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ABSTRACT 

The locally resonant interaction of a magnetically confined charged 
particle with a high-frequency electromagnetic wave can be modeled by a 
mapping of the particle's phase space. This mapp-'ng represents the jump 
in the dynamical variables caused by each passage through the resonance 
zone. Two formalisms are presented for mappings which preserve the phase-
space structure: the Poincare transformation, appropriate for canoni­
cal variables; and the Lie map, valid for any coordinate system on phase 
space. In both cases, the generating function for the map is the action 
integral, across the resonance, of the interaction Lagrangian. 

In the non-resonant region of phase space, the interaction is trans­
formed to higher order by standard Lie methods. Particle motion in this 
(adiabatic) region can then be re,, esented also by a mapping. Conse­
quently, the Hamiltonian flow in phase space can be replaced by iterates 
of a composite map, the product of the resonance and adiabatic maps. 
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The key words for th is conference are conservative and long-time 

predict ion. In th is ta l k , we interpret "conservative" to refer to the 

phase space of a Hamiltonian system (not to i t s energy), and we concen­

trate on developing a method, for evolution by means of i terated maps, 

which preserves the structure of that space. For "predict ion," the re­

quirement is r e l i a b i l i t y , and we maintain that any approximation nethod 

which destroys the structure of phase space cannot be re l iab le . 

Our studies are motivated by a specific problem, of some importance 

in plasma physics [ 1 ] . Let there be a magnetostatic f i e l d , in which 

charged part ic les move with a complete set of 3 adiabatic invar iants. 

Such f ie lds characterize plasma confinement devices, such as tokamaks 

and mirror machines. One of the methods for heating the plasma is to 

apply an electromagnetic wave, of def in i te frequency u , which resonates 

with par t ic le motion in a restr ic ted region, called the "resonance 

zone." As a par t ic le crosses th is zone, i t s adiabatic invariants and 

i t s energy suffer jumps, whose values depend on the relat ive phase of 

the par t ic le motion and the wave. Outside the resonance zone, the par­

t i c l e osci l la tes non-resonantly in the f i e l d of the wave; there the i n ­

variants and Hamiltonian of the unperturbed par t ic le motion are re­

placed by those of i t s osc i l la t ion center [ 2 ] . We ca l l th is the 

"adiabatic region". 

The basic idea of our study is to replace the Hamiltonian d i f feren­

t i a l equations, fo r continuous flow in phase space, by an i te ra ­

ted sequence of point mappings, which successively move a part ic le from 

one resonance crossing to the next. Our formalism for the mapping 

guarantees the preservation of phase-space structure. The generating 
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function for the resonance-crossing map i s obtained by physically moti­

vated perturbation methods from the action Integral representing the 

ef fect of the wave. 

There are two reasons for replacing a set of d i f fe rent ia l equations 

by an iterated mapping. From the analytic point of view, a mapping i s 

often more amenable to further theoretical development than i t s 

equivalent set of d i f fe rent ia l equations. This has become especially 

apparent in the las t decade in respect to studies of in t r ins ic 

stochast ic i ty. From the computational point of view, a mapping i s fa r 

more e f f i c i en t , since I t represents a large f i n i t e time in te rva l . 

Previous work along these l ines has usually led to maps of a two-

dimensional phase plane [ 3 ] , which is required to be area-preserving, or, 

more generally, measure-preserving. For the six-dimensional phase space 

of a par t ic le , the corresponding requirement is that the map be symplec-

t i c W, i . e . , that i t preserve the "fundamental 2-form" of phase space, 

which reads ( i n canonical variables) 

3 

a E^dq^Adp-t (!) 
i= l 

(The wedge A may be omitted by the reader unfamiliar with exter ior alge­

bra.) The use of canonical variables i s sometimes Inconvenient, and for 

a general phase-space coordinate system, Eq. (1) becomes 

6 

n = \ a f j (z)dzW (2) 
i,J=l 
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To be speci f ic , we consider f i r s t the motion of a par t ic le in the 

unperturbed f i e l d j ^ U ) , A (x_). I t has long been customary [5 ] to 

describe th is motion in terms of gyration about a guiding center ( g . c . ) , 

which tends to fol low magnetic f i e l d l ines, but slowly d r i f t s across 

them. The standard g.c. equations do not re f lec t the underlying Hamil-

tonian structure of the exact system. Only recently has L i t t le john suc­

ceeded in developing a Hamiltonian theory for g.c. motion [ 6 ] ; here the 

symplectic structure is precisely preserved, even though the Hamiltonian 

function i t s e l f is approximate. A further advantage of L i t t le john 's ap­

proach i s that the dynamical variables are physical, although non-cano­

n ica l . F ina l ly , by being a Hamiltonian theory, th is approach i s able to 

u t i l i z e the powerful Lie-transform methods [7 ] developed over the last 

few years. 

The g.c. variables of L i t t le john 's formalism are X_ (g.c. posit ion in 

physical space, in any three-dimensional coordinate system) and P (g.c. 

paral lel momentum). These four are non-canonical, with the Poisson 

brackets: 

[X,X] = (B*)"1 b x l , 

[X,P] = (B*)"1 B*; 

b(X_) i s the unit vector along fLU), 

B*(X,P) = y x ) + Pv x b(X), 

B*(X,P) = b(X) • B*(X,P). 

(3) 
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These brackets (which are exact, not approximations) sat isfy the Jacobi 

condit ion, and thus are a legal "symplectic" structure. For applica­

t ions, they must be supplemented by a Hamiltonian function HU,P; t ) and 

by a relat ion to the par t ic le variables ( r , y_). 

To i l l u s t r a te the use of (3) , consider the Hamiltonian H(P) = £ P 2 , 

representing the paral le l k inet ic energy alone. The equation of evolu­

t ion under a2y_ H, for any function g(z) on phase space, is g = Eg.H]. 

For th is Kamiltonian, we obtain P = 0 and )< = (B*) B_*P. Thus, 

S-X^= P; the paral le l component of g.c. velocity equals the ( invar iant) 

g.c. momentum, for th is Hamiltonian. The perpendicular part of £ i s the 

centr i fugal d r i f t . 

As another example, take as the Hamiltonian HU) = MB (JO, the 

gyration k inet ic energy alone. (We discuss u, the magnetic moment, 

shor t ly . ) Now we obtain P = - (B*) B_* • VBQ ) the mirror force; an-i 

X = u(b x VB 0 ) {B* ) " X , the VB d r i f t . 

As the f ina l example, we take as our Hamiltonian the electrostat ic 

energy <f> ()<_). (Mote that we set e=m=c=l wherever convenient.) We now 

f ind P = -(B*) x B_* • v$ 0 , and £ = (B*) b x v* , the paral lel 

e lect r ic force and the e lect r ic d r i f t . 

In addition to the g.c. variables (X, P), L i t t l e john 's formalism in ­

cludes the canonical pair (u,e ), the gyromomentum (magnetic moment) and 

the gyrophase. These are conjugate: [e,w] = 1, and commute with 

(X.P). Let us examine the i r evolution under each of the above Hamil-

tonians. Since none of them depend on 6, the magnetic moment u i s 

invar iant, as expected. However, for H = u B W) , we obtain 9 = Bg(Jp; 

the gyrofrequency Is given by the local magnetic f i e l d , as expected. 
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The total unperturbed Hamiltonian is (to lowest order) the sum of 
the three examples discussed above; it was instructive to examine them 
individually. Now we add the perturbation of an electromagnetic wave: 
«£(x,t) = £(£) exp i|>(x_) - wt] + c.c, which we express in eikonal 
form. (In general, we expect a sum of such terms, but for clarity we 
consider only one term here.) The local wave-vector is kjxj = vMjO. 
The perturbation Lagrangian is 

«L(£,v;t) = v^«A(r\t) = (ito)"1 v/?(r) exp il<p(r) - wt] + c.c. 

At th is point i t is necessary to know the relat ion between the (non-

canonical) par t ic le variables (r_,v^ and the (non-canonical) g.c. var ia­

bles Ot.P.u.e). This is expressed by L i t t le john [6a,6c_] as a power 

series in the small parameter e, representing the rat io of gyroradius to 

magnetic scale length. (We do not quote th is re lat ion here.) Upon sub­

s t i t u t i ng i t into «L, we f ind (after some algebra) sLW,P,y,e,t) = 

2 m L m ' - ' P , M ' e x p i^in'i'6'*' + c , c > w n e r e the Fourier coef f ic ient 

L m is given by 

Lm = Jm 1 ' n ' a ) " 1 IQO-fPb + (mBo/k^x + (2iB0/kj_)(a£n JJalwfb x k j . ] , 

(4) 

and the phase is 

•ox .e . t ) = iKX) + me . u,t. (5) 
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Here Om is the Bessel function J J t r ) with gyroradius 
1/2 •* 

»•„ = [2n/B0(X.)3 , and k̂  is the unit vector along k ,̂ the pro­

jection of k_W) on the plane perpendicular to M X ) . 

Let us examine a single term of the perturbation Lagrangian : 

Lm{X,P,u) exp 1 * B(X,B,t) , 

The crucial question is whether the phase *s rapidly varying along an 

orbit or is nearly stationary. From (5), we have 

*m

 = L ( X J ' X - + n , e " ">• 

Using the unperturbed Hamiltonian for 5 and X_, we see that the phase is 
stationary where 

<•> " JL(X)-X(X,P,M) = mB 0(X); (6) 

i .e. , where the wave frequency in the local g.c. frame is an integer 

multiple of the local gyrofrequency. The gyro-resonance condition (6) 

is a 5-dintensional surface in the 6-dimensional g.c. phase space (X_, P, 

M,e). I t is convenient to think of the unperturbed particle moving in 

that space, and repeatedly (and rapidly) crossing the gyro-resonance 

surface (6). 

Where the phase ^ m is rapidly varying, i .e. , for the adiabatic 

regions of phase space, not near the resonance zone, the interaction can 

be transformed away [8] . This means that the g.c. motion is replaced by 
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osc i l la t ion center (o.c. ) motion: the wave f i e l d produces rapid osc i l ­

lat ions about the o.c. , which moves ( re la t ive ly ) slowly under a new 

Hamiltonian, wherein the wave f i e l d appears quadratically, producing 

pondercmotive ef fects. The quadratic, or ponderomotive, term 1s propor-
2 • -2 t ional to |L f f l | | i j j j ; thus i t can be considered a weak pertur-

bation (order |«E| C ) , except in the resonance zone, where ty„?0. We 

now examine the resonance zone, where the ponderomotive term diverges. 

We return to the non-resonant region la te r . 

To f i r s t order in the wave amplitude, the perturbation Hamiltonian 

is the negative of the perturbation Lagrangian: 

«yx,p,u,e,t) = -Lm(x,p,u) exp i y x . e . t ) . 

Each dynamical variable is affected by «Hm; l e t us examine t i , which i s 

invariant under H Q . We have ii = -3«Hm/36 = - im«Hm; thus the 1n-

variance of n i s broken by the wave. 

We wish to determine, for each dynamical variable z , i t s jump 

AZ 1 = z 1 ' - z 1 to a new value z 1 ' , as a resul t of the resonance 

crossing. We shall work to lowest order in wave amplitude, but stress 

preservation of phase-space structure. Denote the value <rt the crossing 

by z1 = ^(z + z ), and the time dependence relat ive to that 

value by s z ' t t ) = z 1 ( t ) - z 1 . 

Returning to n, we see that the jump is An = / d t I - - / d t 3«H(z, t ) /ae = 

- /d t 3«Hm(i + i z ( t ) , t ) /30 = - (3/39) /d t «H m(z,t) = + (a/ae) /«L d t . 

We introduce the perturbation action in tegra l : 

S(z; t) = /<5L d t , 
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and note that in = aS/ae. Analogously, we calculate the resonance jump 

in gyrophase as A6 = - aS/ap. 

We evaluate S by the method of stationary phase, expanding the phase 

<|u(t) about the stationary time t , where ij; =0, I . e . , at the reso­

nance surface. With i j jm(t) = i ^ f t ) + | < t - t ) 2 * ( t ) + . . . . we obtain 

S(«t) = i-2rfin)1,Z lmCz) exp 1 y x , § , t ) . 17) 

(Val id i ty conditions fo r the approximations made are discussed below.) 

Regardless of the evaluation of S, or even of i t s expression in 

terms of the perturbation Lagrangian, the formulation of the jumps 4M, 

A6 in terms of the derivatives of S guarantees the preservation of area 

in the u,9 plane: dvAde' = duAde. (This can be ver i f ied with a b i t of 

straightforward exterior algebra.) We now need to extend th is preserva­

t ion to the f u l l 6-dimensional phase space, since each of the g.c. varia­

bles experiences a jump A Z 1 . 

For a canonical coordinate system (q,p) , the simplest generalization 

is the Poincare transformation [ 9 ] . For any_ function S(q,p), i t i s 

again straightforward to ver i fy that the jump re lat ions: 

Ap1 = aS/aq. , ,sq.| = - aS/ap^ , (8) 

together with q^ = q^ - ^ &q^, q:j = q^ + ^ Aq.. (and simi lar ly for p . ) , 

lead to preservation of the 2-form: 

£dq ; A<JP{ =Z d ( l i A dPi • 
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To apply these Ideas In our 3-degree-of-freedom case, two alterna­

tive approaches are possible. One approach 1s to Impose the requirement 

of using canonical variables, since the Poincare method is simply in­

valid for our non-canonical set (X,P), Any canonical set will do, so 

one 1s guided by the physics of the particular problem being studied. A 

natural choice is the set of action-angle variables for the unperturbed 

g.c Hamiltonian Ho(X, P). Another possibility (unnatural, in our 

opinion), is the standard set of canonical particle coordinates 

(r, £)• One must now express S, given explicitly in (7), in terms of 

the canonical set chosen. This would produce such a mess, that the 

beauty of the Littlejohn formalism is lost. For that reason we have 

turned to a second approach, which works for a non-canonical coordinate 

system as well. 

In general terms, we ask what transformation z •* z' preserves the 

fundamental 2-form . In (2), a., (z) is the (antisymmetric) Lagrange 

matrix, the reciprocal of the Poisson matrix a3lz) = [z , z J ] . 

The Jacobi condition on Poisson brackets is equivalent to the require­

ment that n is "closed"; 3n../3zk + atL^/az1 + aa^/sz^ = 0 

for all z and all (ijk). This is of course satisfied by Littlejohn's 

variables, for which (2) reads a = B.*(X_,P)-dX x dX_ - 15(X)-dXdP + dude. 

To answer the question above, we turn to the Lie map [10]. Again, 

let Slz) be any_ function on phase space; no particular coordinate sys­

tem need be specified as yet. Now define the corresponding Lie trans­

formation operator as R = exp [S,-]. Let g(z) be any "observable," 
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i . e . , some function (on phase space) of physical in terest . Then g 

transforms under S as g' = Rg = g + [S,g] + i [ S , [ S , g j ] + . . . The 

fundamental property of R is that Poisson bracket relations are 

preserved, i . e . , i f three functions g j , g 2 , g 3 , sat isfy [ g l f g 2 ] = g 3 

for a l l z, then [ g j , g£] = g 3 ' . Let us now apply R to each coordinate z 1 . 

Then tz - z 1 ' - z 1 = [S{z), z ] + order S . Expressing z in 

terms of z and AZ, we obtain AZ 1 = [S(z), z 1 ] + order S . For 

canonical variables, th is reduces to (8) co lowest order; thus we see 

the relat ion of the two methods. 

The Lie method has the great advantage of being coordinate-free, and 

of allowing the use of operational methods when one proceeds to 

i te ra te . At least two disadvantages are apparent to us: i t is asym­

metric with respect to the resonance surface, a t least i n i t s present 

form; fo r numerical computation, an i n f i n i t e series is called fo r . 

Before proceeding to examine the adiabatic region, we summarize the 

treatment of the resonance zone. For any observable, and in pa r t i c i l a r 

fo r the dynamical variables, the jump across the resonance i s given by 

g' = Rg with R = exp [S , - ] and S given by Eq. (7) . In that equation, 

the phase i)>m is given by Eq. (5) , and the amplitude Lm by Eq. (4 ) . 

In the adiabatic region, we shall use the unperturbed Hamiltonian 

( in the g.c. variables) f y x .P .u ) = ^P* + uB0(X.) + <f»0(JO» 

each term of which was discussed above. (The ponderomotive correct ion, 

quadratic in the amplitude, w i l l be neglected here, but must be con­

sidered eventual ly). We look for a complete set of 3 invariants. As 

discussed ear l ie r , u i s one invariant, arc! H o (being time-independent) 

is a second. The existence of a th i rd invariant I(X,P,u) is guarantesd 
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(at least loca l ly , i . e . , between resonances) by the Oarboux theorem 

[£ ,6 ] , which also presents an algorithm for i t s construction. For an 

axisyitwetric system l i ke a tokamak, i t can be ident i f ied with the an­

gular momentum (and then is M-independent). In a mirror machine, the 

bounce action or d r i f t f lux w i l l serve as the th i rd invariant. 

In the 6-dimensional phase space (X,P,u,9), the osc i l la t ion center 

orb i t l i es on each of the three (5-dimensional) invariant surfaces v, 

H Q ( ;X ,P ,M) , I ( £ , P , M ) . I t thus l ies on the intersection v. r\ HQ n I , 

which is three-dimensional. 

To help us visualize the o rb i t , l e t us f i r s t project out the (u,6) 

variables, reducing the phase-space to four dimensions. Then l e t us 

postulate axial symmetry ( fo r s impl ic i ty) and project out the toroidal 

angle $, leaving three dimensions: P and the poloidal coordinates, 

which we denote a,e. In th is space (a.s.P), the two invariant surfaces 

are H (o,B,P) = E and I(a,a,P) = p.. These two-dimensional surfaces 

intersect in a curve En p along which the osc i l la t ion center moves 

un t i l i t reaches the resonance surface i _ ( Q , B , P ) = 0. ( In practice, 

the l a t t e r surface usually depends also on <t>, so one must do the 

analysis in a higher-dimensional space, where one's geometric in tu i t i on 

msy f a i l . ) 

For each of the three invariants of the adiabatic region, one can 

introduce a conjugate variable whose time-derivative is constant along 

the o rb i t . One then constructs a re lat ive ly t r i v i a l symplectic map, 

denoted A, fo r the adiabatic motion. ( I t s exp l i c i t form should be 

ta i lored to the problem at hand.) This map then takes a point in phase 

space from one resonance crossing to the next. The map A depends 
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parametrically on the three invariants of the adiabatic motion, and ad­

vances the conjugate variables and time. 

Upon crossing the next resonance, all the variables jump (both the 

"adiabatic" invariants and their conjugates) according to the resonance 

mapping R. The new values of the invariants are then inserted into A 

for the next adiabatic mapping. 

The particle motion is thus represented as a product of alternating 

symplectic mappings RARA . . . = (RA)n H Tn for n resonance crossings 

separated by adiabatic motion. The n-fold composite T is itself sym­

plectic, since symplectic maps have the group property. 

With a formal expression for T , one may next inquire into the 

asymptotic behavior of i ts orbits, as n •+«=. Since a symplectic map is 

the multi-dimensional generalization of an area-preserving map, the 

critical questions are the same, suitably generalized: Is the motion 

ergodic, chaotic, mixing [11]? What are the Liapunov characteristic 

exponents [12], and how do they depend on the parameters of the problem, 

e.g., wave amplitude? What are the diffusion rates for the invariants [13]? 

Hopefully, operational methods [10] will help provide answers to these 

important questions. 

We now return to the validity criteria for the resonance-crossing 

maps. In the first place, the wave amplitude must be sufficiently weak 

that first-order perturbation theory is adequate, since the action 

integral is evaluated using unperturbed orbits. Physically, this means 

that the crossing must be sufficiently rapid that the particle cannot 

get trapped by the resonance. In the second place, the eikonal condi­

tions must allow for the evaluation of the phase integral by the 
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stationary phase method; th is requires IE i » \'&\ • Physically, 
' T n i ' m 1 

we require suf f ic ient ly slow spatial variation of wave amplitude and 

wave vector on the gyro-radius scale, as well as rapid passage through 

resonance. In the th i rd place, the resonances should be suf f ic ient ly 

d i s j o in t in phase space so that the adiabatic regions are we'll defined. 

In e f fec t , the crossing time should be short compared to the time 

between resonances. (Note that Chirikov's "resonance overlap" c r i te r ion [3 ] 

refers to global resonances, not to the local resonances discussed 

here. Global resonances can overlap, producing stochast ic i ty, even 

though the local resonances are d is jo in t . ) 

We conclude by out l in ing elements of a program for future work in 

th is area: 

1. A specif ic model should be chosen, and the map formalism exp l i c i t l y 

implemented. 

2. The orbi ts for the i terated ma? should be compared to those for the 

exact d i f fe rent ia l equations of motion [14] , 

(These f i r s t two steps have been carried out by us in ear l ier work 

for the case of spatial variat ion in one dimension [15] , We found 

quanti tat ive agreement for regular o rb i ts , and qual i tat ive agreement for 

chaotic o rb i ts , as expected.) 

3. Because the i rreversible resonant dif fusion is responsible for en­

tropy production, i t should bs possible to extend the quasilinear 

re lat ion [16] between the dif fusion tensor and the dissipative part 

of the d ie lec t r ic suscept ibi l i ty to the nonlinear regime. 

4. At some stage, self-consistency for the electromagnetic perturbation 

should be introduced. The most promising vehicle for this is the 

Hamiltonian Vlasov-Maxwell theory discovered by Morrison 11] 1. 
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