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ABSTRACT

The rapid advances in the development of low-cost computer

hardware have led to many proposals for the use of this hardware

to improve the performance of database management systems. Usu-
ally the design proposals are quite vague about the performance
of the system with respect to a given data management applica-
tion. In this paper we develop an analytical model of the per-

-formance of a conventional database management system and  four

generic database machine architectures. This model is then used
to compare the performance of each type of machine with a conven-
tional DBMS. We demonstrate that no one type of database machine
is best for -executing all types of queries. We also show that
for several classes of queries certain database machine designs
which have been proposed are actually slower than a DBMS on a
conventional processor. : : I
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1. Introduction

The rapid advances in the development of low-cost computer
hardware havelled to maﬁy prop05als for the dse of this hardware

to improve the performance of database management systems. In

ge'neral,'each1 of the proposals has been quitekvague about  the
performance of the proposed design with respect to other database
machine architectures and database management systems on conven;
tional processors. Tﬁere are only two exceptions. In - [OZKA77]
the performance - of RAP [0ZKA75] is compared with that of a con-
‘ventional system and in [BANJ78] the‘ performance of the DBC
'[BANE78] and'System R [ASTR76] are compared for‘Selection opera-
tiohs.; We feel that most existing database machine designs are
examples of what we term "architecture directea" research. That
is, database machihe designers usually begin by designing what
.they consider to be a -good architecture‘which they feel will

efficiently execute one or .two database operations. Afterwards

they develop the algorithms to support all the required database
operations using the basic primitives of. their architecture. As
an example consider aseociative'disks (or logic-per—treck dev-
ices) [SLOT70] fronm which RAP, RARES [LIN76], CASSM [SU75], and
to some extent, DBC are derived. The besic design goal of the
associative disk desigh was the efficient execution of the opera-
tion to select records that satisfy a.certain criterion. Given
this building'block, other relaticnal database operators such as

join, project, and aggregate functions can be implemented with

1 Including DIRECT [DEWI79].



varylng degrees of success by comblnlng the processing capabili-
t1es of the host with those of the back-end database machine.

In an earlier paper [HAWT80], we examined the performance of
several of the‘proposed datgbasé management machines (associative
disks, RAP( CASSM, DBC, DIRECT, and CAFS [BABB79]) with respect
‘to several INGRES tSTON76] queries. We demonstrate that no one
database machine is best for executing all types of éueries. For
one class of queries we‘ show that the levél of performanée
improvement. achieved does not warrant use of a database machine.
While we feel that [HAWT80] represents a important first step in
database machine performance comparison, it has several defiéien-
cies that we intend to correct in this paper.

The main problem with [HAWT80] 1is that specific machine
designs were evaluated rather then machine types. This is diffi-
cult for several reasons. First the architects of. thé' machines
always claim "foul" as they'feel that the way we interpreted that
their machine would process a éomplex query (e.g.'aggregaté func-
tions) was not what they had in mind (though generally'they never
specified how to process such querles) A second problem with
us1ng spec1f1c machines is that many of the machines we tried to
evaluate are "moving targets“; Generally, database machine
designers, in evaluating their.aréhitecture, find that it does
not do well on a particular operation and consequently add a new
wart to fix each bottleneck discovered. A third problem with
comparing specific machines is that many of the_proposed designs
aﬁe~ rooted in specific, and fréquently_different,‘technologies.

In attempting to compare these designs we often found ourselves



comparing "apples and oranges"

Another problem with [HATH80] is that the number of bench-
ﬁark queries used was small (only 3). Furthermore, each query
was applied to ‘a small database. This makes it hard to determine
whether the results obtained are representative of the perfor-
mance of the machines over a range of databsSe siées and queries.

Finally, the evaluation made no attempt to account for MIMD

'activity which some, but not all, of the machines can. support.”’

In this paper, iﬁstead of simply extending the analytical

" model used in [HAWT80] to compare the performance of specific

machines over a wider rangevof'tests, we‘begah.by specifying five

~ generic classes of database machine architectures which are

descfibed in Section 2. The first class is a DBMS running on a
conventional coﬁputer.' It is included because many of the»"daﬁa-
base machines™ of the futureiwill indeed be highly tuned DBMS
softhare running on a single processor on top of a database
operating sYstemA[GRAY78].

In Section 3, we describe our analytical perfofhance' model
and introduce the various parameters that will bevused to evalu-
ate the different erchitecturev types. Section 4 contains an
evaluation of the five classes of machines on three representa-
tive query types for a variety of database sizes and queries.
Our conclusions. and suggestions for future research are presented
in Section 5.

It is important-to’notice that we have completely iQnored
one class of proposed database machine architectures. This class

contains those machines that are not feasible using: today’s



téchnology and that may never become cost effecti&e. These

machines can be spotted by claims of join times which.are linear
(or even less than iinear) in the size of the source relations.
While we are not saying that research on exotic machines is of'ﬁo
interest, we feel that any machine whose operation requires
eiﬁher as mény (6r more) processors as tupleé in the smaller 6f
the tworrelations being processed or an associative memory large
enough to hold one of the relations, is a machine that will most
likely never be feasible. Theréfore, we ignore these machines in

our performance evaluation.

2. Five Generic Classes of Database Machine Architectures

For thé purpose of this evaluation, we have divided those
database machine a:chitectures which are feasible to construct
usingvpresent day technology into five‘generic'classes which we
will describe in this section. These classes are:

cs - convehtional systems

PPT - processor-per-track systems

PPH - processor-per-head systems
PPD - processor—pér—disk systems
MPC - multiprocessor cache systems

"The complexity of the -database machines ‘represented by these
classes range from  a conventional processor running a database
bperating systeﬁ (CS) to a multiprocessor organization with a
three level memory hierarchy (MPC). We have assumed'tﬁat the last
four classesvof~machines are connected to a host.processor. This

processor serves two important functions. First, it accepts and



compiles queries from the users of the system. -Second, depending
on the functionality of the database machine, it assists in the
execution of certain Queries which are too complex for the back- -
end to handle alone. . For\example, the PPT, PPH, and PPD systems
proVide only the capability of processing selection operations.
Therefore, in order to process a query which includes ansaggre—
gate function, the capabilities of the host must be used in con- *
junction with those of the dstabase machine. ‘This will be

.described further in Section 4.

2.1. Conventional Systems (CS)

We feel that in the future many-database management systsm
spplications will be best served by a conventional relational
databasé managément system running on a single processor. Thus,
.6ur first class of "database machines" is such a.system and is
shown in Figure 1. we have assumed that the CS will support com-
vpiled user queries and sophisticated query execution strategies
such as those employed in System R [GRIF79]. Such .strategies
include support of indices, sort-merge join operatiéns, and
sophisticated quéry optimization techniques. Furthermore, we
have assumed that the operating system for the machine is tuned
to the needs of a DBMS in order to minimize the overhead ' of I/O

~operations and other ‘database activities such as locking.

2.2. Processor-per-Track (PPT) Machines

The second class of database machines are those based on a
mass storage device which consists of a large number of cells.

Each cell has a data track, some processing - logic which can
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rocess selection operations "on the fly", and is connected to a
P

Aglobal data bus on which it places selected tuples for transmis-
sion to the host processor. Coordination of thé'operation of the
cells is performed by a controlling processor. The organization
of this approach is shown in Figﬁfe 2.

In this organization tuples are stored bitwise along- each
‘track. The processing logic scans the data as the trackrrotat'es2
and places selected tuples in a small output buffer memory asso-
ciated with the head. Aftef a buffer fills, additional logic
attempts to place its contents on the output bus for transmission
to the host. 1In the event that the processor logic is not able
to output a selected tuple (beéause the bus is busy and the tem-
porary storage buffers are full) processing . is suspended. In
this case processing will be resumed some number (1 or moré) of
fevolutions later (i.e. after a buffer is output to the bus). 
_ “bThis class of machines includes the eariy PPT desighs by
" Parker [PARK71], Minsky [MINS72], and Parhami [PARH72]. While
the PPT architecture_may.appear similar to that of RAP and CASSM}
the - results presented in Section 4 may not be representative of
.these two machines {see [HAWTSO]"for a performance comparison. of
thesevmachines). PPT ﬁachines were pioneered by Sloﬁnick in 1970

[SLOT70] who suggested using a track of a fixéd head disk as the

2 Because of potential disk errors, the way any database '
machine which processes data "on the disk"™ must operate is to
read an entire block of data into a buffer, apply a CRC, and if
the block 1is "good" apply the selection criterion to the tuples
in the block [KIBL80]. With two block buffers, loading and pro-
cessing can be overlapped so that data can still effectively be
processed "on the fly". -
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unit of storage. Since fixed head disks are being phased out of
prbduction, the reader may question whether this class of
machines in indeed Viéble._ ,Recent‘research has shown that by
using magnetic bubble memories rather than fixed head disks a
simiiar degree of functionalityucan be obtained with only a small

reduction in performance [BORAS81].

2.3. Processor-per-Head (PPH) Machines

The third class of database machines are those that associ-
ate précessiqg logic with each head of a moving-head disk as
illustfated in Figure 3. We term this class of machines
"proéessor-per?héadf machines. |

”Ih_a PPH database machine, data is transferred, in parallel,
over 1 bit wide data lines from ﬁhe heads to a set of p:oceésors.
Each prbéessor applies the selection criteria to its indoming
data stream and places. selected tuples in its output buffer. in
such an organization an entire cylinder of a mdving ﬁead disk is
examined .in  a single revolution (assuming no output bus conten-
tion). As in PPT organizations additional revolutions may be
" needed to complete execution . of the query if an output buffer
over flows. |
) The DBC project adopted the PPH approach over the PPT
approach because PPT devices-ﬁere»not deemed  to- be cost-effective

for the'storage of large databases (say more than 1010

bytes)
[KANN78] . Another possible reason for taking this route is the
apparent lack of success of head-per-track disks as secondary

storage-devicés. Movingvhead disks with parallel readout, on the
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other hand, seemed an attractive and feasible alternative. The

Technical University of Braunschweig in cooperation with Siemens

has actually has built one for use in the Braunschweig search

machine SURE [LEIL78].

2.4. Processor-per-Disk (PPD) Machines

Unlike the PPT and PPH approaches, the PPD organization
utiliées a standard disk drive. In this organization a processor
(or set of processors [LEIL78]) is placed between the disk and
the memory device to which the selected tuples are to be
trénsfe:red as shown in Figdre' 4. This processor acts as a
filter [BANC80] to the disk by forwaraing to the host only thoég-
tuples thét match the selection criteria. At first glance it
seems as .though this approach is.so iﬁferior to the others that
it does not merit any attention. However, it has the advantage‘
that for a relatively low price one can obtain the same filtering
functionaliéy (but not the éame performance) as the PPT and. PPH

désigns.

2.5. Multi-processor Cache (MPC) Systems

The final class of database machine architectures 'exchange
thebability to process selection operations "on-the-fly" for more
functionality in the pfoceSsing elements. The components of this
organization ‘are. a setnof,small but general purpose pProcessors
and é three-level memory hierarchy. The top level of the memory
hierarchy consists of the internal memories of the processors
which are assumed to be large enough to. hold both a compiled

query and several pages of data. At the bottom level of' the
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memory hierarchy are the mass storage devices used td hold the
relations. in the database. The middle level of the'hiérarchy is
a disk cache which can hold.one_of‘page of data fbr eéch proces-
sor. A page of a relation iS'the ﬁnit of transfer between all
levels~p£ the memory hierarchy.

The bottom two levels of the memorf hieiarchy are connected
together ‘with a bus as shown in Figuré 5. The interconnection
device between the‘ﬁrocessors and the_disk_cache‘has two impor-
tant properties. First it permits each processor tp simultane-
ously :ead/write its block of the cache.';Second it allows all
processors to simultaneously ‘read the same block of the cache
(This property can also be viewed as broadcasting thevpage to all
the processors). | |

There are several active database.machine projects that have
selected this type of .archiﬁécﬁure} DIRECT [DEWI79] which is
presently operétional at Wisconsin, INFOPLEX 'IMADN79}, an MIT
project has a multilevel memory processor hieraréhy,'the RDBM
[HELL81] project at Braunschweig, and the database machine pro-

ject at Texas which utilizes the TRAC [UPCH79] processof.

3. Specifications of the Database Machine Models
In this section-we describe the physical and logical charac-
teristics of the five classes of database machine architectures

that we modeled.
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3.1. Physical Characteristics |

3.1.1. -Mass Storage Device Specifications

) The massbétorage‘device émployed in our CS,‘ PPD, PPH, énd
MPC models 1is- based on the IBM 3330 disk drive [GORSS80] . Thié
device has 404vcylinders with 19 tracks (recording surfaces) per.
cyliﬁder; Each ‘tfack'holds 13,030 bytes. The rotational speea
of this disk drive is onebrevblution every 16.7 ms. The average

access time to. aA random block, T equals 38.6 ms (the time

DAC’
required to seek 202 cylinders and wait 1/2 revolution). The
track—toftrackf-éeek time, TSK is 10.1 ms. Table 3.1 SUmmarizés

these parameters.

v‘Tabie 3.1 Disk paramefers and values

parameter - . description ‘ value
BSIZE block size ' . 13,030 bytes
DCYL '# blocks/cylinder . 19

TIO _ » block read/write time 16.7 ms.
THAC average access time 38.6 ms.

Tgg - track-to-track seek time 10.1 ms.

3.1.2. Conventional and Host System Specifications

The processor for the conventional syStem (and the host pfo-
cessorvfor the back—ehd systems) is~assumed to be a 1 MIP proces-
sor such as a VAX 11/780L As déScribed-in:the Section 2, we have
éssumed that thé CS machine runs a reigtional database management
system which supports compiled queries and sophisﬁicated queryv
optimization ana execﬁtionbtechniques- We have also assumed that

per formance is enhanced through the support of a. database'
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operating system in order to minimize ovorhéad costs. Finally, we
have assumed that a slightly ﬁOdified version of the saﬁe system
is wused as the host processor for all the backendosystems. The
parameters.which characterize the operation of ‘this system are’
presented below in Table 3.2.

The Values preSénted in Table 3.2 represent»a combination of
measurements per formed on INGRES [HAWT79] , System R [CHAM81l], and
‘some "back'of the enveiope"'calculations. TSC represents the time
to perform a simple scan (e.g. a selection operation) on a block
of data. The time required for such an operation is obviously
dependent on such- factors as tuple length and query type (e.g.
whetﬁér the type of thelattributé being compared is av otring or
-integer).'lllf 'thére are 130 tﬁples in each block, then 10
ms/Elock'permits approximately 75 instrﬁctions for processing
each tuplé. The time required to perform a-cohplex operation

such as internally sorting a page or merging two pages in order

Table 3.2 CS parameters and values

H AHd A 13 1

parameter description ' value
sc ' cpu time to scan the tuples: 10.0 ms.
in a block , '
BLK cpu time for a complex 95.0 ms.
operation on a block § ,
010 cpu time to initiate an - ’ 2.0 ms.
I/0 operation
cpu time to compile a query 152.0 ms.
ggggiGEN time required to fetch and 67.0 ms.
' -examine an index page
MSG , cpu time to send/receive a 2.0 ms.

message from the back-end
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to perform a merge sort is represented by T [RNUTH75] shows

BLK®

that for a page containing k tuplés at most 2k tuple comparisons
and moves are required to merge two sorted pages. Thﬁs, for 130
tuples/block, 95 ms. appears to be a realistic estimate for TBLK‘

Even though we have assumed that a database operating system .
will minimize system overhead, some time must be associated with"
- processing an i/o request or sending a message to the database
machine. The . overhead associated with these two operations is
_rgpresented by TOIO and TMSG respectively.

Finally, a time must be associated with compiling. a quéry,

and processing an index We have assumed that

TcopE GEn’ TrnDEX"
~compiling a query requires at least one I/O operation (with its

assoc iated overhead) and an amount of cpu time equivalent to

TBLK’ Examining an index is assumed to»require one3 I/0 opera-

”tiOn to fetch the appropriate block of the index from disk ‘plus

an amount of cpu time equivalent to Toce

3.1.3. PPD, PPH, and PPT Specifications

| For the PPD, PPH; and PPT database.machiﬁe desighs we have
assumed that - the processors compare a data stream from the disk
with another data stream that contains the query which has been
vcbmpiled into a . format compatibie with that of the disk data
stream. Seleéted tuples are saved in a small output buffer for
transmission over a common bus to either a host or controlling
processor. We have assumed that a processor is fast enough to

process the selection operation at the speed of the incoming data

3_A figure of 2 or 3 is probably somewhat more accurate
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- stream. Thus, the time for a PPT, PPH, or PPD processor to pro-

cess a block is T For most conventional disks a processor has

I0°
approximately 1.25 microseconds to process ‘each incoming byte.
Assuming that - it takes 3 instructions to examine a byté (1
instruction for byte comparison with auto-increment, 1 to test
for. 1oop termination, and l for the branch instruction) and that
évery by te must'be‘examinéd, then each processor ‘fof the PPT,
PPH, and PPD designs musthbe approximate1y a 2.4 MIP processor.
The PPD'database machine design was moéeled as one IBM 3330

disk drive and one processor. This design réquires T to

| 10 WS-
process each track (block) occupied by the relation being
searched.

The PPH database machine was modeled as a modified IBM 3330

disk drive with 19 processors (one pef head) and two output

buffers per head. Each output buffer is capable of holding one

tuple.4 Since this design has a processor"associafed with each
_ head; it gan process an entire cylinder (19 blocks) in TIO'ms.

In order for the PPT design to have simiiar'storage capacity
and performance characteristiés as the fPH_and ?PD designs, we
modeled it as a 3330 disk drive with one processor for each of
the 7676 tracks (404 cylinders *‘19 tracks/cy1inder) and two out-
put buffers per=héad. While:constructing such a device is prob-
ably out of the question, modeling' the PPT désibn this way
enables us to establish a performance baseline by which the per-

formance of the other database machines can bé;gauged..'Since

4 [BORA81] has shown that the size of the'bufférS'hasi minimal -
impact on performance. S '
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there is one processor per. track, the entire disk can be searched

IO
access to the output channel.

in T ms. if there is no contention among the processors for

3.1.4. MPC_§Eecifications

The MPC database machine was modeled as nineteen® 1 MIP pro-
cessors, a cache consisting of nineteen blocks of RAM,_and one
standard IBM 3330 disk. Since the processors have the same per-

c and

TBLK remain the same. However, before the processors can examine.

the contents of a cylinderuof’the disk, one block must be moved

formance as the processor used in the CS, the values for Tg

to'the local memory of each processor. This operation requires
three steps. First the heads must be positioned to the proper
cylinder. This step requires either TDAC'or Tgg WS depending on
the previous position of the heads. Seccnd,,the contents of the
cylinder must be transferred to the_disk cache. This requires
19*TIO 'msf _Finally( a parallei readvis performed by the proces-

sors requiring an additional T ms. Selected tuples are placed

IO
on the bus connecting the processors to the host processor.

3.1.5. Output Channel Specifications

As discussed in Section 2, all processors for thevPPT; PPH,
PPD, MPC were assumed to be connected to a single-odtput channel
for the transfer of results to the'controilihg or host processor.
We assumed that this output channel operated independently and

asynchrohbuSly from the cell processors. The bandwidth of this

> We selected 19 processors: simply- because that is  how mahy:
processors the PPH design has. ’
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éhannel was assumed to be 2.0 Mbytes/second based on the maximum
bandwidth of the VAX 11/780"s Mass Bus Adapter. Thus, the

transfer time for one block, T is 6.5 ms. It should be noted

BT’
tﬁat'the.outputrchénnel must'be as fast as.the disk data transfer
rate, although it can be faster. The disk transfér rate deter-
mines the processor speed for the processors»émployed.in the PPT,
PPH, and PPD designs, while_thé output channel bandwidth affects
the rate at which output buffefé in the»processoré will be emp-

tied (recall that loading and unloading of the buffers are asyn-

chronous operations).

3.2. Operational Charactefistics
For the PPD, PPH, and MPC database machine deéigns relationg

are stored in such a manner as to occupy the minimum number of
cylinders poSsible. That is, tuples from a ;elation must first-
£i11 an entire track before a second. track is used, then an’
entire cyiinder, etc. In this way, the number of cylinde:s which

must be searched to execute a selection operation on a relation

is minimized and non—éssential seek operations are eliminated.

As first suggested by Sadowski and Schuster [SADO?Q], concurrency

can be maximized in the processing of a selection operatioh in a

PPT database machine if tuples from a relation are uniformly dis-

tributed across all tracks.

4. Performance Comparisons

In this section we benchmark the five database machine
designs on selection, join, and aggregate function-operations.

These operations were chosen as each is representative of a class



16

of query types.  Selection queries are representative of thoée
types of queries which can be performed'in O(n) time for n tuples
on a single processor. Deletion, which can be yiewed as'a negated
selection, cah also be performed in one pass through> the .relé—
tion. The performance of the machines eXeeuting join queries is
repfesentative of those operations (e.g. divieion) involving two
relations and requiring either O(nlogn) or O(nz) time on a single
processor. . Finally, aggregate functionIQUeries serve as a bench-
mark for complex operations which reference a single‘relation yet
require O(nlogn) time on a single processor (e.g..projection with
duplicate elimination). |

The performance evaluations which are presented below meas--
ure the total system work necessary to process a query not the
response time of the database machine to the query. It is cer-
. tainly the case thaf certain opefations can be overlapped. How-
ever, determining (and'expiaining) exactly which processing steps
ean' be overlapped significantly complicates the descriptions
below. Eurthermore, total system>work_is probably a more accﬂ-
rate measure of the resources consumed by a query than response.
time. |

In this section the number of disk blocks occupied by a

relation R will be denoted |R|. The selectivity factor of selec-

tion operations is denoted by f£f.

4.1. Selection Queries

The processing of a selection operation can be divided into

two cases depending on whether a secondaryvindex exists -on the
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attribute being qualified. We have assumed that the existence of

an index on the attribute being qualified reduces both the number

of cylinders that must be searched (from |R|/19 to |R|*f/l96) and

the number of blocks that must be processed (from |R| to |R|*f).

‘Since the performance characterization of each system in the

presence ofeindexihg is-'a~ straightforward modification of the

non-index case, they have not been included.

ﬁ.;.;.' Cs
| Processing a selection operation on ~a conventional system
invoives three main components: gquery compilation, pqsitioning'
the heads to the p:operecylinder, end processing each block oceu-
pied by the relation. Query compilation requires TCODE GEN DTS-
Head movement requifes TDAC for the initial headvmovement_and one
tracketo—track seek (Tgp) for each additional cylinder. The time
to proeess each block occepied by R consists of the I/O time to
read the block, TIO,‘the cpu time required by the operating sy s~
tem to handle the I/O operation, TOIO’ and the cpu time Vrequired
to apply the selection operation to the bleck,'TSC. We have
ignored the time to display‘the results of the.query as this will

be very device dependent.

TseL_cs = Tcope een * Tpac

+ ([|R|/19]-1)*TSK'+ IRI* (P10 To10* Tse)

6 Recall that there are 19 blocks/cylinder.
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4.1.2. PPT

Execution of this query on the PPT machine will begin with
the host _c6mpiling' the query, TCODE_GEN"and then sending the
compiled query to the database machine for execution. Sending the
query is assumed to take TMSG ms.’of host time in the form of
operating system overhead. Since the PPT machine can examine
every  block inrone revolution of the disk, the qualifying tuples
will be located in one revolution. However, the ekecutidn ‘time
will be the maximum of the time for one disk revolution and the
time to return all but the last block of selected tuples to the
host. The time to return each block of selected tuples consists

of two components: the time, T to,sénd each block to the host

BT’
as determined by the transfer rate of the bus and the cpu time
consumed by the operating system to process each block returned,

TMSG' The time to process the query is thus::

+ T

TseL_ppT = Tcope gen * Tuse

+ MAX {T ([IR[*£1-1) * (Tygo+Tpp) } + (TygotTay)

107
Since the whole database can be searched in one revolution, an

index will not reduce the execution time of the query.

4.1.3. PPH

Processing this query is similar to the PPT‘ desigﬁ.vexceét
that processing each cylinder occupied by the relation requires
TIO ms. In addition, the time to seek to the first cylinder

occupied by the relation and the track-to-track seek times must

be incorporated. The execution time is thus:

iy
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T + T, + T

ser, ppH - TcopE GeN t Tmse * Tpac
+'MAX{([|R|/19]—1)*TSK + [IR]/191*T 5, ([|R[*E]=1)* (T g +Tpm) |
* (Tysg*Tar)

4.1.4. PPD

Execution on PPD machines will be similar to the PPT and PPH
designs except that now one revolution will be réquired for each
block (track) occupied by the relation referenced. Therefore,

the execution time for the PPD design will be:

Tser, pep = Tcope een * Tmse * Tpac

+ MAX{([|R|/19]1-2)*Tg, + |R[*T1y, [|R[*£1-1)* (Tygo+Tpn) }
* (Tygg * Ty |
4.1.5. MEC

Althbugh the MPC desigq has 19 processors'which cah be used
to process seléqtion quéries, in order for the blocks of R to be
proéessed they must first be moved into the"disk Cache. Once
there, processing the blocks from the cylinder takes twé steps;
First the processors each read (iﬁ parallel) - a block from the

cache. This .step- will require T ms. The second step is for

I0
each processor to apply the selection condition of the query . Eo
extract the qualified tuples. This step will ;equire TSC ms.
Since processing one cylinder can be overlapped with loading the
contents of the next cylinder into the cache, the processing time
of the query cannbe modeled as the time required to move all

cylinders containing a block of R into the cache plus the pro-

cessing time of the last cylinder. As with the othér'designs,-we
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have assumed that processing can be overlapped with transmission

- of the selected tuples to the host. Therefore, the execution

time for the MPC design is:

TseL_ mpc = Tcope gen * Tmsc * Tpac

+ MAX{ ([[R[/19]-1)*T g+ |R|*T  +T

10 710 Tsc

(LIR|*£1-1) * (Tyge+Tpn) )

+ + T

(Tysg BT)

4.1.6. Evaluation

_Uéing these formulaé we evaluated the performance of each. of
the database machine designs for a number of different relation
sizes over»a-raﬁge of selectivity factors. The results_from one
experiment for a.relation consisting of 50,000 one-hundred byte .
tuples are presented in Tables 1 and 2 below. Table 1 contains
the per formance .of each machine for four different selectivity
factors when no index exists en the .attribute being .qualified.'
Table 2 presents their performahce when an index dqes-exist. |

These tests indicate some interesﬁing 'results. | First, we

Table 1

50,000 Tuples of Size 100 bytes
No Index Case

Selectivity Factor Execution Time in Seconds

of Query CS PPT PPH PPD MPC
.0001 - 11.398 179 .751  6.801  6.818
.001 11.398  .179  .751  6.801  6.818
.01 11.398 188 .751  6.801  6.818

.1 ©11.398 - .486  .751 6.801 6.818
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- Table 2
: 50 000 Tuples of Size 100 bytes
Index Case

Selectivity Factor . _ﬁxecution'Time,in»Secondsa
of Query _ cs PPT  PPH _ PPD - MPC
.0001 287 .179 .285 .285 .312
.001 .287 .179 .285 .285  .312
o1 373 188 .204  .335  .362
1 1.396 .486  .592 939 .965

feel that if the complexity'of the PPT.design is considered, it

'is " not a cost-effective design even when evaluated on the opera-

tion for which it was spec1f1cally de31gned Its performance is

superlor (a factor of 5) to the PPH de51gn for the case of a low

' selectivity factor and no appropriate index. In the remaining

cases the PPH'design is almost as fast." It is especiallyfimpor-
tant to notice how the‘performence of ‘the  PPT design degrades

with higher Selectivity factors (.01 to .1) due to contention for
the channel‘to the hosti- Another interesting'observation is the
very- good performance .of the CS and PPD designs when an ‘index
exists on the_attribute being qualified. If access to a rela-
tional database. is such that. the appropriate indices can always
be maintained'the CS and PPD designs are undoubtably the most
cost-effective for processing selection queries. If the
appropriate indices cannot always be maintained than' the .overall
performance of the PPH design 'makes it the most reasonable

choice.
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4.2. Join Queries

Whiie each of the database machines processed selection
queries 1in a basically the same manner; the algorithms.used for
processing join queries are very different. Let R and S be the
two relations to be joined. |R| and |S| will denote the number
of disk blocks‘occupied by both relations. The 1length of the

tuples in S is represented by S_len.

4.2.1. ¢cs

The join algorithm used by the CS design is a sort-merge
algorithm that was shown‘to be one of the béSt join algorithms
for a siﬁgle processor systém in [BLAS??i. The firstv step of

this algorithm is to sort both relations on the joining attribute

(assuming neither is already sorted on ' the appropfiate attri-

bute). We have'assumed that the two relations are sérted using a

4 way external_merée sort algorithm. Execution 6f the‘.algorithm
requires log4(X) phaées. ' During.each phase all‘pages are read
and written (hénce the factor of 2) and approximately X/2  two-
pégé merge operations are performed. The time. to sdrt a relation

with comprised of X pages is

+X* (T

Log, (X) *2* { (Tpac+ ([X/19]-1) *Tgy 10 To10) |

DAC
+ 1log, (X) * (X/2)*Tg .
The second phase of the sortémerge join algorithm is to

merge the. two sorted relations emitting tuples that satisfy’the

join condition. We have also assumed that the merge step of . the

.algorithm can 'be performed by readingjeach%block-of both sorted.

relations exactly once. - While this assumption is ‘generally

ty
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-valid, there'ére‘exﬁieme cases kie. all tﬁples in both relations
have the same join attributé value) when one of the sorted rela-
tions must be repeatedly read. Finally note we have assumed that
the sortéd relations reside on different cylinders of the disk so
that each time a block of one of the_relations;is.reéd, the time

for an "average" disk access, is accrued.

Tpac
The time to execute this algorithm is:

T301n_cs = Tcope gen * Tsorr R * Tsorr s * TmErcE
where o
. = *
Tuerge = (IRI+ISD*(Tppe + Ty + Topo)
+ (|R1+[s]) Tori/ 2

4.2.2. PPT, PPH, and PPD

Since the'énly functidﬁality provided by the PPT, PPH, _aﬁd
PPD designs is to procéss_ selection queries, ea¢h‘of these
designSvproceSS'qﬁeries By decomposing the query using an algd—
rithm based on Woné‘s tWONG?G] tuple substitution algorithm.
Assﬁme that the join ope;ation as specified by the user has the
form R.é = S.b and that S contains féwer tuples than R. These
database machine'designé will pfocess the query by issuing one
selection squuery for each tuple in S. The form of this
subquery will be  R.a #.x where x is the join -attribute value
from the current tuple in S. The result relation is produced by 
"joining" each tuple in S with all the tuples from R returhed by
the execution of_ité subquery. |
| .The following fbrmulas express the join execution time = for

the  PPT, PPH, and PPD designs assuming that relation S contains
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fewer tuples than R. The first step is for the host to compile
the query. Next, . for each block in S,'the host will read the

block (T + TOIO + TIO) and then use the database machine to

DAC
- execute a subquery for each tuple in the block. We have included

a factor of TBLK

reflect the cost of processing each subqhery (finding the next

in the cost of processing eachv block of S to

tuple in S and forming the result relation). Although we have

used the notation TSEL_PP

performing'eadh subquery, for the results presented in Tables 3

D (for example) to express the cost of

and -4 the cost of code generation was not included in the cost of

executing each subquery.

Tsomn_ppr = Tcope aEn

+ (BSIZE/S_LEN) *T

+ |81 {Tyo+ o104 Thrk
" sgr_ppr (R} -
Tsorn_pea = Tcope cen * 181" 1Tpac * Tro * Toro * Thrx

- . | |
+ (BSIZE/S_LEN) ,iSEL_PPH(R)}

+ |s|*{T + T+ T+ T

Tsorn_ppp = Tcope GEn 10 * Toro

+ (BSIZE/S_LEN)

DAC BLK

* .
Tser_pep (R

If the qﬁery issued by the usef contains a selection on R and S
followed by a Jjoin of the restricted relations, then the query
can be -executed in two steps._ First one of the selections is
"executed (the - host should choose the one which will produce the
smaller result relation). For each tuple in the  resulting rela-
_tion a complex .selection subqﬁery combining the join condition
with the Selection condition of the second relation will be exe-

cuted.
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4.2.3. MEC

The join algorithm‘used by the MPC design is a block paral-
lel version of the nested-loops algorithm. Ekecution of this
algorithm begins by having each processor read a different page
of R. Next all pages of S are sequentially broadcast to the pro-
cessors. As each page of S is received by a processor it  joins -
the page with.its~page’fromsRvusing'a 2 way "merge".7_ Since the
'number of processors ‘available (19 for MPC) is generally iess

than |R|, this process is repeated [|R|/19] times. Thus,

Tsorn mpc = Tcope een * Tmsg * MAX(Tgxpcure gorn’TsEnp rEsuLTs’
* (Tysg * Tpr)
where:
- .
Tpxecute_gorn = LIRIZ19MTpac + 19%T 1 + Ty + Tppe

+ ([]S|/19]1=1)*Tg, + 2*Tr o + [S[*Tp .}

= ([|R|*|s|*jsfl~-1) * (T

Tsenp_RESULTS msctTpr)

In the formula for T there are [|R|/19] phases.

EXECUTE_JOIN’
Each phase begins by having the processors read the next 19 pages

of R. This requires T + 19*TI + T ms (the final T is for

DAC 0 10 10

the parallei read). Next all of S must be joined with the
current 19 pages of R. Since TBLK > T1o7 reading pages off S can
be overlapped with their processing except for an initial 2TIO
ms. period. in which the first pagé of S is transferred first to
the cache andvthen broadcast tovthe processors. . In the formula

for T jsf represents the join selectivity factor and

SEND_RESULTS’

7 We have assumed that the blocks of R and. S are internally
sorted on the join attribute. See [BORA80] for a description of:
parallel update algorithms that always leave blocks sorted.
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thus |R|*|S|*jsf is the number of pages in the result relation.

4.2.4. Evaluation

We quantified the j;in algorithm performance of the five
machines through a number of_different tests. Ih Tables 3 and 4
below, the result of one of those tests are presented. Table 3
présents the perfbrmance of each system when an index on the join
attribute for R doés not exisf; The per formance of -the PPH and
PPD desighs when an appropriate index exists is illustrated in
Table 4. For the results presented in Table 4, we ,aséumed that
only 1 outAof every 10 subqueries incurred the cost of p;oceséing

an.lpdex request (Tindex

We found.these results very interesting for several reasoné.
Fifst" is the tefrible per formance of the PPT, PPH, and PPD
designs. These results make it clear that, even if the appropri—'
ate index 'ekists,_that "tuple,substitution“*is not a reasonable

: Table 3 : S
Relation R: 10,000 Tuples of Size 100 bytes

Relation S: 3,000 Tuples of Size 75 bytes.
: No Index Case

Sélectivity Factor “Execution Time in Seconds
of Query . - CS ‘ PPT PPH PPD MPC
.0001 ‘ 34.4 o ‘83.7 520.2 4120 7.7
.001 34.4 - 83.7 520.2 4120 7.7
.01 | 34.4  83.7  520.2 4120 7.7

.05 34.4 83.7 520.2 4120 7.7
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Table 4
Relation R: 10,000 Tuples of Slze 100 bytes
Relation S: 3,000 Tuples of Size 75 bytes
Index Case

'Selectivity Factor Execution Time in Seconds

of Query ' PPH PPD
0001 ©220.5  220.5
.001 - 220.5 220.5
.01 - 220.5  220.5
.05 247.2 370.5

- way of processing'joins;~ The consequenée‘is that if the ability
to _pefform selections rapidly is fhe ohly funqtioﬁality prd&ided
by a database machine,_then it is better to ignore the database
machiﬁe and do a sort-merge join on the_hosﬁ.

Because we were puzzled about the very poor performance of
the PPT, PPH, and PPD éésigns (and.expedt that the reader is
also), we have brdken apart the ptdcéssing costs in Table 5 for a
._join selecti&ity facfor of .0001. The existehce'of'the appropri-
ate 1ndex has been assumed for the PPH and PPD de51gns. For all
three designs, the pgoces51ng time is dominated by the time to
progesé the subqueries. The time in the PPH and PPD d¢51gns
»which is dévoted'to ptocessing éubquerieé (75% of thé total), is
composéd of 70% seek time and 30% prodessing time.  While this
70% figure éeems high and vconsequently might be an area.for
optimization, one only need to lookvat the performance of PPT
'design' (which obVibusly hés no seek time) tb see that Such
efforts would be fruitless. | |

Whlle the performance of the MPC design clearly indicateS"
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Table 5

Selectivity Factor = .0001

Activity - 'Percentage of Effort
. . _PPT PPH PPD
Query Compilation - .18% .07% - .07%
Reading Relation S . 3.3% 1.2% N 1.2%
Processing R Index S - " 9.2% 9.2%
Sending Subquery Messages 7.2% 2.7% 2.7%
Processing Subqueries - 59.7% 75.2% 75.2%_
Handling Subquery Result -  30.4%  11.6%  11.6%
Messages : _ ‘ - '

the.need for geﬁeral purpose processors in the back-end‘ database
machine, the results are disappointiﬁg. Notiée that although the
~MPC had 19 times as many processors as ihe Cs, the speed-up fac~
torv was only 4. Other experiments indicated, however, that the
speed-factor achieVed by the MPC design ranges depending .on ‘the
operand sizes from 1 to 4 with the average‘being approximately 2.'
In fact, a speed factor of 4 is only achieved when one of the
relations- has 19 or fewer pages |

We initially speculated tha£ the relatively poor pe;formancé
of the MPC design was due to a mismatch in processbr performance
and I/0 bandwidth. To test this hypothesis, we modified the MPC
equation. to utilize a disk drive with parallei readout. The
results were very surpfisiqg aé the performance of the_MPC design
improved by only 3.5%. .Further analySis of the join execution

time for the MPC design revealed that the  execution time - of the
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algorithm is dominated by reading, broadcasting,vana processing
pages of the inﬁer felation.' The performance'of this,-sequeﬁtial
operation cannot be impro&ed by the addition of parallel I/0
hardwareQ in fact the only step of the parallel néétedv loops
algorithm in which parallei I/0 can be exploited is reading thé

pages of the outer relation.

4.3. Aggregate Function Queries

| There aré two basic types of aggregate queries supported' by
relational' database systems such as INGRES: '"3calar“'aggregates
and aggregate "functions". Scalar aggregates. are aggregations
(average, max, etc.) over an entire relation. Aggregaﬁe fungj
tions firs£ divide a relation into’ non-intersecting partitions
(based on some attribute value, e.g. sex) and then compﬁte scalar

aggregates on the individual partitions. Thus, given a source

_relation, scalar aggregates compute a single result while-aggre—

gate functions produce a set of results (i.e. a result relation).
In this section we examine the per formance of .each machine on

aggregate function queries.

4.3.1. ¢cs

The algorithm used by the CS désign for executing aggregate
function queries is to first sort‘the relation on the partition-
ing attribute(s) in order to bring all tuples in the same parti—
tion together. Next a scan is made of the entire relation_and the

value for each partition is computed. Two easy optimizations are

possible. Assume that a 4 way external mérge sort is used to sort

- R. Then, the last phase of the merge sort will be begin with 4
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runs of length |R|/4. Instead of finishing the sort during this
last phase, the value for each partition can instead be computed.
The secqnd optimization is that_thé.result of the final’step of
the sort can be’th;dwn'away instead of writing it to  disk. The

cost of this algorithm is:

+ +

Tage cs =

where:

Tcope ey * TsortT R * TrorM_RESULT

+([R/19]-1)*T IR] * ¢

sk) *

TsorT R To10*T10 }

+ log, |R|* (|R]/2)*Tq; ¢

= |R|*Tg

TFORM_RESULT LK

- _4_.-202. PPT ’ PPH r and PPD

These three database machines execute aggregate functions in

two steps. First the host projects the source relation on the -

partitioning attribute(s) to form a list of partition identifiers’
using an externalvmerge sort on the partitioning'attribute.8 This
step causes. the. source relation to be reduced in size from |R|
blocks to |N| blocks. If the siie of the projected tuples is
PT_LEN, then: the number of partitions, P, is |N|*BSIZE/PT LEN.
Next for each tuple in the projectednrelaﬁion a subquery is sent
to the databése‘ machine. As thévselected tuples afe returned
from each subquery the scalar aggtegate operation is applied to
compute the Value fdr thé.partitioh. Since each tuplé in R will

be seledted by one and only _oné subquery, the c¢pu time for

8 See Appendix A for a. derivation of Torogecp:  FOr  the
evaluation presented below we have assumed a fourvway merge sort.

&®

A

™
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computing the aggregate partition values can be estimated to be

| R| *T Thus the execution time for this query is:

BLK"

g . *
Tcope_cen * Terogect * Tsumqueris * IRI*T

where:
TproJgeCT
i + 2% ([ |R]|/19]-1)*T }’
SK

BLK

= 1og4|N|*{2*T +2*|R|*(T ) +|R|*T

10t Tor10 BLK)

+ log, (|R|/|N[)*2*T,

+ {URI=[N]) /31 {* (T #T 1o+ Ty p#T gy /19) + (T 16 Tor0* SK/19)}

. = *
For the PPT design, TSUBQUERIES P TSEL PPT(R)
. = *
~For the PPH de;lgn, T SUBQUERIES | P * Topr PPH(R)
. ' = *
For the PPD design, Tgypoyprres = F * Tser_ppp ()

©4.3.3. MEC

"In the first stage of the MPC algorithm, each processor
reads a set of source felation blocks and accumulates one aggre-
'gate value for each partition it sees (at most P). This results
in' a number of blocks containing partial results which must be
combined. The second stage is a parallel "merge" of the blocks
produéed in the first stage to produce the final result. The coét

of this algorithm may be computed as:

=T o+ T + T + T

Tace_mpc = Tcope een * Tmse * Texecure * TrRETURN_RESULTS
where:
Texecute =  TrorM_parTIAL RESULTS * TPARALLEL MERGE

The time to form the partial result blocks consists of a
component to process R, TPROCESS R’ and a component to write the
partial result bloéks to mass storage, TPR I0° Processing R

begins by having each processor read a separate block of R. Each
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tuple in the block must be placed in the correct partition and

the aggregate value for that partition must be updated. If the

‘partitions are kept in sorted order based on the partitioning
attribute(s), then a binary search can be used to locate the
correct parrition. However, when a new partition is seen it must

be placed in its proper place. T seems to be a reasonable

BLK WS- »
estimate of the cost of processing the tuples in a block (includ-

ing keeping the partitions in sorted order). Since |R| is gen- "~

erally greater than 19 (the number of processors), this step will

be repeated [|R|/19] times. Thus,

= *
TprocESS_R = Tpac*[IRI/191*{Tge+19* TIO+TIO+TBLK}

If we assume that each processor sees every partition, then
the first step of the first phase will produce 19*|N| blocks.
The cost of writing these blocks to mass storage before the

parsllel merge begins is:

Tn = T

PR_IO + (|N[-1)*Tge + [N|*19*T

DAC
The parallel “mergs" we use in the second stage is not a true
merge ‘since two partial result blocks are combined to form a sin-
gle résult.block. The parallel merge occurs in two steps. Firsr,
each processor using a 2-way merge sort must form a sorted run of
the |N| blocks it has produced. The time required for this step

iss

2*log, |N|*{T + (IN]-L)*Tg + |N|*(19*T o + T )}

DAC

+ loglel*lNl*TBLK

Next a pipelined-parallel binary merge (see [BORAB80]) is
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used to combine the 19 runs of |N| blocks into one run of |N|
blocks. The number of stages used is 1092(19). Each processor
will read two runs of |N| pages, merge them, and write a run of

length |N

. The cost of the parallel "merge" is:

107 Bk T10)

TDAC+(|N|-1)*TSK+|N|*19*TIO+([N|+109219)*(2*T

Finally, the cost of returning the results to the host is:

| N[* ¢ + T

TRETURN RESULTS = (Tusg * Tpr)

4.3.4. Evaluation

The results from evaluating the five designs for a variety
of different partition sizes on a relation with 50,000 tuples is

shown in Table 6 bélow.‘ As indicated by.these results, for up to

'50 partitions the subquery approach appears viable for the PPT

and PPH designs. It is also interesting to note that the MPC

‘design achieves a speed-up factor of 17:1 over the conventional

system up to 250 partitions.' This seems to‘indicate that as the

_operation to be performed becomes more complex, the impact of

serial I/O from the disk is decreased. The performance of the
MPC 'algdrithm degrades for a large number of partitions because
wé'assumed that each processorvwould see a tuble from every par-
‘tition, Thus, for 5,000 partitibns, tﬁe'result of the firsf
phaée of the algorithm are 19 partialvrésult relations with 39
blocks .each.  This relation is twice the size of the original

relation.



34

Table 6
50,000 Tuples of Size 100 bytes

Number of Partitions Execution Time in Secbnds

. CS PPT PPH PPD MPC

5 171.1 101.0 101.2 131.0 10.2

50 . 171.1 101.2 127.7 430.1 10.2
250 o 171.1 1 130.0 273.0 1785, 10.3
500 o 171.1 162.1 448.0 3473. - 19.3
2500 - 171.1  273.3 1703. 16828 89.9

5000 171.1  363.0  3223. 33471  193.2

5. Conclusions

From these experiments we are able to draw_a humber of con-
clusions about these five database machine designs. First, for
processing selection. operations the PéH design is probabiy the
most cost effective. While the CS, PPD, PPH, and.MPC designs all
process selection queries very efficiently when an index “exists
on thé selected attribute, only the PPH design can prbvide a rea-
sonable.level of performance wheh an index does not exist. If

the intended application of the database machine is such that an

appropriate index can. always be maintained then the PPD designvis_

clearly the winner.
For complex queries, the MPC design with its general purpose
processors was demonstrated to be the fastest design. However,

the design we presented clearly has a number of drawbacks.

First, as indicated by the rather pobr speed=up achieved for
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executing some operations, the‘effective-processor‘utilization is
very low. As indicated_previouslylthe problem seems to stem at
ieast partially-from a mismatch between processor performance and
I/0 bandwidth. .This«lack of sdfficient I/0 bandwidth also mani-
fests itself in the per formance of the MPC when processing selec-
tion queries without the appropriate index. V
- These results seem to indicate several avenues of future
research. One obvious area that might be worthwhile to investi-
gate is to design a machine which combines the ability of the PPH
design to process selection queries "on the fly" with the‘ability
of the MPC design to process complex queries. Shch anr approach
may or may not be the solution we are.ali seeking. For example,
maybe the solution instead is to simply use a'parallel ‘read out
disk as the mass storage device for the MPC desigh. Another,
possibly fruitful, approach is to 1look at a database ‘machine
design in which each active query is run on a separate processor
using the same algorithms presented for the CS. This is the
approach taken by the MUFFIN project [STON79]. While' this
approach looks appealing, it may result in problems with data
placehent_and poor processor utilization.
Rather than advocate either approach, we suggest a third
approach. This begins with a careful examination and analysis of

the algorithms which the architect intends for his database

machine to exectlte.9 We feel that in order to develop a truly

efficient. and cost effective machine;one must first develop the

9‘See [BORASO] for one sdchvattempt
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algorithms and then extract the primitive operations which are

necessary for an efficient implementation' of the algorithms.

Only after these primitives are known and understood"should one
'attempt to design a maéhine;

‘Finally, we would like'encourage ?eople to use our analyti-
cal approach to benchmark their favorite database machine.
Whilé this approéch may not be perfect, we hope that this paper

has demonstrated that it can produce useful results.
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8. Aggendix ;j— Execution time for Projection Operation
Assumptions: | |

Relation starts with R blocks _

Projected relation contains N blocks where N<R

The merge factor utilized is 2
The algorithm is broken_into_two.phases; Phase 1 starts with R
runs of length 1 ahd prodbces R/N runs of length N.Y‘Since we are
developing an upper bound on the execution time of the operation,
we. assume that in forhing the R/N runs of length Nvgg duplicates
are found. The first phase has.logz(N) stages with - run lengths
of 1, 2, Zz, eee 5 N blocks respectively. Since no dupllcates are
found (or eliminated) during this phase, all R pages are read and
written during each stage. Thus, each of the logZ(N).stages
brequires:
ms.

2*T + 2*([R/19]—l)*TS' + 2*R* (T o) + R*T

DAC IO OI BLK
The second phase starts with R/N runs of length N and ter-
minates with = one run of length N using a Z way merge. Assuming

that duplicates are uniformly distributed and that the number of

" blocks is reduced by a factor of Z at each stage, then this phase

has k=logZ(R/N) stages. Thus, Zk = R/N. During the first stage

Zk*N pages are read and processed and Zk_l*N pages are written.
In the second stage Zk l*n pages are read and processed and Zk_

2*N pages are. written. The k th. stage begins by readlng and

processing Zl*N pages and ends by writing ZO*N pages. Summing -

the operations performed during the k stages yields:

(RoN) /(2=1) *{2* (Ty 4T o1+ Tpp e+ T/ 19) + (T1o+Toro*Teg/19) )

DAC
We:have assumed that one of every 19 pages read or written

Bis

.
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requires a track-to-track seek and that every stage requires one
random disk access to begin reading blocks and one to begin writ-

ing blocks.
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