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1 . Introduction 

I t has been known for over two years now that the n~ spectrum from 
+ 

heavy ion col l is ions peaks near beam veloci ty and that the * spectrum 

has a corresponding depression. We have guessed that these fe tures are 

Coulomb effects of pro ject i le fragments. In papers just submit ed for 
1 2 

publication ' the experimental data and the theoretical interpr Nation 

are presented. We aim in the present paper to give a complementary report 

with somewhat more mathematical detai l than in ref . 2. We also highlight 

and discuss implications of the theoretical parameters deduced from the 

pion spectra. 

2. Outline of the theory 

2 . 1 . Construction of Coulomb Green's Function 

We start by considering a fragment of charge Zp and mass A_ and a 

pion of mass m at a distance r from the center of th is fragment under 

consideration. For production of slow pions near the beam veloc i ty , we 

seek a solution of a Schrodinger equation describing the re lat ive motion 

(nonre la t iv is t ic ) of the two part icles of the form 
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j - ^ v 2 • V(r) *W(r) - E [•(?) - 0 . (1) 

I t is possible to attempt solving th is equation via Green's Function i f 

one writes as 

JE - H ( r ) l * ( r ) - p(r) , (2) 

where , 
h 2 5 z z r e 

H(r) - - £ - ' ' + V(r) with V(r) . y (3) 

In Eq. (2) E stands for the k inet ic energy of the pion when i t is far from 

the fragment under consideration. We may wri te the solution of Eq. (Z) as 

*(r) - J d V G(r\?')p(r"') , (4) 
where G( r , r ' ) is the three-dimensional Green's Function and sat isf ies the 

d i f fe ren t ia l equation 

JE - H(r")} G ( r V ' ) . * (? - r"') . (5) 

G sat is f ies the homogeneous d i f fe ren t ia l equation for r 4 r ' but is 

singular at r • r ' . I t can be shown that the three-dimensional Green's 
3 4 Function has a Legendre expansion of the form ' 

•"*•*'-fc^S" i + 1) P J r . r ' J g ^ . - . r ' ) , (6) 

where the radial Green's Function g . ( r , r ' ) sat is f ies the d i f fe ren t ia l 

equation 

2.2. The delta source at a distance 

We may solve Eq. (2) with the aid of the delta-function source at 

r"'- r . In th is case e{r ) « xs(r - r ) and the solution to Eq. (1), 

(7) 
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which we seek, becomes related to the three-dimensional Green's Function by 

* ( r ) - xG( r , r s ) (8) 

One has to solve Eq. (7) for g ^ r . r ) for r > r by imposing the boundary 

condition of an outgoing wave on the radia l wave funct ion. This could be 

done by changing the variable r to the dimensionless variable p » kr and 

introducing the Sommerfeld parameter n - Z Z ce / ( h e l l - tc\), where 
it r TT r ' 

|£ - tF\ is the veloc i ty ( in units of c) of the produced pion 

re la t ive to the assumed spectator fragment. We see immediately that 
g £ ( r , r s ) - - k " 1 F J n . P ^ t G ^ n . p ) + i F ^ n . p ) ] . (9) 

F and G stand for the regular and i rregular Coulomb wave functions, 

respectively. 

For an observation point far from the region of interact ion, one can 

find for G the fol lowing: 

+ + J ( k r - n *n 2p) 
G ( ? , r - s ) - ~ _ - F s ( ? , r ' s ) ^ (10) 

The logarithmic term is a direct consequence of the long-range nature 

of the Coulomb force. This term produces no net current at i n f i n i t y , so 

we know that F„ can be interpreted as a wave amplitude for the 
o 

production of pions from a ^-source at r and with 

| f s ( r \ r - s ) | 2 , (11) 
where 

F5(?,?)=-*% E I WJ^'V M y (.,.* , fcdi!*!} ,(12) 

and a is the well-known Coulomb phase sh i f t . 

For comparison with zero degree pions, we let r * (<»,0,0) and take the 
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beam along the z-ax is . This w i l l eliminate the m-dependence of Eq. (12). 

For r « (r ,0,0) or r - (r , j,0) f is proportional to a 

sum over I of a 0 F. (n ,P o ) plus F ( D . P , . ) . Me found that F„ is the 
* * 5 O S 0 

predominant term in the expansion and i t is good approximation to wr i te 

W l * • >!(*) 
2 I F > . P J 

Hence 

where 

F o ( , , ± , p s . ) 

- M 1 + *s "* + •"' 

(13) 

(14) 

2»T) ± 

'* * Texo73 CTT ' a n d t h e + , ~ S 1 9 n s s t a n d f o r * and « , respect ively. 

2.3. Averaging over products and ve loc i ty dispersion 

For comparison with inclusive pion data, we should calculate an 

average value of Eq, (14) over a l l products and re la t i ve veloc i ty of pion 

and fragment. The ve loc i ty dispersion formula obtained by Greiner et 

a l . is used and has the form 

P . exp[-B£/(2a£)] (15) 

with « F - » 0 / ( V ) V ( A o " A F ) / [ A F ( A o " 1 ) ] ' 

and where A is the p ro jec t i le mass number, a is a constant. The 

grand average of the pion cross section is given by 

<o .>=N 

where 

Z J NFo(AF,ZF)F(A0-AF)G (<^) 1 + * ° ft , •> A 1 / 3 

Z - N F o(A F ,Z F )F(A 0 -A F ) 
(16) 

A F ' Z F 

</Zia 
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o(Ap,Zp) i s the cross section for forming a fragment of charge 

Zp and mass A, 

F(AQ-Ap) j s the factor giving pion production dependence on mass 

loss A - A F 

1/3 r » i"QAp * s assumed to be the most probable distance where the 

pion produced 

/ Z p e ^ f [ V ^ p ) ] 

3. Comparison with Data and Discussion 

Figures 1 and 2 show comparisons with zero degree iT of Sullivan et̂  

a l . The dashed curve is the direct resul t of eq. (16), and the sol id 

curve is the d i rec t resul t a f ter fo ld ing in the experimental resolut ion. 

For the calculat ions, the fragment cross sections o(Ap,ZF) were taken from 

the fast stage, before par t i c le evaporation, of an abrasion-ablation 

f irestreak code of Patrick HcGaughey. I t was necessary for best agreement 

to use a fragment veloc i ty dispersion parameter a smaller than the experi­

mental value from inclusive fragmentation experiments. ' That i s , we use 

o - 60 MeV/c rather than the 86 MeV/c of re f s . 5 and 7. Of course, the 

pion experimental data are sensing a d i f ferent fragmentation ve loc i ty d i s ­

persion, that of the fast cascade (abrasion) product compound nuclei rather 

than the f i na l products measured in the inclusive experiments. I t may well 

be that the heavy ion abrasion stage knocks out correlated chunks of nucle-

ons, leaving the primary fragments with narrow ve loc i ty dispersions. These 

•narrow dis t r ibut ions are then broadened in the par t ic le evaporation stage. 
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We found also that the pion source function F(AQ - A p) needs to weight 

the heavier fragments (for the Ne data only) more than the f i rst guess of 

simple linear dependence on fragment mass loss. That is , we used for the 

Ne data of Fig. 1 the function F(AQ - A p) - (AQ - A p) - 0.06(AQ - A p ) 2 . 

This quadratic term may be due to shadowing effects in pion production. 

That is , the observed pions mist be formed near the surfaces of the 

nuclei, whereas fragment mass loss may be more nearly proportional to the 

number of nucleon-nucleon collisions throughout the nuclear volume, 

We look forward to the next generation experiments in HISS, where the 

correlations of pions with specific heavy fragments will be measured. 
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Lorentz invariant TT~ 
cross sections at zero 
degrees vs. pion momen-
tume in the projectile 
frame for 2 0 N e + 1 2 C . 
Points are data of ref. 1. 
The dashed (solid) curves 
are theoretical calcula­
tions with eq. (16) before 
(after) folding in 
experimental resolution. 

Fig. 2. Same as Fig. 1 
except for 4 0 A r + 1 2 C , 


