
LBL-12918

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics, Computer Science &
Mathematics Division

Presented at the 7th Conference on Very Large
Databases, Cannes, France, September 9-11, 1~£ c £1 v £ 0

LAWRENCE

A PERFORMANCE EVALUATION OF DATABASE
MACHINE ARCHITECTURES

BERKELEY LABORATORY

NOV 1 8 1981

David J. DeWitt and Paula B. Hawthorn
LIBRARY AND

DOCUMENTS SECTION

June 1981 TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Diu is ion, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The.views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. ·

A Performance Evaluation

of

Database Machine Architectures

David J. DeWitt+*
Paula B. Hawthorn

June 1981

LBL-12918

+Computer Science Department, University of Wisconsin, Madison,WI.
*Computer Science and Mathematics Department, Lawrence Berkeley
Laboratory, University of California, Berkeley, CA 94720

This work was supported by the Applied Mathematical Sciences
Research Program of the Office of Energy Research of .the U.S.
Department of Energy unqer Contract W-7405-ENG-48, and by the
National Science Foundation under grant MCS78-01721, and the
United States Army under contracts #DAAG29-79-C-0165 and
#DAAG29-80-C-0041.

ABSTRACT

The rapid advances in the development of low-cost computer
hardware have led to many proposals for the use of this hardware
to improve the performance of database management systems. Usu­
ally the design proposals are quite vague about the performance
of the system with respect to a given data management applica­
tion. In this paper we develop an analytical model of the per­
formance of a conventional database management system and four
generic database machine architectures. This model is then used
t6 compare the performance of each type of machine with a conven­
tional DBMS. We demonstrate that no one type of database machine
is best for -executing all types of queries. We also show that
for several classes of queries certain database machine designs
which have been proposed are actually slower than a DBMS on a
conventional processor.

iii

.....

1

1. Introduction

The rapid advances in the development of low-cost computer

hardware have led to many proposals for the use of this hardware

to improve the performance of database management systems. In

general, each1 of the proposals has been quite vague about the

performance of the proposed design with respect to other database

machine architectures and database management systems on conven-

tional processors. There are only two exceptions. In [OZKA 77]

the performance of RAP [OZKA75] is compared with that of a con­

ventional system and in [BANJ78] the performance of the DBC

[BANE78] and System R [ASTR76] are compared for selection opera-

tions. We feel that most existing database machine desi9ns are

examples of what we term "architecture directed" research. That

is, database machine designers usually begin by designing what

they consider to be a good architecture ·which they feel will

efficiently execute one or two database operations. Afterwards

they develop the· algorithms to support all the required database

operations using the basic primitives of their architecture. As

an example consider associative disks (or logic-per-track dev-

ices) [SLOT70] from which RAP, RARES [LIN76], CASSM [SU75], and

to some extent, DBC are derived. The basic design goal of the

associative disk design was the efficient execution of the opera-

tion to select records that satisfy a certain criterion. Given

this building block, other relational database operators such as

join, project, and aggregate functions can be implemented with

l Including DIRECT [DEWI79].

2

varying degrees of success by combining the processing capabili­

ties of the host with those of the back-end database machine.

In an earlier paper [HAWT80], we examined the performance of

several of the proposed database management machines (associative

disks, RAP, CASSM, DBC, DIRECT, and CAFS [BABB79]) with respect

to several INGRES [STON76] queries. We demonstrate that no one

database machine is best for executing all types of queries. For

one class of queries we show that the level of performance

improvement achieved does not warrant use of a database machine.

While we feel that [HAWT80] represents a important first step in

database machine performance comparison, it has several deficien­

cies that we intend to correct in this paper.

The main problem with [HAWT80] is that specific machine

designs were evaluated rather then machine types. This is diffi­

cult for several reasons. First the architects of the machines

always claim "foul" as they feel that the way we interpreted that

their machine would process a complex query (e.g. aggregate func­

tions) was not what they had in mind (though generally they never

specified how to process such queries) • A second problem with

using specific machines is that many of the machines we tried to

evaluate are "moving targets". Generally, database machine

designers, in evaluating their architecture, find that it does

not do well on a particular operation and consequently add a new

wart to fix each bottleneck discovered. A third problem with

comparing specific machines is that ·many of the proposed designs

are rooted in specific, and frequently different, technologies.

In attempting to compare these designs we often found ourselves

\'j

'o

3

comparing "apples and oranges"

Another problem with [HATH80] is that the number of bench­

mark queries used was small (only 3). Furthermore, each query

was applied to a small database. This makes it hard to determine

whether the results obtained are representative of the perfor­

mance of the machines over a range of database sizes and queries.

Finally, the evaluation made no attempt to account for MIMD

activity which some, but not all, of the machines can. support."

In this paper, instead of simply extending the analytical

model used in [HAWT80] to compare the performance of specific

machines over a wider range of tests, we began by specifying five

generic classes of database machine architectures which are

described in Section 2. The first class is a DBMS running on a

conventional computer. It is included because many of the "data­

base machines" of the future will indeed be highly tuned DBMS

software running on a single processor on top of a database

operating system [GRAY78] •

In Section 3, we describe our analytical performance model

and introduce the various parameters that will be used to evalu-

ate the different architecture types. Section 4 contains an

evaluation of the five qlasses of machines on three representa­

tive query types for a variety of database sizes and queries.

·• Our conclusions and suggestions for future research are presented

in Section 5.

It is important to notice that we have completely ignored

one class of proposed database machine architectures. This class

contains those machines that are not feasible using today"s

4

technology and that may never become cost effective. These

machines can be spotted by claims of join times which are linear

(or even less than linear) in the size of the source relations.

While we are not saying that research on exotic machines is of no

interest, we feel that any machine whose operation requires

either as many (or more) processors as tuples in the smaller of

the two relations being processed or an associative memory large

enough to hold one of the relations, is a machine that will most

likely never be feasible. Therefore, we ignore these machines in

our performance evaluation.

2. Five Generic Classes of Database Machine Architectures

For the purpose of this evaluation, we have divided those

database machine architectures which are feasible to construct

using present day technology into five generic classes which we

will describe in this section. These classes. are:

CS - conventional systems

PPT - processor-per-track systems

PPH - processor-per-head systems

PPD - processor-per-disk systems

MPC - multiprocessor cache systems

The complexity of the database machines represented by these

classes range from a conventional processor running a database •

operating system (CS) to a multiprocessor organization with a

three level memory hierarchy (MPC). We have assumed that the last

four classes of machines are connected to a host processor. This

processor serves two important functions. First, it accepts and

_,

5

compiles queries from the users of the system. ·Second, depending

on the functionality of the database machine, it assists in the

execution of certain queries which are too complex for the back-

end to handle alone. For example, the PPT, PPH, and PPD systems

• provide only the cap.ab ili ty of processing selection operations.

Therefore, in order to process a query which includes an aggre­

gate function, the capabilities of the host must be used in con­

junction with those of the database machine. This will be

described further in Section 4.

2.1. Conventional Systems (CS)

We feel that in the future many database management system

applications will be best served by a conventional relational

database management system running on a single processor. Thus,

our first class of "database machines" is such a system and is

shown in Figure 1. We have assumed that the CS will support com­

piled user queries and sophisticated query execution strategies

such as those employed in System R [GRIF79]. Such strategies

include support of indices, sort-merge join operations, and

sophisticated query optimization techniques. Furthermore, we

have assumed that the operating system for the machine is tuned

to the needs of a DBMS in order to minimize the overhead of I/0

operations and other database activities such as locking.

2.2. Processor-~-Track (PPT) Machines

The second class of database machines are those based on a

mass storage device

Each cell has a data

which consists of a large number of cells •.

track, some processing logic which can

Host
processor·

\ .

Channel

Disk controller

Conventional System

Figure 1

Disk
system

Database and
System information ·

Vl
Ill

6

process selection operations "on the fly", and is connected to a

global data bus on which it places selected tuples for transrnis-

sion to the host processor. Coordination of the operation of the

cells is performed by a controlling processor. The organization

of this approach is shown in Figure 2.

In this organization tuples are stored bitwise along each

track. The processing logic scans the data as the track rotate s 2

and places se lee ted tuples in a small output buffer memory as so-

ciated with the head. After a buffer fills, additional logic

attempts to place its contents on the output bus for transmission

to the host. In the event that the processor logic is not able

to output a selected tuple (because the bus is busy and the tern-

porary storage buffers are full) processing is suspended. In

this case processing will be resumed some number (1 or more) of

revolutions later (i.e. after a buffer is output to the bus).

This class of machines includes the early PPT designs by

Parker [PARK71], Minsky [MINS72], and Parharni [PARH72]. While

the PPT architecture may appear similar to that of RAP and CASSM,

the results presented in Section 4 may not be representative of

these two machines (see [HAWT80] for a performance comparison of

these machines). PPT machines were pioneered by Slotnick in 1970

[SLOT70] who suggested using a track of a fixed head disk as the

2 Because of potential disk errors, the way any database
machine which processes data "on the disk" must operate is to
read an entire block of data into a buffer, apply a CRC, and if
the block is "good" apply the selection criterion to the tuples
in the block [KIBL80]. With two block buffers, loading and pro­
cessing can be overlapped so that data can still effectively be
processed "on the fly".

Host
processor

Disk cant roller

System
information

Channel

c~ CP. . 2 }
Cell

CPN processors

Data cells

'----· ---------~---------~~
Database

PPT System

Figure :2

I~

,_ .

7.

unit of storage. Since fixed head disks are being phased out of

production, the reader may question whether this class of

machines in indeed viable. . Recent research has shown that by

using magnetic bubble memories rather than fixed head disks a

similar degree of functionality can be obtained with only a small

reduction in performance [BORA81].

2.3. Processor-~-Head (PPH) Machines

The third class of database machines are those that associ­

ate processing logic with each head of a moving-head disk as

illustrated in Figure 3. We term this class of machines

"processor-per-head" machines.

In a PPH database machine, data is transferred, in parallel,

over 1 bit wide data lines from the heads to a set of processors.

Each processor applies the selection criteria to its incoming

data stream and places selected tuples in its output buffer. In

such an organization an entire cylinder of a moving head disk is

examined in a single revolution (assuming no output bus conten­

tion). As in PPT organizations additional revolutions may be

needed to complete execution of the query if an output buffer

overflows.

The DBC project adopted the PPH approach over the PPT

approach because PPT devices were not deemed to be cost-effective

for the storage of large databases (say more than 1010 bytes)

[KANN 78] • Another possible reason for taking this route is the

apparent lack of success of head-per-track disks as secondary

storage devices. Moving head disks with parallel readout, on the

Host
processor

. Disk controller

System
information

Channel

PPH System

Figure 3

Control-....

t Disk controller
0
0
0

• • •

C e II
processor

. Database

•

-....1
Pl

':l

....

8

other hand, seemed an attractive and feasible alternative. The

Technical University of Braunschweig in cooperation with Siemens

has actually has built one for use in the Braunschweig search

machine SURE [LEIL78].

2.4. Processor-~-Disk (PPD) Machines

Unlike the PPT and PPH approaches, the PPD organization

utilizes a standard disk drive. ·In this organization a processor

(or set of processors [LEIL78]) is placed between the disk and

the memory device to which the selected tuples are to be

transferred as shown in Figure 4. This processor acts as a

filter [BANC80] to the disk by forwarding to the host only those

tuples that match the selection criteria. At first glance it

seems as though this approach is so inferior to the others that

it does not merit any attention. However, it has the advantage

that for a relatively low price one can obtain the same filtering

functionality (but not the same performance) as the PPT and. PPH

designs.

2.5. Multi-processor Cache (MPC) Systems

The final class of database machine architectures exchange

the ability to process selection operations "on-the--fly" for more

functionality in the processing elements. The components of this

organization are a set of small but general purpose processors

and a three-level memory hierarchy. The top level of the memory

hierarchy consists of the internal memories of the processors

which are assumed to be large enough to hold both a compiled

query and several pages of data. At the bottom level of the

Host
processor

Disk contra ller

System
information

system

Channel

PPD System

Figure 4

Cell
processor

. Disk controller

Disk
system

Database

,,

..

9

memory hierarchy are the mass storage devices used to hold the

relations. in the database. The middle level of the hierarchy is

a disk cache which can hold one of page of data for each proces-

sor. A page of arelation is the unit of transfer between all

levels of the memory hierarchy.

The bottom two levels of the memory hierarchy are connected

together with a bus as shown in Figure 5. The interconnection

device between the processors and the disk cache has two impor­

tant properties. First it permits each processor to simultane­

ously read/write its block of the cache. Second it allows all

processors to simultaneously read the same block of the cache

(This property can also be viewed as broadcasting the page to all

the processors).

There are several active database machine projects that have

selected this type of architecture: DIRECT [DEWI79] which is

presently operational at Wisconsin, INFOPLEX [MADN79], an MIT

project has a multilevel memory processor hierarchy, the RDBM

[HELL81] project at Braunschweig, and the database machine pro-

ject at Texas which utilizes the TRAC [UPCH79] processor.

3. Specifications of the Database Machine Models

In this section we describe the physical and logical charac­

teristics of the five classes of database machine architectures

that we mode led.

System
information

Host
processor

Disk controller

Channel Interconnect ion
device

•
•
•

Cell
processors

MPC System

Figure 5

•
. .

•

Disk each~
modules

Database

..

·-

10

3.1. Physical Characteristics

3.1.1. Mass Storage Device Specifications

The mass storage device employed in our cs, PPD, PPH, and

MPC models is based on the IBM 3330 disk drive [GORS80]. This

devi'ce has 404 cylinders with 19 tracks (recording surfaces) per

cylinder. Each , track holds 13,030 bytes. The rotational speed

of this disk drive is one revolution every 16.7 ms. The average

access time to a random block, TDAC' equals 38.6 ms (the time

required to seek 202 cylinders and wait 1/2 revolution). The

track-to-track seek time, TSK is 10.1 ms. Table 3.1 summarizes

these parameters.

parameter

BSIZE
DCYL
TIO
TDAC
TSK

Table 3 .1 Disk parameters and values

description

block size
blocks/cylinder
block read/write time
average access time
track-to-track seek time

value

13 , 0 3 0 bytes
19
16.7 ms.
38.6 ms.
10.1 ms.

3.1. 2. Conventional and Host System Specifications

The processor for the conventional system (and the host pro-

cesser for the back-end systems) is assumed to be a 1 MIP proces-

sor such as a VAX 11/780. As described in the Section 2, we have

assumed that the CS machine runs a relg.tional database management

system which supports compiled queries and sophisticated query

optimization and execution techniques. We have also assumed that

performance is enhanced through the support of a database

..

11

operating system in order to minimize overhead costs. Finally, we

have assumed that a slightly rnc)d if ied version of the same system

is used as the host processor for all tbe back end systems. The

parameters which characterize the operation of this system are

presented below in Table 3.2.

The values presented in Table 3.2 represent a combination of

measurements performed on INGRES [HAWT79], System R [CHAM81], and

some "back of the envelope" calculations. TSC represents the time

to perform a simple scan (e.g. a selection operation) on a block

of data. The time required for such an operation is obviously

dependent on such factors as tuple length and query type (e.g.

whether the type of the attribute being compared is a string or

integer). If · there are 1'30 tuples in each block, then 10

ms/block· permits approximately 75 instructions for processing

each tuple. The time required to per form a complex operation

such as internally sorting a page or merging two pages in order

parameter

Tsc

TBLK

·TOIO

icODE_GEN
INDEX

TMSG

Table 3. 2 CS parameters. and values

description

cpu time to scan the tuples·
in a block
cpu time for a complex
operation on a block
cpu time to initiate an
I/O operation
cpu time to compile a query
time required to fetch and
examine an index page
cpu time to send/receive a
message from the back-end

value

10.0 ms.

95.0 ms.

2. 0 ms.

152.0 ms.
67.0 ms.

2.0 ms.

12

to perform a merge sort is represented by TBLK" [KNUTH75] shows

that for a page containing k tuples at most 2k tuple comparisons

and moves are required to merge two sorted pages. Thus, for 130

tuples/block, 95 ms. appears to be a realistic estimate for TBLK"

Even though we have assumed that a database operating system

will minimize system overhead, some time must be associated with'

processing an I/O request or sending a mes$age to the database

machine. The overhead associated with these two operations is

represented by T010 and TMSG respectively.

Finally, a time must be associated with compiling a query,

TCODE GEN, and processing an index T INDEX. We have assumed that

compiling a query requires at least one I/O op~ration (with its

associated overhead) ~nd an amount of cpu time equivalent to

TBLK" Examining an index is assumed to require one 3 I/O opera­

tion to fetch the appropriate block.of the index from disk·plus

an amount of cpu time equivalent to Tsc.

3.1.3. PPD, PPH, and PPT Specifications

For the PPD, PPH, and PPT database machine designs we have

assumed that the processors compare a data stream from the disk

with another data stream that contains the query which has been

compiled into a format compatible with that of the disk data

stream. Selected tuples are saved in a small output buffer for

transmission over a common bus to either a host or controlling

processor • We have assumed that a processor is fast enough to

process the selection operation at the speed of the incoming data

3 A figure of 2 or 3 is probably somewhat more accurate

I

13

stream. Tnus, the time for a PPT, · PPH, or PPD processor to pro­

cess a block is TIO" For most conventional disks a processor has

0 approximately 1. 25 microseconds to process each incoming byte~

Assuming that it takes 3 instructions to examine a byte (1

instruction for byte comparison with auto-increment, 1 to test

for loop termination, and 1 for the branch instruction) and that

every byte must be examined, then each processor for the PPT,

PPH, and PPD designs must be approximately a 2. 4 MIP processor.

The PPD database machine design was modeled as one IBM 3330

disk drive and one processor. This design requires TIO ms. to

process each track (block) occupied by the relation being

searched.

The PPH database machine was modeled as a modified IBM 3330

disk drive with 19 processors (one per head) and two output

buffers per head~ Each output buffer is capable of holding one

tuple. 4 Since this design has a processor associated with each

head, it can process an entire cylinder (19 blocks) in TIO ms.

In order for the PPT design to have similar storage capacity

and performance characteristics as the PPH and PPD designs;. we

modeled it as a 3330 disk drive with one processor for each of

the 7676 tracks (404 cylinders * 19 tracks/cylinder) and two out-

put buffers per head. While constructing such a device is prob-

ably out of the question, modeling
\

the PPT design this way

enables us to establish a performance baseline by which the per­

formance of the other database machines can be gauged. Since

4 [BORA81] has shown that the size of the·buffers has minimal
impact on performance.

14

there is one processor per track, the entire disk can be searched

ih -T
10

ms. if there is no contention among the processors for

access to the output channel.

3.1.4. MPC Specifications

The MPC database machine was modeled as nineteen5 1 MIP pro-

cessors, a cache consisting of nineteen blocks of RAM, and one

standard IBJ."\1 3330 disk. Since the processors have the same per-

formance as the processor used in the CS, the values for TSC and

TBLK remain the same. However, .before the processors can examine

the contents of a cylinder of the disk, one block must be moved

to the local memory of each processor. This operation requires

three steps. First the heads must be positioned to the proper

cylinder. This step requires either TDAC or TSK ms depending on

the previous position of the heads. Second, the contents of the

cylinder must be transferred to the disk cache. This requires

19*T
10

·ms. _Finally, a parallel read is performed by the proces­

sors requiring an additional T10 ms. Selected tuples are placed

on the bus connecting the processors to· the host processor.

3.1.5. Output Channel Specific~tions

As discussed in Section 2, all processors for the PPT, PPH,

PPD, MPC were assumed to be connected to a single output channel

for the transfer of results to the controlling or host processor.

We assumed that this output channel operated i}1dependently and

asynchronously from the cell processors. The bandwidth of this

5 We selected 19 processors simp.ly because that is how many
processors the PPH design has.

.•

15

channel was assumed to be 2.0 Mbytes/second based on. the maximum

bandwidth of the VAX ll/780"'s I-1ass Bus Adapter. Thus, the

transfer time for one block, TBT' is 6.5 ms. It should be noted

that the output channel must be as fast as. the disk data transfer

rate, although it can be faster. The disk transfe~ rate deter-

mines the processor speed for the processors employed in the PPT,

PPH, and .PPD designs, while the output channel bandwidth affects

the rate at which output buffers in the processors will be emp-

tied (recall that loading and unloading of the buffers are asyn-

chronous operations}.

3.2. Operational Characteristics

For the PPD, PPH, and MPC database machine designs relations

are stored in such a manner as to occupy the minimum number of

cylinders possible. That is, tuples from a relation must first

fill an entire track before a second track is used, then an

entire cylinder, etc. In this way, the number of cylinders which

must be searched to execute a selection operation on a relation

is minimized and non-essential seek operations are eliminated.

As first suggested by Sadowski and Schuster [SAD078], concurrency

can be maximized in the processing of a selection operation in a

PPT database machine if tuples from a relation are uniformly dis-

tr ibuted across all tracks.

4. Performance Comparisons

In this section we benchmark the five database machine

designs on selection, join, .and aggregate function operations.

These operations were chosen as each is representative of a class

16

of query types. Selection queries are representative of those

types of queries which can be performed in O(n) time for n tuples

on a single processor. Deletion, which can be viewed as a negated

selection, can also be performed in one pass through the rela-

tion. The performance of the machines executing join queries is

representative of those operations (e.g. division) involving two

relations and requiring either O(nlogn) or O(n2) time on a single

processor. Finally, aggregate function queries serve as a bench­

mark for complex operations which reference a single relation yet

require O(nlogn) time on a single processor (e.g. projection with

duplicate elimination).

The performance evaluations which are presented below meas­

ure the total system work necessary to process a query not the

response time of the database machine to the query. It is cer­

tainly the case that certain operations can be overlapped. How­

ever, determining (and explaining) exactly which processing steps

can· be overlapped significantly complicates the descriptions

below. Furthermore, total system work is probably a more accu­

rate measure of the resources consumed by a query than response.

time.

In this section the number of disk blocks occupied by a

relation R will be denote~ IRI. The selectivity factor of selec­

tion operations is denoted by f.

4.1. Selection Queries

The processing of a selection operation can be divided into

two cases depending on whether a secondary index exists on the

17

attribute being qualified. We have assumed that the existence of

an index on the attribute being qualified reduces both the number

of cylinders that must be searched (from I Rl /19 to I Rl *f/196} and

the number of blocks that must be processed (from I Rl to I Rl *f).

Since the performance characterization of each system in the

presence of indexing is a straightforward modification of the

non-index case, they have not been included.

4.1.1. cs

Processing a selection operation on a conventional system

involves three main components: query compilation, positioning

the heads to the proper .cylinder, and processing each block occu­

pied by the relation. Query compilation requires TCODE GEN ms.

Head rovement requires TDAC for the initial head.movement and one

track-to-track seek (T5K} for each additional cylinder. The time

to process each block occupied by R consists of the I/O time to

read the block, TIO' the cpu time required by the operating sys­

tem to handle the I/O operation, TOIO' and the cpu time required

to apply the selection operation to the block, Tsc· We have

ignored the time to display the results of the query as this will

be very device dependent.

TSEL cs = TCODE GEN + TDAC - -
+ <[IRI/19]-l}*TsK + IRI*<Tro+Toro+Tsc>

6 Recall that there are 19 blocks/cylinder.

18

4.1. 2. PPT

Execution of this query on the PPT machine will begin with

the host compiling the query, TCODE GEN' and then sending the

compiled query to the database machine for execution. Sending the

query is assumed to take ,TMSG ms. of host time in the form of

operabing system overhead. Since the PPT machine can examine

every block in one revolution of the disk, the qualifying tuples

will be located in one revolution. However, the execution time

will be the maximum of the time for one disk revolution and the

time to return all but the last block of selected tupl~s to the

host. The time to return each block of.selected tuples consists

of two components: the time, TBT' to send each block to the host

as determined by the transfer rate of the bus and the cpu time

consumed by the operating system to process each block returned,

TMSG. The time to process the query is thus:·

TSEL PPT = TCODE_GEN + TMSG

+MAX {T10 , ([!RI*f]-l)*(TMSG+TBT)} + (TMSG+TBT)

Since the whole database can be searched in one revolution, an

index will not reduce the execution time of the query.

4.1. 3. PPH

Processing this query is similar to the PPT design except

that processing each cylinder occupied by the relation requires

T10 ms. In addition, the time to seek to the first cylinder

occupied by the relation and the track-to-track seek times must

be incorporated. The execution time is thu.s:

..

19

TSEL PPH = TCODE GEN + TMSG + TDAC - -
+MAX{< [1 Rl /191 -1) *TsK + [1 Rl /191 *T10 , < [I Rl *fl -1) * (TMSG+TBT)}

+ (TMSG+TBT)

4.1. 4. PPD

Execution on PPD machines will be similar to the PPT and PPH

designs except that now one reyolution will be required for e~ch

block (track) occupied by the relation referenced. Therefore,

the execution time for the PPD design will be:

TSEL PPD = TCODE GEN + TMSG + TDAC - -
+ MAX{<[IRI/19.]-l)*TsK+ IRI*T 10 , [jRj*fl-l)*(TMSG+TBT)}

+ (TMSG + TBT)

4.1. 5. MPC

Although the MPC design has 19 processors which can be used

to process selection queries, in order for the blocks of R to be

processed they must first be moved into the disk cache. Once

there, processing the blocks from the cylinder takes two steps.

First the processors each read (in parallel) a block from the

cache. This step will require T10 ms. The second step is for

each processor to apply the selection condition of the query to

extract the qualified tuples. This step will require TSC ms.

Since processing one cylinder can be overlapped with loading the

contents of the next cylinder into the cache, the processing time

of the query can be modeled as the time required to move all

cylinders containing a block of R into the cache plus the pro-

cess ing time of the last cylinder. As with the other designs, we

20

have assumed that processing can be overlapped with transmission

of the selected tuples to the host.

time for the MPC design is:

Therefore, the ex~cution

TSEL MPC = TCODE GEN + TMSG + TDAC - -
+ MAX{([1 Rl /191 -1) *TsK+ I Rl *Tr0 +Tr0 +Tsc'

([IRI*f]-l)*(TMSG+TBT)}

+ (TMSG + TBT)

4.1.6. Evaluation

Using these formulas we evaluated the performance of each of

the database machine designs for a number of different relation

sizes over .a range of selectivity factors. The results from one

~xpetiment for a relation consisting of 50,000 one-hundred byte

tuples are presented in Tables 1 and 2 below. Table 1 contains

the performance of each machine for four different selectivity

factors when no index exists on the attribute being qualified.

Table 2 presents their performance when an index does exist.

These tests indicate some interesting results. First, we

Selectivity
of Query

.0001

.001

.01

.1

Table 1
50,000 Tuples of Size 100 bytes

No Index Case

Factor Execution Time
cs PPT PPH

11.398 .179 .751

11.398 .179 .751

11.398 .188 .751

11.398 .486 .751

in Seconds
PPD MPC

6.801 6.818

6.801 6.818

6.801 6.818

6.801 6.818

·•,.

T~·_;~.;;:::.

~ ! :
; ., . .' ,.

' :~,:·

21

Table 2
50,000 Tuples of Size 100 bytes

Index Case

~

Selectivity Factor Execution Time in Seconds
of Query cs PPT PPH PPD MPC

.0001 .287 .179 .285 .285 .312

.001 .287 .179 .285 .285 .312

.01 .373 .188 .294 .335 .362

.1 1. 396 .486 .592 .939 .965

feel that if the complexity of the PPT design is considered, it

is · not a cost-effective design even when evaluated on the opera-

tion for which it was specifically designed. Its performance is

superior {a factor of 5) to the PPH design for the case of a low

selectivity factor and no appropriate index. In the remaining

cases the PPH design is almost as fast. It is especially.impor-

tant to notice how the performance of the · PPT design degrades

with higher selectivity factors {.01 to .1) due to contention for

the channel to the host. Another interesting observation is the

very good performance .of the CS and PPD designs when an index

exists on the attribute being qualified. If access to a rela-

tional database is such that the appropriate indices can always

be maintained the CS and PPD designs are undoubtably the most

cost-effective for processing selection queries. If the

appropriate indices cannot always be maintained than the overall

performance of the PPH design makes it the most reasonable

choice.

22

4.2. Join Queries

While each of the database machines processed selection

queries in a basically the same manner, the algorithms used for

processing join queries are very different. Let R and S be the

two relations to be joined. IRI and lSI will denote the number

of disk blocks occupied by both relations-. The length of the

tuples in S is represented by S len.

4. 2.1. cs

The join algorithm used by the CS design is a sort-merge

algorithm that was shown to be one of the best join algorithms

for a single processor system in [BLAS77] . The first step of

this algorithm is to sort both relations on the joining attribute

(assuming neither is already sorted on the app~opriate attri-

bute). We have assumed that the two relations are sorted using a

4 way external merge sort algorithm. Execution of the· algorithm

requires log 4 (X) phase.s. During each phase all pages are read

and writ ten (hence the factor of 2) and approximately X/2 two-

page merge operations are performed. The time.to sort a relation

with comprised of X pages is

log 4 (X),\.2* { (TDAC+ ([X/19] -1) *TsK+X* (TI0 +TOIO)}

+ log 4 (X) * (X/2}*TBLK

The second phase of the sort-merge join algorithm is to

merge the two sorted relations emitting tuples that satisfy the

join condition. We have also assumed that the merge step of. the

algorithm can be performed by reading. each block of both sorted

relations exactly once. While this assumption is generally

..,

23

valid, there are extreme cases (ie. all tuples in both relations

have the same join attribute value) when one of the sorted rela-

tions must be repeatedly read. Finally note we have assumed that

the sorted relations reside on different cylinders of th~ disk so

that each time a block of one of the relations is read~ the time

for an "average" disk access, TDAC, is ace rued.

The time to execute this algorithm is:

TJOIN CS = TCODE GEN + TSORT R + TSORT S + TMERGE

where

TMERGE = (IRI+ISI)*(TDAC + TIO + TOIO)

+ (I R I + I s I) *T BLK/ 2

4.2.2. PPT, PPH, and PPD

Since the only functionality provided by the PPT, PPH, and

PPD designs is to process selection queries, each of these

designs process queries by decomposing the query using an algo-

rithm based on Wong~s [WONG76] tuple substitution algorithm.

Assume that the join operation as specified by the user has the

form R.a = S.b and that S contains fewer tuples than R. These

database machine designs will process the query by issuing one

selection subquery for each tuple in s. The form of this

subquery will be R.a = X where X is the join attribute value

from the current tuple in s. The result relation is produced by

"joining" each tupl~ in S with all the tuples from R returned by

the execution of its subquery.

The following formulas express the join execu·tion time for

the PPT, PPH, and PPD designs assuming that telation S contains

24

fewer tuples than R. The first step is for the host to compile

the query. Next, for each block in S, the host will read the

block (TDAC + TOIO + Tro> and then use the database machine to r

execute a subquery for each tuple in the block. We have included

a factor of TBLK in the cost of processing each block of S to

reflect the cost of processing each subquery (finding the next

tuple in S and forming the result relation). Although we have

used the notation TSEL PPD (for example) to express the cost of

performing each subquery, for the results presented in Tables · 3

and 4 the cost of code generation was not included in the cost of

executing each subquery.

TJOIN PPT = TCODE GEN + ISI*{TIO+TOIO+TBLK

+ (BSIZE/S_LEN)*T . (R)}
SEL PPT

TJOIN PPH = TCODE GEN + IS I *TTDAC + TIO + TOIO + TBLK - .

+ (BSIZE/S_LEN) * TSEL PPH(R)}

TJOIN PPD = TCODE GEN + ISI*{TDAC + TIO + TOIO + TBLK

+ (BSIZE/S_LEN) * TSEL PPD(R)}

If the query issued by the user contains a selection on R and S

followed by a join of the restricted relations, then the query

can be executed in two steps. First one of the selections is

··executed (the host should choose the one which will produce the·

smaller result relation). For each tuple in the resulting rela­

tion a complex selection subquery combining the join condition

with the selection condition of the second relation will be exe-

cuted.

.....

25

4. 2. 3. MPC

The join algorithm used by the MPC design is a block paral­

lel version of the nested-loops algorithm. Execution of this

algorithm beg ins by having each processor read a different page

of R. Next all pages of S are sequentially broadcast to the pro-

cessors. As each page of S is received by a processor it joins

the page with its page from R using· a 2 way "merge". 7 Since the

number of processors available (19 for MPC) is generally less

than IRI, this process is repeated [IRI/19] times. Thus,

TJOIN MPC = TCODE GEN + TMSG + MAX(TEXECUTE JOIN'TSEND RESULTS)

+ (TMSG + TBT)

where:

TEXECUTE JOIN= [IRI/l91{TDAC + 19*TIO + TIO + TDAC

+ ([ISI/191-l)*TsK + 2*T10 + lsi*TBLK}

TSEND RESULTS= ([IRI*ISI*jsf]-l) * (TMSG+TBT)

In the formula for TEXECUTE JOIN'. there are [I Rl/19'] phases.

Each phase begins by having the processors read the next 19 pages

of R. This requires TDAC + 19*TIO + TIO ms (the final TIO is for

the parallel read) • Next all of S must be joined with the

current 19 pages of R. Since TBLK > TIO' reading pages of S can

be overlapped with their processing except for an initial 2T10

ms. period. in which the first page of S is transferred first to

the cache and then broadcast to the processors •. In the formula

for TSEND RESULTS' jsf represents the join selectivity factor and

7 We have assumed that the blocks of Rand· S are internally
sorted on the join. attribute. See [BORA80] for a description of
parallel update algorithms that always leave blocks sorted.

26

thus IRI*ISI*jsf is the number of pages in the result relation.

4.2.4. Evaluation

We quantified the join algorithm performance of the five

machines through a number of different tests. In Tables 3 and 4

below, the result of one of those tests are presented. Table 3

presents the performance of each system when an index on the join

attribute for R does not exist. The performance of.the PPH and

PPD designs when an appropriate index exists is illustrated in

Table 4. For the results presented in Table 4, we assumed that

only 1 out of every 10 subqueries incurred the cost of processing

an index request (Tindex). ·

We found these results very interesting for several reasons.

First is the terrible performance of the PPT, PPH, and PPD

designs. These results make it clear that, even if the appropri-

ate index exists, that "tuple substitution" ·is not a reasonable

Table 3
Relation R: 10,000 Tuples of Size 100 bytes
Relation S: 3, 000 Tuples of Size 75 bytes.

No Index Case

Selectivity Factor Execution Time in Seconds
of Query cs PPT PPH PPD

.0001 34.4 83.7 520.2 4120

.001 34.4 83.7 520.2 4120

.01 34.4 83.7 520.2 4120

.05 34.4 83.7 520.2 4120

MPC

7.7

7.7

7.7

7.7

... ·..-

i

..

27

Table 4
Relation R: 10,000 Tuples of Size 100 bytes
Relation S: 3,000 Tuples of Size 75 bytes

Index Case

Selectivity Factor Execution Time in Seconds
of Query PPH PPD

~0001 220.5 220.5

.001 220.5 220.5

.01 220.5 220.5

.05 247.2 370.5

way of processing joins.- The consequence is that if the ability

to per form se lee tions rap idly is the only functionality provided

by a database machine, theri it is better to ignore the database

machine and do a sort-merge join on the host.

Because we were puzzled about the very poor performance of

the PPT, PPH, and PPD designs (and expect that the reader is

also), we have broken apart the processing costs in Table 5 for a

join selectivity factor of .0001. The existence of the appropri-

ate index has been assumed for the PPH and PPD designs. For all

three designs, the processing time is dominated by the time to

process the subquer ies. The time in the PPH and PPD designs

which is devoted to processing subqueries (75% of the total), is

composed of·70% seek time ahd 30% processing time. While this

70% figure seems high and consequently might be an area for

optimization, one only need to look at the performance of PPT

design (which obviously has no seek time) to see that such

efforts would be fruitless.

While the performance of the MPC design clearly indicates ·

28

Table 5

Selectivity Factor = .0001

Activity

Query Compilation

Reading Relation S

Processing R Index

Sending Subquery Messages

Processing Subqueries

Handling Subquery Result
Messages

Percentage of Effort
PPT PPH PPD

.18%

3.3%

7.2%

59.7%

30.4%

.07%

1.2%

9.2%

2.7%

75.2%

11.6%

.07%

1.2%

9.2%

2.7%

75.2%

11.6%

the need for general purpose processors in the back-end database

machine, the results are disappointing. Notice that although the

MPC had 19 times as many processors as the cs, the speed-up fac-

tor was only 4. Other experiments indicated, however, that the

speed.-factor achieved by the MPC design ranges depending on the

operand sizes from 1 to 4 with the average 'being approximately 2.

In fact, a speed factor of 4 is only achieved when one of the

relations has 19 or fewer pages

We initially speculated that the relatively poor performanc~

of the MPC design was due to a mismatch in processor performance

and I/O bandwidth. To test this hypothesis, we modified the MPC

equation to utilize a disk drive with parallel readout. The

results were very surprisi~g as the performance of the MPC design

improved by only 3. 5%. Further analysis of the join execution

time for the MPC design revealed that the· execution time of the

..

•

..

29

algorithm is dominated by reading, broadcasting, and processing

pages of the inner relation. The performance of this sequential

operation cannot be improved by the addition of parallel I/O

hardware. In fact the only step of the parallel nested loops

algorithm in which parallel I/0 can be exploited is reading the

pages of the outer relation~

4.3. Aggregate Function Queries
\

There are two basic types of aggregate queries supported by

relational database systems such as INGRES~ "scalar" aggregates

and aggregate "functions". Scalar aggregates are aggregations

(average, max, etc.) over an entire relation. Aggregate func-

tions first divide a relation into non-intersecting partitions

(based on some attribute value, e.g. sex) and then compute scalar

aggregates on the individual partitions. Thus, given a source

relation, scalar aggregates compute a single result while aggre­

gate functions produce a set of results (i.e. a result relation).

In this section we examine the performance of each machine on

aggregate function queries.

4. 3 .1. cs

The algorithm used by the CS design for executing aggregate

function queries is to first sort the relation on the partition-.

ing attribute(s) in order to bring all tuples in the same parti-

tion together. Next a scan is made of the entire relation and the

value for each partition is computed. Two easy optimizations are

possible. Assume that a 4 way external merge sort is used to sort

R. Then; the last phase of the merge sort will be begin with 4

30

runs of length IRI/4. Instead o£ finishing the sort during this

last phase, the value for each partition can instead be computed.

The second optimization is that the result of the final· step of

the sort can be thrown away instead of writing it to· disk. The

cost of this algorithm is:

TAGG CS = TCODE GEN + TSORT R + TFORM RESULT

where:

TSORT R = (2*log4IRI-l)*{TDAC+([R/19]-l)*TsK> + -IRI*<ToiO+Tio>}

+ log 4 IRI*<IRI/2)*TBLK

TFORM RESULT= IRI*TBLK

· 4 • 3 • 2 • PPT , PPH , and PPD

These three database machines execute aggregate functions in

two steps. First the host projects the source relation on the

part~tioning attribute(s) to form a list of partition identifiers

using an external merge sort on the partitioning attribute. 8 This

step causes the source relation to be reduced in size from IRI

blocks to IN I· blocks. If the size of the projected· tuples is

PT_LEN, then the number of partitions, P, is INI*BSIZE/PT_LEN.

Next for each tuple in the projected relation a subquery is sent ~

to the database machine. As the selected tbples are returned

from each subquery the scalar aggregate operation is applied to

compute the value for the partition. Since each tuple in R will

be selected by one and only one subquery, the cpu time for

8
See Appendix A for a derivation of TPROJECT" For the

evaluation presented below we have assumed a four \qay merge sort.

•

31

computing the aggregate partition values can be estimated to be

IRI*TBLK" Thus the execution time for this query is:

TCODE GEN + TPROJECT + TSUBQUERIES + IRI*TBLK

where:
TPROJECT = log4INI*{ 2*ToAc+ 2*1RI*<TIO+ToiO)+IRI*TBLK)

+ 2*<[1RI/19]-l)*T }
SK

+ log4 (I Rl /IN I) *2*ToAC

For the PPT design, TSUBQUERIES = p * TSEL PPT (R)

For the PPH design, TSUBQUERIES = p * TSEL PPH (R)

For the PPD design, TSUBQUERIES = p * TSEL PPD (R)

4. 3. 3. MPC

·In the first stage of the MPC algorithm, each processor

reads a set of source relation blocks and accumulates one aggre­

gate value for each partition it sees (at most P). This results

in a number of blocks containing partial results which must be

combined. The second stage is a parallel "merge" of the blocks

produced in the first stage to produce the final result. The cost

of this .algorithm may be computed as:

TAGG_MPC = TCODE_GEN + TMSG + TEXECUTE + TRETURN RESULTS

where:

TEXECUTE = . TFORM PARTIAL RESULTS + TPARALLEL MERGE

The time to form the partial result blocks consists of a

component to process R, TPROCESS R' and a component to write the

partial result blocks to mass storage, T PR IO. Processing R

beg ins by having each processor read a separate block of R. Each

32

tuple in the block must be placed in the correct partition and

the aggregate value for that partition must be updated. If the

partitions are kept in sorted order based on the partitioning ~

attribute (s), then a binary search can be used to locate the

correct partition. However, when a new partition is seen it must

be placed in its proper place. TBLK ms. seems to be a reasonable

estimate of the cost of processing the tuples in a block (includ­

ing keeping the partitions in sorted order). Since I Rl is gen- ···

erally greater than 19 (the number of processors), this step will

be repeated £1RI/19] times. Thus,

If we assume that each processor sees every partition, then

the first step 6f the first phase will produce 19*INI blocks.

The cost of writing these blocks to mass storage before the

parallel merge begins is:

The parallel "merge" we use in the second stage is not a true

merge since two partial result blocks are combined to form a sin-
'

gle result. block. The parallel merge occurs in two steps. First,

each processor using a 2-way merge sort must form a sorted run of

the INI blocks it has produced. The time required for this step

is:

2*log 2 INI*{TDAC + (INI:-l)*TsK + INI*(l9*TIO + TI0)}

+ log2IN I* IN I *TBLK

Next a pipelined-parallel binary merge (see [BORA80]) is

...

•

33

used to combine the 19 runs of IN! blocks into one run of IN!
blocks. The number of stages used is 1Qg 2 (19). Each processor

will read two runs of IN 1. pages, merge them, and write a run of

length IN I . The c.ost of the parallel "merge" is:

Finally, the cost of returning the results to the host is:

4.3.4. Evaluation

The results from evaluating the five designs for a variety

of different partition sizes on a relation with 50,000 tuples is

shown in Table 6 below. As indicated by these results, for up to

50 partitions the subquery approach appears viable for the PPT

and .PPH designs. It is also interesting to note that the MPC

design achieves a speed-up factor of 17:1 over the conventional

system up to 250 partitions. This seems to indicate that as the

operation to be performed becomes more complex, the impact of

serial I/O froni the disk is decreased. The performance of the

MPC algorithm degrades for a large number of partitions because

we assumed that each processor would see a tuple from every par-

tit ion. Thus, for 5,000 partitions, the result of the first

phase of the algorithm are 19 partial result relations with 39

blocks ea·ch.- This relation is twice the size of the original

relation.

34

Table 6
50,000 Tuples of Size 100 bytes

Number of Partitions Execution Time in Seconds
cs PPT PPH PPD MPC

5 171.1 101.0 101.2 131.0 10.2

50 171.1 101.2 127.7 430.1 10 .• 2

250 171.1 130.0 273.0 1785. 10.3

500 171.1 162.1 448.0 3473. 19.3

2500 171.1 273.3 1703. 16828 89.9

5000 171.1 363.0 3223. 33471 193.2

5. Conclusions

From these experiments we are able to draw a number of con-

elusions about these five database machine designs. First, for

processing selection operations the PPH design is probably the

most cost effective. ·While the CS, PPD, PPH, and l-lPC designs all

process selection queries very efficiently when an index ·exists

on the selected attribute, only the PPH design can provide a rea-

sonable level of performance when an index does not exist. If

the intended application of the database machine is such that an

appropriate index can always be maintained then the PPD design is .

clearly the winner.

For complex queries, the MPC design with its general purpose

processors was demonstrated to be the fastest design. However,

the design we presented clearly has a number of drawbacks.

First, as indicated by the rather poor speed"-up achieved for

.3

"

35

executing some operations, the effective processor utilization is

very low. As indicated previously the problem seems to stem at

least partially from a mismatch between processor performance and

I/O bandwidth. This. lack of sufficient I/O bandwidth also mani-

fests itself in the performance of the MPC when processing selec-

tion queries without the appropriate index.

These results seem to indicate several avenues· of future
.

research. One obvious area that might be worthwhile to investi-

gate is to design a machine which combines the ability of the PPH

design to process selection queries "on the fly" with the ·ability

of the MPC design to process complex queries. Such an approach

may or may not be the solution we are.all seeking. For example,

maybe the solution instead is to simply use a parallel read out

disk as the mass storage device for the MPC design. Another,

possibly fruitful, approach is to look at a database machine

design in which each active query is run on a separate processor

using the same algorithms presented for the CS. This is the

approach taken by the MUFFIN project [STON79]. While this

approach looks appealing, it may result in problems with data

placement and poor processor utilization.

Rather than advocate either approach, we suggest a third

approach. This begins with a careful examination and analysis of

the alg0rithms which the architect intends for his database

machine to execute. 9 We feel that in order to develop a truly

efficient and cost effective machine one must first develop the

9 See [BORA80] for one such attempt

36

algorithms and then extract the primitive operations which are

necessary for an efficient implementation of the algorithms.

Only after these primitives are known and understood, should one

attempt to design a machine.

Finally, we would like encourage people to use our analyti­

cal approach to benchmark their favorite database machine.

While this approach may not be perfect, we hope that this paper

has demonstrated that it can produce useful results.

6. Acknowledgements

The authors would like to thank Haran Boral, Dina Friedland,

and w. Kevin Wilkinson for their contributions to this paper

especially their help in deriving the execution time of the pro­

jection operation in the presence of duplicates.

This work was supported by the Applied Mathematical Sciences

Research Program of the Office of Energy Research of the u.s.

Department of Energy under Contract W-7405-ENG-48, and by the

National Science Foundation under grant MCS78-01721, and the United

States Army under contracts #DAAG29-79-c.-Ql65 and #DAAG29-80-C'-0041. ·

..

37

7. References

[ASTR76] Astrahan, M.M., et. al., "System R: Relational Approach
to Database Management," ACM Transactions on Database Sys­
tems, Vol. 1, No. 2, June 1976, pp. 97-137.

[BABB79] Babb,E. "Implementing a Relational Database by Means of
Specialized Hardware," ACM Transactions on Database Systems,
Vol. 4, No. 1, March 1979, pp. 1~29.

[BANC80] Bane ilhon F •. and M. Scholl, "Design of a Back end Proces­
sor for a Data Base Machine," Proc. of the ACM SIGMOD. 1980
International Conference of Management of Data, May 1980.

[BANE78] Banerjee J., R.I. Baum, and D. K. Hsiao, "Concepts and
Capabilities of a Database Computer," ACM TODS, Vol. 3, No.
4, Dec. 1978.

[BLAS77] Blasgen M.W. and K.P. Eswaran, "Storage and Access in
Relational Data Bases", IBM System Journal, Vol. 16, No. 4,
1977.

[BORA80] Boral, H., DeWitt, D. J., Friedland, D., and W. K. Wil..;.
k inson, "Parallel Algorithms for the Execution of Relational
Database Operations," submitted to ACM Transactions on Data­
base Systems, October, 1980.

[BORA81] Boral H., D.J. DeWitt, and W.K. Wilkinson, "Performance
Evaluation of Four Associative Disk Designs," submitted to
the Journal of Information Systems, March 1981.

[CHAM81] Chamber line, D.D., et. al., "Support for Repetitive
Transactions and Ad Hoc Queries in System R," ACM Transac­
tions on Database Systems, Vol. 6, No. 1, March, 1981.

[DEWI79] DeWitt, D.J., "DIRECT- A Multiprocessor Organization
for Supporting Relational Database Management Systems," IEEE
Transactions on Computers, June 1979, pp. 395-406.

[GORS80] Gorsline G.W., Computer Organization: Hardware/Software,
Prentice-Hall, 1980, p. 149 •

[GRAY78] Gray ,J .N., "Notes on Database Operating Systems",
Report RJ2188, IBM Research, San Jose, California, 1978.

[GRIF79] Griffiths Selinger P., M.M. Astrahan, D.D. Chamberline,
R.A. Lorie, and T.G. Price, "Access Path Selection in a
Relational Database Management System," Proc. of the ACM
SIGMOD 1979 International Conference of Management of Data,
May 1979.

[HAWT79] Hawthorn, Paula, "Evaluation and
Performance of Relational Database

Enhanceme·nt of the
Management Systems,"

38

Electronics Research Laboratory, University of California at
Berkeley, Memo.No. M79-70.

[HAWT80] Hawthorn P. and D.J. DeWitt, "Performance Evaluation of
Database Machines," To appear IEEE Transactions on Software ~ ..
En~ ineer ing.

[HELL81] Hell, w., "RDBM A Relational Data Base Machine: .~.
Architecture and Hardware Design," Proceedings of the 6th
Workshop on Computer Architecture for .. Non-Numeric Process­
ing, June 1981.

[MADN79] Maqnick S.E., "The INFOPLEX Database Computer: Concepts
and Directions," Proc. IEEE Computer Conference, Feb. 1979.

[KANN78] Kannan, Krishnamurthi, "The Design of a Mass Memory for
a Database Computer," Proc. Fifth Annual Symposium on Com­
puter Architecture, Palo Alto, CA. April 1978.

[KIBL80] Kibler T.R., "APCAM- A Practical Cellular Associat.ive
Memory," Fifth Workshop on Computer Arch •. for Non-numeric
Processing, Mar., 1980.

[KNUT75] Knuth D~E., The Art of Computer Programming
and Searching Addison-Wesley, 1975, p. 160.

[LEIL78] Leilich H.O., G. Stiege, and H.Ch. Zeidler,
Processor for Data Base Management Systems,"
Conference on Very Large Databases, 1978.

Sorting

"A Search
Proc. 4th

[LIN76] Lin, S.C., D.C.P. Smith, and J.M. Smith, "The Design of
a Rotating As soc ia tive Memory for Relational Database Appli­
cations," TODS vol. 1, No. 1, pages 53- 75, Mar. 1976.

[MINS72] Minsky N., "Rotating Storage Devices as Partially Asso­
ciative Memories," Proc. 1972 FJCC.

[OZKA75] Ozkarahan, E.A., S.A. Schuster, and K.C. Smith, "RAP
Associative Processor for Database Management," AFIPS
Conference Proceedings, vol; 44, 1975, pp. 379 - 388.

[OZKA77] Ozkarahan, E.A., Schuster, S.A. and Sevcik,
formance Evaluation of a Relational Associative
ACM Transactions on Database Systems, Vol. 2,
1977. Commmunications ACM 17, 7 , July,l974.

K.C., "Per­
Processor,"
No.2, June

[PARH72] Parhami B., "A Highly Parallel Computing System for
Information Retrieval," Proc. 1972 FJCC.

[PARK71] Parker J.L., "A Logic per Track ~etrieval System," IFIP
Congress, 1971.

[SA0078] Sadowski P.J. and S.A. Schuster, "Exploiting Parallelism

.,,
·'

....

39

in a Relational Associative Processor," Fourth Workshop on
Computer Arch. for Non-numeric Processing, Aug. 1978.

[SLOT70] Slotnik, D.L. "Logic per Track Devices" in "Advances in
Computers", Vol. 10., Frantz Alt, Ed., Academic Press, New
York, 1970, pp 291 - 296.

[STON76] Stonebraker, M. R. et. al., "The Design and Implementa­
tion of INGRES'," TODS, Vol 1, No. 3, September 1976.

[STON79] Stonebraker, M. R., "MUFFIN: A Distributed Database
Machine," University of California,. Electronics Research
Laboratory~ Memo UCB/ERL m79/28, May, 1979.

[SU75] Su, Stanley Y. W., and G. Jack Lipovski, "CASSM: A Cellu­
lar System for Very Large Data Bases", Proceedings of the
VLDB, 1975, pages 456 - 472.

[UPCH79] Upchurch E.T.; J .R. Bitner, D.P.S Charlu, and A.G. Dale,
"A Reconfigurable Database Machine: Architecture and Algo­
rithms," Institute for Computer Science and Computer Appli­
cations, The University of Texas at Austin, March 1979.

[WONG76] Wong, E. and K. Youssefi, "Decomposition A Strategy
for Query Processing," ACM Transactions on Database Systems,
Vol. 1, No. 3, September 1976, pp. 223-241 •

l, 'l". ,,_.~

., : ; <"'!

40

8. Appendix !. - Execution time for Projection Operation

Assumptions:
Relafion starts with ~ blocks
Projected relation contains N blocks where N<R
The merge factor utilized is z ·

The algorithm is broken into two phases. Phase 1 starts with R

run~ of length 1 and produces R/N runs of length N. Since we are

developing an upper bound on the execution time of the operation,

we assume that in forming the R/N runs of length N no duplicates

are found. The first phase has logz(N) stages with run lengths

2 of L, z, Z , ••• , N blocks respectively. Since no duplicates are

found (or eliminated) during this phase, all .R pages are read and

written during each st'age. Thus, each of the logz(N) stages

requires:

2*TDAC + 2*([R/19]-l)*TSK + 2*R*(TIO+TOIO) + R*TBLK ms.

The second phase starts with R/N runs of length N and ter-

minates with one run of length N using a Z way merge. Assuming

that duplicates are uniformly distributed and that the number of

blocks is reduced by a factor of z at each stage, then this phase

has k=logz(R/N) stages. Thus, zk = R/N. During the first stage

Zk*N pages are read and processed and zk-l*N pages are written.

In the second stage zk-l*n pages are read and processed and zk-

2*N pages are written. The k th. stage begins by reading and

processing z1 *N pages and ends by writing z 0 *N pages. Summing

the operations performed during the k stages yields:

(R-N)/(Z-l)*{Z*(TIO+TOIO+TBLK+TSK/l9) + (TIO+TOIO+TSK/l 9)}

+ logz(R/N)*2*TDAC

We have assumed that. one of every 19 pages read or writ ten

41

requires a track-to-track seek and that every stage requires one

random disk access to begin reading blocks and one to begin writ-

ing blocks.

. .. ,,.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LAB ORA TORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

I~
' ~t.

