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GEOMETRIC PROPERTIES OF LEPTODERMOUS DISTRIBUTIONS
WITH APPLICATIONS TO NUCLEIT ' l

William D. Myers
Lawrence Berkeley Laboratory
University of California

Berkeley, California  9u4T720.

October 1972

Abstract
RelétionShips between geometric;l properties of leptodermousvdis-
tributions are employed in the interpretation of experimentally determined
nﬁclear density~distributions and optical model potentiai wells. It is found
that nuclear siZés imply a density.for neutral, symmetric nuelear‘matter
corresponding touz.'o = 1.16 fm (kf = 1.31 fm-l) and that the densities and
potentials can be related to each other by means of a saturating two-body

interaction.

TWork performed under the auspices of the U. S. Atomic FEnergy Commission.
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o | 1. 'Introduction
Many”differenf algebraic functions have’been‘émployed from fime to

time to represént nuclear density’distributions‘and poteﬁtial wellsl). The
parameters.océurring in these functions (chosen to be;tvreproduce some
experiﬁental résﬁlt) are generally without special physical significance.
ConéeQuently, various "abstract" quantitieé have been employed in an attempt
to characterize these functions in ways independent of the particular functions
used. Quantifieé of this type; such as the half—value radius or the root-
mean—square radius, have‘béen chosen because ﬁhere is either theoretical
expectation or émpirical observation that they are neérly model independent.

| Strictlylspeaking, none of the abstract quantities commonly empibyed
to characterize the>size'of the nucléar density distribution or potential well

are expected,;onvthe basis of nuclear saturation, to be proportional to Al/3.

1/3

When the ratio of these quantities to A is referred to as the "nuclear
radius constant" or simply r,, a great deal of confusion is created. This

confusion, which permeates the nuclear physics literature, can be easily avoided

if the characterization scheme outlined in the next section is used. .
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' 2. Geometrical Preliminaries
2.1. LEPTODERMOUS' DISTRIBUTIONS
The discussion of radial geometric properties of nuclei (here assumed

to be spherical) is most easily carried out in terms of the quantities:

o
C ', "the "central radius,"

R , the‘"equivalent shaerp radius," ‘ v

- | : . (1)
Q@ , the "equivalent r.m.s. radius" and :

. o |
b , the "surface width."

It is essential for the clarity of the follow1ng dlscu551ons that the deflnltlons

of these quantities and the relatlons between them be pre01se1y understood.
The central radius C and the surface width b are the integral counter-

- parts of the punctual quantities:

the half-value radius, and _
‘. [ . | (2)
t10_go > the 10-90% distance.

By >

They are defined in terms of linear moments (as oppoéed to Spherical_moments)

of the derivative of the normalized [£(0) = 1] dlstrlbutlon function. If (as

illustrated in flg. 1) f(r) is the distribution of 1nterest then

1-1ep-to‘-der-mous‘ - having a thin skin. This term has been employed by

Swiatecki and co—workersz’s) for the depiction of disﬁributions which are

essentially homogeneous except at the surface. Its application implies that
b/R << 1 and that all deviations from bulk behavior are confined to a relatively

thin surface region.
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C = ./(. g(r) r ar ;
. 0 '
b2 = glr) (r - ) ar -, | - (3)
0 o |
- g(r) ar=1 ,
0

where the surface distribution function g(r) is defined by the expression '
g(r) = -af(r)/ar . o (%)

 The quantities C and b are the first two moments of the distribution g(r). In
a similar way additional information about the surface is available from
higher moments such as the skewness and the kurtosis of this distribution,

bwhich'cah be obtained from ', and Fh, respectively, whére

3

(e

rn=/ g(r) (r- 0% ar . (5)
] |

- This approach to the characterization of leptodermous distributions hag been
- brought to a high degree of refinement by Sﬁssmang), and the notation used
here closely follows his.

For the commonly used Fermi -distribution function

f(r) = 1/{} + expl(r - ¢)/2z]1} , (6)
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Fig. 1. The normalized, spherically symmetric, leptodermous distribution f(r)
and the corresponding surface distribution function g(r) are plotted

against the;radial distance r. The values of R and t are given

. 1/2 _ 10-90
for this distribution in addition to the values of C, R, Q, and b whose

use is' advocated here. Sharp density distributions having the same volume
integral as f(r) and radii equal to C, R, and Q have also been drawn in

for the purpose of‘demonstrating the geometrical importance of R. B ;
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c/z

N ey . o . = << |
the quantities C, Rl/2’ b, apd t10—90 are related to c and.z (for.e 1)

_ : |

by the expressions ;

C = R1/2 = C 0, i

. . . B

b= (w/V3) -z , - | (7)

I

%1090 = (2 1n 9) -z .

The_neit quantity of interest is the equivalent sharp radius R. It is
defined here as the radius of a uniform sharp distributibn'having the same value

in the bulk and the same volume integral as f(r), i.e.,

o o
%n R3S £(bulk) = bn / £(r) r ar . (8)
' 0

For smooth leptodermous distributions (sugh as a Fermibdistribution)'the-bulk
value corresponds very closely to the central vélue éhd'to’this apprqximation
f(Q)_can be substitutgd for f(bulk) in eq. (8). oOf cqufsé, for distfibutions
that are leptodefmous exceﬁt for some smooth oscillafions in the interibr
(for example, nuclear density distributions found in shell model or Hartree-

Fock calculationé).the punctual value f(0) is clearly inadequate for the

definition of R and some suitable average bulk value must be employed.

The final quantity of interest is the equivalent root-mean-square |

radius Q, which is defined by the expression , o :

K

?=2¢5 - @
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where

0

. 0, £o .
() = f r? £(r) r? dr// £(r) r° ar . - (10)
. 0 ) '
The;quantitbe ﬁs the special case for k = 2 of the quantity

7 1/ -
R, = [—————k§3 (rk)] R B (11)

of Ford and Wills3)

of the'three,quantitieé cC, R,Vand Q, the quantity of fundamental geometric
importance is the equivalent sharp radius R. A sharp séhére having this radius
is in ﬁ bagic sense representative of the distribution f(r). If the uniform
central density of such a sharp sphere is set equal to the bulk value Of f(r),

as defined in connection with eg. (8), then this sphere has the same volume

intégral as f(r) and it differs from f(r) only in the surface region (namely
in the degree of diffuseness). The quantity C is mainly of interest because

R = C for the symmetric surface functions (such as Fermi distributions) often

1/2 _
emplqyed to characterize nuclear densities and potentigl wellé. The equivalent
r.ﬁ.s. radius Q is of interest since it is e#pected that this is the éroperty
of ‘the distribufion that is measured in some experimen£s3fh). As éan.be seen
in‘fig. 1, sharpvspheres with the same volume integral as f(r) ﬁaving the radii
C Qf Q.grdssly misrepresent the appearance of the function f(r), since the&
substantially differ from it over the bulk region.

Stssmann has given exact expressidns relating C and Q to R in terms of
b and higher,ordér moments of the surfacee). However, the following approximate

expressions suffice for most applications, and serve as simple reminders of

the relationships of these quantities to each other:
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Fig. 2. The dashed lines plotted against 82 represent the quantities Q/R and
C/R for a Fermi function, and the solid lines represent the predictions

of eqs. (12). The upper scale gives the corresponding nuclear mass number.
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c=rl1-8+...]1 , '
\ (12)
Q = R[1 + g-ez + .01, ' o
where - '~§
B=1b/R . | ' (13)

The range of applicability of these simple rela@ionships can be seén ih fig. 2
where tﬁe ratios C/R and Q/R have been plotted against Bz.for a Fermi ais-
tribution. The solid straight lines correspond to the épproximg@e predictions
of eqs. (12) and the dashed lines to the actual valués. At the top of the
figure the approximate nuclear mass number is plotted éorresponding to the
assumption that nuclear density distriﬁutions can be represented by Fermi-

distributions with R = 1.16 Al/3

and b = 1.0. We can see from this scale that
egs. (12) are expected to be accurate to within 1% for C and 5% for Q.all the ;
way down to mass number A = 9. They are considerably more accurate over the
bulk.of the periodic table.

The relationship of C and Q to the more fundamental quantity R can be
seen by referring back to fig. 1. In this figure a Fermi distribution with
Rl/é = 6.00 fm and t10-90 = 2.4 fm has been chosen to illustrate the geometric

principles just described. The surface distribution function g(r) has its

first moment C — identical to Rl/2 in this case — and second moment b indicated

in the figure. The radius R of the sharp sphere représenting the function

]

f(r) is shown, as is the radial location corresponding to the value of Q. In

any discussion of the geometric properties of this system, interest should
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foéus on ﬁhe equivaient sharp spﬁere whose radius is R and on the value of the
surface thickness b. Other gedmetric properties that may be of interest can
then be obtained from egs. (12) or similar expressions.:

2.2. DISTRIBUTIONS RELATED BY CONVOLUTION.'

There is a second distinct class of geometrical relationships in
addition éo the ones just discﬁssed that is also of considerable interest.
These rélqtionships connect the geometrical properties of one leptodermous
,distributﬁon to the.correéponding properties of a secoﬂdbdistribution which is
obtained from the first by folding in a.function of $hort range.vane example
is‘a‘nuclear-charge diétribution obtained by folding the proton charge
distribution into the assumed spatial distribution of the protons. Another
example is a siﬁgle—particle or optical.model potentiai well obtained by folding
abtwo-quyvintefaction into the nucléar_density distribution.

If the first distribution is fl(;i) and the folding (or convolution)

function is fé(?ie),,then the second distribution fg(Eé) is defined by

CARY R AR NCRE. )

Probably the best known expression relating the geometric properties

- of fl‘andlf2 is

(r2)2=<r2)1+(r2)c . (15)

Substitution of eq. (9), which relates Q and (r° ), into eq. (15) results in

the expression

2
3 (r°) _ (16)
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Another useful_rélationship that can be easily establiéhed with the aid of

egs. (12) and (19) is

bg = bi +'b§ + terms of order 82 s (17)

where the "Width“'bc of the folding function has the special definition

2

=+ S .
b = 3 (? . - : | | (18)

Since the expression relating'the values of Ql and Q2 shows that Qé > Ql in
correspondence ﬁith one's intuition that leshould somehow be bigger than fl’

it may come as a surprise that the équivalent sharp radii Rl and R2 are equal

for leptodermous distributions where B << 1. | |

| .Thié résﬁlt follows directly from the fact that the volume integggl of f2
is equgl to the product of the volume integrals of fl and fc. The easiest way
to establish the'rélationsﬁip between Rl and R, is to consider a normalized.
leptodermdus function £ (where fl(bulk) = 1) and a folding function fchwhose
volume integraiiis unity.  In such a case-f2 will also:be normalized |

(f,(bulk) = 1) and have the same volume integral as f,. Then from the definition

1

of R in eq. (8) it is easy to see that

R =R, , whenB <<1 . | ’ (19)

Equations (12), (13), (17), and (19) can be combined to give the

te

following set of relations between the geometric properties of fl and f2’.

which hold for 82 << 1:




~13-. : » LBL-1259

_ 2
: : Cb = Cl(l - Bc.+ .j.) ’
Ro =R » | | | t20)
Q2=Ql(l+‘s-si+ ..-) .

2

These expfessions show that when a short-range function is folded into a
léptodermgus distribution, another distribution is obtained that has a larger
equivalenﬁ r.m.s. radius Q, an identical equivalent sharp radius R, and a

central radius C that is smaller than the values of the corresponding

quantities for the initial distribution.

|

i

i i
o
\ ’ .
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3. Nuclear Dehsity Distributions

3.1. INTERPRETATION OFJEXPERIMENTS

The geoﬁetrical considerations of the previous séc#ion, which apply to
any leptodermous distribution, are especially qseful in the'intefprefation of
experimental measurements of nuclear density disfribufibns. They permit one
to extract from these experiments an estimate of the equilibrium‘density po of
neutral (all eleqtromaénetic effects ignored), symmetric“(bn = pz):nuclear

matter. The quantity ro (a fundemental constant of nuclear physics) can then

be calculated from the relationship

Po = (E"Trg

-1
3 )

. , - (21)
If nuclear metter were incompressible and nuclei had bulk neutron and

proton densities in the ratio N/Z, then the equivalent sharp radii Rn and RZ of

1/3

the neutron and proton distributions would be equal and proportional to A’

with a proportionality constant equal to ro, i.e.,
R =R =ro A3 . S o (22)

of coufse, this simple relationship is not expected t§ hold exactly because
nuclear matter is not completely‘inéompressible. Smali déviations are exﬁected -
for'example, see refs, 5'-9) — because the surface energy fends to squeeze the
nucleus to a.smaller radius, and both the Coulomb energy.énd the loss of cohesion
due to excess neutrons cause the nucleus to dilate to a larger radius. SinCe

the relative'importance of these effects varies through the periodic table, some
nuclei are smaller and some larger than is predicted by eq. (22). Another

effect of the excess neutrons is the creation of & neutron skin.

t
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Consequentiy,‘nét only does'the!average radius Rp'différ from eq. (22), but the
separate neutron and proton radii (Rn and Rz) differ frbm-Rp and from each

other. The expressions relating these quantities are

(NRn + ZRZ)/A . R Rp + (A)t E

2]
L}

: and . (23)
t=R =R, R#Rp‘—(%)t_,

|
where the-effectivé sharp radius of the métter distribution Rp is the weighted.
average of R and szénd t is the neutron skin thickness._'[Seg ref. 6).]
It;should'be noted that even if nuclear matter wefe incompreésible and

/3

Rn and RZ were strictly proportional to'Al , the quantities C and Q would not

[as can be .seen in egs. (12)] be simply pfoportional-to-A1/3. In spite of thig,
‘attempts are oftén made to establish such relationshipé. Exceptions to this
erroneous»%pproacﬁ:are to be found in a‘nﬁmbér of places such as refs. ;) and
lO) where élton-makes use of expressions similar to egs. (12) (bﬁt_specialized
to Fermi diétfibutions and taken to higher order) to relate C and Q to the more
fundamental quantity R.

1/3 is plotted

Figuré‘3:shows what happens when the ratio of C or Q fo A
' against A for nucléi:throughout fhé’periodic table. The data points, which are
all.from ref; l), afe represented by circles when they ﬁre'baséd on Q values
from u-mesic atqm'expériments and by triangles when they are based on C (or
Rl/é) values from»électron scattering. The reason foriliéting the C values for
electron scattering is that this quantity and the quanfity b'are the properties

of the nuclear charge distribution that are determined (to lowest order in 82)

»by the-experimentsll). Similarly, the quantity Q is plotted for the u-mesic
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PRYE

1/3

Fig. 3. A plot of experimental values of Q/A from u-mesic atoms and C
from electron scattering against mass number A for nuclei throughout the

periodic tablel).
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atom experiments_bécause it is the one.actually determihédS). While the Q/Al/3
values are not exactly constant they do seem to tend to an és&mptotic value of
about 1.2 fm, and.the C/Al/3 values seem to tend to approxlmately 1.1 fm. The
numbers obtained in this way are often erroneously assumed to correspond to the
fundamental constant r, defined in eq. (21).

That thefe is no discrepancy between the two different types of
N 1/3

measurements is easily seen in fig. k. If Rz were neafly proportional to A

then eqs. (12) could be rewritten in the form

cz/Al/3 ~all - (b/a)2 a3+ .1,

QZ/1/3 [1+_5(b/a) 3L .

-1/3
2/3

These express1ons lead us to expect straight lines (in the limit of A << 1)

when the experlmental'ratlos of C and Q to Al/3

are plotted against A In
fig. 4 we see that this expectation is fulfilled and that the. data, except for

the lightest nuclei, are consistent with straight lines having a common'intércept

at
= 1.128 fm , S A - (25)
and slopes corre;ponding to
b=1fm . | | o (26)
Accofding to‘eqs; (7), this implies a value for tlo_go.of 2.4 fm for a Fermi
1/3

distribution. In this figure the solid squares repreSeht values of'Rz/A
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determined from thé C, and Q, vglues by inverting egs. (12). The figure shows
that this éuantity_is in fact' nearly independent of nuclear size..

If nuclear matter were strictlj incompressible and if the equivalent
sharp.radii of the neutrons and protons (Rn and.Rz) were identical, then the
_fundamental constant o wouid have the same value as the proportionality
constant (l.léB fm) determined above. The actual, more.complex, relationship
between thgsejqﬁgnti?ies has been investigated with the droplet model of nuclei

l ' . .
which includes such important effects as compressibility and the influence of

556).

the neutron exéess on the creation of a neutron skin
3.2. NUCLEAR RADiUS COﬁSTANT

Fi%ure 5jgives the results of a droplet model calculation performed
for the puépose of.showingvthe relationship between r, and the experimentally

’ |

determined propqptionélity constant that relates Rz (the equivalent sharp radius
of the pfoton distribution) to Al/3. The grey band centered‘at 1.128 fm is
meant to represent the experiméntal results.from the previous figure (notice
‘the greatly expanded écale). When a droplet model calculation is carried out
for nuclei throﬁghout the périodicvtable for a system whose ﬁﬁclear radius
constant ro.is 1.163 fm [recall that ro is related to‘po,'the density of N = 2

1/3 is given by the

.nuclearbmatte;, by eq. (21)], the value of the ratio RD{A

dashed line. For most nuclei this line lies below that at ro = 1.163 fm,

_because-these nuclei are being squeezed by the surface tension. As one proceeds

through the periodic table this squeezing (which is strongest for the lightest

ﬁﬁclei) is graduélly offset by the Coulomb dilatation so that above A 51250 the
1/3

" nuclei are larger than r, A . (The increase in this quantity for small A

‘values is a geometrical rather than a physical effect, brought about by the fact

~ that light nuclei are no longer leptodermous. )
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and C/A-l/3 as were used in

/3

Fig. 4. The sgme'experimenfal values of Q,/Al/3

fig. 3 are plotted heré against A-2/3. The values of R/Al

experimentalipoints are also plotted and afe seen to scatter about:

the solid horiéontal’line at 1.128 fm. The corresponding predictions -for B

1/3

Q,/Al/3 and C/A are given as dot-dashed lines.

for these
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5. The dot-dashed lines represent the results of droplét model calculations

for‘R /Al/3 1/3

and R /A plotted against A for nuclei along beta stability.

1/3

Thelr welghted average R /A is plotted as a dashed line and the

correspondlng value of r° is indicated by the SOlld horizontal line at
1.163 fm. The striped region corresponds to the approleate location of

the experimental values of RZ/Al/3

2N
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The_dPtAdashed lines‘showing the separate néutron‘and pfoton radii,.
Rn and RZ’ shgw the séme trend with A as the total matfér radiué Rp' In
addition they spread further ahd further apart as the néutron skin thickness_
grows due to thé increasing neutron excess with increasing values-of‘A. The
growth of this neutron skin (whose thickness is about 0.25 fm at A = 200) reduces

1/3

the increase in RZ/A with the consequence that_this ratio is ngarly constant
throughout the periodic table. The value of r, = 1.163 fm was chosen for this
calculation sé the experimental aﬁﬁ calculated radii for the proton distfibutions
would agree. |

We can Eonclude that the nuclear radius éonétant of standard nuclear
matter can beiinferfed with considerable accuracy from the experimental fésults,

. which only determine the radius of the proton distribution Rz’ and that it has

the approximate value

i

ro = 1.16 fm , . | (27)

1 An uncertainty of perhaps

which corresponds to a value for k. of 1.31 fm
+1%% should be assigned to this number because of the scattér in the experimehtal
points and because there is some model dependence in the way it is obtained.
This-i; the vélue of ro that should be employed in nuclear matter calculatioﬁs
rather than the unwarrented choice of values like 1.09 fm ér 1.20 fm that we
discussed éarlier in connection with fig. 3.

The eéuivalent sharp radii of the proton distribﬁtions are given -
approximately by Al/3 times the proportionality constaﬁt in eq. (25), 1.128 fm,
or more preciéely by performing the appropriaste droplet model calculétion6) with
the value of ro; 1.16 fm, given above. Once R is known ﬁhen eqs. (12) can be

used to make the simpie geometrical corrections necessary to determine C anva

for comparison with experiment.
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3.3. vINFLUENCE OF PROTON CHARGE DISTRIBUTION

Aﬁéther question that.sometimes arises in the interpretation of
experimental measurementsvof the nuclear charge distribution is whether of not
the proton charge distribution shoﬁld be‘unfolded'in order to obtain the
distribution_of the protons themselves. This is an important distincfion, since
the ﬁulk'denSity of the protons is the appropriate quantity to cénsider in
relatingvghé experiments to a value for the constant To. Fortunétely, the value
_of the equiQalent_sharp radius RZ (which we have shown is‘the only geometrical
quentity of interest in determining r,) has been shown in eq. (19) of the
- previous section to be identical for the proton distribution and the charge
aistribution.‘ Eariier authors' concern ovef unfblding the charge distribution
to obtain the actual proton distribution was due to the fact that the quantities

CZ or Qz'were being erroneously employed in the determination of ry.
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b, Opt‘ical.Model Potential Wells
The geametrical relationships given earlier, and employed in the last

section for the iﬁterpretation of nuclear.density diéffibutions,bapply egually -
well to optical model potential wells. Indeed, the Woods-Saxon functional
form of optical model weils is the same Fermi diétributioﬁ as is used to
describe nuclear densities. As regards geometrical éroperties the main
differeﬁce between the optical model wells and the‘density distributions is
that there is no rééson to'expectl—:even
. under the assumpfion of ipcompressibility — the equivaleﬁt sharp radius of the
'potential Rv tb.be proportional to 1/3. | |
4.1. INTERPRETATION OF EXPERIMENTS

| Many aﬁthofs, unsatisfied with'simply fitting potential well paraméters
to exper-imenf, ha\}eg cast about for some plausible scheme for correlat_ing the
results obtained fo; different nuclei. The procedures that have come into
common usé, sucﬁ as| "fixed geometry fits" and various ways of deriving the
potentials by folding an interaction into the density, all have serious
deficiencies.‘ The problems that arise when these methods.ére employed Qill be
discussed below in connection wifh fig. 6.

The three separate sections of fig. 6 have been collected together
because of their similarity, and fo facilitate comparisons between one section
and another as the discussion progresses. After the features common to all
three sections have been explaiﬁed each separate section will be discussed in
turn.

The,experimehtal data consist of Woods—Saxonmwell paramefers given in

refs. 12513) for optical model fits to 40-60 MeV proton écﬁttering on nuclei.

&
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throughcut’ the periodic table. Equations (7), (12), and (13) have been used
to convert these parameters to values of Qv’ Rv’ and Cv for each of the
potential wells. (The subscript v means that these quantities refer to

1/3

geometrical proverties of the potential.) Then the-qﬁantity 1.16 A fm was

subtracted from each of these numbers for the sole purpose of displaying, on
an expanded scale, the relations between the different quantities.

1/3

Thé values actually plotted versus AT in each section of'the figure

are AQV (as diamonds), ARv (as triangles), and ACv (as circular dots), where

_ 1/3 {
AQV = Qv - 1.16 A” s | '
AR =R_ - 1.16 Al/3 . (28)
v o v .
AC_ = C_ - 1.16 Al/3 .
v v . :

The heavy solid lines near the bottom of each sectién rep;esent the
values of ARp, ARn, and ARi obtained from a droplet model calculation of these
guantities (discussed earlier in connection with fig. 5) that is fitted to the
experimental_values'of Rz' Since these‘lines represent the various nuclear
density diétributions and the experimental points repreéent various properties
of‘the potential wells we might expect to learn a great deal from these figures
about the reiationships between them.

One of the first things one notices in fig. 6 ié that Rv is greater
than'Rp by ah almost constant amounF throughout the periodic taﬁle. In fact,

very close correspondence can be seen in fig. 6a between the experimental

pcints and the dot-dashed lines that correspond to
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| :

| i .

| ;
[ t
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I

Fig. 6. The dlfferences (s1gn1f1ed by A) between the Q s R - and C values of
experimental optical model potentlalsl2 13) and reference values equal to
1.16 AY/3 -1/3

bottom of eech_section represent droplet model predictions for the various

fm are plotted against A Similarly the solid lines at the

matter radii. The dot-dashed lines represent three different ways of '
correlatiné_the experimental information on the potential wells: (a) an
empiricai fit, (b) a fit obtained by folding a non-saturating force into
empiricalAdenSity distributions, (c) a fit dbtaiqed by folding a eatufeting

force into the droplet model density distributions.
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= 1.16 Al/3

)
I

+0.45 fo ,

, (29)
b =1.3 fm ,

In the "fixed geometry fits" commonly employed fof the interpretation
of optical model dat?, the half—value radius Rl/2 is geﬁerally assumed to be
proportional to Al/3, and some suitafle value is chosén,for the proportionality
constant so as»tq.bFst reproduce data throughout the periodic tqble. The
choice of the quantity Rl/2 for a parametrization of this kind is ﬁuzzling,
since we showed éarlier that a’sharp sphere with the radius CV does not serve
to represent thevcofresponding distribution (recall thét Rl/2‘= C for Woods-
Saxon wells). 'Mbreover, there is no physical basis for assuming such
proportionality for the potential well, even for the ﬁore'fundamental quantity.
Rv' The main reason fpr constraining the fits in thig-way has been to force
an gpparent reduction in the uncértainity of the determination of the real and
imaginary potenfial well depths.‘ The trends in these Quantitiés with_iﬁcreasing
mass number and neutron excess are then considered to bé significant, aﬁd
physical interpretation of the.results is sometimes‘aftempted.‘ It shbuld,'
however, be clear by now that this whole_procedure is Questionable [see
ref.'h) for other comments along‘this line], since the unjustified nature of
the constraints'probably introduces spurious'trends into other quantities of
interest.

4,2, POTENTIALS OBTAINED BY FOLDING

Other authors, unsatisfied with simply fitting well parameters to

experiment or using empirical relations like eq. (29) tQ_correlate their data,

have employed optical potentials obtained from the nuclear density distributions
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by folding in a simple two-body interaction. To appreciaete some of the
problems that can arise when this is done iﬁ is necessary to recall the

| relations between the geometrical properties of such distributions as given
in eqs. (20). These equations immediafely bring one difficulty to our
attention? since ﬁhey show that Rv must equal Rp’ in direct disagreement with
the experimental results shown in fig. 6.

This discrepancy manifests itself in different ways in the two
distinctlg diffefent approaches that have been taken;_>Sqme authors take the
densityvdistribution from electron scattering as given and fold in a rather
long-range force to generate an optical potential that fits the experimental

lh’ls) along with a number of others.

data. This method is considered in refs.
It results in é more diffuse potential than would be obtained in ‘an optical
model fit, but one which has approximately the same valué‘ for Q‘v' [It has ;Deen
found empirically that different potentials having the same volume integral
and the same quivalent r.m.s. radius Qv give apéroximately the seme
predictions.] The values of the geometrical parameters R& and_bv of the
resuliting potential differ substantially from the valﬁés that would be cobtained
for a Woods-Saxon well fitted directly_to éxperiment. Other authors allow the
density to vary in the fitting process and obtain pofenﬁials very similar to
those found by fitting Woods-Saxon wellsh). However, the geometrical parameters
of the densiﬁy distributions obtained differ sﬁbstantially from those found iﬁ
other experiments aimed directly at determining these distributions.

| An exémplevillustrating the first procedure mentioned above is sﬁown
in fig. 6b. The dot-dashgd lines plotted in this figure for AQV, ARV, and AC_
were calculated from optical model potential wells genergted by first assuming

a fairly reslistic density distribution given by
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Rp = 1.16 Al/3 m .
: (30)
b =1.0 fm ,
P
and folding in a Gaussian interaction of the form
£ (r) = -V exp -(r/a )2 (31)
g g
with a range aé = 1.86 fm chosen;so the experimental values of Q& are
reproduced. The width, bc, of this interaction is 1.32 fm since,
by =8, /"2 . | (32)

The iong rangejpart of the Hamada-Johnston potential, ﬁhich is currently in
vogue for the interprétation of proton-nucleus scattering data [see the
discussion in refs. 1h) and 15)], has a width of about l.h.fm and is quite
similar to the interaction used here. | | »

Equation (17) shows that the surface width b of the potentials
resulting when (31) is folded into (30) is 1.65 fm. ;This.iS‘not‘a very
satisfactory result since it is substahtiélly largerbthan the 1.3 fm value
obtained by simply fitting Woods-Séxon wells to experiment. |

It should be pointed out in passing that if the potentials béing
considered in fig. 6b were leptodermous, AQv and ACv would lie on the thin
straight lines predicted by egs. (12) and ARv would be exactly zero. The
reason the dot-dashed lines representing these quantities deviate is that the

long range of the folding interaction produces potential wells so diffuse that

they are no longer leptodermous for the smaller nuclei.
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Tpe othéf possible approach Fo the probleﬁ of.generafing optical
potentials by folding is to vary both the radius of the density distribution
and the range 6f the forcef [An extensive analysis of this type is contained
in ref. h).] When this is done the optical model wells obtained have
geometricgl.properties similar to those obtained by fitting Woods-Sgxon wells
[see egq. (29)]. Since b ~'1.3 we c;n see from eq. (17) that b, must be
approximately 0.83 fm, which corresp?nds to & range ag = 1.17 fm for a Gaussian

interaction. Since Rp = Rv [from eqs. (20)] it is clear [from eq. (29)] that

|
this fitting procedure must result in density distributions for which

Ry ~1.16 A3 4 045 tm © o (33)

in substantial disagreément with whaﬁ isvknown about this quantity. Unréasonably
large dénsity.distributions are always obtained when this procedure is employed,
simply because of the geometrical relations involved.

figure 7.serves to further illustrate the points developed above. In

this figure the nuclear density distribution for légSnTO and the potential

- well related to it by folding in a Gaussian interaction are plotted for three
different cases. For the case (a) an unrealistically extended density

distribution was chosen so that the optical model well would have the geometric

- properties

Q
[}

5.76 fm
(34)

o’
i

1.35 fm ,

determined by fitting to experimentll). For case (b) the density distribution

wag chosen to'correspond to experiment, and a long ranged folding interaction
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Fig. 7.' Sample density distributions and corresponding potential wells for
120

50

Sn70 are plotted against the radial distance. In each of the three
cases shown the potential is generated by folding eq. (31), a non-saturating |

force, into the density with force parameters chosen so as to give the

same values for Qv and the volume integral of the potential. For case (a)
the potential corresponds to experiment.  For case (b) the density

correspoAds_to experiment. The thin lines connect half-value points to

show that this quantity is always smaller for the potential.
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_ﬁas chosen s%.as‘to-reproduce.the equivaient r.m.s. radius.Qv and volume
integral of the experimentallyvdetermined potential. VThisvrequires a 1onger )
range interaction and results in a potential well considerably more diffuse
than that determined by fitting directly to experiment. if [as in case (c)]
an even smaller density distribution is employed an even longer range inter-
action is required to maintain the value of Qv, and anvextremely diffuse'
potential resu}ts.‘ g . | |

Anotner interesting aspect of fig. T, which serres to confirm eq. (20),
is‘that C is leSs than Cp (corresponding points are 1nd1cated by crosses and
‘connected by a line in the figure) by an amount whlch 1ncreases as the range
of the folding interaction increases. This means that if such densities ‘and
potentials (related by a simple folding) were both to be represented by Fermi
distributions the radius.parameter ¢ of the Fermi.distrinution representing
the potential would alwajs have to have a substantially smaller vaiue.than the
value for c¢ for the,correspondingvdensity distribution.- [Recall that

C= Ri/2'£ ¢ 'according to eq. (7).]

L.3. DENSITY DEPENDENT INTERACTIONS

It might havevbeen anticipated that nuclear density distributions and
optical model potential wells are not related in a way corresponding to the_

folding in of a simple two-body interaction such as_the one given in eq. (31).
If any sort of self-consistent calculation of nuclear nroperties is attempted

with such a force the system collapses. It is well known that the force
employed in such:calculations must necome'effectively'weaker as. the nnclear

density increases so as to lead to saturation. This feature (the apparent

decrease in interaction strength with increasing density) is Just the feature
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needed to resolve the difficulties encountered in the optical model fits.

| i
Figure 8 shows the relationship between the density distribution of Egng126 and
an optical model potential well obtained by folding in & saturating two-body

interaction. The form of the interaction chosen for this example was

£ (r)=-v e-ﬁ?/‘“g (1-e®P (35)
where y |
V = 51 MeV
a=1.39 fmn , _ _ (36)
c =2 fm2

-

In fig. 8,fhe neutron and proton densityvdistributions'predicted by the

droplet model are éhown. Their equivalent sharp radii are indicated by short
vertical bars. The equivalent sharp radius of the density Rp (the sum of Rn

and RZ) is shown as a long vertical line. ‘As we know from eq. (i9) the

- equivalent sharp radii are identical for the density and the potehtia.l‘ generated
from it with.a simple interaction. Consequently, the same vertical line that
locates Rp alsq serves to locate.Rv in the case (shoyn as the lower dashed line
in the figufe) where the interaction of eq. (35) is employed without the last
factor. When we consider the solid curve where thé entire interaction is used,
including the last term with its density dependence, wé see that the discrepancy
that mars:earlier attempts to relate experimentally determined densities and

potential wells has disappeared. The solid curve labeled V in fig. 8 approaches
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o o :
Fig. 8. Droplet model density distributions for 208Pb are plotted against !
82" 7126 protted ag

radial distance_in the upper part of the figure. Short vertical bars on

e and pz‘indicate the location of the équivalentvsharp radii Rn and R,
The long vertical line indicates the location of the equivalent sharp radius
of the total‘density\ﬁ;. This same line indicates the location of the
equivalent sharp radius of the potential (obtained by folding the non-
saturating part of eq. (35) into the denéity) plotted in the lower part of
the figure as a dashed line. The lower dashed)line'is the potential itself
and the upper dashediliné is the same curve normaiized to the solid line
which represents the potential obtained when the complete saturating
interaction, eq. (35), is ﬁsed. A shorter vertical'line indicates the
location_of the equivalent sharp fadius of this latter potential and shows

that it lies substantially outside that_of_the non-saturating potential.
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its bulk value ﬁbre quickly than does the'dashedvcurvé, because the interaction
generating it becomes effectively weaker»towards the iﬁtéiior. Conseqﬁently,

the equivalent éharp'radius'Rv of this potential well‘;igs outside of Rp, ih : -
agreeinent with experiment. | |

Since the potential well producéd by the saturating intefaction, eq. (35), . :

is shallower everywhere than the corresponding potential well produced by the

non-saturating part of the interaction it is possible to gain the impression |
from fig. 8 that the non-saturati;g potential is larger;(in some vague sense),
even thoﬁgh the geometric fact is the reverse. To offset this illusion the ‘ ;
dashed curve representing the non-éaturating part of the intefacﬁion has been

replotted as a second dashed curve having the same bulk value as the solid

curve representing the potential produced by the complete interaction. In

comparing these two curves (with the same bulk values) it is easier to see that

the equivalent sharp radius Rv of the saturating potential lies 0.5 fm outside

that of the non-saturating potential. ~Indeed, it iS'posSible, in analogy with
the proof of eq. (19), to establish the theorem that the equivalent éharp

radius Rv of any potential well produced by a saturaﬁing‘interaction (i.é., the

strength decreases with increasing density) is largef'than'that for a potential
well produced by the non—saturating part of the same ihtéfaction.

It.is néCessary to refer back té fig. 6 in order to see how thefﬁse of ;
a saturating iqtéraction improves the agreement with éxpérimehtally detérmined
opﬁical modelipotential wélls throughout the periodic table. In fig. 6¢c the
dot-dashed lines represent the geometrical properties of'thé potentials pbtained
by>folding.the saturgting interaction of eq. (35) into the density distfibutions
predicted by the droplét model. Contrast the good agreement thus obfained with é
the rather poor agreement obtained in fig. 6b with the use of a non-saturating

interaction.
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Tﬁe‘functibﬁal form of the density dependence'uséd in eq. (35) is
suggested by various considerations. In the Thomas—Fermi (or'WKB) approximation,
the Fermi momenﬁum — and hence the average momentum — of the target nucleons is
pf0portioqal to pl/3. The effective twd-body interacfion is expected to be an

even function of the relativé momentum, and the leading term (quadratic in

momentum or proportional to p2/3) in a power series expansion may be sufficient.

Many different phenomenological interactions having either this form or a closely
. _" e o .

related onéJhaVe found application in Thomas-Fermi calculations

17,1

251 ), Hartree-

L ' |4
8) calculations, and in studies of the optical model itselfl ’19’20).

v Foék

No special effort has been made to refine the choice of effective two-
body interaction used here, since the main concern is_with the purely geometrical
'aspécts of the problem. In a more?general study of the relation betﬁeen optical
model wells and nuclear propertiesj the energy and -isospin dependence of the
effective interaction would ﬁave to be considered, as well as effects due to
éntisymmetrizatiOn,

Slanina and McManuslh) have considered a density dependent interaction
due to Green2l)bthat is similar to the one used here with a slightly weaker
density dependence. The potential was folded into empiricai density distributions
in an attempt. to construct.potentials similar to those found in optical model
fits. They noted the improved agreement obtained by |
inclﬁding a density dependenée in the interaction. _

‘Another point that must be mentioned is that the experimental optical
model wells are not unique. The wells we have cqnsiderédvhere correspond to

'a.pproximately the same energy, but one would expect different geometrical '

properties (as well as potential strengths) for different energies. In addition,
!



Lo o ' LBL-1259

the way in which the imaginary potential is included (whether proportional to
the real potential or to its derivative) also influences the outcome of =
standard optical model fit. Consequently, the parameters in the saturating
interaction éq. (35) would have to be made energy dependent and dependent in
some way on the geometry of the imaginary potential if one wished to have a
single interagtion that would apply to all cases.

What we have shown is fhat nuclear density distributions and potential
wells that havé beéh deduced from experiment cannot be related satiéfactorily
by folding in a simple non-saturating two-body interaction for purely gedmetrical
reasons. It is likely that any number of reasonable safurating interactiéns
will be able to.prévide this connection whether they be non-local, density
dependent, or velocity dependent.

It should Ee noted in passing, that objections fb potentials generated

by folding a simple non-saturating two-body interaction into the density, and

i
1

the obvious inconsistencies that arise when this is attempted, are much more
difficult to recognize for the light elements. The density distributions of
these.nuclei and their optical model potential wells are ho longer leptodermous
(indeed, they might be called holodermous since they ére better represented by
Gaussian functions than by Fermi functions); consequently, many of the

geometric relations employed in the preceding discussion are no longer applicable.
Of course, analogous relations can be derived for these‘distributions and an
analysis carried out similar to what has been done here, but the interpretation

is not as easily accomplished.
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5. Summary

A set of geometrical relations has been presehted; based on a stud&bby
Sﬁssmanhz), thaf relate ?arious properties of 1eptoderm§us distributions.
These relations were applied to the experimental informéﬁion availabie on
nuclear densiﬁy distributions. The results obtained from different experiments
were Show? to be consistent and (with the help of the droplet model) to lead to
a value of ro, the radius constant of standard nuclear matter, of 1.16+1%% fm.

‘Tﬁe same geometrical relations that werevapplied to thé density
distributions wére_then applied to the opticgl model pétehtial wells fér‘nugiei
throughout the peribdic téble. It was shown that the experimental densities
and potenfials cénnot be related satisfactorily by_a;éiﬁple two-body interaction
uﬁless thé force includes features expected from nuclear saturation;

The maiﬁ purpose of this work has Been to point'out the existence.of

certain relations between geometrical properties of nuclei and the pitfalls

encountered when these are ignored.
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