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1. Introduction
It has been known for over two years now that the = spectrum from
+
heavy ion collisions peaks near beam velocity and that the = spectrum
has a corresponding depression. We have guessed that these fe: tures are
Coulomb effects of projectile fragments. In papers just submit ed for

pubh‘cation"2

the experimental data and the theoretical interpr :tation
are presented. We aim in the present paper to give a complementary report
with somewhat more mathematical detail than in ref. 2. We also highlight
and discuss implications of the theoretical parameters deduced from the
pion spectra.

2. Outiine of the theory

2.1. Construction of Coulomb Green's Function

We start by considering a fragment of charge ZF and mass A. and a

13
pion of mass m at a distance r from the center of this fragment under

consideration, For production of slow pions near the beam velocity, we
seek a solution of a Schrodinger equation describing the relative motion
(nonrelativistic) of the two particles of the form
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nl 2 . >
- +¥(r) +W(r) -Ely(r) =0 . (1)

It is possible to attempt solving this equation via Green's Function if

one writes as

{E - WO (F) = o) (2)
where 2
R N ‘ Z e

H(l‘) - —E-V + V(r) with V(r) - v (3)

In Eq. (2) E stands for the kinetic energy of the pion when it is far from
the fragment under consideration. We may write the solution of Eq. (2) as

V(F) .ja3r' RS ML TN (8)
where G(;,F') is the three-dimensional Green's Function and satisfies the
differential equation

fe - WP} 6(FFY) = 8(F - 7). (5)
G satisfies the homogeneous differential equation for : ¢+ ;3 but is
singular at ¥ = r'. It can be shown that the three-dimensional Green's

Function has a Legendre expansion of the forms’4

o~

sﬁmﬁgﬁgmwmmwwm (6)

where the radial Green's Function gl(r,r') satisfies the differential

equation

-l

2 IR 3
{d_§+ K2 i‘ié_l_)__'rf_}gl(r,r-) =a(r - ) withk =2 L (7)

dr r

2.2. The delta source at a distance
We may solve Eq. (2) with the aid of the delta-function source at

Fix ?;. In this case o(;;) - A8(T - F;) and the solution to Eq. (1),
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which we seek, becomes related to the three-dimensional Green's Function by
¥(F) = A6(F,F) (8)

One has to solve Eq. (7) for gl(r,rs) for r >r, by imposing the boundary

condition of an outgoing wave on the radial wave function. This could be

done by changing the variable r to the dimensionless variable o = kr and

introducing the Sommerfeld parameter n = Z”ZFezl(hc]iﬂ - 3?[), where

|§; - Fl is the velocity (in units of c) of the produced pion

relative to the assumed spectator fragment. We see immediately that
g, (rarg) = L F (n,o )6, (n0) * iF (ny0)] . (9)

F and G stand for the regular and irregular Coulomb wave functions,
respectively.

For an observation point far from the region of interaction, one can
find for G the following:

i(kr-n 2n 2p)
SL__._JL____li_ (10)

6(F,F ) ~———rF (F,F.)
TS w80 7S r
The logarithmic term i< a direct consequence of the long-range nature
of the Coulomb force. This term produces no net current at infinity, so
we know that F& can be interpreted as a wave amplitude for the

production of pions from a é&-source at re and with
g = f(FF)Z (11)
= R
2 < fo F (npc)
> 2 * NspP
FFE) =2 350 ()% % (ebly (o ,a){—"——s—} . (12)
7% 320 mat m m 38 Pg

and h is the well-known Coulomb phase shift,

For comparison with zero degree pions, we let ¥ = (~,0,0) and take the
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beam along the z-axis. This will eliminate the m-dependence of Eq. (12).
-+ > T .

For r = (rs,0,0) orr. = (rs.-z-.o) fs is proportional to a

sum over % of a,_F,_(n.ps) plus Fo(n.ps). We found that Fc is the

predominant term in the expansion and it is good approximation to write

2 [F (n,e.)|2
+ + 12 2f 2u 0'"*rg
lFs(r,rs)l a3 (;2-) —-————ps (13)
Hence
F (ngao. )|°
o' #*fs, 2
0, = > = G,(1 +og o, t wes) {14)
L4 S* +
where
2wn, X + - .
6, = m , and the +,- signs stand for » and v , respectively.

2.3. Averaging over products and velocity dispersion

For comparison with inclusive pion data, we should calculate an
average value of Eq. (14) over all products and relative velocity of pion
and fragment. The velocity dispersion formula obtained by Greiner et

al .5 is used and has the form

P« exp[-82/(2al)] (15)

with  ap = o f(myc) TR = A VITAL(R, - 1]

and where Ao is the projectile mass number, 9% is a constant. The

grand average of the pion cross section is given by

ZN(A Z)F(A )6 (<n>, ) |1+ 2% s 13f?
1 VpotApsZp)F{AG-AEIG (cnog bl
1L
<a ,>=N . — (16)
T D Neo(ALZ)F(A -A)
fos PO 0T
Frlf

where

3
NF-ﬂ;aF
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a(AF,ZF) is the cross section for forming a fragment of charge
ZF and mass Ag

F(A,-Ap) s the factor giving pion production dependence on mass

‘loss A0 - AF

re = r'c,A‘il_.’3 is assumed to be the most probable distance where the

pion produced

2\ erflp J(/za )
Z F
<1-|*>BF = *( Fe )__['____].

he B,
k.

3. Comparison with Data and Discussion
Figures 1 and 2 show comparisons with zero degree » of Sullivan et

1 The dashed curve is the direct result of eq. (16), and the solid

al.
curve is the direct result after folding in the experimental resolution.
For the calculations, the fragment cross sections u(AF,ZF) were taken from
the fast stage, before particle evaporation, of an abrasion-ablation
firestreak code of Patrick Nchauc_:;he_y.6 It was necessary for best agreement
to use a fragment velocity dispersion parameter 9% smaller than the experi-
mental value from inclusive fragmentation experiments.sJ That is, we use
9, = 60 MeV/c rather than the 86 MeV/c of refs. 5 and 7. Of course, the
pion experimental data are sensing a different fragmentation velocity dis-
persion, that of the fast cascade {abrasion) product compound nuclei rather
than the final products measured in the inclusive experiments. It may well
be that the heavy ion abrasion stage knocks out correlated chunks of nucle-

ons, leaving the primary fragments with narrow velocity dispersions. These

‘narrow distributions are then broadened in the particle evaporation stage.
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We found also that the pion source function F(Ao - AF) needs to weight
the heavier fragments (for the Ne data only) more than the first guess of
simple linear dependence on fragment mass loss. That is, we used for the
Ne data of Fig. 1 the function F(A, - Ac) = (A ~ Ac) - 0.06(A - A) .
This quadratic term may be due to shadowing effects in pion production.
That is, the observed pions nust be formed near the surfaces of the
nuclei, whereas fragment mass loss may be more nearly proportional to the
number of nucleon-nucleon collisions throughout the nuclear volume.

We look forward to the next generation experiments in HISS, where the

correlations of pions with specific heavy fragments will be measured.
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Lorentz invariant =~
cross sections at zero
degrees vs. pjon momen-
tume in the projectile
frame for 20Ne + ]ZC.
Points are data of ref. 1.
The dashed (solid) curves
are theoretical calcula-
tions with eq. (16) before
{after) folding in
experimental resolution.
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except for 40Ar + '°C,



