 

Here s
0 

is the smaller root of the following equation in s: 

2 2 . 2 2 2 2 4 
(s + Sm ) + aS(s + Sm )/m + a + 48 - 16 m 0, (3.21) 

2 2 
where a = JJ - Sm and a 4M2- 2m2

. Here we note the following: 

(i) The condition (3.19) guarantees that the s-coordinate 

of B is greater than that of A. 

(ii) The condition (3.20) guarantees that D is located in 

the segment AC and that the s-coordinate of F is smaller than that 

_of A. 

Now let us consider the analyticity of the function f defined 

below in the domain Q = {pEM; 9m
2 < s < s }: r o 

fd~f JsG (p', q) sG (q, p") ~B(p' • P",q) dq, 
1 2 

(3.22) 

where p' (p
1

, P2 , P
3

) and p" = (p4 , p5' p6). Note that every 

point in Q is a u = 0 point for the graph G1 f G2 • Define N by 

12 2 ,2 
Q x { q = (q1 , q2 , q3) E IR ; qi = )Ji and qi 0 > 0 (i = 1, 2, 3)} , 
and define'N by {(p, q)EN; q1 is parallel to q2}. 

par 
If (p, q) 
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belongs to N , then (p', .q) must lie on the open seqment DE. 
par 

Hence (p', q) does not lie either on L~(G1) or on the half line 

{(s,a); 
2 2 s = 9m , a ~ 4m } or on { ( s, a) ; 

2 2 
s ~ 9m · , a = 4m } • In 

other words, (p', q) does not lie on the singularities of fG or fG , 
1 2 

the complex conjugate of fG • Therefore these points 
2 

(p', q) can 

2 
s = (2M + JJ) • contribute to singularities of the.integral f only at 

However, (2M+ J1)
2 is smaller than 9m

2 (by (ii)). Thus this singularity 

of f lies outside the domain Q. 

Next consider the case where (p', q) does not belong toN ~ par 

but lies on sungularities of the integrand that can lead to u = 0 

points of the integrand. In this case (p', q) belongs to the open 

curve ·EC. Since the singularities of fG [i = 1 or 2] are contained 

+ i 
in the nonsingular hypersurface L1 (Gi) the set <!>(Ch(fG )) is confined to 

a: + i 
thecomplexification L (Gi) of L1 (Gi)' in a complex neighborhood of 

EC. Furthermore, the function sG. has near EC the form a(p', q) 
~ 

(!P(p', q) + r-1 o)
3

/
2

+b(p', q) for some holomorphic functions a 

and b, where <!>is a defining function of ~(Gi). ([4], Corollary in 

p. 222) Hence the point (p, q) in question is a tame point: i.e., 

the local integrability requirement is satisfied. 

never vanishes on the open curve EC, A(B) is void. 

verified that f is analytic in Q. 

Since grad-o,<j>~', lj) 
q 

Thus we have 

Although we have used here a result of [4], .which is based on 

the discontinuity formula, in order to guarantee that the point 

(p, q) in question is a tame point, (i.e. that the local integrability 

requirement is satisfied), we could have used the property 

R~. ,P(Pd.~(Gi)) with the 
~ 

definition of FGL p given at the end of 
i' 

Section 2. That is, we do not need to use the result in [4] if we 
L 

accept RG p' 
1' 

9' ~ 
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Example 3.20. Let B be the following bubble diagram and suppose that 

all the relevant masses are equal to m. 

s: 

Let Gb(b 

Gl 

p2 

Pr 

G2 

p7 

Ps 

Figure 7 A bubble diagram B 

1, 2, 3, 4) be the following Landau graphs. 

p2 

Pr 

q, 
q2 

q2 

q3 

') 

q5 

q4 

"I ,. 
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G4 
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q~q7 
Ps 

q3 . ps 

~
Pa 

q5 

q& p7 

q7 

Figure 8 Several Landau graphs. 

Let p be a point such that some point (p, q) belongs to MG(B)" 

Then p is a u = 0 point for ~ Gb. However, if the local 
B 

integrability requirement is satisfied then Theorem 3.17 artd property 

R ensure that the singularities of )'~1 sGb~G(B)(p, q) dq are 

restricted to a hypersurface H of Mr. 

The validity of the local integrability requirement (and also 

of~ at the relevant points_P) is ensured by the results of [4], 

§3.1, or by Zimmermann's result [18], or by assumption R~,P applied 

to the two-particle threshold graph G and the two particle threshold 

points p. 

Example 3.21. Let B be the same bubble diagram as in Example 3.20. 

Let Gb(b = 2, 3, 4) be the same Landau graphs as in Example 3.20 

and let G1 be the following. 

p4 

Gl 
p3 

Figure 9 A Landau graph 

q5 

q6 

1 

~. 

.:.J -'-· 
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Let Gi denote the graph obtained from G1 by contracting out the 

internal line L1 • Again each point (p, q) in MG(B} gives a 

u = 0 point for® Gb. 
B. 

In this case, fG is a locally integrable 
1 

function near L~(Gi)f'L~(G1), and the function fG (b = 2, 3, 4) 
b 

are bounded. The form of sG near the point in question has the 
L ·1 

form demanded by R (See [4], Eq. (4.2) and Eqs. (2.13) and (2.14) 

of the present work). And again the results either of [4] or 

alternatively, of the Landau postulate RL, ensure the validity of 

the local integrability requirement. 

shows that the singularities of J~l 
the indicated graphs are confined to 

Then Theorem 3.17 again 

sG ~G(B)dq associated with 
b 

a hypersurface of Mr. Now 

let Gi denote the graph obtained from G1 by con_tracting out the 

internal line L1 • Again each point (p, q) in MG(B) gives au= 0 

point for €)Gb. 
B 
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4. THE RELATION BETWEEN A(B) AND THE EXTENDED LANDAU VARIETY. 

The purpose of this section is to study in the simplest case 

the relationship between the set A(B) (Definition 3.15) and the set 

- * £(® Gb) introduced in [13], (1.50) (p. 114). 
B 

In what follows, we consider exclusively a bubble diagram B such 

·that #R(b) ~ 2 holds for every bubble b of B. For simplicity we 

consider the problem in the subset M1 of M' where the following 

condition is satisfied : 

For each bubble b of B there exist two external non-
(4 .1) 

parallel energy-momentum four-vectors touching upon b. 

It is readily verified that no point of M1 is a u = 0 point 

for G(B). Furthermore, under the assumption (4.1) we can choose a 

local coordinate system on MG(B) in an explicit manner as follows: 

Let (p
0

, q
0

) be a point in MG(B) such that p
0 

is in M1 . Then there 

exists a neighborhood w1 of (p0
, q0

) where the following condition 

is satisfied: 

There exist r(b) and r(b) (b 1, ... , b
0

) such that pr(b) and 

p~(b) are not parallel on Wr· 
By shrinking Wr• if necessary, we may assume further that 

Pr(b),v(b)/pr(b), 0 ~ Pr(b),v(b)/pr(b),O holds in w for some 

v(b)(= 1, 2 or 3). Define R
0 

by {r; r ~ r(b), r(b) forb= 1, •.• , b
0

}. 

* -[13] uses the notation £(D). 

• -f.. 
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.. (2) ( 
Let pr(b) (b = 1, ... , b

0
) denote the two-vector . Pr (b), vl (b), 

Pr(b),v
2

(b))(v1 (b) < v2 (b), v1 (b),v2(b) ~ O,V(b)). Let pr and 

~i denote the three-momentum-vector part of p and q., respectively. 
r l. 

Define t• to be the (3n- 4b )~vector obtained from (p1 , ... ,p) by 
o n 

deleting pr(b)' replacing pr(b) with p!~~) and replacing pr(r ~ R
0

) 

with pr. Then we can choose (p', V (~ (p', ql' ... , qi ) ) as a 
0 

local coordinate system on w1 . We call it a preferred local 

coordinate system. The corresponding cotangent vector is denoted 

... ... 
by (u', w). This is a [3(n +i

0
)- 4b

0
]-vector and, as usual, it 

can be identified with a representative of the 4(n + i )-vecto~ 
0 

(u, w).modulo vectors of the form 

b b 
N(v, ~ a)d=f ( f [b: r]vb + 13 p , .; [b: i]vb +a .qi) 

e b=l r r b=l 1 o 

1 .,;;; r .,;;; n, 1 .,;;; i .,;;; i
0 

(4.2) 

for some four vectors vb and. real numbers Brand ai. In what follows 

we denote by (0, ~·. O, ~) the 4(n +i)-vector which is canonically . 0 

... ... 
assigned to (u', w) by setting to zero the components u , u_(b)' r,o r 

ur(b),v(b) and wi,o of the 4(n + i 0 )-vector (u, w). 

We note that the above procedure for constructing a preferred 

local coordinate system works equally well for the construction of an 

explicit local coordinate system on M'. Such a local coordinate 

system is also called a preferred local coordinate system and is 

denoted by p' 
We now discuss, under the ·assumption (U) given below, 

-J ·; 
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the relationship between£'( ® Gb) and the part JI({Gb}) of 1\(B) to 
B 

which@ Gb contributes .• This part A({Gb}) is, by definition, the 
B 

following subset of ~1 S* M': {(p; ~1 u)c~l S* M'; 
4i 

(i) There exists qc~ 0 such that (p, q) is a u = 0 point 

for®Gb. 
B 

(ii) For any point (p, q) that is a u 0 point for® Gb, 
B 

(p, q; ~l(u, 0)) belongs to K
0

({Gb}) , 

We shall examine cases that satisfy the following assumption: 

(U) If a point (p , q ) is au = 0 point for @Gb, then (p , q) 
o o B o o 

is in L (Gbo(b))* for each b(l ~b ~b) and the variety ~(Ch(fG )) 
0 0 b 

is contained in L(Gb)t in a complex neighborhood of (p , q ) for 
0 0 

each b(l ~ b ~ b ) . 
0 

The situations considered in Example 3.19 and 3.20 are simple 

examples that satisfy the assumption (U) • 

Now we show that JI({Gb}) is contained in £~Gb). We begin our 
B 

discussion by preparing a geometric result on Landau surfaces. Until 

the end of the proof of Lemma 4.2 we abbreviate Gb by G, for the sake 

of simplicity of notation. Further we denote G by G(m~) to emphasize 

its dependence on the mass m~ associated with some particular 

internal line Lr As a mathematical device we allow mR. to be a 

complex number. 

In what follows we use a preferred local coordinate system (p') 

on M'. Note that its dual vector (u') is in a one-to-one 

* See Chandler-Stapp [20] for the definition of L (G+). 
0 

The definition 

of L (G-) is the same except for a change of sign of all ct' s. 
0 

Chandler-Stapp use a script L, 

.... 
J, '~1, 
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correspondence with a 4n-vector u modulo vectors of the form. 

-[j (r): r]a 
4 

- Srpr (ac~ ,SrcR). 

Lemma 4 .1. Let ~· Cv) be any sequence of (3n - 4) -vectors 

converging to a point P in 1
0 

(G+) c M' and let L1 be any single 

specified internal line of G. Then there exists a sequence of 

complex numbers m1 (v) that converges to m1 and that is such that 

the point ~'(v) is contained. in L(G(m
1

(v)
2))t. Futhermore, we 

can find a complex neighborhood w of P and a holomorphic function 

... 2 
f(p 1 , m ) defined on w x {mea:; Jm - m1 J <£} so that 

t 
L(G(m2)) f\ w 

.... ... 2 
{p'cw; f(p', m) 0} <Jm-m1 J<d (4.4) 

and 

... 2 2 
grade-"• 2)f(p', m) I 0 on L(G(m ))1\w. 

P , m 
(4 .5) 

Proof. Let CJ. be the set of Landau constants corresponding tothe 

solution P of the Landau equations. It follows from the definition 

of L
0

(G+) that ct1 is strictly positive. Now, a result of [20] 

(Theorem 6. See also [4], pp. 197-198.) guarantees the existence 

of a holomorphic function f(p', m2) defined in a complex neighborhood 

of (P, mi) which satisfies conditions (4.4) and (4,5). Furthermore, 

it follows from the definition of the Landau equations that 

~ ('• m2) 
2 Po' o am 

..l 2 
2d(p~, mo) CJ.R-,0 (4 .6) 

~ 

where ctR,,O is the Landau constant corresponding to a solution p'
0 

of the Landau equations associated with G(m2) and d(~', m
2

) is a 
0 
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holomorphic function that does not vanish in a neighborhood of 

2 af 2 (P, m>!.) . In particular, --2 (P, m1 ) I 0 holds. Hence the 
am 

implicit function theorem gua~antees the existence of required m1 (v)
2 

for p'(v) sufficiently close toP. Let k {v), v.{v), u (v), a (v) and 
>!. J r >!. . 

f3 (v) denote the quantities giving the solution p'(v) of the Landau 
r 

equations associated with G(m(v) 2). We now use a (3n - 4)-vector ~· 

to represent a 4n-vector u, so that~· may be the dual vector of p'. 
Since we are concerned with quantities on S*M', we may further 

normalize~· by imposing a normalization condition I~' I= 1. Under 

this normalization condition the quantities a (v)(>!. = 1, .•• , N) and 
,\!, 

~ ~ 

u'(v) converge to a and u', respectively. In accordance with this 
,\!, 

~ 2 
normalization we normalize f(p', m) so that 

I af /a~· I 1 

holds. Furthermore we have the following 

(4. 7) 

Lemma 4.2. 
~ 2 

Let f(p', m) be the•function given by the preceding 

lemma. Let c(v) be a sequence of complex numbers which satisfy the 

following: 

..). 2 
c(v)f(p'(v), m1) + 0. (4.8) 

Then we have the following: 

2 2 
c(v)a1 Cv)(k1 Cv) - m1) 7 0 (4. 9) 

( 
_. 2) ... 2 

c(v) grad-",f(p'{v), m1 - grad~,f(p'(v), m1 (v) )) 7 0. 
p p . (4.10) 

~ /c:: 
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Proof. Let us first prove(4.9). 
2 

Since k1 (v) 
2 

m
1

(v) holds by 

definition, it suffices to show 

2 2 
c{v)a1 Cv)(m1(v) - m1) 7 0. (4.11) 

On the other hand, by the Taylor expansion of f, we find 

... 2 ~ 2 
f(p'(v), m1)- f(p'(v), m1(v)) 

Clf <-" 2,. 2 2) = - 2 p ' ( v) , m1 ( v) J ( m1 - m1 ( v) 
aml 

+ g(p'(v), m~, m1 (v)
2
), (4.12) 

where 

2 2 jgj /(m1 - m1(v)) 7 0 

Since 

af (- 2 - 2 p' (v), m1 (y) ) 7 2d(P)a1 I 0, 
am1 

and since f(p'(v), m1 (v)
2

) 0 holds, (4.12) combined with (4.8) 

entails 

· af - 2 2 2 
c(v) - 2 (p' (v), m1 (v) )(m1 - m1 {v) ) 7 0 

. aml. . 

:r ~. 

!' 

(4 .13) 
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In view of (4.6), we obtain the required relation (4.11) from 

(4.13). This completes the proof of (4.9). 

We next show (4.10). For that purpose we first note that (4.11) 

actually implies 

2 2 
c(v){m1(v) - mi) + 0, (4 .14) 

because the limiting value of a1 (v), i.e. a 1 , is different from 

zero. Again, by the Taylor expansion, we find 

( 
-' 2 ~ 2,\ 

c(v) gradp'r~(p'(v), m1)- grad;rf(p•(v), m1)/ 

""• 2 2 2 2 c(v)h(p (v), m1 , m1 (v) (m1 - m1 (v) ) (4.15) 

with a vector h of holomorphic functions. Then (4.10) immediately 

follows from (4.14) and (4.15). Q.E.D. 

Let us now reinstatE the index b of Gb and denote by fb the 

corresponding f given in Lemma 4.1. 
0 ~ ... 

Let fb(~', q) denote 

"" ... 2 
fb (p', q, m .R(b) , .where L R.(b) is an internal line of Gb. Then we 

may take the function~ in Definition 3.10 to be ITfb
0

• Using the 
. b 

set of numbers c(v) given there, we define cb(v) by 

cb ( v) 
0 ... ... 

c{v) rr fb,(p'(v)' q(v)). 
b';;!b . 

(4.16) 

Trenthe condition (3.15.Y) implies that 

0 ...) .... 
cb(v)fb(p'(v), q(v))_,.O. 

·._ ·- '--" 
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Thus the condition (4.8) of Lemma 4.2 is satisfied for the pair 

( 
0-" - :'I cb(v), fb(p'(v), q(v));. Then (4.10) guarantees that we may replace 

0 ... ~ ... ~ 2 
grad(p,q/b(p'(v), q(v)) by gral(p',qfb(p'(v),q(v), mR.(b)(v)) 

in (3.15o) and (3.15£) without changing the limiting point (~, ~). 

Here we have used the fact that 

0{~ ... 0{~ - ) c(w) grad rr fb p'(v), q(v»7~ cb(v) grad fb p'(v), q(v) . 
b b 

b b b b b . 
Now let us denote by p (v), k (v), a (v), S (v), v.(v) and 

r R. R. r J 

ub(v) the corresponding quantities which appear in the Landau 
r 

2 b 
equations associated with Gb(mR.(b)(v) ). We expand ur(v) to a 

4(n + i
0
)-vector,by setting the components irrelevant to Gb to 

zero. For the i-th explicit internal line of B, there exists a 

unique b+(i)(resp., b-(i)) such that [b+{i): i] = + 1 (resp., 

[b-(i): i] = -1). Denote by j+(i) {resp., j-( i) the unique 

vertex of G + (resp., G ) that L. terminates upon (resp., starts 
b (i) b-{i) ~ 

form). Then it follows from the definition off~ and the normalization 

(4.7) that (see [20] Theorem 6. 

0 ... "" ) (o, grad-' f + (p', q) 
qi b (i) 

v + + s j (i) i,+ (v)qi(v)) 

(4 .16) 

and 

(0, grad~ f
0 (p' q)) =(v._{") +e.- (v)qi(v)) (4.17) 

qi b-(i) J .l. l., 

hold with some constants Si + (v) and S - (v). Here 
' i, 

( 
0 _,. "") 0, grad-' f + (p', q) denotes the four-vector 

qi b (i) 



~i(v)). 

~ 
af

0 

0, b±(i) 

aqi,l 

afo 
b± (i) 

aqi,2 

Since 
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fo ~ a b±(i) and q.(v) 
• l. 

• aqi,3 
(

I 2 · 2 
lqi (v) + \l~ , 

0~ 0 ~ ~ ) 
~ cb(v) grad.l fb(p'(v))+ cb+(i) + (v)grad~ f + (p'(v) ,q(v) 
b qi b ( i) qi b ( i) 

0 .l .l. 
+ c _ (v) grad_. f _ (p'(v), q(v)) 

b ( i) . q i b ( i) 

holds, (4.16) and (4.17) entail 

(0, ~ cb(v) grad~ fb
0
(t'(v), q'{v)) 

b qi 

= (c + (v))(v + (v)+ f\ + (v)qi(v)). 
b ( i) j ( i) •. 

- (c _ (v)) (v _ (v) + Bi -
b ( i) j ( i) , 

(v) q.(v)). 
l. 

(4 .18) 

We now note that 

{c + (v) Bi + (v) - c _ (v)B. - (v))(qi(v)
2

- \li•
2

) = 0 
b (i) , b (i) l.. 

2 
holds, because qi(v) - IJ!2 

l. 

!!' 

(4 .19) 

0 holds by the definition of qi(v). 

.f-

ss. 

Note also that the left-hand side of (4 .18) tends to z·ero by the 

definition of A(B). Thus we assign (q.(v), c + (v)B. + (v) 
l. b (i) 

1
' 

- c _ (v)B. (v)), (k,(v), cb{v)a,{v)), (cb{v)v.(v)), and 
b (i) 1

'- "' ... J 

(cb(v)u;(v)), respectively, to the i-th explicit internal line 

of B, the internal line L2, the vertex Vj of Gb, and the external 

line L; of Gb that is not an external line of B, and obtain, by 

virtue of (4.9), (4.18) and (4.19), a sequence needed to define 

- 0 £((9Gb) ([13] p. 114, (1.50) and p. 115 (1.50 h.l) and (1.50 h.2) 

This proves that A(B) -G~B) £(® Gb) is contained in £'(® Gb) on 
B B 

the assumption (U). This is what we wanted to prove. 

e ? 
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FIGURE CAPTIONS 

Figure 1. The (n +!)-vertex three-particle-threshold graphs Gn. 

Figure 2. A bubble diagram B. 

Figure 3. Some Landau graphs. 

Figure 4. A bubble diagram B. 

Figure 5. Several Landau graphs. 

Figure 6 . Singularity Surfaces. 

Figure 7. A bubble diagram B. 

Figure 8. Several Landau graphs. 

Figure 9. A Landau graph. 
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