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ABSTRACT

The locally resonant interaction of a magretically confined charged
particle with a high-frequency electromagnetic wave car be modeled by a
mapping of the particle's phase space. This mapping represents the jump
in the dynamical variables caused by each passage through the resonance
zone. Two formalisms are presented for mappings which preserve the phase-
space structure: the Poincaré transformation, appropriate for canoni-
cal variables; and the Lie map, valid for any coordinate system on phase
space. In both cases, the generating function for the map is the action
integral, across the resonance, of the interaction Lagrangian.

In the non-resonant region of phase space, the interaction is trans-
formed to higher order by standard Lie methods. Particle motion in this
(adiabatic) region can then be re, esented alsu by a mapping. Conse-
quently, the Hamiltonian flow in phase space can be replaced by iterates
of a composite map, the product of the resonance and adiabatic maps.

*  This work was supported by the Birector, Office of Energy Research,
0ffice of Fusion Energy, Applied Plasma Physics Division, of the U.S.
Department of Energy under Contract No. W-7405-ENG-48.

Presented at the “Workshop on Long-Time Prediction in Nonlinear
Conservative Dynamical Systems", March 16-19, 1981 Austin, Texas. To

appear in: Long-Time Prediction in D namics, W. Horton, L. Reichl,
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The key words for this conference are conservative and long-time

prediction. In this talk, we interpret "conservative" to refer to the
phase space of a Hamiltonian system (not to its energy), and we concen-
trate on developing a method, for evolution by means of iterated maps,

which preserves the structure of thai space. For "prediction," the re-

quirement is reliability, and we maintain that any approximation method
which destroys the structure of phase space cannot be reliable.

Our studies are motivated by a specific problem, of some importance
in plasma physics [l]. Let there be a magnetostatic field, in which
charged particles move with a complete set of 3 adiabatic invariants.
Such fields characterize plasma confinement devices, such as tokamaks
and mirror machines. One of the methods for heating the plasma is to
apply an electromagnetic wave, of definite frequency w, which resonates
with particle motion in a restricted region, called the "resonance
zone." As a particle crosses this zone, its adiabatic invariants and
its energy suffer jumps, whose values depend on the relative phase of
the particle motion and the wave. Outside the resonance zone, the par-
ticle oscillates non-resonantly in the field of the wave; there the in-
variants and Hamiltonian of the unperturbed particle motion are re-
placed by those of its oscillation center [2]. We call this the
"adiabatic region”.

The basic idea of our study is to replace the Hamiltonian differen-
tial equations, for continuous flow in phase space, by an itera-
ted sequence of point mappings, which successively move a particle from
one resonance crossing to the next. Our formalism for the mapping

guarantees the preservation of phase-space structure. The generating



function for the resonance-crossing map is obtained by physically moti-
vated perturbation methods from the action integral representing the
effect of the wave.

There are two reasons for replacing a set of differential equations
by an iterated mapping. From the analytic point of view, a mapping is
often more amenable to further theoretical development than its
equivalent set of differential equations. This has become especially
apparent in the last decade in respect to studies of intrinsic
stochasticity. From the computational point of view, a mapping is far
more efficient, since it represents a large finite time interval.

Previous work along these lines has usually Ted to maps of a two-
dimensional phase plane [3], which is required to be area-preserving, or,
more generally, measure-preserving. For the six-dimensional phase space
of a particle, the corresponding requirement is that the map be symplec-

tic [4], i.e., that it preserve the "fundamental 2-form" of phase space,

which reads (in canonical variables)

3
2=) doadp, (1)
i=1

(The wedge A may be omitted by the reader unfamiliar with exterior alge-
bra.) The use of canonical variables is sometimes inconvenient, and for
a general phase-space coordinate system, Eq. (1) becomes
6
Q= Z sz” (z)dz'ndz) (2)

i,j=1



To be specific, we consider first the motion of a particle in the
unperturbed field B (x), ¢,{x). It has long been customary [5] to
describe this motion in temms of gyration about a guiding center {(g.c.),
which tends to follow magnetic field lines, but slowly drifts across
them. The standard g.c. equations do not reflect the underlying Hamil-
tonfan structure of the exact system. Only recently has Littlejohn suc-
ceeded in developing a Hamiltonian theory for g.c. metion [6]1; here the
symplectic structure is precisely preserved, even though the Hamiltonian
function itself is approximate. A further advantage of Littlejohn's ap-
proach is that the dynamical variables are physical, although non-cano-
nical. Finally, by being a Hamiltonian theory, this approach is able to
utilize the powerful Lie-transform methods [7] developed over the last
few years.

The g.c. variables of Littlejohn's formalism are X {g.c. position in
physical space, in any three-dimensional coordinate system) and P {g.c.
parallel momentum). These four are non-canonical, with the Poisson
brackets:

Xx1= 0 bx1,

(3)

IX,P1 = (8%)"1 Bx;

S(!) is the unit vector along B (X},

B*(X,P) = B,(X) + PV x B(X),

b{X) - B(X,P).

B*(X, P)



These brackets {which are exact, not approximations) satisfy the Jacobi
condition, and thus are a legal "symplectic" structure. For applica-
tions, they must be supplemented by a Hamiltonfan function H(X,P;t) and
by a relation to the particie variables (r, v).

To i1lustrate the use of (3), consider the Hamiltonian H{P) = % PZ,
representing the parallel kinetic energy alone. The equation of evolu~
tion under any H, for any function glz) on phase space, is g = [g,HI.
For this Hamiltonian, we obtain P = 0 and i = (B*)'lng. Thus,
s'i_= P; the parallel component of g.c. velocity equals the {invariant)
g.c. momentum, for this Hamiltonian. The perpendicular part of X_is the
centrifugal drift.

As another example, take as the Hamiltonfan H(X) = uB (X), the
gyration kinetic energy alone. {We discuss u, the magnetic moment,
shortly.) Now we obtain P = - (ax)71 B* - VB, the mirror force; ant
X = ulb x vB)(B%)"L, the vB arift.

As the final example, we take as our Hamiltonian the electrostatic
energy ¢b(5). {Note that we set e=m=c=1 wherever convenient.) We now
find P = -(g%)1 B* . vg,, and i.= (891 b x Vo,, the parallel
electric force and the electric drift.

In addition to the g.c. variables (X, P}, Littlejohn's formalism in-
cludes the canonical pair {u,p ), the gyromomentum (magnetic moment) and
the gyrophase. These are conjugate: [a,ul] = 1, and commute with
{X,P). Let us examine their evolution under each of the above Hamil-
tonians. Since none of them depend on 8, the magnetic momert u 1is
invariant, as expected. However, for H =« B (X), we obtain o= By(X};

the gyrofrequency is given by the local magnetic field, as expected.
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The total unperturbed Hamiltonian is (to lowest order) the sum of
the three examples discussed above; it was instructive to examine them
individually. Now we add the perturbation of an electromagnetic wave:
sE(x,t} = E(i) exp ily(x) - wt] + c.c., which we express in eikonal
form. (In general, we expect a sum of such terms, but for clarity we
consider only one term here.) The local wave-vector is kix) = Vi(x).

The perturbation Lagrangian is
sLIr,vst) = vesh(r,t) = (i)™} v-E(r) exp ilu(r) - wtl + c.c.

At this point it is necessary to know the relation between the (non-
canonical) particle variables (r,v) and the (non-canonical) g.c. varia-
bles (X,P,u,0). This is expressed by Littlejohn [6a,6c] as a power
series in the small parameter €, representing the ratio of gyroradius to
magnetic scale length. (We do not quote this relatfon here.) Upon sub-
stituting it into 6L, we find (after some algebra) sL(X,P,n,6,t) =
Ipkm(%sP.u) exp in(l,e,t) + ¢c.c, where the Fourier coefficient

Ly is given by

Ly = 9™ w™L E(X)-[Pb + (mB sk, )k, + (2B /k;)(akn d /atnulb x k1,

m m
(4)
and the phase is
'Jim(i.e,t) = ¥(X) + m - wt. (5)



Here d_ is the Bessel function Jm(klrg) with gyroradius
rg = [Zu/BO(K)]l/Z, and El is the unit. vector along k;, the pro-
Jection of k(X) on the plane perpendicular to go(l).

Let us examine a single term of the perturbation Lagrangian :
La{X,Pou) exp i .(X,6,¢),

The crucial question is whether the phase 5 rapidly varying along an
orbit or is nearly stationary. From (5), we have

boo= k(X)X + me - w.

Using the unperturbed Hamiltonian for o and X, we see that the phase is
stationary where

w - KO -XX,Pou) = mB_(X); (63

j.e., where the wave frequency in the local g.c. frame is an integer
multiple of the local gyrofrequency. The gyro-resonance condition {6)
is a 5-dimensional surface i the 6-dimensional g.c. phase space (X, P,
u,8). It is convenient to think of the unperturbed particle moving in
that space, and repeatedly {and rapidly) crossing the gyro-resonance
surface (6).

Where the phase Y is rapidly varying, i.e., for the adiabatic
regions of phase space, not near the resonance zone, the interaction can

be transformed away [§J. This means that the g.c. motion is replaced by



oscillation center (o.c.) motion: the wave field produces rapid oscil-
lations about the o.c., which moves (relatively) slowly under a new
Hami1tonian, wherein the wave field appears quadratically, producing
ponderomotive effects. The quadratic, or ponderomotive, term is propor-
tional to ]Lm|2 [Qn['z; thus 1t can be considered a weak pertur-
bation {order ]5E|2), except in the resonance zaene, where ¢m+0. We
now examine the resonance zone, where the ponderomotive term diverges.
We return to the non-resonant region later.

To first order in the wave amplitude, the perturbation Hamiltonian

is the negative of the perturbation Lagrangian:
sHO(K,Pyu,8,t) = -Lo(X,Pou) exp iy (X,0,t).

Each dynamical variable is affected by sHm; let us examine n, which is
invariant under Ho' We have i = -aeH /20 = - 1m5Hm; thus the in-
variance of u is broken by the wave.

i

We wish to determine, for each dynamical variable z', its jump

a2t = 2 - zi to a new value zi’, as a result of the resonance
crossing. We shall work to lowest order in wave amplitude, but stress
preservation of phase-space structure. Denote the value at the crossing
by P %(zi + zi‘), and the time dependence relative to that
value by s2i(t) = 21(e) - 31,
Returning to u, we see that the jump is fn = fdt p = - fdt asH (z,t)/26 =
- Jdt asH (Z + sz(t), t)/96 = - (2/96) fdt sH (z,t) = + (a/a8) seL dt.
We introduce the perturbation action integral:

s(z;t) = soL dt,



and note that au = 2S/28. Analogousiy, we calculate the resonance jump
in gyrophase as a8 = - aS/a.

We evaluate S by the method of stationary phase, expanding the phase
le(t) about the stationary time &, where 'Lm =0, i.e., at the reso-
nance surface. With y (t) = \pm(i:) + -}(t-i)z wm(i) + ..., we obtain

Stzit) = (-2x/f) V2 L (2) exp 1 0 (X8, 1), (7

(validity conditions for the approximations made are discussed below.)
Regardliess of the evaluation of S, or even of its expression in
terms of the perturbation lagrangian, the formulation of the jumps au,
A0 in terms of the derivatives of S guarantees the preservation oF area
in the u,0 plane: dinde” = duads. {This can be verified with a bit of
straightforward exterior algebra.) We now need to extend this preserva-
tion to the full 6-dimensional phase space, since each of the g.c. varia-
bles experiences a jump Azi.
For a canonical coordinate system (q,p), the simplest generalization

is the Poincaré transformation [9]. For any function S{q,p}, it is

again straightforward to verify that the jump relations:
ap; = a8/aq; , w9y = - aS/apg , (8)
together with 9 = &f - %Aqi, q; = ﬁ,, + %Aqi (and similarly for p1.),

Tead to preservation of the 2-form:

qug Adp =3dq; A dp, .



To apply these ideas in our 3-degree-of-freedom case, two alterna-
tive approaches are possible. One approach is to impose the requirement
of using canonical variables, since the Poincaré method is simply in-
valid for our non-canonical set (X,P). Any cancnical set will do, so
one 1s guided by the physics of the particular problem being studied. A
natural choice is the set of action-angle variables for the unperturbed
g.c Hamiltonian HO(Z} P). Another possibiiity {(unnatural, in our
opinion), 1s the standard set of canonical particle coordinates
(r, p). One must now express S, given explicitly in (7), in terms of
the canonical set chosen. This would produce such a mess, that the
beauty of the Littlejohn formalism is lost. For that reason we have
turned to a second approach, which works for a non-canonical coordinate
system as well.

In general terms, we ask what transformation z -+ 2*' preserves the
fundamental 2-form-. In (2), 95 {z) is the {antisymmetric) Lagrange
matrix, the reciprocal of the Poisson matrix diiz) = [zi,zj].

The Jacobi condition on Poisson brackets is equivalent to the require-
ment that @ is "closed": aﬂij/azk + aszjk/azi + aﬂki/azj =0

for all z and all (ijk). This is of course satisfied by Littiejohn's
variables, for which (2) reads g = B*(X,P)-dX x dX - B(X)-dXdP + dude.

To answer the question above, we turn to the Lie map [10]. Again,
let S(z) be any function on phase space; no particular coordinate sys-
tem need be specified as yet. kow define the corresnonding Lie trans-

formation operator as R = exp [S,-]. Let g(z) be any "observable,"

- 10 -



i.e., some function {on phase space) of physical interest. Then g
transforms under S as g' = Rg = g + [S,g] + %[5,[5,9]] + ... The
fundamental property of R 1s that Poisson bracket relations are

preserved, i.e., if three functions g,, g,, g3, satisfy [91’92] = gy

for all z, then [gi, 971 = g93. Lét us now apply R to each coordinate z'.

Then az = 27 - 21 = [S(z), 2'1 + order 52. Expressing z in

terms of Z and 4z, we obtain a2l = [s(z), ii] + order S%. For
canonical variables, this reduces to (8] co lcwest order; thus we see
the relation of the two methods.

The Lie method has the great advantage of being coordinate-free, and
of allowing the use of operational methods when one proceeds to
iterate. At least two disadvantages are apparent to us: it is asym-
metric with respect to the resonance surface, at least in its present
form; for numerical computation, an infinite series is called for.

Before proceeding to examine the adiabatic region, we summarize the
treatment of the resonance zone. For any observable, and in particilar
for the dynamical variables, the jump across the resonance is given by
g” = Rg with R = exp [S,+] and S given by Eq. (7). In that equation,
the phase v, 1is given by Eq. (5), and the amplitude L, by Eq. {4).

In the adiabatic region, we shall use the unperturbed Hamiltonian

. A 12
{in the g.c. variables) HO(Z!P,u) = P

+ uB(X) + ¢ (X),

each term of which was discussed above. (The ponderomotive correction,
quadratic in the amplitude, will be neglected here, but must be ron-~
sidered eventually). We look for a complete set of 3 invariants. As
discussed earlier, u is one invariant, and HD {being time-independent)

is a second. The existence of a third invariant 1{X,P,u) is guarantead
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(at least locally, i.e., between resonances) by the Darboux theorem
[4,61, which also presents an algorithm for its construction. For an
axisymmetric system like a tokamak, it can be identified with the an-
gular mowentum (and then is u-independent). In a mirror machine, the
bounce action or drift flux will serve as the third invariant.

In the 6-dimensional phase space (X,P,u,8), the oscillation center
orbit lies on each of the three (5-dimensional) invariant surfaces u,
Hot%,Pu), T(X,P,u). It thus Ties on the intersection w N H NI,
which is three-dimensionai.

To help us visualize the orbit, let us first project out the (n,6)
variables, reducing the phase-space to four dimensions. Then let us
postulate axial symmetry (for simplicity) and project out the toroidal
angle ¢, leaving three dimensions: P and the poloidal coordinates,
which we denote «,8. In this space (a,8,P), the two invariant surfaces
are H {a,8,P) = E and I{a,8,P} = Py- These two-dimensional surfaces
intersect in a curve Eflp¢, along which the oscillation center moves
until it reaches the resonance surface ih(a,a,P) = 0. (In practice,
the latter surface usually depends also on ¢, so one must do the
analysis in a higher-dimensional space, where one's geometric intuition
may fail.)

For each of the three invariants of the adiabatic region, one can
introduce a conjugate variable whose time-derivative is constant along
the orbit. One then construc®:z a relatively trivial symplectic map,
denoted A, for the adiabatic motion. ({Its explicit form should be
tailored to the problem at hand.) This map then takes a point in phase

space from one resonance crossing to the next. The map A depends
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parametrically on the three invariants of the adiabatic motion, and ad-
vances the conjugate variables and time.

Upon crossing the next resonance, all the variables jump {both the
“adiabatic" invariants and their conjugates) according to the resonance
wmapping R. The new values of the invariants are then inserted into A
for the next adiabatic mapping.

The particle motion is thus represented as a product of alternating
symplectic mappings RARA ... = {RA)" = T, for n resonance crossings
separated by adiabatic motion. The n-fold composite Tn is itself sym-
plectic, since symplectic maps have the group property.

With a formal expression for Tn, one may next inquire into the
asymptotic behavior of its orbits, as n »«., Since a symplectic map is
the multi-dimensional generalization of an area-preserving map, the
critical questions are the same, suitably generalized: Is the motion
ergodic, chaotic, mixing {1117 What are the Liapunov characteristic
exponents [lg], and how do they depend on the parameters of the problem,
e.g., wave amplitude? What are the diffusion rates for the invariants [13]?
Hopefully, operational methods [10] will help provide answers to these
important questions.

We now return to the validity criteria for the resonance-crossing
maps. In the first place, the wave amplitude must be sufficiently weak
that first-order perturbation theory is adequate, since the action
integral is evaluated using unperturbed orbits. Physically, this means
that the crossing must be sufficiently rapid that the particle cannot
get trapped by the resonance. In the second place, the eikonal condi-

tions must allow for the evaluation of the phase integral by the
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stationary phase method; this requires ‘§H1/2 >> lﬂ%f/3' Physically,

we require sufficiently slow spatial variation of wave amplitude and

wave vector on the gyro-radius scale, as well as rapid passage through
resonance. In the third place, the resonances should be suificiently
disjoint in phase space so that the adiabatic regions are well defined.

In effect, the crossing time should be short compared to the time

between resonances. (Note that Chirikov's "resonance cveriap" criterion [3]

refers to global resonances, not to the local resonances discussed

here. Global resonances can overlap, producing stochasticity, even

though the local resonances are disjoint.)

We conclude by outlining elements of a program for future work in
this area:

1. A specific model should be chosen, and the map formalism explicitly
implemented.

2. The orbits for the iterated map should be compared to those for the
exact differential equations of motion [14].

(These first two steps have been carried out by us in earlier work
for the case of spatial variation in one dimension [15]. We found
quantitative agreement for regular orbits, and qualitative agreement for
chaotic orbits, as expected.)

3. Because the irreversible resonant diffusion is responsible for en-
tropy production, it should bz possible to extend the quasilinear
relation [16] between the diffusion tensor and the dissipative part
of the dielectric susceptibility to the nonlinear regime.

4. At some stage, self-consistency for the electromagnetic perturbation
should be introduced. The most promising vehicle for this is the

Hamiltonian Viasov-Maxwell theory discovered by Morrison [i71.
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