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ABSTRACT

A model of classical field theory with internal
symmetry Z(3) is partially solved in 1+1 dimensions.
The dynamical variables are two pairs of scalar and
spinor fields @,,0: and Yi1,{2. The ® and ¢ fields
form composite finite-size particles. We study the’
mass spectrum and the interactions of these particles.

1. INTRODUCTION: The action of the model is [1]:
S(9,,9, 00y ,0,) = Jatax [ 3(2,0)% + $(3,8,)% (1)

- M(05402)% + a(07-30,05) + B(R5+0Z) + & + iT,v T ¢,

+ ju

Tavuduta v eyl Tp0000 - elyu,T,0)9, 1.

With a=2A0 /3, B=AQZ, 6=-BOJ ; 3.=3/3t, 3,=3/3x 1 Yy=-0,,

. -+ . .
Y,=i0, and Y=y Oy 01,02.03 are the Pauli matrices. The

coupling constants A, g and the vacuum field @v are free
positive parameters.

The symmetry Z(3) -- a rotation of the ¢ and ¥ fields
by 120" -- leaves the action invariant.

"Toy" models of nuclear physics in 1+1 dimensjons have
been studied at the level of mesons and nucleons 2]. e.g.
the Cc-model. The aim of the present work is to start at a
deeper level, and derive first the structure of the
nucleons and from thereon their properties.

Using the vocabulary of QCD we consider the ®-fields to
play the role of scalar gluons [3], due to their cubic and
quartic selfinteraction. The spinor fields Yy and the Z(3)
group are assumed to play the role of quarks [4] and the
color group respectively [5].
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2. STRUCTURE OF COMPOSITE PARTICLES: Particular solutions

of the field equations are obtained in a closed form when

the effect of the quarks upon the gluons is neglected-- an
approximation also made in the MIT-bag model. We find

soliton solutions for the ®-fields Eéﬁ. and localized .
solutions for the Y-fields:

®,=0_(1+3tanh(ax))/4, ¢2=J§®v(1-tanh(ax))/4; (2)

ir a“r Eanus LR [

w1=NUexp(iEt-H(x)) ’ w2=103w1. (3)

With E=-%g@v, H(x)=(2)) % g ln(cosh(ax)), a=\/3%/2. U is
the spinor '‘part and N the normalization constant.

The total field energy generated by these solutions
defines the mass of the ground-state of a finite-size

composite particle:
M= ad) - g . (4)

A perturbational calculation of the time dependent oscilla-
tions of the 0-fields gives two excited states with the
masses M* = M+y/3a, and M#* = M+2a, _
We can think of removing one quark (Y,=0 or y2=0). This
process breaks the symmetry of the field equations and thus
costs energy.The mass

B of this "colored"state
. Moss - spectrum . is larger:M =M+7g®‘/8.
Mg=10,9=5) Suebel 233 |  Removing finally
i both quarks (Y1=02=0)
i "Cobred"stote , .. |  we obtain a "glyeball"
- ' - with the mass M ?M+g¢v.
20— -

mass spectrum. The
- 7 ground-state is chosen

- Resonances - to have mass ten to
i .34 J give an easy reference
15.66 point for the rest of
B - the spectrum. The
- - parameters are A = 1,

g = 5and ¢ = 2.6717.
The mass is measured
i 1 in units of V* .
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3. TWO PARTICLE INTERACTIONS: Two-center ¢-fields are

constructed by combining two soliton solutions with the
centers localized at x, and x, (xzsxl) as follows:

@1(x,x1,x2)=®v(1+3tanh(ax-ax1))(-1+3tanh(ax-ax2))/8,(5)
®2(x,x1.x2)=J§®v(1-tanh(ax-ax1))(1+tanh(ax—ax2))/8. (6)

The U~fields are superposed according to the Pauli
exclusion principle [7] (applied to color):

‘Jfl(x’xloxz) = wl(x'xl) - wl(x-xz)' (7)
wz(xixltxz) = wz(x‘xl) - wz(x"xz)' (8)

The interaction potential between two particles at a
distance d=x1-x2 is defined as the difference between the
field energy generated by the two-center fields and their
total mass at large distance of separation.

The potential for two ground-state particles shows a
shallow attraction where the particles begin to touch,and
a strong repulsion at
complete overlap.

The particles deficient
in quarks have strong
attractive potentials.

Fig. 2. Static potential
of two composite
particles in their
%round-state with M=10
upper curve). The
attraction is due to the
gluons, whereas the
repulsion is due to the
quarks. The extension
of such particles
calculated as an average
value is 0.387 in units
of 1/JX. The potential
of colored-states and
glueballs are purely
attractive (lower
curves) .The parameters
are the same as in
Fig.1.
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4. MANY PARTICLE INTERACTIONS: The ansatz in Egqs. (5-8)

is generalized to systems with 2P particles, with the
centers of the particles located at x_, m=1,2P. The

centers have to be ordered: X.~< X S,0¢% X< X,
The ¢-fields are: 2P “2p-1 2= "
..P P
©,=8 70, g (1*3tanh(ax-ax, ,))(-1*3tanh(ax-ax, )), (9)

m=1

P

£,°871V30, I (1-tanh(ax-ax,, ;))(1+tanh(ax-ax,;)), (10)
2p 2P

b= 0y (x)y by 2

k=1 ('1)k+1’112(x,xk). (11)

k=1

Calculations for a string of equidistant particles ,
d=xm-xm_1, show a marked dependence of the many-body
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Fig. 3. The interparticle distance and binding energy
per particle for a string of N particles at equilibrium.

Saturation of many-body forces is observed [8]. The
largest drop in distance and binding energy occurs when
passing from two particle systems to four particle
systems. The asymtotic value of the binding energy for
large numbers of particles is about 70% of the rest
mass M = 10 of the particles.



forces on the number of particles. When the number of
particles in a system at equilibrium is increased the
binding energy per particle increases and the distance
between particles decreases, until they reach their
saturation limit. The equilibrium point is defined by
the minimum of the total energy of the system.

The particle (number) density in one dimensional
systems is simply the inverse of the interparticle
distance, provided all particles are equally spaced:p=1/d.

By computing the energy in a system of N particles
at a distance d, we can get a representation of the
equation of state -- energy as a function of density Fig.&4.
[ 9,10 ]J. At the upper end of the curve, where the
particles are squeezed into a very small volume, the value
of the binding energy depends on the number of particles
originally in the system. .

Fig.4. Equation of
state for an
ensemble of 40 and
100 particles of
rest mass M=10.
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CONCLUSIONS:

We present a mathematical model in 1+1 dimensions,
that mimics 1i. the quark gluon picture of the structure
of nucleons, ii. the two nucleon interaction and
iii, some properties of nuclei and nuclear matter.

The calculations are done in a unified way using only
the fields of the constituent particles of the "nucleons".

There are some new features as "colored" states,
obtained when one fermion (quark) is removed (and
transfered to a neighbor particle), and "glueballs" when
both quarks are removed.

We calculate the interaction properties of these
states (Fig.2), that might turn up in high energy
experiments.

This work was supported by the Director, Office of Energy
Research, Division of Nuclear Physics of the Office of High
Energy and Nuclear Physics of the U.S. Department of Energy
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