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ABSTRACT 

In this work, we consider a non-Abeliai gauge theory 
involving scalar fields with non-tachyonic mass te 5 in the 
Lagrangian and we wish to construct a finite energy density trial 
vacuum for this theory. The usual scalar potential arguments 
suggest that the vacuum of such a theory would be in the perturba-
tive phase. However, the obvious choices for a vacuum in this 
phase, the Axial gauge and the Coulomb gauge bare vacua, do not 
have finite energy densities even with an ultraviolet cutoff. 
Indeed it is a non-trivial problem to construct finite energy 
density vacua for non-Abelian gauge theories and this is intimately 
connected with the gauge fixing degeneracies of these theories. 
Since the gauge fixing is achieved in the Unitary gauge, this 
suggests that the Unitary gauge bare vacuum might be a finite 
energy trial vacuum and, despite the form of the scalar potential, 
the vacuum of this theory might be in a Higgs phase rather than 
the perturbative phase. 

In the first Chapter, we give a general discussion 
of the phases of a gauge theory and its gauge fixing degeneracies. 
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In the second Chapter, starting from an Axial 
gauge canonical formulation, we construct the Unitary gauge 
bare vacuum expressed in terms of Axial gauge variables, 
within the context of Abelian Scalar Q.E.D.. This state 
which has the form of a coherent plasma of charge, is shown 
to have infrared finite energy density and invariant under 
the residual group of the Axial gauge. Due to ultraviolet 
reasons, we then consider a slight modification of this 
state. 

In the third Chapter, these considerations are 
generalized to an SU(2) gauge theory with fundamental 
representation scalars. Within the same Axial gauge formu
lation, we thus have two trial states for the vacuum ; the 
Axial gauge bare vacuum for the perturbative phase and a 
coherent plasma of color for the Higgs phase. Since the 
latter has a finite energy density, this indicates that the 
vacuum of this non-Abelian gauge theory is more likely to 
be in the Higgs phase, rather than the perturbative phase 
with real massless gluons. 
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CHAPTER 1 
INTRODUCTION 

A) Phases of a Gauge Theory 
At the present time, it is generally believed 

that the fundamental interactions in Nature are describable 
in terms of non-Abelian Gauge Field Theories. We now have 
the Weinberg-Salam Model, incorporating successfully the 
phenomenology of the electroweak interactions, and we have 
the Quantum Chromodynamics which is an asymptotically free 
gauge field theory for the strong interactions. The prin
ciple of local gauge invariance under a non-Abelian gauge 
group is therefore an important symmetry principle in high 
energy physics. 

The realization of this type of a symmetry in a 
gauge theory is however much more subtle than the usual way 
of realizing the Wigner-type symmetries of a quantum theory. 
In a gauge theory, the local gauge invariance is not in ge
neral implemented in terms of multiplets in the space of 
physical states. In the Weinberg-Salam type theories, one 
has the spontaneous breakdown of the gauge symmetry via a 
Higgs mechanism and the symmetry is hidden from the physi
cal states, whereas in Q.C.D., only the singlet states are 
considered physical, in accordance with the color confine
ment hypothesis. We thus have various possibilities for 
the realization of a gauge symmetry and in general, every 
distinct way of realizing such a symmetry corresponds to a 
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distinct phase of a gauge theory. 
In this work, we shall primarily be concerned 

with the Higgs phase of non-Abelian Gauge Theories. In or
der to put our considerations into a more general context, 
we would like to begin by giving a brief description of the 
possible phases of a gauge theory. 

In a confinement phase, the fundamental represen
tation particles -which will be called quarks, regardless 
of their spin- are confined. The standart picture of con
finement is the binding of a quark-antiquark pair by a thin 

tube of electric flux which cannot be spread out in the 
(2) transverse directions. This picture is qualitatively 

consistent with the dual string picture of hadrons. It can 
also be obtained in the strong coupling limit of lattice 
gauge theories. Whatever the mechanism for its justifica
tion might be, it is believed that the ability to support 
thin electric flux tube is an essential feature of the 
confinement phase. 

This picture is meant to apply to a pure gauge 
theory with static external quarks, since in the presence 
of dynamical quarks, the flux tubes could be broken by the 
creation of quark-antiquark pairs from the vacuum. On the 
other hand, hadron phenomenology suggests that the quark-
gluon couplings are small inside the hadrons; the latter do 
not contain too many quark-antiquark pairs. As a leading 
approximation to Q.C.D., one can therefore ignore the dyna
mical quarks altogether in which case the electric flux tu-
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bes will be stable objects. We therefore conclude that, a 
large ring of electric flux cannot diffuse into a confining 
vacuum and , so long as it does not shrink to zero size, 
such an object will be stable. The overlap of such a loop 
state with the confining vacuum should then vanish as the 
loop size,and hence the loop stability, increases and con
sidering a linear potential between a quark-antiquark pair, 
it is possible to show that, such an overlap should vanish 
as the exponential of the area defined by the loop. This is 
Wilson's criterion for confinement. ' Since a loop of elec
tric flux is a gauge invariant object, an operator which 
creates such a loop will be a gauge invariant order parame
ter, its surface clustering indicating that we are in a 
confinement phase. 

It is remarkable that in a Hiqgs phase, one ob
tains the electric-magnetic dual of the above picture. 
Nielsen and Olesen showed that, in a Higg" phase comple
tely broken by the adjoint scalars, there was a stringlike 

solution to the Yang-Mills equations which was stable by 
(4) topological reasons. The string was in the form of a 

thin magnetic flux tube, and in the Abelian case of the 
Nielsen-Olesen Model, Nambu showed that these quantized 
vortices led to the confinement of ir.onopole-antimonopole 
pairs. Mandelstam extended these considerations to non-
Abelian models and he suggested that a coherent plasma 
of monopoles could confine color in the same way as an or
dinary Higgs vacuum, which is a coherent superconducting 



plasma of color, confines the magnetic charges. "t Hooft 
to \ 

had also advanced a similar suggestion. 't Hooft then 
showed that an operator which creates a loop of magnetic 
flux is a gauge invariant order parameter for the Higgs pha
se and that in a phase without massless excitations, either 
this operator or the Wilson loop operator should exhibit a 

(91 
surface clustering. These developments have shed consi
derable light into the meaning of Higgs and Confinement 
phases in non-Abelian Gauge Theories. 

One may ask whether, in addition to the Higgs and 
Confinement phases, there exists a phase where the gauge 
symmetry is realized with a multiplet structii-^ in the spa
ce of physical states. Such a phase would contain physical 
massless gluons and it would correspond to the usual per-
turbative phase of an Abelian gauge theory. The fundamental 
distinction of a non-Abelian gauge theory however, is the 
fact that the gauge field quanta carry color, and any ob
ject with a definite color spin may end up being an arbit
rary superposition of different color spin states, by emit
ting any number of soft gluons. It is then not clear what 
the physical interpretation of such states should be and it 
would be difficult to determine the color spin of any co
lored object. The existence of such a phase is there
fore doubtful, and in fact, the main purpose of this work 
is to provide an argument to the effect that the vacuum of 
a non-Abelian gauge theory is more likely to be in a Higgs 
ohasa rather than a perturbative phase with physical mass-
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less gluons. 

We have thus covered some of the phenomenological 
and kinematical characteristics of the various possible 
phases of a gauge theory. Which of these phases is actually 
realized in a given gauge theory is a fundamental dynamical 
question, requiring to identify the phase described by the 
lowest energy eigenstate of the theory. We have seen that 
we do have gauge invariant order parameters for the various 
phases so that, once we have a trial state for the vacuum 
of the theory, it should not be difficult to identify the 
phase in question. 

It is however a nontrivial problem to construct 
physically acceptable states in non-Abelian gauge theories. 
In order to have finite energy densities, the physical sta
tes have to be chosen with special care, due to the gauge 
fixing degeneracies of the quantum theory of gauge fields, 
and it is to these issues that we now address ourselves in 
the following Section.We should like to point out that we 
consider all the time, a gauge theory defined with some 
kind of an ultraviolet regulation so that, any infinity 
that we may encounter here, is not related to the usual 
short distance problems of quantum field theories. 
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B) Residual Gauge Freedom in a Gauge Theory 
It is well-known that, <. quantal description of a 

gauge theory in terms of local fields necessitates the impo
sition of a gauge condition on the theory. Such a condition 
is needed to eliminate the redundant degrees of freedom 
from the theory so that the dynamical degrees of freedom 
could be uniquely defined. If however, the gauge condition 
itself is invariant under a residual subgroup of gauge 
transformations, then the gauge fixing is not complete and 
it is in general not clear how the residual degrees of free
dom should be eliminated from the theory. 

A case in point is the Coulomb gauge condition in 
a non-Abelian gauge theory. Gribov has shown that, such 
a gauge condition does not fix the gauge completely. Al
though this gauge condition could be used for quantizing 
small oscillations around a classical configuration, it is 
not clear how the theory should be defined from a nonper-
turbative point of view. Moreover, Mandelstam has poin
ted out that the trial states with finice energy density 
would have to satisfy certain nontrivial requirements, and 
in view of the complicated nature of this gauge in a non-
Abelian theory, it is not known how to obtain a finite 
energy density, translational invariant trial state for the 
vacuum of such a theory. In particular, the bare vacuum 
does not have a finite energy density. This is in sharp 
contrast with the case of an Abelian gauge theory where the 
Coulomb gauge condition is an especially convenient way of 



identifying the physical degrees of freedom. 
In view of these difficulties with the Coulomb 

gauge, we shall now examine another commonly used gauge 
condition, namely the Axial gauge. This gauge has the ad
vantage of being a ghost free gauge so that the Hilbert 
space structure of a theory is simpler in this gauge than 
in any other one. The gauge condition is : 

Alj = 0 (1-1) 

where the subscript denotes a group index. The canonical 
variables in this gauge are : 

F 1 0 ; i^l,2 a 

We note that F is here a dependent variable which can be a r 

expressed in terms of the canonical variables via thr cons
traint equation of Gauss' law. We r.ow consider the quantity: 

G a(x 1,x 2) - j dz - zF^ 0(x rx 2,z) (1-2) 

It can now be shown that, as a result of canonical commuta
tion relations, G (x.,x?) has nontrivial commutators with 
the canonical variables. As an example, we have : 

[ G a ( x l f x 2 ) , A £ < y i / y 2 , y 3 ) ] = -i ( a c \{t i^-y^ H^-y2)) 
(1-3) 
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This equation can easily be verified by expressing (1-2) in 
terms of the canonical variables, as we vill do in the 
following Chapters. We now observe that, according to this 
equation, the expression , 

Ga , Xl' X2> = F a ° ( x l ' x 2 ' + ~ ) " F f ( x l ' x 2 ' - ' 

cannot be taken as zero, and consequently, associated with 
any color fluctuation, there will be a non-vanishing field 
strength, infinitely far away from the fluctuation. The 
appearance of any net color on the system will result in 
an infinite energy. These remarks could be made more quan
titative, by observing that the Hamiltonian of this gene
ral gauge theory will be of the form : 

H = -i |d 3x F (x) F (x) + positive definite terms 
£ j a — a — 

It can now be shown that, because of the first term of this 
expression, the energy density of a trial state will be in
finite, unless the quantity G (x,,x,) vanishes on that 
state. In other words, for finite energy density, the 
physical states must satisfy : 

G (x i rx 2) | state > = 0 (1-4) 

This condition is related to the residual gauge 
freedom of the Axial gauge. The gauge condition (1-1) is 
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invariant under the subgroup of gauge transformations local 
in (x,,x2) and for each such point in space, we have a re
sidual group which is not fixed by the gauge condition. It 
can easily be seen from (1-3) that the quantities G (x.,x_) 
are the generators of this residual gauge group and, in 
view of this, the condition (1-4) implies the invariance of 
the physical states under the residual gauge group, the 
gauge fixing of the residual degrees of freedom being thus 
achieved on the space of physical states. 

Another way to arrive at the same condition is to 
analyze the Poincare invariance of a gauge theory quantized 

(12) in the Axial gauge. It can then be shown that , the 
Poincare algebra contains anomalies proportional to the 
generator of the residual group, and the Poincare invarian
ce can only be achieved in a subspace satisfying (1-4) . 

The bare vacua of Abelian and non-Abelian gauge 
theories in the Axial gauge, do not satisfy this condition. 
This means that the usual perturbative vacua will not have 
finite energy densities, and as such, they will not be good 
trial states for the ground states of thes_ theories. Our 
aim in this work will be to modify the Axia.l gauge bdre va
cuum to obtain a lowering of the energy density m the 
infrared, thereby presenting a better trial state for the 
vacuum of a non-Abelian gauge theory. It is clear that, the 
key to such a procedure wi~ 1 be to construct a state wi.ich 
does satisfy the condition (1-4). 

In the case of an Abelian theory, we can always 



10 

go to the Coulomb gauge where there is no gauge fixing de-
(7) generacies. In fact, it can explicitly be shown that , 

the Coulomb gauge bare vacuum expressed in the Axial gauge 
satisfies the condition (1-4) so that, it is a better trial 
state than the Axial gauge bare vacuum. A similar procedu
re does not work in non-Abelian gauge theories, because of 
the above-mentioned difficulties with the Coulomb gauge. 

The foregoing arguments suggest that a formula
tion of a gauge theory whffre there is no gauge fixing dege
neracies, should be preferable to other formulations.lt is 
well-known that the choice of the Unitary gauge does pro
vide such a formulation and we therefore expect thatthe ba
re vacuum in the Unitary gauge should be a finite energy 
density trial state. That such a gauge is especially conve
nient for displaying the physical degrees of freedom in a 
gauge theory, has also been suggested recently by 't Hooft. 
(Ref. 14) 

In this work, we consider gauge theories invol
ving scalar fields for which, the meaning of the unitary 
gauge is clear. These theories will be quantized in the Axi
al gauge. The scalar fields are not tachyonic in the Lagran-
gian and the usual scalar potential arguments suggest that 
we take a symmetric trial state for the vacuum. The obvious 
candidate for such a state, the Axial gauge bare vacuum, is 
not a satisfactory trial state as we have seen above. In 
view of this, we will suppose that the scalar fields deve
lop an expectation value, which will enable us to go to a 

http://formulations.lt
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Unitary gauge formulation of the theory. We will consider 
the theory at a fixed time and we shall express the Unitary 
gauge bare vacuum in terms of the Axial gauge variables, 
which expression will turn out to be in the form of a cohe
rent plasma of color. We wish to show that, such a plasma 
satisfies the finite energy condition (1-4) and provides 
a lowering of the energy density compared to the Axial 
gauge bare vacuum. This will then indicate that, a state in 
the Higgs phase is a better trial state for the vacuum of 
the theory than the bare vacuum in the perturbative phase. 

Before dealing with a ncn-Abelian gauge theory, 
it will be instructive to display our argument, firstly, 
within the context of an Abelian gauge theory. We therefore 
take the theory of Scalar Q.E.D. in the Second Chapter and 
we give a detailed presentation of the Unitary gauge bare 
vacuum in terms of the Axial gauge variables. Several tech
nical details will be discussed along the way, and in par
ticular, the ultraviolet difficulties of the Unitary gauge 
will require a slight modification in our approach.Never
theless, a relatively simple expression will be obtained 
for a trial state in the Higgs phase and we shall then com
plete our argument to the effect that such a state is a 
better trial vacuum than the Axial gauge bare vacuum. The 
Second Chapter is a preparation for the discussion of the 
non-Abelian theory, and it should not be concluded that we 
are advocating a Higgs phase for this non-tacyonic Abelian 
theory. We have already remarked that the Coulomb gauge 



12 

formulation was satisfactory for such a theory, and there
fore this Chapter should be considered just an introduc
tion to our considerations of the non-Abelian theory. 

The issues related to the non-Abelian nature of 
the gauge group will be discussed in the Third Chapter, 
where we take the scalar field in the fundamental represen
tation of the gauge group SU(2). The generalization of the 
argument of the previous Chapter will then indicate that, a 
non-Abelian gauge theory is more likely to have its vacuum 
in the Higgs phase, rather than a perturbative phase with 
real inassless gluons. 
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CHAPTER 2 
UNITARY GAUGE IN AN ABELIAN THEORY 

A) The Scalar Q.E.D. in the Axial Gauge 
In order to separate out the issues related to 

the Unitary gauge formulation of a gauge theory, from the 
problems having to do specifically with the non-Abelian na
ture of the gauge group, we would like to expose our consi
derations firstly within the context of an Abelian gauge 
theory in this Chapter. The theory that we are interested 
in is the Scalar Q.E.D. quantized in the Axial gauge. Being 
Abelian, this theory can be quantized in the Coulomb gauge 
without any associated Gribov difficulties. We are however 
interested in the Axial gauge, since this is the convenient 
gauge choice for the non-Abelian theory where a consistent 
Coulomb gauge formulation is not available. This Chapter is 
then a preparation for the discussion of the non-Abelian 
theory of the next Chapter. 

We begin by establishing our notation for the 
Scalar Q.E.D. . In an S0(2) notation, the scalar field will 
be represented by : 

* = (2-1) 

The covariant derivative is : 

c = - r = 1 • . = r = n 

12 21 ' 11 22 

where are Hemiti.in. 
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The Lagrang.an density is given by , 

* = - \ FMV F V V + i < D p * > a ( D V * > a " V<*> 

where, 

V($) = i V j 2(* a* a) + \ ^ 2(1> a* a) 2 • y 2 > 0 (2-2) 

A note about our Convention : In this Chapter, all the 
Latin indices will run from 1 to 2, unless otherwise noted. 
In such a convention, the canonical variables are as fol
lows : 

The canonical coordinates are : A , $ 
a 

The conjugate momenta are : F = - E ,(D<5) = II 
a a 

We note that, E = F is not an independent variable but 
depends on the canonical variables via the Gauss' law : 

- ~ ^ ab a b 

*(x> = 3 3E 3(x) = - 3 iE 1(x) + g £ a b ^ a * b (2-3) 

The Hamiltonian density of the theory, expressed in terms 
of the canonical variables of the Axial gauge, is : 
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•**= | E 1 E 1 + | [ 3~ 1 » ] 2 + i F 1 2 F 1 2 + i(3 3A i) O-jA1) 

+ I na"a + I (33*a» (83*a> + 5 'Va'Va + V<*> 

(2-4) 

where we define : 

with. 
j f(x i,x 3) = f dz e(x3-z) f(x i f: 

E(X) = | [ e( x) - 6(-x) ] 

) (2-5) 

(2-6) 

It turns out that such a definition of the inverse deriva
tive will preser.t an advantage over other definitions, in 
that , certain manipulations of the non-Abelian theory in 
the Third Chapter will simplify due to the odd function 
character of E ( X ) . 

The quantization is achieved by the equal-time 
commutation relations : 

E^jwt) , A^(y,t)l = i 6i;> S(x-v) 

Ha(x,t) ,- <t>b(y,t)j = -i 6 a b i(x-y) 
(2-7) 

As a result of these relations and (2-3), the quantity, 

GfXjjXj) '- J dz »lx i rx 2,z) (2-8) 
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has nontrivial commutation relations with the canonical va
riables. We have already considered this quantity in (1-2) 
of the First Chapter ; the commutation relation of that 
Chapter , (1-3), can now be verified by using the canonical 
commutation relations (2-7). We also recall that, in order 
that the physical states have a finite energy density, we 
have as a necessary condition : 

Gfx^.x.) | physical state > = 0 (2-9) 

It can now be shown that the bare vacuum of the Hamiltonian 
-1 2 (2-4) does not satisfy this condition. The operator [3, ] 

is potentially singular around the low frequency modes 
( k, * o ), and special care is needed to construct states 
for which this operator has a finite expectation value.The 
diagonalization of the quadratic part of the above Hamilto
nian does not encompass such a care, since the above men
tioned operator has a quartic piece, as can easily be seen 
from (2-3).Consequently, the Axial gauge bare vacuum does 

not have a finite energy density. 
2 

Since u is positive in (2-2), the above Hamil
tonian does not contain any tachyonic scalar field at the 
quadratic level, and one may expect that the usual pertur-
bative analysis might apply, leading to a vacuum in the per-
turbative phase. The failure of the Axial gauge bare vacuum 
to be a satisfactory state constitutes a serious impasse 
for such an expectation. For the present Abelian theory. 
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this is actually of no consequence, since one can always go 
to a Coulomb gauge formulation and the bare vacuum of that 
gauge will be a satisfactory trial state for the perturba-
tive phase of the theory. Since however we cannot repeat 
the same procedure for the non-Abelian theory, we expect 
that the vacuum of such a theory will be in a phase other 
than the perturbative phase. 

Our aim in this Chapter will be to construct the 
Unitary gauge bare vacuum in terras of the Axial gauge cano
nical variables and to show that , inter alia, it does sa
tisfy the finite energy condition (2-9). To this end, we 
now introduce the Unitary Gauge Transformation which is the 
mapping necessary to transform the present theory, fro- the 
Axial gauge to the Unitary gauge. 

B) The Unitary Gauge Transformation 
We begin by parametrizing the scalar field f in 

terms of the polar variables viz , 

<t> = 4>(c,6) ; exp(-et) I = exp(-eo <Mr,e=0) (2-10) 
w 

The covariaftt derivative can also be parametrized in the 
same fashion : 

D * = O -gEAvi)*(P,6) = exp(-9e) [3, -gt.B(j]f(p,e=U) (2-11) 

where we have defined : 
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i.e. , 

B^ = h* - | 3.8 (2-12) 

B 3 = - | 3 3e (2-13) 

We thus have two equivalent sets ($ .A3) and (p,B-',B ) for 
the canonical coordinates at a fixed time and che standart 
formulation of the Unitary gauge amounts to expressing the 
Lagrangian of the previous Section in terms of the second 
set, and to showing that after the symmetry breaking, one 
obtains the Lagrangian of massive vector bosons in the usu
al way. We will not follow such a Lagrangian procedure here. 
We will rather consider the above theory as a Hamiltonian 
field theory and seek a formulation of the Unitary Gauc, 
Transformation as a canonical transformation on the canoni
cal variables of the theory. 

To this end, we introduce a parameter v '-which 
will later be interpreted as a variational parameter- and 
we map the polar variables (p,B ,B-') into the canonical va
riables (0 ,A^) following the actions of the mappings M. & 
M, that we now describe. Firstly, we define M. : 

P — v + <\>l 

M, : < B 3 - i- 3,<t, (2-14) 1 gv 3*2 

A j - ±- 3.*, gv 2 2 
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The second equation of this set, together with the defini
tion (2-13) implies that : 

Ml : v * 2 (2-15) 

The defining equations (2-10) and (2-12) can now be used to 
express the action of M.. on the canonical variables : 

exp(- ^ 0 2 E ) 
V + A 

We next define M„ 

(2-16) 

A J + gv" j H 2 

(2-17) 

The product map M :"• M 2.M, then satisfies 
v + +, 

M : (2-18) 

gv "3:i'2 
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In view of the second line of this set, M is a gauge trans
formation from the Unitary gauge to the Axial gauge ; it is 
thus the required Unitary Gauge Transformation. 

So far, we have displayed the actions of M. & M 
on the canc-.ical coordinates ; since we are working in a 
Hamiltonian formalism, we need to determine the actions of 
these mappings on the conjugate momenta as well.This, we 
shall now do, by demanding that M be a canonical transfor
mation. In view of the simple action of M. in (2-17), it is 
easy to see that the following rules. 

M 2 : < V,x 

gv 

— n n 
(2-19) 

will render M., a canonical transformation. In the case of 
M,, the situation is considerably more complicated, since 
the action of this mapping on the canonical coordinates ; 

5 

is highly nonlinear. Indeed this is transparent when we 

reexpress the equation (2-16) as , 

/ 
,1, 

1 (V + 0 1)COS(--^ 2) 

(v+pj)sin(-12' (2-20) 
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We are now faced with the determination of the action of M. 
on the conjugate momenta so as to make M, a canonical trans
formation. Within the context of a classical field theory, 
this issue is resolved in the Appendix and a simple genera
lization of that analysis suggests tha we consider : 

/ H-, 

M 1 :< E 

\ n
2 

— n icos(^<(. 2) - |(l-^<)) 1)" 1{n 2,sin(i<)! 2)} + 

(2-21) 

niSin(^<)>2) + ^ ( 1 + ^ ) 1{n 2,cos(io 2)} + 

Since the right-hand side^ of these equations are linear ir. 
the momenta H , it is not difficult to verify that the ca-a J 

nonical commutation relations are preserved under the acti
on of M.. Hence, M is canonical. Since we now have the ac
tions of M. & M_ on both the coordinates and momenta, we 
are now in a position to compute explicitly the action of M 
on any quantity of interest.We find, for example, that : 

"iWz - "i"l K*l>"t 1 -2 
2"2 _ 4 V 56(P)] (2-22) 

M r ab a b (2-23) 

These equal ions illustrate two important points 

about K . The first one is that, from an ultraviolet point 
of view, M is a singular operation. This is apparent in 
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(2-22) where there is an explicit 6 (0) singularity as a 
esult of the action of M..The second aspect is illustrated 
in (2-23) where we observe that, an operator which is a 
quadratic functional of the canonical fields, namely the 
charge density operator, reduces to a linear functional 
under the action of M.. . This shows that the generator of 
the residual group,G(x..,x2), as given by (2-8), is mapped 
under M to a linear functional of the fields and consequ
ently, it should now be easy to construct states annihila
ted by such an operator, thus satisfying the finite energy 
condition (2-9). Later on in this Chapter we shall have 
more to say about these points. 

It is now easy to evaluate the action of M on the 
Hamiltonian density (2-4). We find, 

M : Jf ^ ( 1 )
 + ^ ( 2 ) (2-24-a) 

where we have, 

JT{1) = \ 1 ) ^ + \ l$xl$x + |u 2 ( v + * 1 ) 2 + |x 2(v+* 1) 4; (2-2'-b) 

jf , 2 ) = i L r i ' " 1 + T E liV-sVui^-iVi 
2 i=i i,j=l 

3 . . 
+ i [ gv(l4*i) I2 ( E » V ) 

1 v 1 i=l 

+ \ [ gvd+^j) ) " 2 f(5-5) 2 " i g 2 <56<0)] 

)(2-24-c) 
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and where we have defined, 

w 1 = 

i=l,2 

i=l,2 

.3 . gv 3 3 n 2 

r,3- - l a * W = - — °,<|>_ gv 3 2 

(2-25) 

Except perhaps for the term proportional to 6 (0), 
the expressions in (2-24) will be recognized as the usual 
Hamiltonian of massive vector bosons in the Unitary gauge. 
The equations in (2-25) express the field operators of such 
a theory in terms of the canonic?1 variables of the previ
ous Section, and these expressions, together with the cano
nical commutation relations (2-7), now imply that : 

[V(x,t) , W j(y,t)] = i 6l:l6(x-y) ; i,j = l,2,3 (2-2 6) 

These are the usual commutation relations of a theory of 
massive vector bosons. 

Thj expression (2-24) for the Hamiltonian in the 
Unitary gauge can also be obtained starting from a temporal 
gauge formulation of the theory. Such a result was reached 
in a paper by Creutz and Tudron , where an identical ex-

pression for j«* was found, including the singular 6 (0) 
(2) 

term. This is reassuring,since jf expresses the gauge 
invariant degrees of freedom of the theory, and any formu
lation should lead to the same expression for such a quan
tity. Reference 15 also xplains the reason for the term 
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proportional to i (0), as well as its perturbative cancel
lation by tadpole diagrams. From a nonperturbative po
int of view, such a term points out to the singular ultra-

(2) 
violet behaviour of Jf and in fact, all the terms pro
portional to the inverse powers of the dimensionful para
meter v may be expected to show a similar ultraviolet be
haviour. Later on we will assume that v is a small quan
tity in which limit these terms will be unimportant and we 
shall be careful not to base our arguments on such terms. 
It is however clear that, what is responsible for such a 
behaviour, is the above-mentioned singular nature of the 
mapping M.. 

We have so far displayed the Unitary Gauge Trans
formation as a canonical mapping on the algebra "f canoni
cal operators of the theory.In a quantum theory, such a 
mapping should be implemented in the Hilbert space of sta
tes. Our theory is defined in terms of the canonical opera
tors in the Axial gauge together with a Hilbert space which 
carries a representation of the canonical commutation rela
tions (2-7), and by a mapping on the theory, we really mean 
a representation of such a mapping on the Hilbert space of 
states. It is clear that such an implementation for M will 
be difficult ; M. is a nonlinear mapping on the algebra of 
canonical operators, and as such, there is no natural way 
of implementing this transformation on the space of states. 
To simplify this task of implementation, we will now pre
sent an approximation to the Unitary Gauge Transformation. 
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In principle, to implement M. as given by (2-20) 
we would need a unitary operator U. such that , 

uj <)>! Uj = (v + <t.1) cos( i*2) 

Ul (t>2 Uj = (v + i).1) sin( i*2) 

<2-27) 

The right-hand sides of these equations are rather compli
cated functionals and in general, the existence of such a 
unitary operator U, is doubtful. We observe however that 
these expressions simplify considerably as v tends to infi
nity ; in that limit $, is invariant under U.. , whereas $. 

is just shifted by the quantity v : 

(v + <t1) cos ( -<f2) = v + (&J + order(-) 

(v + H)1) sin( ^<t2) = * 2+ order (i) 

It is easily seen that, in this limit, U. is given by the 
operator exp{-iv|d x ri.(x);. Ir the general case, we 
shall represent U. by : 

U. = expl-iv Id x n. (x) ) expfiF1 (2-28) 

where F is a formal power series in v with operator coef
ficients : 
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F = £ v~ n F (2-29) 
n=l ' ' 

The generators F. . can now be determined by expanding the 
right-hand side of the equation (2-27) in inverse powers of 
v and generating these terms by using the Baker-Hausdorff 
formulae. The first few terms in this expansion are : 

F(1) =I / d 3i[ ni*2*2 - *l{n2<*2}] 

F ( 2 ) = " 2T / d 3 ~ (n2'<t'2(<t'2<,,2" 6 M l ' } (2-30) 

F(3)= " 2?/ dM l ni'*l*l }*2*2 " 2*l { n2'*2 (*2 a i2- 2*1*1 , }] 

The expression (2-29) is formal ; indeed it is 
not clear in what sense the series for F converges, if at 
all, and the operator U. which is obtained by exponentia
ting such a formal series will probably be too formal to 
exist. We therefore approximate F by a first few terms of 
(2-29) by considering the limit in which v tends to infini
ty. We have already seen that, such a limit was also neces
sary from an ultraviolet point of view, the canonical map
ping M. being singular otherwise. 

We will now display the details of this approxi
mation by considering the computation of the quantity , 
U. JC D. , where jf is the Hamiltonian density in (2-4) . 
Jf is quartic in the canonical fields and consequently, 
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i t i s n ' t d i f f i c u l t to check t h a t , 

expUv f d 3 x n 1 ) j f e x p { - i v J d 3 x P ^ 

4 3 2 
= av + bv $. + v 0 2 + vO, + J*° 

> (2-31) 

where 0 2 and 0, are quadratic and cubic functionals of the 
canonical fields and a S b are constants independent of v. 
This is the first step in the computation of U. Jit U. and 
we now need to conjugate this expression by the operator 
exp{iF} which is a coherent sum of small operators in the 
large v limit. These small operators are to be multiplied 
by the large operators proportional to powers of v in the 
above expression (2-31) and the final result for U .yC L' 
will then be a sum of terms with positive, zero or negative 
net powers of v . The large v approximation consists of 
neglecting terms with net negative powers of v. 

Apart from a constant term, the leading term in 
(2-31) is third order in v . In the computation of U. Jf U 
we therefore need to retain only the first three terms in 
the expansion of F in (2-29) ; the remaining terms are pro-

-4 portional to v or even smaller in the large v limit and 
they will not contribute to the conjugation of (2-31) 
the operator expiiF}. These three terms were displayed in 
(2-3C!. We therefore take : 

exp [ -iv Id x I c x p i i £ N 
n = l (n) (2-3,') 
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as the approximate implementation of M.. in the Hilbert spa
ce, the approximation being sensible for large values of v. 

A comment is now in order. We have arrived at 
this explicit form for IL , starting from the assumed action 
of M. on the canonical fields $ in (2-27) , but without 
ever having to assume the form of the action of M. on the 
conjugate momenta II . We can now appiy to n the explicit 
form of U. in (2-32) , and since U. is a representation of 
M. in the large v limit, we can in this way determine how 
the conjugate momenta transform under the Unitary Gauge 
Transformation, without going through an analvsis that led 
to the expressions in (2-21). In fact, we obtain, 

Ul h Ul 

U l n 2 U l 

f T
1 - — {n 2 r * 2 } + orderly 2) 

i!, + - E , H <J). + order (v 2) 2 v ab a b 

(2-33) 

It can be checked that the right-hand sides of these equa
tions agree with the large v expansion of the right-hand 
sides of (2-21). So long as we are interested only in a few 
leading terms in the large v expansion, the knowledge of 
the exact action of M. is not necessary. 

Now that the meaning of U. has been clarified by 
the formula in (2-32) , we can evaluate the conjugation of 
any quantity with U.. We have, for example : 

1 ab a b 

3 3 

U , = e x p l - i V v n F , , i ( -vII . , + 1 , 1 ! *. ) e x p ( i V v _ n F 1 1 ^ '—. (n) 2 a b a b r *—, n n = l n = ] 
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= " v n 2 + [" I F ( l ) ' " v n
2 ] + EabVb + °rder(±) 

From (2-30)', we have : 

1 [ F(l)' "2] = " Eab"a*b 

and we finally obtain, 

U, £ ,11 *, U, = -vn, + order (-) (2-34-a) 1 ab a b 1 2 v 

In fact, with the form of U, given by (2-32) , this result 
is valid to order(v ) and this then constitutes an expli
cit way of obtaining the formal result of (2-23), in the 
large v limit. For future use, we also note that this re
sult immediately implies : 

Ui ® Ul = ~ 3 i E l ~9 v I 12 + °rder(v~3) (2-34-b) 

where we have also used the definition (2-3). We have gone 
through the details of this derivation to illustrate vari
ous manipulations that were necessary in the evaluation of 
the action of U. on the quantities of interest and from now 
on such details will usually be suppressed. By similar 
manipulations, one can now obtain the action of U on the 
Hamiltonian density Jf . With .*" given by (2-24-b) , 
we find : 
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u J j f U j = \ E^-E1 + i [33 1 (gvn 2 + 3 i E 1 ) ] 2 + i F 1 2 F 1 2 "> 

+ I O 3 A 1 ) O3A 1) + \ n 2 n 2 + -|o 3<t> 2) 0 3 * 2 ' 

+ ^(gvAj-8 .<(!2) (gvAj-3 .*2) + JT ( 1 ' ) (2-35) 

+ g v A ^ A ^ -2g A 3 cf)-̂  3 . c()2 + ^ g ^ A 1 1 * ^ 

+ order (—) v 

The unitary implementation of M ? poses no prob
lem, since this mapping is linear in the canonical varia
bles. In fact, the equations, 

u 2 n 2 u 2 
v. 1 , „i 
2 gv 1 

U 2 A U 2 = A — 3.1, gv 1 2 

(2-36) 

are satisfied by : 

U, = expl — f d 3x E 1(x) 3 . <{._ (x) t (3-37) 2 gv J ~- -- 1 I ~ 

This then concludes the implementation of the 
Unitary Gauge Transformation M by the unitary operator 
U :- U..U, in a Hilbert space caiiying a representation of 
the canonical commutation relations (2-7) .We now turn to an 
explicit construction of such a representation. 
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C) The Unitary Gauge Bare Vacuum 
In this Section, we wish to construct a Hilbert 

space on which to represent the canonical commutation rela
tions (2-7) and we shall take this to be the Fock space 
associated with the Unitary gauge bare vacuum. 

To begin with, it is important to be clear about 
the approximation scheme which obtains the Unitary gauge 
bare vacuum as the leading approximation to the ground sta
te of the theory. Such an approximation scheme is the loop 
expansion in the perturbation theory of the Higgs phenome
non. In the notation of the previous Section, the stan-
dart assumption of such a scheme is to consider the coupl
ings g and A as small quantities, the parameter v as a 
large quantity, in such a way that the products gv and \v 
are kept finite. Under this assumption and for the case 
where the scalar fields have tachyonic mass terms in the 
Lagrangian, the Unitary gauge bare vacuum becomes the lead
ing approximation to the vacuum of the theory. Our cons
truction will make this point quite clear. 

In this Section, we therefore adopt this standart 
assumption for the loop expansion of the Higgs phenomenon 
and we consider the quantity liJCU in such an approxima
tion. We recall that the expression (2-35) for U.JfU was 
evaluated in a large v approximation so that it is appro
priate for our present purpose as well. We now need to con
jugate this expression by the operator U, in (2-37) and we 
observe that the generator of this operator depends on v 
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through the combination gv, which we are now considering as 

a finite quantity. We cannot therefore consider the genera

tor in question as a small quantity and we need to evaluate 

the action of U. without any approximation. As a matter of 

fact, in view of the particularly simple form of this oper

ator, its action given by (2-36) does not involve any ap

proximation and we can easily evaluate the conjugation of 
+ the quantity U-jfU. by this operator. We thus obtain ; 

O J C D = U 2 (Uj Jf Uj)U 2 

\ > 2v 4 + \ y 2v 2 + v(y2+X2v2)<t!1 + JS* Q 

+ g 2v(A jA j)0 1 + \ g 2(A jA^)$ 1$ 1 + J 2v(» 1) 

1 2 4 1 
+ i . ^ ( ^ r + order(^) 

\(2-38-a) 

where, 

Jr = -j E E + sq V |«. IJ 1 F12 F12 
2 r f 

+ i,., Ai-^4^^) 2 + i a 2v 2A^ 

2 2 gv 1 2 3 2 3 2 

jhh + I i * i - i : * i + ^ < U 2

+ 3 A 2 V 2 ) V I 

< 2 - 3 9 ) 



33 

According to our perturbative assumption, the 
terms in U J«" U can now be classified as follows : There is 
the constant term 

1 , 2 1 l 2 2 
-T A v + •=• p v (2-40) 

which is the leading term,going like v in the above limit. 
The next-to-leading term is the tadpole term 

V ( U + * V ) (2-41) 

Then, there are terms which form the expression (2-39) ::: 
Jf n ; these terms are all quadratic in *~he f ; » H s ar-
thuir dependence or. '.he paiametcr v is always through th-
combination gv so that these terms are to be considered 
finite. Finally, there are cubic and quartic interaction 
terms in (2-38), and they should be considered as small 
quantities since they are proportional to the coupling 
constants. Note that these terms are of the same order as 
some of the terms that we have negler-ted ; our approxima
tion scheme considers a term proportional to g as of the 
same order as a term of order(-). In a leading order ap
proximation, all these terms should be neglected and we 
obtain : 

u .#° 2 4 2 2 v(,. 
non-leading terms (2-38-b) 
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In a theory with negative u , one proceeds by mi
nimizing the leading term (2-40) and this results in the 

2 2 2 
tadpole condition ( u +A v =0 ), thus eliminating the line
ar term (2-41). In that case, the leading order approxima-

+ 
tion to D .X" U is the quadratic Hamiltonian .7f . The Unita
ry gauge bare vacuum is, by definition, the ground state of 

o 
Jf n and we shall denote this state by | £> >. We therefore see 
that, in the above perturbative limit and for the case where 
2 ° 

y is negative, the state UJP 5 becomes the leading approxi
mation to the vacuum of jt» . 

Our case however is different. Since we do assume that is positive, the above analysis does not apply and 

the tadpole ternv>*'will be present in the expression for 
U .-*" U. The state 'J j;". ;• will not be eigenstatc of our Hamil-
tonian in any kind of approximation. Nevertheless, we shall 
still choose our Fock space following the diagonalization 
of J** and the vacuum of this Fock space will be the Unita-

Q 

ry gauge bare vacuum f: >. 
By expressing .5*" in terms of the quantities 

(•' ,V1^ ; i = l,2,3) as given by (2-25), we obtain ; 

*• 1 = 1 

-r L < 'V-'^W 1) (o-WJ 

w-'fasf 
+ I " r + I 2 1"1 2 ;1'-'1 

+ i(gv) 2 V w V 
i = l 

1 , 2,,,2 2. + 7 ( [ J +3 ' v ) 

> (2-42) 
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The first part of this expression will be recognized as the 
standart free field Hamiltonian density for vector bosons 
of mass gv, whereas the Last line describes a free scalar 

2 2 2 h field of mass=(p +3 1 v ) . We also note that the quantities 
(C /W^; i,j=l,2,3) satisfy the standart commutation rela
tions of massive vector bosons as explained in (2-26). By 
representing these relations in the usual Fock space asso
ciated with JC,-,, w e may therefore obtain a representation 
of the original commutation relations (2-7), and we shall 
now display the specific form of such a representation. To 
this end, the Fourier decomposition of the various fields 
are as follows : 

E 1(x) = ^—-pr /d 3k exp(-ik.x) £ e ^ ( k ) p (k) (2-43-a) 
(2-) J " r=l 

A 1(x) =-- ^ T 7 Jd 3k exp( ik.x) V e ^ ' k j q (k) (2-43-b) 
Ur) '^ J - ~ - r=] l " " ~ 

?, (x) = ^ _ ^ /d 3k exp(-ik.x) ft' (k) (2-43-c) 
a ~ ( 2 r ) 3 / 2 J ~" ~ - a " 

(x) = Kr-pr (d3k exp( lk.x) i <k) (2-43-d) 
(2-) J / / J " a 

where we have : 

ij k^ i = l ,2 
|k T lk T! 

(2-4 J) 
|k T

 2 (k x) 2+ ( k 2 ) 2 
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The Hermiticity condition is 

0 +(k) = O(-k) ; O = p , q , ?[ , $ 
— -- I £ cl d 

(2-45) 

The canonical commutation relations (2-7) become ,in this 
notation : 

P r
< k-> ' ̂ s'i 1] = ' i frs ^ " i 1 

?ia(k) , }ba) -i ' : . f (k-1) ab - ~ 

(2-46) 

The diagonalization of Jf amounts to a Bogoliu-
bov transformation into a new set of variables P- (k) ,Q. tk) : 

P l (k) = Pj (k) (2-47-a) 

<3l <!l' = Qj (k) (2-47-b) 

I ' I m l k
T l 

P 2(k) = P 2(k) + - — — P 3(k) 
(2-47-c) 

k J! , |k_| 
q,(k) = Q,(k) + - — Q,(k) 

|k ! ~ ik ! ~ 
!k3 !k T| (k ) 2 

rr,(k) 
Ik I lis h 

(2-47-d) 

(2-47-el 

I k | m 
V * > = — TTTT Q 2 ( y :,. i «3 Ik i jk°| ik I 

Q,(k) (2-47-f) 

with 2 2 *-( k +m ) 2 , m r gv (2-47-q) 
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and the relations (2-46) imply 

[ P i (k) , Qj(l>] = -i f ^ *(k-l) ,• i,j = l,2,3 (2-48) 

Using t h e s e q u a n t i t i e s , the e x p r e s s i o n (2-L9) becomes 

3 
HQ = j V x * Q = i / d 3 k /£ [! Pi(!S , 2 2 ~> 1 

) + • Q . ( k ) - ] 
1 "" J 

, ( k ) 2 +( . . ) 2 : . !k! 2 I 
1. - 1 ] -- j 

2 2 2 "> 2 
w h e r e ( • , ) = k + .. + 3 • v , a n d t h e r e p r e s e n t o r i 

P . (k) 

Q, !k) 

(k) 

- i ( j ) 2 

(-i) * l 2 . ' 

a , ( - k ) - a . (k) 

a . i k ) + a . ( - k ) 

i = l , 2 , J i ; - 4 9 -

, L = 1 ,2 , 3 i ; 

• • % " i l l > V o ' - S ' " a 0 ( fe ' j 

V a Q <k) * a 0 ( - k ) 

u ] aqona 1 r zes ,H"n . The usual algebra of crenLionh^nr.ih; ] :-
tion operators now implies (2-48) and the Hermiticify i •. -
uuiromcr.t (2-45) is also satisfied. The Feck space \-aee:.-
annihilated by the destruction operators of (2-491 ;s r:. 
the Unitary gauge bare vacuum 

Wc have thus obtained that, the expressmen 

file:///-aee:.-
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U|n°>= exp(-ivjd3x Hj) exp(iF) exp(-ijd3x E 1 ^ ^ ) | n° > (2-50) 

in the above perturbative limit, is the Unitary gauge bare 
vacuum expressed in terms of the Axial gauge variables. It 
is in the form of a coherent plasma of color and we shall 
now examine some important properties of such a state. 

We begin by gauge invariance considerations and 
we wish to show explicitly that the Unitary gauge bare va
cuum, expressed in terms of the Axial gauge variables, is 
invariant under the residual group of the Axial gauge. To 
this end, we need to conjugate the generator G(x.,x2) by 
the operator U. The first step of this procedure was alrea
dy evaluated in (2-34-b) which we now conjugate by U,.Us:ng 
the action of U., given by (2-36) , we obtain, 

U »<x) U = -gv H,(x) + >rder(v~3) 
i.e., 

U G(x.,x2) U = -gv f dz ^ ( x ^ x ^ z ) + order(v-3). (2-51) 

We now observe from our Fock space representation (2-47-e) 
that : 

r 2(k 1,k 2,0) = 0 (2-^-3) 

which immediately implies, 

/ dz ::2 (x ,x2,z) = 0 (2-52-b) 



39 

We therefore conclude that the state U|fi > satisfies: 

| |G(x i rX ?)U|n°>| | 2 = < M (U + G(x1,x2)U)2|S?°^ = 
= orderfv - 6) - 0 (2-53) 

Thus the finite energy condition is satisfied and this 
state is invariant under the residual group, in the large v 
limit.We note that this result depended on two important 
facts about our trial state. The first point is that, 
G(x^,x?) which is a quadratic functional of the canonical 
fields, is mapped under u to a linear functional. This was 
previously noted in (2-23) 5. (2-34) as an important proper
ty of U . Our second point is that, once we have transformed 
th<. generator into a linear functional, any representation 
which satisfies '.he condition (2-52-a) will be satisfactory 
since it will lead to the vanishing of |G|x ,x.)U • ' . z 

in the large v limit, where j" is the Fock space vacuum 
of the representation in question. This remark will be 
useful in the next Section. 

o o 

The energy density <? of the state U can now 
be evaluated to leading order, by taking the expectation 
value of (2-38-b). We first note that, by construction, 

° .*•„ " = - — ^ f ' d \ r 3 <k 2

+ g V)W + . . 2 *3 ' 2 vV i 
J 2 (2 -) J 0 J L "" "" 

(2-54) 
(In this and the following expressions, we shall use the 
ultraviolet cutoff '. to confine the range of integrations 
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into a region |k|<A). We therefore obtain. 

I -fl. O ° ? 
|UJ*"u|fi>= < ? ( v ) + nonleading terms 

(2-55) 
/,v2, = 1 *V + i uV + <Q°| JK Q|Q C 

This expression is obviously infrared finite. 
The next step in the variational argument should 

be to minimize the energy density <? (v ) with respect to 
2 the variational parameter v and to find the optimum value 

for this parameter. It is easy to see that the derivative 
o 2 2 

of i? (v ) with respect to v is positive definite for po-
2 ° "? 2 

sitive .. , so that & (v ) is an increasing function of v . 
Hence the minimum of such a function is at v=0. 

This result present a serious problem to the con
sistency of our approximation. We have been assuming all 
the time that v was a large quantity, but the leading order 
expression of such an approximation predicts that v is in 
fact zero and that the terms proportional to the inverse 
powers of v that we have been neglecting, are in fact much 
more important than what we have been calling the leading 
terms. The only way out of this difficulty is to consider 
not so large a value for the parameter v , i.e., to start 
considering the case where the terms of order (—) make an 

o 

appreciable contribution to the energy density of u| . 
Before considering these higher order terms, we 

would like to stress once more that our approximation scheme 
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considers the products gv and Av as finite quantities. This 
is also apparent in the Fock space representation of our 
canonical operators given by Eqns. (2-47) & (2-49) . These 
quantities have a quite complicated dependence on the pro
ducts gv and Av, so that, if we were to worry about such 
dependences, the evaluation of the expression (2-50) for 
the Unitary gauge bare vacuum would be uncontrollably dif
ficult. If the canonical operators cannot be considered as 
finite quantities, the generators F . . in (2-30) would nov> 
contain both small and large expressions in the large v 
limit, so that, it would practically be impossible to re
present the Unitary Gauge Transformation of Section B in a 
se: ;ib)e way. Therefore, if we wish to use the above Fock 
sr ;e representation and consider the Unitary gauqe bare 
v^ uum, we should organize our considerations according :o 
t! assumption of the loop expansion and treat gv and -v 
a finite quantities. 

We now examine the non-leading terms of the ex
pression (2-38-a) for U •X'U. The terms which give a non-
vanishing expectation value are : 

i g 2 A ^ . ' J J J (2-?M 

1 2 4 as well as the -j • (' ) term. These are second order 
quantities in our approximation and we should therefore 
consider order(v ) terras that we have neglected, in equal 
footing with these terms. Now, it can ea.<. ily be shown that 
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_2 order(v ) terms give a positive definite expectation value 
o 

in the state \il > and, this is obviously sufficient to est-
2 ablish that the minimizing value of the parameter v is no 

longer zero. Therefore, the inclusion of the first non-va
nishing contribution to the energy density from the nonlea-
ding terms, resolved our problem of consistency. We should 
consider values for the variational parameter v, large 
enough to justify the neglect of higher order terms than 

-2 -2 
order(v ), but not terribly large, so that order(v ) 
terms still make an appreciable contribution. 

We now recall that the terms which were propor
tional to the inverse powers of v, were ultravioletwise 
more divergent han the energy densities of the usual vacua 
of four dimensionful field theories. This means that, in 
order to resolve the problem of consistency, we have had to 
consider ultravioletwise too singular terms as important 
ones in the evaluation of the energy density of the Unitary 
gauge bare vacuum. Our conclusion is that, although the 
Unitary gauge bare vacuum has an infrared finite energy 
density, this density is more ultraviolet-divergent than 
the energy density of the Axial gauge bare vacuum, and as 
such, it is not clear whether this is a better trial state 
than the Axial gauge bare vacuum. 

We therefore have to modify our considerations. 
We would like to arrive at an expression for the energy 
density of a trial state which finite in the infrared and 
not too singular in the ultraviolet. We now clanm that, 
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the four point coupling given by (2-56) is just such a term. 
Needless to say, we cannot consider this term as an impor-
tant one without at the same time considering order(v ) 
terms as equally important,within our approximation scheme, 
so that, any lesson that we might derive from the four -

1 2 i i point coupling •=• g AJAJ<j) .<)>.. will not alter our conclusion 
of the previous paragraph about the Unitary gauge bare 
vacuum. Nevertheless, this consideration will be relevant 
in the next Section, where the approximation scheme of this 
Section will be modified so as to enable us to consider 
terms like the Higgs-gluon coupling , without having to 
consider at the same time, ultravioletwise too singular an 
expression. 

We now consider the vacuum expectation value of 
the above term. We have, 

A j (x)Aj (x) [:.° • = 2: (g 2v 2) + 5 _ L _ i ( g v ) r (2-57) 
2(2~) 3 (gv) 2 

3 ( k T ) 2 

where, I(gv) = / d k 
, / ' • OJ " (k2 + g 2vV 2 

and where we define , for s nonnegative : 

2(2:) 0 J ( k 2 + s ) ' 5 
(s) = ~ I ^-S-r (2-58) 

We also note that, 

ij (x) ;, (x) !' ° = / (|.2 + 3 ' 2 v 2 ) 
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_2 The second term in (2-57) is an order(v ) term which we 
will not consider here. We then have : 

<n°| ig2A:'A^(t1(t>1 |n°> = g 2 A(g 2v 2) A(p 2+3A 2v 2) + order(v~2) 
(2-59) 

Now,the function A(s) is a positive definite quantity which 
has a finite limit as s tends to zero from the positive s 
axis.We observe however that its derivative becomes singu
lar in the same limit. This can be seen by differentiating 
the integral representation (2-58) with respect to s, and 
observing that the resulting expression becomes an infrared 
divergent integral as s tends to zero.We may also arrive at 
the same result by an explicit evaluation of A(s) : 

h + \ s log( f r-̂ 1 (2-60) 
2 \[/.+ <A2 + s ) V / J 

Due to the presence of the s.log(s) term , the derivative 
of A(s) contains a log(s) term and therefore, 

l i m ^ M = — (2-61) 
ŝ O ds 

Thus .'. (s) is a sharply decreasing funct-ion of s around s = 0. 
Let us now come back to the expression (2-59).If 

o 
we now include (2-59) to the leading order expression <? (v) 
for the energy density in (2-55-b), we will get an expres-

2 
sion (with s v ) : 

A(s) 
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g{s) = g 2A(g 2s) A(u 2 + 3A 2s) + S° (s) (2-62) 

We now observe that, due to the first term of this expres
sion and the result (2-61) , <P(s) is a sharply decreasing 
function of s near s=l), and its minimum cannot be at s=0. 
Since the remaining terms coming from <? (s) are increasing 
functions of s, we conclude that <?(s) does have a minimum 
corresponding to a finite value of s. This situation is 
depicted in Figure 1. On the other hand, this expression is 
infrared finite and it goes like the fourth power of of the 
ultraviolet cutoff A, in the high A limit, and this is the 
typical ultraviolet divergence of the energy densities of 
the usual bare vacua in four dimensional field theories, v.'e 
therefore conclude that, if we can concoct a scheme where 
we can consider the Higgs-gluon coupling (2-561 without 
having to consider at the same time, ultraviolr 'ise too 
singular expressions, we would obtain a desirable trial 
state. An example of such a procedure is now provided in 
the following Section. 

D) A Modified Bare Vacuum 
In order to include the Higgs-gluon coupling of 

(2-56) among the leading terms of an approximation scheme, 
it is clear that we must consider nonperturbative values of 
the coupling constant g. On the other hand, the analysis of 
the Section B on the unitary implementation of the mapping 
M. by the operator U., assumed in an essentia] way that the 
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parameter v was a large quantity; otherwise the expression 
(2-32) would not be a sensible approximation to the opera
tor U. as defined in (2-27). Furthermore, even if one were 
able to construct an operator u\ which would satisfy (2-27) 
without any approximation, the discussion of the Section B 
showed that, due to the ultraviolet singularities, such an 
expression could be satisfactory only for large values of 
the parameter v. In this Section, we will therefore con
tinue to assume that v is a large quantity, but the coupl
ing constants g and \ will be considered as finite, nonper-
turbative quantities. Since our considerations in Section B 
nowhere made any assumption on the coupling constants, we 
shall continue our analysis from where we left at the end 
of Section B, but incorporating in it the various lessons 
that we have learned from the construction of the Unitary 
gauge bare vacuum in Section C. 

Now that we are not keeping the products gv and 
•v as fixed quantities, the Fock space representation given 
in the previous Section will have to be modified. We shall 
assume that the scalar fields <£-. (JO and their momenta t (k) 
do not have any dependence on v. As a convenient example, 
we take : 

iil(k) = -i U ~ 

4 a(k) = I ̂ ' ^ 

an(-k) - a Q(k) (2-63-a) 

V-!5.>] a Q(k) + a n(-k)| (2-63-b) 
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IT, (k) = -i ^-r a.(-k) - a,(k) (2-63-c) 
1 ~ (2u.J^ L 3 ~ 3 ~ J 

•x, 1 '"° ^ r -• l 
<)., (k) = — — — a,{k) + a,(--k) (2-63-d) 
2 - | k a | 2 L 3 ~ 3 ~ j 

2 2 h where uj„=(k +y ) . We can now use the large v approximation 
of Section B to evaluate for example the quantity UJj*"U 
and we arrive at the formula (2-35) of that Section. This 
should now be conjugated by the operator U- and the genera
tor of this operator can now be written as : 

i |d 3x ^ E 1 ^ ) s, (x) (2-64) gv 

Although we can evaluate the action of this operator 
without any approximation, for the sake of further simpli
city, we shall assume that the quantity '- . E (x) is also in
dependent of v in its Fock space representation. We note 
that, according to (2-43), 

•.E1(x) = =-,„ Id k exp(-ik.x) k T P2(k) 

so that, it involves only one helicity degree of freedom. 
Consequently, we choose, 

p (k) = -i[—y- 1 a
?(-!ll - a2t)i)\ (2-65-a) 

q 2(k) = (2 k ) '2 a 2(k) + a2<-k)l (2-65-b) 
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In this connection, we note that the quantity, 

4 ^ i 1,] 

( 'here 3^ = ^ 3 3 , is easily seen to be invariant un-
dt the residual group of the Axial gauge. From the Fourier 
re >resentation (2-43-b) we see that, 

Â ; = 3 7 2 J d - exp(ik.x) e|(k) q1 (k) 
(2TT) 

i that q. corresponds to a degree of freedom for which the 
ga ge fixing is complete. The generator (2-64) thus invol
ve only those degrees of freedom which are not fixed by 
tr Axial gauge condition. For (p.,q.) we shall choose a 
ri resentation corresponding to a mass m=gv, viz, 

? 1 <k) = -i(|)'s \a1 <-k) - a^lk) (2-65-c) 

qi (~' = ( 2 T ) ! 5 [ai'-' + ai ("~'] (2-65-d) 

2 1 2 2 wl re . =k +g v . Although in the non-Abelian theory, the 
ai logous operator to AP„ will not be invariant under the 
icbiuitui group - .viij.̂ii w^^j. ut_ nun-/nje 1 lan -, a iepj.e;sujitu-
tion like (2-65) will still be a simple and useful choice. 

Denoting the Fock vacuum of the present representa
tion by !'•'', we are therefore interested in a trial state 
which is the same as (2-50), except for the different 
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choice of Fock space, namely, 

0|fi>= expt-ivjd 3 }*!^) exp(iF) exp (-^Jd 3 x E 1 ^ * . , ) ! fi> (2-£6) 

It is now obvious that the residual gauqe invariance con
siderations will still lead to the expression (2 — 51 j and, 
since we have chosen jL (k) in (2-63 -c) with the condition, 

I*2 (k 1,k 2,0) = 0 (2-52-a) 

in mind, we can still conclude that this trial state is 
annihilated by the generator G(x.,x ) of the residual groui 
by following the identical steps that led to (2-53) . 

The energy density of U,:~ ' can now be explicitly 
evaluated. We now have the generator (2-64) as a small quan
tity in the large v limit and in the conjugation of V. .yf I' 
by 'J-, we neglect all the inverse power? of v. From (2-35) , 
we now obtain : 

.vu = u 2(Uj.* ,u 1)u 2 = | E 1 E 1 + i(gv) 2(.- 3
1:: 2) 2 

+ 1 F12 F12 + 1 ( . 3 A i ) ( . 3 A i , + | , 2 , 2 

2('3:2» ('3':2» + ? (? v ) 2 A ^ + g 2v r.A^A^ 

•i g 2 •:,:. A jA j + .X" ( n + order!-: 2 ^ 1 1 V 
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Note that the quadratic part of this expression is differ

ent from the free field Hamiltonian of massive vector bo

sons Jf as given in (2-3 9) and it can be obtained from J** 

by neglecting the terms proportional to the inverse powers 

of gv. 

It i: now trivial to evaluate the expectation va-
2 2 2 2 2 2 2 lue of (2-67) .V ith s = v , u =k +g s , w 0=k +u , we obtain 

explicitly that 

cr;[U*.,jfU|^> = <?(s) + order(-) 

<?<s) 1 , 2 2 1 2 
j \ s + j v s . 2 

i 2 r. 
2 g s [t, 

I f d 3k 

(VJ")+A (0)+A(g s) 

,2 ,, .2 (k3) (k3) 
~2V 

^ 3-2 
+ 2 • s (, 2) + | A 2 [Ad, 2)] 2 

| g 2 A(i/ ) [ M O ) + A(g2s) 

We recall that the sanction A(s) was defined in (2-58). 
Similar to our consi '."rations at the end of the last Sec
tion, we have thus a; rived at an expression for g (s) 
which is an infrared inite quantity and which is not too 
singular in the ultra\ .olet. Because of the last terra' 

1 2 2 *. - g (u ) A(q s) 
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which comes from the Higgs-gluon interaction term (2-56) , 
as well as the property (2-61) of the function A(s), we ob
serve that <? (s) is a sharply decreasing function of s near 
s=0. It is furthermore a positive definite expression which 
increases indefinitely as s gets very largerand as we have 
already concluded in (2-62) and in Figure 1,, such an expres
sion must necessarily have a minimum at a point where s is 
non-zero. 

The situation can now be summarized as follows : 
In this Section, we have seen that a simple modification of 
the expression (2-50) for the Unitary gauge bare vacuum led 
to a trial state with a finite energy density and with an 
ultraviolet divergence which was typical for the bare vacua 
of four dimensional field theories. This was achieved in the 
large v limit and for the nonperturbative values of the 
coupling constants. We have assumed that some helicity com
ponent of the gauge field was represented with a mass gv, 
as in (2-65-d), and consequently the four point Higgs-
qluon coupling term led to the conclusion that the parame
ter was nonzero. We conclude that such a state is a better 
trial state than the Axial gauge bare vacuum, for the 
ground state of the theory. In the absence of a Coulomb 
gauge bare vacuum, this result indicates that the vacuum of 
a gauge theory with scalar fields is more likely to be in a 
broken symmetry-Higgs phase, rather than the perturbative 
phase with an unbroken symmetry. 
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CHAPTER 3 
UNITARY GAUGE IN A NON-ABBLIAN THEORY 

A) Description of the Theory 
In this Chapter, we would like to generalize the 

argument of the previous Chapter into a non-Abelian gauge 
theory. Specifically, we are interested in an SU(2) gauge 
theory with scalar fields in the fundamental representation. 
Our conventions are as follows : In this Chapter, the indi
ces i,j,k will be ordinary space indices running from 1 to 
2 whereas the letters a,b,c,d,e,f will denote the group in
dices running from 1 to 3. The vector notation A will only 
be employed foi the group space and the dot and cross pro
ducts of vectors will be interpreted accordingly. 

The isospinor scalar field ; is represented in 
terms of the canonical fields : - and <; as follows : 

The notation :.i will be very handy throughout but we of 
course do .. ;t want to suggest that the quantities ? 
transform according to the adjoint representation. 

The covariant derivative is defined as : 

a 
D:' •" - igA^ j (3-2) 

and the field strength tensor as : 
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C - 3 X - >X * * w**c < 3 - 3 ' 

The Lagrangian of the theory is 

&= - \ F U VF + •i(DUOa'(D *) - V(-,'t) 4 a (J v, a 2 a n a 

where, 

i 1 2 - 1 1 2 ~ 2 
vc :i = ^ -J ; ; + ̂  • <: ;r (3-4) 

We now describe the canonical formalism of such a theory in 
the Axial gauge. 

The canonical coordinates are : * , : , A 
0 a a 

The conjugate momenta are : ~ , ." , E 

with D°: (" + i:. ) | land E 1 F l 0 

0 ~ - \ x J a a 

The dependent variable F can be expressed in 
terms of the canonical variables via the constraint equa
tion of Gauss' law, leadinq to the definit' ;n of the 
density <g (x) : a 

« a(x) . 3 F f = -..E^ + g . a (3-5) 

where the charge density is given by : 
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D = - E 1 X A 1 + J I I * o nQ<t + n x <t> ] < 3 - < 5 ) 

The Hamiltonian dens i ty of the theory i s 

J C = \ E / . E 1 + \ O ^ f f ] 2 + \ JO p i ] 

I (n0n„ + ;.n> + | [ < * 3 V ( ; W + o 3 * > o 3 £ ) ] ) (3-7) 

+ 2 ( D j : (D. I ) + V ( ' 

w h e r e , 

(D I) (D . : ) j -o j -o J-L- j i 

-q A ^ . l i ^ i Q - I" 0 3 £ + £ x 3..* ] ) (3-8) 

( 2 ) 2 A j . A j [ < t 0 l > 0 + £ . £ : 

The equal time canonical commutation relations are : 

frm(x,t) , '! (y,t)l = -i I 6 (x-y) I m — n i J mn — i 

[E^(x,t) , A^(y,t)_ 
(3-9) 

; a b * 1 ] f ( 5 - y > j 

where, as a further convention, the isospinor indices m & n 
run from 0 to 3 . 
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As usual, the generators of the residual gauge 
transformations within the Axial gauge are : 

G a(x 1,x 2) = j dz « a(x 1,x 2,z) (3-10) 
— c» 

and the finite energy condition that the physical states 
must satisfy is given by , 

G a ( x l ' X 2 ' ' s t a t e > = 0 (1-4) 

In order to obtain such a state by the methods of the pre
vious Chapter, we shall now describe the definition ar.d = 
implementation of the Unitary Gauge Transformation, w:.ich 
will map the present non-Abelian theory from the Axial-caure 
canonical variables into the gauge invariant polar vari
ables . 

B) The Unitary Gauge Transformation 
We first express the isospinor field ', in terms 

of the polar variables ,','•- : r a 

: / ° \ -L 
: = •:<• ,r'a) expli^.-j) I 1= expUv.-j) :|.-,J=0] <3-ll) 

We then introduce the variables E' by , 
a J 

D;'l = D"1 (. ,'_<_) : exp(i-.-|) [-.'"-igB̂  ̂ ] s(.,__=0) (3-12) 
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The expression of the polar quantities B in 
terms of the canonical variables A is considerably more 

a 
difficult in the present non-Abelian theory than the formu
lae (2-12) and (2-13) of the previous Chapter. Indeed, the 
main purpose of this Chapter is to show that such complica
tions can be overcome and the analysis of the previous 
Chapter can be generalized to a non-Abelian gauge theory. (18) Now, it can easily be shown that , the equation 

- T T T 
[~<>V -igBu.j] = exp(-i£.|) [3U -igAU.j] exp(i£.J) 

leads to the expression 

*a = [ e*P<M>l a b
 Ab " | [ S < e ) ] b a S" eb ( 3 - 1 3 " a ) 

where we define, 

<Tb),„ = E K„ (3-13-b) ac abc 

e.T 
1 l-exp(-e.T) 

S(-i) = I du exp(-u£.T) = a „~~ "*- (3-13-c) 

In other words we have , 

^ - [expC'.T) ] . fj \ i [S(S B J - [exp(?n.T) ].. A^ \ - [S(9)], 2.6. (3-14) e * P < M " a b A b + g [ S ( S , ! b a ?j 6b 

B 3 )• tS(t))] 1(1 (3-15) 
a g ba 3 b 



57 

The last equation shows that B ' and 6 are related to each 
other in a highly nonlinear wf.y, due to the non-Abelian na
ture of the gauge group. For ';he same reason, the gauge 
field A ] is now rotated in isospace by the action of the 
adjoint representation as shown in (3-14). 

By analogy with (2-18), we wish to define a map
ping M such that, 

2v + 

33 — (3-1M 

gv "3 "a 

This will then be the Unitary Gauge Transformation of the 
present Chapter. Following the analysis of the previous 
Chapter, we are going to describe this mapping, step by 
step. We first define a mapping M such that, 

-— 2v "0 
(3-17) 

The last equation is clearly analogous to (2-15) and for 
the purpose of making some future expressions simpler 
looking, we have introduced the parameter ^. The action of 
M. on the canonical variables is as fol.uws : 
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< 4 0 + i4.T_) 
T / 0 

e x p ( i 6 •? 

M l : 

* 0 +2v, (3-18) 

— A-' 

The definitions (3-14) and (3-15) imply that, 

r 1 
Ba - [ e ^ < ^ ! i a b j A b + ^ ! S ' i J i b c ' r c j 

B — — 
\ a qv 

13-19) 
;( -! ] ab 3'b 

where ir- tr.o : i : s r ^ m e , we have ^3de use ar 

s s v ! .71 ~ i i 

--- ! • • O . J sir-.q t h e » >• o J j - - ' 13 - : : - 1 

M . 

. S ' . : ' . ^ I : - '. see t h a t wt? f.ave SG 
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[ e xP (^"ab *b 
M2.K1 : 1 (3-21) 

B 3 — — [S(P)1 , 3,*. a gv - ab 3 b 

It is then clear that, by defining 

[exp(- L.T)] a b Al 

M 3 : < (3-22) 

and , 

M 4 

1 S <i , ]ab V b - V b 

0 — 

we shall have the required action K M. .M- .M, .'•!, as des-
cribed by the equation (3-16) which was in fact the start
ing point of this discussion. M is thus the Unitary Gauge 
Transformation. 

Our plan is r.ow as follows : We shall first in 
troduce a Fock space representation for the canonica1 va
riables, in a completely analogous way to the analysis of 
the Section D of the last Chapter. We shall co'sider larae 
values of the parameter v and nonperturbati" o values of 
the coupling constants. In such a scttir i, we shall examine 
the unitary implementations of the a1 A'O 'pings . Thesi' 
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considerations will lead us to a trial state which will be 
a better one compared to the Axial gauge bare vacuum. 

We begin by introducing the Fourier decomposition 
of the canonical fields : 

, , 2 . 
E=< x> = S T ? l d k exp(-ik.x) T e*<k)p= (k,r) 

a ~ (2TT) J / ^ J ~ ~ ~ r=l r ~ a ~ 
2 . 

A ^ ( x < = hr? /d k exp( ik.x) X! e^(k)qa (k,r) 
a - (2-i)J/': J ~ ~ ~ r=l r ~ a ~ 

11 (x) = 5-7-v 1 d k exp(-ik.x 
m - ._ , J/ 2 j - r - ~ 

) tffk) 
(2-) 

t (x) = ~-r=: I d k exp ( ik.x) *„(k) 
m ~- .^_.J/2 J ~- ~ ~_ m ~ 

The canonical commutation relations become in this notation, 

[pa(k,r) , qb(l,s)j = -i c a b c r s Mk-ll 

["m(*> • *n(i> ] = "i ; » f^V 

and t h e y w i l l be r e p r e s e n t e d by t h e u s u a l a l g e b r a of c r e a 

t i o n - a n n i h i l a t i o n o p e r a t o r s a s , 

i Q ( k ) = - i ( y V - 5 [ a Q ( - k ) - a Q (k) ] ( 3 - 2 4 - a ) 

f n ( k ) = ( 2 ~ ) ' 5 I ^o^ + a o ' ( _ ! i I ! (3-24-b) 

k 3 ' 
^ c ' - ' = _ i JTT)h ' a c , " - ) " a c ( S ' ' ( 3 -24 -c ) 
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L(k) = —i^)h I a (k) + aVk) ] (3-24-d) 
|k 3| 2 c ~ c ~ 

p c(k,l) = -i (^)h [ac(-k,l) - a^(k,ll] (1-24-e) 

q c ( ~ ' 1 ) = {jt)h [ a

c

{ ~ ' 1 ) +ac ("!S' : l ) 1 <3-24-f) 

Ik! h + 

p (k,2) = -i -5- [a (-k,2) - a (k,2)] (3-24-g) 

q (k,2) = — * [a (k,2) + a"(-k,2)J (3-24-h) 
•c - 2|^| c ~ c ~ 

O 0 1 O T ^ î  

where v., = (k *u ) and .-. = (k +g v ) :, in complete ana
logy with (2-63) & (2-65). The Fock space • acuum of this 
representation will be denoted by ]'.>. 

We now describr the unitary implementation of t'•-.•= 
var: us factor mappings of the Un.tary Gauge Transformation 
M. We begin by M . From (3-18), what we require is an ap
proximation to the operate formally defined by : 

0\ ', : / 0 
ui ( : o + x i.-^J''i = e x p ( l ^ \ . + 2 v 

and a sensible approximation ; the larae v limit is pro
vided bv : 

r , 3 
•,'x - exP(-i2v Ja x ::Q) exp(i £ (2v n F ( n ) 

3 
) ( 2 5 ) 

when 1 
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F(D = H d 3* Iht-t- w ^ ] 

nfa\ [ r a ' V 6 V c T * ' i»] (2) 24J 

'(3) = lli^Z [ { W o } t ' * + 2*A{H=,^=(2*n(tn-0>.*) "0' a**a,"-cro i" 

These formulae are the obvious generalizations of (2-30). 
We also observe that these generators do not have any de
pendence on the parameter v through the Fock space repre
sentation (3-24) so that the large v approximation is 
straightforward. The action of U on the various quanti
ties of interest will now be computed. We have : 

1) -2, U, « U. = «' ' + order(v ) 
1 d 1 S 

(3-26-a) 

,(D gv . E 1 -g • . E 1 A 1 + 2 [ n. i* i a J abc D C 2 abc b c 

24v ad be ab cd 'b''c'd 

(3-26-b) 

Evidently, U does not reduce this operator into a linear 
functional of the canonical operators. The cancellation of 
the infrared divergencies will thus be less transparent in 
the present non-Abelian theory. We shall also retain 
order (-) terms for the transforms of S? (x, since this ope
rator enters quadraticslly into our Mamiltonian and order(-
terms may interfere with the g' fern of i3-26-b), to 
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give a non-vanishing result in tne large v limit. We can 
similarly transform the Hamiltonian density of (3-7): 

Ul '*' Ul = '*'<1) + J*'(0) + o r d e r < ^ > (3-27-a) 

where, Jt* : l ) = 1 E^E 1 + io^V 1'] 2
 +^n.n 2 l '3 

1 3 . . . , 3 
4 i,j=l z i=l x 1 

a A 3 2 " A
J.(C x 3 4) + g(v+0 )A'.. J 

3~ 0'~ • j' 

+ \ (f) 2 A j.A3 (2v+: 0) 2 

,(3-27-b) 

and , 

•ye, (0) 2 "O-'O I Z, VoVo + V[(2v +: 9) 2] 
i = l 

(3-28) 

The transformations that we will describe in what follows, 
will all leave the (" , - ) Higgs degrees of free-dorr, in 
peace. 

We now consider the implementation of the map -
ping M defined in (3-20) . Since this simply adds a quan
tity to the operator A. , we clearly have, 

II = expl — fd3;c E 1 [S( ) ] . • :. ) 2 av J - a a b i b (3-29) 

where This operator leaves E invariant and its a 
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action on the conjugate raomen a IT can be obtained by some 
algebra, 

•J! i u, = n + — [ 
2 a 2 a gv 

u; n_ u\ = n. + -r^[s(B)] a b a i E b 

(3-30-a) 
- ~ [ C -, ~ - 0 0 , J d . <I> L — ^ - x ] ^ E , 2 l ad ce ae cd i Tc dB, 'eb b gv a 

We can therefore evaluate the action of U-,, without approx
imation ron any quantity of interest; however, we are only 
interested in the large v limit of this action. We there
fore approximate the above action by, 

U~ ; 0, = ] t-i 3.E1 5_[ (J.E1 X 0) + 2 (E 1 x ,.: 2 - 2 - gv 1- _ 2 i~ _ ~ i-^ 2gv 

+ or:ei (v 3) (3-30-b) 

and the original transformation (3-20) by, 

U n A D U., = A^ ••.•: + ^r <t- x ..J, + order (v 3) (3-30-c) 
2 - 2 gv ]- 2 g v 2 - 3^ 

At this point, one aspect of our approximation scheme has 
to be clarified ; (3-24-e) shows that the Fourier component 
p (k,l) of the electric field E does have a v dependence, 
and since the aenerator of U., depends on E . one miqht 

/ a 
wonder how such a dependence should be taken into account 
in evaluating the large v limit. We now observe that, E in 
the generator as well as in the expression (3-30-b) is 
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always accompanied by a factor of (gv)~ . Now the Fourier 
transform p (k,l) depends on v through (ID) = (k +g v ) * 

-1 h and since the quantity (qv) (to) goes to zero as v tends 
to infinity, it is easy to see that any expression whose 
only dependence on v and E is through the combination — E 

a v a 
will have a negligible vacuum expectation value in the 
large v limit. Therefore, using the formula (3-30-b), we 
can effectively treat E as a quantity independent of v. 

We are now interested in the action of U, on 
« ( 1 ) of (3-26-b) andjr'1' of (3-27-b) . We obtain, 

U 2 9 a 1 ) U2 = * i 2 ' + o r d e r < v ~ 2 > (3-31-a) 

« ( 2 ) ; gv [ - qe , E^A 1 + § c , H, C a ^ a abc b e ~ ĥ<~ h r 2 abc'Vc 

24^ ' W b c ' 6 a b 6 c d ] { W d > 
( 3 - 3 1 - b ) 

a n d 

U 2 . J » * ' ( 1 ) U 2 =Jt{2) + o r d e r ( ^ ) ( 3 - 3 2 - a ) 

i , j = l ~ 

2 ~ + \ "3®- r '3* + I g 2 y 2 ~ ] '-"' ( 3 - 3 2 - b ) 

1 ~ 2 " ^ A j . A j + | g 2 < t > 0 < t 0 A j . A : l 
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V'le shall now implement the mapping M,. The equa
tion , 

U3 A^ U 3 = [exp(-B.T)]abA^ (3-33) 

is easily seen to be satisfied by the operator, 

U 3 = exp( i Jd 3x *.(E 1 x A 1)] (3-34) 

and we have, 

u" n u, = n + - [s (?) ] , ( E 1 x A 1 ) . 3 a 3 a v ~ ab - ~ b 

U~ E* U, = [exp(--.T)]=, E^ 3 a 3 ~ ~- ab b 

These equations do not involve any approximation and in a 
large v limit, they reduce to, 

U A 1 U A 1 + - A 1 x + + - ^ $ x U x A 1) 
J ~ i v - - 2v ~ 

U, E 1 U, E 1 + -r E1 X t + — i ^ .;• x (? X E 1 ) 

u, n u, :: + - E 1 x A 1 - — » -t x ( E 1 X A 1 ) 3 - 3 ~ v - - 2 v 2 -

It is now easy to evaluate that, 

u' « ( 2 ) U, = » l 3 ) + orderlv"2) 3 a 3 a 



where, 
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,(3) 
a - y v "a x 2 " a b c V c 

(3-35) 
: gv 1 + 2 e .n.4 ^ a 2 abc b e 

24v ad be ab cd b e d 

We finally consider the mapping M.. In view of 
(3-23), what we need is a unitary operator U. such that, 

4 ab 3 b 4 3 a 

This is of course a formal expression and a meaning car. 
only be given by expanding the expression for S (_:) in in
verse powers of v and generating these terms by the action 
of U.. In a large v limit, we then require U. such that, 

6v 

We shall represent, 

-1 -2 
J4 = exp;i(v K ( 1 ) + v K ( 2 ) ; 

To construct the generators K. . is in principle straight
forward but in practice it requires an extremely messy 
algebra. In this connection, the particular definition of 
the inverse derivative a , involving the odd function t(x) 
as in (2-5) & (2-6) leads to notable simplifications. 
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This is especially advantageous in evaluating the commuta
tors of K, . with the conjugate momenta. The generators 
K, . are found to be : (n) 

K ( 1 ) = " i / d 3 x a"1!!. (£ x 3 3£) 

K,,,= T^[^ J^„-'\„*u d]/d 3x{33 1n a,[<J> b0. dd 3* e+ 33 3«! b3 3
1(d> dt e): (2) 48 L ad be 'ae bd1 

VJe have thus implemented all the factor mappings 
of the Unitary Gauge Transformation, and by defining 

u = u x . u 2 . u 3 . u 4 

and using (3-37), it is now possible to show that, 

U * (x) U = g T^— & (x) + order (v 2) (3-37) 

where, 

•*a ( x ) = v '^"a + ,abc (' !3 l ib ) ;c 

d bc J [' '3 'c'^'d "3 -'b'-3 S"c 34d' 4v ac bd a 

Now, we have chosen the Fock space representation (3-24-c) 
for if (k) , with the condition a ~ 

1 Ik ,k 2,0| = 0 



in mind, In other words, we have : 
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J dz n a(x 1,x 2,z) = 0 

According to the definition (2-5) of the inverse derivative 
this means that, 

lim (3~ 1n a)(x l fx 2,z) = ± | dz n (x l fx 2,z) = 0.(3-38) 
x,̂ ±°° -<* 

We now observe from (3-37) that, all the terms of the quan
tity 9 (x) contain a factor 3, n . Therefore when the 

a j a 
latter vanishes, so must #"(x) . (3 = 38) therefore establishes, 

lim #" (x.,x2,x3) = 0 

which in turn implies that, 

0 0 r ^ 
G a ( x l ' x 2 ) = I d Z » a

( x l ' x 2 ' z ) = 9 J d z s f ^a ( xl' X2 ' z) 

= 0 + order(v 2) (3-39) 

A second noteworthy feature of the expression 
(3-37) for # (x) is that, the term proportional to v is 
orthogonal in group space to the term independent of v, 
which in turn is ortogonal to the terms proportional to 
(—). A similar feature is much more transparent in the v 
expression (3-36). As a result of this fact, we have : 
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9-9= v 2 O^'n) . Og 1") + order(^) (3-40) 

Using now (3-23-b) and (3-40), we can arrive at the result, 

u+.x* o = -| E 1 . ^ 1 + i(gv) 2o^ 1n).03 1n) + i n.n 

+ 7 E F i j - E i j + I 3 3*.3 3t + |(gv)2A^.Aj 

irj=l 

I g 2 v * 0 ^ - S 3 + | g 2 V o s 3 - ^ 

+ .ye, (0) 

M3-41) 

This expression is now to be compared with expression 
(2-67) that we derived at the end of the last Chapter. In 
these expressions, all the terms are in one to one corres
pondence with each other, with the exception of the gluon-
self coupling terms 

g 2 Y (•• v. K.^) (c ,, A^A^) 
^ . *-? . abc b e ade d e 

(3-42) 

as well as the triple gluon vertices which come from the 
magnetic field term of (3-41). Our choice of the Fock space 
was also an obvious generalization from the Section D of 
the last Chapter. Therefore, except possibly for the four-
gluon term (3-42), the vacuum expectation value of the ex
pression (3-41) must have the same characteristics as the 
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energy density <f(s) of that Section as depicted in Figure 1. 
Let us now analyze the vacuum expectation value of the four 
gluon term. We have 

<fi|A^(x)A^(x) |fi> = j 6 l j 6 fo[ A(0) + A(g2s) ] 2 

2 
where the function A(s) was defined in (2-58) and s=v . 
We then find, 

2 . . . . 
<9.\ Y, (A1 X A j) . (A1 x P?) |Q> = 6g2[A (0) + L (g2s) ] 2 

i,j=l~ ~ 

We now observe that the behaviour of this expression as a 
function of s, is extremely similar to that of the expecta
tion value of the Higgs-gluon coupling term : 

<fi! | g 2 dJ 0* 0A j.A j |f-> = | g 2 ±lJ) (i(g2s)+ :(0)J 

Both these terms are ultravioletwise not too singular and 
infrared finite;they both are sharply decreasing around 
s=0. We can now adapt the conclusions of the previous 
Chapter to the present non-Abelian theory and we then con
clude that the expectation value of U Jf U on |f!> is an 
infrared finite expression which is not too singular in the 
ultraviolet and for which the variational parameter v is 
nonzero. The presence of the four gluon term does not change 
any of these conclusions and in fact, we have seen that this 
tern, by itself can drive v to a nonzero value. 
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C) Conclusions 

In this Chapter, we have shown that the trial 
state U]r.-~ = U..U..O,.U.|0> in the large v limit, is a 1 2 3 4 3 

finite energy trial state and due to the result (3-39), it 
does satisfy the residud gauge invariance condition (1-4). 
As such, it is a better trial state for the vacuum of our 
non-Abelian gauge theory than the Axial gauge bare vacuum. 
The latter is in the perturbative phase. In our trial 
state, the scalar field develops a vacuum expectation value 
and the gauge symmetry is broken. Based on these results, 
we conclude that the vacuum of our non-Abelian gauge theory 
is more likely to be in a Higgs phase than the perurbative 
phase. 

In thio analysis, we have assumed that the scalar 
fielo was in the fundamental representation. This led to a 
case where the symmetry breakdown was complete.We think 
that the construction of a finite energy trial state would 
be more difficult for the case of a partial symmetry break
ing, due to the gauge fixing degeneracies associated with 
the surviving subgroup. On the other hand, considerations 

similar to ours, might be applied to the case of the 
(4) 

Nielsen-Olesen Model in its non-Abelian form and it 
would be interesting to see whether one can explicitly ve
rify the area law associated with the magnetic 't Hooft 
loop, in such a coherent plasma. 

Our main purpose in this work was to construct a 
trial state for the Higgs phase, starting from an Axial 
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gauge formulation of the non-Abelian gauge theory and to 
show that such a state was a better trial state for the 
vacuum of the theory, compared to the Axial gauge bare va
cuum. We have explicitly shown how this could be done. On 
the other hand, our trial state is not as such a realistic 
one. One problem is of course the rotational invariance, 
but in this connection we note that the Axial gauge bare 
vacuum is also not rotationally invariant. On the other 
hand, for the present type of a theory with scalar fields 

in the fundamental representation, a realistic Higgs phase 
(19) vacuum has been argued to be a color singlet. It is 

far from obvious whether our trial state can lead to such a 
result. Nevertheless, the arguments that have been presen
ted in this work do indicate that the vacuum of a non-Abel
ian gauge theory is likely to be in a phase other than the 
perturbative phase with physical massless gluons. 
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APPENDIX 

Our purpose in this Appendix is to determine 
within the context of a classical field theory, the action 
of the mapping M. of Equation (2-20) on the conjugate mo
menta H. & .".2, so as to render this mapping a canonical 
transformation. We have : 

( v + ^ ) cos( - i ) 

( v + i ) sin( ^ i2) 

We wish to find two functionals P, 4 P ? of the canonical 
fields such that their Poisson brackets with Q satisfy : 

P a(x) , Q b(y) ab '<5-y) (A-l) 

We note that the Poisson bracket of two functionals F and 

G is defined as : 

/ a = l 
-F {G i'F G 
(x) ?$ (x) 
i - a -

:t (x) •- (x) a - a -

and that we have 

(x) , 1 (y) ) = •• , f (x-y) (A-2) 

In view of (A-l) and (A-2), the mapping M , 
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*a - Q a 

n -«- P 
a a 

will be a canonical transformation. 
Since the new coordinates Q (x) '" not involve 

the old momenta n (x) , the new momenta P i .) can easily be a — a ^ 
determined following the standart textbc s on Classical 

Mechanic s (20) . We then have, 

/ « P a ( x ) = jd'l "blV ToTO b (y) 

and a siirple calculation then gives 

exp( - - 2 ••) 
(i + ^ r V 

(A-3) 

Writing this expression in terir of components and replac
ing the factors which do not mute in the quantum theory, 
by their anticommutators, we an arrive at the fo mulao 
(2-21) . 
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