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Abstract 

LBL-1293 

Within perturbation theory we present a microscopic approach to calcu-

late neutron transfer in the scattering of two BCS nuclei. The BCS Hamiltonian 

of the two coupled BCS nuclei is constructed in terms of commuting field opera-

tors. Explicit expressions for the transfer cross sections for a single neutron 

and for two neutrons are obtained. As an example we consider the scattering 

of two mercury ions below the Coulomb barrier. The limits of perturbation theory 

are investigated. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 

ton leave of absence from the Physik Department der. Technischen Universitat 
MUnchen, Munich, West Germany. 
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Neutron Trans~er in Reactions Between Super~luid Nuclei 

1. Introduction 

In the near fUture scattering experiments with heavy ions will be per-

formed in a wide energy range. A large amount o~ in~ormation will be obtained 

and has already been obtained1- 2 ) by varying projectile, target, and scattering 

conditions. For bombarding energies below the Coulomb barrier the relative 

motion between a heavy projectile and a heavy target follows3- 5) a cla~sical 

Rutherford trajectory except at backward scattering: This case excluded, the 
i 

de Broglie wave length ~ of the relative motion is small compared to the nuclear 

radii. Furthermore , the gradient of 71: is small 6 ) compared to unity. For 
I 

energies above the Coulomb barrier the second statement is not met because of 

strong nuclear absorption in the overlap region between projectile and target. 

This leads 7 ) to diffraction scattering and the gross structure of the angular 

distribution shows a diffraction pattern, predominantly of Fresnel type. 

A theoretical treatment of the transition region where the incident 

energy is close to the Coulomb barrier should be accessible ~rom both sides 

although the approach from the low energy side seems to be easier. Treating 

the nuclear distortion between the two heavy ions in perturbation theory one 

still can use the concept of a Rutherford trajectory. Nuclear distortion 

leads
4' 5) to an optical potential which, o~ course, depends on the reactions 

one has in mind. The analysis8 ) of the optical potential is dif~icult if no 

data on the elastic scattering are available. In this case one is forced to 

start from the (model) Hamiltonian and to calculate explicitly the coupling 
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of the two nuclei. In this paper we investigate the coupling of two supercon-

ducting nuclei where an enhanced .transfer is expected because of static pair 

correlations. 

When the nuclei-approach each other their wave functions begin to over-

lap and the two sets of their respective field operators commute no longer. 

One must construct new orthogonal states5 •9 ) which depend on the relative dis-

tance and on the relative velocity. In section 2 we showhow the Hamiltonian 

is expressed in terms of the new operators up to second order in the overlap 

of the wave functions. Explicit expressions for the pairing force Hamiltonian 

are obtained. This model Hamiltonian is used in section 3 to calculate the 

transfer amplitudes for a single neutron and for two neutrons. We also evaluate 

the elastic channel, because, if elastic scattering turns out to be very diffe-

rent from the Rutherford cross section then nuclear distortion can no longer 

be treated by perturbation theory. In section 4 we consider the various 

approximations for the evaluation of the transfer amplitudes. We also show 

the results for the scattering of two mercury ions. Section 5 contains a 

discussion together with some remarks on the kinematics. 

An important question is the interference between Coulomb excitation 

and transfer. In heavy ion reactions the Coulomb field is much too strong10 ) 

to allow Coulomb excitation to be treated in perturbation theory. There are, 

however, indications11 ) that Coulomb excitation can be rather small when the 

transfer takes place. This is possible because of the destructive interference 

between nuclear forces and the Coulomb force. Nevertheless, the transfer into 

excited collective states can be calculated only if Coulomb excitation is 
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taken into .~ccount. However, for, transfer reactions into ground states or 

into non-collective excited states Coulomb excitation may not be so important. 

Having those states in mind we consider in the following the coupling of two 

almost identical superconducting nuclei and we neglect Coulomb excitation. 
J 
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2. Orthonormal States for Neutrons 

The undisturbed eigenstates I ¢ ) of nucleus A are not orthogonal to 
l1 

the states lxv } of nucleus B because the two sets of wave functions overlap. 

Having transfer reactions in mind we confine ourselves to states I ¢Jl > near the 

fermi levels. If the internucleus distance r (see fig. 1) is not too small 

we can expand the corresponding orthonormal states I<P > and lx > in terms of 
)l \) 

the overlap between the undisturbed states 

I <t> > I <t> > L: £* lx > ~ * I<J>A > = ..:. 1/2 + 3/8 £~A £ - . . . 
l1 l1 Jf.ll :ll ~ll 

')( lT A. (1) 

lx > lx > - l/2 L£\)A I<J>A > 
. * . 

= + 3/8 L £1CA £\)A lx.?r> - ·, . . 
\) \) ' 

A X A 
where 

<:;In the appendix we show that for identical nuclei the symmetric expansion (l) is 

equivalent to the introduction of orthonormal states which have a maximal locali-

zation. Furthermore, the symmetric expansion has the advantage of minimizing the 

the renormalization in the elastic channel (see below). The summation indices ?t-

and A should be restricted to the valence states in the neighborhood of the fermi 

levels. An unrestricted summation would lead to overcounting because the two sets 

{ I¢ > J and {I X >} are both complete sets. The nucleon annihilation operator.· tp( ~) 

is expanded as 

tp(r) ="a ~ (r) +"b X (r) 
- ~ l1 l1 - ~ \) \) -

(2) 

where the annihilation operators a
11 

and bv now commute. We insert this expression 

in the Hamiltonian 
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(3) 

with K, UA and UB denoting the operator for the kinetic energy and the potential 

wells of the two nuclei, respectively. W is the residual nuclear interaction. 
. I 

Assuming that I<P
11 

} and lxv } are eigenfunctions of the potential wells 

(4) 

one finds that up to second order in E the single particle component of H is 

given by 

(5) 

, 

where 

(5a) 

are the renormalized single-particle energies and where 

(6) 
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causes single particle tunneling. It is the synmletric expansion (1) which 

* keeps the renormalization small because the overlap £vp £VA has its maximum 

approximately at sp +sA -2tv ~ 0-. 

Assuming W to be a pairing force we evaluate the two-particle component 

of H. Up to second order'in £we find 

H- H sp 

(7) 

As usual v is related to v by time reversal. In deriving (7) we have dropped 

terms leading to single-particle tunneling. We further neglected the renormali-

zation of the pairing strengths GA and GB. Note the repulsive character of 

the two-neutron tunneling part in Hint" One has to keep in mind that the 

relative phase of the operators a and b is arbitrary. The "repulsion" is 

changed into an "attraction" if one makes the transformation a -+ a and b -+ ib. 

The cross section for the transfer is, of course, invariant under this 

transformation. 
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3. Transition Probabilities 

The Hamiltonian H can be split into a part H
0 

belonging to the unperturbed 

system 

+ + GBb b,bb) 
?('A'VJ.I 

and into a part V(t) containing the overlap e 

H = H + V(t) 
0 

(8) 

(9) 

H is not explicitly time dependent whereas V(t) depends on time via the over
o 

lap e. In the interaction representation the S-matrix is given by 

t 

s(t) = T exp j- ~ jdt' Vint(t')l 
-oo 

where 

"' 

(10) 

(11) 

and where T denotes the time ordering.operator. The Undisturbed ground state 

is eigenstate o~ H • This state is a product state which we assume to be given 
0 

by 

I A; B ) = I BCS (A) ) fa ' I BCS (B) ) (12) 

where BCS means the BCS-state o~ nucleus A and nucleus B. In the ~ollowing we 
.-

con~ine ourselves to spherical nuclei, each individual one having an even number ~ ~ 

o~ neutrons. 
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3.1. SINGLE-NEUTRON TRANSFER . 

The probability for the transfer of .. a single neutron is given by 

(compare ref. 12). 

pl ~ r; 1~)2 (13) 

ll\.l 
where 

+oo 

1~) 2 = 1- ~ jdt 1 ll~ A+l; B-liVint (t 
1

) IA;B > 12 (14) 
-oo -

reads up to second order in E 

(15) 

Here we have introduced BCS states of the odd system defined by their matrix 

elements 

(16) 

2 2 
The numbers ull (vv) indicate as usual to what extent level ll (v) of nucleus A (B) 

is empty (filled): 

2 2 
u +v = 1 

ll ll 

Ell and E\.l are the single-particle energies of nucleus A and B when pairing_ is 

taken into account, i.e. 

. (17) 

,,,, 
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where a and ~ denote chemical potential and gap, respectively. The tunneling 
i 

amplitudes T (t) defined in eq. (_6} depend on time because they depend on the 
lJ\1 . . 

vector o:f relative distance r between the two centers o:f nucleus A and nucleus 
N 

. . 13 
B. Using the asymptotic expansion :formulas of Buttle and Goldfarb ) we :find 

_c ......... ,.. Jll+Jv 
( q>l.lluBIXv) =-v47T Nll~jlljV (-) 

,.. 
X= (2x + 1)1/2 

(18) 

(19) 

N is the normalization :factor o:f the asymptotic solution o:f jq> ) which is a 
ll ll 

spherical hankel :function. 

q>ll(~) --~· Nllhi~)(i~llx) Y~ M (~) (20) 
'"' ll ll 

d - = ( 2mBllh-2 )1 / 2 i. s d :fi . an ~ 1 , e ned 1n terms o:f the neutron binding energy B • 
'"' . ll 

The matrix element < ~ I UA I X > is obtained i:f one interchanges ll and v ll v 
in eq. (18), replaces~ by-: and takes the complex conjugate. We insert eq. {6) 

together with eq. {18) in eq. (15) and summing over the magnetic quantum numbers 

we obtain 

' 
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(21) 

(22) 

(23) 

·being real. The .argument y in the Legendre polynomial PQ,(y) is the cosine of the 

angle between the vector ~l = ~(t1 ) and the vector ~2 = ::Ct2 ). The transition 

probability P1 is of course independent of an arbitrary phase factor in the 

normalization constants N . In the case of spherical nuclei considered here, 
m 

normalization, single-particle energies, and occupation probabilities do not 

depend on magnetic quantum mnnbers and the indices m and n stand for all single-

particle quantum numbers except the magnetic quantum numbers. The integration 

in eq. (21) has to be taken along the classical Coulomb traJectory, thus· depending 

on the scattering angle e. The differential cross-section for a single-neutron 

transfer then reads 

(24) 
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where dO'R/dQ is the elastic Rutherford cross section. Equation (24} only holds 

if the probability for elastic scattering (see below} is not Y~ different from 

unity. 

3. 2. TWO-NEUTRON TRANSFER FROM GROUND STATE TO GROUND STATE 

Up to fourth order in the overlap E the probability for two neutrons 

being transferred into the ground state of the system (A+2; B-2} is given by 

' (25) 

where M~l) is the contribution from the double single:-particle transfer and M~2 } 

denotes the direct pair transfer contained in Hint" Using the relation 

( A+2; B-2la+a~b b jA;B) = u v u v cS- cS-
1f 1\ V 1.1 ~ 1t ll l.IICA Vll (26) 

we find 

+oo 

fit1dt2 L TlfA(t1 ) Tll)t2 ) <A+2; B-2jT(a~(t1 )bA(t1 )a~(t2 )bv(t2 ))1A;B·) 
-oo 1tA].lV 

= ""'uvuv 
~ mm n n 
R.mn 

(i+.l!.m+in=even) 
+co 

{27) 

x jdtldt2 exp [t (aA-oB) {tl+t2) - (Em+En)ltl-t21] smn(tl,t2) PR. (~l:/rlr2) • 
-co 

~ + 
T means the time ordering operator and a~(t) depends on time through 

+ (i ) + ( i ) a~(t) = exp Ii H
0 

t a, exp - Ii H
0

t (28) 

For the direct pair transfer we obtain 
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In deriving eq. (29) we have used the relation13 ) 

2 2 .· 2m[ ] (~ -?t )e: = - 2 - < 4> lvBix > - < 4> lvAix > 
~ v v~ h ~ v ~ . v 

together with eq. (18). We also used the gap equation 

LBL~l293 

(29) 

.. 

(30) 

b.A = GA ""u v (31) 4..-1 ~ p 
~ ) 0 

for nucleus A and for nucleus B. 

3. 3. ELASTIC CHANNEL 

The elastic amplitude M differs from unity because o:f inelastic p· rocesses. . 0 

There are two second order contributions. The :first arises :from the remormali-

zation of the single particle energies (eq. (5a)) and the second is due to the 

diagonal part of the tunneling operator T T . Writing mn pq 

·M 
0 

we find 

= 1 - M(L) 
0 



and 

M(l) = ~· ~(v2-v2 ) (s -t ) 
o ~~mn mn 

R.mn 

(R.+R. +R. =even) m n 
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(R.+R. +R. =even) m n 
+()() 

x jdtldt2 smn(tl,t2) Zmn(tl,t2} Pt <!1!'2/rlr2) 

LBL-1293 

(32) 

{33) 

{34) 

The function e(t) is the step function. We recall that summation index m refers 

to nucleus A and index n to nucleus B. The differential cross section for the · 

elastic scattering is given by 

dO' t _e_= 
<ill 

· () () dcr ·dcr 
11-M 1 (e) -M 2 <e>l 2

2::p 2 
0 0 dQ odn (35) 
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4. .Scattering of 196
.Hg on 200l!g Below the Coulomb Barrier 

For the numerical evaluation we use the following approximations: 

a) The normalization constants N. of the asymptotic wave :f'unctions are calcu
m 

lated.with Morinigo wave f\uictions 4). The effective nuclear radius R which 

separates the nuclear interior from the asymtotic region is chosen as 

R = (1.~/3 + 1.2) fm, where M is the nuclear mass number. 

o) The differenc·e quotient which appears in eqs. (29) arid (32) is replaced 

by the symmetrized differential quotient. 

(36) 

: .'· •.. '1 . ~ ( R, + R, + 1. ) ... '... a· m n -
~- - F - ?r h (? r) 

2 d9l' m lm 
.· .,. ... . .... m 

where 

R, +1 R, +1 
Fmn = N*N jfjr m n ( )] 

n m l' m ~n lr'm + ~ 

B,y numerical comparison with the exact expressions one finds that this assump-

tion is reasonable. In order to simplifY the integrals we consider only the 

-exponential behavior of the function hR,(~r) 

.(37) 

where r is the. distance of closest approach, i.e. the classical turning point. 
0 

Within the same approximation we replace the arguments of the Legendre polynomials 

·• _, by 1, i.e. by their values at the turning point. In eq. (37) we expand the 
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exponent up to second order in ·the time t and perform all integrals analytically. 

In view of the rapid decrease of hi~r) with increasing r these approximations 

. J .f. dl4) also s~em to be ust~ ~e • 

.c) The single-particle energies are taken from ref. 15. The configuration 

space consists of 13 levels ranging from the lh912 level up to the 3d312 level. 

We used the pairing rotational model16 ) to determine ~and G f~om the two-neutron 

200 .. 
separation energies in the mercury region. For Hg we obtain ~A = 1 MeV and 

GA = 0.11 MeV, in the ca
1

se of 196
Hg we find t\ = 1.17 MeV and GB = GA. The 

chemical potential for BCS nuclei is defined by 

1 cr = - 4 [S(2,N) + S(2,N+2}] , (38) 

where S(2N) stands for the separation energy of two neutrons in a nucleus with 

N neutrons. From this relation the values crA = -7.17 MeV and crB = -7.85 MeV are 

200 196 . deduced for Hg and Hg, respect~vely. 

In fig. 2 we show the differential cross sections for the total one-neutron 

transfer in the reaction 200Hg(196Hg,195Hg)20~ and for the transfer of two 

neutrons into the ground states of 194Hg and 202Hg in the reaction 

200Hg(196Hg,194Hg) 202
Hg at E = 560 MeV. Using the radii for nucleus A and B em 

according to section 4a we find the Coulomb barrier at Ecb = 562 MeV. The ampli-

tudes for the two-neutron transfer in the reaction B(A,A+2)B-2 are equal in BCS 

to those of B(A,A-2)B+2. The cross section for the reaction 200Hg(l96Hg,l98Hg)l98Hg. 

however, is symmetric around 8 = 90° because of the two identical nuclei in the em . 

final configuration. Figure 1 also contains the function 

, (39) 

where P
0 

is the probability for elastic scattering along the Coulomb trajectory 

• 
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as defined in eq. (35). The quantities P1 and P2 have been introduced in 

section 3; they are the probabilities for the transfer of one or two neutrons 

200 196 to Hg whereas P_1 and P_2 denote the transfer of one or two neutrons to Hg. 

A necessary condition for perturbation theory to be valid is that F does not 

deviate much from unity. 

In fig. 3 the energy dependence of the differential cross sections is 

plotted for 8 = 120°. Again perturbation theory is limited to F ~ 1. em 
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5. Discussion 

We first point out that our results should not be interpreted quanti-

tatively. There are' considerable uncertainties coming from the single-particle 

wave functions: If the normalization constants Nm are changed by a factor 2 

then the absolute values for the cross sections for single-neutron and two-neutron 
I 

transfer are changed by a factor of 16 and 256, respectively. Also uncertainites 

in the BCS wave functions are not irrelevant. A truncation of the configuration 

space would reduce the theoretical cross sections for the two-neutron transfer 

considerably. Therefore, our results should be compared with future experiments 

in terms of relative cross sections. 

The two-neutron transfer shows an interesting interference pattern 

because of the fact that the imaginary parts of the amplitudes for double 

single-transfer and for pair transfer are opposite in sign. The shallow mini-

ID"Wll in the two-neutron transfer cross section belongs to the node of the imagi-

nary part. The break-up of a pair becomes more important for shorter coupling 

times because then the oscillating behavior of the exponent in eq. (27) is less 

relevant. , Shorter coupling time means higher energies or larger scattering 

angles. Unfortunately, perturbation theory fails to describe the details of 

the second rise. The cross section for a single neutron will also deviate from 

the exponential law17 ) when nuclear distortions invalididate perturbation 

theory. Non-perturbative theories have been discussed18 ) in the literature 

although they again are restricted to the assumption that Coulomb excitation 

does not couple too strongly to nuclear excitation. Qualitatively, Coulomb 

excitation leads to a damping of the elastic channel~ For quantitative results 

one has to treat both transfer and Coulomb excitation in a quantum mechanical 

10 
way ) • 

........ ,.. 
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We briefly consider some kinematical effects. The overlap between the 

single-particle wave functions of the two nuclei generally depends on the v~locity 

of the relative motion. For sub ... Coulomb reactions this dependence can be 

neglected19 ). Next, it is clear that heavy-ion transfer reactions are connected 

with a transfer of angular momentum. There are two contributions. First, the 

angular momentum is changed because of the polarization of the two cores and, 

secondly, the transferred particle itself carries along an angular momentum in 

its relative motion. For bombarding energies below the Coulomb barrier it is 

difficult to calculate the optimum value20 ) for the transferred angular momentum. 

Finally, we mention that recoil effects20 ) can be neglected in the 

scattering of two almost identical nuclei. This means that the most favourable 

Q-value for the neutron transfer is approximately zero~ a rather well met pro-

perty of the reactions we discussed in this paper. 
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. Appendix 

We show that for identical nuclei the symmetric expansion (1) in section 

2 is equivalent to the introduction of localized, orthonormal states. For 

simplicity we assume that there is only one state let> } in nucleus A and one state 

lx ) in nucleus B. Since the two nuclei are identical the two eigenstates of 

the coupled system are 

llJJ(+) > = (2(1+£))-112 <let>>+ lx>> (Al) 

and 

llJJ<-> >;: (2(1-E})-112 <1<1>> -lx>> (A2) 

where E = ( <l>lx} is the overlap of the two wave functions (which we assume to .. · 

be real) • The two eigenstates llJJ ( +) } and. I1P (-) } are neither localized in 

nucleus A nor in nucleus B. The combinations 

(A3) 

and 

(A4) 

are, however, localized. Using (Al) and (A2) we can express I~} and lx } by 

the unperturbed states 1<1> } and lx}. We make a power series expansion in E 

and get the expansion (l) of section 2 

1¢ > = (1 + ~ £2) let>> - ~ £1x > + (A5) 

lx > = (1 + ~ £2 > I x > - ~ E I <1> > + . . . (A6) 

The generalization to identical nuclei with an arbitrary number of states is 

straightforward. 
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Figure Captions 

Fig. 1. Schematic picture of two nuclear potential wells A and B separated by 

the distance r. Horizontal lines denote the single particle levels near 

the fermi levels. 

Fig. 2. Differential cross sections for the total single-neutron (sn) trans

fer 200Hg(l96Hg,l95Hg)201Hg and for the ground state two-neutron (tn) 

transfer 200Hg(196Hg,194Hg)202Hg at E = 560 MeV. The function F, defined em 

in eq. (39) depends on e and is a measure of the failure of perturbation em 

theory. 

Fig. 3. Differential cross sections at e = 120° as a function of the bom-
\ em 

barding energy E . The symbols sn, tn are defined in fig. 2. Again F, em 

depending now on E. , is a measure of the failure of perturbation theory. em 
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r------------------LEGALNOTICE---------------------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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