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'1liE STATE AND HABIT OF 'IHE ~6N2 PKECIP:rrA:m IN DCC IRON: 
ELASTIC 'lliEOK.Y 

M.Hong*, D.E.Wedge** and J.W.Morris,Jr. 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, 
and Department of Materials Science and Mineral Engineering, University 
of California, Berkeley, California 94720 

The linear elastic theory is used to determine the preferred habit of 
the a 2 Fe16N2 precipitate in a iron, assuming that the precipitate is a 
coherent, tetragonal phase having the form of a thin circular disc, and 
neglecting both surface tension effects and the difference in elastic 
constants between the precipitate and the iron matrix.· With these ap
proximations the precipitate habit depends on the tetragonality of the 
transformation strain connecting the matrix and precipitate lattices, 
the aspect ratio of the disc, and the elastic constants. The preferred 
habit of Fe 16N2 in a iron is found to vary with the precipitate aspect 
ratio (K). The preferred habit changes continuously from {100} for K < 
11.35 to an asymptote near {102} for large values of L The results can 
explain the common {100} habit of Fe16N2, but predict that this habit is 
unstable when the precipitate aspect ratio is large. The theory is also 
used to calculate the lattice parameters of the precipitate when it is 
constrained within a iro~ The results agree with experimental data and 
provide a simple explanation for discrepancies in the reported values of 
the lattice parameters of Fe16N2• 

*Now at Bell Telephone Laboratories, Murray Hill, N.J. 

**Now at Varian Associates, Palo Alto, Calif. 
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IN"'RRDUCl"ION 

In work done recently in this laboratory (Wen,et al.[1]) the linear 
elastic theory [2-S] was used to determine the preferred habit of a 
tetragonal precipitate in a cubic matrix, given that the favored parti
cle shape and habit minimize the total elastic energy and neglecting the 
difference between the elastic constants of the precipitate and those of 
the matrix. Under these conditions the precipitate is an arbitrarily 
thin plate. Its preferred habit plane can be found analytically. The 
preferred habit depends on the tetragonality of the precipitate and on 
the elastic constants, the most important of which is the elastic aniso
tropy factor. Despite the strength of the assumptions underlying the 
theory it predicts the known precipitate habits in several very diffe
rent systems [1]. It correctly identifies the {100} habit of GP zones in 
Al-Cu and Cu-Au alloys, the {102} habit of Fe4C carbides in a iron, and 
the {227} habit of v0•45H hydrides in vanadium. 

There is, on the other hand, a well known case for which the theory 
fails: the intermediate a~ Fe 16N2 precipitate in a iron. While the 
tetragonality of the nitride [6] is nearly equal to that of Fe 4 c [1]. 
suggesting a precipitate habit near {102}. the reported habi~ is {100} 
[7-10]. The work presented here was undertaken to clarify the source of 
this difference. 

It is superficially appealing to dismiss this problem as an example 
of the limitations of the linear elastic theory itself. The assumptions 
underlying the application of linear elasticity to the crystallography 
of phase transformations are strong [3,4]. While the theory has been 
used with encouraging success to predict or interpret many phase trans
formation phenomena [5] there must be problems which lie beyond i~s 
capability. 

It will, however, be surpr1s1ng if the elastic theory specifically 
cannot predict the preferred habit of Fe16N2 in a iron, since it suc
cessfully predicts other salient features of this precipitation reac
tion. Mori, Cheng, and Mura [11] have shown, for example, that the 
microscopic elastic theory correctly identifies the structure of Fe16N2 
(Figure 1) as the minimum energy configuration for interstitial nitrogen 
defects in BCC iro~ Their analysis implies that the lattice parameters 
of the precipitate should be given by an extrapolation of Vegard's Law 
for nitrogen in martensite [12] to the composition of the precipitate, 
in agreement with the experimental results of Suyazov, et al. [6]. As we 
shall show below, the linear elastic theory also yields the proper 
lattice parameters for the coherent a 3 precipitate in the iron matrix, 
as measured by Abiko and Imai [9], and hence resolves the difference 
between the lattice parameters reported by Suyazov, et al. [6] and those 
given by Jack [13]. The theory also explains the gradual precipitate 
shape change during coarsening seen by Keh and Wreidt [7] and by Wagner 
and Brenner [8]; in fact, both the latter authors [8] and Wedge [14] 
have used the elastic theory to estimate the surface tension of the 
precipitate from the coarsening data with reasonable results. Given that 
the linear elastic theory correctly predicts the structure, the lattice 
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parameters, and relevant aspects· of the coarsening behavior of Fe16N2• 
it is likely that the discrepancy between the observed habit of Fe16N2 
and the habit estimated from Ref. 1 is due to the additional approxima
tions used in Ref. 1 rather than to any inherent inadequacy of the 
theory. 

Three approximations were introduced in Ref. 1: the elastic con
stants of the precipitate were assumed equal to those of the matrix, 
surface tension anisotropy was ignored, and the precipitate was assumed 
to be a thin plate with an arbitrarily large aspect ratio. The first two 
of these approximations cannot be removed in any simple way, since 
neither the elastic constants nor the surface tension anisotropy of 
Fe 16N2 are known. It is improbable, however, that either factor is 
responsible for a large, consistent difference between the observed and 
predicted habit planes. Surface tension anisotropy may affect the habit 
when the precipitate size is small, but will become less important as it 
grows. The difference in elastic moduli between the precipitate and the 
matrix has an effect that can be estimated from the results of Ref. 1, 
and is small unless the elastic constants differ dramatically in numeri
cal value or in the sign of the elastic anisotropy ratio. The precipi
tate shape, on the other hand, clearly can influence the habit plane, 
irrespective of particle size, and its influence can be included in the 
elastic energy calculations which identify the preferred habit. 

The available experimental data [7-9] suggest that the aspect 
ratio of the a: precipitate is its most relevant shape parameter. While 
well developed precipitates are invariably thin plates of very high. 
aspect ratio, as predicted by the elastic theory, direct observation 
[7,8] shows that the thin plate morphology develops gradually from a 
more blocky initial state in which a {100} habit is already well estab
lished (Figure 2). The initial value of the aspect ratio may be rela
tively small. For example, Wagner and Brenner [10] measured partic-le 
aspect ratios (K=D/Z, where D is the particle diameter and Z is the 
thickness) which were less than 10 in the early stages of coarsening and 
were almost certainly smaller at the still earlier stage of the reaction 
when the {100} habit was first assumed. It is hence possible that the 
preference for the {100} habit is a shape effect associated with finite 
values of the aspect ratio. 

In the work reported below the possibility that the aspect ratio of 

,..., 

Fe 1 6N2 influences its habit plane was tested by finding the minimum •"' 
energy habit plane as a function of L The precipitate was taken to be a 
coherent, tetragonal phase in the form of a circular disc of finite 
thickness, with isotropic surface tension and elastic moduli equal to v 
those of the BCC iron matrix. The results do show a change in preferred 
habit with decreasing aspect ratio. The habit is nearly {102} for large 
K but shifts to {100} asK falls to about 10. 
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i'BEORY 

A. The Elastic Energy of a Coherent Plate-like Precipitate 

1. The Elastic EnerK,r 

The Khatchaturyan [2] relation for the elastic energy of a coherent 
inclusion may be briefly derived as follows. 

Let a coherent inclusion, modelled as a linear elastic body, be 
formed in the interior of a linear elastic medium. Let the inclusion be 
such that an unconstrained transformation of the matrix into the inclu
sion would require the 'transf"orma tion strain', e 0 , and assume that the 
difference between the elastic constants of the matrix and those of the 
inclusion can b~ neglecte~ 

The elastic energy of the system after creation of the inclusion 
can be found by summing the energies associated with a series of imagi
nary operations leading to the same final state, as described by Eshelby 
[3]: (1) a subvolume having the size and shape of the inclusion is cut 
from the undisturbed matrix; (2) this body is transformed into the 
inclusion, a process that deforms it by the stress-free transformation 
strain, e 0 ~ (3) tractions are imposed to precisely reverse the transfor
mation strain, so that (4) the inclusion can be inserte'd back into the 
matrix without misfit~ then (5) the tractions are relaxed, permitting 
the matrix and the inclusion to strain elastically to achieve the best 
accommodation with one another. 

In its final state the system has an elastic displacement, ui(r), 
measured with respect to the initial state of the matrix, which gives 
rise to an elastic strain, eij (r). The as·sociated elastic stress is 

(1) 

where i, j, 1 and m are Cartesian indices, to be summed if repeated, 

(2) 

is the 'transformation stress', and &(r) is a form function which is 
equal to one inside the inclusion and to zero otherwise. The elastic 
energy is the sum of the elastic self-energy of the inclusion (step 3) 
and the relaxation energy (step 5) 

liE = j { ~ a;1t~ 9(r) - a~ '•1 9( r) + ~ A.,1m ••1 t1m Jctv 

= ; a~t;l- j [a;lt,19(r) - ~ '-<J1mt<ltlm ]ctv (3) 

The elastic self-energy, aE
0

, depends on the particle volume, but is 
otherwise independent of the geometry. The shape and habit of the. preci-
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pitate influence only the relaxation energy, AE1 , which should be ~s 
large as possible to minimize the total elastic energy. 

The relaxation strain field, eij(r), is determined by the condition 
of static equilibrium. The stability of the elastic energy with respect 
to arbitrary variations of the displacement field requires the differen
tial relation (equivalent to Cauchy's First Law): 

(4) 

the Fourier transform of which is 

(5) 

where· 

(6) 

is the dynamical matrix of the elastic medium. Defining the tensor-

(7) 

where e is a unit vector in the direction of k, Eq. S has the solution 

(8) 

It follows that 

(9) 

If Eq. 9 is substituted into Eq. 3 and the integral replaced by an 
equivalent integration over reciprocal space, the relaxation energy may 
be written 

(10) 

where 

(11) 

By defining the geometric function 

H(e) = (2rr)-3 v 1fl9(k)l 2k 2dk, (12) 
0 

where k=lkl, this integral may be rewritten as an integral over the unit 
sphere: 

(13) 

The relaxation energy is now expressed as an integral whose kernal is 
the product of a geometric functioni H(e), which depends o~ly on the 
particle shape and habit, and a shape-independent energy function, 
B1 (e), which depends only on the elastic constants of the matrix and the 
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stress-free strain· of the inclusion. The total energy can be written 

AE = V jE(e)H(e)rir.> (14) 

where 

(15) 

2. The Elastic Energy Fllllction 

The function B1 (e) is most easily evaluated in a coordinate system 
whose bases parallel the cubic axes of the matrix. The cubic matrix has 
three independent elastic constants, the Voigt constants c11 , c12 and 
c44• Making the definitions 

c 12 
c2 = 

C.u 

A=c 1 -c 2 -2 

A.= c 1 + 2c 2 , 

{16) 

where a is the 'anisotropy factor', the fourth-order elastic tensor may 
be written 

{17) 

It follows from Eqs. 6 and 7 that 

{18) 

which can be inverted to give 

(19) 

where Fij(e) is the cofactor of the (ij) element of the matrix, c4~0-1 (e) 
and d(e) is the determinant of this matrix. 

If the principal axes of the inclusion (in its stress-free state) 
parallel those of the matrix, as they do in Fe16N2, then the tetragonal 
stress-free strain may be written 

(20) 

where the tetragonal axis is along x3 , the principal strains are 
et 1 =e~2=e

0 and e~ 3 , and ~ is the 'tetragonality' of the stress-free 
strain 

{21) 
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the transformation stress is then 

where 

with 

and 

cr;j = 'A;,;Icl&~ = c 44 e•i(A. + C2TJ')o;.; + (cl- c2)1'7oisO;s]. 

Using Eqs. 11 and 21, the energy function B1 (e) can be written 

b (e)= [<A.+ c 2 77)2F 1(e) + 2(~ + 2)TJ(A. + c2TJ)F2(e) 

+ (~ + 2)2TJ2F 3(e)][a(e)]-t 

F1(e) = e;.F;,;e; = 1 + 2M'4 (e) + 3~2r8 (e) 

F2(e) = e;.Jise 3 = eJ + 6(1 - e§)e~ + ~2f8 (e) 
Fs(e) = e 3F 33e3 = et + c 1(1- e§)e~ + ~2 (c 1 + c 2)f8 (e), 

d(e) = det[c.;-.1 n-1(e)] = cl + ~(cl + c2)r4(e) + 62(A. + l)fe(e) 

r4(e) = e~e~ + eie~ + e~e~ 
ra(e) = e [eie~ 

(22) 

(23) 

(24) 

(25) 

(26) 

Substitution into Eq. 13 then gives the relaxation energy in the form 

(27) 

One important result can be extracted immediately from Eq. 27. The 
dependence of the relaxation energy on shape and habit is contained in 
the integral on the right, whose value depends on the structure of the 
inclusion only through the tetragonality, ~· It follows for the inclu
sion of finite thickness, as for the thin plate inclusion [1], that the 
preferred habit is indepe~dent of the sign and magnitude of the homoge
neous strain, s 0 • It is determined by the tetragonality. 

3~ The Geoaetric Factor 

It may be shown in general [14] that H(e) is independent of the 
inc 1 us ion volume; it depends only on the shape and orientation. For a 
given cylindrically symmetric figure, for example, a circular plate, an 
ellipsoid, or a lens, the shape is specified by the aspect ratio, I, and 
the orientation is fixed by the direction, n, of the axis of symmetry of 
the figure. It follows that for a given figure H(e)=HK(a), where a is 
the angle between the vectors D and e. 

For the specific case of a circular disc of thickness Z and radius 
R [15]: 

\), 



'lo. 

\,.,' 

- 7 -

9(k) = V9'(K.a,k ') 

= 2 .Js-m.cK-1k'cosa) ]f J1(k'sina)] 
l K-1k'cosa 1 k'sina 

(28) 

where k'=lkiR, K=2R/Z, and r 1 is a Bessel function of the first kind of 
order one. Then 

H(e) = Hx(a) = (4r K}-1hx(a) - . (29) 
= (4-rK)-1 fl e'(K,a,k') l2(k ')2dk · 

• 

If this result is substituted into Eq. 27 and the energy function 
b1 (e) is referred to the coordinates a and p, where a is the polar angle 
and p the azimuthal angle measured from n, then 

t:aE 1 = t:aE 1 ( n,.K) 

= [ 
8
;.. ][ ;Jc .. (&)2 Jfb.(a,p)ctp}hx(a)sinac!a 

(30) 

The kernal of this integral depends on K through HK(a), and on n through 
the function b(e)=bn{a,p). The total g~ometric part of the integral, 
HK{a)sina, is plotted in Fig. 3 for various values of the aspect ratio. 

B. 'l'ho Preferred Habit of Fo1~ in Cl Iron 

To determine the preferred habit of the precipitate the elastic 
constants of the matrix and the s tress-free strain of the pre c ip ita te 
must be specified. 

The elastic constants of a iron are [16], in units of 1012 

ergs/cm3 , c11= 2.335, c12= 1.355 and c44 = 1.180. The dimensionless 
constants defined in Eq. 16 then have the values: c1= 1.979, c2= 1.148, 
A=-1.169· an~).= 4.275. 

The stress-free strain of the a~ phase relative to a iron is the 
strain.required to deform the BCC unit cell of iron until its lattice 
parameters match those of the nitride. The lattice parameters of the a 2 

nitride were determined by Suyazov, et al. [6], who used a combination 
of x-ray and electron diffraction to confirm the Fe16N2 superlattice 
proposed by Jack [13] and measure its unit cell. Their experimental 
crystal had slightly less than the stoichiometric nitrogen content {9.36 
rather than 12.5 atoms of nitrogen per 100 of iron) but was found to be 
homogeneously ordered in the Fe16N2 structure (Figure 1). The lattice 
constants of the tetragonal unit cell matched those estimated by extra
polating the linear relations of Bell and Owen [12] for nitrided marten
site to the composition of the ordered phase. It follows that the 
stress-free strain of the a~ precipitate can be written 
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(31) 

where xN is the atom fraction of nitrogen relative to iron, or, equiva
lently, the fraction of the sites on the Oz sublattice of octahedral 
interstitial positions that is occupied by nitroge~ Comparing equations 
(31) and (20), the stress-free strain of the ordered a 2 precipitate 
includes a uniform distortion, s 0 , equal to -0.095xN (=-0.012 at the 
stoichiometric composition) and a tetragonality, 1\• equal to -10, that 
is independent of compositio~ 

Given the elastic constants and the stress-free strain the elastic 
energy of the disc-shaped Fe 16N2 precipitate can be calculated for 
arbitrary values of the aspect ratio, K, and the habit plane, n, from 
equation 14 or 30. The preferred habit is found as a function of K by 
varying n to achieve~ a minimum in the elastic energy for each value of 
the aspect ratio. The relevant computations are straightforward. 

The results are presented in Figure 4. They show that the preferred 
habit plane changes continuously with the aspect ratio. The preferred 
habit is always a plane of type (hOld, as it must be in the limit of 
large K since the elastic anisotropy factor is negative [1]. In the 
thin-plate limit, when K becomes arbitrarily large, the angle, 9, bet
ween the habit plane normal, n, and the tetragonal axi~ x3, approaches 
22.5 degrees. The habit plane is near (102) as predicted [1]. As K 
decreases, however, the habit plane changes continuously. Its normal, n, 
rotates toward the tetragonal axis, and becomes parallel to the tetrago
nal axis, n.=[001], for K<11.35. 

It follows that the linear elastic theory does predict a (001) 
habit for Fe16N2 in a iron, but only when the precipit~ate aspect ratio 
is relatively small. The preferred· habit shifts toward (102) asK in
creases. 

C. The Lattice Strain of the Eabedded Fe16N2 Precipitate 

A precipitate that is coherently connected to its matrix is inter
nally strained, and hence has lattice constants which differ from those 
of its stress-free crystal. The latter are the lattice parameters mea
sured by x-ray or electron diffraction from the embedded precipitate. 
They may be computed from the elastic theory if the stress-free strain 
is known, and are constant within the precipitate if its shape is an 
ellipsoid or a thin plate [2,4]. From Eq. 9, 

Ei!(k) = ~ (e;Oim + e,O;m)a~e,S(k). (32) 

where the strains are measured relative to the relaxed state of the 
matrix. When the precipitate is a thin plate having normal n, the shape 
function is non-zero only when e is very close to a. Then 

(33) 

It follows.that the state of strain within the precipitate depends on 
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the shape and habit plane as well as on the stress-free strai~ 

For an Fe16N2 precipitate in the form of a thin plate with a (001) 
habit. Eq. 33 simplifies to 

t~ (r) = 033a~9(r)oi:so;:s 

= e·ll + ~ + z[~J] (34) 

The precipitate is. therefore. epitaxial in its habit plane. The strain 
along its normal is 0.094 relative to the iron lattice • 
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DISaJSSION 

A. The Internal Strain 

1. Comparison between Theory and Experiaent 

The internal strain within a thin, stoichiometric a 2 precipitate in 
a (001) habit was computed from the stress-free strain given by Suyazov, 
et.al [6]. The theory predicts that the constrained precipitate is 
perfectly coherent with the iron matrix in the (001) plane (as it must 
be in the thin-plate limit [2,4]) and is strained relative to the iron 
lattice by 0.094 perpendicular to the habit plane. Hence the lattice 
constants of the embedded precipitate should be twice those of iron in 
the basal plane, a1 =a2=5.73A, and elongated with respect to iron in the 
perpendicular direction, a 3=6.27A, in contrast to the projected lattice 
parameters of the stoichiometric phase in its relaxed state: 
a 1 =a2 =5.66A, a 3 =6.35A. The computed lattice parameters agree closely 
with those found by Abiko and Imai [9] from the electron diffraction 
pat terns of constrained pre c ip ita te s and with those reported by Jack 
[13] from x-ray diffraction studies on nitrided powders: a=S.73A, 
c=6.29A. The computed strain in the x3-direction agrees. with that mea
sured by Garwood and Thomas [10] by x-ray diffraction from precipitates 
embedded in the bul~ 

The apparent agreement between theory and experiment is called into 
question, however, by Jack's [13,19] conclusion that the lattice con
stants measured in his work represent the stress-free state of the 
precipitate phase. While some features of his experimental results [13], 
such as the observation of strong nitride peaks coupled with relatively 
weak iron peaks, suggest that the precipitates were stress-free, there 
are at least two aspects of the data which are very difficult to inter
pret unless the precipitates were embedded in iro~ These are the values 
of the measured lattice parameters and the insensitivity of the lattice 
parameters to the nitrogen content. 

Jack's [13] proposed a 2 unit cell has basal plane lattice, constants 
equal to those of BCC iro~ In contrast, the dissolution of nitrogen in 
iron causes a tetragonal distortion which contracts the BCC unit cell in 
the basal plane. It is generally accepted that the tetragonal distortion 
results from the segregation of nitrogen atoms to a single set (Oz) of 
octahedral interstitial sites. The formation of stoichiometric Fe 16N2 
hence involves only the ordering of the Oz nitrogen into the pattern 
shown in Figure 1. It would be surprising if such an ordering caused a 
significant change in the lattice, and would require a remarkable coin
cidence for the ordering to expand the basal plane of the nitride so 
that it precisely regenerated the lattice parameters of nitrogen-free 
BCC iron. If, on the other hand, the precipitate is a thin coherent 
plate with a (001) habit in iron, the elastic theory requires that it be 
strained so that it is epitaxial in the basal plane. 

Jack [13] also reported that the lattice parameters of a 1 are 
unaltered by substantial variations in nitrogen content (from 5.3 to 9.5 
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atom percent nitrogen relative to iron). This behavior contrasts strik
ingly with that of Fe-N solid solutions. whose cell dimensions depend 
linearly on nitrogen content up to at least 10 atom percent [12.20.ll]o 
To accept Jack's interpretation one must adopt his assumption. that the 
simple act of ordering the Oz nitrogen atoms creates a lattice so rigid 
that it is impervious to deviations from stoichiometry. If this assump
tion is true it is remarkable and unique. and has powerful theoretical 
implications. If. on the other hand. Jack [13] was seeing embedded 
precipitates whose volume fraction changed with the nitrogen content 
then his results are obvious. 

While Jack's [13] values for the stress-free lattice constants of 
Fe16N2 challenge the imagination. those of Suyazov. et al [6] are intui
tively plausible. They found. as expected. that the lattice is not 
significantly distorted when the Oz nitrogen orders into the a 2 struc
ture. Their results imply that the lattice constants of a 2 vary in the 
usual way with changes in composition. Moreover. if their values are 
used in the elastic theory'~he results of Abiko and Imai [9] and Garwood 
and Thomas [10] are predicted. and those of Jack [13] can be easily 
interpreted. 

2. The Cha111e ill lllter~~&l Straill with the Habit Pla11e 

It follows from Eq. 33 that the internal strain of a coherent thin
plate precipitate varies with its habit. This not only changes the 
constrained lattice parameters of the precipitate, but may also alter 
its apparent crystal structure. In the case of Fe16N2• a rotation away 
from (001) toward (102) causes a small monoclinic distortion of the 
tetragonal phase. The lattice strain in the (102) habit can be easily 
computed. The lattice constants are: a 1=S.S9A. a2=S.73A, a 3=6.34A. The 
angle between the a1 and a3 axes is predicted to increase by about 0.3 
degrees. Electron diffraction studies by Shih [18] on rotated precipi
tates have demonstrated the contraction of a1 and the rotation of a3 
relative to a1• and are hence in qualitative agreement with the theore
tical predictio~ 

3. The lllflueDce of Precipitate Stoichio.etry ad Order 

The stress-free strain of the a 2 precipitate is linear in the 
nitrogen concentration. xw and varies according to Eq. 31 [6,12]. It 
follows from Eq. 33 that the strain in an embedded precipitate, relative 
to the matrix, is also linear in xN• and will hence change in proportion 
to any deviation from stoichiometry. The associated change in the appa
rent lattice constants of the embedded precipitate is more subtle. When 
the precipitate is a thin plate its strain may be resolved onto princi
pal axes in and perpendicular to the habit plane. The strain in the 
habit plane is necessarily zero; hence the components of the cell axes 
which~ lie in the habit plane are insensitive to stoichiometry. However. 
the perpendicular dimension of the unit cell changes linearly with xN. 
If the habit is (001). for example, a deviation from stoichiometry 
should change a 3 , but leaves a1 and a2 unaltered. If the habit normal 
does not parallel a crystal axis, then two or more lattice parameters 
should be affecte~ 

~.·· 
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A change in the state of order of the nitrogen atoms within the 
nitride precipitate may affect the lattice in either of two ways. First, 
it may change the net elastic interaction between the nitrogen intersti
tial defects. This interaction energy contributes to the internal energy 
of the precipitate phase. Its minimization led Mori, et al [11] to their 
prediction of the structure of Fe16N2• But the internal elastic energy 
does not influence the precipitate strain or habit. Second, the state of 
order may modify the internal strain, and hence the elastic energy, of 
the embedded precipitate. However, it will do this only if it varies the 
stress-free strain of the precipitate. The stress-free strain of a 2 is 
apparently insensitive to the state of order of the nitrogen [6], as 
long as the nitrogen remains confined to a single set of octahedral 
interstitial sites. It follows that, barring a redistribution of nitro
gen onto the Ox and 0 interstitial sites, the lattice constants and 
habit plane of a 2 shou~d not depend significantly on the state of order. 

B. The Habit Plane 

1. Co.parison between Theory and Exper~ent 

The theoretical results suggest that as prefers the (001) habit 
when its aspect ratio is small. The available experimental evidence 
indicates that the precipitate has both a {100) habit and a relatively 
low aspect ratio in its initial state. Wagner and Brenner [8] measured 
particle aspect ratios less than 10 in the early stages of coarsening of 
as in Fe-Mo alloys. Driver and Papazian [17] report well-defined crys
tallites with K near 20 in similar alloys. Both Keh and Wriedt [7] and 
Abiko and Imai [9] found aspect ratios near 30 for partially coarsened 
precipitates~ since K increased monotonically during growth, their re
sults imply a lower aspect ratio at the starting particle size. There 
is, hence, a reasonable agreement between the experimental observations 
and the predictions of the linear elastic theory for the initial habit 
of the as nitride. 

The theory is less successful in specifying the habits of well 
coarsened precipitates. The theory predicts a gradual habit shift 
toward (102) and argues that the (001) habit is unstable when the aspect 
ratio is large, while the experimental data [7-10] suggest that the 
(001) habit is preserved. On the other hand, there is evidence of habit 
plane. instability in electron micrographs of well coarsened a 2 precipi
tates such as those published by Keh and Wreidt [7] and by Abiko and 
Imai [9]• while the precipitates generally follow {100) planes they are 
irregular, and have occasional steps, kinks, and branches that deviate 
from {100). Further electron microscopic studies were recently underta
ken [18] to clarify the habit of large nitride precipitates in a low
nitrogen alloy. The micrographs show that 1 arge a 2 prec ip ita te s with 
high aspect ratios frequently retain the {100) habit. However, they also 
reveal a clear, though sluggish, tendency for rotation of the habit 
plane. The rotation occurs through the agglomeration of adjacent preci
pitates or the formation of branches which radiate from the central 
precipitate at a slight angle. The magnitude of the habit shift tends to 
increase with the aspect ratio and is near that predicted by the theory. 
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When the (001) habit is retained its preservation may be a simple 
kinetic phenomena~ If the precipitate already has a (001) habit then it 
can decrease both its elastic and its surface energy per unit volume by 
coarsening on that plane with an appropriate increase in its aspect 
ratio. Its continued growth on (001) is only unfavorable if a popula
tion of large precipitates with the rotated habit already exists. But 
habit plane rotation is not easy to accomplish. It can only plausibly 
occur through the periodic nucleation of layers of Fe16N2 at the preci
pitate interface to create stepped surfaces that are angled to (001). 
Since the difference in elastic energy between the (001) and the rotated 
habit is relatively small even in the thin-plate limit (Figure 5). there 
is only a modest driving force available to impel formation of the 
appropriate ·periodic distribution of steps. This driving force must not 
only overcome the contribution to surface energy from the periodic 
distribution of interfacial ledges. but must also compete with that 
which promotes continued growth in the (001) plane. It is therefore 
reasonable that the (001) habit is often preserved. 

2. The Source of the Habit P1&De Shift 

The physical reason for the rotation of the preferred habit plane 
can be roughly understood by comparing Figs. 3 and S. The elastic energy 
of a precipitate of finite thickness is determined by an integral over 
the unit sphere (Eq. 15) whose kernal is the elastic energy of a thin 
plate of orientation e multiplied by the geometric weight of orientation 
e in the precipitate shape. The thin-plate elastic energy is plotted in 
Fig. 5 as a function of the angle. e between the vector e and the x3 
axis for directions of the type e=[hOk]. The function has a weak minimum 
at &=22.5° (e is close to [102]), a weak maximum at 9=0° (e=[001]), and 
a strong maximum at &=90° (e=[100]). Fig. 3 is a plot of the geometric 
factor as a function of the angle, a. between e and the normal n to the 
habit plane. It is peaked at a=0°, i.e., at e=n, to a degree that 
increases with K. 

When K is very large the geometric factor is sharply spiked at 
a=0°. The habit is then determined by the minimum of the thin-plate 
elastic energy and falls at 9=22.5°. As K decreases the geometric func
tion broadens, adding weighted energy contributions from e near n. The 
anharmonicity of the function E(e) has the consequence that the most 
favorable orientation (n) is rotated toward [001]. When K is relatively 
small the geometric function is broad, and favors the (001) habit since 
the major contributions to the elastic energy then come from the wide 
valley in E(e) centered on [001]. 

3. The SiJnificance of Approxiaations in the Theory 

The theory employs three relevant physical approximations: the 
precipitate is given a disc shape, its elastic constants are taken to be 
equal to those of the matrix, and its surface tension anisotropy is 
ignored. Each of these approximations will, of course, affect the quan
titative precision of the theory. 
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The disc shape was chosen for mathematical simplicity in light of 
the fact that those who have investigated the precipitate [7-10.17] have 
reported that its shape is a thin disc. More recent work [18] suggests 
that well-developed a~ precipitates have a rosette morphology whose best 
axisymmetric representation may be a thin lens. Wedge [14] computed the 
elastic energy of a lens-shaped nitride precipitate and found that this 
shape is. in fact. always favored over both the disc and the ellipsoid. 
The quantitative relation between D and K may be changed somewhat if a 
lens shape is assumed; however. the lens has the same preferred habit as 
the disc for both small and large values of K. 

The elastic moduli of the Fe16N2 precipitate are unknown. but must 
not differ too greatly from those of iron since both the stress-free 
strain of the precipitate and its internal strain in the embedded condi
tion can be found from computations which employ the iron moduli. It is. 
therefore. unlikely that the difference in elastic constants will signi
ficantly influence the preferred habit plane. In the thin-plate 1 imi t 
the theory can be corrected for the modulus change by simply substitu
ting the elastic constants of the precipitate for those of iron [4]. It 
can then be shown [1] that the habit plane of a precipitate of given 
tetragonality is relatively insensitive to the precise values of the 
elastic constants, provided that the sign of the elastic anisotropy 
factor does not change. 

The surface tension anisotropy of the a 2 -iron interface is also 
unknown. but there are experimental indications that it is significant. 
Both Wagner and Brenner [8] and Wedge [14] have used the coarsening data 
for a 2 to calculate values of the interfacial tension. The results are 
very sensitive to details of the model employed [14]. but do suggest 
that the effective surface tension around the periphery of the precipi
tate plate is substantially higher than that in the (001) habit plane. 
If these conclusions are correct then the surface tension will promote 
the (001) habit when the particle is small (and hence has a small aspect 
ratio). Surface tension anisotropy will not affect the habit of large 
precipitates (high aspect ratio) since the surface contribution to the 
total energy is then negligible. The net effect of surface tension 
anisotropy should be to delay the assumption of a rotated habit plane 
until the"particle size is large. This factor cannot change the prefer
ence for an eventual shift to a rotated habit near (102). 

It follows that the three approximations explicitly added to the 
theory in the present treatment may influence quantitative aspects of 
the results. but should not change their qualitative features. The 
inclusion of a more accurate precipitate shape and an appropriately 
anisotropic surface tension may change the value of the aspect ratio at 
which the (001) habit becomes energetically unstable with respect to 
rotation and the subsequent variation of the preferred habit with K. but 
should not affect the eventual preference for (102). A correction of the 
elastic constants may have an effect on the asymptotic habit. but the 
change should be small. 

It is not necessary to assume that the nitride is either stoichio
metric or ideally ordered. The preferred habit depends only on the 

r 
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tetragonality. ~. which. given its definition in Eq. 21. is independent 
of the nitrogen content or state of order within the precipitate so long 
as the stress-free strain of the precipitate obeys the Bell-Owen. [12] 
relations. It is hence only necessary that the nitrogen be gathered 
locally into a region that defines a nitride (of whatever composition) 
within an iron matrix. and that the nitrogen be internally distributed 
(in whatever state of order) over the Oz sublattice of interstitial 
sites. 

There is, however, an addi tiona! assumption involved in applying 
the theory to the Fe-Ho system. since it is known [8.17] that Ho tends 
to accumulate within the a~ phase. The theory is applicable under the 
approximations made by Driver and Papazian [171. who estimated the 
lattice parameters of (Fe.Ho>16N2 by summing the homogeneous distortion 
of Fe due to Ho and the tetragonal distortion due to N. In this case the 
tetragonality of the precipitate is identical to that of Fe16N2 in iro~ 

C. Iaplications for Other Precipitation Reactions 

If the preferred habit of a precipitate is determined by the need 
to minimize its elastic energy then the habit may depend on the shape of 
the precipitate as well as on its relaxed structure. and the apparent 
structure of the precipitate may depend on its preferr.ed habit plane. 
This behavior is most likely when the normal to the preferred habit does 
not lie on a joint symmetry axis of the precipitate and matrix crystals. 

In the case of a coherent tetragonal precipitate in an anisotropic 
cubic crystal, the results of Ref. 1 show that there is generally only 
one true minimum. E(n). of E(e) within the segment of the unit sphere in 
reciprocal space defined by the directions [0011. [100]. and [110]. The 
symmetry of E(e) about the minimum need be no more than is req~ired by 
the symmetry of the crystal. If E(e) is asymmetric about n then a 
precipitate having finite thickness can usually lower its total elastic 
energy by assuming a habit away from n which spreads its geometric 
intensity so as to minimize the weighted average of E(e). When the 
aspect ratio is small n will tend to lie along a symmetry axis (such as 
[001]) so that the elastic energy function may spread over the several 
symmetrically disposed minima of E(e). 

It follows that precipitates that form through a discrete nuclea
tion or three-dimensional spinodal mechanism will tend to have low index 
habit planes whatever the identity of the asymptotic thin-plate habit. 
If rotation of the habit plane is kinetically difficult. as it will 
generally be. then the low index plane will be retained until the preci
pitate size is large. and will hence be the habit plane reported for the 
system. High index habit planes are expected only when the asymptotic 
habit is high-index and when the precipitate either is the product of a 
one-dimensional spinodal decomposition (the normal to the asymptotic 
habit is also the preferred direction for the spinodal wave [4]) or is 
so malleable that it can easily adjust its habit as the aspect ratio in
creases. 

The same reasoning should extend to crystallographies other than 
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the tetragonal-in-cubic case considered here. For example, following the 
initial work leading to this paper [15], Mayo and Tsakalakos [22] showed 
that a similar analysis explains the habit of hexagonal MgZ~ precipi
tates in aluminum. 
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Figure 1: The crystal structure of Fe16N2 (after Iack [13]). 
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Figure 2: The variation of aspect ratio (K) with particle size (D) 
during the coarsening of Fe16N2• The aspect ratio i:s plotted 
in the appropriate form to give a linear relation with D in 
the thin-plate limit [4). The data are taken irom the contin
uous coarsening experiments of Keh and Wreidt [7] and Wagner 
and Brenner [8]. The data of Abiko _and Imai [9] are also 
included; however, their data represent two different coarsen
ing conditions. 
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Figure 3: The variation of the geometric factor in the elastic energy 
integral with angle, alpha (measured from the habit plane 
normal), for various values of the aspect ratio (K). 
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Fi.gure 4: The variation of the preferred habit with aspect ratio. The 
preferred habit is always of the type {hOk}. Theta is the 
angle between the normal (D) to the habit plane and the tetra
gonal axis of the precipitate (the [001] .direction of the Fe 
matrix). 
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Figure S: The elastic energy function E(e), plotted for the directions 
[hOk] about [001]. Theta is the angle ~etween tho direction 
(e) and [001]. E is in units of c 44 (e 0 ) • 
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