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INTRODUCTION

A particularly interesting consequence of the Dirac equation
and hole theory is the phenomenon of spontaneous e*e™ pair
creation in strong static electric fieldsl™3, Normally, pair
creation in a static field costs energy, .E = 2mg - B, where B
is the binding energy of the electron. Consequently, spontaneous
pair creation is normally a virtual process lasting only a short
time, © - 1/2E - (2me - B)7l. This virtual process is
called vacuum polarization in Quantun Electrodynamics (QED).
However, if the external fields become so strong that B -~ Zm,,
then - -~ =, and the virtual pair can '"materialize". In terms of
QED this would be called real or on-shell vacuum polarization.

The necessary condition (B - Img) for real vacuum
polarization has been estimatedl™3 to occur for very high
nuclear charges £ > Z. = 175. This range of Z is fortunately
accessible via heavy ion collisions. 1In such high fields 2z, - 1
and relativistic non-linear effects are important.

Wwhile in the Dirac equation it is formally possible to
increase Z indefinitely (for finite size nuclei), it is not clear
a Eriori whether a full QED calculation allows arbitrary large
fields and bindings. 1In particular, it could be that radiative
corre~tions such as self-energy and vacuum polarization effects
could increase so rapidly with Z that the diving condition,

B = tm,, is significantly delayed or even prevented.



Even classically it could be that non-linear etfects,
unobserved in low field (Z < 100) experiments, could become
important in the strong field limit Z + Z.. As an example of
non-linear electrodynamics Rafelski, et al % applied the
Born-Infeld? Lagrangian to calculate B8(Z). 1In that theory there
is anupper bound nf Egp = 1.2 x 1018 ¥/em on the electric
fielc strength, While the non-linearities do not prevent B from
reaching 2mg, the critical charge was shifted to Z. > 200,
beyond the range accessible via heavy ion c¢ollisions. Later, Soff
et al.® showed that high precision expariments on muonic atoms
require a lower bound on the maximum field strength E* > 100 Egy.
In that case, classical non-linear effects could change Z. by at
mcst a few units. Therefore, this type of classical non-linear
electrodynamics cannot prevent diving.

On the other hand, the QED calculations of Wichmann and
Kroll’ showed that non-linear vacuum polarization screening has
a singular derivative with respect to Z at Z = 137. This singu~
larity was due to cthe assumed point nuclear charge distribution.
Nevertheless, it indicated that vacuum polarization screening
could be expected to grow rapidly with Z beyond 137 when finite
nuclear size effects are taken into account. In cthis review, I
focus on this aspect of aon—linear vacdum polarization in strong
fields. The basic question addressed is whether virtual pair
creation (vacuum polarization) can screen the nuclear charge
sufriciently to prevent real vacuum polarization (spontaneous
e*s” produccion). As I show below, the answer it no.

The remainder of this review is organized as follows: The
Wichmann-Kroll formalism for calculating the vacuum polarization
density to first order in 7 but to all orders in Zo is derived.
The most essential quantity is shown to be the electrons Green's
function in these calculatiens. The method of coastruccing that
Green s function in the field of finite radius nuclei is then
prescuted.

Comparing the calculations with data on muonic atoms shows
good agreement with data and gives us confidence in extending the
calculations beyond Z = 137. The 1Sj,/7 shifc is then calculated
as Z » Z.. The main resulc is that the screening due to non-
linear vacuum polarization remains small all the way up to Z..

In terms of an effective screening charge, Qeff, the vacuum
screens the nuclear charge by only Qegf = e/20 at Z, =175,

There fore, vacuum polarization cannot prevent di*ing and is
nonsingular in the strong field limit. Finally, ic is shown cthat
the charge density of the overcritical vacuum (Z - Z.) is

highly localized and represents the smooth continuacion of the
He-like charge density for Z < Z..



WICHMANN-KROLL FORMALISM

The first step is to write the vacuum polarization charge
density as

’vp(x) - - I;' <0|[T+(x),b(x)]‘0> y (i,
where y is the electron field operator and 0> is the vacuum
state. It is necessary to write the commutator of :* and : to
insure correct charge conjugation properties. In general, u(x)
and the photon field Ab(x) satisfy coupled Dirac and Maxwell

field equations. However, in order to calculate the vacuum
polarization density to lowest order a but to all orders in Za,

it 1s pogsible to decouple these equations. To lowest order in
a,v (x) satisfies the Dirac equation

(¥ -ZaV(D)y -m )ilx) =0 , ()
o e
with the external c-number field AJ, = ‘.o Ze V(r) satisfying
the classical Maxwell equations 72V = -lex+ To solve eq.

(2), :(x) can be expanded in terms of the canplete set of
positive and neg.tive energy eigenfunctions, .g(x)}, of the
Dirac equation

RS =Z ERET Z odp (3

LfEF EKEF
with bg and dg being the anticommuting destruction operators
of electrons and positrots. The sum ove: spin projections 1s
implicit in eq. (3). Also Ep is the Ferri energy, —mg - Ep
<mg - B(1S)/9). Equation (3) defines the Furry bound
interaction picture. We can now evaluate eq. (1) giving

{
vv.p(x) =-l%- Z'{.‘E(x)“z - Z‘ _(x)'2 . (4)
E”EF

EGEF

As Z ~ 0, -yp * 0 due to the symmetry bet . een positive and

negative energy plane wave solutions.

The main trick in the Wichmann-Kroll approach is to
calculate [:(x)]|? fram the residues of th- electron Creen's
function. Observe that

v lx) 2 (y)
Glx,y;-) = :%: ‘EL—%;:EL——' (5)

Is a solution to the equation



(Hx - )G{x,y50) = 53(; - y) (6)

with He = -ia+7 + fmg + Y(t), because {lE(x) form a complete
set of solutions of the Dirac equation, (H - E)ig = 0. For an
isolated pole of G, it is obvious from eq. (5) that

- (x)!:2 = - Res TrG(x,x;.)
E € X, %
w=E
{4,
=] 7oy Trele,x5.) (7
i
C‘T

where Cp is a clockwise contour around E. Therefore, we can
express the vacuum polarization density from eq. (4) as

I
gp(x) = 5 f*f ‘Z’—L TrG(x,x;.) (8)

c c

- -
where the contour C4 goes clockwise arouand ali the positive
enerzy siangularities of G and where C_ gors counter-clockwise
around all the negative energy singularities. Noting that G has
no singularities away from the real . axis. these contours can be
rotated for convenience so that 1/2(Cy + C.) = Cp, whare the
Feynman contour Cp is illustrated in Fig. 1.

We obtain finally che contour integral representation of
“vp as

Co

—me/
= —eu=——x
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Fig. 1. Singularities of Green's function in complex energy
plane. Contour (5 = Cf in eq. (9) and Cpe is for
eq. (31).
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where iSp(x,x') = <0|T(#(x)4(x")]0> is the familiar Feyaman
propagatorg. What has been accomplished by rotating the contours
into Cp is a relation between pyp and the equal time-equal

space point value of the Feynman propagator. This is useful
because we know how to draw Feynman diagrams for Sp(x,x') and
consequently we obtain a diagrammatic expansion of Zyp(x):

£ gp (0 =Ox+ WOH' m’(ﬂ' see (10)

where e—guem is the diagram correspoading to the amplitude teo
propagate an electron from x' to x in the absence of interactions.
Thus, oyp(x) can be pictured as a "besoffenes' electron that

staggers from point x back to x occasiorally drinking (@) 'sinen
Schluck edlen Rheinweins™.
Fecause the trace of an odd numoer of ™, matrices vanishes,

only terms with an odd number of external interactions (or
Schluck) survive [note the extra <, at the point x from eq. (9)1.
This is Furry's theorem, which guarantees that only odd powers of
Z. occur in the expansion of ~yp.

.,VP(X) = :1.1 + (21)3,,3 + .. (11
Having a diagrammatic expansion of ,yp we can see that not

all diagrams are free from ambiguity. In particular, the first

order diagram diverges quadratically since the internal looy

integratioa, « (d%p Tr[v,8 (E)TOSF(P + q)], behaves in

the ultraviolet” limit as d p/p2 - w2 Actually, if we

look in more detaili (see Bjorken and Drellg, for example)

imposing gauge invariance reduces the degree of divergence such

that .| = "n «. This remaining divergence can be removed

because it merely renormalizes the bare nuclear charge,

z. .Rgre. To see this it is convenient to regulate the

expression for .| according to the Pauii-Villars mechod?

2T = gim [ (e ) - e (M), (1)
1 L e 1

Mor
In eq. (12) ..;(M) corresponds to the first order diagram with
the electron mass replaced by 4. The regulated first order
densily in momentum space is then [ound to be



bare(

reg = Za
Z«?zol (q) ZLCEX q)

2 L 2
x {- %; log ﬂf + -[ dx x(1 - x) log|l + ﬂ—iié:il . (13)
m [\-)
e 0 b4

The :otal charge density to order ,{(Z,) is then

. . .. bare reg
Z"”ex(q) Zas (q) + Zac (q) . (14)

We now see that the log M2 term in eq. (13) simply rescales the
bare nuclear charge density. The sign of this effect is 1in

accord with our intuition that vacuum polarization should screen
the nuclear charge. The second term vanishes in the q = 0 limit,
which implies that it contains no net charge. This second term is
the finite physical part of the first order (Uehling) VP density.
Tt is interesting to note the famous "asymptotic slavery"

property ~f QED in eq. (14). As q - =,

bare 1 M2 t 33
ex(q) - Cex ()]t - 37 log ;E *o3s log mz . (15)
e e

Thereiore, with increasing momentum transfers, corresponding to
smaller r, the strength of the nuclear charge increases.
Expressed in coordinate space, Blomqvistlo found the small r
behavior of the screened nuclear potential to be

zv(e) = - 2200 . 2—[1% - L.41 + O(n r)] . (16)
i d 3 ' e

Equaticn (16) shows explicitly that the strength of the pnt-acial
increases ir the small r << f, limit. (For large r, tnhe
Uehling potential falls off exponentiall,.)

Having reviewed the first order 2(Z:) part of the VP density,
I turn next to the non-linear parts of order ((Z:)"—=. From the
diagrams in eq. (10), the ultraviolet behavior of the ath order
density goes as v dAp/p“+1. For order x(Z )03 this is manifestly
finite. For order”2(Z)3 it shows an apparent logarithmic diver-
gence. However, gauge invariance eliminates this divergence and all
higher order diagrams (Z )0 are finite and well behaved for
bounded external potentials. Thus, only the first order diagram
requires special care. Sincae we now know the analycic form of first
order density, the higher order density can be calculated from eq.
(9) simply by subtracting the firsc order Green's function.



In order to carry out this subtraction, it is convzanient for
spherically symmetric systems to expand the Green's function in
eigenfunctions of the Nirac angular momentum K = Yo(3-L + 1), The
eigenvalues are k = +(j + 1/2) in terms of the total angular
momentum j. Details of this expaasion can be found in Ref. 1l. For
the trace needed in eq. (9), the expansion is particularly simple

Tr G(x,x;w

2j+1 . :
s Tr[3k=j+l/2(r,r,.) + Gk=_j_1/2(r,r,hﬂ
i=1/2,3/2,... ,amn

where Gy (r,r';.) is the radial Green's function, that satisfies-1

me * vir) - - % %; Tt % (r-r")
G (r,r'; Y = ———, (18)
14 K k rr
— o=+ = m_ o+ V(r) -
r dr T e

With eq. (17) we can now define the vacuum polarization density
due to a particular angular momentum ]j as

(c,ry ) + G . (r,r; )]

Vi = l_illil_. _[ P
i) Tr(G. -i=1/2
19)

jrl/2

Lt is straightforward to show®¢ that .j(r) i. an odd Eunction
of 2. as required by Furry's theorem.

Converting eq. (18) into an integral equation, the firsct
order contribution for a given k is
1 - Ve g e
Tr 2 : Gk(r,r;:) =2 ) dr'e' V(e )Tr[Gk(r,r ;.)Gk(r ey 1,
0
where Gg is the free space radial propagator involwving
spherical Bessel functions8,11,

Finally, the expression for the non-linear (2 973 vasaum
polarization density for a ziven j can be written as

o) = Eel%f—lj—
CF

x TrE3j+l/2(f,f;’) P Ogoyp(rami) T 22 Gyl ‘)](2'1)

N
il



This expression is now finite and well behaved. 1In practical
calculations, it is mest convenient to rotate the Cp contour to
the imaginary w axis.

The real power of the Wichmann-Kroll method lies in the ease
with which the radial Green's functions can be constructed. The
following theorem’ is all we need: Llet wr(r) and w1(r) be
the regular and irregular solutions of the radial Dirac equation,
(H - @)% =0, where (H - w) is the matrix ian eq. (18). The
regular solution is that one which is integrable near r ~ 0,
while the irregular soldtion is the one which is integrable at
r - =, The Green's function is then

Gk(r,r';,) = G%jj'{?(r'—r);R(r),;(r’) + ‘(r-r')‘l(r);;(r')} ,
(22)
where the W(w) is the Wronskian given by
3
W) =71 e;Rz(r)JIl(r) - ,Rl(r):Iz(r) . (23)

It is easy to verify that eq. (22) does satisfy eq. (18). For
the trace needed in eq. (21),

Tr Gk(r,r;w) = p;(r)pR(r)/W(u) . (24)

An Important example of the above construction is for the
case of a pure Coulomb potential ZuV(r) = -Z./r. The
solutions8>1l are () = M{r) and :1(r) =w(r), where #
involves linear combinations of regular Whittacker functions
Mo..1/2 5{(2¢r) and W involves linear combinations of the
irregular Whittacker functions Wesp/2,5(2er).

x}?g_farameters on which M and W depend are § = sz-(Zl)Z,

c = ng-.%, and v = Zuufc. Whittacker functions are related to
confluent hypergeometric functions for which -rapid, high precision
numerical techniques are readily availablell. The mosg_ important
paramecer in the case cf strong fields (Za>l) is § = V{-(Z;)z for
k =+l, j = 1/2, states. At Za=l, S and consequently ¥ have a
branch point as a function of Zua for j=1/2. Although it seems
that W would also have a branch point at Z.=l, WJ,S Ls an even
function of 5 and therefore nonsingular at Zx=l. It is the
nonanalytic behavior of the M function that causes a singularity
of TrGy=+] for this point nuclear charge case at Z'=l. Higher
zngular @omentum states (j>3/2) are, on the other hand, well
hehaved near Zx=l. Therefore, to extend Za beyond l, it is
necessary to include finite size corrections ior the j=1/2
contribution to the VP density. As we shall s:e, it is also
sufficient to modify only the j=1/2 case.



In order to include finite nuclear size, a definite nuclear
model must be adnpted. The simplest finite size nuclear density
is a shell distribution, for which V(r) = -1/R for r<R and V{(r) =
-1/r for r>R, R being the nuclear radius. With this model it is
possible to solve che problem analyticallys. For r<R, the
solutions are j(r) and h(r), simply related to spherical Bessel
functions. For r»R, the Coulomb M and W solutions apply.
Continuity at r=R dctermines the particular linear combination of
M and W chat joins the interior j(r) solution giving the regular
solution. Continuity at r=R also determines that linear
combination of the j and h solutions that join the exterior W
function that gives the ivregular solution. With these solutions
for finite nuclear systems, eq. (24) yields

TG, 2r,r; ——) + Tr_Gk , TR

Ter(r,r;w) =

c
Tr k°“l(r r;.) + Teo c L, (25}

where GR is the free radial Green's function, GE’UL i3

the point nucleus Coulomb Green's function, and are

finite size correction functions. Explicit Eormulas are gziven in
Ref. (8c). It is straightforward to show thac TrGy - TrGy if

R -+ =, while TrGy - TrG oul if R . 0 Furthernore, for

z<137, a useful analytic expression for Gy caa bde derived by
setting the electron mass to zero-“. With this azrroximazion,

the contour integratio: in eq. (19) for the Tr Gy can oo
performed analyrically. In this wav, the finite correction
to the vacuum polarization gotential is found to

2

_ a(Z ) 5) -z

2 .
= (7 £((z 07] (26)

W(r)

valid for r»-R and 23:“l. Eq. (26) is particularly useful in
cumputing finite size VP corrections for muonic ators.

MUONIC ATOMS

High Z muonic atams provide a good test cof vacuum
polarization since typical 4f, 5g muonic radii a " 50 fm, which
satisfy R << a < 4. Hence, these orbits are insensitive to
nuclear details but orobe the structure of the vacuum polarizarion
cloud. Furthermore, since m > m, self-energy corrections are
small. The example of muonic Pb is listed in table 1. The
contr ibutions to the energy levels were caken from the compilition
in Ref. 13. The latest experimental rasults are in agreement with

theory. Comparing th2 contribution “E°* = 45 eV, due to



Table 1. Contributions!3 to Energy Levels in Muonic Pb (eV)

Diagram Order Af7/2 5g9/2

1. «O(za) "2t -1188318 -758970
£ 1. .1
2. 1W‘O«/\»'M o (za) -3664 -1565
3. v otz 23 +104 +59
’
4. Lzaonzt +10 +3
5. G”’(::Y\f<:>”“i Lot ~25 -11
6. 12(21)2 "‘9 ‘3
@
2
7. ::::(:::)::::! Zizo? -1 0
8. Nuclear + Atomic Effect -97 -173
) = 431,332 + 5 eV theory

S£(5g9/2 - 4f7/2

431,331 + 8 eV Dubler, et al.l%

431,360 + 1l eV  Tauscher, et al.ld

non-linear vacuum polarization (line 3) with the experimental
uncertaincies (+10 eV), we caa say that the current experiments
test and confirm non—linear vacuum polarizacion effects at the
level of "20%. Encouraged by this success, we now push the
tneory beyoad Z=137 up to Z..



NON-LINEAR SCREENING AS Z ~ Z.

For a point charge, Wichmann and Kroll showed that the
non-linear vacuum polarization demsity nas the form

3+ 3+ 2 N
OVP(r) = kaé(r)/th + Owk(r) s (27
where QS; is a point scroeniug charge at the origin and d,,

is a finite compensating VP charge density extending to r~ %,

The net charge of P{p is, of course, zero. As a function of

Zo, they found that

2 2
Q;; = -{el{(2n)3(0.021) + (21)5(0.007)F[(Zn)“]} , (28)
where F is close to 1l except near Zx = 1. Ia the limit Z+v = i,

3; + e/20, approximately. However, due to the nonanalytic
behavior of the j=1/2 Green's function at Z: = L, they found that
dQJif/dZ + -=_at Zx=l. Tha contribution of higher partial waves
(j>3/2) to Q%; was found®>12P (o be less than 10% over the

entire range Z < 137. Almost all the screering charge,

therefore, is due to j=1/2 pairs.

This last observation greatly simplifies the calculations of
a3t for z 5 137. To high accuracy, we need only include finite
size effects in the j=1/2 term, while continuing to use the point
charge form of 3g3+ for j>2/2 (valid up to Zx = 2). 1ir table 2,
the energy shift b of the i€y/2 scate due to non-linear vacuum
polarization is given for Z = Z.. The nuclear charge densicy was
taken to be a shell of radius R = 10 im. While the energy shifrc
increases very rapidly for Z ~ 137, :E3*(Z)  z!0 we see that it
nevertheless remains small (gl keV) and nonsingular as Z - Z..
Also, it can be seen that the thivd order, ,(21)3, contriburion
accounts for about one~half the respulsion.

It is important to compare these numbers ro the first order
Uehling shift, which is attractive and hence of oppositz sigr to
AE3*. From eq. (16) a simple estimate of ‘El can be maac Y
replacing 1/r by <l/r-j5 as listed in table 2. For Z = Z., we get
in this way cEL @ ~10 keV. Derailed calculaticnsl® give in rfact

(EN(Z.) = -11.8 keV. Therefere, iE3*(2.) =~ -:zEN(z_)/10,
and the net effect of vacuum polarizaction to all orders in Z . is
attractive at the critical charge! Diving, 8 - 2mg, 1s therefore

enhanced by vacuum polarization.

An interesting way to characterize the effect of non-linear
vacuum polarization is to define an effective point screening
charge Q3f; such that

CE = Qeff (t/rnlS B (29

11



Table 2. Energy 5hift (eV) Due to Non-linear Vacuum Polarization
for R = 10 fm Nuclear Shell Density

3+ 3 3+ 3
S Lo N S o -
z E(bl/?.)V/me .e/r 13 AE “E Qett Qett
-4 ~4
82 0.79 0.8 2 2 6x10 6x10
-3 -3
130 0.362 2.1 63 47 8x10 6x10
-2 -2
153 -0.137 4,2 307 197 2.0x10 ~ 1.3x10 °
< -2 -2
155  -0.550 5.9 661 368 2.9x10 1.7x10
-2 -2
175 -0.990 76 1140 566 4.1x10 2.0x10 ~
-2 -2
175 -0.999 7.6 1150 570 4.1x10 2.0xl0 ©
Siage <+/r»)g = —dE|g/dZ = dB)y/dZ, we can determine O.ft
from
3+ 3+

QeEE = -'E /(dElS/dZ) - (30)
Similarly, we can define an effective third order screening
charge using ZE3. The resulting screening charges are
illustrated as a function of Z in Fig. 2.

The rapid increase of %creeniﬁg as 7 —~ Z. is obvious.
However, the magnitude of Qe;f = 0.04e remains HUCh smaller than
the nuclear charge ~ven at Z.. Fucchertore, dQeEf/dZ remalas
finite ai Z.. Also shown for comparison is the Wichmann-Kroll
charge, eq. (28), obtained for a goint nuclear density. The small
contribution of higher angular momenta (j>3/2) at Z = 137 is

indicated by Qg '.2. Qualitatively, it is suggestive to say
that finite nucleéar size simply shifts the Qu(Z) curve to
higher Z: QafflZ) = Qu(Z - Z. + 137). Nore alsv that for
Z 7 137, Quee(2) 7 Quk(Z) because for lower Z, the 15,/9
radius lies outside the vacuem polarization cloud, and the
compencating density . in eq. (27) shields the VP point

charge, Qu-

In conclusion, non-lipear vacuum polarizatiun is nonsingular
and small compared to the linear (Uehling) effect in z - Z..
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2(z2)%3 labeled 3% and order :(Z:)? labeled 3.

Therefore, virtual pair creation dnes not prevent real pair
creation for Z ° Z..

CHARGED VACUUM FOR 2 - Z_

For Z - 2., the 15y/7 pole in Fig. |l moves -fY the phvsical
sheet through the branch psint at . = ma. The original contoar
integration over Cp 1s ~hen no longer well defined beyond Z..
Therefore, ., vp is ronanalytic ac 2 = ., although the limit 2 - 2.
frar below . yp remains small and nonsinzular. The nonanalvric
behavior signals a breakdown in the assumption that the chargeless
vacuum state 15 the one of lowest enerzv. Bevond Z., 8 m, and
the state with two electrons bouad arcand the nucleus and two free
trons has lower eaerygy and will rthercfore deline the aew vacaum

-j.

pos1-



We expect therefore that the vacuum charge density “yp should
be a smooth continuation of the helium-iike density 2eii|g z(x)lz.
However, the 131/2 state no longer exists as part of the Dirac
spectrun for Z > Z.. This poses no difficulty, however, if we
realize that the physical heliun-like density incl 7es the vacuum
polaiization cloud:

2
Sy (x) = 2el. (x):7 + o o (x)
He 151/2 VP
v d. N
= 'ej| > Tr G(x,x;-} , (31)
271 N
CHe

where Chy, is the contour Cp shifted to the right of the 15)/2
pole 1n Fig. 1. For Z ¢ Z. the first line is well defined.
However, the contour integral is perfectly we!l defined both below
and above Z.. It is manifestly analytic in Z in the neighborhood
of Z.. Therefore, the contour integral representation allows

us to compute the continuation of the helium-like density znd
hence the overcricical vacuum density for Z » Z.. (The Green'-
function must, of course, be regulated as in eq. (12) for all Z.)
The highly localized character of the overcritical charged vacuum
density is shown in Fig. 3. 1Ia this example, the l§}/) state
dives at Z,: ¥ 1.274. However, we can see that the vacuum
density defined by eq. (3l) for Z > Z. is a smooth analytic
continuation of the He-like deasity from Z -~ Z. all the wav up

to the diving paint ot the 2Py/p state. Finally, the smooth
increase in the localization of the vacuum density bevord Z.

can be seen from the average lnverse radius in Fig. 3b.

SUMMARY

In this review, I have shown how the Wichmann-Kroll formalism
can b applisd to finite radius nuclei with very large Z. The
nun-linear vacuum polarization was showr tn remaln too small to
prevent spontaneous pair production for Z ~ 175. Finally, the
density of the overcritical charged vacuum was shown to be highly
localized and continuousup to the 2P|/5 diving point.

This work was supported by the Director, Office of Energy
Research, Division of Nuclear Physics of the Office of High
Energy and Nuclear Physics of the U.S. Deparitment of Energv under
Contract W-7405~ENG-48,
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b) Average inverse radius of He-like sca o.
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