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ABSTRACT 

The rapid advances in the development of low-cost computer 
hardware have led to many proposals for the use of this hardware 
to improve the performance of database management systems. Usu­
ally the design proposals are quite vague about the performance 
of the system with respect to a given data management applica­
tion. In this paper we develop an analytical model of the per­
formance of a conventional database management system and four 
generic database machine architectures. This model is then used 
t6 compare the performance of each type of machine with a conven­
tional DBMS. We demonstrate that no one type of database machine 
is best for -executing all types of queries. We also show that 
for several classes of queries certain database machine designs 
which have been proposed are actually slower than a DBMS on a 
conventional processor. 
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1. Introduction 

The rapid advances in the development of low-cost computer 

hardware have led to many proposals for the use of this hardware 

to improve the performance of database management systems. In 

general, each1 of the proposals has been quite vague about the 

performance of the proposed design with respect to other database 

machine architectures and database management systems on conven-

tional processors. There are only two exceptions. In [OZKA 77] 

the performance of RAP [OZKA75] is compared with that of a con­

ventional system and in [BANJ78] the performance of the DBC 

[BANE78] and System R [ASTR76] are compared for selection opera-

tions. We feel that most existing database machine desi9ns are 

examples of what we term "architecture directed" research. That 

is, database machine designers usually begin by designing what 

they consider to be a good architecture ·which they feel will 

efficiently execute one or two database operations. Afterwards 

they develop the· algorithms to support all the required database 

operations using the basic primitives of their architecture. As 

an example consider associative disks (or logic-per-track dev-

ices) [SLOT70] from which RAP, RARES [LIN76], CASSM [SU75], and 

to some extent, DBC are derived. The basic design goal of the 

associative disk design was the efficient execution of the opera-

tion to select records that satisfy a certain criterion. Given 

this building block, other relational database operators such as 

join, project, and aggregate functions can be implemented with 

l Including DIRECT [DEWI79]. 
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varying degrees of success by combining the processing capabili­

ties of the host with those of the back-end database machine. 

In an earlier paper [HAWT80], we examined the performance of 

several of the proposed database management machines (associative 

disks, RAP, CASSM, DBC, DIRECT, and CAFS [BABB79]) with respect 

to several INGRES [STON76] queries. We demonstrate that no one 

database machine is best for executing all types of queries. For 

one class of queries we show that the level of performance 

improvement achieved does not warrant use of a database machine. 

While we feel that [HAWT80] represents a important first step in 

database machine performance comparison, it has several deficien­

cies that we intend to correct in this paper. 

The main problem with [HAWT80] is that specific machine 

designs were evaluated rather then machine types. This is diffi­

cult for several reasons. First the architects of the machines 

always claim "foul" as they feel that the way we interpreted that 

their machine would process a complex query (e.g. aggregate func­

tions) was not what they had in mind (though generally they never 

specified how to process such queries) • A second problem with 

using specific machines is that many of the machines we tried to 

evaluate are "moving targets". Generally, database machine 

designers, in evaluating their architecture, find that it does 

not do well on a particular operation and consequently add a new 

wart to fix each bottleneck discovered. A third problem with 

comparing specific machines is that ·many of the proposed designs 

are rooted in specific, and frequently different, technologies. 

In attempting to compare these designs we often found ourselves 
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comparing "apples and oranges" 

Another problem with [HATH80] is that the number of bench­

mark queries used was small (only 3). Furthermore, each query 

was applied to a small database. This makes it hard to determine 

whether the results obtained are representative of the perfor­

mance of the machines over a range of database sizes and queries. 

Finally, the evaluation made no attempt to account for MIMD 

activity which some, but not all, of the machines can. support." 

In this paper, instead of simply extending the analytical 

model used in [HAWT80] to compare the performance of specific 

machines over a wider range of tests, we began by specifying five 

generic classes of database machine architectures which are 

described in Section 2. The first class is a DBMS running on a 

conventional computer. It is included because many of the "data­

base machines" of the future will indeed be highly tuned DBMS 

software running on a single processor on top of a database 

operating system [GRAY78] • 

In Section 3, we describe our analytical performance model 

and introduce the various parameters that will be used to evalu-

ate the different architecture types. Section 4 contains an 

evaluation of the five qlasses of machines on three representa­

tive query types for a variety of database sizes and queries. 

·• Our conclusions and suggestions for future research are presented 

in Section 5. 

It is important to notice that we have completely ignored 

one class of proposed database machine architectures. This class 

contains those machines that are not feasible using today"s 
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technology and that may never become cost effective. These 

machines can be spotted by claims of join times which are linear 

(or even less than linear) in the size of the source relations. 

While we are not saying that research on exotic machines is of no 

interest, we feel that any machine whose operation requires 

either as many (or more) processors as tuples in the smaller of 

the two relations being processed or an associative memory large 

enough to hold one of the relations, is a machine that will most 

likely never be feasible. Therefore, we ignore these machines in 

our performance evaluation. 

2. Five Generic Classes of Database Machine Architectures 

For the purpose of this evaluation, we have divided those 

database machine architectures which are feasible to construct 

using present day technology into five generic classes which we 

will describe in this section. These classes. are: 

CS - conventional systems 

PPT - processor-per-track systems 

PPH - processor-per-head systems 

PPD - processor-per-disk systems 

MPC - multiprocessor cache systems 

The complexity of the database machines represented by these 

classes range from a conventional processor running a database • 

operating system (CS) to a multiprocessor organization with a 

three level memory hierarchy (MPC). We have assumed that the last 

four classes of machines are connected to a host processor. This 

processor serves two important functions. First, it accepts and 
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compiles queries from the users of the system. ·Second, depending 

on the functionality of the database machine, it assists in the 

execution of certain queries which are too complex for the back-

end to handle alone. For example, the PPT, PPH, and PPD systems 

• provide only the cap.ab ili ty of processing selection operations. 

Therefore, in order to process a query which includes an aggre­

gate function, the capabilities of the host must be used in con­

junction with those of the database machine. This will be 

described further in Section 4. 

2.1. Conventional Systems (CS) 

We feel that in the future many database management system 

applications will be best served by a conventional relational 

database management system running on a single processor. Thus, 

our first class of "database machines" is such a system and is 

shown in Figure 1. We have assumed that the CS will support com­

piled user queries and sophisticated query execution strategies 

such as those employed in System R [GRIF79]. Such strategies 

include support of indices, sort-merge join operations, and 

sophisticated query optimization techniques. Furthermore, we 

have assumed that the operating system for the machine is tuned 

to the needs of a DBMS in order to minimize the overhead of I/0 

operations and other database activities such as locking. 

2.2. Processor-~-Track (PPT) Machines 

The second class of database machines are those based on a 

mass storage device 

Each cell has a data 

which consists of a large number of cells •. 

track, some processing logic which can 
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process selection operations "on the fly", and is connected to a 

global data bus on which it places selected tuples for transrnis-

sion to the host processor. Coordination of the operation of the 

cells is performed by a controlling processor. The organization 

of this approach is shown in Figure 2. 

In this organization tuples are stored bitwise along each 

track. The processing logic scans the data as the track rotate s 2 

and places se lee ted tuples in a small output buffer memory as so-

ciated with the head. After a buffer fills, additional logic 

attempts to place its contents on the output bus for transmission 

to the host. In the event that the processor logic is not able 

to output a selected tuple (because the bus is busy and the tern-

porary storage buffers are full) processing is suspended. In 

this case processing will be resumed some number ( 1 or more) of 

revolutions later (i.e. after a buffer is output to the bus). 

This class of machines includes the early PPT designs by 

Parker [PARK71], Minsky [MINS72], and Parharni [PARH72]. While 

the PPT architecture may appear similar to that of RAP and CASSM, 

the results presented in Section 4 may not be representative of 

these two machines (see [HAWT80] for a performance comparison of 

these machines). PPT machines were pioneered by Slotnick in 1970 

[SLOT70] who suggested using a track of a fixed head disk as the 

2 Because of potential disk errors, the way any database 
machine which processes data "on the disk" must operate is to 
read an entire block of data into a buffer, apply a CRC, and if 
the block is "good" apply the selection criterion to the tuples 
in the block [KIBL80]. With two block buffers, loading and pro­
cessing can be overlapped so that data can still effectively be 
processed "on the fly". 
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unit of storage. Since fixed head disks are being phased out of 

production, the reader may question whether this class of 

machines in indeed viable. . Recent research has shown that by 

using magnetic bubble memories rather than fixed head disks a 

similar degree of functionality can be obtained with only a small 

reduction in performance [BORA81]. 

2.3. Processor-~-Head (PPH) Machines 

The third class of database machines are those that associ­

ate processing logic with each head of a moving-head disk as 

illustrated in Figure 3. We term this class of machines 

"processor-per-head" machines. 

In a PPH database machine, data is transferred, in parallel, 

over 1 bit wide data lines from the heads to a set of processors. 

Each processor applies the selection criteria to its incoming 

data stream and places selected tuples in its output buffer. In 

such an organization an entire cylinder of a moving head disk is 

examined in a single revolution (assuming no output bus conten­

tion). As in PPT organizations additional revolutions may be 

needed to complete execution of the query if an output buffer 

overflows. 

The DBC project adopted the PPH approach over the PPT 

approach because PPT devices were not deemed to be cost-effective 

for the storage of large databases (say more than 1010 bytes) 

[ KANN 78] • Another possible reason for taking this route is the 

apparent lack of success of head-per-track disks as secondary 

storage devices. Moving head disks with parallel readout, on the 
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other hand, seemed an attractive and feasible alternative. The 

Technical University of Braunschweig in cooperation with Siemens 

has actually has built one for use in the Braunschweig search 

machine SURE [LEIL78]. 

2.4. Processor-~-Disk (PPD) Machines 

Unlike the PPT and PPH approaches, the PPD organization 

utilizes a standard disk drive. ·In this organization a processor 

(or set of processors [LEIL78]) is placed between the disk and 

the memory device to which the selected tuples are to be 

transferred as shown in Figure 4. This processor acts as a 

filter [BANC80] to the disk by forwarding to the host only those 

tuples that match the selection criteria. At first glance it 

seems as though this approach is so inferior to the others that 

it does not merit any attention. However, it has the advantage 

that for a relatively low price one can obtain the same filtering 

functionality (but not the same performance) as the PPT and. PPH 

designs. 

2.5. Multi-processor Cache (MPC) Systems 

The final class of database machine architectures exchange 

the ability to process selection operations "on-the--fly" for more 

functionality in the processing elements. The components of this 

organization are a set of small but general purpose processors 

and a three-level memory hierarchy. The top level of the memory 

hierarchy consists of the internal memories of the processors 

which are assumed to be large enough to hold both a compiled 

query and several pages of data. At the bottom level of the 
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memory hierarchy are the mass storage devices used to hold the 

relations. in the database. The middle level of the hierarchy is 

a disk cache which can hold one of page of data for each proces-

sor. A page of arelation is the unit of transfer between all 

levels of the memory hierarchy. 

The bottom two levels of the memory hierarchy are connected 

together with a bus as shown in Figure 5. The interconnection 

device between the processors and the disk cache has two impor­

tant properties. First it permits each processor to simultane­

ously read/write its block of the cache. Second it allows all 

processors to simultaneously read the same block of the cache 

(This property can also be viewed as broadcasting the page to all 

the processors). 

There are several active database machine projects that have 

selected this type of architecture: DIRECT [DEWI79] which is 

presently operational at Wisconsin, INFOPLEX [MADN79], an MIT 

project has a multilevel memory processor hierarchy, the RDBM 

[HELL81] project at Braunschweig, and the database machine pro-

ject at Texas which utilizes the TRAC [UPCH79] processor. 

3. Specifications of the Database Machine Models 

In this section we describe the physical and logical charac­

teristics of the five classes of database machine architectures 

that we mode led. 
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3.1. Physical Characteristics 

3.1.1. Mass Storage Device Specifications 

The mass storage device employed in our cs, PPD, PPH, and 

MPC models is based on the IBM 3330 disk drive [GORS80]. This 

devi'ce has 404 cylinders with 19 tracks (recording surfaces) per 

cylinder. Each , track holds 13,030 bytes. The rotational speed 

of this disk drive is one revolution every 16.7 ms. The average 

access time to a random block, TDAC' equals 38.6 ms (the time 

required to seek 202 cylinders and wait 1/2 revolution). The 

track-to-track seek time, TSK is 10.1 ms. Table 3.1 summarizes 

these parameters. 

parameter 

BSIZE 
DCYL 
TIO 
TDAC 
TSK 

Table 3 .1 Disk parameters and values 

description 

block size 
# blocks/cylinder 
block read/write time 
average access time 
track-to-track seek time 

value 

13 , 0 3 0 bytes 
19 
16.7 ms. 
38.6 ms. 
10.1 ms. 

3.1. 2. Conventional and Host System Specifications 

The processor for the conventional system (and the host pro-

cesser for the back-end systems) is assumed to be a 1 MIP proces-

sor such as a VAX 11/780. As described in the Section 2, we have 

assumed that the CS machine runs a relg.tional database management 

system which supports compiled queries and sophisticated query 

optimization and execution techniques. We have also assumed that 

performance is enhanced through the support of a database 
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operating system in order to minimize overhead costs. Finally, we 

have assumed that a slightly rnc)d if ied version of the same system 

is used as the host processor for all tbe back end systems. The 

parameters which characterize the operation of this system are 

presented below in Table 3.2. 

The values presented in Table 3.2 represent a combination of 

measurements performed on INGRES [HAWT79], System R [CHAM81], and 

some "back of the envelope" calculations. TSC represents the time 

to perform a simple scan (e.g. a selection operation) on a block 

of data. The time required for such an operation is obviously 

dependent on such factors as tuple length and query type (e.g. 

whether the type of the attribute being compared is a string or 

integer). If · there are 1'30 tuples in each block, then 10 

ms/block· permits approximately 75 instructions for processing 

each tuple. The time required to per form a complex operation 

such as internally sorting a page or merging two pages in order 

parameter 

Tsc 

TBLK 

·TOIO 

icODE_GEN 
INDEX 

TMSG 

Table 3. 2 CS parameters. and values 

description 

cpu time to scan the tuples· 
in a block 
cpu time for a complex 
operation on a block 
cpu time to initiate an 
I/O operation 
cpu time to compile a query 
time required to fetch and 
examine an index page 
cpu time to send/receive a 
message from the back-end 

value 

10.0 ms. 

95.0 ms. 

2. 0 ms. 

152.0 ms. 
67.0 ms. 

2.0 ms. 
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to perform a merge sort is represented by TBLK" [KNUTH75] shows 

that for a page containing k tuples at most 2k tuple comparisons 

and moves are required to merge two sorted pages. Thus, for 130 

tuples/block, 95 ms. appears to be a realistic estimate for TBLK" 

Even though we have assumed that a database operating system 

will minimize system overhead, some time must be associated with' 

processing an I/O request or sending a mes$age to the database 

machine. The overhead associated with these two operations is 

represented by T010 and TMSG respectively. 

Finally, a time must be associated with compiling a query, 

TCODE GEN, and processing an index T INDEX. We have assumed that 

compiling a query requires at least one I/O op~ration (with its 

associated overhead) ~nd an amount of cpu time equivalent to 

TBLK" Examining an index is assumed to require one 3 I/O opera­

tion to fetch the appropriate block.of the index from disk·plus 

an amount of cpu time equivalent to Tsc. 

3.1.3. PPD, PPH, and PPT Specifications 

For the PPD, PPH, and PPT database machine designs we have 

assumed that the processors compare a data stream from the disk 

with another data stream that contains the query which has been 

compiled into a format compatible with that of the disk data 

stream. Selected tuples are saved in a small output buffer for 

transmission over a common bus to either a host or controlling 

processor • We have assumed that a processor is fast enough to 

process the selection operation at the speed of the incoming data 

3 A figure of 2 or 3 is probably somewhat more accurate 

I 



13 

stream. Tnus, the time for a PPT, · PPH, or PPD processor to pro­

cess a block is TIO" For most conventional disks a processor has 

0 approximately 1. 25 microseconds to process each incoming byte~ 

Assuming that it takes 3 instructions to examine a byte (1 

instruction for byte comparison with auto-increment, 1 to test 

for loop termination, and 1 for the branch instruction) and that 

every byte must be examined, then each processor for the PPT, 

PPH, and PPD designs must be approximately a 2. 4 MIP processor. 

The PPD database machine design was modeled as one IBM 3330 

disk drive and one processor. This design requires TIO ms. to 

process each track (block) occupied by the relation being 

searched. 

The PPH database machine was modeled as a modified IBM 3330 

disk drive with 19 processors (one per head) and two output 

buffers per head~ Each output buffer is capable of holding one 

tuple. 4 Since this design has a processor associated with each 

head, it can process an entire cylinder (19 blocks) in TIO ms. 

In order for the PPT design to have similar storage capacity 

and performance characteristics as the PPH and PPD designs;. we 

modeled it as a 3330 disk drive with one processor for each of 

the 7676 tracks (404 cylinders * 19 tracks/cylinder) and two out-

put buffers per head. While constructing such a device is prob-

ably out of the question, modeling 
\ 

the PPT design this way 

enables us to establish a performance baseline by which the per­

formance of the other database machines can be gauged. Since 

4 [BORA81] has shown that the size of the·buffers has minimal 
impact on performance. 
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there is one processor per track, the entire disk can be searched 

ih -T
10 

ms. if there is no contention among the processors for 

access to the output channel. 

3.1.4. MPC Specifications 

The MPC database machine was modeled as nineteen5 1 MIP pro-

cessors, a cache consisting of nineteen blocks of RAM, and one 

standard IBJ."\1 3330 disk. Since the processors have the same per-

formance as the processor used in the CS, the values for TSC and 

TBLK remain the same. However, .before the processors can examine 

the contents of a cylinder of the disk, one block must be moved 

to the local memory of each processor. This operation requires 

three steps. First the heads must be positioned to the proper 

cylinder. This step requires either TDAC or TSK ms depending on 

the previous position of the heads. Second, the contents of the 

cylinder must be transferred to the disk cache. This requires 

19*T
10 

·ms. _Finally, a parallel read is performed by the proces­

sors requiring an additional T10 ms. Selected tuples are placed 

on the bus connecting the processors to· the host processor. 

3.1.5. Output Channel Specific~tions 

As discussed in Section 2, all processors for the PPT, PPH, 

PPD, MPC were assumed to be connected to a single output channel 

for the transfer of results to the controlling or host processor. 

We assumed that this output channel operated i}1dependently and 

asynchronously from the cell processors. The bandwidth of this 

5 We selected 19 processors simp.ly because that is how many 
processors the PPH design has. 
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channel was assumed to be 2.0 Mbytes/second based on. the maximum 

bandwidth of the VAX ll/780"'s I-1ass Bus Adapter. Thus, the 

transfer time for one block, TBT' is 6.5 ms. It should be noted 

that the output channel must be as fast as. the disk data transfer 

rate, although it can be faster. The disk transfe~ rate deter-

mines the processor speed for the processors employed in the PPT, 

PPH, and .PPD designs, while the output channel bandwidth affects 

the rate at which output buffers in the processors will be emp-

tied (recall that loading and unloading of the buffers are asyn-

chronous operations}. 

3.2. Operational Characteristics 

For the PPD, PPH, and MPC database machine designs relations 

are stored in such a manner as to occupy the minimum number of 

cylinders possible. That is, tuples from a relation must first 

fill an entire track before a second track is used, then an 

entire cylinder, etc. In this way, the number of cylinders which 

must be searched to execute a selection operation on a relation 

is minimized and non-essential seek operations are eliminated. 

As first suggested by Sadowski and Schuster [SAD078], concurrency 

can be maximized in the processing of a selection operation in a 

PPT database machine if tuples from a relation are uniformly dis-

tr ibuted across all tracks. 

4. Performance Comparisons 

In this section we benchmark the five database machine 

designs on selection, join, .and aggregate function operations. 

These operations were chosen as each is representative of a class 
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of query types. Selection queries are representative of those 

types of queries which can be performed in O(n) time for n tuples 

on a single processor. Deletion, which can be viewed as a negated 

selection, can also be performed in one pass through the rela-

tion. The performance of the machines executing join queries is 

representative of those operations (e.g. division) involving two 

relations and requiring either O(nlogn) or O(n2 ) time on a single 

processor. Finally, aggregate function queries serve as a bench­

mark for complex operations which reference a single relation yet 

require O(nlogn) time on a single processor (e.g. projection with 

duplicate elimination). 

The performance evaluations which are presented below meas­

ure the total system work necessary to process a query not the 

response time of the database machine to the query. It is cer­

tainly the case that certain operations can be overlapped. How­

ever, determining (and explaining) exactly which processing steps 

can· be overlapped significantly complicates the descriptions 

below. Furthermore, total system work is probably a more accu­

rate measure of the resources consumed by a query than response. 

time. 

In this section the number of disk blocks occupied by a 

relation R will be denote~ IRI. The selectivity factor of selec­

tion operations is denoted by f. 

4.1. Selection Queries 

The processing of a selection operation can be divided into 

two cases depending on whether a secondary index exists on the 
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attribute being qualified. We have assumed that the existence of 

an index on the attribute being qualified reduces both the number 

of cylinders that must be searched (from I Rl /19 to I Rl *f/196} and 

the number of blocks that must be processed (from I Rl to I Rl *f). 

Since the performance characterization of each system in the 

presence of indexing is a straightforward modification of the 

non-index case, they have not been included. 

4.1.1. cs 

Processing a selection operation on a conventional system 

involves three main components: query compilation, positioning 

the heads to the proper .cylinder, and processing each block occu­

pied by the relation. Query compilation requires TCODE GEN ms. 

Head rovement requires TDAC for the initial head.movement and one 

track-to-track seek (T5K} for each additional cylinder. The time 

to process each block occupied by R consists of the I/O time to 

read the block, TIO' the cpu time required by the operating sys­

tem to handle the I/O operation, TOIO' and the cpu time required 

to apply the selection operation to the block, Tsc· We have 

ignored the time to display the results of the query as this will 

be very device dependent. 

TSEL cs = TCODE GEN + TDAC - -
+ <[IRI/19]-l}*TsK + IRI*<Tro+Toro+Tsc> 

6 Recall that there are 19 blocks/cylinder. 
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4.1. 2. PPT 

Execution of this query on the PPT machine will begin with 

the host compiling the query, TCODE GEN' and then sending the 

compiled query to the database machine for execution. Sending the 

query is assumed to take ,TMSG ms. of host time in the form of 

operabing system overhead. Since the PPT machine can examine 

every block in one revolution of the disk, the qualifying tuples 

will be located in one revolution. However, the execution time 

will be the maximum of the time for one disk revolution and the 

time to return all but the last block of selected tupl~s to the 

host. The time to return each block of.selected tuples consists 

of two components: the time, TBT' to send each block to the host 

as determined by the transfer rate of the bus and the cpu time 

consumed by the operating system to process each block returned, 

TMSG. The time to process the query is thus:· 

TSEL PPT = TCODE_GEN + TMSG 

+MAX {T10 , ([!RI*f]-l)*(TMSG+TBT)} + (TMSG+TBT) 

Since the whole database can be searched in one revolution, an 

index will not reduce the execution time of the query. 

4.1. 3. PPH 

Processing this query is similar to the PPT design except 

that processing each cylinder occupied by the relation requires 

T10 ms. In addition, the time to seek to the first cylinder 

occupied by the relation and the track-to-track seek times must 

be incorporated. The execution time is thu.s: 

.. 
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TSEL PPH = TCODE GEN + TMSG + TDAC - -
+MAX{< [ 1 Rl /191 -1) *TsK + [ 1 Rl /191 *T10 , < [I Rl *fl -1) * (TMSG+TBT)} 

+ (TMSG+TBT) 

4.1. 4. PPD 

Execution on PPD machines will be similar to the PPT and PPH 

designs except that now one reyolution will be required for e~ch 

block (track) occupied by the relation referenced. Therefore, 

the execution time for the PPD design will be: 

TSEL PPD = TCODE GEN + TMSG + TDAC - -
+ MAX{<[IRI/19.]-l)*TsK+ IRI*T 10 , [jRj*fl-l)*(TMSG+TBT)} 

+ (TMSG + TBT) 

4.1. 5. MPC 

Although the MPC design has 19 processors which can be used 

to process selection queries, in order for the blocks of R to be 

processed they must first be moved into the disk cache. Once 

there, processing the blocks from the cylinder takes two steps. 

First the processors each read (in parallel) a block from the 

cache. This step will require T10 ms. The second step is for 

each processor to apply the selection condition of the query to 

extract the qualified tuples. This step will require TSC ms. 

Since processing one cylinder can be overlapped with loading the 

contents of the next cylinder into the cache, the processing time 

of the query can be modeled as the time required to move all 

cylinders containing a block of R into the cache plus the pro-

cess ing time of the last cylinder. As with the other designs, we 



20 

have assumed that processing can be overlapped with transmission 

of the selected tuples to the host. 

time for the MPC design is: 

Therefore, the ex~cution 

TSEL MPC = TCODE GEN + TMSG + TDAC - -
+ MAX{([ 1 Rl /191 -1) *TsK+ I Rl *Tr0 +Tr0 +Tsc' 

([IRI*f]-l)*(TMSG+TBT)} 

+ (TMSG + TBT) 

4.1.6. Evaluation 

Using these formulas we evaluated the performance of each of 

the database machine designs for a number of different relation 

sizes over .a range of selectivity factors. The results from one 

~xpetiment for a relation consisting of 50,000 one-hundred byte 

tuples are presented in Tables 1 and 2 below. Table 1 contains 

the performance of each machine for four different selectivity 

factors when no index exists on the attribute being qualified. 

Table 2 presents their performance when an index does exist. 

These tests indicate some interesting results. First, we 

Selectivity 
of Query 

.0001 

.001 

.01 

.1 

Table 1 
50,000 Tuples of Size 100 bytes 

No Index Case 

Factor Execution Time 
cs PPT PPH 

11.398 .179 .751 

11.398 .179 .751 

11.398 .188 .751 

11.398 .486 .751 

in Seconds 
PPD MPC 

6.801 6.818 

6.801 6.818 

6.801 6.818 

6.801 6.818 

·•,. 

T~·\_;~.;;:::. 

~ ! : 
; ., . .' ,. 

' :~,:· 
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Table 2 
50,000 Tuples of Size 100 bytes 

Index Case 

~ 

Selectivity Factor Execution Time in Seconds 
of Query cs PPT PPH PPD MPC 

.0001 .287 .179 .285 .285 .312 

.001 .287 .179 .285 .285 .312 

.01 .373 .188 .294 .335 .362 

.1 1. 396 .486 .592 .939 .965 

feel that if the complexity of the PPT design is considered, it 

is · not a cost-effective design even when evaluated on the opera-

tion for which it was specifically designed. Its performance is 

superior {a factor of 5) to the PPH design for the case of a low 

selectivity factor and no appropriate index. In the remaining 

cases the PPH design is almost as fast. It is especially.impor-

tant to notice how the performance of the · PPT design degrades 

with higher selectivity factors {.01 to .1) due to contention for 

the channel to the host. Another interesting observation is the 

very good performance .of the CS and PPD designs when an index 

exists on the attribute being qualified. If access to a rela-

tional database is such that the appropriate indices can always 

be maintained the CS and PPD designs are undoubtably the most 

cost-effective for processing selection queries. If the 

appropriate indices cannot always be maintained than the overall 

performance of the PPH design makes it the most reasonable 

choice. 
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4.2. Join Queries 

While each of the database machines processed selection 

queries in a basically the same manner, the algorithms used for 

processing join queries are very different. Let R and S be the 

two relations to be joined. IRI and lSI will denote the number 

of disk blocks occupied by both relations-. The length of the 

tuples in S is represented by S len. 

4. 2.1. cs 

The join algorithm used by the CS design is a sort-merge 

algorithm that was shown to be one of the best join algorithms 

for a single processor system in [BLAS77] . The first step of 

this algorithm is to sort both relations on the joining attribute 

(assuming neither is already sorted on the app~opriate attri-

bute). We have assumed that the two relations are sorted using a 

4 way external merge sort algorithm. Execution of the· algorithm 

requires log 4 (X) phase.s. During each phase all pages are read 

and writ ten (hence the factor of 2) and approximately X/2 two-

page merge operations are performed. The time.to sort a relation 

with comprised of X pages is 

log 4 (X),\.2* { (TDAC+ ( [X/19] -1) *TsK+X* (TI0 +TOIO)} 

+ log 4 (X) * (X/2}*TBLK 

The second phase of the sort-merge join algorithm is to 

merge the two sorted relations emitting tuples that satisfy the 

join condition. We have also assumed that the merge step of. the 

algorithm can be performed by reading. each block of both sorted 

relations exactly once. While this assumption is generally 
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valid, there are extreme cases ( ie. all tuples in both relations 

have the same join attribute value) when one of the sorted rela-

tions must be repeatedly read. Finally note we have assumed that 

the sorted relations reside on different cylinders of th~ disk so 

that each time a block of one of the relations is read~ the time 

for an "average" disk access, TDAC, is ace rued. 

The time to execute this algorithm is: 

TJOIN CS = TCODE GEN + TSORT R + TSORT S + TMERGE 

where 

TMERGE = (IRI+ISI)*(TDAC + TIO + TOIO) 

+ ( I R I + I s I ) *T BLK/ 2 

4.2.2. PPT, PPH, and PPD 

Since the only functionality provided by the PPT, PPH, and 

PPD designs is to process selection queries, each of these 

designs process queries by decomposing the query using an algo-

rithm based on Wong~s [WONG76] tuple substitution algorithm. 

Assume that the join operation as specified by the user has the 

form R.a = S.b and that S contains fewer tuples than R. These 

database machine designs will process the query by issuing one 

selection subquery for each tuple in s. The form of this 

subquery will be R.a = X where X is the join attribute value 

from the current tuple in s. The result relation is produced by 

"joining" each tupl~ in S with all the tuples from R returned by 

the execution of its subquery. 

The following formulas express the join execu·tion time for 

the PPT, PPH, and PPD designs assuming that telation S contains 
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fewer tuples than R. The first step is for the host to compile 

the query. Next, for each block in S, the host will read the 

block (TDAC + TOIO + Tro> and then use the database machine to r 

execute a subquery for each tuple in the block. We have included 

a factor of TBLK in the cost of processing each block of S to 

reflect the cost of processing each subquery (finding the next 

tuple in S and forming the result relation). Although we have 

used the notation TSEL PPD (for example) to express the cost of 

performing each subquery, for the results presented in Tables · 3 

and 4 the cost of code generation was not included in the cost of 

executing each subquery. 

TJOIN PPT = TCODE GEN + ISI*{TIO+TOIO+TBLK 

+ (BSIZE/S_LEN)*T . (R)} 
SEL PPT 

TJOIN PPH = TCODE GEN + IS I *TTDAC + TIO + TOIO + TBLK - . 

+ (BSIZE/S_LEN) * TSEL PPH(R)} 

TJOIN PPD = TCODE GEN + ISI*{TDAC + TIO + TOIO + TBLK 

+ (BSIZE/S_LEN) * TSEL PPD(R)} 

If the query issued by the user contains a selection on R and S 

followed by a join of the restricted relations, then the query 

can be executed in two steps. First one of the selections is 

··executed (the host should choose the one which will produce the· 

smaller result relation). For each tuple in the resulting rela­

tion a complex selection subquery combining the join condition 

with the selection condition of the second relation will be exe-

cuted. 
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4. 2. 3. MPC 

The join algorithm used by the MPC design is a block paral­

lel version of the nested-loops algorithm. Execution of this 

algorithm beg ins by having each processor read a different page 

of R. Next all pages of S are sequentially broadcast to the pro-

cessors. As each page of S is received by a processor it joins 

the page with its page from R using· a 2 way "merge". 7 Since the 

number of processors available (19 for MPC) is generally less 

than IRI, this process is repeated [IRI/19] times. Thus, 

TJOIN MPC = TCODE GEN + TMSG + MAX(TEXECUTE JOIN'TSEND RESULTS) 

+ (TMSG + TBT) 

where: 

TEXECUTE JOIN= [IRI/l91{TDAC + 19*TIO + TIO + TDAC 

+ ([ ISI/191-l)*TsK + 2*T10 + lsi*TBLK} 

TSEND RESULTS= ([ IRI*ISI*jsf]-l) * (TMSG+TBT) 

In the formula for TEXECUTE JOIN'. there are [I Rl/19'] phases. 

Each phase begins by having the processors read the next 19 pages 

of R. This requires TDAC + 19*TIO + TIO ms (the final TIO is for 

the parallel read) • Next all of S must be joined with the 

current 19 pages of R. Since TBLK > TIO' reading pages of S can 

be overlapped with their processing except for an initial 2T10 

ms. period. in which the first page of S is transferred first to 

the cache and then broadcast to the processors •. In the formula 

for TSEND RESULTS' jsf represents the join selectivity factor and 

7 We have assumed that the blocks of Rand· S are internally 
sorted on the join. attribute. See [BORA80] for a description of 
parallel update algorithms that always leave blocks sorted. 
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thus IRI*ISI*jsf is the number of pages in the result relation. 

4.2.4. Evaluation 

We quantified the join algorithm performance of the five 

machines through a number of different tests. In Tables 3 and 4 

below, the result of one of those tests are presented. Table 3 

presents the performance of each system when an index on the join 

attribute for R does not exist. The performance of.the PPH and 

PPD designs when an appropriate index exists is illustrated in 

Table 4. For the results presented in Table 4, we assumed that 

only 1 out of every 10 subqueries incurred the cost of processing 

an index request (Tindex). · 

We found these results very interesting for several reasons. 

First is the terrible performance of the PPT, PPH, and PPD 

designs. These results make it clear that, even if the appropri-

ate index exists, that "tuple substitution" ·is not a reasonable 

Table 3 
Relation R: 10,000 Tuples of Size 100 bytes 
Relation S: 3, 000 Tuples of Size 75 bytes. 

No Index Case 

Selectivity Factor Execution Time in Seconds 
of Query cs PPT PPH PPD 

.0001 34.4 83.7 520.2 4120 

.001 34.4 83.7 520.2 4120 

.01 34.4 83.7 520.2 4120 

.05 34.4 83.7 520.2 4120 

MPC 

7.7 

7.7 

7.7 

7.7 

... ·..-
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Table 4 
Relation R: 10,000 Tuples of Size 100 bytes 
Relation S: 3,000 Tuples of Size 75 bytes 

Index Case 

Selectivity Factor Execution Time in Seconds 
of Query PPH PPD 

~0001 220.5 220.5 

.001 220.5 220.5 

.01 220.5 220.5 

.05 247.2 370.5 

way of processing joins.- The consequence is that if the ability 

to per form se lee tions rap idly is the only functionality provided 

by a database machine, theri it is better to ignore the database 

machine and do a sort-merge join on the host. 

Because we were puzzled about the very poor performance of 

the PPT, PPH, and PPD designs (and expect that the reader is 

also), we have broken apart the processing costs in Table 5 for a 

join selectivity factor of .0001. The existence of the appropri-

ate index has been assumed for the PPH and PPD designs. For all 

three designs, the processing time is dominated by the time to 

process the subquer ies. The time in the PPH and PPD designs 

which is devoted to processing subqueries (75% of the total), is 

composed of·70% seek time ahd 30% processing time. While this 

70% figure seems high and consequently might be an area for 

optimization, one only need to look at the performance of PPT 

design (which obviously has no seek time) to see that such 

efforts would be fruitless. 

While the performance of the MPC design clearly indicates · 
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Table 5 

Selectivity Factor = .0001 

Activity 

Query Compilation 

Reading Relation S 

Processing R Index 

Sending Subquery Messages 

Processing Subqueries 

Handling Subquery Result 
Messages 

Percentage of Effort 
PPT PPH PPD 

.18% 

3.3% 

7.2% 

59.7% 

30.4% 

.07% 

1.2% 

9.2% 

2.7% 

75.2% 

11.6% 

.07% 

1.2% 

9.2% 

2.7% 

75.2% 

11.6% 

the need for general purpose processors in the back-end database 

machine, the results are disappointing. Notice that although the 

MPC had 19 times as many processors as the cs, the speed-up fac-

tor was only 4. Other experiments indicated, however, that the 

speed.-factor achieved by the MPC design ranges depending on the 

operand sizes from 1 to 4 with the average 'being approximately 2. 

In fact, a speed factor of 4 is only achieved when one of the 

relations has 19 or fewer pages 

We initially speculated that the relatively poor performanc~ 

of the MPC design was due to a mismatch in processor performance 

and I/O bandwidth. To test this hypothesis, we modified the MPC 

equation to utilize a disk drive with parallel readout. The 

results were very surprisi~g as the performance of the MPC design 

improved by only 3. 5%. Further analysis of the join execution 

time for the MPC design revealed that the· execution time of the 

.. 
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algorithm is dominated by reading, broadcasting, and processing 

pages of the inner relation. The performance of this sequential 

operation cannot be improved by the addition of parallel I/O 

hardware. In fact the only step of the parallel nested loops 

algorithm in which parallel I/0 can be exploited is reading the 

pages of the outer relation~ 

4.3. Aggregate Function Queries 
\ 

There are two basic types of aggregate queries supported by 

relational database systems such as INGRES~ "scalar" aggregates 

and aggregate "functions". Scalar aggregates are aggregations 

(average, max, etc.) over an entire relation. Aggregate func-

tions first divide a relation into non-intersecting partitions 

(based on some attribute value, e.g. sex) and then compute scalar 

aggregates on the individual partitions. Thus, given a source 

relation, scalar aggregates compute a single result while aggre­

gate functions produce a set of results (i.e. a result relation). 

In this section we examine the performance of each machine on 

aggregate function queries. 

4. 3 .1. cs 

The algorithm used by the CS design for executing aggregate 

function queries is to first sort the relation on the partition-. 

ing attribute(s) in order to bring all tuples in the same parti-

tion together. Next a scan is made of the entire relation and the 

value for each partition is computed. Two easy optimizations are 

possible. Assume that a 4 way external merge sort is used to sort 

R. Then; the last phase of the merge sort will be begin with 4 
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runs of length IRI/4. Instead o£ finishing the sort during this 

last phase, the value for each partition can instead be computed. 

The second optimization is that the result of the final· step of 

the sort can be thrown away instead of writing it to· disk. The 

cost of this algorithm is: 

TAGG CS = TCODE GEN + TSORT R + TFORM RESULT 

where: 

TSORT R = (2*log4IRI-l)*{TDAC+([R/19]-l)*TsK> + -IRI*<ToiO+Tio>} 

+ log 4 IRI*<IRI/2)*TBLK 

TFORM RESULT= IRI*TBLK 

· 4 • 3 • 2 • PPT , PPH , and PPD 

These three database machines execute aggregate functions in 

two steps. First the host projects the source relation on the 

part~tioning attribute(s) to form a list of partition identifiers 

using an external merge sort on the partitioning attribute. 8 This 

step causes the source relation to be reduced in size from IRI 

blocks to IN I· blocks. If the size of the projected· tuples is 

PT_LEN, then the number of partitions, P, is INI*BSIZE/PT_LEN. 

Next for each tuple in the projected relation a subquery is sent ~ 

to the database machine. As the selected tbples are returned 

from each subquery the scalar aggregate operation is applied to 

compute the value for the partition. Since each tuple in R will 

be selected by one and only one subquery, the cpu time for 

8 
See Appendix A for a derivation of TPROJECT" For the 

evaluation presented below we have assumed a four \qay merge sort. 
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computing the aggregate partition values can be estimated to be 

IRI*TBLK" Thus the execution time for this query is: 

TCODE GEN + TPROJECT + TSUBQUERIES + IRI*TBLK 

where: 
TPROJECT = log4INI*{ 2*ToAc+ 2*1RI*<TIO+ToiO)+IRI*TBLK) 

+ 2*<[1RI/19]-l)*T } 
SK 

+ log4 (I Rl /IN I) *2*ToAC 

For the PPT design, TSUBQUERIES = p * TSEL PPT (R) 

For the PPH design, TSUBQUERIES = p * TSEL PPH (R) 

For the PPD design, TSUBQUERIES = p * TSEL PPD (R) 

4. 3. 3. MPC 

·In the first stage of the MPC algorithm, each processor 

reads a set of source relation blocks and accumulates one aggre­

gate value for each partition it sees (at most P). This results 

in a number of blocks containing partial results which must be 

combined. The second stage is a parallel "merge" of the blocks 

produced in the first stage to produce the final result. The cost 

of this .algorithm may be computed as: 

TAGG_MPC = TCODE_GEN + TMSG + TEXECUTE + TRETURN RESULTS 

where: 

TEXECUTE = . TFORM PARTIAL RESULTS + TPARALLEL MERGE 

The time to form the partial result blocks consists of a 

component to process R, TPROCESS R' and a component to write the 

partial result blocks to mass storage, T PR IO. Processing R 

beg ins by having each processor read a separate block of R. Each 
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tuple in the block must be placed in the correct partition and 

the aggregate value for that partition must be updated. If the 

partitions are kept in sorted order based on the partitioning ~ 

attribute (s), then a binary search can be used to locate the 

correct partition. However, when a new partition is seen it must 

be placed in its proper place. TBLK ms. seems to be a reasonable 

estimate of the cost of processing the tuples in a block (includ­

ing keeping the partitions in sorted order). Since I Rl is gen- ··· 

erally greater than 19 (the number of processors), this step will 

be repeated £1RI/19] times. Thus, 

If we assume that each processor sees every partition, then 

the first step 6f the first phase will produce 19*INI blocks. 

The cost of writing these blocks to mass storage before the 

parallel merge begins is: 

The parallel "merge" we use in the second stage is not a true 

merge since two partial result blocks are combined to form a sin-
' 

gle result. block. The parallel merge occurs in two steps. First, 

each processor using a 2-way merge sort must form a sorted run of 

the INI blocks it has produced. The time required for this step 

is: 

2*log 2 INI*{TDAC + (INI:-l)*TsK + INI*(l9*TIO + TI0 )} 

+ log2IN I* IN I *TBLK 

Next a pipelined-parallel binary merge (see [BORA80]) is 

... 
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used to combine the 19 runs of IN! blocks into one run of IN! 
blocks. The number of stages used is 1Qg 2 (19). Each processor 

will read two runs of IN 1. pages, merge them, and write a run of 

length IN I . The c.ost of the parallel "merge" is: 

Finally, the cost of returning the results to the host is: 

4.3.4. Evaluation 

The results from evaluating the five designs for a variety 

of different partition sizes on a relation with 50,000 tuples is 

shown in Table 6 below. As indicated by these results, for up to 

50 partitions the subquery approach appears viable for the PPT 

and .PPH designs. It is also interesting to note that the MPC 

design achieves a speed-up factor of 17:1 over the conventional 

system up to 250 partitions. This seems to indicate that as the 

operation to be performed becomes more complex, the impact of 

serial I/O froni the disk is decreased. The performance of the 

MPC algorithm degrades for a large number of partitions because 

we assumed that each processor would see a tuple from every par-

tit ion. Thus, for 5,000 partitions, the result of the first 

phase of the algorithm are 19 partial result relations with 39 

blocks ea·ch.- This relation is twice the size of the original 

relation. 
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Table 6 
50,000 Tuples of Size 100 bytes 

Number of Partitions Execution Time in Seconds 
cs PPT PPH PPD MPC 

5 171.1 101.0 101.2 131.0 10.2 

50 171.1 101.2 127.7 430.1 10 .• 2 

250 171.1 130.0 273.0 1785. 10.3 

500 171.1 162.1 448.0 3473. 19.3 

2500 171.1 273.3 1703. 16828 89.9 

5000 171.1 363.0 3223. 33471 193.2 

5. Conclusions 

From these experiments we are able to draw a number of con-

elusions about these five database machine designs. First, for 

processing selection operations the PPH design is probably the 

most cost effective. ·While the CS, PPD, PPH, and l-lPC designs all 

process selection queries very efficiently when an index ·exists 

on the selected attribute, only the PPH design can provide a rea-

sonable level of performance when an index does not exist. If 

the intended application of the database machine is such that an 

appropriate index can always be maintained then the PPD design is . 

clearly the winner. 

For complex queries, the MPC design with its general purpose 

processors was demonstrated to be the fastest design. However, 

the design we presented clearly has a number of drawbacks. 

First, as indicated by the rather poor speed"-up achieved for 

.3 

" 
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executing some operations, the effective processor utilization is 

very low. As indicated previously the problem seems to stem at 

least partially from a mismatch between processor performance and 

I/O bandwidth. This. lack of sufficient I/O bandwidth also mani-

fests itself in the performance of the MPC when processing selec-

tion queries without the appropriate index. 

These results seem to indicate several avenues· of future 
. 

research. One obvious area that might be worthwhile to investi-

gate is to design a machine which combines the ability of the PPH 

design to process selection queries "on the fly" with the ·ability 

of the MPC design to process complex queries. Such an approach 

may or may not be the solution we are.all seeking. For example, 

maybe the solution instead is to simply use a parallel read out 

disk as the mass storage device for the MPC design. Another, 

possibly fruitful, approach is to look at a database machine 

design in which each active query is run on a separate processor 

using the same algorithms presented for the CS. This is the 

approach taken by the MUFFIN project [STON79]. While this 

approach looks appealing, it may result in problems with data 

placement and poor processor utilization. 

Rather than advocate either approach, we suggest a third 

approach. This begins with a careful examination and analysis of 

the alg0rithms which the architect intends for his database 

machine to execute. 9 We feel that in order to develop a truly 

efficient and cost effective machine one must first develop the 

9 See [BORA80] for one such attempt 
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algorithms and then extract the primitive operations which are 

necessary for an efficient implementation of the algorithms. 

Only after these primitives are known and understood, should one 

attempt to design a machine. 

Finally, we would like encourage people to use our analyti­

cal approach to benchmark their favorite database machine. 

While this approach may not be perfect, we hope that this paper 

has demonstrated that it can produce useful results. 
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8. Appendix !. - Execution time for Projection Operation 

Assumptions: 
Relafion starts with ~ blocks 
Projected relation contains N blocks where N<R 
The merge factor utilized is z · 

The algorithm is broken into two phases. Phase 1 starts with R 

run~ of length 1 and produces R/N runs of length N. Since we are 

developing an upper bound on the execution time of the operation, 

we assume that in forming the R/N runs of length N no duplicates 

are found. The first phase has logz(N) stages with run lengths 

2 of L, z, Z , ••• , N blocks respectively. Since no duplicates are 

found (or eliminated) during this phase, all .R pages are read and 

written during each st'age. Thus, each of the logz(N) stages 

requires: 

2*TDAC + 2*([R/19]-l)*TSK + 2*R*(TIO+TOIO) + R*TBLK ms. 

The second phase starts with R/N runs of length N and ter-

minates with one run of length N using a Z way merge. Assuming 

that duplicates are uniformly distributed and that the number of 

blocks is reduced by a factor of z at each stage, then this phase 

has k=logz(R/N) stages. Thus, zk = R/N. During the first stage 

Zk*N pages are read and processed and zk-l*N pages are written. 

In the second stage zk-l*n pages are read and processed and zk-

2*N pages are written. The k th. stage begins by reading and 

processing z1 *N pages and ends by writing z 0 *N pages. Summing 

the operations performed during the k stages yields: 

(R-N)/(Z-l)*{Z*(TIO+TOIO+TBLK+TSK/l9 ) + (TIO+TOIO+TSK/l 9 )} 

+ logz(R/N)*2*TDAC 

We have assumed that. one of every 19 pages read or writ ten 
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requires a track-to-track seek and that every stage requires one 

random disk access to begin reading blocks and one to begin writ-

ing blocks. 
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