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I, Introduction

In recent years generalized wreath product groups were used as
efficient representations of symmetries of molecules exhibiting large
amplitude non-rigid motions,l’2 NMR spin hamiltonians,3 etc. By the
term ‘large amplitude' we mean amplitudes large in the ordinary experi-
mencal NMR scale. Randié,4—7 Balabana’g and the present authorlo
studied the symmetry groups of graphs of chemical interest. The
symmetry groups of a number of chemically interesting graphs can be
embedded into wreath or generalized wreath products. Balaban and co-

1
11,12 and Randié7 have recognized the use of wreath products in

workers
such chemical applications.

The generalized wreath product groups have special structures that
provide for elegant derivation of physically interesting quantities.

The generalized character cycle indices (GCCI's) of these groups can be
obtained in terms of the composing grouns. These GCCI's are the gen-
erators of spin species, NMR spin multiplets and nuclear spin statistical
weights. The nuclear spin statistical weights of the rovibronic levels
are of fundamental importance in molecular spectroscopy. They provide
information on the intensities of allowed inter-rovibronic transitions.
Thus the combinational numbers generated from the GCCI's are

prints of the intensity ratios of the various peaks appearing in a
molecular gpectra.

In this paper we will first briefly outline the preliminary combin-
atorial concepts. In Sec. IIT formalisms related to the symmetry
operators of generalized wreath products are outlined. In Sec. IV
applications to the symmetry groups of non-rigid molecules is considered.

Sec. V concludes with generalized isomer enumerations. For several



chemical applications of graph theory the readers are referred to the

book by Balaban13 and related papers by Rand:l.é,ll‘-20 Balaban,21-25 the

present authot.26_34 and Dolhaine.35

II. Preliminaries

Let D and R be finite sets and let ]Dl and ]R] denote the number
‘of elementsi? an R, respectively., Let G be a permutation group acting
on D. Consider the set of maps from D to R. Let RD denote the set of
all such maps. In several situations we may need to consider maps from
the cartesian product & x B (A and B being two finite sets) to R or

from the union of several such cartesian products tv R. The permutation

group G acting on D induces permutations on F = RD by the following recipe.
-1 D
gf(1) = f(g 1) for 1eD: feR .

Let V be a vector space over a field K of characteristic zero with dim
V= |R| = r and let e1» €yyecee, be a standard basls of V. With each

D
feR~ we can assoclate the temsor product e, = ef(l) 1 ef(2)9""nef(d)
and the set of such tensors forms the basis of the dth tensor product
of V. For a geG we define the permutation operator P(g) with respect to

this basis set by P(g)ef = egf = egf(l) '] egf(Z)e"'negf(d) = ef(g-ll)a

E(g-12) f(g-ld)' Let w:G+F g:g:e:on—zero homomorphism (i.e.,

w(glgz) = m(gl)m(gz), a character 0f/1l). We define a symmetry operator

e 8...0e

TG as

1
T, = <=7 1 w(g)P(g).
¢~ el 2eC

Consider a map W from F to K, W:F+K which 1s also a comstant on the orbits
resulting from the action of G on F. If W algo satisfies the following

property for every f, it is referred to as a weight function.



d
W(E) = T w(£(1))
i=1

where w i3 a function, w:R>K. W(f) is also referred to as a weight of

a function in combinatorics book.38
Consider the subspace Vi of Vd, (where Vd is the dth tensor product
of V) spanned by all tensors Sx = (ef:W(f) = xeK}, Let the restrictions
of the operators TG and P(g) to the space V: be TGx and Vx(z), respectively,
Now, defime the weighted permutation operator Pw(g) and the weighted
symmetry operator Tg with the weight W as
P(g) = & xP (g)

xeK

v

X
TG = @& x TG

xeK
where ® denotes a direct sum. (See Ref. 41 for a definition of direct

sum.) If one considers a matrix representation of Pw(g) then we have
- v(®
tr Po(g) = 1.8 ()

vhere the sum is taken over all f for which gf = f. Williamson36 proved

the following theorem.

Theorem 1:

W 1
T, = Z w(g) P.(g).
G G g€G W
Thus

1

W
tr T, = b owi@) tr(z ()
¢ - T6] 2eG W

1 ()
= TeT w(g) 1'% w().
¢ gEG f



If one defines the generalized character cycle index (GCCI) of a group

G with character X as corresponding to the irreducible representation

T, as
b, b
X S 1 "2
Pg(8158ps+++) = TGT T x(g 5.7 8, e
geG
b, b
where 8,7 8, .+.18 a representation of a typical permutation geG having

b1 cycles of length 1, b2 cycles of length 2, etc. Then by theorem 1
and the preliminary combinatorial results in reference 38,

erTh = BXC] w(m), I @Eni,...
reR reR

We now proceed to the symmetry operators of generalized wreath products.

I11I. Symmetry Operators of Genmeralized Wreath Product Groups
Let a set @ = {1,Z,...,n} be partitioned into the mutually disjoint
sets Yl’ YZ""’Yt' Let G be a permutation group acting on § such that
all its orbits are within the same Y-sets. Let Hl’ Hz,...,Ht be t per-
mutation groups and let Hi be a map from Yi to Hi (for 1 = 1,2,..,,t).
Then the set {(g:nl,nz,...nt)lgec, HizYi»Hi} is called a generalized
wreath product and is denoted as G[Hl’HZ""’Ht]' Let Gi be the set of

all cycle products contained in the set Y It is shown in ref. 1 that G

i° 1
forms a group. The multiplication of the elements of generalized wreath

product 1s defined as follows:
A 14 A ' 1 1 1
(g;Hl.Hz,..., t)-(g';Hl.HZ.-...Ht) = (g8 ;Hlﬂl Hznz ,.....,Htﬂt )
8y 2 L

with

CPIER WO
%1



where 8 is the cycle product of g contained in Yi. The product
Pix  Tox ex
(Hl x HZ x.....th ). G' 18 a permutatfon reoresentatiom of
m
g%

GlHl,HZ,...HtJ where 1-1i = Hil X HiZ X..oXx H

imi’

1 A
G' = {(g:el,ez,...et)[geG, e; (1) = H, (the identity of Group Hi)VﬁeYi)
Hij is a copy of the group Hi' The gpecial case of this group with
t=1 1is the well-known wreath product denoted as G[H].
) LT L
Let the irreducible representations of Hl X H2 x...th be
Ty

1 Dex ik
denoted as Fl # FZ #...#Ft where Fi i1s the outer tensor product

Fip # Fis #...4F

, with F,  being an irreducible representation of Hi'

im, ij

i o
The group G acts on the set of #i Fi 's and partitions them into equi-
valence classes. The inertia group of each such class should be determined
where the inertia group consists of the set of those permutations satis-

fying the following proverty.

(g:ﬂl,ﬂz,...,nt)

GI.[Hl,HZ,...Ht] = {(g;nl.nz....nt) r - r}
m
4%
where T #iFi
with
*(g;ﬂl,nz,..-ﬂt) ) 1 ' . -1 v '
F (e3lly WMy seeesTy ) = FE(g30 Ty o)™ (o3l Myyeeen,T)

(g;Hl,HZ....Ht).

A permutation representation of the inertia Grouo Gr[Hl'HZ""’Ht] is
D % Dy x B 0 '
(Hl x HZ x...th )'GT where Gr is known as the inertiaz factor. If
My x Mo nex
one knows the representation matrices of (F1 # F, #...#Ft )

(e;el,ez....,et) it is possible to find the reoresentation matrices of

* ] o %
F:l #F 2 #...08 ¢ (g:el,ez,...,et) by a sultable permutation of the



m
% -
columms of #iFii determined by g 1 as described in reference 1. The

group G acting on 9 must be intramsitive. This is implicit in parti-
tioning the set 9 into disjoint sets Yl,YZ,...,Yt and stipulating that
every gtG has all its orbits within the same Y-sets. Let Tl’TZ""’Tt

be t sets. T's are usually referred to as types. Then the generalized

t
wreath product G[Hl’HZ""'Ht] with Hi acting on Ti acts on 121 Yi X Ti'
A typical (3;H1’H2""'Hc) EG[Hl’HZ""’Ht} acts on E Y, x T, as follows:

(831 Ty, 00, T (y58) = (gy:TL (y)0) if yey, and teT, .

t
Consider the set of maps from U Yi X Ti to a set R and let such a set
i=1
of maps be denoted as
EY1XT1
R

The action of G[HI'HZ""’Ht] on UYixTi in turn induces vermutations on
Uy, xT 1 Uy, xT,

i i%71 1 1771
R , for a (g;ﬂl,ﬂz,...,ﬂt) EG[“1'H2""’H:} and fER

-1 -1 .
(g;Hl,Hz,...,Ht)f(y,t) = Hi(g v)f(g “y,t) if eri and tETi'

UYixTi
Let W:R' + K be defined by
W(f) = i w(f(y,t))
(y,t)eYixTi
i=1,t

where w:R>K. W is a weight function which is also a constant on the

orbits of G[Hl‘HZ""'Ht]‘
Y

Let Xizﬂi*K, x:G*K be characters of degree 1. For a I!ieHii define

L) = M A (,(y)). This is just a |Y,|-fold repeated product of
i1 ey i1 i

i

A Let w(g;Hl,Hz,...,Ht) be defined by m(g;ﬂl,ﬂz,...,ﬁt) =

4
x;g)kl(nl)lz(nz)...At(nt). Then note that m(g:nl,nz,...,nt) is a



character of G[Hl’HZ""’Ht] with degree 1.

Let V be a vector space over the fie?d T with dim V = |R|. Define sym-
Y
i

metry operator T, , whose range space is ﬁ'V, as

Hi
1
T --[——l-z A, (h)P(h),
Hi Hi heHi i
1

\ A
Let the vector space spanned by the basis {ef :fieAHi} be denoted as Vﬂi.
i i

A
EH i, {yeRDI ) A (0) # O)'Hi(v) = {h|hy = v, heHi}. Then the .symmetry
i ceHi(Y)

operator of G can be detined over the tensor product space

v | A 17,1 A ¥, | A, g
Q@ v @ V°f... R V by T.= x(g)P(g).
H]_ HZ Ht G m-ge(;

With © defined as above the symmetry operator T can be defined as

G[Hl,HZ,...,Ht]

l - »
TG[Hl,HZ,...,Ht] = [CTH, ,H,,...,B 1] ) w(gsly Ty e s )P (gl L Ty, e, T)

38
In this set up one can generalize Williamson's theorem™ to theorem 2 stated

below i{or abelian characters,

-}
Theorem 2: The weighted symmetry aperators Ig[ﬂl’HZ""’Ht], T,, T Yl, T YZ,
T y are related as follows., H1 HZ
Ht
t o w )
Tem u,,..cn] "% Ty, Ty Ty
1*72 t - 1 H 2 it
1 2 t
Yi
where T Y is the symmetry cperator which corresponds to the group Hi .
i
H

i



38
If now one follows Williamson's method  2f taking traces it ecanm be
shown that

Q

tr T = pY (s, ~1 wk(r))
G[H1,H2....Ht] GLH) oHpo o R TR T D

" u . .
where PG[H],HZ,.. ’Ht] is obtained as follows.

T e ar = . X
Let m(g;H],Hz,...,Ht) = x(g)A](n])AZ(HZ)...At(nt). Define Pg =

C;:{q)
T%T gZ ??)dg]si}J where Cij(g) is the number of j-cycles of g in the
- A

. s
il LM . ,
set Y;. Let Z1j =7, (sk - Skj) where the subscript on the s-variables
are products. Then

3 s
1

X A
ij)-

PBLH, Hyo . b1 T Pa(Sig 7 2
Let us illustrate Theorem 2 with a simple example from NMR groups, namely,
the NMR group of propane, 52[53,52].

Consider the ijrreducible representation ([3]##[3])1#{2] e [12]’ of 52[53,52].

This is an one-dimensional representation.

2
(11 _ 142
Pe = = 2{s71 Sp1 - S1592)

Z]] = =(s +253 + 35152)

z =

1,.3
55y
_1,.3

Ly, = glsytasg + 3s,54)
1,.2

2 =25



PGLH, Hy

’ Ht]

n

2
pl1 ](sij +17..)

10

ij

2{_6{5 + 253 + 3s s2 -2-(5 + 52)

( 3

- glsy + 256‘+ 3s,5,) '2(5] +55)]

1 8 2.2 4 2
m—[ + 45153 + 1551 5 ¥ 4s.ls3 + lﬁs]s2 3t 7s1s2

2 2.3 2
+ 4s Sq t 35152 + 12515253 - ]25156 - 18515254

2
4 2
652 - ]25256 - 185254].

,T _— 2.
Thus  tr Gy o By with I ([31H{30)#[2] 8 [1°]

= w + 4 w w + 15 Wiy

X

X

+

+

(T wi(r))? + 80 Tw(r))( T wi(r)) + 120 § wr)®

reR reR ref reR

CI w2 e (T wdr)) + 70 T w(e))BC T wl(r))

reR reR reR reR

40 T Wl I wir)? + 30 T w(r))2( J wlir))3
reR reR reR reR

120 T wle))( 3 w2 (r)2( T wd(r)) - 12( Tw(r) P T wb(r))
reR reR reR reR reR

180 T w(r)20 I w2 T W) - 60 T wi(r))?
reR reR reR reR

120 T w2(e))0 T w(r)) - 180 T w2(r)2( T Wi,
reR reR reR reR

Ty % M 5

*
Let the inertia group of a representation F = Fl # Fy # .

m
t*
# F

be GF*[Hl’HZ’ ..

"Ht] and let G;, be the corresponding inertia

factor. Then we have the following generalization for non-abelian

characters.



11

Define PG* to be
F

where Cij(g) denotes the number ur j-cycles of g in the set Y;» where Y, is
defined as in Sec. III, and % is the character of the representation F of the
group GF*,equ1va1ent to F* of GF* appear1ng in the representation

t
(F] #Fz# e ) BF' 4 GLH L Hy, L H T

A
k be defined as discussed above, but now A is defined by the representations

Let Zij o
appearing in the outer tensor product F1.1 . Then
T X Ak
P (G[HI’HZ""’Ht]) = PGéiij > Zij)
if this j-cycle in Yi is constituted by j-copies of the representation whose

character is Ak. The corresponding generating function is abtained by the

following substitution:
6-F- = PLGIH; My H B, > sz"(r))
re

Let us illustrate the above procedure with two examples of nonabelian .
characters from the group 52[53,52].
Let T be ([2,11% [2,0)H [1°] ® [1%] + S,[5,.5,1. The inertia group of

[z, 1]#[2 114 D 2] S,083.5,]. The cycle index of the group S, isomorphic
the
to/inertia factor with the character which corresponds to the irreducible

representation [12] is

2
1°1_1,.2 -
Ps * = 387159y - spy59p)



12

A2 L3 s )
[2 1. —(s sg)
Zg} Ve jisd - sy,

Thus
r
P (S,053,5,] = 73(s - 5902 F (s - 5)

SR RERE

= 1%3{45? - as?s3 + 4s$s§ - 45?52 + 85?5253

2 2.3 4 2
Sq - 125152 + 1252 + 125156 - 125256].

- 4s2 3

Let T be [1315(2,1]7£[2] 8 [1]'+ S,[54.5,]. For this case
the inertia group is S3xS3xS2 and hence the inertia factor is the trivial
group containing only the identity. In fact, ' is equivalent to
[P3# [201#12) + S,055.5,)-
pL1]

$
ZH3] = g(sy + 253 - 35¢5,)

S%]SZ] (corresponds to (1)(3)(2))

(2.7 . 1,.3

7 = xlsy - sy)

"2]

T
of 3 1.2
PS,053:5,] = 35T+ 253 - 355,07 F (5] - sg)- Usd ¢ 5y)

(The £irst factor in the product 11511 is a conszequence of the first repre-

sentation in the outer product [13]4F [2,1] while the second is a result



of [2.1]. Hence the above substitution.) The corresponding generating

functions can be readily obtained for both the representations.

IV. Applications to Non-Rigid Molecules

The GCCI's of generalized wreath products can thus be obtained in
terms of the GCCI's of the composing groups. Cousequently, characters
of all the classes with the same cycle type of the generalized wreath
product can be generated from character tables of groups of much lower

order. This has an important application in obtaining the character

tables of the symmetry groups of non-rigid molecules which are in general,

by

generalized wreath product groups.1 Note that the coefficient of x1

b
xzz... (x's are dummy symbols like s') in Pg which can be obtained in
A
terms of Pé and Zig's gives the sum of characters of elements of
T*
G[HI,HZ,...,Rt] wich the same cycle type. Sincez all the elements in

the same conjugacy class have the same cycle type the coefficianit of
b, b

1

X7 Xy «..gives

I xo) lcl
C
bl b
where the sum is taken over all C with the same cycle type X7 Xy eens

x(C) is the character of x in the conjugacy class C and Icl 1s the order

of the conjugacy class C. When there is onlv one conjugacy class with
b

b
the same cycle type xl1 xzz...(which is very often the case) the coef-
b, b,
ficient of xll xzt..gives x(C) |c| and thus the character x{(C) is

generated. When there are more than ome confugacy classes with the same
cycle type, if we determine the characters of all but one conjugacy

class with the methods outlined in reference 1, using the coefficient

b, b
2
of xll x, ...in Pr(G[HI,HZ,...,Ht]) the character of the last coantugacy

class can be determined. Im practice for several wreath products and

13



generalized wreath products, at most 2 or 3 conjugacy classes have the
same cycle type and several conjugacy classes have the unique cycle tvpe.
Thus PF(G[HI,HZ,...,Ht]), which 1s obtained very elegantly and easily
provides for inventories of characters of all the irreducible representa-
tions of wreath and generalized wreath products.

We now illustrate this method with examples. We give two examples,
namely, 02[03] and SZ[SA] where there is no 1-1 correspondence between

cycle representation and conjugacy classes. In table 1, the character

table of the cyclic group C3 is ghown with Yl and Y, treated as components

of the degenerate representation E. Table 2 shows the various GCCI's
of the grouo CS' The two GCCI's of the group 02 are readily obtained.
The irreducible representations of CZ[C3] and their GCCI's are shown in

table 3. They were obtained in terms of the GCCI's of C3 shown in table
r
2 and those of Cz. For example, the GCCI P 2for T, =(A1 # Al) "] [12]’

is given by the following substitutions:

2
[y %'(xil - %,,) (There is only one Y-set)
ZA1 =1 (x3 + 2x.) (from table 2)
11 3 1 3
A1 3
2373 O+ 2xp)
2 A
T 1 k
Thus P, = p[ ] (:lc:'_j -+ zij)
1,1 3 2 1 3
= ELE {xl + 2x3} -3 (= + 2x6)]
1 6 3 2 3
=15 (x1 + loxlx3 + 4x3 - 3x2 - 6x6).

There are 2 conjugacy classes with the cycle tvpe xixB, 3 conjugacy
classes with the cycle type xg, 2 conjugacy classes with the cycle type

x6 and all other cycle types have unique coniugacy classes. Thus if the

14
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character of the conjugacy class (123) in PZ 1s determined by the method
in reference 1 to be 1, then the character of the conjugacy class (132)

is determined as 1 using the GCCI since the coefficient of x3 is +4

r, 1%3
in 18 P ©, The characters of E and (14)(25)(36) are immediately determined
usiang GCCI's. The character table thus obtained is shown in table 4.
The complete character table of the PI group can be obtained by including
the inversion operations as a semidirect product. Another non-trivial
example is the group 52[84]. The character table of SA and the GCCI's of
S4 are shown in tables 5 and 6, respectively. Table 7 shows the GCCI's
of the 20 irreducible representations of 52[54] obtained using the method
developed in this paper. The group 52[54] has 2 conjugacy classes with
the cycle type xixg, 2 clasges with the cycle tyvpe XZ’ 2 classes with
the cycle type x%x4 and 2 with the cycle type xg. The rest of the 12
conjugacy classes have unique cycle tyves. Thus Pr’s of 82[54] generate
the characters of these 12 conjugacy classes immediately, while the
characters of other conjugacy classes are determined using of and by
knowing the character of one of the conjugacy classes with the method in
reference 1. The character table thus obtained is shown in table 8. The
conjugacy classes, order of each conjugacy class and the representatives
of each conjugacy class are obtained using the method in reference 1,
Table 8 is in agreement with the compound character table, [8] + [62] +
[42] in reference 39, CZ[C3] is the rotational subgrouvp of non-rigid
ethane. The fact that 52[54] is the NMR grour of bicyclobutadienyl
sandwich complex can be seen using the diagrammatic technique for the
characterization of the NMR group of molecules presented in ref. 3. The
permutation representation of the conjugacy classes were obtained using
the permutation representation of the wreath product eroups outlined in

sec 2 and ref. 1,



As a last example to illustrate how the GCCI's of wreath products
can be obtained, consider the third GCCI in table 7. The irreducible
representation under consideration is [4] # [31] + 52[54]. The inertia
factor of (4] # [21] is Sl’ the group containing just (1) (2). The
cycle index corresponding to the only identity representation [2] of

this group is

From table 6 we obtain,

(4} _ 4 2 2
le 1/24(x1 + 6x1x2 + Bxlx3 + Bx4 + 3x2)

(311 _ 4 2. _ a2
le 1/24(3x1 + 6x1>.2 - 6x6 3x2)

T
Therefore, for Ty = [4] # {311 + 52[54], P 3, is

T
3 4 2 2 4 2 2
P = 1/26(xl + 6xlx2 + 8x1x3 + 6x4 + 3x2) 1/24(3x1 + 6x1x2 - 6x4 - 3x2)

= 1/576(3x§ + 24xgx2 + 24x5x + 12x4x + Ainx

3
1%3 1% + 48x %%

2
2 17273

4

- 24x - 48x - 36x§ - 36xlx, - 9x3).

2
1%2%3 1¥3%4

Ty
Hence 1152 P

is the expression shown in table 7. From this expression

the character corresponding to all the conjugacy classes can be immediately
determined except the conjugacy classes with the cycle tvoes x?xg, XZ’ Xy%y s
and x;. For example, the character corresvonding the conjugacy class

(12) is 1/12 times the coefficient of xgxz in 1152 Pr3. The multiplication
factor is 1/12 because the order of this conjugacy class is 12. Thus,

this character is 48/12=4, The character corresponding to the conjugacy
classes with the cycle types xixg, etc., can be determined if the character

of one of the conjugacy classes of the same cycle type is known.

16



V. Generalized Isomer Enumerations

One of the interesting chemical applications of combinatorics is
the enumeration of chemical isomers which are equivalence classes of
maps from the set of vertices of a chemical graph to chemical substituents.
Several papersll-35 have appeared in both mathematical and chemical
literature ever since the appearance of the paper of Pélya.ao In this
section we consider an important generalization using the formalism in
sec 1I.

The complete interconversions obtainable by the allowed symmetry
operations are best described by the irreducible representations contained
in each equivalence class formed by isomers. Each isomer or a pattern

(in Pélya terminclogy) is a representative of the set of functions that
are trans:'ormable into one another by the action uf the molecular symmetry
group. Tue set of functions in any equivalence class transforms as a
reducible representation and it will be interesting to know the irreducible
representations contained in each pattern. The GCCI's introduced in
earlier sections with Pélya substitution are the generators of irreducible
r;pre:entations contained in patterns. The coefficient of a typical term

2‘....in the GCCI corresponding to the irreducible representation T

generates the frequency of occurrence of T in the set of functions with

b, b
172
the weight W Wy e

Let us illustrate the above method with generalized isomer enumeration
of non-rigid hydrazine molecule. Replace the protons of this molecule
by the substituents a and b so that the chemical formula is Nzazbz. The
rotational subgroup of the non-rigid molecule is described by the wreath
product 52[52].1 The GCCI's of the various irreducible representations of

52[52] with labels in accordance to chemical literature are in table 9.

17



I1f we replace each x by Z(w(r))k we obtain generators of generalized
isomer enumerations. Such generators are shown below.

A A

G.F. Psl(xk-b ak+bk)

= a® + a%b + 2a%b2 + ab> + bP.

B B
G.F. 1 = Pcl(xk->ak+ )

= a3b + a2b2 + ab3

c.r.E = Pg(xk > a4+

= a3b + azbz + ab3

B B
G.F, 2 PGZ(xk +> aki-bk)
= a2b2
A A
2 _ 2 ke, ky _
G.F. = PG (xk-ba +b ) =0,

The coefficient of a2b2 in the generator corresponding to an irreducible

representation T gives the number of times T occurs in the set of functions

with the weight azbz. The generator corresvonding to the totally sym-

metric representation 1s the generator of patterns. Thus the coefficient

2.2

of a"b” 1in the A -generator shows that there are 2 isomers (patterns) for

1
this molecule. The 2 functions corresponding to the isomer 1 (in table

10) transform as A1 L} Bl as generated by GCCI's. The functions which are
1 PE® BZ.

Equivalently, the symmetry operations of this molecule transform the maps

in the equivalence class formed by the isomer II transform as A

from 4 vertices of the hydrazine to substituents a and b with the weight

azbz into 2 equivalence classes. Each class splits into direct sum of

irreducible representations Al ] B1 and A1 L ;] BZ @ E, respectively.
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Table Captions

Table

Table

Table

Table

Table

Table

Table

Table

1.

2.

4,

5.

Character table of the cyclic group C and YZ are the

3* N1
components of the degenerate representation E.

GCCI's of the cyclic group C3. Note that the sum of the GCCI's

of Yl and 72 is the GCCI of E.

GCCI's of Cz[C3] obtained using the procedure outlined in

this paper from the GCCI's of ¢, and C3.

Character table of CZ[C3] gederated using the GCCI's in table

3 and the methods outlined in reference

Character table of the symmetric group SA'

GCCI's of all the irreducible representations of SA'
GOCI's of 52[54] obtained from the GCCI's of 5, and Sye

Character table of SZ[SA] obtained from the GCCI's in table 7

and the methods in reference
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TABLE 1
) ~
5 e | 2|2
order 1 1 1
A.| 1 1 1
Y.I 1 w w*
E {YZ 1 w* w
w = exp(21i/3)
TABLE 2
r 3pF
3
A] ) + 2x3
3 *
Y xp * (w + w*) xg
Y2 X-|3 + (w* + w) X3
3
E 2x] - 2x3

24



No. r

TABLE 3

18 Pl

25

(A AN 2]

2. (A #ADODT

3. ((yy # Y])®[2]’
(Yz # Yz)
4. (Y] # 'Y]‘
@[12]-
(YZ # Yz)/

5. (vq # vp)C,0C,]

6. (AI # E)fCZ[C3]

3 2 3
X + 4x1 X3 + 4x3 + 3x2 + 6x6

6 3 2 3
Xy *+ 4x] Xq + 4X3 - 3x2 - 6x6

(u)+u)*)2 X o+ Z(uu*fm*)x-l3 X3+

+

6 2
X] 3 &)
6 (u)*+w)2 x32 + ?.(ux*+m)x-l3 Xq *

+

X4 3x2

X ot (w+w*)2 xf + 2(w+u*)x13x3 - 3x;
x16 + (u)*+w)2 x32 + 2(w*+m)x-,3 X3 - 3x23

{
'

6 3 2
2x1 - 4x] X3 + 2x:
6 3 2
4x.| + 4x1 Xg - 8x3

OR

ZXf - 2(w+w*)xﬁ X3 - 2X§ + 2(w+m*)x§

Zx]s - 2(u)*+u))x]3 Xg - 2x32 + 2(m*+w)x32

+

+

3(w+m*)x6

3(w*+w)x6

3(w1"u)*)x6

3(w*+w)x6
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TABLE 4

(9gs2p1)
(s29epL)
(9g)(s2) (v1)
(9st)(2€l)
(s9v)(zeL)
(9sv)(€2L)
(2€1)

(e21)

3

1

w¥

w*

w¥

-1

w*

w¥

W

-1

w*

w*

-1

2w* -1

“-w* 2w

-

~w 2w* 2w

-w*

CZ[C3]

Order




TABLE 5

- &
Sq —- = 3 =
o8N NN
[71] — — — —
Order 1 6 8 6 3
[4] 1 1 1 1
[31] 3 1 0 -1
[2%] 2 0 -1 o0 2
@221 3 -1 0o 1 4
n 0 I T S I S
TABLE 6
r 23 p¥
[4] x]4+ 6x]2 Xy + Bxyxg + 6x4 + 3x22
[14] x]4 - 6)(]2 Xy + 8x1x3 - bxy + 3x22
4 2 2
3] 3%+ 6xp Xy - 6xy - 3xy
[221] 3} - exPx, + 61y - 3xf
2 4 2
[2°] 2x] - 8x.'x3 + 2x2

27



28

TABLE 7

r

1152 pF

([a3e1s1) () 21"

(Leuan @ DA’

([4THI311)45,(5,]

([41#0221)45,[5,]

([4#T219 85,13,

(142401 Pss L)

(Inpuad) @ 1

(310D @ 014

x]8 + 12x]6 Xy + 16x15 Xyt 12x]4 Xg + 42x]4 xz2 + :iE»x]2 "23

+ 96x]3 XoXg + 72x]2 XyXy + 64x]2 x32 + 48x]x22 Xyt 96x]x3xA
+ 148xg + 108x7 + 180x2 x, + 192y + 36x,

x84 1268 x, + 160 xg + 12x) %y + a2 k¢ 36x 7 x)

+ 96x]3 KoXq + 72x]2 XoXg + 64x]2 x;' + 48x1x.‘,2 X3 + 96x,X3x,
- Vaxg - 36x7 - 102x7 x, - 192x,x5 - 15x,

6x18 + 4Bx]6 Xy + 48x]5 X3+ lex]4 Xy + 84x14 ::22 + 96x13 XoXkg

2 2 2 4
- 48x]xz Xg - 96x]x3x4 - 72x4 - 72x2 Xy - 18x2

8 6 5 4 4 2
4x] + 24x] X, + lﬁx] Xy + 24x] Xy * 24x] X o+
+ 72x]2 x23 - 96x]3 XyX3 - 123x]2 x32 + lle]x?_2 X3 - 96x]x3x4
+ 727 x, + 36x)

8 6 5 4 2 4 2.3
6x] + 24x] Xy + 48x] X3 - 60x] Xo + 48x] Xy - 72x] Xy

3 2 4 4

- 96x1 XoXq = 48)(]x2 X3 + 96x]x3x4 + 72x1 Xy - 18x2

2xB + 3x] xg - 60x k- 10axF xyx, + 12807 x 2
+ 96x xf x5 - T2xZ + 18x)

8

9] 4 4 2 3 2

+ 36x]6 Xy = 36x] X+ '(Bx] Xy - 36)(]2 Xy - 72x] XoX4
2 2 4
- 144x8 - 36x4 + 180x2 Xt 81x2
8 6 4 4 2 2.3 2
9x<l + 36x] Xy - 36x] Xq + 18x] Xy - 36x] Xy - 72x] XoXg

+ 184xg + 108x2 - 108x x, - 63x)
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TABLE 7 (CONT.)

r 152 pT
2
(W22 1)4s,05,] 12x3 + 2000 xp - 88x0 x5 - 2} xy + 280202 4 7208 23
- 96x3x X, + 48x x2x + 96Xq XX, - 72x2x - 18x4
1 %%3 %2 %3 1X3%g 2% 2
2 2 2 4
([NI212s,05,] | 18x2 - 108x) x7 + 14axF xyx, - 72xf + 18x,
5 4 4.2 2.3
([N 01 1)1s,[5,] 6x - 20x. X, + 88X Xy - 4Bxy X, - 60x) x + 72x 7 x;

(2211221 @ [21"

(22122 @ 021

([22MI212])15,(5,]

(22 W01%)45,(s,]

(2121212 [2)*

(2240212 @ [14)

+ 96x]2 XoXg - 48x1x22 Xg = 96x]x3x4 + 72x42 - 18x24

8 5 4 2 2.2 2 2
4x] - 32x] Xg + 24)(1 Xy, + 64x] Xy - 96x]x3x2 + 144x4

4
- 192)(2)(6 + 84x2

8 5 4 2 2.2 2 2
4x] - 32x] Xq + 24x] X5 + 64x] X3 - 96x1x3x2 - 144x4

+ 192xyxg - 12,

8 6 5 4 4.2 3
12x® - 2axfx, - aex] g+ 2axtxy 3t - 7S

+ 96x.° xpxg + 48K %7 Xq - 96xXgx, + 2L x4 - 36xy

8 6 5 4 4 2 2.3
4x1 - 24x1 X, + 16x1 X3 - 24x] Xg t 24x1 Xy - 72x1 X5

3 2 2 2
+ 98y Xoxg - 128xp" xg + 4BXyXy X3 + 96X, XgX, _ 72)(22 X,

+ 36xy)

8 6 4 4 2 2.3 2
Qx] - 36x] Xy + 36x] Xy + 18x] Xy 36x] X5 - 72x] XXy

+ 144xg - 36x7 - 180x7 xq + 8lxy

8 6 4 4 2 2.3 2
9x] - 36x] x, + 36x] Xy + lax] X, + 35x] Xy - 72xl XXy

2 2 4
- '|44xa + 108)(4 + 'IDBXZ X3 - 53x2
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TABLE 7 (CONT.)

r

1152 pF

(212114118, [5,]

(404 @ f21

'y @ nér

8 6 5 4 4 2 3
6x] - 48x] Xy + 48x] Xy - 24x] Xy + 84x] Xo = 96x] XoXg

2 2 2 4
- t‘le]x2 Xy + 96x]x3x4 - 72x4 + 72x2 X - 18x2

x]8 - 12x]6 X, + 16x]5 Xy = 12x14 Xy t 42x]4 x22 - 36)(12 x23
- 96 xpxg + T2xF xpx, + 64xF xZ + 483x;xf xq - 96xyxgn,
- ladxg + 108x2 - 180x7 x, + 192x,x5 + 33x,

x18 - 'I2x]6 Xy + ]6x15 Xy - ]2x]4 Xy + 42x]4 xz2 - 36x]2 x23

- 96x]3 KoXq + 72)(12 X%y + Gt‘lx]2 x32 + 48x]x22 Xg - 9(ix]x3x4
+ 108xg - 36x2 + 108x7 x; - 192xyx; - 15%,
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02,

l-

l-

l-

61,
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Ll
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Sl
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Table 9. The GCCIl's of the group 52[52]
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Table 10. Generalized isomer enumeration of substituted
hydrazine. The set of functions from the set
of vertices to substituents with the weight
azbz,the patterns (isomers) and the irreducible
representations contained in each pattern are
shown below.

Functions Pattern Irreducible Representations

aa bb

aa bb A, & B
bb aa ot
ab ab
ab ba ab ab A, @B, 8F
ba ab

ba ba

34



