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Abstract 

A simple, but often reasonably accurate dynamical model--a synthesis 

of the semiclassical perturbation (SCP) approximation of Miller and 

Smith and the infinite order sudden (IOS) approximation--has been 

shown previously to take an exceptionally simple form when applied 

to the reaction path Hamiltonian derived by Miller, Handy, and Adams. 

This paper shows how this combined SCP-IOS reaction path model can be 

used to provide a simple but comprehensive description of a variety of 

phenomena in the dynamics of polyatomic molecules. 
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I. Introduction 

The idea of describing a chemical reaction as motion along some 

reaction coordinate in configuration space is an old one that has 

been popular at the qualitative level, e.g., in providing a language 

for describing complex organic reactions, and has also been pursued 

more quantitatively for describing reaction dynamics at a more precise 

1 
level. Along these lines one of the present authors and co-workers 

have recently derived an explicit form of the classical Hamiltonian, 

the "reaction path Hamiltonian", which characterizes a general poly-

atomic system as motion along a reaction path (the steepest descent 

path in mass-weighted cartesian coordinates) plus harmonic oscillator-

like deviations about the reaction path in all the (many) directions 

orthogonal to it.
2 

This particular formulation of the reaction path 

idea was carried out with the view of using ab initio quantum chemistry 

calculations to cetermine all the parameters in the Hamiltonian, and 

one of its important features is that all such information is in 

principle obtainable from a relatively small number of calculations 

of the potential energy surface. Applications of this approach to date 

have been to the role of tunneling in the unimolecular reactions 3-5 

HNC -+ HCN 

The most recent development involving the reaction path Hamiltonian 

6,7 
is that by Miller and Shi ~n showing how a relatively simple, but 
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reasonably accurate dynamical model--a synthesis of the semiclassical perturba-

8 
tion (SCP) model of Miller and Smith· and the infinite order sudden approxima-

tion (IOS)~-~an be applied to the reaction path Hamiltonian. This 

leads to explicit closed-form expressions for S-matrix elements (and 

thus transition probabilities) describing reaction and energy transfer 

between the reaction coordinate and the transverse vibrational modes 

of freedom, and thus allows one to deal in a simple way with aspects 

of the reaction dynamics that involves the interaction between these 

degrees of freedom. Some other recent work also dealing with the 

interaction between motion along the reaction coordinate and the 

9 transverse vibrational degrees of freedom is that by Kato and Morokuma. 

The purpose of this paper is to show how the SCP-IOS reaction 

path model can be applied to a variety of phenomena in polyatomic 

reaction dynamics and thus provide a unified description of them all 

within the same dynamical model. The features that makes this 

interesting from a practical point of view are that the dynamical 

model is relatively simple, and thus applicable to complex systems, 

and that the quantities which characterize these phenomena quantitatively 

are all obtainable in a relatively straight-forward way from ab initio 

quantum chemistry conditions. 

Section II first summarizes the reaction path Hamiltonian and the 

SCP-IOS approximation to the dynamics. It is also shown here how the 

model describes tunneling through transition states (i.e., the saddle 

point region) of potential energy surfaces, and application to the 

test problem H + Hz ~ Hz + H shows it to be quantitatively useful. 

Section III considers product state distributions of a reaction, in 
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particular a reduced distribution, e.g., the distribution of final 

states for only one degree of freedom, say, summed over all the 

final states for the other degrees of freedom. Also shown is the 

specific form taken by the final translational energy distribution. 

Line widths associated with excitation of overtones of local modes 

(usually CH stretches) are considered in Section IV, and it is shown 

how the SCP-IOS reaction path model provides a description of this 

phenomenon and also provides a framework for carrying out quantitative 

calculations. Finally, Section V shows how mode-specificity in 

unimolecular rate constants can, in conjunction with a semiclassical 

branching model, be described by the SCP-IOS reaction path model, 

and Section VI concludes. 
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II. The Reaction Path Hamiltonian and scP~IOS Approximation 

For a non-rotating system of N atoms (i.e., with zero total angular 

momentum) the reaction path Hamiltonian derived by Miller, Handy, and 

Adam; is 

H(p ,s,P,Q) 
s - -

F-l 1 2 1 2 2 
= L: (- P + -2 wk(s) Qk ) + Vo(s) 

k=l 2 k 

1 F-1 2 
2 [ps - L QkPk.'Bk k' (s)] 

k k '=1 ' + --~~--~~~~--------------F-1 2 
[1 + L QkBk F(s)] 

k=l ' 

(2.1) 

where F = 3N-6 is the number of degrees of freedom, (s,p ) are the 
s 

mass-weighted reaction coordinate and its conjugate momentum, v
0

(s) 

the potential energy along the reaction path, {Qk,Pk}, k = l, ..• ,F-1 

the mass-weighted normal mode coordinates and momenta for vibration 

normal to the reaction path, with frequencies {wk(s)} that are 

functions of the reaction coordinate. 

The coupling elements Bk,k'(s) couple vibrational modes k and k', 

and Bk1(s) couples vibrational mode k to the reaction coordinate (which 

is designated mode k=F). The coupling elements Bk F(s) are a measure 
' 

of how the curvature of the reaction path couples to mode k; the total 

curvature of the reaction path, K(s), is related to these elements by 

(2.2) 
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The coupling functions Bk,k'(s) are essentially a coriolis.:..like 

coupling :involving. the twist of the vibrational modes about the reaction 

path as a function of s. The coupling functions, as well as v
0

(s) 

and {wk(s)}, are obtainable from the ab initio quantum chemistry 

calculation of the reaction path and the force constant matrix along 

it. The Hamiltonian for the rotating case, J#O, has also been worked 

oul but is more complicated than for J=O because of various kinds of 

rotation vibration coupling. 

For most applications it is useful to transform from the vibrational 

coordinates and momenta {Qk,Pk} to their action angle variables 

(2.3a) 

cosqk , k= 1, •.. , F-1. (2. 3b) 

In terms of these variables the Hamiltonian becomes 

l F-1 -~ 
2 [ps - L Bk k' (s) vt2n. +1) (2n. ,+1}./~(') 2 

sinqk cosqk,] 
k k'=l ' . k K wk s 

H(p ,s,n,q) = --------~~-:~~.--------~==~--------~-------------------
s - - F-1 jl~+! 2 

[1 + L Bk F(s) ( ) sinqk] 
k=l ' wk s 

F-1 
+ vo(s) + L 

k=l 

where here the diagonal element Bk,k(s) is defined by 

(2.4a) 

(2.4b) 
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This form is especially useful for semiclassical applications since 

the action variables {~} a.re the classical counterpart of vibrational 

quantum numbers. 

The unified semiclassical perturbation (SCP) and infinite order 

sudden (IOS) approximation discussed by Miller and Shi1~ives the S-matrix 

elements (i.e., transition amplitudes) from initial staten of the 

transverse vibrational modes to final staten' as 

icl>o 
e 

S (E) = ---
~~~ (21T)F-l f dq 

0 -
(2.5) 

where 

fln = n'-n (2.6) 

and 

= -s /2 [E-V (s)] a . 

(2.7a) 

F-1 
~L: 

k=l 

X c~s [ qk-,+<\.,--(s)] (2. 7b) 
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with 

I2[E-Va(s')] 

V (s) in Eq. (2.7) is the vibrationally adiabatic potential a 

F-1 
V (s) = v0(s) + L: (n. + 1) w. (s) 

a k=l K 2 K 

(2.7c) 

(2.8) 

and {qk} are the integration variables g of Eq. (2.5). (To insure a 

symmetric S-matrix, the quantum numbers {~} = ~ in Eqs. (2.7)-(2.8) 

are actually taken to be the averages of the initial and final quantum 

numbers, i.e.,~~~(~~').) The phase ~O is the WKB phase shift from 

the vibrationally adiabatic potential, and the phase ~~(g) is the 

contribution from the transverse vibrational modes and is therefore 

what causes inelastic transitions between the various modes and the 

reaction coordinate. In most scattering applications one is interested 

in the limits s
1 
~ ~, s 2 ~ +oo, but we leave open the possibility of 

other cases. For example, one may wish to choose s
1

=o and s 2=+oo, so 

that the initial state n corresponds to the transition state and the 

final state n' to products. The transition probability of ~hen~' 

transition is, of course, given by 

p ' (E) = Is ' (E) 12 
n ,n n ,n (2.9) 

As discussed before !-'tq. (2. 5) incorporates the infinite order 

sudden approximation (which would result if the vibrational phase 

shifts ok(s) of Eq. (2.7c) were set to zero), which is correct in 
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the limit that the transverse vibrational motion is much slower than 

motion along the reaction coordinate, and also the limit of adiabatic 

perturbation theory, which is correct when the transverse vibrational 

motion is much faster than motion along the reaction coordinate. 

There is thus a reasonable basis for expecting that the model will be 

at least semi-quantitative in fairly general circumstances. 

Miller and Shi
6
have applied this SCP-IOS reaction path model to 

one of the standard benchmarks for inelastic scattering, the Secrest-

10 Jopnson version of collinear He + H2 collisions, and it was seen to 

give quite reasonable results for a wide range of energies and also 

for multiple quantum transitions. We have also considered the version 

of this problem in which the H2 oscillator is described by a Morse 

-n 
rather than harmonic potential, and Figure 1 shows the results given 

by this model for the 0+1 transition probability as a function of 

energy, compared to·the exact quantum mechanical values. The model 

is seen to do surprisingly well. 

The SCP-IOS reaction path model can also be used to describe 

tunneling through transition state (i.e., saddle point) regions of 

a potential energy surface. Consider, for example, the standard 

test problem, collinear H + H2 + H2 + H. For the total reaction 

probabilities, 

PR(E~ = ). Is ' (E) 12 
' 

~ n ,n . 

Eqs. (2.5) and (2.7) give (with F=2) 

-1 11T 2 PR(E) = (21T) 
0 

dq lexp[i<t>0+ib.4>(q)] I (2.10) 
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where the closure relation 

L: ei.Lln(q-q ') = 27T o(q.:q ') 
lm · 

has been used. The action integrals ¢0 and ~¢(q) are complex inside 

the barrier region, i.e., where E < V (s), so that Eq. (2 .10) becomes a 

(2.11) 

where eo is the vibrationally 'adiabatic barrier penetration integral 

(2.12a) 

and if only the first term in Eq. (2.7b) for~¢ is retained (i.e., 

the curvature term) and symmetry of the barrier taken into account, 

then 

~e(q) = el sinq 

with 

~ lw(s) cosh[o(s)] , 

(2.12b) 

where K(s) = B1 F(s) is the reaction path curvature and 
' 

o (s) 1 w(s') 
= 

0 
ds' IZ[V (s')-E] 

a 
(2.12c) 
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s< and s> above are the left and right classical turning points at 

the barrier, and the quantum number n has been set to 0. With Eq. 

(2.1Jb) for 69(q) the integral in Eq. (2.11) is easily performed to 

give 

(2 .,13) 

where a
1 

is given by Eq. (2.12b). 
-29 

One notes that e 0 is the 

"vibrationally adiabatic zero-curvature" (VAZC) approximation to 

the tunneling probability which is regained if the curvature K is 

set to zero. 

Figures 2 and 3 show the tunneling probability given by Eq. (2.13) 

12 13 for both the Porter-Karplus and the Truhlar-Kupperman potential 

th energy surfaces, compared to the zero order VAZC approximation and 

13 14 to the exact quantum mechanical values ' for these collinear 

reactions. One sees that this simple model does a reasonable job 

of incorporating the effects of reaction path curvature. 
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III. Reduced Distributions 

When dealing with truly polyatomic systems it is unlikely that 

one will be interested in the distribution of final quantum states 

for all the degrees of freedom. We thus consider here the simplifica-

tions that result when one desires the probability distribution of 

final quantum states for, say, only one of the degrees of freedom 

orthogonal to the reaction path. This treatment, and especially 

Eq. (3.2) below, is essentially an example of the general "partial 

averaging" methodology15 of classical S-matrix theory, applied here 

within the SCP-IOS approximation. 

The reduced transition probability for the single degree of freedom 

k=l, say, is defined as the complete transition probability of Eq. 

(2.9) summed over all final states for the other degrees of freedom 

k=2, ••• ,F-1: 

p 
n' ,n (3 .1) 

Using Eq. (2.5) and the closure relations 

it is not hard to obtain the following expression for the reduced 

transition probability 

(3. 2) 



-13-

where b.¢(q) is the phase function of Eq. (2.7b). From Eq. (3.2) one 

sees that terms in b.¢(q) that are independent of q1 do not contribute 

to the reduced transition probability; in Eq. (2.7b) for .6.¢ one thus 

needs to include only the terms associated with coupling elements 

Bl,F' Bl,l' Bl,k' and Bk,l' k=2, ••• ,F-1. Thus 

F-1 ls 
+ 'E ds Bk 1 (s) 

k=2 s ' 
1 

(3 .3) 

where 

/2fE-V (s)) 
a 

(3.4) 

The fact that the phase difference in Eq. (3.3) is a first harmonic 

in the angles {~k}, k=2, ••• ,F-l, allows one to perform the integration 

over these variables using the identity 
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so that Eq. (3.2) becomes 

, 

(3 .5) 

where the correlation function C is 

' (3 .6a) 

with yk given by 

s? w:; 

+ £ ds B1~ cosok [sin(ql +01)-sin(qi+Ol) Jl 2 

s 1 1 J 
s 

+[~ ds Bu J!l;_ -cos6k[cos(q1-kl1)-cos_~qi·M\)] 
s 1/2 -I ds B1k §sin\ [sin(q1 +o1) -sin(qi+o1) 1] 2 

(3. 6b) 
s 1 1 

Equation (3.6b) for yk can be s~plified to give 

q -q' 
Yk(q1 ,qi) = 1(2n1+1)(2~+1) 2 sin ( 1

2 
1Hib+l

2 
+ lb_l

2
- 2 Re(b+b_)]l/2 

(3.7a) 
•. 

where 

(3. 7b) 



.. 
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Equations (3.5)-(~.7) give the reduced transition probability in 

its most general form. It is clear that the phase ~1 (q1), defined 

by Eq. (3.4), describes the direct interaction between mode 1 and 

the reaction coordinate; i.e.; if the coupling to all other modes 

k=2, •.• ,F-l were set to zero, the correlation for C would be unity 

and Eq. (3.5) would become 

(3.8) 

which is simply the general SCP-IOS expression of Section II for the 

case F=2. All effects of the uninteresting '~ath" modes are contained 

in the correlation function C, defined by Eq. (3.6)-(3.7). 

Because the functions {yk} of Eq. (3.7) depends on q
1 

and qi, 

there is no further simplification of Eq. (3.6) that is possible in 

general, but further progress can be made if one makes additional 

approximations. For example, since 

one expects b± of Eq. (3.7b) to be such that 

lb I << lb I + -

and if one neglects lb+l Eq. (3.7a) becomes 

(3.9a) 

where 
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.(3.9b) 

With this approximation yk, and thus the corre~ation function C, is 

a function only of q1-qi, so that Eq. (3.5) can be written as 

C(b.q)! ~ exp[i<l> (q+b.q)-i<l> (q-.Qg_)] 
0 21T 1 2 1 2 • 

(3.10) 

To illustrate the further simplications that can occur, suppose 

<1>1 is approximated by the first term of Eq. (3.4); the integral over 

q in Eq. (3.10) then gives 

where 

a = 1 

~ io1 (s)l 
B1 F(sh/ ~( ) e , w

1 
s 

(3 .lla) 

. (3 .llb) 

Combining Eq. (3.11) and (3.10), the final expression can be written 

as 

with 

F-1 

-ib.n q 
1 

e 
C(q) 

C(q) = JJ
1 

J0 [2~ sin(q/2)] 

(3 .12a) 

(3.12b) 

.• 
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where a
1 

is defined bY. Eq. (3.llb) and. {ak}, k=2, ••• ,F-l by Eq. 

(3. 9b). 

Equation (3.12) has a pleasing simple structure; each· degree of 

fre:"dom, k=l, ••• ,F-1, contributes to the function C multiplicatively. 

The primary mode k=l contributes a factor that, by itself, would give 

the n1~i transition probability if no other modes were present; i.e., 

one has the identity 

(3.13) 

the right hand side of which is Eq. (3.8) if <1>1 is approximated by 

only its first term. The bath modes, k=2, ••• ,F-1, contribute factors 

to C that result from the coupling of mode 1 to mode k (through the 

coupling elements Bk1). 

In concluding this section we consider a different type of 

reduced distribution, namely the translational energy distribution, 

(3.14) 

where ~Etr = Ef-Ei. Often in molecular beam experiments this is the 

most detailed quantity observed. By expressing the energy-conserving 

delta function in terms of a Fourier integral, 

o(~Et +E 1-E ) = (2~)-l fdt 
r n n L\ e 

-i(~Et +E 1 -E )t r n n 
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using the SCP-IOS approximation for P , , and invoking closure in n ,n 

the sum over ~n, it is easy to show that 

-i..t.E t 
e tr T(t) , (3 .15) 

where the correlation function T(t) is 

- 2 
T(t) =I dg exp[i.t.¢(q)-i¢(q+wt)] 

( 27T)F-l 
(3.16) 

The integrals over q can be evaluated in general using the techniques 

8 of Miller arid Smith, but for simplicity we consider here the form 

taken if the phase ~~(S) is approximated by the first term in Eq. 

(2. 7b), the curvature couplings {~,F} ,k=l, ••• ,F-l. It is relatively 

straight-forward to show that in this case the correlation function 

is given by 

with 

F-1 
T(t) = 11 J0 [2~ sin(illkt/2)] 

k=l 

s 

~ = 1! ds J2[E-Va (s)] 
sl 

Equation (3.17) is a simple, closed-form expression for the time 

correlation T, i.'the Fourier transform of which [ cf. Eq. (3 .15)] 

gives the translational energy distribution. 

(3.17a) 
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IV. Line Widths of Local Mode OVertones 

Another aspect of polyatomic dynamics that has attracted 

considerable attention recently is the broad line shape of high 

overtones in the absorption spectrum of local modes, usually a CH 

16 
stretch of a relatively large (~ 10 atoms) molecule. The width of 

the absorption line is taken as indicative of relaxation of the CH 

stretch mode due to coupling with other modes in the molecule. Here 

we show how the reaction path Hamiltonian plus the SCP-IOS approximation 

can be used to characterize this phenomenon quantitatively. 

For this application the local mode coordinate itself, e.g., 

roughly a CH bond coordinate, is chosen as the reaction coordinate 

s so that the Hamiltonian consists of this one special degree of 

freedom plus harmonic modes normal to it. The potential function 

v0 (s) is thus a Morse-like potential, the eigenvalues of which 

{E } give the positions of the overtones of the local mode excitation. 
n 

s 
In this paper we sketch the simplest version of the model, and thus 

in most places neglect the s-dependence of the frequencies {~},k=l, ••• ,F-1. 

Also, the reaction path Hamiltonian of Eq. (2.3) is approximated as 

H(n ,q ,n,q) = H
0

(n ,n) + H1 (n ,q ,n,q) 
s s-- s- s s--

(4.1) 

where the reaction coordinate and momenta (s,ps) have been replaced 

by their action angle variables (n ,q ) (defined with respect to 
s s 



H0 (n ,n) 
s -

F-1 
= E(n ) + 2: 

s k=l 

H
1

(n ,q ,n,o) 
s s - ~ 

2 = -ps 
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(4 .2a) 

F-1 (W;!T 
2: Bk,k'(s) vt2~+1)(2~,+l)J~ sinqk cosqk' 
k,k'=l k 

(4. 2b) 

(s,p) above are algebraic functions of (n ,q ). 
s s s 

If (n =O,n) is the initial state of the molecule--and the 
s -

state n of the transverse modes will usually also be taken to be 

the ground stabe ~--then the absorption spectrum I(w) is given by17 

i: i (E0 fhw) t/h -iHt/h 
I(w) = Jldt e <O,nl~ e 

= 
(4 .3) 

where EO = E (n =0) + hw• (n + 2
1), and ~ is the dipole moment function 

s - -

of the molecule. As is usual, one assumes that ~ is a function only 

of the reaction coordinates (i.e., the local model coordinate), so 

that insertion of complete sets of states before and after the 

propagator in Eq. (4.3) gives 

I -iHtl <0,~ e 0,~> = • (4.4) 

If one neglects mode-mixing--i.e., the terms n' ~ n in Eq. (4.4)--then s s 

the absorption spectrum associated with the 0 + n overtone of the s 

§-mode takes the standard form 



I 0 (w) 
n ' s 

6w = w-w 0 
n ' s 
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(4.4a) 

(4.4b) 

where w is the nominal position of the 0 + n overtone absorption n ,0 s 
s 

line, 

w = E(n )-E(O) 
n ,0 s 

s 

and the correlation function C(t) is 

with 

C(t) = e 

iE t 
n n 
s- I -iHtl <n n e n n> 

. s- s-

E = E(n) + hw•(n+.!.) 
n n s - - 2 

S-

(4.4c) 

(4. 5) 

With the SCP approximation to the propagator the correlation 

function of Eq. (4.5) is given by 

with 

w = · '(n ) 
S E S 

exp[-i 1 dt' H1 (t')] (4.6) 

(4. 7) 

As with previous applications, the fact that the coupling term in 

the Hamiltonian, H1 of Eq. (4.2b), depends on the angles {qk},k=l, ••• ,F-1 
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in such a simple way allows the integrals c~er them in Eq. (4.7) to 

be performed. As discussed below, for example, there is reason to 

believe that the couplings {Bk k(s)} are the m~st important ones in , 
H1 , so for the present analysis we consider only these terms in 

' (4.8a) 

in which case it is not hard to show that Eq. (4.6) for the correlation 

function gives 

(4.8b) 

with 

(4.8c) 

(In the integrand of the last equation ps and s are algebraic functions 

of ns and qs, with qs = qs + ws t'.) The formulae are more cumbersome 

if all the terms in H
1 

are retained, but in practice it is not much 

more difficult to do so. 

It is interesting to show how Eq. (4.8) can be further digested 

to produce one1o·f tha::urrent qualitative pictures of local mode line 

widths. The idea is that the excited state (n ,n) is broadened 
s -

primarily by interaction with nearly resonant states of the type 

(n -1, n+~n), where~~ > 0 for one or more of the bath modes 
s - - k. 

k=l, ••• ,F-1. Since the local mode is of such high frequency, 



-1 
hw ~ 2000-3000 em 

s 

1000-1500 
-1 

em 
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and most bath modes of lower frequency, 

18 
it is felt that one must have b.~ = 2 or 

larger in order to have near resonance and thus strong interaction. 

This is the reason for suspecting that the terms in Eq. (4.8a) are 

the most important ones in H1 ; the first term in Eq. (4.2b) gives 

rise to the couplin5s of the type t.ns = 0,±2, ... and t.~ = ±1, •.. , 

and thus cannot cause the transitions thought to be the most important. 

Proceeding further in the present qualitative analysis, we take 

Bkk in Eq. (4.8) to be time independent and make a harmonic approximation 

for ps(ns,qs), 

p (n ,q +w t') ~ 1(2n +l)w cos(q +w t') 
ssss s s ss 

so that Eq. (4.8c) for yk then gives 

-iq 
+ e s (4.9) 

Furthermore, only the resonant term in Eq. (4.9) is retained, so that 

yk becomes independent of qs, 

yk (qs, t) - yk (t) = (~ + ~) Bkkl(2ns +l)ws sin[ (2~ -ws) t/2] I (2wk -ws) 

(4.10) 

If one also makes a weak coupling (i.e·., small yk) approximation, then 

Eq. (4.8b) becomes 



21T dq 
C(t) =: .£ 21Ts 

and with Eq. (4.10) this becomes 

C(t) = exp[- ! 
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' 

The final approximation in this treatment is a continuum approximation 

to the frequency distribution in the molecule; i.e., one makes the 

replacement 

I;l • J:= dw p{w) 
k=l 0 ' (4.12) 

where p(w) is the number of vibrational modes per unit frequency. 

Equation (4.11) then reads (setting {~} = 0) 

C(t) = exp[-
(2n +l)w s s 

16 f 2 2 2 dw p(w) B(w) sin [(2w-w )t/2]/(2w-w ) ] 
. s s 

For long times the contribution to the integral over w is peaked 

1 strongly at the resonance value w = 2 ws, so that 

C(t) =: exp [-
(2n +l)w s s ws w 2 

p(-) B(~) 2 2 sin [(2w-w )t/2]/(2w-w) ] 16 2 2 

The integral over w gives 1Tt/2, so that finally 

1 
- 2~t 

C(t) = e 

with 

w 
w. = 1Tp(w /2) (2n +l)w B(~) 2/16 n s s s 2 

s s 

(4.13a) 

(4.13b) 
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" Since C(t) decays exponentially, the line shape I(w) is Lorentzian 

with a width at half height of wh. 

line as n increases beyond ~ 5-6 is s 

17 
The narrowing of the overtone 

19 thought in this picture to 

result because the density of modes in the molecule at frequency w /2, 
s 

i.e., p(w2/2), decreases (since w decreases with increasing n ). s s 

Because of the many approximatioas introduced from Eq. (4.8) 

onwards, the above analysis is presented only for qualitative purposes. 

It is important, however, to see that the model being proposed, i.e., 

Eqs. (4.1)-(4.7), is capable of producing the resonance "golden rule"-

like result when the relevant approximations are introduced. One of 

the exciting possibilities for future work, of course, is to generate 

all the couplings elements {BkF} and {Bkk'} from ab initio quan~um 

chemical calculations and then to use the more complete version of the 

present model to generate the lineshape without making any ~ priori 

assumptions about which couplings are most important and without 

resorting to some of the relatively crude arithmetic approximations 

used above. 



-26-

v. Semiclassical Branching Model·for:Mode Specificity 

19 Earlier work by Waite and Miller has been concerned with mode-specific 

effects in the unimolecular decay of isolated poly_a.tomic molecules, 

i.e., the question of whether the unimolecular decay rate is a function 

only of the total energy of excitation in the molecule or also dependent 

·on the particular modes of-the molecule that are excited. The model 

problems that have been treated to date are two-oscillator systems, 

and the calculations carried out were completely quantum mech@.nical 

computation of the complex (i.e., Siegert) eigenvalues. of the system; 

the real part of such an eigenvalue is the energy of the metastable 

state, aLd the imaginary part gives its unimolecular decay rate (inverse 

lifetime). 

19 
Quantum calculations such as these, however, are not practical 

for molecules with significantly more than two degrees of freedom, 

so we present here a simpler semiclassical model for determining the 

complex eigenvalues. The approximation is a multi-channel version 

of a semiclassical branching model that has been shown to yield the 

complex eigenvalues for one-dimensional systems that are metastable 
20 

with respect to tunneling. 

Suppose the potential along the reaction coordinate for the system 

of F degrees of freedom is as in Figure 4, and consider inelastic 

scattering from it; i.e., the system approaches from s =~and 

eventually returns to s = +=. The S-matrix for the inelastic 

scattering at total energy E, S(E), is approximated in this branching 
:::: 

modet0as the sum of amplitudes associated with the different possible 
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"trajectories" that can contribute. Referring to Figure 4, the first 

of these is reflected from the barrier; the second tunnels through 

the barrier, makes one oscillation in the well, and then tunnels back 

out; the third .tunnels through the barrier, makes two oscillations 

ill the well, and then tunnels back out; and so on. The multi-channel 

aspect of the model is to allow for inelastic transitions between the 

transverse vibrational modes and the reaction coordinate during the 

oscillations within the well. Thus if S t(E) is the S-matrix associated 
:::OU 

with inelastic transitions from s = -14> to the outer turning point of 

the barrier, P(E) the matrix of tunneling probabilities through the 
::: 

barrier (which will be assumed to be diagonal), and Si (E) the S-matrix 
::: n 

for inelastic transitions per oscillation in the well, then the various 

terms contributing to. the net S-matrix S are 

Figure (4.b) illustrates the "trajectory" associated with the term k=l 

in Eq. (5.1). (The phase f~ctor (-l)k is due to the additional reflections 

experienced by the kth "trajectory".) Equation (5.1) is a geometric series 

which is easily summed to give 

(5.1) 
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or 

S(E) 
== 

This is the general result of the·multichannel branching model. 

The complex eigenvalues of the composite system are defined as 

the poles of the S-matrix S(E), and from Eq. (5.2) it is clear that 
::: 

these occur at values of the energy E for which the inverse matrix 

is singular, i.e., the values of E for which 

(5 .3) 

The SCP-IOS approximation is now used to determine ~in(E) as in Section 

II, i.e., 

s(in)(E) 
n' ,n 

and because of the symmetry of the trajectory back and forth across 

the well, one has (with s< = 0) 
. s 

~0 (~,E) = 2 ~ds 12[E-Va(s)] 
0 

(5.5a) 
. ':J • ~-; : 

s . 

+ ~1 

[cos(qk-qk,) ~ds Bkk,(s) /(2~+1)(2~,+1)~~, 
1

sin(ok-ok,) 
k,k'=l 0 wk 

- s 

+ cos(qk+qk,) ~ds Bkk,(s) 1(2~+1)(2~,+1)~ sin(5k+6k,)] 

(5.5b) 
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Similarly, the tunneling probabilities P can be determined as in Section 

II.. 

Equations (5.3)-(5.5) are the complete model for determining the 

complex eigenvalues of the polyatomic system. Though we have formulated 

the problem as though there were a barrier along the reaction coordinates 

(cf. Figure 4), it can also be applied to the case that there is no barrier. In 

this situation the tunneling probabilities P(E,~) are 0 or 1 depending 

on whether or not n is an open channel. 

It is easy to see that Eqs. (5.3)-(5.5) reduce to the previously 
. 20 

obtained semiclassical result for the one-channel case, i~e., potential 

scattering. Equation (5.3) becomes 

e-2i~(E) + 11-P = 0 (5.6a) 

where 

=rs 

~(E) ds 12[E-V(s)] ,. (5.6b) 
s< 

and for small P this becomes 

1 i 
~(E) = (n +z)'IT - 4 P(E) (5. 6c) 

The complex eigenvalue En-i ~then has its real part En determined by 

the WKB eigenvalue equation 

and its width r given by 

~(E ) 
n 

1 
= (n+z-)'IT 

r = (dE/2'1T)P 
dn 

(5.7a) 

(5. 7b) 
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the un~olecular decay rate is f/h. 

Applications using Eqs. (5.3)-(5.5) have been made to the two

oscillator problems treated earlier, and they quantitatively reproduce 

these earlier exact quantum mechanical calculations. 19 An appropriate 

modification of this branching model can also be applied to determine 

the eigenvalues in a two-dimensional double well potential. These 

results and other aspects of the branching model will be presented 

elsewhere. 21 
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VI. Concluding Remarks 

This paper has shown how the combined SCP-IOS reaction path model 

of Miller and Shi can be applied to a variety of different dynamical 

phenomena in polyatomic systems. Another such process, which we have 

not discussed, is multiple photon absorption (with possible subsequent 

dissociation) of infrared radiation; in this case the principal infrared 

active mode of the molecule (e.g., the ~3 mode of SF6) would be chosen 

as the reaction coordinate and this mode thus treated beyond the 

harmonic approximation, while all other transverse modes would be 

treated harmonically. 

The two features that make this approach interesting are that it 

is extremely simple, and thus readily applicable to complex chemical 

systems, and that the parameters which characterize these phenomena 

quantitatively are obtainable in a relatively straight-forward way from 

ab initio quantum chemistry calculations. We thus look forward to such 

ab initio calculations of polyatomic dynamical phenomena in the next 

few years. 

Finally, one should note that the simple SCP-IOS approximation 

to the dynamics may not be accurate enough in some situations, and 

there is always the possibility--still within the reaction path 

Hamiltonian ~odel--of going to a more rigorous dynamical description. 
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Figure Captions 

1. Transition probability for the 0 ~ 1 vibrational excitation of Hz 

by collision with He, as a function of total energy. Hz is 

modeled as a Morse oscillator. QM, SCP, and HAR denote the 

essentially exact quantum mechanical results computed for this 

collinear system (reference 11), the present results of the SCP-IOS 

reaction path model, and the exact quantum results if Hz is 

treated as a harmonic oscillator, respectively. 

Z. Reaction probability for collinear H + Hz ~ Hz + H on the Porter

Karplus potential energy surface. EQ denotes the exact quantum 

mechanical values (reference 14), VAZC the results of the 

vibrationally adiabatic zero curvature approximation, and the 

points the results of the present SCP-IOS reaction path model 

[Eq. (Z.l3)]. 

3. Same as Figure Z except for the Truhlar-Kuppermann potential 

energy surface. 

4. Potential energy profile along the reaction coordinate for the 

type of system discussed in .Section V. (a) The "trajectory" 

that reflects from the barrier without tunneling, corresponding 

to the first term in Eq. (5.1); (b) the "trajectory" that tunnels 

through the barrier and makes one extra oscillation before 

tunneling back out, corresponding to the term k=l in Eq. (5.1). 
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